Instituto Nacional de Matematica Pura e Aplicada

Inexact versions of proximal point and
cone-constrained augmented Lagrangians
in Banach spaces

Rolando Gdrciga Otero

Tese apresentada para a obtencao do grau de
Doutor em Matematica

Rio de Janeiro

2001



To my family.



ACKNOWLEDGMENTS

I am grateful to the Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico and
the Instituto Nacional de Matematica Pura e Aplicada for supporting this research and
providing excellent working conditions. I am particularly grateful to the members of the
Optimization group at IMPA for their enlightening and suggestions, but specially to my
adviser Professor Alfredo Noel Iusem, to whom I am eternally indebted: thank you for
believing in me, thank you for teaching me.

I would like to express also my gratefulness to my mom, sisters and friends for their
understanding and unconditional support through these long years of separations.



Abstract

We extend to Banach spaces the hybrid proximal-extragradient and proximal-projection
methods for finding zeroes of maximal monotone operators, recently proposed by Solodov and
Svaiter in finite dimension and Hilbert spaces respectively. The generalization of the hybrid-
projection method makes it possible the use of regularizations other than the quadratic by
using an appropriate error criterion, which allows for bounded relative error, and a Bregman
projection instead of the metric projection. Boundedness of the sequence generated by both
methods and optimality of the weak accumulation points are established under suitable
assumptions on the regularizing function, which hold for any power greater than one of the
norm of any uniformly smooth and uniformly convex Banach space, without any assumption
on the operator other than existence of zeroes. A variant of the error for the hybrid-projection
method let us establish superlinear convergence even with inexact solutions of the proximal
subproblem in Hilbert spaces. We show that the hybrid steps of the Proximal Point methods,
allowing for constant relative errors, are necessary in order to ensure boundedness of the
generated sequence, even in the optimization case. Moreover, we show that such conditions
do not imply that the sequence of errors results summable “a posteriori”. We then transpose
such methods to generate augmented Lagrangian methods for the following cone-constrained
convex optimization problem in Banach spaces: ming(z) subject to —G(z) € K, with
g: B - R G : By — By, where B; and B, are real reflexive Banach spaces and K is
a nonempty closed convex cone in By;. Two alternative procedures are developed which
allow for inexact solutions of the primal subproblems. Boundedness of both the primal
and the dual sequences, and optimality of primal and dual weak accumulation points, are
then established, assuming only existence of Karush-Kuhn-Tucker pairs. Finally we add
to the hybrid-extragradient method a penalization effect for solving variational inequality
problems in Banach spaces, by introducing a boundary coercive condition on the regularizing
function. We give examples of regularizing functions for the cases of the feasible set being
closed balls and polyhedra. We get convergence results similar to those of the methods
without penalization under the assumptions of pseudo- and paramonotonicity of the involved
operator and existence of solutions.

Keywords: proximal point method, augmented Lagrangian, inexact solutions, maximal
monotone operator, cone-constrained optimization.



Contents

1 Introduction 3
2 Preliminaries 7
2.1 Maximal Monotone Operators . . . . . . . . . . . . . . ... . ... ..... 7
2.2 The derivatives of Fréchet and Gateaux . . . . . . . . . ... .. ... .... 9
2.3 Convex functions . . . . . . . . . . e 12
2.3.1 Differentiable convex functions . . . . . . . . .. ... ... ... 14
2.3.2 Totally convex functions . . . . . . .. ... ... L. 15
2.3.3 Bregman projection . . . . . . ... Lo 16
2.3.4  Uniformly totally convex functions . . . . . ... ... ... ..... 17
2.4 Duality mappings . . . . . . ... 19
2.5 The exact Proximal Point Method . . . . . . . . . . ... ... ... ..... 21
2.6 Generalized Proximal Point with penalization purposes . . . . . . ... . .. 24
2.7 The inexact Proximal Point Method . . . . . . . . . ... ... ... ..... 28
2.8 Smooth cone-constrained convex optimization . . . . . ... ... ... ... 31
2.9 Augmented Lagrangian Methods . . . . . . .. .. ... ... ... ..... 35

3 On the existence of appropriate regularizing functions in general Banach
spaces 39
3.1 Powersof thenorm . . . . . . . . . . . ... 46
3.2 Counterexamples for the separability requirement . . . . . . . .. ... ... 47
3.3 A candidate penalty functioninaball . . . . ... ... ... ... ... .. 49
3.4 A candidate penalty function in a polyhedron . . . .. . ... ... .. ... 55
3.5 The separable case . . . . . . . . . . . ... 59
4 Inexact versions of the Proximal Point method in Banach spaces 61
4.1 Convergence analysis of Algorithm I. . . . . . ... ... ... ... ..... 65
4.2 Convergence analysis of Algorithm IT . . . . . ... ... ... ... ..... 71



4.3 Some results on the convergence rate of algorithm I . . . . . . ... ... ..
4.4  On the need for hybrid steps in Hybrid Proximal Point methods . . . . . . .
4.5 Concluding remarks . . . . . . . . ...

Augmented Lagrangians methods for cone-constrained convex optimiza-
tion in Banach spaces
5.1 Fundamentals . . . . . . . . ..
5.2 An augmented Lagrange functional . . . . . . ... ... ... ... ... ..
5.3 Inexact versions of the doubly augmented

Lagrangian method . . . . . . . . . . . ... ... ...
5.4 Convergence analysis of Algorithms DAL-I and

DAL-IT . . . . o e
5.5 Concluding remarks . . . . . . . ...

Proximal Point methods with in-built
penalization in Banach spaces
6.1 A boundary coerciveness condition . . . . . .. .. ...
6.2 Inexact Proximal Point-Extragradient method

with in-built penalization in Banach spaces. . . . . .. ... ... ... ...
6.3 Convergence analysis . . . . . . . . ..
6.4 Penalization in polyhedra . . . . . . . . ... oo
6.5 An approach depending on the regularizing parameters . . . . . . ... . ..
6.6 Concluding remarks . . . . . . . . . ..



Chapter 1

Introduction

Many problems reduce to finding zeroes of maximal monotone operators, originated e.g. in
optimization or in variational inequalities. Illustrative examples are elliptic boundary value
problems (see e.g. [49]), which have the Sobolev spaces, W™P((), as its natural domain of
definition. Thus, methods for finding zeros of maximal monotone operators in nonhilbertian
spaces seem to be quite important, or at least as important as they are in hilbertian or finite
dimensional spaces. Proximal point methods, discussed in detail in section 2.5 of Chapter
2, are among the main tools for finding zeroes of maximal monotone operators in Hilbert
spaces (see [61]). We devote this thesis to the study of theoretical properties of variants
of the proximal point method for finding zeroes of maximal monotone operators in Banach
spaces. Such methods have been extensively studied in Hilbert spaces, but in nonhilbertian
spaces this is not the case. In fact, up to our knowledge and to present days, there exists a
small number of references on this issue [1, 9, 15, 40], and only one of then, [40], considers
inexact variants of the algorithm. In [40] only partial convergence results are given and
the error criteria require convergence to zero of a sequence {d;}, where 0 is some absolute
measure of the error committed at iteration k. These criteria are undesirable, because they
impose increasing accuracy of the procedure along the iterative process. Our first main
objective consists of studying variants of the proximal point method in nonhilbertian spaces,
emphasizing inexact variants allowing for constant relative errors, in the sense, e.g. of [64] and
[62]. In order to attain this goal, we extend to Banach spaces two hybrid methods, namely
those which combine a step of an inexact proximal point method with either an extragradient
or a projection step, recently proposed by Solodov and Svaiter in finite dimension and Hilbert
spaces respectively ([64, 62]).

For this purpose, we need an appropriate family of regularizing functions, which sub-
stitute for the square of the norm in Hilbert spaces. Such a family has been proposed for
proximal methods which work in Banach spaces but less general than those studied in this



thesis, because they do not include the option of inexact iterates. Among them, we mention
exact proximal methods for optimization (e.g. [1], [15]), and also for variational inequalities
(see [9]). We keep the technical assumptions on such family of regularization functions re-
quired in [9]. We present a whole family of explicit functions which satisfy such technical
assumptions, for instance f(x) = ||-||", with » > 1, in any uniformly convex and uniformly
smooth Banach space.

We comment that the extension to Banach spaces of the inexact methods with constant
relative errors involves several nontrivial technicalities, related to the inexistence of inner
products in nonhilbertian Banach spaces. In our modest opinion, we were able to overcome
the obstacles presented by such technical difficulties.

Augmented Lagrangian, or more generally multiplier methods (see e.g. [6]) have been
recognized as an efficient option for dealing with inequality constrained optimization prob-
lems, particularly when both the objective function and the feasible set are convex. There is
a strong connection between augmented Lagrangian methods and proximal point methods
[60, 3, 25, 38]. This connection led us to our second main objective: to translate these inex-
act proximal methods in Banach spaces into the setting of augmented Lagrangian methods.
As a result, we get two inexact augmented Lagrangian methods, allowing for constant rela-
tive errors, which are applicable to smooth cone-constrained convex optimization in Banach
spaces. We remark that previously existing results on augmented Lagrangian methods for
cone constrained convex optimization appear only in [66], which deals only with the case of
Hilbert spaces and offers only partial convergence results, e.g. not much is said about the
primal sequence, besides the fact that if it exists it is a minimizing one, strong regularity
conditions are needed on the problem data and the regularizing parameters are not freely
chosen. In view of this fact, it happens that our results are original even for finite dimen-
sional problems. Moreover, the results in [66] depend strongly on properties of the Hilbert
space, while we consider a general reflexive Banach space for the operator constraints. As
particular instances we get applications involving e.g. an infinite number of constrains, or
the cone of the positive semidefinite matrices in an n—dimensional Euclidean space.

In finite dimensional or Hilbert spaces, proximal point methods with a nonquadratic
regularizing function f have been proposed mainly with penalization purposes. It is assumed
that the problem includes a closed and convex set C', i.e. if we are looking for the zeroes
of T+ N¢, where T is a maximal monotone operator and N¢ is the normalizing cone of
C, or equivalently we are dealing with the variational inequality problem with operator T’
and feasible set C'. In such a situation, the use of an f whose domain is C' and whose
gradient diverges at the boundary of C' makes the proximal subproblems unconstrained
([19, 21, 35, 41, 12, 25, 36, 62]). Extension of this approach to nonhilbertian spaces is a
highly nontrivial question, and we make some progress in this direction, offering alternative
sufficient conditions on the regularizing functions. We give explicit examples of functions
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satisfying some of these conditions for the cases in which the feasible region is either a ball
or a polyhedron. In the case of the polyhedron, our explicit functions satisfy all desired
properties. In the case of balls, our functions miss one of the sufficient conditions, but
then we give an appropriate way to choose the regularizing parameters, which allows us to
establish the desired convergence properties in the absence of the missing condition.

To get started we need some preliminaries, including a detailed analysis of previous works
on the subject, which is achieved in Chapter 2.

Unless otherwise stated, all results in Chapters 3 through 6 are, to our knowledge, new.

In Chapter 3, we deal with the required properties of the regularizing functions, and
establish that positive powers of the norm satisfy them, thus completing the results of [17, 13].
We introduce the notion of generalized duality mapping, which seems to be new. Such
mappings recover some basic properties of duality mappings and we use them, also, for
obtaining regularizing functions with penalty purposes for closed balls. A family of functions
for the case in which the feasible set is a polyhedron is also given. All desired properties
(labeled as H1-H6) are discussed, and we give counterexamples for the properties which do
not hold, as well as alternative properties which substitute for the missing ones.

In Chapter 4 we extend to Banach spaces the methods proposed for Hilbert or finite
dimensional spaces in [64, 62]: We generalize a proximal-like method for finding zeroes of
maximal monotone operators in Hilbert spaces with quadratic regularization due to Solodov
and Svaiter, making it possible the use of other kind of regularizations and extending it to
Banach spaces. In particular, we introduce an appropriate error criterion to obtain an inexact
proximal iteration based on Bregman functions, and construct a hyperplane which strictly
separates the current iterate from the solution set. A Bregman projection onto this hyper-
plane is then used to obtain the next iterate. Boundedness of the sequence and optimality of
the weak accumulation points are established under suitable assumptions on the regularizing
function, which hold for any power greater than one of the norm of any uniformly smooth
and uniformly convex Banach space, without any assumption on the operator other than
existence of zeroes. These assumptions let us, also, obtain similar results in Banach spaces
for the Hybrid Extragradient-Generalized Proximal Point method, proposed by Solodov and
Svaiter for finite dimensional spaces. A variant of the error for the hybrid-projection method,
when compared with that in [64] in Hilbert spaces, gives better asymptotic constant for the
linear convergence rate and let us establish superlinear convergence (under the standard
assumptions of Lipschitz continuity of the inverse operator at zero and regularizing param-
eters converging to zero), even with inexact solutions of the proximal subproblems. We also
establish in Section 4.4 of this chapter the necessity of the hybrid steps in order to guarantee
boundedness of the iterates, even for optimization problems in Hilbert spaces. Moreover, we
prove that the relative error measures of these hybrid methods do not result summable “a
posteriori”, showing its intrinsic advantage over criteria which require summability of the



errors.

In Chapter 5, we transpose such methods to the setting of cone-constrained convex op-
timization, in order to generate augmented Lagrangian methods for a general optimization
problem of the form min g(z) subject to —G(z) € K, with ¢ : By - R, G : By — By,
where By and B, are real reflexive Banach spaces and K is a nonempty closed convex cone
in B,. We obtain two alternative procedures which allow for inexact solutions of the primal
subproblems. Boundedness of both the primal and the dual sequences, and optimality of
primal and dual weak accumulation points, are then established, assuming only existence of
Karush-Kuhn-Tucker pairs.

Finally, in Chapter 6, we add to the hybrid Proximal-Extragradient method presented
on Charter 4 a penalization effect in Banach spaces. This effect requires a boundary co-
erciveness condition (H6), in order to guarantee good definition and penalization in the
method. A complete convergence analysis is performed. The analysis is separated in two
cases: when there exist solutions in the interior of the feasible set and when all solutions
lie in the boundary. In the first case, there is no need of additional assumptions on the
maximal monotone operator, other than existence of solutions. In the second case we keep
the standard assumptions of pseudo- and paramonotonicity of the operator, and condition
H3.a on the regularizing function, as was done in [9] for the exact method. We prove that
the generated sequence is bounded and that all its weak accumulation points are solutions.
Condition H3.a is satisfied for the given family in the case of a polyhedron, but not for the
case of a ball, a fact discussed in Sections 3.4 and 3.3 respectively. Thus, the case of a ball
needs special attention, which is given in Section 6.5. The idea is to enforce condition H3.a
by choosing appropriately the regularizing parameters at each step of the algorithm. As a
consequence, the case of a ball is completely studied, getting strong convergence of the whole
sequence to a solution, when there is no solution in the interior of the ball. We mention
that for the optimization case we achieve the same results with a streamlined analysis, where
condition H3.a is not needed. Moreover, in this case the sequence of inexact proximal iterates
1S a minimizing one.



Chapter 2

Preliminaries

2.1 Maximal Monotone Operators

From now on, B is a real reflexive Banach space with norm denoted by [|-|| or ||-||5, B* its
topological dual (with the operator norm denoted by || - ||, or || - ||3.) and (-, -) denotes the
dual product in B* x B (i.e (¢, z) = ¢(x) for all ¢ € B* and all x € B).

Definition 2.1.1. A point-to-set operator T': B — P(B*) is said to be monotone if
(w—w'yz—2"y >0, for all z, 2’ € B and all w € T(z), w' € T(z2').

If the relation above holds with strict inequality when x # 2’ then T is called strictly
monotone.

Definition 2.1.2. A monotone operator is called mazimal if its graph,
G(T)={(v,z) € B* x Blv € T(x)},
is not properly contained in the graph of any other monotone operator.

Such operators are of interest because a wide variety of problems, such as convex opti-
mization problems and monotone variational inequalities, are particular cases of the following
fundamental problem:

Find z € B such that 0 € T'(x). (2.1)

Definition 2.1.3. A zero of the operator T : B — P(B*) is any solution x € B of problem
(2.1) above.



We recall that the strong topology on B is the one induced by the norm and the weak
topology on B is that induced by the linear and bounded operators from B to R (i.e.
the elements of B*), in the sense that {z"} C B is weakly convergent to z € B if and
only if lim,_,o (v, 2" — Z) = 0 for all v € B*. Thus, given {#*} C B, we use the notation
a% —=— x (respectively ¥ —~— z) meaning that the sequence {2*} converges in the strong
(respectively weak) topology of B to the element x € B. The same for B*, recalling that now
the weak topology is induced by the elements of B**, hence reflexivity of the real Banach

space B ensures that this is also the so called weak* topology of B*.

Definition 2.1.4. An operator T : B — P(B*) is said to be pseudomonotone if its domain,
dom T = {x € B | T(z) # 0},

is closed and convex and the following condition is satisfied:

{a*} € dom T, w* € T(a*), ¥ —=L— z° and limsup, _,  (w*, z¥ — 2°) <0

— Vy € dom T, Fw° € T(z°) such that (w°,z° — y) < liminfy,_,e0 (wk, 2% — ) .

Definition 2.1.5. Given a closed and convex subset C' of B, a monotone operator T : B —
P(B*) is paramonotone in C' if it satisfies:

(w—w',z—2)=0,with 2, 2/ € C, we T(z), w € T(Z)
— w € T(?) and w' € T(z).

Proposition 2.1.6. If T is a maximal monotone mapping then, for any x € dom T, the
image T(x) is a closed and convex subset of B*. Moreover, the graph of T, G(T), is demi-

; ; k S : k W . * k W : k S : *
closed, i.e. if 2* =—=—x in B, v* -=—w in B* (or 2* 2—ux in B, v* .=—v in B*)

and (2, v%) € G(T) for all k, then (x,v) € G(T).
Proof. See, e.g. [50], page 105.

The following proposition contains some basic results concerning sums of point-to-set
operators.

Proposition 2.1.7. Let T} and T, be two point-to-set operators. Then, the sum T) +T5 is:

i) paramonotone in C' when both Ty and Ty are paramonotone in C,

ii) pseudomonotone, when both operators are pseudomonotone and also the images Ti(x)
and Ty(x) are convex and closed for all x € dom TiN dom Ty,

iii) mazimal monotone, when both operators are maximal monotone and int(dom T1)N dom

T, # 0.
Proof. For (i) see [37], for (ii) see [50], page 97, and for (iii) see [57].



2.2 The derivatives of Fréchet and Gateaux

Let Bi, By be two real Banach spaces. Take x € By, an open neighborhood U(z) of z and
fU(ZL') CB1 —)BQ.

Definition 2.2.1. (1) The directional derivative of f at x in the direction y € By is the
limit
o St t) ~ (@)

t—0+ t

= fi(x,y),

when it exists.

(2) If there exists an operator in L(Bi, Bs) (i.e. a continuous linear operator), to be
denoted by f'(z), such that

i L@ 1Y) = f(@)

t—0 t

= (f'(=),y)
for all y € By, then f is Gateauz differentiable (or G-differentiable for short) at .

(3) Moreover, if the limit above is uniform on the unit sphere, i.e.

flz+ty) — f(x)
t

—{(f'(=),y)

lim sup

— (),
=011, =1

2

then f is called F-differentiable at x (F for Fréchet).
Definition 2.2.1 has been taken from [22].
Proposition 2.2.2. (Relations between F- and G-derivatives)

i) Fvery F-derivative at x is also a G-derivative at x.

ii) If f' exists as a G-derivative in some neighborhood of x, and is continuous at x, then
f'(x) is also an F-derivative at x.

iit) If f' exists as an F-derivative at x, then f also is continuous at x.
Proof. See Proposition 4.8 of [67].

Proposition 2.2.3. (Sum Rule) Suppose that f, g : U(x) C By — By are G-differentiable
(respectively F-differentiable) at x:, where By and By are Banach spaces over R. Then af+ g
is G-differentiable (respectively F-differentiable) for all o, 8 € R and

(af + Bg)'(x) = af'(x) + By (x).



Proof. See Proposition 4.9 in [67].

Proposition 2.2.4. (Chain Rule) Let By, By and Bz be Banach spaces. Consider x € By,
y = f(x) € By and neighborhoods U(x) of x and V(y) of y. Suppose that we are given maps
f:U(x) C By = Byand g : V(y) C By — By with f(U(x)) C V(y). This defines the
composition map go f : U(x) C By — Bs. Suppose that ¢'(y) exist as an F-derivative. Then

i) If f'(x) exists as an F-derivative then the composite map H = g o f is F-differentiable
at x.

i) If f'(x) exists as a G-derivative, then H is G-differentiable at x and

Proof. See Proposition 4.10 in [67].

We define next some classical notions of smooth, locally uniformly smooth and uniformly
smooth Banach spaces, which depend on differentiability properties of the norm.

Definition 2.2.5. Let f denote the norm in the real Banach space B, ie. f=||z: B —
R,.

(1) B is called smooth if f is G-differentiable on B\{0}.
(2) If f is F-differentiable on B\{0}, then B is called locally uniformly smooth.
(

3) If the norm is uniformly F-differentiable on the unit sphere, i.e. f is F-differentiable
and

fm su |z +tyll = ll=f|
p
20 | 31 =(lyl|=1 t

(f'(z),y)| =0,
then B is called uniformly smooth.
Definition 2.2.6. A real Banach space B is

(1) strictly convezifforallz, y € B, x # y, ||z|| = ||y|| = 1, it holds that [[Az + (1 — \)y]|
< 1 forall A € (0,1),

(2) wuniformly convez if for each € > 0, there exists 6 > 0, so that ||z|]| = ||y|| = 1 and
|z = yll = € imply [[z 4+ y[| < 2(1 —9),
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(3) locally uniformly conver when for any z in the unit sphere it holds that for all € > 0,
there exists § = d(z) > 0, so that |ly|| = 1 and ||z — y|| > € imply ||z + y|| < 2(1 —9).

Remark 2.2.7. It is clear that uniform convexity implies both local and strict convexity.
Moreover, the following geometric interpretation of uniform convexity can be given: if the
sequence of the middle points of the line segments [z", y"| with ||2™|| = ||y™|| = 1, converges
to a point in the boundary of the unit ball, then the length of the segments converges to
zero. In particular, strict convexity means that the boundary of the unit ball contains no
line segments. Well known examples of uniformly convex spaces are Hilbert spaces, £P((2)
and Sobolev spaces W™P(Q) (1 < p < 00).

There is a strong relation between the different definitions of smoothness and convexity.
In fact,

Proposition 2.2.8. Let B be a real reflexive Banach space. Then

i) B is strictly convexr (respectively smooth) if, and only if B* is smooth (respectively
strictly convez), and

ii) B is uniformly convex (respectively uniformly smooth) if, and only if B* is uniformly
smooth (respectively uniformly conver).

Proof. See Corollary 1.4 and Theorems 2.13 and 2.14 in pages 43, 52 and 53 respectively
of [22].

Definition 2.2.9. We say that the Banach space B has property (h) if

(h)  2F ——— & whenever ka||B ey ]| and 2* 45~ @

Remark 2.2.10. Every locally uniformly convex Banach space has property (h). See e.g.
[22], page 49.

Remark 2.2.11. We point out that locally uniform convexity is not a demanding condition
in reflexive Banach spaces. A result by Troyanski ensures that if B is reflexive then there
exist equivalent norms in B and B*, such that both spaces, so renormalized, are still mutually
dual and also locally uniformly convex (see [65]).
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2.3 Convex functions

A function f: B — RU {400} is conver if and only if

flaz+ (1 —a)y) < af(z)+ (1 -a)f(y),

for any two points x, y € B and for any real « € (0,1). If the relation above holds with strict
inequality when = # y then f is called strictly convez. When dom f # (3, f is called proper.
Moreover, f is lower semicontinuous if for each real number r, the set {x € B| f(x) < r}is
closed. Recall also that a subgradient of f at the point x € dom f is an element v € B* such
that

(v, y—x) < f(y) — f(x), (2.2)

for all y € B. The set of all subgradients of f at x is called the subdifferential of f at x and
denoted Of ().

Proposition 2.3.1. The subdifferential operator, Of(-) : B — P(B*) of any proper lower
semicontinuous convex function is mazximal monotone.

Proof. See e.g. Theorem 3.25 of [53].

Proposition 2.3.2. Let f be a lower semicontinuous convex function with int(dom f) # 0
and D, the subset of dom (0f), where Of is single valued. Then Of is demicontinuous on
D, (i.e. continuous as a single valued mapping from D, in the strong topology to B* in the
weak® topology) and D, C int[dom (Of)].

Proof. By Proposition 2.3.1, the subdifferential operator, f(-) : B — P(B*) is maximal
monotone with a nonempty interior of its domain. Then the results follow from Corollary
1.1 of [55].

Example 2.3.3 (The indicator function). Let C' C B be a nonempty, closed and convex
set and I : B — RU {+o0} the indicator function of C, i.e.

Ie(a) 0, ifxreC
T) =
¢ 400,  otherwise.

Ic is a proper lower semicontinuous convex function with subdifferential given by

aIC(x):{{z€B| (z,y—2x) <0, VyeC} ifzeC (2.3)

1] otherwise.
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Definition 2.3.4. The operator No : B — P(B*) defined by equation (2.3) above, i.e.
N¢ = 0l¢, is called the normalizing operator of the set C.

The normalizing operator of a nonempty, closed and convex set C' is, then, a maximal
monotone operator. It follows that the operator 0f + Ng, where f is any proper, lower
semicontinuous and convex function, is maximal monotone too, whenever int (C)N dom
f # 0. More generally, the operator T+ N obtained by replacing 0f by any maximal
monotone operator T' satisfying int (C')N dom T # (), is also maximal monotone.

Definition 2.3.5. Given a proper lower semicontinuous convex function and a closed convex
set C'in B the constrained convex optimization problem is defined as mingec f(x).

The zeroes of T'+ N¢ are related to the variational inequality problem, which we define
next.

Definition 2.3.6. The wvariational inequality problem for T and C, denoted VIP(T,C),
where T : B — P(B*) is a maximal monotone operator and C' is any nonempty closed
and convex set in B, is defined as:

Find z € C such that there exists v € T'(x) with (v,y —2) > 0 for all y € C.
Unless otherwise stated, S will denote the set of solutions of VIP(T,C).
The following result is rather immediate.
Proposition 2.3.7. The solutions of VIP(T,C) are precisely the zeroes of T + Nc.

Example 2.3.8 (Distance function). Given a nonempty, closed and convex subset C' of
a reflexive real Banach space B the distance to C, d(-,C) : B — R is given by

d(z,C) = inf ||z —y]p. (2.4)

It holds that d(-,C) is a continuous convex function and its subdifferential at x is given, for
any z € Po(x), by

2d(,C) = 9 — 2|l N Ne (), (2.5

a result that can be found in Theorem 1 of [14]. Here Pc denotes the metric projection onto
C defined at any = € B as

1 9
Po(z) = argmin o [|z — yllj, (2.6)

ie. Po(x)={z€C ||z -zl =d(z,C)}.

The point-to-set operator Pc : B — P(C) is single-valued when B is strictly convex. Ex-
istence of points attaining the distance in (2.4), and so a nonempty valued metric projection
Pc, is ensured by reflexivity of B.
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2.3.1 Differentiable convex functions

In this section, B is a Banach space and f : B — R U {oo} is lower semicontinuous, with
int(dom f) # (). We assume that f is G-differentiable on int(dom f). We define the Bregman
distance and the modulus of total convexity associated to f as follows.

Definition 2.3.9 (Bregman distance). The function D; :dom fx int(dom f) — Ry,
given by

Dy(y, =) = f(y) — f(z) + (f'(2),y — ),
is called the Bregman distance associated to f.

Proposition 2.3.10. Let f be a lower semicontinuous convex function with int(dom f) # 0.

i) The function f is G-differentiable on int(dom f) if and only if Of(-) :int(dom f) — B*
is a point-to-point operator, i.e. single valued. In the affirmative case, Of (x) = {f'(x)}
for any x € int(dom f) and

a) Dy is well defined and Dy (-, x) is convet.
b) (Three-point equality) For any x, z € int(dom f) and y € dom f, it holds that

Df(yvr) - Df(y7z) - Df(Z,l‘) = <fl(‘r) - fl(z)7z - y> (27)
c¢) (Four-point equality) For any x,z € int(dom f) and y,w € dom f, it holds that
Dy(w,z) = Dp(w,x) +(f'(z) = f'(z),w —y) + D(y, 2) — Dy(y,x).  (2.8)

d) If [ is strictly convex, then, for any x, y € int(dom [) such that x # y it holds
Dy(y,z) > 0.

i) If f is F-differentiable, then f' :int(dom f) — B* is norm-to-norm continuous and Dy
is continuous on int(dom f)x int(dom f)

Proof. The resultsin (i) are proved in [16]: item (i) appearsin 1.1.10, (a) in 1.1.3, (b) in 1.3.9
and (d) in 1.1.9 of [16]. The relation in (2.8) is a consequence of (b) and its denomination

Four-point equality is taken from [62]. The result in (ii) follows from the corollary in page
20 of [53).

Example 2.3.11 (Powers of the norm). Let f,(z) = 1 |lz||; with » > 1. f, is a con-
tinuous convex function which, in view of Proposition 2.2.4 and Definition 2.2.5, is G-
differentiable when B is smooth, and F-differentiable when B is locally uniformly smooth.

See a complete proof in [17].
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Definition 2.3.12 (Modulus of total convexity). v; :int(dom f) x Ry — R, defined as

)= inf D
vi(z,t) ot | 1y, ),

with S(z,t) = {y € B : ||y — z|| = t}, is called the modulus of total convezity of f.

Remark 2.3.13. The modulus of total convexity can be defined in a bigger domain and
without the additional assumption of differentiability of f on the interior of its domain (see

[16]).
We collect next a few results on the modulus of total convexity, needed in the sequel.

Proposition 2.3.14. If x € int(dom f) then

i) The domain of v¢(z,-) is an interval [0, 7(z)) or [0, 7(x)] with 0 < 7(z) < co. Moreover
7(x) is finite if and only if dom f is bounded.

ii) For all s > 1 and allt > 0,

vi(x, st) > svs(x,t). (2.9)

i) (Superadditivity) ve(z,t +1t') > ve(x,t) +ve(z,t') for all t, t' € [0,00).

w) vi(z,-) is nondecreasing, and it is strictly increasing if and only if vi(z,t) > 0 for all
t > 0.

Proof. see [16], 1.2.2.

2.3.2 Totally convex functions

In this section, B is a Banach space and f : B — R U {oo} is lower semicontinuous and
G-differentiable in the interior of its domain. We introduce the notion of totally convex
function, closely related to the modulus of total convexity. We follow the presentation in
[16].

Definition 2.3.15 (Total convexity). A function f: B — RU{+oc} is said to be totally
convez if vg(x,t) > 0 for all ¢ > 0 and all = € int(dom f).

Remark 2.3.16. Total convexity of f ensures strict convexity of f in the interior of its
domain. The converse result holds when f is continuous on a closed domain and B is finite
dimensional. In particular both notions are equivalent when f is finite (i.e. dom f = B)
and B is a finite dimensional space (see [16], 1.2.6).
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Proposition 2.3.17. If f is totally convex and lower semicontinuous with open domain D,
and ¢ is a real, convex, differentiable and strictly increasing function defined on an open
interval which contains f(D), then the function g = po f : B — RU {400} (with the
convention that g(z) = 400 if v & D) is totally conver and vy(z,t) > ¢'(f(z))vs(x,t), for
all z € D and for all t > 0.

Proof. See [16], 1.2.7.

In finite dimensional spaces we have a wide variety of totally convex functions, e.g. any
strictly convex function, as discussed in Remark 2.3.16. We establish next total convexity of
certain functions in infinite dimensional spaces.

Proposition 2.3.18. Let B be a locally uniformly conver Banach space and consider f, as
in Example 2.3.11, with r > 2. Then f, is totally conver and

2" vy, (2, ) if 2 #0,
1) = 2.10
Proof. This result follows from [16], 1.4.2, after noting that vy, = v, with f =rf, = ||-||",

which is the case considered in [16].

2.3.3 Bregman projection

Definition 2.3.19 (Bregman projection). Let B be a Banach space and f : B — RU
{oo} a strictly and totally convex function. Given a closed and convex subset C' C dom f,
the Bregman projection of a point z € int(domf) onto C' is the (necessarily unique) point
I1/,(z) satisfying

11/, (x) = argmin D (y, z).
yeC

Note that the uniqueness of the Bregman projection Hé(a:) follows from strict convexity
of the function f, which ensures that the function D(-,z) = f(-) — f(z) — (f'(x),- — z) is
strictly convex on the convex set dom f, which contains C'. In view of Remark 2.3.16 this
is, then, a direct consequence of the total convexity assumption on f when C' C int(dom
), e.g. dom f = B. In general it seems that strict convexity of f on the boundary of C' is
indeed needed for uniqueness of the Bregman projection. Another case where total convexity

Tt also holds when C is a subset of the algebraic interior of the domain of f and f is totally convex in
this set. See [16].
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suffices for uniqueness occurs when the norm of the derivative of f goes to infinity in the
boundary of C' (this case will be considered in Chapter 6). Since these are the two cases to
be considered in this thesis, we can assume in the sequel that uniqueness of the Bregman
projection is ensured assuming just total convexity of f in the interior of its domain. On the
other hand, total convexity is indeed sufficient for the existence of II/,(z) as the following
results shows.

Proposition 2.3.20. Suppose that the strictly convex function f : B — RU{+oo} is totally

conver and that the nonempty set C' is conver and closed. Then, the following statements
hold:

i) The operator Hé dint(dom f) — C is well defined.

i) If C C int(dom f) for each = € int(dom f), we have T = IIL(z) if and only if
f'(x) — f'(z) € No(Z) or, equivalently, z € C and

(f'(x) = f(2),2—2) <0 (2.11)
forall z € C.
Proof. See [16], 2.1.5.

When the closed and convex set C' is a hyperplane (i.e. C = {y € B |(v,y —x) = 0} for
some v € B*\{0} and x € B), the normal cone at any T € C is easily computable, in fact, it
is the one dimensional subspace spanned by v. Hence, if C' is the negative half-space of such
hyperplane (i.e. C = {y € B [(v,y — z) < 0}), we get Ne(z) = {sv |s € Ry }. Thus, if f
is finite, F-differentiable and totally convex, then the Bregman projection & = H’(cy(x) of any
x € B is a zero of the maximal monotone operator f'(-) — f'(z) + {sv |s € R, }. When f’
is easily computable, finding such a zero is reasonably easy, and thus Bregman projections
onto hyperplanes become essentially computable.

2.3.4 Uniformly totally convex functions

Let B be a Banach space and f : B — RU{+0c0} be a totally convex function on a subset E
of int(dom f) (i.e. the restriction of f to F is totally convex as defined in Definition 2.3.15).
It is interesting to study whether or not the modulus of total convexity of f is bounded away
from zero on certain sets.

Definition 2.3.21. A function f : B — R U {+oc} is uniformly totally conver on E C
int(dom f), if for each bounded subset £ C E and for each real number ¢ > 0, we have

inf v;(z,t) > 0.
el
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This property has been called by sequential consistency in [16] and norm compatibility in
[17]. They were introduced with different definitions in those references, but such definitions
are equivalent, as we state next.

Proposition 2.3.22. Let f : B — RU {400} be a convex function and E C int(dom f).
Then the following affirmations are equivalent:

a) f is uniformly totally conver on E,

b) Sequential consistency on E: For all {z*}, {y*} C E such that {z*} is bounded and
limy_,00 D(y*, 2%) = 0, it holds that z* — y¥ ——0.

k—o00
Proof. See [16], 2.1.2.

Remark 2.3.23. Uniform total convexity also implies a sequential consistency similar to
the one in Proposition 2.3.22(b), but with boundedness of the sequence {z*} replaced by
boundedness of {y*} in the assumption. In fact, when {y*} is bounded the argument in the
proof of Theorem 2.4 in [62] establishes that in such a case {z*} is bounded too.

Example 2.3.24 (Powers of the norm). Let B be an uniformly convex smooth Banach
space and consider f, defined as in Example 2.3.11. Then f, is uniformly totally convex (see
[17]). Moreover, when B = LP(2) (1 < p < o), the following closed formulae, depending
on the strictly convex real function ¢,(t) = 1¢° : Ry — Ry with s > 1, give lower bounds of
vy, (see [34]):

1. If 1 < p <r <2 then vy, (0,t) = 1" and for any z # 0
vr(2,1) 2 [, Do, (t + [l2ll, lzll,) = =]l v, (1], , 1) (2.12)
2. If 1 <r <p<2then

v (,t) = Do, (t+ [zl lzll,) = v, (2]l 2)- (2.13)

3. If 1 <7 <pand p > 2 then v, (0,t) = 2t and for any z # 0

r—p

t _ 1

i (z,t) > (1 + W) D, ([21 "+ |x|17]7, ||«'13||p) : (2.14)
p

4. If p=1r > 2 then
vy, (z,t) > 2P, (1). (2.15)

In particular, v, o 2(2,t) > t*/4.
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5. If r > 2 then vy, (0,t) = 1" and for any z # 0

t2
r—2 r—2
i (z,t) > ||«'L’||p V1/2||.||2(xat) > 1 ||5U||p . (2.16)

2.4 Duality mappings

A weight function ¢ is a continuous and strictly increasing function ¢ : R, — R, such
that ©(0) = 0 and lim;_, ; @(t) = +00. The duality mapping of weight ¢ is the mapping
J, : B — B*, defined by

Jo(x) = {a" € B*[(e", ) = ||l="[|, ||zl l="[I, = e(ll«])} (2.17)

for all z € B. When ¢(t) = t, J, is called the normalized duality mapping and denoted by
J. If J, is the duality mapping of weight ¢ in a reflexive Banach space B, then the following
properties hold:

JO: J =1, i.e. the identity map, if and only if B is a Hilbert space.
J1: J,(x) = 9 o ||-||](x) for all = € B, where 9(t) = [ ¢(s)ds.

J2: The inverse function of the weight ¢, ¢! is a weight function too and J7 -1, the duality
mapping of weight ¢~ on B*, is such that 2* € J,(z) if and only if z € J; _, (2*),

J3: If J; and Jy are duality maps of weights ¢, and ¢, respectively, then, for all x € B,
ea(llzl) Ji(z) = @1 ([]]) J2 ().

J4: If B is smooth (i.e., if B* is strictly convex), then J, is single-valued and norm-to-weak*
continuous. Moreover, if B* satisfies property (h) then J, is norm-to-norm continuous.

J5: If B is strictly convex, then J is strictly monotone.

J6: If B is uniformly smooth, then J is uniformly continuous on bounded subsets of B.

Proofs of properties JO-J5 can be found in [22], and a proof of property J6 appears in
[68].

Remark 2.4.1. There is a strong relation between the theory of duality mappings and
the geometry of Banach spaces. In fact the converse statements of J5, J6 and of the first
statement in J4 also hold (see [22] and [50] respectively).
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Example 2.4.2 (Squared norm). Let B be an uniformly smooth Banach space and con-
sider fy = %||||QB Using properties J1, J2 and J6 for the weight function ¢(t) = t, we get
fo(x) = J(x) for all z € B. Hence, f; is uniformly continuous on bounded subsets of its
domain B.

Metric projections can be characterized with the help of duality mappings. The next
proposition contains one such characterization.

Proposition 2.4.3. Let B be a a real reflexive Banach space. Take x € B and a nonempty,
closed and convex C' C B. Then, the following statements are equivalent:

Z) z € PC(x))

i) J(x — 2z) N Ne(z) # 0, where N is the normalizing operator of C, as in Definition

Proof. See the equivalence between (a) and (¢) in Theorem 3.1 of [51]. O

Example 2.4.4. Let H,, = {y € B | (v,y) = a} be the hyperplane given by v € B*\{0}
and @ € R. Choose r > 1 and the weight function ¢(t) = rt"~'. If B is smooth then
the function f = ||-||" is G-differentiable and J,(z) = {f'(z)}. Moreover, if B is uniformly
convex then f is totally convex on B and the Bregman projection, H;IM is well defined.
More interestingly, this is an example of reasonably effective computability of the Bregman
projection. In fact,

I, = Jo(sv+J,), (2.18)
where s € R is a solution of the equation in one real unknown
(v, Joa(sv+ J,)) = (2.19)

Thus the Bregman projection of a point onto a hyperplane with respect to a power of the
norm bigger than 1 is effectively computable, up to the solution of one (generally nonlinear)
equation in one real unknown (see [17]).

In Chapter 3 we will show that we can use more general weight functions and still get
(generalized) duality mappings with similar properties, also strongly related to the geome-
try of the space, which represent the derivatives of certain convex functions incorporating
information of particular proper subsets of the Banach space B, in such a way that they can
be used for penalization purposes.
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2.5 The exact Proximal Point Method

The Proximal Point method, whose origins can be traced back e.g. to [43], [48], [46], was
presented in [61] as a method for finding zeroes of monotone operators in Hilbert spaces. The
exact Proximal Point Method is defined as follows: Given a Hilbert space H and a maximal
monotone point-to-set operator T': H — P(H), take a bounded sequence of regularization
parameters {\;} C R, and any initial z° € H, and then, given z*, define 2**! as the only
z € H such that

0€T(2) 4 M(z— 2. (2.20)

It was proved in [61] that when T has zeroes the sequence {z*} defined by (2.20) is weakly
convergent to a zero of T'. This convergence is not strong in general, a fact that was proved
by Giiler in [31], through an example in the space ¢* for the optimization case (i.e. for
T = 0f for some convex f).

Proposition 2.5.1. (Giler) There exists a proper, closed and convex function in (? which
has minimizers and such that, given any bounded positive sequence {\}, there exists a point
x € dom f for which the exact Proximal Point algorithm (2.20), starting at x, converges
weakly but not strongly to a minimizer of f.

Proof. See [31], Corollary 5.1.

If we have a Banach space B, instead of H, in which case we must take T : B — P(B*),
where B* is the dual of B, then an appropriate extension of (2.20) is achieved by taking
2**1 as the unique z € B such that

Ml f'(2%) = f'(2)] € T(w), (2.21)

where f : B — R U {oc} is a strictly convex and Gateaux differentiable function on the
interior of its domain satisfying conditions H1-H3 below, and [’ is its Gateaux derivative.
When f =1/2||z|% and B is a Hilbert space, (2.21) reduces to (2.20).

The assumptions on f are, essentially, the following:

H1: The level sets of D¢(x,-) are bounded for all x € dom f.
H2: Uniform total convexity of f on int(dom f).

H3: The G-derivative of f, f’, is uniformly continuous on bounded subsets of int(dom f).
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Under these assumptions, it was proved in [9] that if dom 7" C int(dom f) and T has
zeroes then the sequence {z*} is bounded and all its weak cluster points are zeroes of T', and
that there exists a unique weak cluster point when f’ is weak-to-weak* continuous. Actually,
it is also requested in [9] that f' be onto, in order to ensure existence of a solution x of
(2.21).

Proposition 2.5.2. Let f : B — RU {00} be a strictly conver and Gateaux differentiable
function on the interior of its domain satisfying dom TN int(dom f) # O and T : B — P(B*)
a mazimal monotone operator. If f' is surjective, then T + f' is surjective. In particular,
for all X > 0 and all z € int(dom f) there exists a unique solution x of the problem \f'(z) €
T(x)+ Mf'(z).

Proof. See [9], Lemma 2.10 and Corollary 3.1. O

This surjectivity requirement can be avoided?, but we are going to use it for other pur-
poses too, e.g. as a sufficient condition for good definition of extragradient-like steps. We
add thus this condition under the label of H4.

H4: For all y € B*, there exists « € int(dom f) such that f'(x) = y.

As we will discuss in Section 2.6, we are also interested in applying the proximal point
method to constrained problems with a function f whose derivative diverges on the boundary
of the feasible set. In such a case, H3 will fail on any set intersecting such boundary. We
consider thus some weaker variants of H3. One of them, introduced in [9], is the following:

H3.a: {2*};, {y*}, C int(dom f), z* ™, yk ——— 1> and limkDf(xk,yk) =0

— hmk [Df(llfoo,xk) - Df(xooayk)} = 0.

H3.a is weaker than H3 in the sense that when H2 holds, it can be proved, using the three
point equality (2.7) and Proposition 2.3.22, that H3 implies H3.a. We observe that in [9]
condition H3.a was used for guaranteeing convergence of the exact proximal point method
when the operator T is pseudo- and paramonotone.

We will need an even weaker variant, namely

H3.b: For all bounded sequence {z*} C int( dom f) such that lim; d(z*,d dom f) = 0 there
exists a bounded sequence {p;} C R, such that, if Z is a weak limit of {z*}, {y*}, C
int( dom f) is weakly convergent to Z and limy D (y*, 2*) = 0 then

limsupypr, [Dy(2, 2%) — Dy(2,y%)] < 0.

2Tt is redundant when T has zeroes. This fact was proved for the first time, as far as we know, by B.F.
Svaiter.
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Note that H3.a implies H3.b, taking pr = 1 for all k. We will also use a variant which
considers only certain subsets of dom f. We remind that for M, M' C B, d(M,M') =
inf{||jz —2'|| :x€ M,2" € M'}.

H3.c: f' is uniformly continuous on any bounded set M C dom f such that d(M,d dom
f)>0.

Some additional condition on f must be imposed in order to establish uniqueness of
weak cluster point of sequences generated by proximal point and related methods. One
such condition is the weak-to-weak* continuity of f’. Another one, apparently weaker than
weak-to-weak* continuity, has been used in [16] and we introduce it next, with the label of
H5.

Definition 2.5.3 (Separability requirement). We say that the G-differentiable function
f : B — RU {oo} satisfies the separability requirement if given sequences {z*}, {y*} C
int(dom f) converging weakly to x and y respectively, with 2 # y, it holds that

lim inf [(f'(2*) = f'(y"), 2 = )| > 0.
H5 is then defined as:

H5: f satisfies the separability requirement.

We mention that we found no advantage of H5 over the weak-to-weak* continuity of f’.

Functions satisfying H1-H4 exist in most Banach spaces. This is the case, for instance,
of f(z) = ||z||z with 7 > 1 where B is any uniformly smooth and uniformly convex Banach
space, as we have discussed above (we will complete the proof that such f satisfies H1-H4 in
Chapter 3).

On the other hand, H5 is much more infrequent. It is known that in a Hilbert space
fo(x) = 1/2||z||? is such that f} is the identity function (see Example 2.4.2 together with
property JO in section 1.4), which is, obviously, weak-to-weak®* continuous. For B = /,,,

1 < p < +00, it can be proved that for f = [|-||, f' is sequentially weak-to-weak* continuous
(see, for example, Proposition 8.2 in [8]). Unfortunately, we have found counterexamples
showing that in B = ¢, or B = LP (1 < p < +00) the function f = [|-||] (r > 1) does not

satisfy the separability requirement, excepting in the two cases just mentioned. Such examples
are presented in Chapter 3. We emphasize that H5 is needed only to prove uniqueness of the
weak accumulation points of the sequences generated by the methods under consideration
in this thesis, and only as a sufficient condition.

We mention next some previous references on the Proximal Point method in Banach
spaces. A scheme similar to (2.21) was considered in [23], [24], but requesting a condition
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on f much stronger than H1-H4, namely strong convexity. It was proved in [2] that if there
exists f : B — R which is strongly convex and twice continuously differentiable at least at
one point, then B is hilbertian, so that the analysis in these references holds only for Hilbert
spaces. With f(z) = 1/2||z||%, the scheme given by (2.21) was analyzed in [40], where only
partial convergence results are given (excluding, e.g., boundedness of {z*}). For the case of
optimization (i.e. when T is the subdifferential of a convex function h : B — R, in which
case the zeroes of T are the minimizers of h), the scheme given by (2.21) was analyzed in
[1] for the case of f(z) = 1/2||z||% and in [15] for the case of a general f. Consideration
of functions other than the square of the norm is convenient because they provide simpler
computations in some cases (e.g. f(x) = ||z[|? in £, or LP).

2.6 Generalized Proximal Point with penalization pur-
poses

In finite dimensional or Hilbert spaces, where the square of the norm leads always to simpler
computations, the scheme given by (2.21) with a nonquadratic f has been proposed mainly
with penalization purposes: if the problem includes a feasible set C' (e.g. constrained convex
optimization or monotone variational inequalities) then the use of an f whose domain is
C and whose gradient diverges at the boundary of C, forces the sequence {z*} to stay in
the interior of C' and makes the subproblems unconstrained. Divergence of the gradient
precludes validity of H3, and so several additional hypothesis on f are required. These
methods, usually known as Proximal Point methods with Bregman functions, have been
studied e.g. in [19], [21], [35], [41] for the optimization case and in [12], [25], [36] for finding
zeroes of monotone operators.

Definition 2.6.1 (Bregman function). Given C' C RP closed, convex and with nonempty
interior, the function ¢ : C' — R is said to be a Bregman function with zone C' if the following
conditions hold:

B1. ¢ is strictly convex and continuous on C'.
B2. ¢ is continuously differentiable on int(C').

B3. For all v € R and all z € C' the partial level sets I'(z,v) = {w € int(C) : D.(z,w) < v}
are bounded.

B4. If {z*} C int(C) and limy_, 2% = Z then limy_ D.(Z, 2¥) = 0.
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B5. If {w*} C C and {2*} C int(C) are sequences such that {w*} is bounded, limy_, 4, 2* =
k

7 and limy_,o D.(w", 2F) = 0 then lim;_,o w* = 2.
Bregman functions were introduced in [7]. The original definition also requires the left

partial level sets
['(v,2) ={w € C: D(w,2) < v}

to be bounded for any z € int(C). This condition is not needed to prove convergence
of proximal methods (e.g [26]) and it is also a consequence of B1-B3 as observed in [62]3.
Condition B5 was imposed in all studies of Bregman function and related algorithms previous
to [62] (e.g. the references cited above in this section). It was proved in [62] that B5 holds
automatically as a consequence of B1-B2.

Definition 2.6.2 (Boundary coercive Bregman function). A Bregman function ¢ is
said to be boundary coercive if it additionally satisfies the following condition B6.

B6. Boundary coercive: if {zF} C int(C) is such that limy_,, 2¥ = Z and Z belongs to the
boundary of C, then limy_,o, D.(w,2¥) = oo for all w € int(C).

B6 was introduced in [35]. It is equivalent, by Definition 2.3.9, to the following condition:

lim (¢ (2*),w — 2*) = —00
k—o0
and also to
lim [|d'(z")|| = +oc.
k—o0

Conditions B4-B6 hold automatically, as a consequence of B1-B3, when C' = RP. We
present next some relevant examples of Bregman functions in finite dimensional spaces.

Example 2.6.3. C = R?, ¢(z) = ||z||%, in which case D.(z,2') = ||z — 2||>. More generally
c(z) = 2!Mz with M € RP*? symmetric and positive definite, in which case D.(z,2') =
(2 = 2)VM(z - 2).

Example 2.6.4. C =R: | ¢(z) = >_)_, z¢log z, continuously extended to the boundary of
Rf with the convention that 0log0 = 0. In this case

p

D.(z,7') = Z[ze log(2¢/2y) + 2z — 24,

/=1

which is called the Kullback-Leibler distance, widely used in statistics (see [44]).

3The same holds in Banach spaces when c is totally convex. See [16], 2.1.1.

25



Example 2.6.5. C =R:, ¢(z) = Y0_ (26 —20) witha > 1, € (0,1). Fora =2, f=1/2
we get
 (va-va)
De(z,2) =lz = |+ (1/2) ) - j

/=1 Zf

for « =1, f =1/2 we have

(v va).

!
2y

- (1/2Y

/=1

Let us consider now a variational inequality problem, VIP(T',C), as in Definition 2.3.6.
Consider a coercive Bregman function with zone C' and assume that int(C)N dom T is
nonempty. The generalized prozimal point method with Bregman functions (GPPB from
now on) for solving VIP(T,C) starts from any 2° € int(C) and generates a sequence {z*}
through the iterative formula

0€ Tk(zk+1)7

where T : RP — P(RP) is defined as
Te(2) = T(2) + Me[Ve(z) = Ve(2M)],

with Ay as in the previous section (i.e. as required in the Proximal Point method, PP for
short). In this case, there is no need to modify 7" by adding the normalizing operator N¢,
because divergence of Ve at the boundary of C' guarantees that the whole sequence {2*} is
contained in the interior of C'. This is more evident if we consider the case of T' = 0¢ with
a convex @ : R™ — R. If the problem of interest is min ¢(x) subject to 2 € E, and h is a
Bregman function with zone £ C R™, then the iteration of GPPB becomes

y" = arg min {o(y) + Dy, v}, (2.22)

while the subproblems of PP for the same problem, after adding the normalizing operator
N¢ to the operator 0y, become

yF = arg min {oly) + (/2) ly — | - (2.23)

Note that the subproblems given by (2.22) are unconstrained, while the subproblems given
by (2.23) are subject to the constraints y € E. In the case of GPPB, these constraints are

26



taken care of by Dj, which, besides its regularization role, as in PP, has also a penalization
effect.

GPPB can be traced back to [29] and [30], which considered methods related to GPPB
with the Bregman function of Example 2.6.4 applied to linear programming. The next
step was [28], which considered GPPB with the same Bregman function applied to general
convex optimization problems. Relevant works on GPPB in its current formulation include
[25], which considers GPPB for finding zeroes of monotone operators (or VIP(T,C') with
solutions in the interior of C') and [19], [21], [35], [41], which study GPPB for the convex
optimization problem under progressively weaker assumptions on the problem data or the
Bregman function. GPPB for variational inequality problems has been analyzed in [12]. In
this reference the notion of coercive Bregman function is appropriately extended to Hilbert
spaces. Basically strong convergence is replaced by weak convergence in conditions B5 and
B6. B4 takes the form of H3.a as defined in section 2.5 and a new condition is added, called
zone coerciveness. Zone coerciveness is equivalent to the surjectivity of the G-derivative (see
property H4 in the previous section 2.5). Convergence results in [12] can be summarized as
follows. If VIP(T,C) has solutions and T is pseudo- and paramonotone, then the sequence
generated by the GPPB is bounded and any weak accumulation point is a solution. Moreover,
uniqueness follows from a separability requirement condition as H5 in section 2.5. In finite
dimension, where zone coerciveness is stronger than boundary coerciveness, the first one is
not needed and uniqueness of the accumulation point follows from B4. We give next an
example of Bregman function presented in [11] for Hilbert spaces.

Example 2.6.6. Let H be a Hilbert space. Take v, v? ..., v*» € H\{0} and oy, a, ..., a, €
R. Define C = {z € H | (v',2) > «a;, i = 1,...,p} and assume that int(C') is nonempty.
Consider the function g : C' — R defined by

o(z) = % e+ 3 (0 2) = ) log (0',2) — ) (2.24)

for x € C' and infinity otherwise. The following properties hold:
B1. g is strictly convex and continuous on C.

B2. ¢ is F-differentiable on int(C'), with G-derivative given by

g (x)=z+ Z[l + log ((v', ) — o) 0". (2.25)

=1
B3. g satisfies H1.
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B4. g satisfies H3.a.

B5. If {w*} € C and {z*} C int(C) are sequences such that {w*} is bounded, 2*¥ -7

k—o00
k

and limy_,o Dy(w*, 2¥) = 0 then w* pareean

B6. (boundary coerciveness) If {z*} C int(C) is such that z¥ ——~— 7 and Z belongs to the
boundary of C, then limy_,o (¢’ (z*), w — 2*) = —o0, for all w € int(C).

B7. (zone coerciveness) g satisfies H4.

B8. (separability requirement) g satisfies H5.
H1-H5 are as in the previous section. For a complete proof see 5.6 in [11].

Concerning the finite dimensional case, we point out that it has been proved in [62] not
only that B5 is redundant, but also that the pseudomonotonicity assumption is redundant
too. Moreover an inexact version of the GPPB, which we analyze in the next section (i.e.
the proximal-extragradient method), is considered in this reference.

Other variants of the Proximal Point method in finite dimensional spaces, also with
nonquadratic regularization terms but with iteration formulae different from (2.21), can be
found in [4], [3], [10], [27], [38] and [39].

Other definitions of Bregman function, now in Banach spaces, can be found in [16] and
[9], but without attempting penalization in the related methods, thus without caring about
boundary coerciveness. In this work we are not interested in offering additional definitions
of Bregman functions. The required properties for the regularizing function involved in the
methods that we present are basically H1-H5 of section 2.7. A deeper analysis of the existence
of such functions in Banach spaces, including also some form of boundary coerciveness,
appears in Chapter 3. Related GPPB methods are presented in Chapter 6.

2.7 The inexact Proximal Point Method

Let H be a Hilbert space and T : H — P(H) a maximal monotone operator. Given )\, > 0,
we define the resolvent operator P, of T as

P, = (T + )\kf)_l.

Py is single valued, nonexpansive and its domain is the whole Hilbert space H (see Minty’s
Theorem in [47]). The exact Proximal Point method for finding a zero of T' defines a sequence
{z¥} C H, starting from an arbitrary 2° € H, through the iteration

Zk+1 — Pk(zk)
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Inexact variants of the Proximal Point method in Hilbert spaces were considered as early as
in [61], where the iteration

A Py(2F) (2.26)

is considered. Here ||z¥*t! — P, (2%)|| = € is the error in the k-th iteration, and convergence
of the sequence {z*} to a zero of T is ensured under the assumption that > ;- €, < oc.
Such summability condition demands that the precision in the computations increase with
the iteration index k. Other related conditions for the case of quadratic f, but including
always summability conditions on the error, can be found in [61] and [40] for Hilbert and
Banach spaces respectively, and, for the case of nonquadratic f, in [25], [41] for optimization
and [13] for variational inequalities. The extension presented by Kassay in [40] was based on
the following result, more general than Minty’s Theorem: If B is a reflexive Banach space,
T : B — P(B*) is maximal monotone, and ¢ > 0 is an arbitrary constant, then J + ¢T is
surjective. Moreover, the operator P, = (J + ¢T')~! is a single-valued maximal monotone
operator (not necessarily nonexpansive) (see 2.11 in [50]).
The iteration considered in [40] is

-1
PARIE [(iJ—F ckT> o iJ] (%), (2.27)
(69> (673

where {ay}, {cx} are sequences of positive numbers, with limg ,, ar = +oo and {cx}
bounded away from zero (i.e. ¢ > ¢ > 0, for all k). We mention that the composition
(a-J(2%) + & T)~" with -J(2*) in (2.27) is necessary because the first factor is defined on
B*. Translating this scheme into the format of (2.21), it reduces to finding an approximate
zero of (2.21) with f = 1/2||* and A, = 1/(cxew). The error criterion implicit in the &
symbol of (2.27) is less demanding than that in [61], but it is a measure of error of absolute
type in each iteration that needs, a priori, to converge to zero; for instance, limy e, = 0.
Boundedness of the sequence {2*} is not guaranteed under this condition.

Also, divergence of {ay}, and the relation between ay, and A, just discussed, mean that
the algorithm in [40] demands that the exogenous regularization parameters A, be chosen
so that limy_,,, Ay, = 0. This is a serious drawback, because the proximal point method
basically replaces the inversion of 1" by a sequence of subproblems in each one of which a
regularized operator must be inverted (e.g. AxI + T in Hilbert spaces). Thus, the method
is really useful when inversion of 7' is hard in some sense, i.e. when T is somehow ill-
conditioned. When T is maximal monotone, A,/ + T is theoretically well behaved for any
Ak > 0, but numerically A\, I + T is almost as ill-conditioned as 1" for very small \;, because
in such a case the term Ay becomes negligeable as compared to T (consider e.g. the case
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of a linear and singular 7"). One of the main advantages of the Proximal Point method over
other regularization schemes (e.g. Thikonov’s regularization) is that it works well without
requesting that the regularization parameters converge to zero (e.g. taking them constant),
so that each subproblem requires inversion of an operator which will be as well behaved as
desired if the regularization parameter Ay is large enough. In this thesis, we also improve
over Kassay’s scheme in connection with this issue.

New error schemes, accepting constant relative errors, and introducing computationally
checkable inequalities such that any vector which satisfies them can be taken as the next
iterate, have been recently presented in [64, 63] for the case of quadratic f in Hilbert spaces
and in [62], [10] for the case of nonquadratic f in finite dimensional spaces (in [10], with a
regularization different from the scheme given by (2.21) and in [63] as an extension of [62]
to Hilbert spaces, but without attempting penalization).

We discuss next the error schemes in [64], [62], which we will extend to Banach spaces
in Chapter 4. The basic feature of these methods is to combine, in each iteration, an
approximate solution of the proximal problem with a projection [64] or an extragradient
step [62, 63]. For this reason, these are hybrid methods (proximal-projection or proximal-
extragradient). In both of these hybrid methods, the proximal problem (2.20) is decomposed
in the following equivalent system:

v eT(z), (2.28)
v 4 M(z = 2F) = 0. (2.29)

An approximate solution of this system is used to compute the next iterate by means of a
projection or an extragradient step. The error tolerance is given by a fized o € [0,1). In the
Hybrid Projection-Proximal method, [64], the approximate solution of (2.29) is not taken as
the next iterate, but as an auxiliary point #*, i.e. #* is any vector such that

e+ Ne(ah — 3F) € T (i), (2.30)
where the error term e satisfies

HekH < a)\kmax{ka — i+ )\,zlek

o — ||} (2.31)

)

Then the next iterate is obtained as the orthogonal projection of z* onto the hyperplane
Hy={z € H: "z — %) =0} with v* = A\, (2% — %) + €F, i.e.

kE .k _ ~k
S S G el 0 Y (2.32)
vk |)?
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The Hybrid Extragradient-Proximal method in [62] requires a regularizing Bregman func-
tion f with surjective derivative f’. The auxiliary point #* must satisfy

e" + Ml f'(a*) = f'(@")] € T(a"), (2.33)
and the error criterion is given by
Dy (. (F) ' [F1(@) — A'eH]) < oDy (3%, a%), (2.34)
where (f')~! denotes the inverse function of f’. Then the next iterate z¥*! is given by
ah = ()T ER) = AN (2.35)

It has been proved in [64] and [62] that the sequences {z*} defined by (2.30)—(2.32) and
(2.33)—(2.35) respectively, converge to a zero of T whenever T has zeroes. When e*f = 0,
which occurs only when Z* is the exact solution of (2.20) or (2.26), both (2.31) and (2.34)
hold with strict inequality for any ¥ # 2*. The constant o can be interpreted as a relative
error, measuring the ratio of a measure of proximity between the candidate point ¥ and
the exact solution, and a measure of proximity between the same candidate point and the
previous iterate.

2.8 Smooth cone-constrained convex optimization

Let B; (0 < j < m) denote m+1 real reflexive Banach spaces, B their respective topological
duals, K; C B; (1 < j < m) nonempty, closed an convex cones and K73 the positive dual of
K (ie. Ki={ye€ B} :(y,2); > 0forall z€ Kj}, where (-,-); denotes the respective dual
product). We consider the partial order relation 3; (1 < j < m), defined in B; as z 3; 2 if
and only if 2’ — 2z € K,;. We define next K-convexity of a mapping between Banach spaces.

Definition 2.8.1 (K-convexity). Take real Banach spaces By and B; and let K C By be
a a nonempty, closed and convex cone. A mapping M : By — B is said to be K-convez
if and only if aM(z) + (1 — a)M(z') — M(ax + (1 — a)2’) € K, for all z, 2/ € X and all
a € [0,1]. Equivalently,

Moz + (1 — a)2') 3y aM(z) + (1 — a)M(2),
where 3 is the partial order relation induced in By by K.

We consider functions g : By = R and G; : By — B; (1 < j < m) such that:
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(A1) g is convex, and G, is Kj-convex (1 < j < m).

(A2) g and G; are Fréchet differentiable functions with Gateaux derivatives denoted by ¢’
and G, (1 < j < m) respectively.

The general convex optimization problem (or primal problem) will be defined as

(P) {min g(x)

s.t. GJ(ZL') jj 0, 1 S] S m

and its dual (D), as

(D) {max d(y)

s.t. y . 0.

The dual objective ® : IIJL, Bf — R U {—o0c} is defined as ®(y) = inf,ep,L(z,y) with the
Lagrangian L : By x 117, B} — R, given by

m,

L(z,y) = g(z) + (y,G(2)) = g() + > _(;,Gj(2));, (2.36)

J=1

where G : By — IIjL, B; is the application with components Gj, i.e.
G(z) = (Gl(l‘), ...,Gm(x)) (2.37)

for all z € By and ”7-,” denotes the partial order induced in the topological dual B* of the
product space B = II7", B; by the closed convex cone K* = K} x --- x K7 (iey Z.y" if
and only if y — y' € K*, or equivalently, if and only if y; — y; € K for all j).

If B =R (1 <j<m)and K; = Ry then the primal and dual problem are just the
usual ones in real-valued convex optimization.

Definition 2.8.2 (Feasible pair). A pair (z,y) € By x B* is feasible if x is primal feasible,
ie. Gj(z) 3,0 (1 <j<m)andyis dual feasible, i.e. y -, 0.

Definition 2.8.3 (Optimal pair). A pair (z,y) € By X B* is optimal if x is an optimal
solution of problem (P) and y an optimal solution of problem (D).

We summarize next some basic properties of the Lagrangian defined by (2.36) in the
context already defined, i.e. under assumptions A1-A2. We remind that, given a linear
operator A : By — Bs, the adjoint A* : B — B} is defined as A*(y) = y o A.
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Proposition 2.8.4. Let L and G be defined as in (2.36) and (2.37) respectively. Then

i) a) forally € B*, L(-,y) is Fréchet differentiable and its Gateaux derivative is given,
for all x € By, by

Ly(x,y) = ¢'(2) + [G'(@)]"(y) = ¢'(2) + Z[G} (@)]"(95),

b) for all y € K*, L(-,y) is convex with norm-to-norm continuous Gateaux deriva-
tive,

i) for all v € By the function L(z,-) : B* — R, given by L(z,y) = g(z) + (y, G(z)) is
Fréchet differentiable and its Gdteauz derivative is given by L, (v,y) = G(x) for all
y € B*.

Proof. Item (i)-(a) follows from (A2) and elementary properties of Fréchet derivatives (i.e.
Propositions 2.2.3 and 2.2.4). For item (i)-(b), note that K ;-convexity of G; ensures convexity
of the function (y;, G;()) : Bo — R whenever y; € K7, so that the result follows from (A1)
and Proposition 2.3.10(ii). Item (ii) is immediate, since L(z,-) : B* — R is affine. O

Definition 2.8.5 (KKT-pair). A pair (z,y) € By x B* is a KK T-pair if it is feasible and
additionally

0=Ll(x,y) =7 (x) +yoG'(x) (Lagrangian condition), (2.38)

(y,G(x)) =0 (complementarity). (2.39)
We present next some Lagrangian duality results.

Proposition 2.8.6. i) If y € B* is dual feasible and (x,y) € By X B* is a saddle point
of the Lagrangian, i.e.

L(z,9) < L(z,y) < L(@,y) (2.40)
for all & € By and all §y € K*, then (x,y) is an optimal pair.

i) If int(K) # 0, there exists & € By such that —G(z) € int(K) and z is an optimal
solution of problem (P ), then there exist an element y € K* such that the Lagrangian
has a saddle point at (x,y).

Proof. See Theorem 2 in section 8.4 and Theorem 1 in section 8.3 of [45]. d
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Next we define the saddle-point operator

Definition 2.8.7 (Saddle-point operator). T}, : By x B* — P(B; x B), defined as

Ti(z,y) = (Ly(z,y), — L (z,y) + Ng-(y)) = (¢'(z) + [G'(2)]" (y), —G(z) + NK*(Z/))(J |
2.41

is the saddle-point operator associated with the Lagrangian L, where Ny« : B* — P(B)
denotes the normalizing operator of the cone K*.

The following proposition summarizes some elementary properties of the saddle-point
operator.

Proposition 2.8.8. Under assumptions (A1) and (A2), the operator Ty, defined in (2.41),
satisfies

i) 0 € Tp(x,y) if and only if (x,y) is a KKT-pair,
i) if 0€Tp(x,y), then (x,y) is an optimal pair,

iii) conversely, if x is an optimal solution of problem (P), int(K) # (0, and there exists
T € By such that —G(Z) € int(K), then there exists an element y € K* such that
0€ TL (1‘7 y)7

i) T, is mazimal monotone.

Proof. For (i), it has been proved in [56] that 0 € Ty (x,y) if and only if (z,y) is a saddle
point of U(xz,y) = L(x,y) — Ix+(y). Thus, it suffices to prove that (z,y) is a KKT-pair if
and only if it is a saddle point of U. Suppose that (x,y) is a saddle point of U. Then, y
is feasible because of the term I« in U and (z,y) satisfies (2.40). The right inequality in
(2.40) implies that the Lagrangian condition (2.38) holds. The left one implies that

0>(G(z),z—y) (2.42)

for all z € K*, which entails feasibility of z and also (2.39), so that (z,y) is a KKT pair.
Conversely, if (z,y) is a KKT pair then the Lagrangian condition (2.38) implies, by convexity
of the Fréchet differentiable function L(-,y) : By — R, the right inequality in (2.40), while
(2.39) and primal feasibility of x imply (2.42) for all z € K*, so that the left inequality in
(2.40) also holds. Then (z,y) is a saddle point of L and henceforth of U, because of the dual
feasibility of y, completing the proof of (i). Items (ii) and (iii) are direct consequences of
Proposition 2.8.6. Item (iv) has been proved in [56]. O
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2.9 Augmented Lagrangian Methods
We are concerned now with the general optimization problem:

min g(z) (2.43)

s.t. G(z) 20, (2.44)

where g : By - R, G : By — By, By and B, are real reflexive Banach spaces and “3”
denotes the partial order relation induced by a nonempty convex cone K in Bs(i.e. z 3 2" if
and only if 2/ — z € K). We will introduce in Chapter 4 an augmented Lagrangian method
for this problem. Augmented Lagrangian methods for the finite dimensional case (i.e. when
B; =R", B, = R™ and K is the nonnegative orthant of R™), started with [18] (previously,
augmented Lagrangian methods had been proposed for equality constrained problems, e.g.
[32] and [54]). Such algorithms were further studied in [58], [59], [5], [42]. Its connection
with the Proximal Point method was established in [60] and treated, also, in [3], [6], [25],
[38] and [33]. The augmented Lagrange functional L : R* x R™ x R,, — R, used in [59]
and [60], is defined as

m,

L(z,y,p) = g(z) + pZ [(max{0, i + (20) gi(2)})* = v7], (2.45)

where g; : R — R (1 < i < m) denote the components of G, i.e. for the problem

min g(x) (2.46)

s.t. gi(z) <0 (1<i<m). (2.47)

The augmented Lagrangian method in [60] uses an exogenous bounded sequence {\z} C R,
and it generates a sequence {(z*,y*)} C R" x R™ through the iterative formulae

2F € argmingern Lz, y*, \p), (2.48)

Y"1 = max{0, y¥ + (2 e) i} (1 <i<m). (2.49)

It is proved in [60] that, if ¢ and the ¢;’s (1 < ¢ < m) are convex and problem (2.46)-
(2.47) has both primal and dual solutions, then the sequence {y*} (when well defined)
converges to a dual solution (i.e. to a vector of KKT multipliers for the constraints in
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(2.47)). Regarding the sequence {2*}, it may fail to exist, even when the problem has both
primal and dual solutions, and it may be unbounded, but if it exists, it is a minimizing
sequence, i.e. limy_ o g(2%) = infoepg(x), where F = {2 € R : g;(z) <0 (1 <i <m)}, and
its cluster points, if any, are solutions of problem (2.46)—(2.47). The results on the primal
sequence can be improved by considering a doubly augmented Lagrangian, i.e. replacing
(2.48) by

#* = argmingepn {L(z, ¥, \p) + Mil|lz — 2F||%}, (2.50)

in which case it is proved in [60] that {y*} still enjoys the same convergence properties as
before, while {2} is now well defined and converges to a solution of problem (2.46)—(2.47),
provided it has both primal and dual solutions.

The results in [59] were extended in [66] to the case in which B is a real Banach space
and B, a Hilbert space H, in the cone constrained format of (2.44). Denoting by Pk~ the
orthogonal projection onto K*, where K* is the positive dual cone of K, the augmented
Lagrangian A : B; x H x R, — R of [66] takes the form

AGw.p) = 9(2) + 5ol Pa-ly + 0 G — 5ollyl” (251)
The methods in [66] update the primal variables through
2 € argmingep, Az, ¥, \p). (2.52)
Several alternatives are given for the updating of the dual variables, one of which, namely
Y= P (yF + AT G (k) (2.53)

is such that the method reduces to the algorithm in [60], i.e. (2.48)—(2.49), when B; =
R*, H = R™ and K = R7}. Several alternatives are also presented for the regularization
parameters )\, in some of which they are endogenously updated. The results in [66] strongly
depend on the fact that each element y € H can be uniquely decomposed into two orthogonal
components, y = Py (y)+P_g+(y). This is not true in our case, i.e. when By is not hilbertian.
Convergence results for all algorithms in this reference require either that limy_ o, Ay = 0 or
at least that A\, be small enough for large k. Additionally, since the Augmented Lagrangian
A in (2.51) lacks primal regularization, not much can be said about the primal sequence
{2*}, besides the fact that, if it exists, it is a minimizing one. Convergence of {y*} to a
dual solution, under some regularity conditions on the problem, is established for all variants
under consideration.
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Recently, a case with nonhilbertian By was studied in [16]. It considers an arbitrary
reflexive Banach space By, By = £P(Q2) and K = LE(Q) = {z € LP(Q)| z2(w) > 0 p a.e.},
where (€2, A, i) is a measure space and p € (1,00), so that the problem becomes

min ¢(z)

st. G(z,w) <0 pae.,

with G(-,w) convex for all w € Q. The regularizing function h : £9(Q) — R, with ¢ =
p/(p—1), defined as h(y) = 1/r[|y[|" (r > 1), is used to introduce the augmented Lagrangian
A: B x L1(Q) x Ry — R defined as

AGwv.9) = 9(0) + & || Per o () + 07 G )|

" (2.54)
p

The Lagrangian of (2.54) is used in [16] in order to generate an augmented Lagrangian
method. As before, {\;} C R, is a bounded sequence. For the sake of simplicity, we
present next the updating formulae only for the case r = ¢q. They are

M € argmin, . pA(z, ¥, A\, (2.55)

Y (w) = [max{0, [ (y") + A G )] w) 1" (2.56)

We observe that, up to constant terms in z, (2.54) reduces to (2.51) when p = r = 2, so
that By is hilbertian, and henceforth to (2.45), when B; is finite dimensional and €2 is finite.
Thus, in such cases (2.55)—(2.56) reduce to (2.52)—(2.53) and to (2.48)—(2.49) respectively.

An interesting point is that, though £?(2) is not hilbertian, the cone £% () still induces
a decomposition in £P()), in the sense that each y € L£P()) admits a unique decomposition
Yy = PLﬂ(Q)(y) + P—L‘ﬁ_(Q)(y)'

The convergence analysis in [16], based upon the Proximal Point methods in Banach
spaces studied in [1] and [15], establishes that, assuming that the problem has both primal
and dual solutions, the sequence {y*} is bounded and all its weak cluster points are dual
solutions, with uniqueness of the weak cluster point when (2 is countable, so that £(€2) = ¢,.
There is no primal regularization in (2.54), so that the results on {z*} only prove that if
it exists, then it is a minimizing sequence, and if it is bounded, then all its weak cluster
point are primal solutions. These limitations are avoided in Chapter 5 of this thesis, by
adding a regularizing term to the augmented Lagrangian, which play a role similar to the
term ||z — z*||? in the doubly augmented Lagrangian (2.50) of [60].

In this thesis, we introduce two main improvements over the results discussed above.
The first one consists of considering a general real reflexive Banach space Bs, so that the
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cone K possibly does not induce a decomposition in By. With this purpose, we consider
the regularizing function h, : Bj — R defined as h,(y) = & |y] ;; for some 7 € (1,00) and
the auxiliary mapping M, : By x By x R, — By given by M,.(z,y, p) = h.(y) + p~'G(z),
with which we define the augmented Lagrangian L : B; x B x R, — R as L(z,y,p) =
g(z) + prd(M,(z,y, p), —K)*, where s = r/(r — 1), which allows us to conveniently extend
the augmented Lagrangian method to this context.

Our second main goal consists of extending to the case of cone constrained convex opti-
mization in Banach spaces inexact versions of the augmented Lagrangian methods, incorpo-
rating error criteria developed on Chapter 3 for the proximal point method, which allow for
constant relative errors, in the spirit of [64] and [62].

To our knowledge, all results presented in the following chapters are new, unless otherwise
stated.
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Chapter 3

On the existence of appropriate
regularizing functions in general
Banach spaces

We start with the definition of a basic class of regularizing functions.

Definition 3.0.1. We denote as F the set of functions f : B — RU {oco} which are strictly
convex, lower semicontinuous and Gateaux differentiable in the interior of their domain,
which we assume to be nonempty.

As usual, f’ will denote from now on the Gateaux derivative of a function f € F. The
methods we analyze in this thesis use, as an auxiliary device, functions f € F which satisfy
some assumptions, among which some or all of H1-H5, discussed in Chapter 2. Thus, it is
important to exhibit functions which satisfy these properties in as large a class of Banach
spaces as possible, and we focus our attention on functions of the form f =1 o, : B —
R U {+o0}, where ¢ : R, — R, U {400} is defined by

() = {iicp(s)ds, if t € [0,0] (3.1)

otherwise,

with b € (0,00], and ¢ is an extended weight function as defined next.

Definition 3.0.2. An eztended weight function ¢ is a continuous and strictly increasing
function ¢ : [0,b) — R, such that ¢(0) = 0, where b € Ry U {400}.

A motivation for this choice are the functions f,(z) = 1|z with » > 1, which are
potential candidates for regularizing functions. Observe that these functions are as in (3.1),
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with ¢(t) = "1, which is obviously a weight function according to the classical definition,
as in section 2.4, and also in the sense of Definition 3.0.2. Note that, since extended weight
functions are strictly increasing and nonnegative, v, as given by (3.1) is convex and strictly
increasing, and hence f = o ||-|| is convex and continuous.

Lemma 3.0.3. The function ¢ : R — R U {400}, defined in 3.1, has the following differ-
entiability properties:

i) ¥1.(0) = ¢(0) = 0.
ii) V'(t) = o(t) for all t € (0,b).
iii) V' (b) = limyy- o(t) & (b) € RU {+00}.
iv) O(t) =0 for allt & [0,b).
Proof. Elementary. O

When b = 0o and ¢(b~) = oo, we recover the definition of weight function as treated in
section 2.4, but the case where the domain of the regularizing function f is not the whole
space is important for us. Indeed, by allowing b to be finite, we add to the analysis the case
where the domain of the candidate function f is a ball. It is not an essential modification and
all discussed properties of duality mappings (see section 2.4) can be stated in an analogous
way. For this purpose, we only need to extend, appropriately, the definition of duality map.

Definition 3.0.4. The extended duality mapping of weight ¢ is the mapping J, : B — B*,
defined by

{o* € B*[(z*, x) = ||2*||, |=||, [l=*]], = (||z]])} if ||=|| <b
Jo(x) =  {z* € B*[(z*, ) = ||z*||,b, ||z*]|, > ¢(b7)} if ||z|| =b
] otherwise.

The following lemma establishes the good definition and the respective version of the
Asplud’s theorem (i.e. J1 of section 2.4) for extended duality mappings.

Lemma 3.0.5. The extended duality mapping, J,, of the extended weight function ¢ given
by Definition 3.0.4 is well defined. Moreover,

BJL: J,(x) = v o |-)(z) for all w € B.
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Proof. If b = oo then there is nothing to add to the discussion in Remark 4.4 and Theorem
4.4 in pages 25 and 26 respectively of [22]. These results also apply to the case when ||z| < b.
Since J,(z) = 0 when |[|z|| > b by Definition 3.0.4, we assume from now on, without loss of
generality, that ||z|| = b < co. Let ¢(b™) = limy_,;- ¢(t). We consider two cases: ¢(b™) = 0o
and ¢(b”) < oo. In the first one, we get d¢(b) = 0, by Lemma 3.0.3(iii) and J,(z) = 0 for
any © € B such that ||z|| = b, by Definition 3.0.4, because there exists no z* € B* with
||lx*|| > +oc. Thus EJ1 holds for all x € B such that ||z|| > b. We study next the remaining
case, i.e. both b and ¢(b™) finite, and ||z|| = b. We prove first that J,(z) # (). Consider
xo = p(b”)x € B. By the Hahn-Banach Theorem (see e.g. page 776 of [67]), there exists
v € B* with ||v]|, =1 and (v, z¢) = ||zo||. Hence, taking 2* = ¢(b~)v, we get an element z*
of B* satisfying
(| = [l (b7 )| = 9 (b7),

and

(@*,2) = llwoll = [|(07)a|| = [l="|| b

Thus, in view of Definition 3.0.4, z* € J,(x). We proceed to prove the inclusion “ C 7 in
EJ1. Take any z* € J,(x). Then

lyll) — ¥ (b)
Iyl =0~

for all y € B such that ||y|| < b, using Lemma 3.0.3(iii) in the equality. Thus,
llyll) = @) > [l (lyll = 0) = [l«* [ llyll = l="]| b

= [l lyll = (2%, 2) = (27, y) = (2", 2) = {27,y — )

for all y € B such that ||y|| < b. It follows that z* € d[¢ o ||-||](x). For proving the opposite
inclusion, take z* € d[y o ||||](x), so that

Dyl = ollll) = (= y — =) (3.2)

for all y € B. Taking now any y € B, such that ||y|| = ||z|| = b, we get

o] = o(b) = v () > 2L

0= (2% y —2) = (&% y) — («%, 2),

so that (z*,y) < (z*, x) for all y € B such that ||y|| = b. We conclude that

"] b = (SUP (x*,Z>> b= sup (27,y) < (2", z) < [la"|b,

llzll=1 llyll=b
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and therefore,
(2", z) = |z*[| b. (3.3)

From (3.2) with y = £z and 0 < ¢ < b, we get

P(t) = 9(b) 2 (2", y —a) = —— (2", 2) = (t = b) [l2"][,

where the last equality follows from (3.3). Hence,

t) — (b
|z*]|b > i) =) (3.4)
t—0b
for all t € (0,b). Taking limits in (3.4) with ¢ — b, we get, in view of Lemma 3.0.3(iii),
[2*11b = 7 (b) = (b7). (3.5)
Equations (3.3) and (3.5) ensure that 2* € J,(z), which completes the proof. O

We present next some properties of these extended duality mappings.

Proposition 3.0.6. Let B be a reflexive Banach space and J, the extended duality mapping
associated with the extended weight v, with domain [0,b). Then the following properties hold:

EJ2: The inverse function of the extended weight @, ¢~ is an extended weight function too

and vy the extended duality mapping of weight p=' on B*, is such that x* € J,(x)
with x € int(dom J,) if and only if x € J;_,(2*) and z* € int(dom J_.).

EJ3: For all x € B such that ||z|| < b, it holds that ||x|| J,(z) = ¢(||z])J (z).

EJj: If B is smooth (i.e., if B* is strictly convez), then J, is single valued and norm-
to-weak™® continuous on int(dom J,). Moreover, if B* satisfies property (h), as in
Definition 2.2.9, then J, zint(dom J,) — B* is norm-to-norm continuous.

EJ5: If B is strictly convex, then J, is strictly monotone on int(dom J,).

EJ6: If B is uniformly smooth, then J, is uniformly continuous on any bounded subset A
of int(dom J,), (when b is finite and p(b~) = oo the result requires the additional
assumption that d(A, 0 dom.J,) > 0).
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Proof. Properties EJ2-EJ5 are just properties J2-J5 of duality mappings (see section 2.4)
adapted to the new context. They can be proved exactly as done in [22] for J2-J5 (Proposition
4.7(e), (f) and Corollary 4.5 in page 27 for EJ2, EJ3 and the first part of EJ4 respectively;
Theorem 4.12 in page 30 and Proposition 5.2 in page 27 for the second and third statements
in EJ4, and Theorem 1.8 in page 45 for EJ5). EJ6 is a direct consequence of J6, which can
be easily proved, but we found no reference for it, even for the case of duality mappings with
classical weight functions, and therefore we present next a proof.

If the result does not hold, then we can find a bounded subset A of dom J, such that J,
is not uniformly continuous on A, i.e. there exist ¢ > 0, and sequences {z*}, {y*} C A such
that 2F — y¥ —=—0 and [|J,(z*) — J,(y*)||z. > € for all k.

Note, first, that if limy_, ||2¥|| = 0, then limy_,« ||y*|| = 0 too, and from Definition 3.0.4
of J, it follows that limy_,o || J,(z%) — J,(y*)]|, = 0, which is a contradiction. Thus, we can
assume, without loss of generality, that 0 < m < ||ka , Hyk” < M, for some m, M € R
(with M < b when b is finite and ¢(b~) = oo, in view of the additional assumption in EJ6
for this case). Let @(t) = (t)/t, and M = maxsepm, ) @(t). Using EJ3 and the definition of
the normalized duality map J (see section 2.4), we have

¢ < ) - LY = H*Of|'§||“)<f(xk>— ¢f|'Li||")J(yk>
< Bl INITE) = T + [T = D] 1761
< M) = J@O + 3025 — 2D 1]
< W) = S+ M |20 ) — 2 D]

Since limy_, o0 |2(]|2*]]) —2(]|¥*]])| = 0 by uniform continuity of @ in [m, M] C (0, b), it follows
that ||.J(x%) — J(y*)|l. > €/(2M) for large enough k, contradicting J4 of section 2.4. O

Next we state some properties of functions of the form f = v o |||, with ¢ as in (3.1)
and ¢ as in Definition 3.0.2.

Corollary 3.0.7. If the extended weight function ¢ is such that (b~) = oo then J, is
surjective. Particularly, if B is smooth then, f = 1 o |||z, with ¥ as in (3.1), is G-
differentiablet on int(dom f) and it satisfies Hj.

Proof. In such a case dom ¢! = [0, +00), so that, in view of EJ3, any 2* € B* belongs
to int(domJ7_,), and therefore there exist # € int(domJ;_,)2*. Hence z € int(domJ,) and
z* € J,(x). When B is smooth, J, is single valued on int(dom.,) (see EJ4). Thus EJ1 in
Lemma 3.0.5 ensures that f is G-differentiable on int(dom f) = int(domJ,). O

'In fact, F-differentiable, provided that B* satisfies property (h); see EJ4.
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Corollary 3.0.8. Let B be strictly convex. If the extended weight function ¢ is such that
either

i) b=+o0o (i.e. dom ¢ =][0,+0c0)), or
i) b is finite and there exists r > 1 such that

tl/?‘

t— /0 (s)ds :[0,b] = Ry U{+o0} is conver, (3.6)

then f =1 o |||z, with ¥ asin (3.1), is strictly convex on dom f.

Proof. i) If b = +o0, then dom J, = B and, in view of EJ1 in Lemma 3.0.5, together
with EJ5, 0f : B — P(B*) is strictly monotone. Hence f is strictly convex on B =
dom f.

ii) The function 1 o (-)*/" is convex and strictly increasing. Since r > 1 strict convexity
of B ensures strict convexity of ||-||;. Then the composition f = [ty o (-)"] o ||| is
strictly convex on its domain.

(I

Corollary 3.0.9. Suppose that the extended weight function ¢ is such that one of the fol-
lowing conditions holds:

a) b is finite,

(b) For all ty € Ry, limy,q [gp(t)(t —1,) — fti go(s)ds] = 00,2
(¢) ¢ is differentiable and ¢'(t) > o> 0 for all t € R,
(d) ¢ is differentiable, conver and ¢'(0) > 0.

Then f =1 oz, with ¢ as in (3.1), satisfies H1.

Proof. If b is finite then int(dom f) is bounded, so that {z € int(dom f) | Ds(y,z) < 5}
is bounded (when nonempty) for all y € dom f. Suppose now that b = +oo and that there
exists § € [0,00) and y € dom f such that the right level set above is unbounded. Then we
can find a sequence {2*} C int(dom f) satisfying 3 > D;(y, z") for all k. At this point we
remark that the definition of the Bregman distance D; can be stated without the assumption

2This condition is essentially the one used in Corollary 1(i) of [17], where a proof of this result is offered
for the particular wheight function o(t) = rt"=%, r > 1.

44



of G-differentiability of f in int(dom f), as presented in Definition 2.3.9. In fact, following
[17], we can assume that

Dyly,a") = fly) = f(@") = inf {0,y —ab). (3.7)

Taking any v* € 0f(z%) = J,(z*) (see EJ1), it follows that

B = fly) = fa") =y =) = w(lyll) = w(]|="])) = ) + 0F, 2b)
= Y(llyl) —w(l[=*]) = " w) + [[o8]], [|=*]]
> (llyll) =Ll [) = o[yl + o™, [l=*]

=]
el D] = b = [ ets)as. 38)

llyll

Thus, taking limits when & goes to infinity in the rightmost expression of (3.8), we get
from condition (b) that 8 = +oo, which is a contradiction. Observe, now, that condition (d)
implies condition (c¢), which in turn implies condition (b), so that the proof is complete. 0O

Corollary 3.0.10. Let B be uniformly smooth. Take f =1 o ||-|| 5, with ¥ as in (3.1).
i) If b= oo then f satisfies HS.
ii) if b is finite and ©(b™) < oo then f' is uniformly continuous on int(dom f).

iii) if b is finite and o(b™) = oo then f' is uniformly continuous on any set C C int(dom
f) such that C C B[0,M]|={z € B : ||z|| < M} for some M <b.

Proof. The result follows from EJ1 and EJ6. O
We need in the sequel the following result on Gateaux differentiable functions.

Proposition 3.0.11. Let f : B — R be Gateaux differentiable. If f' is uniformly continuous
on bounded sets, then

i) both f and f' are bounded on bounded subsets of B.

it) If {«*}, {y*} are bounded sequences satisfying x* — y¥ ——=—0, then

D k ..k
lim—fk(y’l;c)z().
ko lyk — ak]]
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Proof. For (i), let U be a bounded subset of B. Take z € B and U C B(Z,p) = {x €
B : ||z — z|| < p}. Take ¢ such that ||f'(x) — f'(2")||« < 1 for all z, 2" € B(Z, p) satisfying
|lz" — z|| < 6. Define 3, 5 as 5 = || f'(@)||l«+1+p/d, ¥ = py+|f(Z)|. Then, for any = € U, an
easy computation shows that || f'(x)||. < 7, and, invoking the Mean Value Theorem applied
to the restriction of f to the segment between x and Z, it follows that |f(z)| < 4. To prove
(ii) just observe that

Dy(y*,2") < Dy(y*, 2*) + Dy(a® ") < ||/ (%) = f'(4")

J/‘k _ yk” )

*

3.1 Powers of the norm

Next we summarize our results on the validity of H1-H5 for the function f,(z) = 1|z}
with > 1. Remember that such conditions are:

H1: The level sets of Dy(x,-) are bounded for all z € dom f.

H2: f is uniformly totally convex on int(dom f).

H3: f’ is uniformly continuous on bounded subsets of int(dom f).
H4: f’is onto.

H5: f satisfies the separability requirement.

Proposition 3.1.1. Take f,(z) =L |-||3: B = R with r > 1.

T

i) If B is a uniformly smooth and uniformly conver Banach space, then f, satisfies H1,
H2, H3 and H4 for all r > 1.

ii) If B is a Hilbert space, then fo(x) = L||z||* satisfies H5.

i) If B =10, (1<p<oo)then fy(x) =1 ||} satisfies H5.
Proof. Consider the weight function ¢(t) = #"~', which gives ¢(t) = [ p(s)ds = Lt" for all
t € R,. It follows from Corollaries 3.0.10 and 3.0.7 that f satisfies H3 and H4 respectively.
H1 is a consequence of Corollary 3.0.9, but it is not a new result in this particular case. In
fact it has been proved in [17] that, for all » > 1, f, satisfies H1 and H2 when B is uniformly
convex (see Example 2.3.24 for more information on H2).
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For (ii), note that in the case of a Hilbert space, f5 is the identity, which is certainly
weak-to-weak continuous. Concerning f, in £,, it has been proved in [8], Proposition 8.2, that
[, is weak-to-weak” continuous too. Hence, in these two cases, i.e. (ii) and (iii), f satisfies
the separability condition, which is implied by the weak-to-weak* continuity of f’. O

Unfortunately, examples in the following section show that for B = ¢, or B = LP[a, f]
the function f,(x) = L|z|’, 1 < r < oo, does not satisfy H5, excepting in the two cases
considered in Proposition 3.1.1(ii) and (iii).

3.2 Counterexamples for the separability requirement

In connection with the existence of functions defined on Banach spaces whose derivatives are
weak-to-weak™ continuous or which satisfy the separability requirement, i.e. H5, Proposition
3.1.1(ii)-(iii) gives us a partial answer. We discuss next the fact that for B = ¢, or B =
LP[a,b] (1 < p < o00), the function f(x) = |lz[|; (r > 1) does not satisfy the separability
condition (and so, a fortiori, f’ is not weak-to-weak* continuous), excepting for the two cases
considered in Proposition 3.1.1(ii)-(iii).

Example 3.2.1. B = {,, f(x) = ||z||}, r # p. Let {e*} be the canonical basis of /,,

® = 6 (Kronecker’s delta), and consider the sequences {z*}, {y*} C ¢, defined as

i.e. e;
¥ :=2e! + ae? and y* := e' + Be*, where

p—1 r—1
r

a=28% g=25 (3.9)

Both {z*} and {y*} are contained in ¢, and converge weakly to x = 2¢! and y = e' respec-
tively. Since f'(x); = r[|z|| " |z;[P~*2;, it is easy to check that

Fl(a®) = r(2° + o?)p (2P e 4 aPleb)

and
Pl =r(L+ g7 (et + gPtet)
for all k. Therefore, if £ > 1, we have

(f'(@®) = f'("),x =) = (f'(=") = F'(y"), ') =
r(2° 4+ a?)pl2rt — (14 pP)r | =0,
because of (3.9). Thus,
lim inf |(f'(a") = f'(4"), 2 = y)| = 0,

which implies, since = # y, that f does not satisfy the separability condition H5.
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For B = L”[a,b], in which case f'(z)(t) = r|lz]|) " |2(t)["~?2(t), we consider two cases:
p=2and p # 2.

Example 3.2.2. B = L?[a,b], 7 # 2. Since p = 2, B is a Hilbert space, and the natural
extension of the counterexample above for ¢, works: let {e*} be a complete orthonormal
system and take ¥ = 2e! + ae? and y* = e' + Be*, where o and 3 are as in (3.9), with p = 2.
The same computation as in the case of £, holds, and f does not satisfy the separability
requirement H5.

Example 3.2.3. B = LP[a,b], p # 2. 3 If p # 2 we want to establish the result also for the
case of r = p, and so the counterexample above is not enough. Take h : R — R such that A
is periodic with period b — a, and let

ﬂ:/ h(t)dt, 7:/ |h(t)[Pdt and 5:/ \h(t)[P~2h(t)dt.

We show next that, for p # 2, h can be chosen so that § = 0 and 7,6 € (0,00). If p > 2,
take

(3.10)

3 if t€fa,a+ (b—a)/4]
-1 if tefa+ (b—a)/4,0],

extended to the whole real line with period b — a. Then,
3 1 3 5
g =0, ’y:Z(b—a)(iSp +1) >0 and 5:Z(b—a)(3” —1)>0.

If p € (1,2), then multiply h as given by (3.10) by —1, so that we have the same values as
before for 4 and ~, while § = 3(b — a)(1 — 3772) > 0.

Define 2*(t) = h(a + k(t — a)). Using the fact that 8 = 0, it is easy to establish that
{2*} is weakly convergent to x = 0. Let

/] =
UGN
y\b—a
Define y*, y € L[a, b] as y*(t) = y(t) = 0 for all t € [a,b]. It is easy to check that

(f'(=") = '), 2 —y) = rB[(b— )" /P07 — 577715 (3.11)

3This counterexample is based upon [22], Remark 4.1.5.
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In view of the definition of 8, we get from (3.11) that {(f'(z*) — f'(y*),z — y) = 0 for all k,
so that

liminf |(/(a) — /'(4"),2 — )] = 0
—00
Since x = 0 # y, it follows that f does not satisfy the separability requirement H5.

We remark that, as it will be seen, properties HI-H4 are required for establishing exis-
tence and uniqueness of the iterates of the algorithms under consideration in Chapter 4, and
also boundedness of the generated sequences, while H5 is required only for uniqueness of the
weak cluster points of such sequences. We mention also that the factor % in the definition of

fr is inessential for Proposition 3.1.1, whose results trivially hold for all positive multiples
of [|[I%-

3.3 A candidate penalty function in a ball

In this section, we study the function g : B — RU {400}, defined as

1—/1—|z|]* if ||z|| <1
g(w):{ Jolf* if ] < (31
o0 otherwise,

in connection with properties H1, H2, H4 and the variants of H3 introduced in Section 2.5,
in order to use it in extensions to Banach spaces of methods like GPPB of section 2.6. We
will study such extensions in Chapter 6.

Let us consider the real function ¢ : [0,1) — R, defined as

(t) = —— (3.13)
v V1—1¢2 '

We show next that g is a function of the form 1 o ||-|| 5, with ¢ as in (3.1) associated to
the weight function given by (3.13).

Lemma 3.3.1. Let B be a real reflexive Banach space. Take ¢ as in (3.13) and g as in
(3.12). Then ¢ is an extended weight function with ©(17) = lim; ;- p(t) = oo and g =
Yoz with ¢ as in (3.1)

Proof. Elementary. O
Let C :={x € B : ||z|| < 1}. Observe that C is the domain of g.

Corollary 3.3.2. Let B be a real reflexive Banach space. Take g as in (3.12) and fo =

(1/2) |I-II*. Then
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i) g satisfies HI.

i) If B is strictly convex and smooth then g is strictly convez, G-differentiable on int(dom
g) and its derivative is given by

() = ———fi(a), (3.14)
1= el

for all x € int(C). Moreover, g satisfies Hj and the inverse function of ¢', namely
(¢")"': B* — int(C), exists and it is the Gateauz derivative of [\/1+ (-)2 = 1] o ||| 5.

iii) If B* is uniformly convez, then g satisfies H3.c.

Proof. Choose ¢ as in (3.13) and apply Lemma 3.3.1 to get g = ¢ o ||-|| 5 with ¢ given by
(3.1). Then results follows directly from Corollaries 3.0.9, 3.0.8, 3.0.7 and 3.0.10 respectively.
The formula for ¢', (3.14), is a consequence of EJ3. The expression for the inverse of ¢’ follows

from the fact that ¢t — ﬁ : Ry — [0, 1) is the inverse function of the weight ¢, namely
¢!, hence the inverse operator of ¢’ = J, : int(C') — B* is given by Ji-1 (see EJ2). O

Observe, now, that g = ® o fo, where f, : B — R is given by fo(z) = L|||3 and
®: R — RU{+o0} is defined as

{1—\/@ if t € (—00,1/2]

d(t) =
®) o0 otherwise.

(3.15)

The function f, have been already studied on section 3.1 and it is certainly well behaved.
We discuss next some relevant properties of ®.

Lemma 3.3.3. Take ® as defined by (3.15). Then

i) ®'(t) = \/ﬁ forallt € (—o0,1/2), so ® is differentiable on the interior of its domain,

i) ®"(t) = (1 —2t)~% >0 for all t € (—o0,1/2), and consequently

(a) ® is strictly convexr,
(b) ®'(t) > ®'(0) =1 for allt € [0,1/2).

Proof. Elementary. O
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Corollary 3.3.4. If B is uniformly convex and smooth, then g satisfies H2. In fact for all
x € int(C) and all t > 0 it holds that

vo(x,1) 2 ¥ (fo(a))vp, (2, 1) = vp, (2, 1). (3.16)

Proof. Choose f as the restriction of f, to the interior of C' and use Propositions 2.3.17
and 2.3.18 to get the first inequality in (3.16). The second inequality follows immediately
from Lemma 3.3.3(ii)-(b). Since f, satisfies H2 when B is uniformly convex and smooth (see
Example 2.3.24), the result follows from (3.16). O

Concerning H3.a, we present now an example showing that, in general, g does not enjoy
this property.

Example 3.3.5. Let B = {, with p € (1,00). Take a € (0,1) and define § = [(<t1)!/P+1]/2.
Take any sequence {ux} C [0, 1) such that limy_,o px = 1, and define
1 1
)\k:(2lu’£_]-)pa 519:2/%—1, 7k2(26£_1)p7

Let {e*} be the canonical basis of £,, as presented in Example 3.2.1, and consider the
sequences {2*}, {y*} given by

D 2_%(61 + ve") and yF = 2_1_1’(61 + Ae®).

It is easy to check that

le¥lp = e <1 and [|y[], = 6 < 1 (3.17)
and that
at e 277¢! and y" #Tﬁl. (3.18)

Thus, we have found two sequences, namely {z*} and {y*}, contained in int(C), both

of which are weakly convergent to the same point, namely x = 9 vel. Since q(x); =

1—1||r||2 2|27 |a; |P~2a;, it is also easy to check that

(Ak = 7n)
V1-u}
Let us consider, now, the real function 1 : [£,1] — R defined as n(t) = (2t» — 1)'/?, with
¢ = (4)Y/P. Then

('), 2" —y*) = %(ﬂk)2_p)\£_l (3.19)

2tP~1 2 def
Ht) = —2 and s )] < — 0.

(2tr — 1) % tefe.1] o'
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Hence, n is Lipschitz continuous with constant M and

|Ae = vl = [0(p) —n(0)| < M|y — 0kl (3.20)

From equations (3.19)-(3.20) we get

1 |)\ — |2
10k ok k 2 k 'Yk
ok — _

_ l(uk)z—p/\z—l\/uk—%l | Ak — Yl
2

e — Ox| | (14 pg)

1 e
< 5V M ()P0 A = el (3.21)
Taking limits when % goes to infinity in the extreme expressions of (3.21), it follows that
lim (¢ (y"), 2* — y*) = 0. (3.22)
k—o00

Since

Dy(a*,4") = g(a*) = g(") = (9. 2* =) = \J1 = 2 = /1= 6 — (g ("), 2" — o),

we get from (3.22) that

lim D, (2%, y*) = 0. (3.23)
k—o00

It follows from (3.17), (3.18) and (3.23) that {z*} and {y*} satisfy the hypotheses of H3.
We show next that limy_,e [Dy(z, 2F) — Dy(z,y*)] # 0. Easy computations show that

(g ") — g @),z —a*) =

prd N (N T F 1
95 NPy, 2P (—’“) <—> V5 —— 3.24
kTR [k Ak 1+ 0 1— 2 (3:24)

It follows from (3.24) that

lim {¢'(y*) — ¢'(a%), 2 — 2¥) = —c0. (3.25)

k—o00
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By Proposition 2.3.10(i)-(c),
Dy(w,2") = Dy(,y*) = =Dy(a",4*) + (¢'(4*) — ¢'(z"), 2 — o). (3.26)
We conclude from (3.26) and (3.25) that

]}Lrgo [Dy(z,2*) — Dy(z,y*)] = —oc. (3.27)

Equation (3.27) implies that g does not satisfy H3.a. It follows easily from Proposition

2.3.10(i)-(c), that functions which are G-differentiable in the interior of its domain, and

which satisfy H2 and H3, also satisfy H3.a. Thus, this example also shows that the function
g under consideration does not satisfy H3 either.

The fact that ¢ satisfies neither H3 nor H3.a (and, in fact, that we know no other function
whose domain is the interior of a ball, and which satisfies all the required properties) will
have as a consequence that our results in Chapter 6, for proximal methods with penalization,
will be somewhat weaker that the result for the case in which the domain of the regularizing
functions is the whole space B. In such situation condition H3.b will be used, which is
satisfied by ¢g as we show bellow.

Proposition 3.3.6. Let B be a strictly conver and smooth reflexive Banach space and g be
given by (3.12). Then g satisfies H3.b. Moreover, given any sequence {z*}, C int(C) =
B(0,1), with lim; d(z*,0C) = 0 (i.e. limy||2*|| = 1), the sequence of parameters {py} C
R, ., can be taken for all k, as

pr < d(2*,0C) =1 — [|z*]| .
Proof. Let {z*}, C int(C) = B(0,1), with lim, d(z*,dC) = 0. Take any weak limit & of

such sequence and {y*}, C int(C). Then, taking ¢ as in (3.13), we get from Corollary 3.3.2
(ii) and Definition 2.3.9

Dy(d,a*) = Dy(a,yh) < Dyla,ab) = /1 - ab]? = /1= [l2]]* - (g'(ah), & — a*)
< V=P + (g (@), 2b) — (o' (a), )
< L= Lkl + o2 ]) fl*] + e (l* (1) 12
< /1= ]+ 200(]| " ).
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Thus, taking pp <1 — ||xk||, we get

lim sup pi [ Dy (2, 2%) = Dy(&,9")] < limsup pe[y/1 - l2*]1” + 20 (|| )]
k
< limsup2(1 — ||2*|]) ||x H
* L~ [Jz*]?
: (1 — [J*]])?
< 21 —_—
< 2limsup /= — T
: L fl®]]
= 211mksup T < 2hmksup 1 —||z*|| = 0.

Next we present another property of ¢ which will be useful in the analysis of Chapter 6.

Proposition 3.3.7. Let B be a smooth Banach space and consider g as in (3.12). If {z*} is
any sequence in int(C) = {x € B| ||z| < 1} such that limy_, ||2¥|| = 1 then limy, || ¢ (2*)|| =
+oo. Moreover, for any x € int(dom g) it holds that

lim Dy (z,2%) = oo. (3.28)

k—o0

Proof. Since {2*} is bounded (and so is {.J(2¥)}) equation (3.14) in Corollary 3.3.2 ensures
the first statement. Observe also, that the result also follows from the fact that ¢'(z%) =
¢(||z*]|) and the definition of ¢, namely (3.13). For the second statement, note that

Dy(z,a*) = g(a) - g(a*) — (g'(z*), 2 — *)
= V1= et = 1= [Je]? = {g'(@h), ) + (g (a*), o)
> /1= [k = /1= [l = [|lg' @), el + '@, |

= VL= It = 1=l + [l @), () lal).
Observe that ||z|| < 1, and therefore ||z*|| — ||z|] > « > 0 for large enough k. The result
then follows from the first statement, already established. O

Remark 3.3.8. It should be observed that all results in this section hold trivially for any
ball B[0,b] (i.e. with b not necessarily equal to 1). Moreover, there is no need to choose
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precisely the squared norm (i.e. f3) for defining g. In other words, we can consider on
functions of the form g(z) = b — (0" — ||z||")"/". Choosing, e.g.
t’l‘—l
QO(t) = W for t € [0, b) and @(t) =0b— (br - T't)l/r
YA t'f‘ -

for all t € (—o0,b"/r], it can be seen that this more general g enjoys the same properties as
the one given by (3.12). The same holds, more generally, with balls centered at an arbitrary
point xg, by considering g(z) = g(x — o), with g as above. In any case, the variational
inequality problem VIP(T,Blxo, b]) can be reduced to VIP(T,BJ0, b]) with T'(z) = T'(z + o).
Thus, it is not worthwhile to go deeper in the analysis of this case.

3.4 A candidate penalty function in a polyhedron

Let B be a real reflexive Banach space. Take v',... v? € B*\{0} and vy, ..., a, € R. Define
the closed and convex set C' by

C={zeB|{,2)>awq, i=1,..p}, (3.29)

and assume that int(C') is nonempty. Consider the function ¢ : C — R defined by

1 2 P i . i . ;
c(x) — 2 ||x||B + Zz:l (<U ,.’17> al) lOg(<U ,.’17> al) lf S C (330)
00 otherwise.

It is known that this function has nice properties in Hilbert spaces (see Example 2.6.6). We
state next some related properties on Banach spaces.

Proposition 3.4.1. Let B be uniformly smooth and uniformly convex and take ¢ as in
(3.30). Then

i) c is strictly conver and continuous on C. Moreover, ¢ is F-differentiable on int(C'),
with G-derivative given by

d(z) = J(z) + Z[l + log ((v*, z) — a;) V. (3.31)

i=1
ii) c satisfies H1, H2, H3.a, H3.c and H/.

i) (boundary coerciveness) If {z*} C int(C) is such that
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(a) 2F ——2—7Z and Z belongs to the boundary of C, or

(b) d(z*,00C) g (i.e. the distance from the terms of the sequence {z*} to the
boundary of C goes to zero), with {z*} bounded,

then limy_, o Hc’(zk)H* = +00, limg_,oo{c'(2F), w — 2F) = —00 and limy_,o D.(w, 2*) =
oo for all w € int(C).

Proof. Let ¢; : B — R be given by (;(z) = (v',2) —a; for alli = 1,...,p and  : R* —
R U {+o0} the Bregman function in Example 2.6.4. Taking fo defined as, fo = (1/2)[-|%,
we have ¢ = no( + fo, where ( : B — RP is the application with (; as its ¢-th. component,
i =1,...,p. Thus, the results presented here are consequences of Proposition 3.1.1(i) together
with properties B1-B6 of the Bregman function n. In fact, strict convexity of ¢ follows
from the strict convexity of fo when B is strictly convex. Continuity is obvious and F-
differentiability, as well as the expression for the G-derivative, are consequences of the sum
and chain rules (Propositions 2.2.3 and 2.2.4 respectively) in view of the locally uniform
convexity of B. Thus,

d(z) = f+ Z[l +log(Gi(a))]v', (3.32)

and (i) holds. Observe also that

De(y,xz) = Dy(¢(y), C(x)) + Dy, (y, x), (3.33)

so that H1 and H2 are direct consequences of properties H1 and H2 of f,. Concerning H3.a,
take {z*}, {y*} C int(C) such that aF -2, y* 2 3% and limy_,o D.(y*, z%) = 0.

k—00
Since ¢ satisfies H2, 2% — y* —— 0, by Proposition 2.3.22. In view of the three-point
equality, Proposition 2.3.10 (i)-(b), applied to f2, we get

k—o00
Dy, (a%,2%) = Dp, (2%,9%) = Dy, (y",2") + (fo(=") = fo(4"), " — 2%).
Hence,
klggo |Df2(xoo7xk) - sz(xoov yk)| < klggo Df2(ykvxk) + klggo |<fé(xk) - fé(yk)7 yk - xoo>|
< lm 460 - B - =0, Gy

*

using boundedness of the weakly convergent sequence {3*} and the fact that f, satisfies H3.
Note also that ¢ : B — RP is weakly continuous, hence {((z*)} and {C(y*)} are sequences
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in R? both of which converge to ((z°). Thus, in view of the fact that 7 satisfies B4, which
has been proved in Lemma 2.1.3 of [20], it holds that

lim D, (¢(2),¢(e") =0 and  lim D, (¢(2>),¢(y*)) = 0.
Consequently
lim [D,(¢(x),((z*)) — Dy(¢(z™), ¢ (y*))] = 0. (3.35)

k—o0

It follows from equations (3.34) and (3.35) that ¢ satisfies H3.a.

H4 is a consequence of Proposition 2.5.2 applied to the operator T' = d[no(] : B — P(B*),
which is maximal monotone (see Proposition 2.3.1), and to the regularizing function fo, which
satisfies H4, after observing that int(dom fy)N dom T # ().

For (iii), observe first that in view of equation (3.33),

DC(wa Zk) = Df2 (wa Zk) + Z Dm(Ci(w)a Cl(zk)) > Dm(Ci(w)a CZ(Zk))
Gi(w)
Gi(2%)

Take {z*} C int(C) satisfying (a) or (b), and assume that for some w € int(C) the
sequence {D,(w, 2¥)} does not diverge to infinity. Then, there exists a subsequence {z%} of
{z*} and a real number M, such that D,(w, 2% ) < M for all j. Since for any z € int(C),
Gi(x) > 0, in view of (3.36), it necessarily holds that

Gi(w) log < > + G(2") — ¢(w) Vie{l,..,p}. (3.36)

lim inf G(2%7) > 0, (3.37)
J

for all 7 in the finite set {1, ..., p}.

Next we consider two cases: If (a) holds, take z¥ ——~—y € dC. Then (,;(y) = 0 for some
i € {1,...,p}. Since (; is weakly continuous, we get limy, (;(2*) = (;(y) = 0, contradicting
(3.37). If (b) holds, there exists a sequence {y*} € OC satisfying 2* — y¥ ——— 0. Since

for all k there exists i = i(k) € {1,...,p} such that (k) (y*) = 0, we can find a subsequence
{y* Y of {y*} and a fixed index i € {1, ..., p} satisfying (;(y*') = 0 for all &'. Thus,

C(2M) = (") = G") = (', 2 = o). (3.38)
We conclude from (3.38) that limy (;(2¥) = 0, in contradiction with (3.37), too. Hence,

lim D.(w, 2") = +oc. (3.39)

k—o00
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for all w € int(C)

Observe now that boundedness of {z¥} ensures boundedness of {c(z) — ¢(2*)};. Thus,
using the Definition 2.3.9 of D, and (3.39), we get limy_,o(c'(2*), 7 — 2¥)) = —c0.

Finally, the fact that ||¢/(z%)|, ||z — 2*|| > —(c(2*), z—2")) implies that lim;_,. ||¢/(2¥)
= 0.

Concerning H3.c, let A C int(C') be any bounded set such that d(A, dC') > 0. Then, there
exists a > 0 such that ¢;(x) > a for all z € A and all i = 1,...,p. Choose {z*}, {y¥}, C A,

* *

satisfying z% — " ———>0. Then, for all i € {1,...,p},
lim [G(e%) — C.(5)] = Tim (o, — ") =0 and  lim S0 .
k—o0 ! ! k—o0 ’ k—o0 Cz(yk)
Since f, satisfies H3, we also have fj(2*) — fi(y*¥) === 0. From (3.32), we get

@) =@M, =

F3(a") = fa(y") + D _log(G(")) — log(G(y*)

*

d k
Ci x i
< ) — SO, + D [iog ( CDN 1)1, 5 0. (3.40)
P G(y*)
It follows from (3.40) that ¢ is uniformly continuous on A. O

Remark 3.4.2. It is not necessary to use f, in the definition of ¢, i.e. in (3.30). In fact, we
can use any power bigger than 1 of the norm, i.e. ||-||" (r > 1), and still get the same results,
since such powers of the norm share the required properties of f, (see Section 3.1).

Remark 3.4.3. Concerning H5, we already know from Example 2.6.6 that when B is a
Hilbert space then ¢, as defined in (3.30), satisfies H5. The same holds when B = ¢, and f,
is replaced by f, = [|-||} in (3.30). In fact, in this case f, is weak-to-weak continuous (see
Proposition 3.1.1(iii)), so that, choosing sequences {z*}, {y*} C int(C) such that 2* ——~—z,
yF —~ g and 0= liminfy [(¢(z*) — ¢ (y¥), 2 — y)|, we get

p

0 = liminf (fp(e®) = fo(y")sx —y) + Z[log(Ci(xk)) — log(G(y"))I[Gi(2) = Gi(y)]

= (fi(x) — fi(y),z —y) + Z[log(éi(x)) —log(G(y)][¢i(2) — G(y)]
> (fy(@) = f(y),x —y).

Thus x =y, because f, is strictly convex.

In cases other than those in Remark 3.4.3, H5 should fail, in view of the counterexamples
in subsection 3.2.
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3.5 The separable case

We discuss next some properties of separable regularizing functions defined on the Cartesian
product of two Banach spaces, which are also needed in the following chapters.

Proposition 3.5.1. * Let By, By be real Banach spaces, f : By — R U {occ} and h :
By — R U {oo} two proper convex functions with int(dom f), int(dom h) # 0. Define
F : By x By 5 RU {0} as F(z,y) = f(x) + h(y). Then

i) forany z = (x,y) € int(dom F') the domain of vp(z,-) is an interval [0, 7(z)) or [0, 7(2)]
with 0 < 7(2) = 7p(x)+71(y) < 00, where Tp(x) = sup{t | t € dom vs(x,-)} and 7,(y) =
sup{t | t € dom v(y,-)}. Moreover vp(z,t) = inf{vs(z,s) + vn(y,t — s) | s € [0,t]},

ii) for any z = (z,y) € int(dom F) and t € dom vp(z,-)
vz, 1) > mindy (2, 1/2), vy, /2)},
therefore, if both f and h are totally convexr then F' is totally convex.

iii) Fori=1,...,4, if both f and h satisfy Hi then F also satisfies Hi. Moreover, if both
I and b are weak-to-weak® continuous then I also satisfies H5.

Proof. Take z = (z,7) € int(dom F') and ¢t € R, . By definition of v and Dp ((2.3.12) and
(2.3.9)),

vp(2,t) = inf{Dp(z,2) | ||z = 2llg, 5, =}
— inf{Dy(,3) + Daly9) | o=l +ly—dlly =1} (341)
From Proposition 2.3.14(i) we know that the domain of v;(z,-) is an interval [0, 7(z)) or

[0, 7(z)] with 0 < 7¢(x) < oo and the same for the domain of v, (y, -) for some 0 < 7,(y) < o0,
which proves the first statement in (i). Since

vi( [l = 2ll,) < Di(w,7) and  vn(y, |ly = 9ll5,) < Dnly,9),

we get from (3.41) that

vp(z,t) = inf{vp (@, [l = zl|5,) + (@ ly = 9ll,) | llo =2l +ly—0llp =1}
= inf{vp(z,s) +vn(y,t —s) | s € [0,t]}. (3.42)

*We thank Professor B.F. Svaiter for the correct statements in (i)-(ii) of this proposition.
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By (3.41), and for any s € dom v¢(Z,-) with ¢t — s € dom (7, -), we have

ve(5,8) < WE{D(,7) + Daly5) | [lo = 7llp, = 5,1y — gll g, = £ — 5}
inf {Dy(2,3) | |lo — 75, = s} +int {Du(w.) | ly— dll5, =t 5}
vi(Z,s) +uvn(y,t—s).

Consequently,
ve(Z,t) < inf{v, (z,s)+ v, (y,t —s) | s €[0,¢]}. (3.43)

Item (i) follows from (3.42) and (3.43).

For (ii) choose any t; € dom v¢(Z,-) and ty € dom v (7, -) with t,+t5 = t. Thent, > ¢/2 or
ty > t/2. From Proposition 2.3.14(iv), we get v;(Z,t1) > v¢(Z,t/2) or vy (7, t2) > vu(y,t/2).
By nonnegativity of vy and vy, we get v;(z,t1) + v, (y, t2) > min{v,(z,t/2),v4(y,t/2)}. Thus,

inf{ve (z,t1) +vp (7, t2) | t1 +t2 =t} > min{vs(z,t/2), vn(y,t/2)}. (3.44)

In view of (i) and (3.44) (ii) is true.
The proof of (iii) is elementary, using (ii) for the case of H2. O
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Chapter 4

Inexact versions of the Proximal
Point method in Banach spaces

In this chapter T': B — P(B*) denotes a maximal monotone operator (see Definitions 2.1.1
and 2.1.2) and we are concerned with the problem of finding zeroes of T' (see Definition
2.1.3). We start from the exact proximal point method proposed in [9] (see Section 2.5)
and the hybrid methods proposed in [64, 62] (see Section 2.7). The methods in this chapter
are not intended for penalty purposes, as those discussed in Section 2.6, whose extension
to Banach spaces will be considered in Chapter 6. The novelty of this chapter lies in the
extension to Banach spaces of the methods proposed for Hilbert or finite dimensional spaces
in [64, 62], i.e. inexact proximal-like methods allowing for constant relative errors.

Our first approach will explore the interpretation, proposed in [64] for Hilbert spaces, of
the proximal point method as a projection-type scheme, which we describe next.

It is not difficult to check that in the exact proximal point algorithm defined by (2.21),
it holds that %! = I1f,(z), where H = {z € B| (f'(z*) — f/("*!), 2 — 2**1) = 0}, i.e. bt
is the Bregman projection (see Definition 2.3.19), of z* onto H, which separates z* from
T710). In fact 2**! obviously belongs to H and (f'(z*) — f'(z**1),z — 2%*1) < 0 for all
x € H. Thus in view of proposition 2.3.20 (ii) z¥** = II{ (), provided that f is totally
convex with dom f = B. Since v* = N\ [f'(2¥) — f/(2**1)] € T(z**'), monotonicity of T
ensures that

(o 2" — 3y >0, VzeTY0).

On the other hand, if 2% is not a zero of T' (and thus 2**! # 2%), strict convexity of f
guarantees that



which means that the hyperplane H strictly separates the previous iterate z* from the
solution set of problem (2.1).

We will generate an inexact generalized proximal iteration in order to construct an ap-
propriate separating hyperplane. A Bregman projection onto this hyperplane is then used
to obtain the next iterate. The method is intended for solving problem (2.1) and requires an
exogenous constant o € [0, 1], an exogenous bounded sequence {\;} C R, and an auxiliary
function f € F such that dom f = B, with F as in Definition 3.0.1 (see Chapter 2 for
examples of such functions). It is defined as follows:

Algorithm I: Inexact Proximal Point + Bregman Projection Method
1. Choose z° € B.
2. Given 2%, find #* € B such that
Al f' (@) = f'(@%)] - et € T(3"), (4.1)

k

where e” is any vector in B* which satisfies

le"|

Dy(z*, 2%) if ||a* — 2F]| < 1

with Dy as in Definition 2.3.9 and vy as in Definition 2.3.12.

3. Let
ok — )\k[f’(xk) . f’(jk)] ek (4.3)
If v* = 0 or ¥ = 2*, then stop. Otherwise, take Hy, = {x € B : (v*,2 — &%) = 0} and
define
o — Héh (xk) = arg ;g}g Df(x,xk), (4.4)

with H}}k as in Definition 2.3.19.

In order to compare our error criterion with the one in [64], i.e. (2.30)—(2.31), we must
consider the specific case where B is a Hilbert space, and f = %||||2, which is the one

considered in this reference. In this situation, our error criterion (4.2) takes the form ||e¥|| <
‘I

oA smin{|[z* — Z ? 1}, a somewhat more restrictive condition than (2.31), because the
right hand side of (2.31) involves the maximum between A, '[|v¥|| and ||z* — 2*||. This seems
to be the price paid for our extension: Banach instead of Hilbert spaces and a whole class of
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regularizing functions instead of just the square of the norm. As another improvement we
get better convergence results for the case of Hilbert spaces, a fact discussed in section 4.3.
We mention that we preserve the most important feature of (2.30)—(2.31), namely a bound
o for the relative error which needs not go to zero, contrasting with tolerances which must
converge to zero or even be summable (e.g. [61]). Also, conditions on the distance from
the iterates to the unknown exact solutions of the subproblems, as in [40], are avoided (see
Section 2.7 for a deeper discussion of the algorithms in [61, 40]).

Concerning the projection step (4.4), we mention that the existence of z¥*! € int(dom
f) is ensured by total convexity of f, which follows from H2, and condition dom f = B
(see Proposition 2.3.20), and also that even though this projection step cannot be performed
through a closed formula, in the cases of interest, namely f,(z) = ||z||" (r > 1) with uniformly
convex B, it reduces to solving a nonlinear equation of the form ®(s) = 0, where ® : R, — R
is a continuous function given by a closed formula (see (2.18) and (2.19) in Example 2.4.4).
Also, closed formulae for lower bounds of v;(z,t) in terms of ||z[| and ¢, for f(z) = |||}
(r > 1) and B = ¢, or B = LF()), which allow to establish whether a vector e* satisfies
(4.2) or not, appear in Example 2.3.24.

In our second approach we extend to Banach spaces the error criterion introduced in [62]
as an hybrid extragradient-inexact generalized proximal point method in R (see (2.34)).
This algorithm requires an exogenous constant o € [0,1), an exogenous bounded sequence
{\¢} € Ry and an auxiliary function f € F, with F as in Definition 3.0.1, such that dom
T C int(dom f). It is defined as follows:

Algorithm II: Inexact Proximal Point-Extragradient Method
1. Choose z° € int(dom f).
2. Given 2%, find 2* € B such that
" + Ml f'(@*) — f'(&")] € T(3"), (4.5)
where €* is any vector in B* which satisfies
Dy (ZF, (f)7H[F (@) — A e¥]) < oDy(3F, %), (4.6)
with Dy as in Definition 2.3.9.

3. If ¥ = ¥, then stop. Otherwise,

$k+1 — (f/)—l [f’(i‘k) o )\Zlek}- (4‘7)
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Before proceeding to the convergence analysis, we make some general remarks. First, the
assumption that dom 7" C int(dom f), used also in [9], means basically that we are not
attempting any penalization effect of the proximal iteration. Second, we remark that as-
sumptions H1-H5 on f will be used in the convergence analysis of our algorithms (we do
not require them in the statement of the algorithms in order to isolate which of them are
required for each specific result). In this sense, for instance, existence of (f)~!, as required
in (4.6), (4.7), will be a consequence of H4 for any f € F. We mention that for the case of
strictly convex and smooth B and f(z) = ||z||3, we have an explicit formula for (f')~!, in
terms of ¢', where g(-) = || - ||%. with £ + 1 =1, namely (f')~! = r'~%¢’. In fact, H4 is
sufficient for existence of the iterates generated by both algorithms, as the following results
show.

Proposition 4.0.2. Take f € F such that dom T C int(dom f). If f satisfies H4, then, for
all k and all o € [0, 1], the inexact prozimal subproblems of both Algorithm I (i.e. (4.1)-(4.2))
and Algorithm II (i.e. (4.5)-(4.6)) have solutions.

Proof. Consider first the case of Algorithm I. Choose o = 0, so that the right-hand side
of (4.2) vanishes. Hence ¥ must be zero too and the proximal subproblem takes the form:
find % € B such that \,[f'(2¥) — f'(2*)] € T(2*), which always has a unique solution by
Proposition 2.5.2. Of course, the solution provided by this result satisfies (4.2) for any o > 0,
and so the result holds. The proof is analogous for Algorithm II. O

Next we settle the issue of finite termination.

Theorem 4.0.3. Suppose that Algorithm I (respectively Algorithm II) stops after k steps.
Then i* generated by Algorithm I (respectively Algorithm II) is a solution of (2.1).

Proof. Algorithm I stops at the k-th iteration in two cases: if v¥ = 0, in which case, by (4.1),
¥ is a solution of (2.1), or if #¥ = z*, in which case, by (4.2), e* = 0, which in turn implies,
by (4.3), v¥ = 0 and we are back to the first case. Consequently, Z* is a solution of (2.1).
Finite termination in Algorithm IT occurs only if #¥ = 2%, in which case D(z*, 2*) = 0, and
therefore, by (4.6), e¥ = 0, which in turn implies, by (4.5), 0 € T'(z*), so that Z* is a solution
of (2.1). O

Proposition 4.0.2 ensures that exact solutions of (2.21) satisfy the error criteria in Al-
gorithms I and II, with ¥ = 0, so our subproblems will certainly have solutions without
any assumption on the operator 7. Next we show that for both methods, when T is single
valued and continuous, there exists a ball around the exact solution of the subproblem such
that any point in its intersection with dom 7T can be taken as an inexact solution. As a
consequence, if we solve the inclusion

Aef'(2%) € T(x) + A f' (2) (4.8)
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with any feasible algorithm which generates a sequence strongly convergent to the unique
solution of (4.8), a finite number of iterations of such algorithm will provide an appropriate
next iterate both for Algorithm I and II.

Proposition 4.0.4. Assume that f € F, HJ holds, dom T C int(dom f) and T is single
valued and continuous. Assume additionally that f is totally convex and Fréchet differentiable
for the case of Algorithm I, and that (f')~' is continuous for the case of Algorithm II. Let
{2%} be any sequence generated either by Algorithm I or II. If x* is not a solution of (2.1),
then there ezists a ball Uy, around the exact solution of (4.8) such that any x € UyN dom T
solves (4.1)—(4.2) in the case of Algorithm I and (4.5)—(4.6) in the case of Algorithm II.

Proof. Let 2% be the unique solution x of the inclusion (4.8). Consider first the case of
Algorithm 1. Since 2* # Z*, because otherwise 0 € T'(z*), we have D(z*, z*) > 0 and, by
total convexity of f, ay := o\, min{D;(z*, 2*),v;(z%,1)} > 0. Let us consider, now, the
function ¢, : dom T' — R defined as

Yi(y) = [|T(y) + Nelf'(y) = f/(@)]]], — oA min{Dy(y, 2*), v (2", 1)}.

Observe that 1, is continuous by continuity of 7', and that 1 (Z%) = —ay < 0, so that
there exist 0, > 0 such that i,(y) < 0 for all y € dom T with ||y —:E’“H < Op. Let
Up:={y € B :|ly—z*|| < 6}. Then

1T () + Ml f () = £ (@), < oAp min{Dy(y, 2*), vy (2", 1)} (4.9)

for all y € UyN dom T. Finally, note that the right hand side of (4.9) is trivially less than
or equal to the right hand side of (4.2) with y replacing Z*.

In the case of Algorithm II, proceed in the same way using Corollary 4.0.2 and, instead
of 1, the auxiliary function 1, : dom T — R defined as

Ur(y) = Dy (y, (f) (") = N T (w)]) — oDy (y, z).

4.1 Convergence analysis of Algorithm I

In this section we establish the convergence properties of Algorithm I. The following lemma
will be used to prove that the Bregman distance with respect to f from the iterates to
the solution set of (2.1) is nonincreasing, which essentially entails global convergence of
Algorithm 1.
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Lemma 4.1.1. Take f € F totally conver and such that dom f = B. Then for all v €
B\{0}, y € B, x € H", T € H~, it holds that D;(z,z) > D(Z,z) + Ds(z,x), where
z = argmin,.; Dy(y,z) and H = {y € B: (v,y—9) =0}, H" = {y € B: (v,y —¢) > 0}
and H- ={y € B: (v,y — ) < 0}.

Proof. First, we observe that z is well defined, because it is the Bregman projection of
y onto H, which, according to Proposition 2.3.20, exists and is unique when H C dom
f = B, and f is totally convex. Note that D¢(-, z) is strictly convex and continuous because
f € F. Consequently, since € HT, it holds that z = argmin, ., Dy(y, z). It follows that
z satisfies the first order optimality condition for min Dy (y,z) subject to y € H~, namely
f'(x)=f'(z) € Ny-(z), where Ny- is the normalizing operator of H~, i.e. the subdifferential
of the indicator function Ipy- : B — RU {oo} defined as Iy-(x) =0ifz € H~, Iy-(x) = 00
otherwise (see Example 2.3.3 and Definition 2.3.4). Consequently, since Z € H~, we have
(f'(x) — f'(2),z — &) > 0. Therefore,

Df(jvx)_Df(j7z)_Df(z7x) = <fl(x)_fl(z)7z_j> > 0,

where the equality is an elementary identity, known as the three-point property (see (2.7) in
Proposition 2.3.10). O

Lemma 4.1.2. Let {z*}, {Z*}, {\} and o be as in Algorithm I and assume that f € F is
totally convexr. For all k it holds that

HekH* ka — i:k” < a)\kDf(jk,xk) < )\kDf(iﬁk,xk). (4.10)

Proof. Let us consider two cases. First, if [|z¥ — #¥|| < 1 then we have ||e*||, ||z* — &*|| <
le¥|l., so that the leftmost inequality in (4.10) follows trivially from (4.2). Second, if
|2* — @*|| > 1, then we use (2.9) and Definition 2.3.12 of vy, to get

oDy (3, 2%) > oXpwp (aF, ||% — 3F])) > oA ||2* — ¥ vp(2F, 1) > [|2% = 2| ||e* .,
(4.11

where the last inequality follows from (4.2). Thus, the first inequality of (4.10) is proved,
and the second one holds because o € [0, 1]. O

Proposition 4.1.3. Take f € F, satisfying H1 and H2 and such that dom f = B. Let {x*}
be any sequence generated by Algorithm 1. If problem (2.1) has solutions (i.e. T=1(0) # (),
then

i) For all # € T~Y(0), Ds(Z, %) is nonincreasing and convergent,
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i) {2F} is bounded,

i) > o Dp(af L 2k) < oo.

Proof. Take € T71(0). Let H, = {x € B| (v*,z — &*) < 0}, with Z* as in step 2 of the
algorithm. By monotonicity of T', (4.3) and (4.1), we ha ve (vF,Z —7%) <0, so that 7 € H, .
Applying (4.3) and Definition 2.3.9 of Dy, we get

(What — 3% = N(f'(a") = f1(E"), 2 — i) — (e —fﬂk)
Mo Dy (8%, 2%) + Dy (2" «'L’k)] (e¥, z¥ — zF)
> MNeDyp(aF, 2%) + [\ Dy (3", 2%) — ||€

[

where the last inequality follows from the definition of the norm in B*. Now, applying
Lemma 4.1.2, we have (v¥ 2% — %) > N\, D (2%, %) > 0, so that 2% € H,:’, and in view of
(4.4), we are able to apply Lemma 4.1.1 with § = 2* € B, x = 2%, v = v* and z = 2F*!,
obtaining

Dy(Z,2%) > Dy(z,2*) + Dy (2", 2%) > Dy(z, ). (4.12)

Consequently {D(Z,2*)} is a nonnegative, nonincreasing sequence (in fact, strictly de-
creasing unless ¥ = x¥), henceforth convergent, establishing (i), and also {z*} C {y €
B| Dy(z,y) < Ds(z,2°)}, which is a bounded set by H1, establishing (ii). Finally, by (4.12),

n—1 n—1
Y Dp(a*a*) <3 Dy(@,a%) = Dy(7,25") = Dy(2,2°) — Dy(,2") < Dy(2,2°),
k=0 k=0

establishing (iii). O

Now we state and prove the main result of this section.

Theorem 4.1.4. Take f € F with dom f = B satisfying H1-H/, and {\;} C (0,)]. Let
{2%} be any sequence generated by Algorithm I. If problem (2.1) has solutions, then

i) {2*} has weak accumulation points and all of them are solutions of (2.1).

i) If f also satisfies H5, then the whole sequence {x*} is weakly convergent to a solution

of (2.1).
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Proof. By Proposition 4.1.3(ii), {z*} is bounded. Since B is reflexive, there exists at least
one weak accumulation point. It follows from Proposition 4.1.3(iii) that limy_,., D (¥ 1 2*)
= 0, and then, since f satisfies H2, we conclude from Proposition 2.3.22 that

gk 550, (4.13)

k—o0

From (4.2) and Proposition 3.0.11(i) we get boundedness of the sequen(:e {\tef}, and
therefore, using (4.13) and the fact that 0 < [(\'eF, 251 — 2F)| < ||\ ek ). ka“ — zk||,
we get

(A tef, ab = ah) S0, (4.14)

Using the three-point property (i.e., the equality in (2.7)) and (4.3), we get

Df($k+1,$k) . Df(ﬁk—"l,jk) o Df(jk,xk) — <f’($k) . f’(jk),jk o :L'k+1>

= AR B — Ty 1 (O teR iR — af Y = (A tek R — aF ), (4.15)

where the last equality follows from the fact that 2% € H, = {z € B : (v*,x — 7*) = 0}.
Then

Df($k+1,$k) . Df($k+1,jk) — <)\I;16k,$k _ :L'k+1> + Df(jk,xk) o <)‘k 1ek $k :Ek>

1
> ()\klek A L IS " [)\kDf(:ik,xk) — |le
k

] = (At b — a2t (4.16)

where the last inequality follows from Lemma 4.1.2. Taking limits as k& goes to oo in the
leftmost and rightmost expressions of (4.16), we obtain, using (4.14),

limy 0o Dy (2" 3%) = 0, (4.17)

and therefore, using H2, Proposition 2.3.22 and Remark 2.3.23,

ZL'k_H — ZL' m) 0, (418)
which, in view of (4.13), implies
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From (4.19) and H3, we get
f(a*) = (@) —=—0. (4.20)

k—o0

By (4.19), there exists ky € N such that, ka — :i’kH < 1, for all k£ > kg, and consequently for
k > ko our error criterion (4.2) implies that

[e*]l, < oDy (3", ). (4.21)

Next, we take limits as k goes to oo in the leftmost and rightmost expressions of (4.15). The
rightmost one converges to 0 by (4.18) and boundedness of the sequence {\; 'e*}, the first
term in the leftmost expression converges to 0 as a consequence of Proposition 4.1.3(iii), and
the second term converges to 0 by (4.17). It follows that limy_,.,D(Z*, 2%) = 0, and then,
since Ay < A, we get from (4.21) that e —=— 0. It follows then from (4.3) and (4.20) that

vF 5 0. (4.22)

k—o00

Next, we prove (i). Let Z be a weak accumulation point of {z¥}, so that there exist a
subsequence {2’*} of {z¥} which is weakly convergent to z. By (4.19), &/ -t —~z. It
follows from (4.1) and (4.22) that v € T(z%) and v/* ———0. Thus, 0 € T(z), because
the graph of a maximal monotone operator is demiclosed (see Proposition 2.1.6).

In order to prove (ii), let Z; and Z, be two weak accumulation points of {2*}, so that
there exist subsequences {7}, and {2%} of {z*} such that 2/* —~— 7, and z'* 7,
By (i), #; and Z are solutions of (2.1). Thus, Proposition 4.2.2(i) guarantees the existence
of &, & € Ry such that

limy oo Dy (Z1,2%) = &, limg00 Dy (T2, 2%) = &. (4.23)
Now, using the four-point equality (2.8), we get

(/@) = f'(a7), 21 — Zo)| = | Dy(31,27%) = Dy(@1,2%) — [Dy(T2, ™) — Dy(T2,2%)]|

< |Df(£i’1,l‘ik) — Df(li’l,l‘jk)‘ + |Df(£i’2,$ik) — Df(li’g,l‘jk)‘. (424)

Taking limits as k goes to 0o in the extreme expressions of (4.24) and using (4.23), we get
that

Jim [(f(@™) = f(@7%), 21 = 7)] = 0.
—00
It follows from H5 that Z; = s, establishing the uniqueness of the weak accumulation point
of {z*}.
I
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Remark 4.1.5. In the case in which B is a Hilbert space, the error criterion in (4.2) becomes
1
||ekH < 50)\kmin{||xk—5:kH2,1}. (4.25)

It could be argued that o does not represent a truly relative error, because the norm of
the error ¥ in the left hand side of (4.25) is not squared, while the norm of the difference
between the previous iterate z* and the candidate Z* in the right hand side is squared, so
that ¢ is not “adimensional”. This problem can be avoided by replacing the error criterion
in (4.2) by:

le"ls

a* — || < oM\ Dy (", 2"), (4.26)

1]l < Aws, (4.27)

where [ is an arbitrary positive constant, so that (4.27) is equivalent to requiring that
{)\.'e*} be bounded. Using Lemma 4.1.2 and Proposition 3.0.11 (ii), it can be easily checked
that the proof of Theorem 4.1.4(i) remains valid when (4.2) is replaced by (4.26), (4.27),
which, for the case of Hilbert spaces, give an error criterion closer to the one in [64], but
we chose to use instead the more demanding error criterion in (4.2) for two reasons: the
“dimensionality” objection becomes somewhat devoid of meaning in the case of nonhilbertian
Banach spaces, which are our main object of interest in this thesis, and additionally (4.2)

allows us to get superlinear convergence in some cases (see Section 4.3), which is not the
case for (4.26), (4.27).

Remark 4.1.6 (Changing scales). Convergence results of this section can be easily ex-
tended to the case in which the error criteria in (4.2) is slightly modified as follows:

el < o {éwa:k )itk —at] <o

vi(z*,0) if ||2* — 2| > 6,

for some 6 > 1, thus rescaling the regions where the candidate point #* is being looking for.

Remark 4.1.7. It is worthwhile to mention that, in principle, the presence of o € [0,1] in
Algorithm I could be considered superfluous, because if an error vector e satisfies (4.2) with
o = 1, then it satisfies it for all o € [0, 1], so that it suffices to study the algorithm with
o = 1, or, equivalently, without o in (4.2). From a computational viewpoint, on the other
hand, the additional flexibility provided by o might be useful. The idea is that the k-th
subproblem will be solved with an algorithm guaranteed to converge to te exact solution of
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the subproblem, and that such inner loop will stop the first time that (4.2) is satisfied. In
such a case, a value of o smaller that 1 means that more inner steps will be taken, but also
that the resulting #* will be closer to the exact solution, which might have an acceleration
effect on the outer loop, meaning that resulting 2**! could be closer to the solution set than
the one obtained with o = 1. We acknowledge that such an inner loop is not discussed in this
work, but by explicitly including the relative error ¢ in our algorithm, we prepare the road
for future consideration of such an inner loop, and for the correlated issue of good strategies
for the choice of o.

4.2 Convergence analysis of Algorithm II

From (4.5)—(4.7) with v* = eF + X\, [f'(2%) — f/(2*)], we obtain that sequences generated by
Algorithm II satisfy

0=\ 0" + (=" = f(a"), (4.28)

Dy (3%, 2" < oDy (7%, 2%) (4.29)

for all k. The following lemma essentially resumes the behavior of the error criterion in
Algorithm II and entails its global convergence. This result was presented in Lemma 4.1 of
[62] for the finite dimensional case, and its extension to Banach spaces is immediate.

Lemma 4.2.1. Take f € F, satisfying Hf, such that dom T C int(dom f), Z € T='(0) and
{2%}, {2%}, {\} and o as in Algorithm II. Let vF = €% + \p[f'(a%) — f'(Z%)]. Then

Dy(7, ") < Dy(z,2%) — A\, 3% — 7) — (1 — 0) Dy (3%, 2%) < Dy(z,2").
Proof. From the four-point equality (2.8), we get

Dy(z,a"") = Dy(z,a") +(f ( ) = f1(@*), 3 = 3%) + D3, 2 - Dy(at, 2"
= Dy(z,2%) + (N 0P 5 — 3F) + Dp(F, 28 — Dy (i, )
Dy(z,2%) = A", @* = 7) + (0 — 1) Dy, 2"),

IN

where the second equality follows from (4.28) and the last inequality from (4.29). Using
nonnegativity of D; and the fact that o € [0, 1), we get

Df(i‘,.f[;k-i—l) < Df(:i,xk) — )\,Zl(vk,:ik — ), (4.30)

and the result follows from (4.30) and monotonicity of T, since v* € T'(z*). O
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Proposition 4.2.2. Let f € F, satisfying H1 and Hj and such that dom T C int(dom f).
If problem (2.1) has solutions, then

i) Dy(%,2%) converges decreasingly, for all z € T~1(0),
ii) the sequence {x*} is bounded,
i) Yoo N (0F FR — ) < oo, with vF = ek + A\ [f'(2F) — f1(3F)],
w) Spo Dy(E* a%) < oo,
v) Sope o Dp(@F, ) < oo,
vi) if f satisfies H2, then
a) % — 2% —=—0, and consequently {Z*} is bounded,

b) abtt — ok 20,

k—o0

Proof. Take € T!(0) (which is nonempty because problem (2.1) has solutions). Then, by
Lemma 4.2.1, {D;(Z,2*)} is a nonnegative, nonincreasing sequence, henceforth convergent,
and {z*} is contained in a level set of D;(%,), which is bounded by H1. Also, using again
Lemma 4.2.1,

)\]:1<Uk,§j‘k — .’f’> + (]. - O')Df(;jjk,xk) S Df(f,flfk) _ Df(:z_,xlﬂ_l),

from which (iii) and (iv) follow easily. Item (v) follows from (iv) and (4.29). For (vi),
observe that limy,_,, D; (7%, 2%) = 0 and that {2*} is bounded, so that we can apply H2 and

Proposition 2.3.22 to obtain &% — z* ——=0. In the same way ak — gkt =0, implying
that ZL'k — ZL'k+1 ﬁ) 0. O

Proposition 4.2.2 ensures existence of weak accumulation points of the sequence {z*}
and, also, that they coincide with those of the sequence {7*}.

Theorem 4.2.3. Take [ € F, satisfying H1, H2, H3 and Hj, and such that dom T C
int(dom f), and {\¢} C (0, A]. If problem (2.1) has solutions, then

i) any sequence {x*} generated by Algorithm II has weak accumulation points, all of which
are solutions of (2.1),

ii) if f also satisfies H5, then the whole sequence is weakly convergent to a solution of
(2.1)L.

I This is obviously true when T has only one zero, even if f does not satisfy H5.
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Proof. By H3 and Proposition 4.2.2(ii) and (vi)-(b), we have f'(z*™1) — f'(2¥F) -—=—0.

_k—oo

Let vf = b + A\ [f'(2F) — f/(3%)]. By (4.5), v* € T(i*) and then, using )\, < A, we get
from (4.28) that v* —— 0. Thus, (i) follows from demiclosedness of the graph of maximal
monotone operators (see Proposition 2.1.6). Concerning (ii), its proof follows exactly the
argument in the proof of Theorem 4.1.4(ii).

(I

4.3 Some results on the convergence rate of algorithm
I

In this section we consider problem (2.1) for the case in which B is a Hilbert space H, and
we look at Algorithm I with f =1 ||-||3,, which satisfies all properties H1-H5 (see Proposition
3.1.1). Then the Bregman projection is exactly the metric projection (see (2.6) in Example
2.3.8 and Definition 2.3.19) and the method takes the form:

Algorithm I in Hilbert spaces
1. Choose z° € H and o € [0, 1).
2. Given 2%, find 2* € H such that
M(zF — 3F) — eF € T(35),

k

where e” is any vector in H which satisfies

et < Soneming|a* — 7,1}, (4.31)

3. Let v¥ = M\ (aF — 7%) — k. If vF = 0 or 2% = 2*, then stop. Otherwise,

B S <Ukafﬂk - fk) k
- 2
[[0*]]

In Algorithm I, working in Banach spaces, we adopted the error criterion (4.31), which
is somewhat more restrictive that the one originally proposed by Solodov and Svaiter for
Hilbert spaces in [64] (see section 2.7), namely

||ek||B* < oM 1rnax{||3r:]c - ikH ,)\,;1 ||ka}, (4.32)

73



with o € (0,1). Observe the square in the right hand side of (4.31), which is absent in (4.32),
and which makes the right hand side of (4.31) much smaller than the one in (4.32) for large
k. In compensation, we get a strictly better asymptotic constant for the linear convergence
rate and we can establish superlinear convergence when limy_,, Ay = 0, even with inexact
solutions of the proximal subproblems. We recall that 7! is Lipschitz continuous at zero
with modulus @ > 0if T~1(0) = {7} and there exists a positive constant § such that ||y — 7|| <
0 ||v|| for all y € T~!(v) and |jv]] < §. Under this hypothesis it was proved in [64] that any
sequence {z*} generated by Algorithm I with ||e*||5- < oA, max{|[z¥ — @*||, A" ||o*]|} in
place of (4.31) and )\, < A, converges strongly to Z, and that the rate of convergence is
Q-linear with asymptotic error constant bounded by
|y (L=o ! 1
= <1+a) (ON1 — o) + 1)2

1/2
: (4.33)

or, more precisely,

k1 - B 1—0o\* 1
= “’Hfll <1+0 (OM(1— o)+ 1)2

where Z = limy_,o, #¥. With our more restrictive error criterion, we have the following more
accurate result.

1/2
o sl <nllat -~ (@30

Theorem 4.3.1. Suppose that T~ is Lipschitz continuous at zero with modulus 8. Then
any sequence {x*} generated by Algorithm I, with N, < X, converges strongly to T, the
solution of (2.1) and the convergence is Q-linear with asymptotic error constant bounded by

1/2
(4.35)

|y (Lo ! 1
e = 11 0/2) ON(1—0/2) + 1)
Moreover, if limg_,, Ay = 0 then the convergence is superlinear.
Proof. From the proof of Theorem 4.1.4(i) in section 4.1 we know that limy_,. v* = 0 and

lim [|2* — 3*| = 0. (4.36)
k—o00

Then, in view of (4.31), there exists kg € N such that for all k > kg it holds that

|

1
lle¥|| - < §aAk\|xk — |2 (4.37)
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In view of (4.36) and (4.37), we have

1
el < SoAella” — 2| (4.38)
for all k£ > ky. By (4.38), (4.32) holds and therefore we can use the results in [64], namely
the inequality in (4.34), first with & = /2, and then with & = (¢/2)||z* — Z*|| getting, for
all k > ko, ||2¥*t — Z]| < nil|lz* — Z||, which proves the first statement of the theorem, and
also

- 4 1/2
||3Jk+1—3_:|| < 1= (1_(0/2)H$k_xk”> 1 ||xk—.f||
- L+ (o/2)||lzb = 25| ) (LAR(L = (0/2)[Ja* — ZF]]) + 1) ’
(4.39)
for all k. Since
_ k_ sk
im L@/ = 2] 1,
k—oo 1+ (0/2)||xk — z5||
and limy_,o, Ay = 0 implies
lim L =1
koo (LAR(1 — (0/2)||lz% — Z5|)) +1)2 7
we get
1/2
L (1—(0/2>uxk—ozku>4 1 "
k=00 L+ (0/2)|lz% = 25 ) (LA(1 = (o/2)]]a% = 2*) +1)2|
In view of (4.39), the proof is complete. O

We point out that our 7 of (4.35) is strictly smaller than 7 in (4.33). In fact, if we define
7 with A substituting for A, in (4.35), then we still have 7 < 7. An easy computation shows
that this statement is true if and only if the polynomial p(c) = 02 — 30 + 2(1 + 2/(L))) is
strictly positive in the interval [0,1), which is always true, because p(c) > 4/(L)\) > 0 for
all o € [0, 1]. We emphasize that the results in Theorem 4.3.1 are strongly dependent on the
square in the right hand side of (4.31).
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4.4 On the need for hybrid steps in Hybrid Proximal
Point methods

The main objective of this section is to answer the following questions, concerning the hybrid
methods I and II, and consequently the methods in [64, 62, 63]:

1) Is boundedness of the iterates guaranteed without the hybrid steps?
Or, equivalently:

Does the classical PPA converge under the “relative error criteria” of the hybrid meth-
ods?

2) Do the error measures, mainly the distances from the inexact solutions to the resolvent,
i.e. [|ZF — P.(2%)]], become summable “a posteriori”?

It should be observed that Solodov and Svaiter gave in [64] a negative answer to question (1),
taking T'(z,y) = (z, —y) in R?. This operator T is not a subdifferential, so that question (1)
remained open for the optimization case. We prove here that, even for the optimization case
and in Hilbert spaces, the answer for both questions is negative in general. Our examples
require a function g such that the sequence {z*} generated by the exact method (2.20) with
T = Og satisfies

D ||at Tt = 2t = oo (4.40)
k=0

A sufficient condition for (4.40) to hold is that the convergence of {z*} to its limit be weak
but not strong, which can occur only in infinite dimensional spaces. Thus, we take H = /5 in
the examples. Of course, (4.40) could hold also for strongly convergent sequences generated
by the exact method, but we have found no example of such a situation. So the issue remains
open for the optimization case in finite dimensional spaces.

Next we present a full statement of both methods (I and II) for the optimization case
(i.e. T'= 0g for some proper, closed and convex g : H — RU{o0}). Choose the regularizing
function f = (1/2)]-||* and error criterion in Remark 4.1.5 for Algorithm I. Thus instances
of Algorithm I and II can be essentially given as follows:

1. Choose 2° € H.

2. Given 2*, find %, ¥ € H such that

i € 0g(h), (4.41)
eh = P4 N (EF - 2R, (4.42)
lle¥ll < oXe||ZF = 2% (4.43)
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3. Hybrid step:

“k ok sk
= zk—%ﬁk. (Projection) (4.44)
v
A= ok 2\ YR (Batragradient) (4.45)

We state next our main result.

Theorem 4.4.1. There exist a Hilbert space H and a proper, closed and convex function g
in H which has minimizers and such that, given any bounded positive sequence {\}, there
exists a point z € dom g such that

i) The inexact Proximal Point algorithm allowing for constant relative errors as in (4.41)-
(4.43), without the hybrid steps, starting at z, may generate unbounded sequences of
iterates.

ii) The Hybrid Proximal Point methods allowing for constant relative error in (4.41)-
(4.43) and (4.44) or (4.41)-(4.43) and (4.45), starting at z, accept inezxact iterates
with nonsummable distances to the resolvent.

Proof. Let f be the function provided by Proposition 2.5.1 and {2*} the sequence generated
by the exact Proximal Point Algorithm (2.20) starting at point z, also given by Proposition
2.5.1. Then the sequence {z*} converges weakly to some z*, but does not converge strongly.
Therefore,

Z 2"t — 2] = oo, (4.46)
k=1

because otherwise the sequence {2*} would converge strongly to z*. Since {2*} is generated
by Algorithm (2.20), there exists a sequence {u”};>; € ¢% such that for all k:

0 = w4 \(aM —2F), (4.47)
"€ of (oM. (4.48)
Let us consider the product space H = ¢?> x R provided with the 2-norm || - ||2 (i.e.

(2, )]]2 = (||z]|% + [t|*)'/?). Trivially, H is a Hilbert space. Define the function g : H —
R U {0} as

g(w,t) = f(),
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for all (xz,t) € H. Consequently g is a proper, closed and convex function with subdifferential
at any (z,t) given by dg(z,t) = (0f(x),0). In particular, if S is the set of minimizers of f,
then S x R is the set of minimizers of g, hence nonempty.
Now we are ready to prove item (i). Choose any t° € R and define the sequence {t*} € R
as
1 gk

k+1 ka — tO n+l an (4_49)

k
g g
+ = |
| 2|

Define also, for £ = 0,1, - --

K= (2%, 1), e = N (0,85 —¢F), oF T = (uFT)0). (4.50)

Then
eb = P AL (R - 2R, (4.51)
oFt e 9g(ZFY), (4.52)

where (4.51) follows from (4.47), (4.52) from (4.48) and the residual e satisfies

Hek”2 — )\k|tk+1 _ tk| =\ k+1 ka

o
Vi

1/2
= Mo ([l — | [ = ) = o 2

using (4.49). It follows that the pair (z¥*1, v¥+1) satisfies (4.41)-(4.43), and can be accepted as
an inexact solution of the k-th proximal subproblem. Hence, the sequence {z*} is generated
by the inexact Proximal Point Algorithm, applied to an optimization problem and using the
relative error tolerance of the hybrid methods. Trivially, from (4.46), (4.49) and (4.50),

lim |2*]| = oo,
k—o0

which proves item (i).

For (ii) let us consider first the extragradient case, i.e. the method in (4.41)-(4.43) and
(4.45). Through an induction argument, it can be proved that starting at z° = (z,¢°) the
inexact solutions can be taken as

~k (Z‘k+1, tO

# = = at)), of = (Wt 0),

ag
+ ||z
Nierat

and the iterates as
2F = (2%, 19).
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Then P,(z*) = 2**! for all k and

sk B\l — [|5k _ h+1)| _ 7k _ 40| _ o k+1 _ k
' = P(2Y)]| = ||2F — 2 = [t" — '] = —]||2""" — 2"||,
| k(20 = || = | mll I
which implies Y ;7 ||Z*F — Pi(2%)|] = oo. Note that 2! is also the projection of z* onto
Hy, = {z € H : (t*, 2z — z¥) = 0}, hence the same example works for the Hybrid Projection
Proximal Algorithm. O

Remark 4.4.2. Observe that in the proof of item (ii), ||e*|| = A\y|t* — t°| for all k. Conse-
quently

D ol =AY 112 = Pul2b)]| = oo,
k=0 k=0

provided that A\, > A > 0 for all k£, so that the residuals are not summable either.

Remark 4.4.3. Though the example given by Theorem (4.4.1) does not prove nonsumma-
bility of the distances of the hybrid iterates to the resolvent, because 2+ = P, (2*) for all
k, a slight modification of it (e.g. with g(x,t) = f(x) + t?/2) provides an example in which
the condition Y77 [|2**! — P (2%)]] < oo does not hold either.

4.5 Concluding remarks

In this section we summarize the main results of this chapter and present some issues which
are left for future research.

Features:

o We get inexact versions of the Proximal Point Method for finding zeroes of maximal
monotone operators in a context of Banach spaces.

e The extension is achieved with the use of regularizing functions with no more demand-
ing assumptions that those used in the exact method in [9]. Moreover, we extended
the family of known functions with the required properties.

e The inexact versions extend the Hybrid methods of Solodov and Svaiter ([64, 62]),
keeping the advantages of the relative error criteria.

e The Hybrid Proximal-Bregman projection allows the use of regularizing functions other
than the square of the norm.
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e We exhibit a variant of the error criterion for the Hybrid Proximal-Bregman projection
method in Hilbert spaces with the quadratic regularization, which has superlinear
convergence, even with inexact solutions of the subproblems.

e We establish the necessity of the hybrid steps, in these hybrid methods, to get bound-
edness of the iterates for the optimization problem in Hilbert spaces.

e We prove that the relative error measures of these hybrid methods do not become
summable “a posteriori”.

Open research:

e Explore the enlargement of maximal monotone operators (see [63]) for Algorithm I.
This should offer robustness of the method with less demanding assumptions (see
Proposition 4.0.4).
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Chapter 5

Augmented Lagrangians methods for
cone-constrained convex optimization
in Banach spaces

In this chapter B; (0 < j < m) will denote m + 1 real reflexive Banach spaces, B} its
respective topological duals, K; C B; (1 < j < m) nonempty, closed an convex cones and
K the positive dual of K;. We consider functions g : By — Rand G; : By — B; (1 < j <m)
satisfying assumptions (A1) and (A2) (see Section 2.8):

(A1) g is convex, and G, is Kj-convex (1 < j < m).

(A2) g and G; are Fréchet differentiable functions with Gateaux derivatives denoted by ¢’
and G, (1 < j < m) respectively.

As discussed in Section 2.8, the general convex optimization problem (or primal problem) is

(P) {min g(x)

s.t. GJ(ZL') jj 0, 1 S] S m

and it is studied with the help of its dual (D)

(D) {max O (y)

s.t. y =, 0.
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The dual objective ® : IIJX Bf — R U {—oo} is defined as ®(y) = inf,cp,L(z,y) with the
Lagrangian L : By x 17 Bf — R, given by equation (2.36), i.e

L(z,y) = g() + (y, G ) + Z (v, G

where G : By — IIL, B; is the application with components G}, i.e. given by (2.37).

5.1 Fundamentals

Proposition 5.1.1. Let C' a nonempty, closed and convex subset of B and consider the
conver function h = 1d(-,C)* : B — R with s € (1,+00). If B is a strictly convex and
smooth reflexive Banach space then

i) h is Gateaur differentiable and its Gateaux derivative h' is given by
W(x) = ||z = Po(x)|y * J(x = Polx)) = Jy(x = Po(x))
for all x € B, where J is the duality map of weight p(t) = 5~ .

ii) If B and B* satisfy property (h), then h' is norm-to-norm continuous, and hence h is
Fréchet differentiable.

Proof. Strict convexity of B ensures that the projection operator is single valued, so that
from Example 2.3.8 we get, for any z € B,

dd(z,C) = 0 ||z — Po(x)|| 3 N Ne(Pe(x)). (5.1)
By the chain rule of differentiation, we have
Oh(z) = d(x,C)*'ad(x, C). (5.2)
Thus, in view of (5.1) and (5.2), we have dh(x) = {0} when z = Po(z) (i.e z € C), and it
suffices to study the case of x # Pc(z). Remembering that the normalized duality map .J
satisfies J = 8(1/2 ||-|[*), we get
Oh(w) = d(x,C)* ™ [|lo = Po(x)|| " J(z = Po(x)) N Ne(Po(x))] =

d(,C)* "Mz = Pe()|| 7' [J(x — Po(x)) N Ne(Pe(x))] =
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Iz = Pe ()| [J(z = Pe()) N No(Pe())] = |lz = Po(@)|”* J(z = Po(x)),  (5.3)

where we use Definition 2.3.4 of N¢ in order to get ||z — Po(x)|| No(Pco(x)) = Neo(Pe(x))
in the second equality above, and (2.6) in the third equality. The last equality follows from
Proposition 2.4.3. Note that we have, by definition of J, ||z — Pc(x)||* *||J(z — Po(2))]||s =
|z — Po(2)]|*", so that (5.3) also holds for the case # = Po(xz). Observe now that J is single
valued, by smoothness of B and (J4). It follows from (5.3) that h is Gateaux differentiable,
and the first equality in (i) is proved. The second equality in (i) follows from property J3.
For (ii), see Lemma 1 of [52] for continuity of the metric projection P which, together
with J4, ensures the norm-to-norm continuity of A'. O

Take now real Banach spaces By and By and let K C B, be a a nonempty, closed and
convex cone. Let M : By — By be a K-convex mapping as defined in Definition 2.8.1.

Proposition 5.1.2. Take By, By and K as above, assume that By is reflexive, let M : By —
By be K-conver and define V : By - R, as V = (1/s)d(-,—K)*o M, (s >1). Then

i) V is conver.

i) If By is strictly conver and smooth and also By and Bj have property (h) (e.g. if Bs
is locally uniformly convex and locally uniformly smooth), then

a) If M is Gateaux differentiable, with Gateaux derivative M', then V is Gateaux
differentiable too and its Gateauz derivative is given by

Vi(z) = [M'()]" Js (M (2) — P-g(M(x))) .

b) If M is Fréchet differentiable, then V is Fréchet differentiable, so that V' is norm-
to-norm, continuous.

Proof. i) Clearly, it suffices to prove convexity of, V = d(-,—K) o M. Take z, 2’ € B,
and o € [0,1]. By reflexivity of B, there exist y, y' € —K such that [[M(z) —yl/z, =
d(M(x), —K) and ||M(2") — o' 5, = d(M(2'), =K). By convexity of —K, ay + (1 —a)y’ €
— K, and therefore

y+ay+(1—a)y € —K foralje—-K. (5.4)

Define yo, = M(az + (1 —a)2’) — [aM(x) 4+ (1 — a)M(2')]. By K-convexity of M, y, € —K,
and

Viex 4 (1 —a)a’) ) dM(ax + (1 - a)2'),—K) =

83



Ao+ [aM (@) + (L= a)M()], ~K) < inf [lyo + [0} (2) + (1 = )M ()] = |,
(5.5)
Choosing § = y, we get, from (5.4)-(5.5),

Vier + (1 —a)r’) < ||ya + [aM(z) + (1 — ) M(2")] = [yo + ay + (1 — @)yl 5, =
la[M(z) =yl + (1 = ) [M(2") = yll, < al[M(z) —yllg, + (1 — ) |M(2") = ¥, =

ad(M(z), —K) + (1 — a)d(M(2"), —=K) & aV(z) + (1 — ) V().

For (ii), take C' = —K in Proposition 5.1.1 and use the properties of By and the chain rule
of differentiation (Proposition 2.2.4) to get Gateaux differentiability (respectively Fréchet
differentiability) of V' and the formula of V'. In fact

Vi(x) = Js (M(x) = Pe(M(x))) o M'(z) = [M'(2)]"Js (M (z) — P_x(M(z))) .

5.2 An augmented Lagrange functional

In order to define our augmented Lagrangian for problems (P) and (D), we consider regulariz-

ing functions h,, : Bf — R defined as h,, (y;) = = ||y;||3. for some r; € (1,00), (1 < j < m).
J F)

Next we introduce the auxiliary mappings M,, : By X Bf x Ry, — B; (1 < j < m) given by

My, (w2, 45, 0) = . (97) + ' Gy (a). (5.6)

With this notation, the augmented Lagrangian L : By x B* x R, — R is defined as

_ 1 ,
L(ZL’, Y, p) = g(ZL’) + pz S_d(Mr] (117, Ys, p)a _Kj)s]a (57)
j=1 "7
with s; = r;/(r; —1). We will also use the mapping M, : By x B* x R, — B, with
components given by M, , (1 < j < m), ie.

M, (z,y,p) = (My, (@, 91, 0), - My, (%, Yms p)). (5.8)

When B, is finite dimensional, B; = R, K; = Ry and r; = 2 (1 < j < m), L reduces
to the standard augmented Lagrangian, up to constant terms in x (e.g. [60]). When the
B;’s are Hilbertian and r; =2 (1 < j < m), L reduces to the augmented Lagrangian in [66]
(see Section 2.9 for a deeper discussion on such cases). We establish next some elementary
properties of L.
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Proposition 5.2.1. Take L as in (5.7). Then for any (y,p) € B* x Ryy the function
L(-,y,p): By — R satisfies

i) L(-,y,p) is conver.

i) If Bj and B; (1 < j < m) are strictly convex reflexive Banach spaces satisfying property

(h), then
a) L(-,y,p) is Fréchet differentiable and its Gateaur derivative at any x € By is
given by
Li(x,y,p) = ¢'(x +Z (M, (2,5, p) = P-ic; (M, (2, 95, p))) -

Jj=1

Moreover, L' (-,y, p) is norm-to-norm continuous.
b) For any x € By, Li(2,y,p) = Ly(x,Q(z,y,p)), where Q(x,y,p) € B* is defined

as
Qj(xa Y, p) = Js]‘ (MT‘]‘ (377 yj7p) - P—Kj(MTj (377 yj7p)) (1 < ] < m) (59)

Proof. Fix (y,p) € B* x R4, choose C' = —Kj; and let M = M, (-,y;,p) : Bo — B; with
M, asin (5.6). Then (A1) ensures K; convexity of M and, in view of Proposition 5.1.2(i), we
get convexity of the function V = 1d(M (,y,p),—K;)% : By — R for any j € {1,...,m}.
(A1) implies also convexity of g, so that (i) is proved. For (ii)-(a) apply Proposition 5.1.2(ii)
and the sum rule for Fréchet derivatives (Proposition 2.2.3). Norm-to-norm continuity of
L' (-,y, p) is, then, a consequence of (i) and Proposition 2.3.10(ii). Item (ii)-(b) follows from
(ii)-(a) and Proposition 2.8.4(i)-(a). O

Proposition 5.2.1(ii)-(b) allows us to construct a primal-dual method for our general
convex optimization problem with a closed formula for updating the dual variables. In
fact, given an initial iterate (2°,9°) € By x K* and a sequence {\;} C R,,, we define an
augmented Lagrangian method through the formulae:

2" = arg min L(z, y*, \p),

x€Bg

yk+1 = Q(Ik—i—l? yk7 )\k)

This is an extension of (2.55)-(2.56), but as discussed in Section 2.9, existence of primal
iterates is not guaranteed. Therefore, following the approach in [60], [25] (see Section 2.9),
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we introduce a regularizing term for primal variables, through a strictly convex and Fréchet
differentiable function f : By — R, with Gateaux derivative denoted by f’. Each of our con-
vergence results requires some of the assumptions H1-H5 on f (see Section 2.5 for definition
of such assumptions and Section 3.1 for examples of functions satisfying such properties).

With the help of f, and of Dy as given by Definition 2.3.9, we define the doubly augmented
Lagrangian L: By x By x B* x R,, - Ras

L(z,2y,p) = L(x,y, p) + pDy(x, ), (5.10)
which allows us to define the method below.

Doubly augmented Lagrangian method
1. Choose (2°,4°) € By x K*.
2. Given (z*,y*), choose )\, > 0 and define 2¥*1 as

¥ = arg min Lz, 2 4" \) = arg min [L(z, y*, \x) + AeDy(z, 2")] . (5.11)
r€Bo rebBo

3. Define y**! as

yitt = gy, (Mo (2™ g M) — P (M, (20 M) (1< <m). (5.12)

We mention that in the two cases discussed after (5.8), algorithm (5.11)—(5.12) reduces
to the exact versions of the augmented Lagrangian methods analyzed in [60] and [66] (see
Section 2.9).

In the sequel, we will introduce an inexact version of the doubly augmented Lagrangian
above, but we will need the following existence result for the exact version.

Proposition 5.2.2. If either [ satisfies Hj, or f is totally convexr and g is bounded from
below, then there exists a unique solution of each primal subproblem (5.11).

Proof. If f satisfies H4, take T = L’ (-,4*, ;) and use [9], Corollary 3.1. Otherwise, the
result follows from Proposition 3.15 in [16]. O
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5.3 Inexact versions of the doubly augmented
Lagrangian method

We consider the regularizing function F': By x B* — R defined as

m

Fz,y) = f(z) + Y hey (), (5.13)

Jj=1

where h, (y;) = % Hyng;, (1<rj<o0),(1<j<m),and f: By — Ris a strictly convex
and Fréchet differentiable function. We consider also @) : By x B* x R, — B* as defined
in (5.9) and M, as in (5.6).

Algorithm DAL-I.
1. Choose 2° = (2°,¢4°) € By x B* and ¢ € [0, 1].

2. Given zF = (2%, y*), choose )\, > 0 and find #* € By such that

. Dp(ZF, 2F) if ||2F — zF <1,
L o o Al < o 4 DFE )T = (5.14)
ve(2°,1) if ||z —Z ||anB* > 1,
with Dp and vg as in Definitions 2.3.9, 2.3.12 respectively, where
= (7, QT y", ) - (5.15)

3. Set vf = (LL(Z*, v, M), —G(T*) + MNP (M, (&%, ¥, \))) € By x B. If vF = 0 or
% = 2* then stop. Otherwise, let H, = {z € By x B* : (v*, 2 — %) = 0}, and

Zk+1 — (l,k-l-l’yk'f'l) — argminzer DF(z,zk). (516)

Observe that the j-th component of P_x (M, (Z*,y*, A)) is given by P_g, (M, (2, y;, p)),
which is already known at step 3 for each j. So we need no extra effort to compute v*.
Concerning the projection step, we mention that the existence of z**! is ensured by total
convexity of f, which follows from H2, and also that even though this projection step cannot
be performed through a closed formula, in the cases of interest, namely f(z) = ||z||" (r > 1)
with uniformly convex By, it reduces to solving a nonlinear equation of the form ¢(s) = 0,
where ¢ : R, — R is a continuous function given by a closed formula (see discussion of
Algorithm I in Chapter 4 for more details).

As a result of the Bregman projection in (5.16), we can get a pair (z*, y*) with infeasible
y* (i.e. y* ¢ K*) We present next a dual feasible alternative.
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Algorithm DAL-II.
1. Choose (z°,4°) € By x K* and o € [0,1).

k

2. Given 2% = (2%, y¥), choose \; > 0 and find 2* € By such that

Df(jka (f/)_l [f’(xk) _)‘Izll_;;(jkayka )\k)]) < g Df 117 .I ZDhT Q] yka )\k)ayf)

(5.17)

3. If (2%, Q(*, 9%, \p)) = (2%, y¥), then stop. Otherwise, define
yk+1 = Q(ikayka)\k)a
l'k_H — (fl)—l [f’(l'k) _ )\lzlL;(ik, yk, )\k)} )
We will need in the sequel the following result.

Lemma 5.3.1. Assume that the Banach spaces B;’s (1 < j < m) are strictly convez, smooth
and reflexive. Then, for all (x,y,p) € By X B* xRy and all j € {1,...m} , it holds that

a) by (Qj(x.y,p)) = Iy (y;) — 5 [=G() + pP-x;; (M (x, 95, )]
b) Q(z,y,p) € K,

C) P—K(MT(Ivyap)) € Nkg- (Q(Ivyvp))'

Proof. Let J; denote the duality map of weight ¢(t) = "»~' on Bj. The assumptions
on the Bj’s ensure that Jr= h’ and that J7 is single valued, onto and invertible, with

inverse [J*] L given by the duahty rnap associated to the weight function ¢(t)~t = ¢!
with s; = r]/(rj 1), i.e. [J)]7" = J;; (see properties J4, J2 and J1 in Chapter 2). Hence

h;“j (JS]‘ (M’V'j (x7yj7:0) - P—Kj (M’V'j (!]},yj,p)))) = M’V’]‘ (x7yj7:0) - P—Kj (Mrj (xvijp)) =

h;j (yj) + p_lGj(l‘) - P_Kj (MT]‘ (x,yj,p)) = h;] (y]) - % [—G](ZL') + pP—Kj (M’f‘]‘ (xuyj,p))]

and (a) is proved.

For (b), take z € —K such that z = P_x (M, (z,y, p)) and § = J, (M, (z,y, p) — Z). First,
observe that, by Proposition 2.4.3, J (M, (z,y, p) — Z) belongs to the cone N_g(Z). Hence
g = |IM(z,y,p) — 2|5 > T (M, (x,y, p) — Z) € N_g(Z). Therefore,

(y,2—2) <0, (5.18)
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for all z € —K. Applying (5.18) with 2 = 0 and z = 2z, which belong to —K because K is
a closed cone, we get (j, Z) = 0, which in turn implies, in view of (5.18),

(9,2) <(9,2) =0,

for all z € —K, or equivalently (7, 2') > 0 for all 2’ € K, establishing (b).

Fix now an arbitrary y € K*. Then (Z,y — ¢) = (Z,y) — (Z,7) = (Z,y) < 0, where the
inequality follows from the definition of K*, together with the fact that —z € K, completing
the proof. O

Item (b) of Lemma 5.3.1 corroborates dual feasibility of Algorithm DAL-II, which also
has, as an advantage over Algorithm DAL-I, a closed formula to update primal and dual vari-
ables. As a disadvantage, we observe that the error criterion in Algorithm DAL-IT implicitly
requires repeated extragradient steps in order to find an approximate zero of ﬁ(-, AR TLID YRR
while in Algorithm DAL-I this task is performed just once, at the projection step. We re-
mark that for 0 = 0 both Algorithm DAL-I and DAL-II reduce to the doubly augmented
Lagrangian method of (5.11)-(5.12). This fact has two consequences: first, the results in
our following convergence analysis for the inexact versions also hold for the exact method,
and secondly, existence of (exact) solutions of the primal subproblems for the method given
by (5.11)—(5.12), established in Proposition 5.2.2, implies existence of all iterates both for
Algorithm DAL-I and DAL-II.

5.4 Convergence analysis of Algorithms DAL-I and
DAL-II

The convergence properties of Algorithms DAL-I and DAL-II will be a consequence of their
relation to two hybrid inexact versions of the proximal point algorithm, applied to the
problem of finding zeroes of the saddle point operator (see Definition 2.41). See Chapter 4
for a complete study of such methods, called Algorithms I and II.

The following proposition establishes the relation between Algorithm DAL-I and Algo-
rithm I applied to the Lagrangian operator 77,.

Proposition 5.4.1. Take F', {v*}, {2F}, {ZF}, {\} and o as in Algorithm DAL-I. Then
i) vF € Ty (ZF).

ii) Let e = \,[F'(2%) — F'(zF)] — v* € B; x B. Then

€Ml gox By < oA



Proof. Let v* = (u*, w*) € B* x B. Take Q as in (5.9). Then we have, by definition of v¥,

where the second equality follows from Proposition 5.2.1(ii)-(b) and the last one from (5.15),
and also

wk = _G('%k) + )\kP—K(MT('%ka yka )‘k)) € _G(‘%k) + NK* (Q(‘%ka yka )‘k))a

where the inclusion was proved in Lemma 5.3.1(c). So v* is an element of T, (z*) and (i)
holds.
In order to prove (ii), let e = (¥, %) € Bi x B. Then we have that

¥ = M JF' (%) — F'(ZF)]) — o*
if and only if
0 = uf+ M[f(Z") = f'(@")] + €,
0 = wj+ M[hy, (Q;(E", 4" M) — e ()] + 5, (1<) <m)
if and only if

= LL(&" y* Ae) + M/ (3F) = f/(2")] + €,
0 = —Gj(@") + MNP, (M, (35, %, \p)) +

)‘k[h,r,(QJ(i‘k7 yk7 Ak ) - h;=7(y;€)] + 77;'67 (1 <Jj< m)

if and only if, using (5.10) and Lemma 5.3.1(a),

~ T

= IA/{r(i'k7$k7 yk7 )\k) + €k7
= nf, (1<j<m)

if and only if
ek = (—ﬁ;(:ﬁk,xk,yk,)\k),O) .

‘|

Thus, [[¢#}(spesy = [(e5 Ol x5 = le¢]ls; = [4(55, 2%, 4%, A)|5;. and the result follows
from (5.14). O

We prove next that Algorithm DAL-II is a particular instance of Algorithm II applied to
the saddle-point operator T7,.
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Proposition 5.4.2. Take {z*}, {7*}, {\i}, 0 and F as in Algorithm DAL-II. Define z* =
(zF, Q(T*, y*, \)) and ¥ = (ﬁ;(:ik,xk,yk,)\k),0> , where @Q is defined as in (5.9). Then
i) e+ N[F' (%) — F'(2F)] € T (3),
ii) Dp (25, (F)7H[F'(2%) — A\ 'e?]) < oDp(3%, 2F),
iii) 2= (F) 7 [F'(3F) — Ay tek].
Proof. Using the definition of L in (5.10) and Lemma 5.3.1(a)(c) we have

eF 4+ N[F'(2%) — F'(ZM)]

= (L4 a8 05 M) + ALF (@) = £ xR, () — B Qi o M)
= (‘E‘{E(‘%k7 yk7 )‘k)v ijzl - Gj(jk) + )\k‘P—Kj (MT]‘ (fkv yf? )‘k)))
= (L;(jk7 Q('fkv ykv Ak))? _G(jk) + )‘kP—K(MT(‘%k7 yk7 )\k))) < TL(Zk)7

establishing (i). Also,
-DF (gk’ (FI)—l [Fl(gk) _ )\Izlek]) —

D (2", Q" 4", M), ((F) 71 [F1(7) = A Lo (@, 2%, yf M) ], Q4% M) =

Df (jk7 (fl)_l [f,(ajk) - )‘lzlilw('fkv yk7 )\k)}) + Z Dhrj (Qj(jk7 yk7 )\k)a Q](jk7 yk7 )\k)) =
j=1

Dy (i, (7)) = AP TL G o ) < o[Dy(at,at) + 37 i, (@503 9% M), 1)) =

j=1
JDF(Zk, zk),

using the error criterion given by (5.17) in the inequality, and the separability of F', so that
(ii) holds. Finally, observe that

Zk+1 — (F/)—l [F’(,%k) o )\Izlek}
if and only if

A= ()@ = AL 2y )]
it = (b)) R (Qi R Y )] (1< G < m)
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if and only if

yk+1 _ Q(ik,yk,)\k)
= () = AT L ),

which hold by the definition of Algorithm DAL-II. We have proved (iii). O

Propositions 5.4.1-5.4.2 show that Algorithms DAL-I, DAL-II inherit the properties of
Algorithms I, II. We get therefore the following results for Algorithms DAL-I and DAL-II.
The first one deals with the case of finite termination.

Theorem 5.4.3. Suppose that Algorithm DAL-I (respectively Algorithm DAL-II) stops after
k steps. Then i* is an optimal solution of problem (P) and Q(Z*,y*, \) is an optimal
solution of problem (D), with @ as given by (5.9).

Proof. Immediate from Proposition 5.4.1 (respectively 5.4.2), Theorem 4.0.3 and Proposi-
tion 2.8.8(ii). 0

The next result establishes that our error criteria are robust, in the sense that any point
sufficiently close to the exact solution of the primal subproblem satisfies the error criteria.
As a consequence, if the subproblems are solved with any algorithm guaranteed to converge
to the (unique) solution of the subproblem, then a finite number of iterations of such inner
loop will be enough to generate a point satisfying the error criteria.

Theorem 5.4.4. Assume that both B and B* are strictly convex and reflexive Banach
spaces, satisfying property (h). Let {z*} be the sequence generated by Algorithm DAL-I
for conclusion (a) and by Algorithm DAL-II for conclusion (b). Assume that [ satisfies H.
If 2% is not a KKT-pair for (P)-(D), then

a) If f is totally conver and Fréchet differentiable then there exists an open subset Uy C B
such that any x € Uy, solves (5.14)-(5.15).

b) If (f')~! is continuous then there exists an open subset U, C B such that any x € U,
solves (5.17).

Proof. Let z* denote the exact solution of (5.11) whose existence is ensured by Proposition
5.2.2, and 2% = (z*, Q(z*, y*, \;)), where Q is as in (5.9). Then z* # 2*, because otherwise,
by Proposition 5.4.1, 0 € T;,(2*), in contradiction with the assumption that 2* is not a KKT-
pair. Hence, Dy (z%, 2%) > 0, with F(x,y) = f(x)+3770 he(y;), and by total convexity of F,
resulting from Propositions 3.5.1(ii) and 3.1.1(i), oy, := o\, min{ Dp(z*, 2%), vp(2*, 1)} > 0.
Proposition 5.1.1 establishes continuity of Q(-,y*, \;) and then the assumptions on the data
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functions of problem (P) and Fréchet differentiability of f ensure continuity of the function
Yy : B — R defined as

() = || Lz, Q(a, y*, Ae)) + Ml (2) — (&)l 5~

0)\k min{Df(xv mk) + Z Dhrj (Qj('r? yk7 )‘k)v yf)? VF(mkv 1)}

J=1

Also, ¥ (z¥) = 0 — a < 0, and consequently there exists 6, > 0 such that vy (z) < 0 for
all 2 € Uy := {z € B : ||z — 2¥|| < 6;}. The result in (a) follows then from the inequality
above. Item (b) is proved with a similar argument, using now Proposition 5.4.2 and, instead
of 1y, the auxiliary function ), : B — R defined as

Ur() = Dy, (f)7H (%) = A Ly (2, Qg ) ])

—o[Dy(x,2*) + Y Di, (Q(x, 5%, M), y)) ]

Jj=1

Next we present the main convergence results for Algorithms DAL-I and DAL-II.

Theorem 5.4.5. Suppose that B; (1 < j < m) are uniformly convex and uniformly smooth
Banach spaces. Take f : By — R satisfying HI-Hj and Ay < . Let {2} be the sequence
generated by Algorithm DAL-I (respectively Algorithm DAL-II). If there exist KK T-pairs for
problems (P) and (D), then

i) The sequence {2*} = {(x*,y*)} is bounded and all its weak accumulation points are
optimal pairs for problems (P) and (D).

i) If ' is weak-to-weak continuous and either

a) B; = LPi(Q2), Q is countable and r; = ¢; = p;/(p; — 1) (1 < j < m), i.e. the
regularization function for the dual variables, which belong to II7L 4y, is hy(y) =
S Lyl or

b) Bj is a Hilbert space and r; =2 (1 < j <m), i.e. the dual reqularization function
is ha(y) = 5 300 [yl

then the whole sequence {2*} = {(z*,y*)} converges weakly to an optimal pair.
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Proof. By Proposition 5.4.1 (respectively 5.4.2) the sequence {z*} is a particular instance
of the sequences generated by Algorithm I (respectively Algorithm II) for finding zeroes of
the operator 77, with regularizing function F' : By x B* — R given by F(z,y) = f(z) +
> sl g;. By Propositions 3.5.1(iii) and 3.1.1, F' satisfies H1-H4 and also satisfies H5
under conditions (a) or (b) of (ii). By our assumption on existence of KKT-pairs, Proposition
2.8.8(i) and (iii), 77, is a maximal monotone operator with zeroes. The result follows then
from Theorem 4.1.4 (respectively Theorem 4.2.3 for Algorithm DAL-IT) and Proposition
2.8.8(ii). O

Remark: We only request reflexivity of By (and not strict convexity or smoothness)
because we require good properties of the primal regularizing function f (e.g. H1-H4). In
the case of the image spaces B; (1 < j < m) we have fixed the dual regularizing function
h;., and we can ensure that they will satisfy H1-H4 only when the B;’s are uniformly convex
and uniformly smooth Banach spaces. Uniform convexity is sufficient for H1-H2, reflexivity
for H4 and uniform smoothness is necessary and sufficient for H3 in the case of any power
of the norm greater than one. Using specific h,,’s allowed us to get explicit formulae for the
dual updatings.

5.5 Concluding remarks

We summarize in this section what we identify as the main features of our results in this
chapter, and present some suggestions for further research.

Features:

e We present two inexact augmented Lagrangian methods, allowing for constant relative
error, for cone-constrained convex optimization.

e The results are entirely new when the constrains act on nonhilbertian Banach spaces.

We comment next on our convergence results as compared to previous works. For the case
of hilbertian B;’s (1 < j < m), our convergence results are much stronger than those in [66].

e Convergence results for all algorithms in [66] require either that limy ., A, = 0 or at
least that Ay be small enough, while our results hold for any choice of the sequence
{A\x}, either endogenous or exogenous, as long as it is bounded.

e Additionally, as we have already observed, since the methods in [66] lack primal regu-
larization, not much can be said about the primal sequence {z*}.
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e Finally, methods connected with the augmented Lagrangian approach are analyzed in
this reference under exact solution of the subproblems, i.e. without admitting errors.

e For a general cone, our methods are original and valuable even in finite dimension.

e In finite dimension, when the cone is the nonnegative orthant and the primal regu-
larizing function is the square of the norm, we get back essentially the methods in
[33]. Thus, we have extended the work of this reference to more general cones and
regularizing functions.

We also improve over the results presented in [16], which are restricted to the particular
cone K = LB (Q) = {z € LP(Q)| z(w) > 0 p a.e.}, where (€, A, 1) is a measure space and
p € (1,00). In this reference the constraints act on £P(€2) and not much is said about the
primal sequence, because the method lacks primal regularization.

Open research:

e Study the use of regularizing functions for the dual variables other than the powers of
the norm.

e Explore specific applications, e.g. related to the cone of the positive semidefinite ma-
trices in an n-dimensional Euclidean space.
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Chapter 6

Proximal Point methods with in-built
penalization in Banach spaces

In this chapter T': B — P(B*) denotes a maximal monotone operator (see Definitions 2.1.1
and 2.1.2) and C' is a convex and closed subset of the reflexive real Banach space B. Suppose
that int(C)N dom(T) # @ and consider the variational inequality problem VIP(T,C), as in
Definition 2.3.6. Let S denote the solution set of this problem, i.e. the set of zeroes of
the maximal monotone operator 7'+ Ng. In Section 2.6 we have discussed proximal point
methods for finite dimensional spaces in which the domain of the derivative of the regularizing
function f is the interior of C', and a boundary coerciveness condition is satisfied, in which
case the sequence generated by the method remains in the interior of C', making the proximal
subproblems unconstrained, in the sense that the normalizing cone N¢ (and consequently the
feasible set C') need not be explicitly considered at each iteration, because the information
on C' is embedded in f. The main objective of this chapter is to extend this approach to
Banach spaces, and specifically to the inexact variant of the proximal method presented as
Algorithm II in Chapter 4. The material of this chapter is organized as follows: in Section
6.1 we introduce a boundary coerciveness condition, which we call H6, and must be satisfied
by the regularizing function f in order to achieve the penalization effect. In Section 6.2
we discuss good definition of Algorithm II of Chapter 4, when the regularizing function
f is not defined in the whole space and it satisfies the new assumption H6. Convergence
properties of this algorithm are analyzed in Section 6.3. The main difference with respect to
the convergence analysis in Chapter 4 is the following: when the domain of f’ is the interior
of C, || f'(z)]| diverges when z approaches the boundary of C, in which case condition H3 in
Section 2.5 cannot be expected to hold. We mentioned in that section that the alternative
weaker condition H3.a was introduced in [9], and our convergence analysis in this chapter
uses this condition instead of H3. In Section 6.4 we consider examples of convex sets C' in
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Banach spaces for which there exist functions satisfying the assumptions in our convergence
results. When C' is a polyhedron with nonempty interior, the function f proposed in Section
3.4 does satisfy such conditions. On the other hand, the function discussed in Section 3.3
for the case in which C'is a closed ball, does not satisfy H3.a. However, the effect for which
H3.a is intended can be achieved using this f, but with additional conditions imposed upon
the regularizing coefficients: they must converge to zero in a predetermined manner. In
Section 6.5 we establish the convergence properties of the algorithm for the case of the ball
with the function introduced in Section 3.3 and the additional condition on the regularizing
parameters.

6.1 A boundary coerciveness condition

Let f denote a function in F, with dom f = C and satisfying condition H6 below, which
can be seen as a boundary coerciveness condition in the sense of Section 2.6.

H6: If {2*} C int(C) is bounded and limy_, d(z*,0C) = 0 (i.e. the distance from the terms
of the sequence {z*} to the boundary of C goes to zero) then limy_,o Ds(w, 2F) = 400
for all w € int(C).

The following lemma illustrates the way in which H6 will be used in our analysis.
Lemma 6.1.1. Take f € F, with dom f = C.

i) Assume that x € int(C) and that {zF} C int(C) is a bounded sequence. Iflimy, Dy(x, 2¥)
= 0o then limy_yo0 || f/(2¥) ]|, = 00 and limy_oo(f'(%), 2 — 2F) = —o0.

ii) If f satisfies H6 then dom f' =int(C).
Proof. In view of Definition 2.3.9,

Df(x’ Zk) < Df(:L',Zk) + Df(zkvx) = <f,(zk) - fl(x)vzk - l‘)
= (f'(e"), 2" —2) = (f'(2), 2" —x) <[[F'(") = f(=)]],

Since both {z*¥ —x} and {(f'(z), 2¥ —z)} are bounded, it holds that limy_,. (f'(2*), 2F —2) =
oo and limy_o || f/(2¥) — f'(z)||, = oo, when the hypothesis in (i) is satisfied.

Assume now that f satisfies H6. We claim that dom f’ =int(C'). Indeed, for any
z € OC there exists a sequence {z*} C int(C) converging strongly to z Hence, z ¢ dom
1!, because otherwise the norm-to-weak continuity of f’ :dom f’ — B*, which results from
Proposition 2.3.2, together with (i), imply that for any x € int(C) it holds that —oco =
lim, (f'(2%), 2 — 2¥) = (f'(2),x — z), which is a contradiction, establishing the claim.

* .
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Remark 6.1.2. By Lemma 6.1.1, the G-derivative of any function f satisfying H6 “di-
verges” at the boundary of C: for any sequence on the interior of C, which approaches the
boundary of C in the sense of the norm, it holds that the norm of the G-derivative of f
goes to infinity. It is this behavior of f’ near the boundary of C, when f satisfies H6, which
makes the proximal subproblems unconstrained.

6.2 Inexact Proximal Point-Extragradient method
with in-built penalization in Banach spaces.

In this section we rewrite Algorithm II of Chapter 4 for the variational inequality problem
VIP(T',C). This algorithm requires an exogenous constant o € [0, 1), an exogenous bounded
sequence {\;} C Ry, and an auxiliary function f € F, with F as in Definition 3.0.1, such
that dom f = C and f satisfies H4 and H6. It is defined as follows:

Algorithm II: Inexact Proximal Point-Extragradient Method
1. Choose z° € int(C).
2. Given 2%, find 2* € B such that

" + Nl f' (o) — f1(@")] € T(3"), (6.1)

k

where e” is any vector in B* which satisfies

Dy (2", (f)7H () = A 'ef]) < oDg(a*, 2"), (6.2)
with Dy as in Definition 2.3.9.

3. If #* = 2%, then stop. Otherwise,
2= (f)THER) = A e (6.3)

Proposition 6.2.1. Let f € F be a function with dom f = C and such that f satisfies H6
and Hj. Then

i) Algorithm II above is well defined: for all k inclusion (6.1) has at least one solution
7% satisfying (6.2). Moreover, any such solution i* belongs to int(C), the next iterate
xF L is uniquely determined by (6.3) (unless the algorithm stops at iteration k), and it
belongs to int(C).
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ii) For each k, v* = e + \i[f'(2%) — /()] satisfies

(a) % € T(i*) = [T + N¢](a*),
(b) 0=X "ok + f/(2Fh) — f'(2F),
(¢c) Dy(i* zF+Y) < oDy(7F, 2*).

Proof. We proceed by induction, noting that 2° € int(C) by assumption. Indeed, assume
that % € int(C). Take e = 0 € B*, in which case equations (6.1) and (6.2) take the form:

4)
5)
Proposition 2.5.2 establishes that inclusion (6.4) has a (unique) solution ¥, while (6.5)
trivially holds for any o > 0. In view of Lemma 6.1.1(ii) and H6, we get dom f’ =int(C'), and
consequently ¥ € int(C') and f’ is strictly monotone on int(C'), because of strict convexity
of f. Thus, we get from H4 that the next iterate 2**! is uniquely determined by (6.3) and
it belongs to the interior of C.

For (ii), take v¥ = eF + \¢[f'(2*) — f'(Z*)]. Then v* € T(2*) by (6.1). Since 7* € int(C)
by item (i), No(2*%) = 0 (see Definition 2.3.4), and hence (a) holds. (6.3) together with (6.2)
imply (c). By (6.3) we get f'(z"**') = f'(*) — A\, 'e¥, which ensures (b), in view of the
definition of v*. O

0 € T(@")+ M[f'(F°) — f'(z")] (6.
0 = Dy(3*, ") <oDy(3*, 2"). (6.

6.3 Convergence analysis

Definition 6.3.1. Let F¢ be the set of functions f in F satisfying H4 and H6 and such that
dom f = C. We recall that F is defined in Definition 3.0.1.

We mention that the set F. consists essentially of those functions which are needed
for the good definition of Algorithm IT with penalization effect on the feasible set C' (see
Proposition 6.2.1). We present next the fundamental global properties of Algorithm IT with
the penalization effect.

Proposition 6.3.2. Let {z*}, {Z*} be the sequences generated by Algorithm II with f € Fe.
Assume that f satisfies H1. If VIP(T,C') has solutions, then

i) Dy(Z,2*) converges decreasingly, for all z € S = [T + N¢]~1(0),

ii) the sequence {x*} is bounded,
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iii) Y pe o Ap R, TF — 7)< oo, with vk = ek + M\ [f'(a%) — f(7F)],
w) Yoo, Dp(@*, 2F) < oo,
v) Sore o Dp(@F, ) < oo,
vi) if f satisfies H2, then
a) % — 2% —=—0, and consequently {Z*} is bounded,

b) ot — 2k -5 .

k—o00

Proof. Take any 7 € S = (T + N¢g)71(0). Let v¥ = e = \i[f'(2%) — f(2*)]. Then, by the
four-point equality (2.8), we get

Df(i’,xk_H) — Df(j,xk) 4+ (f’(xk o f’(xk+1),j o i’k> 4 Df(.%k,xlﬂ_l) . Df(.%k,xk)
Dy(z,2") + 08, 7 — &%) + Dy(aF, o) — Dy(3*, 2%)
< Dp(z,a") = AN F 3P — 3) 4 (0 — 1) Dy (3%, 2F)
< Dy(z,2%)2) — (1 — 0) Dy (", %), (6.6)

where the second equality follows from Proposition 6.2.1(ii)-(b), the first inequality from
Proposition 6.2.1(ii)-(c¢) and the last one from Proposition 6.2.1(ii)-(a), monotonicity of
T + N¢, and the fact that 0 € (T + N¢)(7).

Using nonnegativity of D; and the fact that o € [0,1), we get from (6.6) that {D;(z,z*)}
is a nonnegative, nonincreasing sequence, henceforth convergent, and {z*} is contained in a
level set of Df(z,-), which is bounded by H1. Also, using again (6.6),

)\]:1<Uk,§j‘k — .’f’> + (]. — O')Df(;jjk,xk) S Df(f,flfk) o Df(:z_,xlﬂ_l),

from which (iii) and (iv) follow easily. Item (v) follows from (iv) and Proposition 6.2.1(ii)-(c).
For (vi), observe that limy,_,, D;(Z*, z¥) = 0 and that {z*} is bounded, so that we can apply
H2 and Proposition 2.3.22 to obtain #¥ — z¥ ——=— 0. In the same way % — z*" ——=— 0,

k—o0

implying that 2% — 2*¥+1 -2 0. O

k—o0

Next we settle the issue of finite termination.

Theorem 6.3.3. Suppose that Algorithm II stops after k steps. Then the point ¥ € B
generated by Algorithm II is a solution of VIP(T,C').

Proof. Algorithm I stops at the k-th iteration if 7¥ = 2*, in which case D;(i*,2%) = 0,

and therefore, by (6.2), ¢¥ = 0, which in turn implies, by (6.1), 0 € T'(z*). Consequently
Proposition 6.2.1(ii)-(a) ensures that 0 € T'(z*) + No(2*), i.e. ¥ is a zero of T + N¢. By
Proposition 2.3.7, we conclude that Z* is a solution of VIP(T',C).
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Theorem 6.3.4. Take f € Fc, satisfying HI and H2. Let {2*} be the sequence generated
by Algorithm II and {\;} C (0,\]. If S # 0 (i.e. VIP(T,C) has solutions), then

i) If any of the following conditions holds

(a) T = g, where g is a lower semicontinuous convez function (i.e. the optimization
case), or
(b) T is pseudo- and paramonotone and f satisfies HS3.a,

then {x*} has weak accumulation points and all of them are solutions of VIP(T,C).
Moreover in case (a), {Z*} is a minimizing sequence (i.e. limy g(Z*) = inf,ec g()).

i) If f also satisfies H5, then the whole sequence {x*} is weakly convergent to an element
of S.
Proof. Take any 7 € S and let v% = ef + \;[f'(2%) — f'(Z%)]. If T = Og, then Proposition
6.2.1(ii)-(a) implies that v* € dg(Z*). Hence,
9(7) > g(&%) + (", 7 — 3").

= mingec g(x), we get

(W', 3" — z) > g(") — g(z) > 0. (6.7)

Since g(i*) > g(z) = ¢

In view of Proposition 6.3.2(iii) together with the fact that A, < A, we obtain, taking limits
in (6.7), that

lim g(z*) = g(z) = ¢,

k—oo
which proves that {2*} is a minimizing sequence. By Proposition 6.3.2 we have that {z*}
is bounded and that 2% — ¥ —=— 0. Therefore, taking any weak limit > of {2*}, there
exists a subsequence {i7*} such that 7 == 2>, which in turn implies

g(x*) < liminf g(i") = g",

because of lower semicontinuity of ¢g. Since {#*} C C, which is weakly closed, we conclude
that x> € C'. Thus, * is a solution of the optimization problem.

Assume now that (b) is true and apply Proposition 6.2.1(ii)-(b) and the four-point prop-
erty (Proposition 2.3.10(i)-(c)) to get

(WF, ik — 2=y = 38— z) + (W, T — ™)
= (53" —2) + (' (2F) = f1 (&), 3" - z)
= <Ukaa~:k - j:>

+ M [Dp(a™,2%) — Dp(2™, 2" + Dy(z,2%) — Dy(z,2"1)] . (6.8)
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In view of Proposition 6.3.2, taking x/* ———2> and applying H3.a, we get

lim sup(v’*, 7% — 2*°) < 0.
k
Observe that € S C dom(T+N¢). Then, by pseudomonotonicity of T+ N¢ (see Proposition
2.1.7 (i) and Definition 2.1.4), there exists v € [T'+ N¢](x*°) satisfying
(v,2%° — z) < liminf(v*, 7% — ) =0, (6.9)
j
where the equality in (6.9) follows from Proposition 6.3.2. Since 0 € [T + N¢|(Z), mono-

tonicity of this operator ensures that (v,2° — z) = 0. The result then follows from para-
monotonicity of T+ N¢. O

Proposition 6.3.5. If SN int(C) # 0, the results of Theorem 6.3.4 holds under assump-
tion (b) without requesting either pseudo- or paramonotonicity of T and with the weaker
assumption H3.c instead of H3.a.

Proof. Since SN int(C) # @, we can take £ € SN int(C). From Proposition 6.3.2(i),
D;(7,2%) is a convergent sequence, bounded above by D;(z,2°). Hence, in view of H6,
there exists € > 0 such that d(z*,0C) > € for all k. By Proposition 6.3.2(ii), {z*} is
bounded. Since f satisfies H3.c, f’ is uniformly continuous on the bounded set {z*}, so that

oF = M (2F) — f(aF)] === 0, (6.10)

k—o0

using Proposition 6.3.2(vi)-(b) and Proposition 6.2.1(ii)-(b). Since Z* € int(C), we get that
v* € [T+ N¢|(i*), in view of Proposition 6.2.1(ii)-(a ). Thus, taking a weak cluster point z*°
of {z¥} and a subsequence {z7} of {z*} such that z7x L >, we get that F/+ L >
and the result follows then from (6.10) and demiclosedness of the graph of T+ N¢. O

6.4 Penalization in polyhedra

In Section 6.3, we have shown that for the particular cases in which the operator T is a
subdifferential, or the variational inequality problem, VIP(T,C') has solutions in the interior
of C, the properties required on the regularizing function are not too demanding. In fact
all examples of regularizing functions given in Chapter 3 satisfy them. When the solutions
of VIP(T,C') are on the boundary of C, we use the more demanding condition H3.a. This
is the situation in this section, devoted to the particular case when C' is a polyhedron as
defined in (3.29), i.e

C={recB|{,2)>aq, i=1,..p},
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where o', ... v? € B*\{0} and «y,...,a, € R. Assume that C' has nonempty interior and
let f be defined by (3.30), i.e.

il + 320 (0 2) — i) log (v, 2) — o) if 2 € C
flz) = .
00 otherwise.
Then, as proved in Proposition 3.4.1(ii) together with Remark 3.4.2, f satisfies H3.a
when the Banach space B is uniformly convex and uniformly smooth. Indeed, all required
properties are satisfied and we can apply Algorithm II for this choice of f.

Corollary 6.4.1. Let B be a uniformly convex and uniformly smooth Banach space, and
take C and [ as defined in (3.29) and (3.30) respectively. Assume that VIP(T,C') has
solutions. If T is pseudo- and paramonotone then the sequence {x*} generated by Algorithm
II has weak accumulation points and all of them are solutions of VIP(T,C'). Moreover, if
SNint(C) # 0, then the result holds without the pseudo- and paramonotonicity assumptions
on T.

Proof. By Proposition 3.4.1 and Remark 3.4.2, f satisfies the hypotheses required in The-
orem 6.3.4 and Proposition 6.3.5 for the announced results to hold. O

6.5 An approach depending on the regularizing param-
eters

In the case in which C is a closed ball, we know of no function satisfying both conditions
H3.a and H6. The variational inequality problem with a closed ball as a feasible set is used
in this section to illustrate how to use H3.b instead of H3.a.

Let us go back to the convergence analysis of Algorithm II, i.e. to the proof of Theorem
6.3.4. Equation (6.8) deserves special attention for two reasons. First, if 2°° denotes any
weak limit of {Z*}, the behavior of (v* i*¥ — 2) is essential for the pseudomonotonicity
argument. Second, since results in Proposition 6.3.2 do not depend on assumption H3.a, we
know that for any solution 7 it holds that

lim (v*, 2% —2) =0 and lim Df(:i',l‘k) - Df(fafﬂkﬂ) =0.
k—o0 k—o0

Hence, (6.8) ensures that

lim sup(v®, ¥ — 2°) = limsup Ay [Dy (2™, 2") — Dy(x, 25)], (6.11)
k k

103



which means that (v*, 7¥ — 2°°) behaves asymptotically as D; (2, 2¥) — D (x>, 2**1) mul-
tiplied by the factor ;. Thus, a condition like H3.a looks appropriate when a pseudomono-
tonicity argument is being used, but in its absence, we can enforce the same effect by playing
with the the sequence of regularizing parameters, and using assumption H3.b defined in Sec-
tion 2.5.

Theorem 6.5.1. Let {2*} be the sequence generated by Algorithm II with f € Fe satisfying
Hi, H2, H3.b and HS3.c. Assume that VIP(T,C) has solutions and that T is pseudo- and
paramonotone. If we take A\ = py for all k, with py as in HS3.b, then all weak accumulation
points of {z*} are solutions of VIP(T,C).

Proof. Let {2*} be the sequence generated by Algorithm II, which is bounded by Propo-
sition 6.3.2(ii). If SNint(C) # 0, the result follows from Proposition 6.3.5 using neither
pseudo- nor paramonotonicity, nor H3.b, but H3.c instead. Thus, we can assume that

S Nint(C) = 0. (6.12)

Note first that if lim infy, d(2*, dC) > 0 then, since f’is uniformly continuous on the bounded
set {z*} by H3.c, we get that there exist weak accumulation points of {z*} in the interior of C
and that they are solutions, contradicting (6.12). Thus, we assume that lim d(z*, 0C) = 0.
Take any weak limit point 2 of {z*}. Since A\, = p; with p; given by H3.b, it holds that

limsup Ay, [D (2>, 2%) — Dy(2,2F1)] < 0. (6.13)
k

In view of Proposition 6.3.2 and (6.13), taking a subsequence {z7*} of {z¥} such that
alk -2 > we get from (6.8) that lim sup, (v/*, #7 — 2°°) < 0. We complete the proof as
in Theorem 6.3.4 after (6.8), using pseudo- and paramonotonicity of 7. O

We mention that this choice of {\;} might force limy Ay = 0, in which case the regularizing
effect might become negligeable for large k.

We present next a particular case for which a function satisfying H3.b is available. In
this example C' is the closed unit ball of center zero in B and f is the function given by
(3.12), i.e.

Fa) = {1 ST i e <

00 otherwise,

It was proved in Section 3.3 that f fails to satisfy H3.a (see Example 3.3.5) but it does satisfy
H3.b (see Proposition 3.3.6).
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Corollary 6.5.2. Let B be uniformly convex and uniformly smooth. Consider C' = BJ0,1]
and assume that VIP(T,B[0, 1]) has solutions and that T is pseudo- and paramonotone. Take
the reqularizing function f as above (i.e. as defined in (3.12)) and assume that at step k
of Algorithm II )\, is taken such that N\, < 1 — ||:v’°|| Then {xk} has weak accumulation
points and all of them are solutions of VIP(T,C'). Moreover, if SNint(C) = () then the whole
sequence {2*} converges strongly to a point in SN AC.

Proof. Take C' = B[0,1] and f defined in (3.12). From Corollary 3.3.2, Corollary 3.3.4,
Proposition 3.3.7 and Proposition 3.3.6 we know that f belongs to F¢ and satisfies H1,
H2, H3.c and H3.b with any p, < 1 — ka” Then, we can apply Theorem 6.5.1, with
e =pp < 1 — kaH, to get that {z*} has weak accumulation points and all of them are
solutions of VIP(T,C).

Assume now that SNint(C) = ), so that S C 9C = S[0,1] (i.e. all solutions belong
to the unit sphere). Since S is convex by Proposition 2.1.6, because S = [T + N¢g]~1(0),
strict convexity of B implies that S is a singleton, say {Z}, in view of Definition 2.2.6(i) and
Remark 2.2.7. Thus, the whole sequence {z*} is weakly convergent to z. Therefore,

1=z < liminf[]2*]] <1,

k—o00

ie. |||, == [lzllz and a* —=—z. Since B is locally uniformly convex, it satisfies
property (h) (see Definition 2.2.9 and Remark 2.2.10). Hence, the convergence is strong. i.e.
e /7 O

k—o00

Observe that in this case, if there exist solutions, but none of them belongs to the interior
of C, then the choice A\, <1 — ||ka implies limg A\, = 0.

6.6 Concluding remarks

We summarize next some relevant features of the results presented in this chapter and present
some aspects that remain open for further research.

Features:

e [t is possible to get the penalization effect for proximal methods in Banach spaces with
the help of appropriate regularizing functions.

e We give sufficient conditions on regularizing functions which achieve the penalization
effect. We present explicit cases of such functions for closed balls and polyhedra.
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e Our results are valid also for inexact solutions of the proximal subproblems under error
criteria with constant relative error.

e We prove that the Hybrid Proximal-Extragradient method with in-built penalization
works not only in Hilbert spaces but also in reflexive Banach spaces, extending its
domain of application originally stated in finite dimension by Solodov and Svaiter

([62]).

Open research:

e It is relevant to find examples for feasible sets and associated regularizing functions,
other than balls and polyhedra.

e For the situation where there exists no regularizing function satisfying assumptions
H3.a, H3.b is not totally satisfactory. Is there any way to prove the convergence
properties of the method without letting the regularizing parameters converge to zero?

e In this chapter we have included in-built penalization only for the Hybrid Proximal-
Extragradient method. It is worthwhile to attempt a similar analysis for the Hybrid
Proximal-Bregman Projection method (Algorithm I in Chapter 4).
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