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Resumo

O comportamento hidrodinamico para o processo de exclusao simples de
média zero é governado por uma equacao nao linear parabdlica. No presente
trabalho mostramos que o coeficiente de difusao é uma funcao regular.
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Apresentacao do Problema e Resultados

Estamos interessados em estudar a evolucao de um sistema composto por
uma grande quantidade de componentes. Um gds, por exemplo, confinado
em um recipiente. Conforme a dinamica classica, as particulas (da ordem
de 10%3) se movimentam segundo as leis de Newton. Posicdo e a velocidade
de cada particula em cada instante determinam os estado microscépicos do
sistema.

Seguindo o enfoque da mecanica estatistica introduzido por Boltzmann-
Gibbs, sem preocuparmo-nos com os estados microscépicos, estudaremos os
estados de equilibrio do sistema. Estes estao caracterizados por uma quanti-
dade finita de parametros macroscépicos, p = (p1,- - , Pa), que nao se alteram
ao longo do tempo. Desta forma, parametros macroscopicos ficam definidos
para sistemas em equilibrio. A pressao, densidade e temperatura constantes,
nosso gas encontra-se em equilibrio.

Mesmo quando nao podemos determinar os parametros macroscépicos do
sistema total, podemos supor que na vizinhanca de cada ponto u pertencente
ao recipiente temos um estado de equilibrio caracterizado por parametros
macroscopicos locais que evoluem temporalmente. Temos entao que os sis-
temas fora do equilibrio sao descritos mediante parametros macroscopicos
p(t,u) (macroestado) variando no tempo e no espago.

No melhor dos casos, é de se esperar que p(t,u) evolua suavemente sendo
solucao de uma equacao diferencial parcial, chamada equacao hidrodinamica.
No entanto provar este fato é bastante dificil e apesar dos esforcos realizados,
este problema nao foi ainda completamente resolvido.

No presente trabalho, a fim de estudar o comportamento macroscopico do
sistema, substituimos a evolucao microscépica deterministica por dinamicas
onde as particulas se movimentam estocasticamente, simplificando o prob-
lema. Assumimos que o numero total de particulas é conservado e estu-
damos a evolucao da densidade como parametro macroscopico. Dependendo
do modelo proposto para a evolucao microscopica, dado um macroestado ini-
cial (condigao inicial), obteremos a equacao diferencial que determina a lei
de evolucao do macroestado. Nosso principal resultado é que para o modelo
de exclusao simples de média zero o coeficiente da equacao hidrodinamica é
uma func¢ao regular. Como consequéncia temos boa solucao para a equacao,
representando a solucao o valor do parametro macroscopico, dependendo do
tempo e do espaco.

Assumindo regularidade do coeficiente da equagao hidrodinamica junto
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com as chamadas condigoes de setor, que sdo demostradas no Teorema (5.0.5)
do presente trabalho, Komoriya prova em [2] o comportamento hidrodinamico
do sistema mediante o método da entropia relativa. Xu prova, no seu trabalho
de doutoramento, o comportamento hidrodinamico do processo de exclusao
simples de média zero em dimensao d = 1.

As técnicas utilizadas para provar a regularidade do coeficiente de difusao
foram desenvolvidas por Landim, Olla e Varadhan [8], utilizando a dualidade

generalizada, introduzida por Landim, Yau [9] e Sethuraman, Varadhan e
Yau [11].
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Chapter 1

Introduction

1.1 Presentation of the problem and main re-
sult

We are interested in studying the evolution of a system compounded by a
large number of components, evolving according a deterministic law. A gas,
for example, in a recipient where the particles (of order 10?*) are evolving
according Newton law. In order to know position and velocity of each particle
at each time (microscopic states), we should work with systems too big.

Following the statistical mechanics approach introduced by Boltzmann,
without caring about the microscopic states of the system, we concentrate
our attention in the equilibrium states. They are characterized by a finite
number of macroscopic parameters, p = (p1,---,p.), that do not change in
time. In this way, macroscopic parameters are defined by equilibrium states.

At constant pressure, temperature and density , our gas is in equilibrium,
while the atmosphere around it is not.

Nevertheless, we know exactly what we mean when we talk about the
temperature in our city. Even when we are not able to characterize the
macroscopic parameters of the whole system, around each point u of it we
have an equilibrium state, characterized by local macroscopic parameters
that evolve in time. In this way, systems out of equilibrium are characterized
by macroscopic parameters p(¢,u) depending in time and space.

We expect p(t, u) to evolve continuously solving a partial differential equa-
tion, called hydrodynamic equation. This is a hard problem and despite many
efforts it was not completely resolved.



In the present work, recalling that we focus our attention in the macro-
scopic behavior of the system, we replace the deterministic microscopic evo-
lution by a dynamic where particles evolve stochastically. Assuming that the
total number of particles is conserved by the dynamic, we study the evolu-
tion of the density as macroscopic parameter. For each stochastic rule of
evolution presented to model the microscopic evolution and given an initial
macro-state, we will get a partial differential equation that determines the
evolution of the macro-state. Our principal result consist in proving that for
the mean zero simple exclusion process the diffusion coefficient of the hydro-
dynamic equation is a regular function. This implies that there exists regular
solution for the hydrodynamic equation, being the value of the macroscopic
parameter, as a function of space and time.

We will now formulate mathematically the problem recently presented
considering that the microscopic evolution is given by mean zero simple ex-
clusion process. To simplify the notation, we consider the one-dimensional
case.

1.2 Macroscopic versus microscopic in space
scaling

Consider a system evolving on a one-dimensional torus, denoted by T = [0, 1).
For each N € N, consider a partition of the torus given by 0,1/N,2/N,... N—
1/N. The exclusion process allows at most one particle per site. For x =
0,...N — 1, consider n(z) = 1 if in the interval [x/N,z + 1/N) there is
one particle and n(x) = 0 if there is non. Then, the configuration n =
(n(0),...,n(IN — 1) belongs to the state space xy = {0,1}*~, where Ty
denotes the discrete one-dimensional torus with N sites, given by Ty =
{0,..., N —1}. Up to this moment, we have two spatial scales: the macro-
scopic one, denoted by T, and the microscopic one given by Ty . Positions in
the macroscopic scale are denoted by letters v and v and are in correspon-
dence with the microscopic positions [uN] and [vN], respectively, where [a]
stands for the integer part of a. In order to denote positions in the micro-
scopic scale, we use letters z, y and z, which are related to the points /N,
y/N and z/N in the macroscopic scale T. Recall that we want to describe
the microscopic behavior of the system from the microscopic dynamic, which
is describe in the following section.



1.3 Simple exclusion model

The evolution of the exclusion process can be informally described as follows:
each particle waits a mean one exponential time. When the clock rings, it
chooses a site to jump. The probability that a particle located at x picks the
site y is given by p(y — x); for p a probability measure on Z. If the chosen
site is free, the particle jumps. Otherwise it remains in its place and waits
for a new exponential time. All the particles do the same, independently
one of each other. If the probability p is symmetric, p(z) = p(—x), we have
a symmetric exclusion process. In our case, we will work with a mean zero
probability measure p, Y xp(z) = 0, with finite range meaning that p(z) = 0
for |x| large enough. and so we get a mean zero simple exclusion process. In
this way, we get a Markov process in the state space yy, whose generator is
given by formula (2.1.2).

1.4 Equilibrium and non-equilibrium states

For o € [0, 1] denote by ¥ the Bernoulli product measure on x y with density
«. This probability is obtained by placing a particle with probability « at
each site z, independently from the other sites. This one-parameter family
of probability measures is stationary for the mean zero exclusion process.
This means that if we start the process by placing particles according to the
measure v and let the process evolve, at any later time ¢ we see the same
distribution ©Y. In this way, we have characterized the equilibrium states of
the process.

Once we know the equilibrium states, we want to study the system out
of equilibrium. This means that we we start the process with a microscopic
measure associated to an initial continuous profile py, defined on the torus
and taking values in [0,1]. For this purpose, for N fix, place a particle at
each site x with probability po(x/N), independently from the other sites.
This probability, denoted by Vé\;, is called a product measure probability
with slowly varying parameter associated to the profile pg.

Given a point u in the macroscopic scale, around the point [u/N] in the
microscopic scale the measure 1/[],\5 looks like a product measure with constant
density given by po(u), for N large enough. To be more precise, we see that

B,y [n([uN])] = pol[ulN]/N) = pou) = B, [n(0)]  for py smooth.



In fact, defining 7,m(y) = n(x+y) and 7. f (n) = f(7.1n), for any local function
) (depends on a finite number of coordinates) and for u € T, we get that

E,,/% [T[UN]w] — El/po(u)[qvb] )

where v, is a product measure with constant density given by po(u).

1.5 Evolution of non-equilibrium states

Characterize the state of the process at a macroscopic time ¢t > 0 consists in
finding a function p(¢,u) such that

By [Tun$ ()] = B, ¥ (1.5.1)

where the right hand side in the previous expression denotes the expecta-
tion for a product measure with constant density p(t,u) and, the left hand
side, denotes the expectation for the process at time ¢ with initial distribu-
tion given by y,],\g. If (1.5.1) holds for every local function v, we say that
conservation of local equilibrium holds for the system. In this case, given a
continuous function H defined on the torus, we get that

[ BBt du > [ H@i(pte, ) du (15:2)

where ¢(a) = B, [1)]. Now, we say that the system satisfies the property
of weak conservation of local equilibrium if

NS H/N)mt) — [ B u) du. (153

zeT N

for all continuous H and for all local function . If we choose 1 (n) = n(0) and
(1.5.3) holds for every continuous function H, we say that the hydrodynamic
behavior of the system is characterized.

It remains to present the hydrodynamic equation governing the evolution
of the macroscopic parameter. In order to see macroscopic variations, we need
to introduce a new temporal scale. In our case, since the mean displacement
of each particle is zero, to observe changes in the density we need to speed
up the process by N2. In Chapter 2, studying the equation satisfied by the
empirical measures, we deduce the hydrodynamic equation.
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In this work we prove that the diffusion coefficient D(«) of the hydrody-
namic equation is a smooth function in . This fact guarantees the existence
of regular solutions for the hydrodynamic equation and allows the deriva-
tion of weak conservation of local equilibrium through the relative entropy
method [15]. Furthermore, since the system is attractive, good dependence
on the initial condition for the solution of the hydrodynamic equation allows
to prove conservation of local equilibrium [4].

1.6 Previous works in the area

The nongradient method was developed by Varadhan [12] and Quastel [10],
for reversible systems. Xu [14] extended nongradient approach to the non
reversible setting, considering the asymmetric mean zero simple exclusion
process in dimension d = 1.

The method used to prove regularity of the diffusion coefficient was de-
veloped by Landim, Olla and Varadhan in [8], using the generalized duality
techniques introduced by Landim and Yau [9] and Sethuraman,Varadhan and
Yau [11]. A crucial step of this machinery consists in controlling asymmetric
part of the generator by the symmetric one. This is related to the so-called
sector condition, assumed by Komoriya in [2] to prove hydrodynamic behav-
ior of the system and proved in the present work.

1.7 Structure of the work

This work is organized as follows. In Chapter 2 we introduce the notation
and state the main theorem. In Chapter 3 we give a finite dimensional version
of the techniques used to prove the main result. In Chapter 4 we describe
duality tools and describe several spaces and operators that appear in the
dual representation. In Chapter 5 we state some results related to the sec-
tor conditions and give sufficient conditions for solving resolvent equation.
In Chapter 6 we study the main properties of the Hilbert space of fluctu-
ations that allow us to get in Chapter 7 a new expression for the diffusion
coefficient. With this new expression, also in Chapter 7,we prove that the
diffusion coefficient is a regular function. Finally, in Chapter 8 we perform
the computations corresponding to the relative entropy method.



Chapter 2

Notations and Results

2.1 The model

Fix a mean zero probability p on Z¢ = Z?\ {0}, that vanishes outside a finite
set and is irreducible. This last property means that the set {z : p(z) > 0}
generate the whole group Z?. The generator of the simple exclusion process
on Z% associated to p acts on local functions f as

(LHm) = D ply—2)n@){1 = @)™ - fm)],  (2.1.1)

x,y€Z4d

where ™Y stands for the configuration obtained from 7 by exchanging the
occupation variables n(z), n(y):

n(z) ifz#zy,
(™)(z) = { n(x) ifz=y ,
n(y) ifz=x .

For « in [0,1], denote by v, the Bernoulli product measure on X = {0,1}%
with density «. This one-parameter family of measures is stationary for the
simple exclusion dynamics and in the symmetric case, p(z) = p(—x), these
measures are reversible. Expectation with respect to v, is represented by
< - >4 and the scalar product in L?(v,) by < -, - >,.

Denote by s and a the symmetric and the anti-symmetric parts of the
probability p:

s(x) = (1/2)[p(z) + p(=2)],  alz) = (1/2)[p(z) — p(=2)].



Let L* and L® be the symmetric and the anti-symmetric part of the generator
L in L*(v,), respectively. L® and L% are obtained replacing p by s, a in the
definition of L. Also consider the probability p*(y) = p(—y) and let L* be the
generator obtained replacing p by p* in the definition of L (2.1.1). Observe
that L* is the adjoint operator of L in L?(v,).

We will work on the torus. For a positive integer N, denote by Ty the
torus with N points Ty = Z/NZ and T% = (Ty)? The continuous d-
dimensional torus is denoted by T¢ and is identified with [0,1)¢. Consider
the exclusion process evolving in the torus T¢,. This is a Markov process on
the state space yny = {0, 1}T5l\f, whose generator Ly acts on a function f as

(Lnf)m) = > ply—a)n@){1—n@)Hf0™) — f0)].  (2.12)

xgeT%

2.2 The hydrodynamic equation

In order to deduce the hydrodynamic equation associated to this system, we
look for the equation satisfied by the empirical measures. For a probability
measure gy on Xy, denote by P, the measure in D([0,00), xn) induced
by the Markov process with generator Ly speeded up by N2, with initial
distribution given by py. For each smooth function

H:[0,T] x T — R, let M#N(t) = MH(t) be the martingale defined by:

t
M2ty =<7}, H >~ < 7{’, Hy > —/ (0, + N*Ly) < 7N, Hy > ds,
0

where ¥ = 7¥(n,) is the empirical measure associated to configuration 7,.

In general, 7V (n) = N~¢ > serd 1(2)0g/n and d, stands for the dirac measure
on .
Observe that

Lyn(z) = %Z {Wx—y,x - Wm,m-i—y} )

Y

where the current W, ., between = and z + y in this model is given by

Wi ary = n(@)[1 =n(z+y)lp(y) —nlx +y)[L —n@)p(-y) . (2.2.1)



A spatial summation by parts and a second order approximation allow us to
write

N> " H(x/N)Lyn(x) ZNlea H(z/N)m,Wi(2.2.2)

xETd .’IJETd

+1/4) NN 0y, H(2/N)7:Giy + O(1/N)

xETd

where

W; = 1/223/1 Woy, Gij= Zyz Yi Woy -
y y

Observe that E,, [G; ;] = 0 for every a. This implies that the second term
in (2.2.2) is negligible when deducing the hydrodynamic equation. Then, it
remains to replace W; by an object that allows us to do a second summation
by parts. Following the nongradient method presented in Chapter 7 of [1],
developed by Varadhan [12] and Quastel [10], we can prove that there exists
a collection of functions d, ;: [0,1] — R such that

/ N> H(s,z/N) x (2.2.3)

€T

xN{TxVVi + i [di,j(neN(;p +ej)) — di,j(rfN(x))] }dsH =0.

lim sup hm sup E,
e—0

N

This implies that the hydrodynamic behavior of this system is governed
by the non-linear equation

d
at,O Z ” u] ) - Zauz{DZ,j(p)au]p}7

1,j=1 1,j=1

where D; ;(a) = (d/da)d; j(a). The following goal is to give an explicit form
for the diffusion coefficients D, ; that appears in the previous equation.

2.3 The diffusion coefficient and main result

Let introduce a semi-norm in Cgy, the space of local functions with mean zero
with respect to all grand canonical measures v,. Denote x(a) = a(l — «).
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For h in Cy, consider

d d
L h>, = su {2 a; KL h >4, —=x(a s(v a;V; 2P.i&.l
{23 () s (a3
+ sup {2 L h,g>00— << —=L%g,9>a0 } , (2.3.2)
9€Co
where
L h>q= < Z xm(x)h> , L h,g>a0= < Z Txh,g> (2.3.3)
x€Z4 “ x€Z4 “

and {7,, x € Z%} is the group of translations.

It may be proved that < - >, verifies the parallelogram identity. Then,
there exists a semi-inner product on Cy associated to the semi-norm. Denote
by H, Hilbert space induced by < -,- >, on Cy. The techniques developed
to study non gradient systems (see Chapter 7 in [1]), shows that the matrix
D = {Di,j(a)}lgi,jgd is such that

w; +ZDH )[n(e;) —n(0)] € TG,

in H,, for 0 < a < 1, where W; are the functions defined in (2.2). In other
words, D; ;(«) are such that

lélcf < Wi+ ) Djj(a)ne;) —n(0)] — Lu>¢=0.
u 0 -
]

In the symmetric case, a simple computation shows that the hydrody-
namic equation is given by

d
1
8tp = Z aui{§am- au]p} y (234)
i,7=1

where 0 = {0, ;} is the positive defined matrix given by

Oij = Z s(Y) i Y - (2.3.5)

Y

As in [5], we can prove that



§'D*(a)f — 5% =

—sup { S (0); < nles) = n(0), L' >

X(a) 9€Co

.
+2X(04) Zak,z’ < nle;) —n(0), L*g >.< nlex) —n(0), L*g >,
ki

- <K L*g7L*g >a }

The main result of this work is the following.

Theorem 2.3.1. The function D, ;(«) is continuous in [0,1] and C* on
(0,1) for 1 <1i,5 <d.

In order to prove this result, we need to find an appropriate expression
for D; j(«). This is done in Chapter 7, where we study deeply the structure
of the Hilbert space H,, emphasizing the differences between this model and
the symmetric non gradient model. Observe that the first term in (2.3.1) is
easy to compute. The next chapters are consecrated to deal with the second
term of (2.3.1). Before that, we will enunciate a result concerning the relative
entropy method.

2.4 About the relative entropy method

Given a profile p: T¢ — [0,1], we denote by V},V the product measure with
slowly varying parameter associated to p on yy:

vy in (@) = 1} = p(x/N) , forz € Tf .

Conservation of local equilibrium states that if we start the process with
an initial distribution close to the product measure with slowly varying pa-
rameter associated to the initial profile py, the distribution of the process
at a microscopic time ¢ should be close to a product measure with slowly
varying parameter associated to p(t, -), solution of the Cauchy problem

Orp =324 5 0u (D1 (0)0u;p)
{ p(0,+) = po(-) - (2.4.1)

10



Consider an initial profile po(-), strictly contained in (0,1). Regularity
of the coefficient of the hydrodynamic equation announced in Theorem 2.3.1
guarantees (see [3]) that if the initial profile py is of class C?*¢(T?) for some
0 < e < 1, then problem (2.4.1) admits a classic solution p(¢, u) twice contin-
uously differentiable in space and once continuously differentiable on time.

Given two probability measures p and v on the same space, the relative
entropy of u with respect to v, denoted by H(u/v) and computed in Chapter
8, gives an idea of proximity between the probability measures involved. We
can prove the following result.

Theorem 2.4.1. Let (un)n>1 be a sequence of probability measures on xn
whose entropy with respect to 1/[],\;(,) is of order o(N?):

H(MN/V,%(-)) = o(NY) .

Then, the relative entropy of the state of the process (with initial distribution
un) at the macroscopic time t with respect to V;\(’t,.) is of order o(N?):

H( 1) = olN%) , for every t >0,

where N is the distribution at time t of the process speeded up by N?, with
initial distribution .

Finally, attractivity of the system and good dependence on the initial
profile of the solution of equation (2.4.1) (as in Theorem 4.5, Appendix 2 in
[1]) allow to deduce conservation of local equilibrium, as in Chapter 9 of [1].

Assuming regularity of the diffusion coefficient of the hydrodynamic equa-
tion and sector conditions, that are proved in Theorem 5.0.5 below, Komoriya
proves in [2] the hydrodynamic behavior of this system by the relative en-
tropy method. Xu proves in [14] the hydrodynamic behavior of the mean zero
exclusion process in dimension d = 1 by the entropy production method.
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Chapter 3

Outline of proof

3.1 The finite dimensional case

In this chapter we present a finite dimensional case of the technique used to
prove regularity of the coefficients {D; ;(a) : 1 < i,j < d}. The method was
developed by Landim, Olla and Varadhan in [8], using the generalized duality
techniques introduced by Landim and Yau [9] and Sethuraman, Varadhan
and Yau [11].

One of the advantages of working in the finite dimensional case is that,
for example, linear operators are bounded. In the general case, we deal we
densely defined operators and computations becomes more demanding.

Consider the real finite dimensional Hilbert space (R",< -, - >), where
< +,- > denote the usual inner product in R". Given a symmetric and
negative matrix S € R**" we introduce the semi-norm || - ||; in R” by

o] =< =Sz, 2 >,

and denote by H; the Hilbert space induced by ||| in R". In order to get the
dual space of Hy, we look for objects in R” that defines a bounded operator
with respect to the || - ||; norm:

lyll-s = min {C : | <y,2>|<Cla|}

Observe that | < z,y > | < [|z||1 [|y||-1 for ||yl|l-1 < co. We use H_; to
denote the Hilbert space induced by || - |1 in R*. A simple computation
allows to prove the following variational formula for the || - ||_; norm:

lyll*, = sup {2<y,x> — < —Sz,z> }
xT n
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From the variational formula, taking x = Ay and maximizing over A\, we get
that if y # 0 and Sy = 0, then ||y||_1 = co. A simple computation permits
to show that if Sz =y, then |ly||_1 = ||z||;.

Consider now an asymmetric matrix A € R"" < Az, y >= — < x, Ay >,
and a real function c: [0,1] — R, continuous in the close interval and in-
finitely differentiable in (0,1). Let L,: R® — R™ be the operator defined by
Ly = c(a)A+ S. Observe that

< —Lov,2 >=< —Sa,x >= ||z||} forall a.
Fix y € R" with ||y||_1 < oo and consider the resolvent equation
Azy(a) — Lozy(a) =y . (3.1.1)

Since —L,, is a positive bounded operator, we know that there exists a unique
solution for the resolvent equation. Fix z € R* with ||z]|_; < co and define

Gi(a) =< z)r(a), 2> .

The machinery that we are considering works to prove regularity of functions
appearing as limy_,o G(«a), in the following sense.

Theorem 3.1.1. Suppose that there exists a finite constant C' such that
|Az|| .y < C || (3.1.2)
Then, when X goes to zero, Gy(«) converges to a reqular function G(«).

To prove convergence, see [6]. To prove regularity of the limit, we will
show that G,(«) is regular in « for all A and get uniform bounds:

sup sup G)(a) < oo.
A a€l0,1]

Then, we need to differentiate and bound. Prove that there exists G(Ak)(a),
the k-derivate of G, for o € (0,1 — §) and then get uniform bounds:

sup sup |G(Ak)(a)| < 00 .
X a€(8,1-5)

Taking inner product with x)(«) both sides of the resolvent equation (3.1.1),
we get that

Mlza(@)[? + llaa(@)|IF =< y,2a(@) >< laa(@) s [[yll-1

13



SO
lex(@)ll < [lyll-1 and  Allza(@)I* < lyll2; - (3.1.3)

In order to get uniform bounds, observe that
Ga()] = | <ar(a),z > [ < laa(a)lls 2]l <yl [J20l-1 -

The following step consists in proving continuity in « of the function
Gx(a). Observe that

Gala) = GA(B)] = | < zr(a) —2A(B), 2 > | < [[za(e) — zx(B)1 [12]] -1 -

Then we need to see that ||z\(a) — zx(5)||1 goes to zero, when « goes to
B. Recall that x)(«) and x,(f) are, respectively, solution of the resolvent
equations

Az () — Loxy(ar)
AzA(B) — Lgza(B)

Y.

Subtracting the previous expressions, we get that

A22(0) = 23(8)) = La(#3(0) = 22(8)) = (La — Ls)2a(8) -
From (3.1.3), we get that

lx (@) = zA(B) [l < le(e) — e(B)[[[Azx(B)]-1 -

At this point we use the hypothesis of the Theorem. We can control the
| - ||-1 norm of Az(5) in terms of the || - || norm of x,(5), to get that

|c(a)=c(P)[[[AzA(B) |1 < C le(@)=c(B)] lea(B)llr < C [e(a)=c(B)] llyll-1 -

Finally, continuity of the function ¢(«) guarantees that ||z () — A (8)]|1 goes
to zero, when a goes to 3.

The following step is to differentiate the function G(«) in «. In order
to do that, assume that x,(«) is differentiable and differentiate formally
the resolvent equation (3.1.1) to get that 2 («) should satisfy the following
equation:

A\ (@) — Lo\ () = L ay\(a) = ¢ (o) Azy(a) .

14



The same kind of computation performed when proving continuity of G
allows to prove that

— () =0,

and the conclude that G\ (o) =< 2!\ («), z >. Also, as when bounding in the
previous case, we get uniform bounds for G\ («). Iterating this argument, we
conclude the proof.

Observe that the second term appearing in formula (2.3.1) is, somehow,
a || -||-1 norm. In Chapter 4, we use Fourier representation of L*(v,) and
get a “good” formula for the generator in terms of the Fourier coefficients.
Some other Hilbert spaces are introduced in the same Chapter. In Chapter 5,
we enunciate some results related with condition (3.1.2) and solve resolvent
equations. In Chapter 6 we study the structure of the space H,, defined
in Chapter 2, and in Chapter 7 we get that the diffusion coefficient may be
express in such a way that the machinery recently developed works.
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Chapter 4

Duality

Considering the second line in formula (2.3.1), we examine in this chapter
the action of the symmetric part L° of the generator on the space of local
functions endowed with a particular scalar product < -, >,9. Some
notation and computations of this chapter are taken from [7]. Fix, once for
all, a density « in (0,1). All expectations in this chapter are taken with
respect to v, and we omit all subscripts.

4.1 The dual space

For each n > 0, denote by &, the subsets of Z¢ with n points and let £ =
Un>0&y be the class of finite subsets of Z®. For each A in &, let U4 be the
local function

n(@) —a
Uy = —
g vx(a)
where x(a) = a(1 — «). By convention, ¥, = 1. It is easy to check that
{W¥,, A € £} is an orthonormal basis of L?(v,). For each n > 0, denote by G,
the subspace of L?(v,) generated by {U4, A € £,}, so that L*(v,) = ®p>0Gn.-

Functions in G, are said to have degree n. We use 7, to denote the projection
operator from L?(v,) to the subspace G,. Then, given a function f in L?(v,),

we may write
F=>mf=>_> f(A)¥,. (4.1.1)

n>0 n>0 Ae&,

Note that the coefficients f(A) depend not only on f but also on the
density a: f(A) = f(A,«). If f is a local function, f: £ — R is a function
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of finite support. Denote by C the space of local functions and recall that
Cy is the set of local functions that have mean zero with respect to all grand
canonical measure vz. We have a simple characterization of Cy functions in
terms of their Fourier coefficients:

fe€C <= ) (4,8 =0 Vn>0, VB (4.1.2)
AESn
For local functions u, v in Cy, define the scalar product < -, - > (previ-

ously noted by < -, - >,0) by

L u,v>= Z < TRU, U > (4.1.3)

x€Z4

where {7,, x € Z} is the group of translations. Since < u — T,u, v >= 0
for all z in Z¢ this scalar product is only semidefinite positive. Denote
by L2<<,’,>>(1/a) the Hilbert space generated by the local functions in Cy and
the inner product < -,- >. The scalar product of two local functions u, v
can be written in terms of the Fourier coefficients of u, v through a simple
formula. To this end, fix two local functions u, v and write them in the basis

{\I’A, Ae 8}
= uwA)Wa, v=> v(A)T,.
Ae& Ae&

An elementary computation shows that

LU, v > = ZZZu(A)U(AJra:).

z€Zin>1 A€&y

In this formula, B + z is the set {z + z; x € B}. The summation starts from
n = 1 because we are working with functions in Cj.

We say that two finite subsets A, B of Z? are equivalent if one is the
translation of the other. This equivalence relation is denoted by ~ so that
A~ Bif A= B+ x for some z in Z% Let &, be the quotient of &, with
respect to this equivalence relation: &, = &, /s E=¢ /~. For any summable
function §: £ — R,

S HA) = D) f(A+2).

Aeg Acé z€74
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In particular, for two local functions u, v,

L u,v > = Z ZZu(A+z)U(A+x+z) = ZZﬁ(A)B(A),

z,2€29n>1 Acg, n>1 Aeé,

where, for a finite set A and a summable function u: £ — R,

u(A) = Z u(A+2) . (4.1.4)

2€74

We say that a function f: £ — R is translation invariant if f(A+x) = f(A)
for all sets A in £ and all sites z of Z% Of course, the functions it are
translation invariant. Fix a subset A of Z? with n points. There are n sets in
the class of equivalence of A that contain the origin. Therefore, summing a
translation invariant function f over all sets A in &, is the same as summing
f over all sets B in &, that contain the origin divided by n:

S A) = - 354

AEén "?469{31

if f(A) = f(A+ z) for all A, for all z. Let &, be the class of all finite subsets
of Z4 = 7%\{0} and let &, ,, be the class of all subsets of Z? with n points.
Then, we may write

Lu,v> = Z% > u(A)5(A)

D=l S I (HEEI S

Summarizing, for a finitely supported function f : £ — R, define Tf: £, — R
by

(TN(A) = jAau{o}) = D fAu{o}+2), (4.1.5)

2€74
then we have that
1
L u,v > = Tu(A) To(A) . 4.1.6
ZnHZ (4) To(A) (4.1.6)
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To state some properties of the transformation €, we need some notation.
For a subset A of Z¢ and z in Z%, S, A is the set defined by

s A—-z if 2¢ A,
.4 = { [(A-2\(O]ui-2) ifzea. (4.1.7)

Therefore, to obtain S, A from A when z belongs to A, we first translate A
by —z, getting a new set which contains the origin, and we then remove the
origin and add site —z.

Remark 4.1.1. (a) Since f belongs to Cy, &1 is irrelevant for defining ¥f,
because we understand Tf as a function on &, and Tf(p) = >, T({2}) =
0.

(b) Not any function f. : & — R is the image by T of some function
f: & — R since
(TN)(A) = (F)(S:4) (4.1.8)

for all z in A.

(c) Let §. : £, — R be a finitely supported function with f.(¢) = 0 and
satisfying (4.1.8): §f.(A) = §.(S,A) for all z in A. Define f: € — R by

An elementary computations shows that Tf = f.. This choice, which is
not unique, makes § vanish on &;.

(d) The operation that transforms § in %f reduces by one the degree of a
function. Thus, morally, the translations in the inner product < -, - >
are reducing by one the degrees and changing the space Z® in 7.

To keep notation simple, most of the times, real functions on £ or on &,
are indistinctively denoted by the symbols f, g, u, v.
4.2 Some Hilbert spaces
For n > 0, let

L*(Ep) ={f: Een = R D F(A) < 00}

AEEan
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and for f, g in L*(&,,), define < f,g >= >, §(4)g(A) for every n. We
put ||f||* =< §,§ > whenever § € L*(£,,,). Define, analogously, L*(&,). For
n > 0 consider the following spaces:

Fn = {f: En— R 1 f(A) #0 for a finite number of sets A and Z f(A) = 0} )

A€y

Fo {fi £ LR : f(A) #0 for a finite number of sets 4,37, f(4) =0 } ‘

and §(S,B) ={f(B) forall B€é&,,, forall z€ B

From - e  §f(A) = f(¢) =0, we get that F,o = {0}.

Observe that the operator ¥, defined by formula 4.1.5, maps F,, to F, ,,_1.
A function f € F,, or f € F,,, is called a finite supported function of degree
n. Put Z,, and Z, , for the closure of F,, and F,, as subspaces of L?(£,) and
L*(&,,), respectively. For §: &€, — R define the projection 7, by

A) if|A| =
(maf)(A) = { (f)( ) ;tLeIl‘WiSZ,. (4.2.1)
Let,
Z.={f: & >R : mf €., Vn>0}. (4.2.2)

Given a local function in Cy, take its Fourier coefficients in L?(v,) and apply
the operator ¥ to the Fourier coefficients. The image of this transformation
belongs to the space of finite supported functions given by

F o= {f:é'*—HR : m(f) =0 for al n > ng , for some ny, } (4.2.3)

and 7,(f) € F., foraln>0

Consider the inner product < -, - > in the space F,, given by:

< f?g >>0,k: Z(n + 1)%_1 < anv Tng >
n>0

so that

Be=> (n+D)* ! <mf,mf> (4.2.4)

n>0

lij
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The terms corresponding to n = 0 in each of the previous expressions is equal
to zero. Let I* be the Hilbert space induced by the inner product < -, - >
and F,. Observe that we have the following embeddings:

0 1 +1
IR R R M

An explicit way to construct the spaces I* is adding the Hilbert spaces
T, weighted by (n + 1)%~%

I = {feZ, : > (n+ 1) mfl|* < oo} .

n

With this notation, for local functions f and g, in view of (4.1.6), we have
that
< fvg > ::<<‘Ifng >>0,07

where f and g are the Fourier coefficients of f and g respectively.

We now examine the action of the symmetric part of the generator L
on the basis {¥4, A € £} (see diagram 4.3.4 below as reference). Fix a
function u € Cy and denote by u its Fourier coefficients. A straightforward
computation shows that

Lu =) (Lou)(A)Ta, (4.2.5)

Ae&

where L, is the generator of finite symmetric random walks evolving with
exclusion on Z¢:

(Lau)(4) = (1/2) D sy —2)[u(As,) — u(A)] (4.2.6)

x,y€Zd

and A, , is the set defined by

(A{zh u{y} ifze A y¢ A,
Ay = ;A\{y}) u{z} ifﬁ €Az ¢gA, (4.2.7)
otherwise .

Furthermore, an elementary computation, based on the fact that

Y HBU{y}]+2) = Tf(S,B)

2€74
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for all subsets B of Z%, sites y not in B and finitely supported functions
f: & = R, shows that for every set B in &,

TLu(B) = £,3u(B), (4.2.8)

where

(L0) (B) = (1/2) Y sly—a)[o(Byy) —0(B)] +  (4.2.9)

z,y€Ld

+ Y s(y)o(S,B) —o(B)].

y¢B

This computation should be understood as follows. We introduced an
equivalence relation in & when we decided not to distinguish between a set
and its translations. This is the same as assuming that all sets contain the
origin. If n particles evolve as exclusion random walks on Z? one of them
fixed to be at the origin, two things may happen. Either one of the particles
which is not at the origin jumps or the particle we assumed to be at the
origin jumps. In the first case, this is just a jump on Z? and is taken care
by the first piece of the generator £,. In the second case, however, since we
are imposing the origin to be always occupied, we need to translate back the
configuration to the origin. This part corresponds to the second piece of the
generator £;.

We are now in a position to define the Hilbert space induced by the local
functions in Cy, the symmetric part of the generator L and the scalar product
< -,->. For two local functions u, v in Cy, let

LU, v > = <L u, (=L >

and let H; = Hy(Cy, L*, < -, >>) be the Hilbert space generated by mean
zero local functions f and the inner product < -,- >;. By (4.2.5), (4.1.6)
and (4.2.8) the previous scalar product is equal to

S S A SLe(4) = D3 LS u(4) (2,50)(4)

1
= < m,%u, (—L)m,To >
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because £, keeps the degree of the functions mapping L?(&, ) in itself.
Now, for each n > 0, denote by < -,- >; the scalar product on F,,
defined by
<f,g>1=<H, (_Qs)g >

and denote by $),(F,,) the Hilbert space induced by the scalar product
<+, - >; on F,,. The associated norm is denoted by [[f||? =< f, (—£,)f >.
Furthermore, for an integer k£ > 0, denote by 1 x = 91(F., £, k) the Hilbert
space induced by the finitely supported functions §, g € F, with scalar prod-
uct,

Lf g1 =< f, (—Ls)g >ox = Z(n + D)% <1 g, (—Lo)mg > .
n>0

The associated norm is denoted by || - ||« so that
1150 =< £, § > -

It follows from the previous notation that

1117 = D (n+ 1) Himaflf7 - (4.2.10)

n>0

Observe that for every local function u, v € Cy,
L u,v> =< Tu, %o 1.0,

where u and v are the Fourier coefficients of u and v, respectively.

To introduce H_;, the dual space of H;, consider the functions u € C,
that define a bounded operator respect to the || - ||} norm and the inner
product < -, - >: u such that there exists a constant C' with

| <u,v>|< Cloly forallvedl. (4.2.11)

The smallest C' satisfying the previous condition is denoted by ||ul|_; and
satisfies the following variational formula:

lul?, = swp {2 < o> - <v03 ), (4.2.12)

where the supremum is taken over all local functions v in Cy. Denote by
H | = H 1(Cy, L*,< -, >) the Hilbert space generated by the local func-
tions and the semi-norm || - ||_;.
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Since L*® keeps the degree of a function and since the spaces G, are or-
thogonal, for local functions of degree n, we may restrict the supremum to
local functions of the same degree, so that

A2 = >l fI2s -
n>1

In the same way, for an integer n > 1 and a finitely supported function
ue F,,, let

Jul|2, = sup{2 <Up>—<0,0 > } ,
o
where the supremum is carried over all finitely supported functions v € F, ,,.

Observe that, as when defining H_;, we have that [|u||_; is the smallest
constant verifying

| <o,u>|< Clo|ly forallveF,,. (4.2.13)

Denote by $_; = $H_1(F.,) the Hilbert space induced by the finitely
supported functions u € F,, and the semi-norm || - ||_;.

For a integer k > 0, define the ||-||_; x norm of a finite supported function
u e F, by

||u||2_1,c = sup {2 LU0 >0, — K0, (—L5)0 >0 } ,
d]

where the supremum is carried over all finitely supported functions v € F,.
Denote by $_1% = H_1(F., L6, k) the Hilbert space induced by this semi-
norm and the space of finite supported functions. Here again, since £, does
not change the degrees of a function, for every finitely supported u € F,,

[ull2 16 = Y (n+ 1) |mul, (4.2.14)
n>1

and for any local function u € C,
ull -1 = [|%ul| 10, (4.2.15)

where u denotes the Fourier coefficient of w.
We end this section summarizing the different norms recently defined. In
Cy we have

L U, v >= Z < v > |Jul]f =< u, —Lau >, (4.2.16)
z€7Z4
Jull, = sup {2 < w0 — < w0
vECo
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In .,
<wo> > u( ), ull? =< u, —Lu >, (4.2.17)
A€Ex n

lull>, = sup {2<u,n > — < 0,0 > }
Ue *,n

Adding the respective norms with appropriate weights, in F, we get that

w0 >op= > (n+ 1) <m0 > (4.2.18)

n

Lo >1p= > (n+ 1) < ma o >y

n

210 = D+ 1% |maul2,

n

4.3 The Fourier coeflicients of the generator
L

We conclude this chapter deriving explicit expressions for the generator L on
the basis {U,, A C Z4}. A long and simple computation gives the following
dual representation: For every local function u =) , . u(A)¥ ,

Lu = Y (Lou)(A)Wy, (4.3.1)

Aeé&

where L, = L+ (1 —2a)Ly+ /x()(Ly + L),
(La)(A) = Y aly —2){u(A,) —u(A)}, (4.3.2)

r€AYEA
(Liu)(4) = 2 Z w(A\{y}),
L) = 23 aly—nuAu )
rgAYgA

and L, is defined by (4.2.6). Furthermore, for any function u : & — R
TL = L£,%u, provided

Lo =L+ (1 -20)& + Vx(a){Ls + £}
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and, for A€ &, v:

(Lav)(A)

(£10)(4)

(£-0)(4)

&, — R a finitely supported function,

= Y aly—2){o(4s,) — v(4)) (4.3.3)
wexz,gé%A

+3 a(y){0(S,4) —v(A)}

ygA
y#0

=2 ) a o(A\{y})

TEAYEA

+2 a(@){o(A\{z}) — o(S,[A\{z}])},

=2 ) a o(AU{y}) .

TZAyZA
,y#0

The following commutative diagram illustrate the relation between the
operators recently defined. The first arrow down assigns to each function
u € Cy its Fourier coefficients.

C() L)C()

Lo

F ke ¢ (4.3.4)
| A
La
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Chapter 5

Sector condition, the resolvent
equation and some estimates

We prove in this chapter three important results. They will be useful to
understand the structure of the space H,, defined in Chapter 2. The first
one, whose proof is postponed to Appendix A, is related to the the so-called
sector condition for the generator L. The second result, Theorem 5.0.6,
based on an elementary computation, states that all functions in Cy have
finite || - || norm. Finally, the last result states that all local function in C
may be approximated in H_; by local functions in the range of the generator
L.

We start with a result related to the sector condition.

Theorem 5.0.1. There exists a finite constant Cy, depending only on the
probability p, such that

< Laf, 9 >*< Cp < |, —Lf >< g, —Leg >

for each §,g in L, ,. The same result remains in force if £4 is replaced by £,
or £_ with g in L, 41 and I, ,_1, respectively.

The proof of this result, as well as the proofs of some other estimates
concerning the operators £, £, £; and £, are presented in Appendix A.
We state some corollaries that are repeatedly used in this work. The first
one is a simple consequence of the definition of || - ||_; norm for § € Z, ,, given
in 4.2.11.
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Corollary 5.0.2. For | € Z,, we have that
1€:]]-1 < Co [Ifl]1
where £, stands for the operators £¢, £4, £4 and £_.

Corollary 5.0.3. There exists a finite constant Cy, depending only on the
probability p, such that for every § € L.,

1€ < Conlifll (5.0.1)
where || - || is the usual norm on L*(E.,) and £, stands for the operators £,
Laq, £, £_. Then, for every § € I, we have

Hﬂ*ﬂ 0,k < CO ”f |0,1<;+1 ’
1€l < Collflly g -

Proof: A simple computation shows that £, is a bounded operator on each
Z., and that there exist a constant C', depending only on p, such that

€5l < Cnflfl]

forall § € Z, ,,. The first statement follows from this observation and Theorem
5.0.1. For the second one, just recall definition of || - |jox, || - ||1x and || - [| 1.4
done in (4.2.4), (4.2.10) and (4.2.14), respectively. Also observe that ||f||; 5 <

Collflo,k+1- m

Remark 5.0.4. The previous corollary is saying that £, is a bounded op-
erator from I7*" to 1% (|| €:flloe < Collflloj+1). From [[€ufll-1 < Collfllk
we get that there exists a bounded extension for the operator £, from $1 to

N1k

Finally, we get to the last result concerning this kind of estimates. Using
the dual representation for the operator L, presented in formula (4.3.1), and
performing the same kind of computations presented in the proof of Theorem
5.0.1, we can prove the sector condition.

Theorem 5.0.5. There exists a constant C, depending only on the probability
p, such that

<Lfg>2< C <Lf,f>a<Lgg>a,

for every local function f and g, for all a € [0, 1].
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We turn now to the space H_;. We first prove that all function in C,
belong to H_; and then show that they may be approximated by functions
in the range of the operator L.

The next result follows after some computations based on the fact the for

v e Fop, y. 0(A) =0.

Theorem 5.0.6. If u € F,,, we have that
Jull-1 < o0

and, from identity (4.2.15), we conclude that for u € Cy
lul|-1 < oo.

The following result states that all local function in Cy may be approxi-
mated in H_; by local functions in the range of the generator.

Theorem 5.0.7. Given & € F, there exists a sequence by in §. such that

lim |& — L£abal|—10=0.

In view of identity (4.2.15), the previous result is telling that given a local
function g in Cy, there exists a sequence h) in Cy such that

lim [lg — Lhy[| 1 = 0.

The proof of Theorem 5.0.7, presented at the end of this chapter, is based
on the analysis of a resolvent equation associated to the operator £,.

Proposition 5.0.8. Given g € Z, with ||g||_, ., < oo for some k >0, for
each A > 0 there exists a unique function §y € I, with ||fxljox+1 < 00, that
solves the resolvent equation

AMa—Lafr =9 (5.0.2)

in 1%, Furthermore: for each k > 0, there exist constants Cy, depending on
k and the probability p, such that

Ml < Cellall?yy,  and IfallF . < Crllgll® 1y s (5.0.3)

with C() =1.
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The proof of Proposition 5.0.8 requires some lemmas and some estimates
on the operators £, £_, £4 and £, presented in Appendix A. Let 7, be
the subset of functions in Z, of degree less or equal than n:

Tn={j € L. :§(A) = 0if|A| > n} . (5.0.4)

Define II,, as the projection on 7,.

L) =) m(f). (5.0.5)
In order to prove Proposition 5.0.8, we start solving the resolvent equation
restricted to J,. Fix a and consider £, = II,£,I1,, as an operator from 7,
into itself. For g, € J,, consider the resolvent equation given by

)\fA,n - Snf)\,n =06n - (506)

Lemma 5.0.9. There exists a unique solution fx, € J, for the equation
(5.0.6). Furthermore, if ||gn||-1,0 is finite, then

Mlfanlloo < llgnllZro s faallio < llgnll1o - (5.0.7)

Proof: We first show that the operator £, is bounded and negative in 7,
with respect to the scalar product< -, - > . With these results, existence
and uniqueness of solutions of equation (5.0.6) is proved in the usual way.

For the first statement, by Corollary 5.0.3, there exists a finite constant
C(n) (also depending in «) such that for all f € 7,

1€fllo0 < C(n) [If

This implies that £, is bounded operator in J,,. To see that it is negative, by
Corollary A.0.24, we have that for all | € J,,, < £.§,f >00=< £f,f >00
< 0.

To obtain the bounds, take inner product (<&,>>¢) with f,, on both
sides of equation (5.0.6) to get that

|0,0 .

)‘||](/\,n||g,0+ < =Lifams an 00=< g, fan 00 -

It remains to apply Schwarz inequality to conclude. Observe that the sym-
metric part of the operator £, is £, only when working with < -,- >¢0. O

In fact we can obtain stronger estimates on the solution f, , of the trun-
cated resolvent equation (5.0.6). The following Lemma is taken from [11].
The estimates obtained in Theorem 5.0.1 are crucial in the proof of this
result.
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Lemma 5.0.10. Let ), be the solution of the equation

)‘f/\,n - Snf/\,n =9n - (508)

For any k > 1, there exist a finite constant C), depending on k and the
probability p, such that

Miinalloe < CellgalZie s Ninallie < CellgallZ 1 - (5.0.9)
We are now in the position to prove Proposition 5.0.8.

Proof of Proposition 5.0.8: The idea of the proof is to solve the resolvent
equation projected into 7, and then to show that the solutions converge to a
function §y in the domain of the operator £, that solves the original equation.
Recall the definition of the projection II,, and the operator £, given in (5.0.5)
and just before (5.0.6), respectively. By Lemma 5.0.9, for each n > 1 there
exists f,, solution of

)\f,\’n - 'Snf/\,n = Hng . (5010)

Since ||I1,g||-1& < ||g||-1%, by Lemma 5.0.10

||f/\n||%k: < Ck||Hng||2—1,k < Ck:||9||2—1,k )
Miaallsr < CillTagl? 4 < Cellal? 14 -

In particular, for each A, fy, is a bounded sequence for ||||o 41 norm.
Then, there exists a subsequence fy,; converging weakly to some function fy
with ||fallok+1 finite. We claim that the limit is a solution of the resolvent
equation (5.0.2).From Remark 5.0.4, we have that £,: I*** — 1¥is a bounded
operator and so preserves weakly convergent sequences. This means that
Lafan; converges weakly to £,f in I¥. We also have that fan, converges
weakly to f in I¥ and that II,g converges to g. All the previous convergences
implies that f is solution of the resolvent equation on I*:

>\f/\_£af/\ =g.

Take inner product < -,- > with f, in the previous expression and
considering that f belongs to I!, use Remark A.0.25 to get that

[[fx

%,0 < ||9||2—1,0 ) )‘||f/\||g,0 < H|9||2—1,0 ‘
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Uniqueness of solution follows from the fact that A — £, is a strictly
positive operator on I¥ for & > 1. To conclude the proof of Proposition
5.0.8, it remains to get the bounds announced. Once we have solution for
the resolvent equation, the prove of Lemma 5.0.10 works in the space Z,.
Then we get that, for & > 1,

Millor < Crllsll1s
Iiallle < CellglZy

where C} are the constants appearing in Lemma 5.0.10. O

We conclude this chapter with the proof of Theorem 5.0.7.
Proof of Theorem 5.0.7: Given & € F,, we know by Theorem 5.0.6 that
|B||-1x < oo for all k. Then, by Proposition 5.0.8, there exists f, solution
of the resolvent equation

Mr— Lofa=—6. (5.0.11)
We will see that
lim H@ - Qaf)\”—l,o =0. (5.0.12)
A—=0
Then approximate £,fx by £.0, in || - ||-10 with by in F, close to f, in the
|| - |]1,0 norm.
To prove convergence (5.0.12), we start showing that £,f, is bounded for
the || - [|-1,0 norm. Then we characterize weak limits. Finally we prove that
Lafx is Cauchy for the || - ||-1,0 norm.

Take inner product (K -, - >>0) with f, on both sides of equation (5.0.11)
and apply Schwarz inequality to get that

a0 < 18] -1
AL f)nf/\ >>0,0S ”6”2_1’0 .

Observe, in particular, that Af, converges to 0 in the || - |lo,0 norm. As £,
is a linear combination of £,, for x = s,d,+, —, use Corollary 5.0.3 and
Proposition 5.0.8, to get that

[€afall-10 < Cla)[liallio < Cl@)[|G]]-10 -

Therefore £,y is bounded for the || -||_1 o norm. As in Lemma 2.8 of [6], we
can prove that
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1- If £y, converges weakly in || - ||=1,0 norm as A; | 0, then the limit is
6.

2- There exists §f € ;1 such that §) converges strongly to f in £ .

Since, by Corollary 5.0.3,

1€afr — Lasll-10 < Cla)|lfx — FillLo

and since f, converges strongly in $; 9, L4y is Cauchy for || - [|-1. Consid-
ering that we have just characterized all weak limit points, it follows that
L£.fx converges strongly to & in || - ||_1 0

[€afr — &[[-10 = 0.

Take b, in . such that limy_,g [[fx — hal[10 = 0. From Corollary 5.0.3,
we get that ||Lafr — Labill-10 < C(@)]|fx — ball10- Since £,fx converges to
® in H_; o we can conclude that £,hy also converges to & in $H_o:

lim |€abr — B||_10=0.

Remark 5.0.11. Recall that in Remark 5.0.4 we said that the operator £,
admits an extension from $19 to H_19. Some how, we are saying that we
can solve the equation £,f = & with | in 1.
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Chapter 6

The Space H,

We prove in this chapter a structure theorem for the Hilbert space of vari-
ances, H,, that allows to derive, in the next chapter, an explicit formula for
the diffusion coefficient D; ;(«). Recall that o = (oy;) for 1 < 4,5 < d, is
the matrix defined by o;; = > s(y)y;y; and that x(a) = a(l — «). For
a € (0,1) and h € Cy consider

1
< h>, = sup { QZCM K h >4, —§X(a) ax oa } (6.0.1)

a€R4

+ sup {2 L g, h>a0— << —=L%g,9>a0 } ,
g€Co

where
<L h >>aJ:: < ZE: xin(x)h> 5 < hvg >>aif: < j{: Tzh7g>
x€Z4 “ x€Z4 “
and a*o a is matrix product with a* for a line vector in RY.
We prove in Lemma 6.0.13 that << h >,< oo for every h in Cy. Recall
that H, the Hilbert space induced by the semi-norm < - >>(1,/ % on Co. In
this chapter we show that every element in H, can be approximated by

S" Dj[n(e;) — n(0)] + Lu for D in R and u € Cp. The main result is the
following.

Theorem 6.0.12.

H, = {nley) —1(0) . 1< j < d} @ LG . (6.0.2)
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In fact, given g € Cy, there exist unique {D;(«), 1 < j < d} such that

u€Co

inf < g+ > Dy(@)life;) — 1(0)] — Lu 0= 0.

Furthermore,consider m; € F, 1 given by

m;({z}) =2a(x) z; . (6.0.3)
Then {
Dj(a) = D) K TG Za,j +/1\i_f>f(l) < fa,my 00,

where ) solves the resolvent equation
)‘f/\ — Laofr = _(‘{g

in L, g denotes the Fourier coefficients of g and ‘% is the operator defined in
(4.1.5).

We start proving that < h >, is finite for h € C,.
Lemma 6.0.13. If h € Cy then < h >,< oc.

Proof: We need to see that each term appearing in definition (6.0.1) is
finite if h € Cy. Put ||h||o for the first one:

[All = sup { 234 < h >, B a}} . (6.0.4)
acRd 2

This term may be computed since the matrix o has an inverse. Put H for the

column vector in R? whose coordinates are given by H; =< h >, ;. Denote

by H* the transposition of H and by o' the inverse of the matrix o. Then

we have that

I7lle = 2/x(e) H 07" H.

The second term appearing in definition (6.0.1) is ||A||%,, defined in (4.2.12).
In Theorem 5.0.6 we claimed that ||h||_1 < oo if h € Cy. This completes the
proof of the present lemma. O

Observe that the semi norm < - >, depends only on the symmetric
part of the generator. It may be proved, as in Chapter 7 of [1], that given
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a cylinder function h in Cy and a sequence of positive integers K, such that
0< K; < (20+1)% and limy_, K;/(20)¢ = o, then

Jim (2«?)‘d<(—Li4)‘1 S oomh, > Twh>“(l = <h>,, (605

|z <Ly, || <Ly

where L}, represents the symmetric part of the generator restricted to the
box Ay = [0, 0)*NZ4, ¢}, is such that > _lz|<t, Tolt is measurable with respect
to {n(z); x € Ay}, £,/ — 1 and we are considering the uniform measure on
the space of configurations in the box A, with K, particles.

Recall from (2.2.1) that W, ,1, and Wy, stand for the current of the
process and the dual process, respectively. For 1 <1 < d, let

Vi) =32, 4iln(0) — n(y)]s(y) (6.0.6)
Wi* (77) = % Zy in(iy
Wi(n) = 332, %Woy
(6.0.7)

As in [5], we apresent some identities that can be formally derived from
(6.0.5), and the relations L[ z;n(x)] = > 7, Wi and L*[> xin(z)] = 1/2> 7, V,.

< L*ga vz >a= -2 K Wiag >>a,0 < Lg7 Vz >a= -2 <K I/Vi*ag >>a,0

K Vih>.=-2<Kh>,,; L Vi, Lg>>,=0

LV, Vi, >0=2x(a)o; LLfh>=—< f,h>q .

(6.0.8)

A crucial difference between symmetric non gradient systems and asym-
metric ones appears when we want to compute < Lh, Lh >,. In the sym-
metric case, the last line in (6.0.8) gives us an explicit formula for this object.
In the asymmetric case, the sector condition proved in Theorem 5.0.5 allows
to control < Lh, Lh >, in terms of < L*h, L°h >,. The following Propo-
sition is a consequence of Theorem 5.0.5 and (6.0.5).

Proposition 6.0.14. There exists a constant C' depending only on the prob-
ability p such that

L L*h,L*h >, < C < L°h,L°h >,
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and
<L Lh,Lh >, < C < L°h,L°h >, ,

for any function h € Cy.
We start studying the spaces involved in decomposition 6.0.2.
Lemma 6.0.15. {[n(e;) —n(0)], 1 <i < d} are linearly independent in H,.

Proof: From < V;, Vi >,= 2x(a)o;x we get that {V;, 1 < i < d} are
linearly independent in H,. On the other hand, since h = 7,.h in H, for any
h € Cy and x € Z%, we get that

Vi=>_uln0)-n(y)]s(y) = Z yii[n(0)—n(e;)]s(y) = Z 0:5(0)=n(e;)] -

This means that {V;, 1 <i < d} and {[n(e;) — n(0)], 1 < i < d} generate
the same linear space in H,. |

The following result is taken from [2]. It states that the spaces generating
H, in (6.0.2) are in direct sum.

Lemma 6.0.16. The linear space generated by {V;, 1 < i < d} in H, does
not intersect the closure of LCy:

{Vi, 1<i<d} n LG = {0} .

To complete this chapter, it remains to prove that the spaces presented in
the decomposition (6.0.2) generate the space H,. Recall that in the space of
Fourier coefficients, we have defined the projections operators m,: L?(£) —
L*(&,) in (4.2.1). We also use 7, to denote the projection operator from
L*(v4) to the subspace G,, defined in Chapter 4. If f = >, . f(A) ¥4, we
use m, f for 3, f(A)W4. With this notation, we have that f = > 7, f.
Observe that moh = E,_[h] = 0 since we work with functions h € Cy. We say
that a cylinder function has degree n if all its Fourier coefficients are zero,
except those of degree n: f =73, . f(A)Va.

The following lemma shows that ||A[, is relates to 7 h, the degree one
part of the function, while the remainder is related to h — w1 h.
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Lemma 6.0.17. For every h € Cy, we have that
L h>.=||mbllet+ < F(h—mb>_10,

where b are the Fourier coefficients of h and € is the operator defined in

(4.1.5).

Proof: Functions of different degrees are orthogonal in H,, since the operator
L? preserves degree. Then,

We claim that < mh >,= ||m1h]e and < h — mh >,=< Th >_,.
For the first identity, observe that if h and g denote the Fourier coefficients
of f and ¢ respectively, we have that

< g,ﬂih»>>a4F: j{: h(x700 j{: g(yaao ::07

x€Zd A

by (4.1.2). Then, the second term in (6.0.1) is equal to zero if h has degree
one. So that < mh >,= ||m1h|a-
For the second identity, observe that for W4 with |A| > 2 | we have

< \IfA >>a,i: < Z Z’in(ib')\IlA> =0.
x€eZd “
Since h —mh =37, 5> 4ce, B(A)W 4, we get that < h — mh >q,;=0. In
particular, < h — mh >.= ||T(h — m1h)|| 1.0 = ||ZH]| 1,0 since Tm1h =0, as
we observed at the first point of Remark 4.1.1. |

Proof of Theorem 6.0.12 We need to prove that given g € Cy, there
exist unique {D;(«a), 1 < j < d} such that

inf < g+ Dj(a)nle;) —n(0)] — Lu>,=0.

u€eC
’ j=1

Uniqueness for D; follows from Lemma 6.0.15 and Lemma 6.0.16. From
Lemma 6.0.17, we know that

< g+ 30 Dj(a)n(e;) — n(0)] — Lu >q=
s+ S0, Dy()lnes) — n(0)] — miLudl + |6 — SaTul 1 (6.0.9)
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where, as usual, u and g are the Fourier coefficients of u and ¢ respectively.
At this point we realize that is convenient to work in the space Z,. Put
® = Tg and f = Tu. From Theorem 5.0.7, we know that there exists by in
F. such that [|& — £,hx]|-1,0 goes to zero as A goes to zero.

Take uy € Cy such that T(uy) = b, as in (4.1.1). We have that

limy,0 < g+ >, D;(a)[n(e;) —n(0)] — Luy >,=
limyo | mg + 2 Dj(a)[n(e;) —n(0)] = mLuy fla

so we need to find D;(a) such that
lim | g+ Dj(a)ln(e;) —n(0)] = mLuy fla = 0. (6.0.10)

Looking at the explicit formula for || - ||, given in in Lemma 6.0.13, we
reduce the problem to find D;(«) such that < m g+ > D;n(e;) — n(0)] —
mLuy >4 goes to zero for k = 1,---,d, as A goes to 0. Since < n(e;) —
n(0) >4 5= 0k X(c), we need to prove that

1 .
D](Oé) = m [— <K m™4g >>a,j + }\1_1’)% < 7T1LU)\ >>047j :|

is well defined. From the dual representation for the operator L obtained in
Chapter 4, we have that

m(Lu) = Z Loy ()P, + (1 — 2a) Z Lauy ()W,

z€7Z4 x€Z4d
+ Vx(a) Z L uy(2)¥, + v/ x(@) Z Liug(x)¥,
z€7Z4 z€7Z4

where the operators involved in the previous expression where defined in
(4.3.2).
By construction, uy(z) = 0 for every x in Z¢ (see remark (4.1.1)) and also

_J12ha(x) ify=0,2#0
m(z,y) = {1/2[)i(y) ifxe=0,y#0 .

Then, an elementary computation gives that

miLuy = Vx(0) 3 £owna(a) ¥ = 3 ala)ha (@) {n(@) - a}

x€Z4
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Since
<L n(T) — a>q;= 75 x(a)

we have that
<L mLuy >4 = x() Z a(x)br(z)w;

x€Z4

so that

N /l\lg(l) L mLuy >4 = /1\1_1% < by, m; >0,

with m; defined in (6.0.3). Recall, from Theorem 5.0.7, that we took b, € F.
such that |[hx — fall1.0 goes to zero as A goes to zero, with f, solution of the
resolvent equation (5.0.11). Since m; belongs to $)_; o, we have that

}1_r)r(1) < by, my >00= /l\l_rf(l] < fa,my >0 - (6.0.11)

This last limit exists since fy is converging in || - ||; o (as was shown in the
proof of Theorem 5.0.7) and m; belongs to $_; . Finally,

Dj(e) = —— < mg >a +lim < fa,m; >0,

x(@)

with f, solution of (5.0.11), is well defined and solves the problem. o

We finish this chapter presenting the proofs of some facts mentioned alone
it. We start proving Proposition 6.0.14.
Proof of Proposition 6.0.14:

< Lh, Lh >>a=€li>rcr>10(2€)_d<(—Lf\l)_1 S onih, Y Tth> _

4K,
|| <Ly |z <2y,

lim (20) " sup {2 < ZTth,g >—< —Lg,g>} <

L—o0 gEF,
1 —d _ 2 <
Jim (207 sup (2C1| > rehlhllglh — llgllf <
: —d A~ 2 _
Jim (20)7°C| Y bl =
CY<< _TLshah/>>aﬁ

Where at this point, || f||? =< —Lf, f > for the usual inner product in L?(v,)
and ||g||_1 the dual norm. mi
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Proof of Lemma 6.0.16: If > a;V; = Lu with u € Cy, take inner product
with Lsu on both sides of the previoes expression and use (6.0.8) to get that

0= Zaivi, Loy >,=< Lu, Lyu >,=< Lsu, Lyu >,

Since < Lu, Lu >,< C' < Lyu, Lyu >, we get that Lu = 0. O
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Chapter 7

Regularity of the Diffusion
Coeflicient

The goal of this chapter is to prove Theorem 2.3.1. In order to do that,
we start deriving a convenient expression for the diffusion coefficient. This
new formulation, together with an appropriate way of differentiating, allow
to prove the regularities properties of the diffusion coefficient.

As we mentioned in Chapter 2, the techniques developed to prove hydro-
dynamic behavior of non gradient systems show that the diffusion coefficient
D, j(a) of the hydrodynamic equation for the mean zero simple exclusion
process is characterized by

lélcf <L W; + Di,j(a)[n(ej) — 77(0)] —Lu>,=0,
u 0 -
J

where W; and its Fourier coefficients, 20;(A) = 20;(A, a), are given by

Wiln) = 1/2) 4iWoy = 1/2) yin(—y) p(y)—>_n(0) n(y) a(y) y: (7.0.1)

and
—VX(@) v (1/20(=y) +aaly)) ifA={y} .
Wilda) = —x(a) aly) w if A= {0y} (702)

0 otherwise .

Furthermore, as in Chapter 7 in [1], with the help of Proposition 6.0.14,
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we can prove that

inf sup < W; + Z D; j(a)[n(ej) —n(0)] — Lu >,=0. (7.0.3)

u€Co ¢[0,1] J
Also, as in Lemma 5.2 of [5], we can prove that

inf sup < W+ Z D, i(« —n(0)] = L'u>,=0, (7.0.4)

u€Co oe(0,1]

where W} is obtained replacing p(y) by p(—y) in formula (7.0.1).
To get an explicit formula for the diffusion coefficient, go back to Theorem
6.0.12 to get that

D;j(a) =

-1 ‘ .
@) L mW; >a,; +}\1_T>% < .m0 ,

where m; is given in (6.0.3) and where fi is the solution of the resolvent
equation N N

Ay = Lafy = —F20; .

Elementary computations give that

1 1
< mWi >a= —5x() Y_vi 5 p(y) = —5x(@) 03y,
so that
1 : fA
Dij(a) = 5 o5 + limx(a) < O

Let fi = % /x(c) to obtain that fi is the solution of the resolvent equation
)‘fz)\ - Qaﬁ\ =m
and that

1 , Z.
Dij(a) = 5 0i; + lim x(a) < f3,m5 >0 (7.0.5)

2

Remark 7.0.18. As we observed in Remark 5.0.11, we can find §* in 10
such that £,f* = —m,;. Then the limit for defining the diffusion coefficient
is equal to < f',m; >, the value of m; at {'. This allows us to prove that
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D(a) > 1/20 in the sense of matriz. It is enough to prove that Y a; <
fiom;, > a; > 0 for every ay, -+ ,aq. Since £,(3 a;f') = = amm;, we get
that

Zai <K fi,mj, > CLj = Zaifi,Zakmk >= || Zaifi”io Z 0 .

Proof of Theorem 2.3.1: Considering the formula presented in (7.0.5)
for the diffusion coefficient of the hydrodynamic equation, the proof of its
regularities properties is a simple consequence of the following lemma.

Lemma 7.0.19. Take v and &, finite supported functions in F, with values
not depending in «. Consider the resolvent equation

Mala) = Lafa(a) =t . (7.0.6)
For each A > 0, consider the function &y: [0,1] — R defined by
@)\(Ck) =K f)\(Ck) , 6 >0,0 - (707)

Then, there exists a subsequence A\, | 0 such that &y, converges uniformly
to a smooth function on [0,1]. Furthermore: the limit is continuous in the
whole interval and C* in its interior.

Proof:

To prove the existence of such subsequence we will show that the functions
&, are smooth for each A > 0 and we will get uniform bounds, in A > 0, for
the L norm of the derivatives:

sup sup [BX(a)| S Ay Ve, Vi,
A a€le,l—€]

where the upper index indicate the k-th derivate. For £k = 0 we need to
show that the functions &, are continuous and uniformly bounded in [0, 1].
In order to get the announced bound for £ = 0 bound, take inner product
< -, - >0 with fy on both sides of equation (7.0.6) and use that | <
u, 0 >0 | < [|ulliol|o]|-1,0 to get that

<K Mal), a(a) >00 — < Lafa(a), fala) >0 = <t fala) >00,
Alia(@)ll5 o =+ fa(@)] Iix(@)[rollell-10 5
[7x(c)] [¥f[-10 -

2
1,0 1,0

1,0
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Then, for every A > 0, we have that
[Ba()] = | < fa(@), & >0 | < [t]l-1,0/I6]]-1,0

where, by hypothesis, the last term does not depend on a.

The following step is to differentiate (and also prove continuity on the
whole interval [0, 1]). This is the content of Lemma 7.0.20, below. It says that
we can differentiate fy(c) in || - ||; 4. Furthermore: the derivate, fjambda(«)
satisfies the resolvent equation

Myle) = Lafy(@) = L(a)fr(e),

with £'(«) defined below (formula (7.0.12). Then &) (a) =< fi (@), & >0 .
Once we have differentiated, we need to bound. For that, recall Proposition
5.0.8. and Corollary 5.0.3 to get that

gy (@)l < [[€(@fr(@)-10 < Cla)[lfr(@)]|10-
Collecting all this estimates, we get that

|&)\(a)] = | < f)\( ), & >0 | < [[\(@)]lio I6]-10
C(a)|[t]l-1.0lIS]] 1,0

for C'(«) continuous in (0, 1). Now, applying to Corollary 5.0.3, we can check
that £'(«) fa(a) satisfies the hypothesis of Lemma7.0.20. So, iterating the
previous argument, we can differentiate and bound. O

We end this chapter with the announced result that gives sense to differ-
entiate.

Lemma 7.0.20. Consider g(«) with ||g(c)||_, , < oo for every k. For each
A >0, let fi(a) be the solution of the resolvent equation

Afa(a) = Lafale) = g(a) .

Fiz o € (0,1). If
lim g + £) — 9(0)-1: = 0

for all k > 0, then we get that

lim (@ + b) = fa0) 0 — 0 (7.08)
lim (@ + B) = fa(0) o = 0, (7.0.9
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for all k. Furthermore: suppose that there exists a function &(«), with
|&(a)||—16 < 00 for every k, such that

2t =0 gy o0 (7.0.10)

as h — 0 for every k. Then, for a € (0,1) and X\ fized, there exist §y(«)
solution of the resolvent equation

AFa(a) — £a8a(a) = B(a) + £ fx(a) . (7.0.11)
where ,
£ o==-28;+Vx(a){L, +£_}, (7.0.12)
such that

as h — 0, for every k.

Proof: We have fixed @ € (0,1) and A > 0. Call R(a) = /x(«). By
Proposition 5.0.8, in order to guarantee existence of solution for the equation
(7.0.11), we need to prove that ||&(«) + £, fr(a)||-11 < oo . By hypothesis,
|&(a)||-11 < oo. For the other term, use Corollary 5.0.3 and Lemma 5.0.10,
for each of the following inequalities

|€5x ()] -1,0 < Co[[fa(@)]lin < Crllg(@)|| -1,

where the operator £, stands for £,, £4, £,, £_. Then, we get that

1€afx(@)][-11 < Cla)llg(@)]| -1

Let §a(«) be the unique solution of (7.0.11). We want to see that the
incremental quotient of fy(«) (in ) converges to Fx(«).
Consider the following resolvent equations:

Mala) = Lafala) = gla)
Mala+h) = Larmirle+h) = gla+h)
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Subtracting them we get that

Air(a+h) = fa(a@)] = Lalfra(a+h) = fr(a)] = (7.0.13)
gla+h) —gla) —2h Lyfr(a+ h) (7.0.14)
+(R(a+h) — R(a))(Ly + £ )fa(a+h).

At this point, using the bounds obtained in Proposition 5.0.8 and comput-
ing the ||-||_1x norm of the right hand side of (7.0.13), we get the convergence
in (7.0.8).

Consider the following objects

] fala+h) —fa(a)

f)\(a7 h) h - 8')\(&) )
g*(a’ h) _ g(OJ + h}z — g(a) . @(a) ,

. Rla+h)—R(a)
R*(a,h) = > — R'(«) .

Subtract equation (7.0.11) from equation (7.0.13) divided by h to get that

)‘f;((% h) - 20&&(0@ h) = g* (04, h) - 2£d[fz\(a + h) - f/\(OZ)]
+ R(a,h)(Ly + £ )fa(a+h)
+ R(a)(Ls + L) [a(a+h) = fa(e)] .

Using the hypothesis concerning g(a) and &(«), Lemma 5.0.10 and Corol-

lary 5.0.3, we can see that the || - ||-1 x norm of each term on the right hand
side of the previous expression vanishes as A | 0. Then, applying to Lemma
5.0.10 we conclude the result. O
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Chapter 8

Relative Entropy Method.

In this chapter we prove Theorem 2.4.1, announced in Section 2. Recall the
the initial profile py is required to be strictly contained in (0,1). If 0 < K,
and Ky < 1 are such that K, < py(u) < K, for all u € T¢, the maximum
principle implies that K; < p(t,u) < Ks, for any time ¢, for all u € T¢.

Fix @ € (0,1). Let vY denote the product measure with density a on
xn = {0,1}T%. Given the probabilities measures x4 and v on yy with densi-
ties f and g relative to v, respectively, we have that the relative entropy of

(6]

a measure y with respect to the measure v, denoted by H(u/v), is given by
| rostsa) £ ad (8.0.1
XN

Denote by ¢;'(n) and f} the density of v}, , and 4" with respect to the

product measure %, respectively.
dvl, du
gV = et N G (8.0.2)
dvl dvl
The non-gradient method used to deduce the hydrodynamic equation re-
quires to consider a small perturbation of y[])\([t’,). For local functions Fy,--- , Fy €
Co and real regular functions G4(t,u), -+ ,Gy(t,u) to be determined later,

define the density with respect to the reference measure v by:

d
uen) = e {5 3 NGt /N mEoi ), (803)

" Z
il zeTd, i=1
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where Z, y is a normalizing constant. Let 1}, be the measure corresponding
to the density ¢m: dvly, = ¢ dvl.
Theorem 2.4.1 is a simple consequence of the following two results.

Lemma 8.0.21. For F € (Cy)?,

lim N~ H (1 / (t)) (iV/VgF) =0,

N—oo

uniformly for t in any compact set.

Proof: Considering the formula for the relative entropy given at (8.0.1), we
get that

_ %/)
V1) = B )] = N [ oS50 N

From (8.0.3), we get that

log(th ) 1/NZ ZG (t,x/N) 7, F; —log(Z:.r) ,

erll

so the result holds once we prove that log(Z; r) = O(N%!). To see this,
write

Zyp = E,,, [exp{N"" Y Y Git,x/N) 7, F}] . (8.0.4)

a:E']T‘,lV =1

O

Proposition 8.0.22. Recall that dv), = ¢, dvl. Then,

inf  lim N™“H(u /z/t],VF):O.

Fe(Cp)d N—oo
The rest of this chapter is consecrate to prove Proposition 8.0.22. De-
note by Hf(t) the relative entropy of ;" with respect to v: H{(t) =
H(py /vi). Our goal is to estimate the relative entropy Hy(t) by a term
of order o( N, F) and by the time integral of the entropy multiplied by a con-
stant: H(t) < o(N%, F)+~y~1 [T HE (s)ds , with inf pe(gg)e im0 N~ %(N4, F) =
0. In this case, Proposition 8.0.22 follows from Gromwall lemma.
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By Lemma 8.0.21, it is enough to prove that for some v > 0

ngff) - H]]If,(do) < N7(N". F)+97! /0 M ds.  (8.0.5)

Consider Hy(u) = H(t,u) = logp(t,u)/(1 — p(t,u)). At this point we
need the initial condition p,(-) strictly conteined in (0,1) and use the max-
imum principle to guarantee that the function H(t,u) is well defined. A
straightforward computation shows that if G;(¢,u) = 0;Hy(u), then

Oyl _ IO < / N- dz 3" 0iH(s,x/N) N {m,W; + Lyr. F, +
i=1 zeT4,
ZD,J V@)Y @+ eg) — N (@)]hds| (8.0.6)
+E,, / N4 Z 0;;H(s,z/N) Txhl,i,j(n)ds]
1<4 j<dxe']1‘d
+E,, / NS ST 0 H s, x/N) dyy(n ()]
1<4,j<d zeT¢,
+E,, / N4 Z 0;H(s,x/N)0;H(s,x/N) Txhp’i’j(n)dS]
1<4 j<dx€']rd
By | [ N7 %) = pls, x/N)]ds|
e'ﬂ‘d
+0N(67 ]-) )

where oy(e,1) — 0 as N — oo for all ¢ hy;; belongs to Cy for all i, j;
wWr = %Zyy Wg, with W~ denoting the currents for the dual process;
= D;;(a);n

d; j(c) “(2) = 0+ 1) 2, ay<ely) and

hrij(B) = Eyylhpi ) =< —L°F;, F; >0 +1/2 07 ,6(1 = B) .

The non gradient techniques developed when deducing the hydrodynamic
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equation allow to prove that for 1 <1 < d,

inf lim lim E, / N Z 0;H(s,x/N) N {r,W} + Ly1.F; +

F;eCy e-0 N—oo
zer

Y Diy ™ (@)™ (@ + e5) =N (@)]}ds| = 0.

Since = E,,[h1;] = 0for all 5 in [0, 1], the second term on the right hand side
of (8.0.6) is negligible. For the remainder, use one and two blocks estimates
to get that

HE(®)  HEO) _

N N = (8.0.7)
¢
B[ [ V1Y 0t s,/ il ()]
1<Z]<dxer
+E,, / N~ Z 0;H(s,x/N)0;H(s,z/N) Ep,i,j(né(x))ds]
1<Lj<dxer
_ 8 N
E,, / ‘ Z ~ p(s.2/N))ds]
+CI(GJN7£7F) ’
with
inf lim lim lim Cy(e, N,{,F)=0.
FeCo b—00 e—0 N—oo
The following step consists in replacing g, ; by h,;, given by
- 1
hij(B) = 5[Di;(B) + Dia(B)]A(1 = ) , (8.0.8)

where D; ; are the coefficients appearing in the hydrodynamic equation. The
two identities presented in (7.0.3) and (7.0.4), respectively, together with the
table of computations developed in (6.0.8), allow us to perform the desired
replacement.

An integration by parts together with the fact that
O;H (s,u)p(s,u)(1 — p(s,u)) = dip(s,u), allow to write
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/T Y OuiH(s,u) diy(p(s,u))du =

d .
N 1<4,j<d

_/Td Z 0;H (s,u)0;H (s, u) ilz’,j(,O(S,u))du_

N 1<i,j<d

Computing 0; ;H (s, u) and recalling that p(s,u) is solution of the Cauchy
problem (2.4.1), we get that

S {00 H (5, )y (o (s, ) + 00 (5, )0, H (s, u) i (p(s. ) } =
Osp(s,u)/[p(1 = p)] -
Considering all the previous observations, we get that

Hy(t) _ Hy(0)

Nd ]yd -
CofB [ [ N7 03 00t/ V) (o)

1<i,j<d peTd,
—di5(p(s,2/N) = di ;(pls, /N[ (x) = pls, /N)] |
B [ [ NS o (s wlgH (s u) {sln'(e) -
0 1<i,j<d geTd,

hi(p(s,2/N) = By (p(s, 2/ N)n'(2) = pls, /N)]}ds] }

If d; ; and h; ; were regular functions in the whole interval [0, 1], we could

replace the last two lines in the previous expression by C'(D, h)E, [ [y N~ [ (w)—

p(s, x/N)]Q}ds] , and conclude the result in the usual way (see Chapter 6 [1]).

The same bound holds by coupling arguments even knowing regularity of the
functions only in the open interval (0,1), and this concludes the proof.
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Appendix A

Estimates on the operators £,

24_ and £_

In this Appendix we prove some results involving the operators £, £4, £
and £_. Most of them were presented in Chapter5.

Recall that for f € F, §(S,A) = f(A) for all z in A.

A simple computation shows that the operators £, and £, send Z, , into
them self, while £, and £_ map Z, , into Z, 4+, and Z,,_1, respectively.

The following identity illustrate the fact that the space Z, enjoys some
special properties. For every f: .1 — R

(L-H(9) = =2 a(@)i{z}) -
T#0

In particular, (£_f)(¢) = 0 for all § in Z,; because in this space f({z}) =
f({—x}) and a(-) is asymmetric. In contrast, (£.g)({z}) = 0 for all functions
g:&0— Rsothat, forall finZ,; and all g: £, 9 = R,

£f=0, £49g=0. (A.0.1)

Other important consequences of working on the space Z, are stated in the
following lemma.

Lemma A.0.23. For every n > 1 and every finitely supported functions u,
v:&, >R
< Lo >= —<u, 40> .
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For every finitely supported functions §, g in L, ,—1, L. respectively,

1 1
— < g >———< L.g> .
+1 +f7g f? g

Proof: The first identity relies on the fact that ) ,a(y —2) = 0. Note,
however, that both pieces of the operator are needed.

The proof of the second statement is more demanding. Fix finitely sup-
ported functions f, g in Z,,_, Z.,, respectively. By the explicit form of
'Q-I—v

<g.Lif> = 2> Y a A)f(A\{y})

A€é, \n x,yEA

+ 2 Z > ale { (AN {2}) = f(Sa[A\ {1 }

Considering that S;[A\ {z}] = S A\ {—z} and since g(S,A) = g(A) for x
in A because g belongs to Z, ,, a change of variables B = S, A, ' = —x in
23 ace., 2awea a(2)g(A)F(S:[A\ {z}]) permits to rewrite the second term
on the right hand side as

4y al@) Y a(AfA\ {z})

x#£0 A€€in
Az
because a(—z) = —a(x). We claim that
Y oalz) Y (WA {z}) = Z ) Y s(FAN{y}) -
A

(A.0.2)

We conclude the proof of the lemma assuming (A.0.2), whose proof is

presented at the end. It follows from identity (A.0.2) and the previous ex-
pression for < g, £,f > that

<g Lif> = ( ) > al A)F(A\{y})

A€ n x,yeA
+2<1+—) 3 Y a(@) g(A)f(AN {z}) -
A€&xn TEA
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The first term of the right hand side, which can be written as

(1+—)ZZ AN ) Y aly — ),

Aay

is equal to

—2(14 1) Y aly) 3 s ()

y£0 A€
—2(14 ) Y aly-2) Y s(iA\ )
z,y#0 A€ n

Ady,Adx

because Y 4 a(y —z) = —a(y) — X, 200¢4 @(y — 7). The first term of this
formula cancels with the second one in the last expression for < g, £, >.
Therefore,

<ogis=-20142) Yaly-) Y oA\ {n).
z,y#0 A€&in
Ay, Adx
To conclude the proof of the lemma, it remains to change variables B =
A\ {y} and to recall the definition of the operator £_.
We turn now to the proof of Claim (A.0.2). Since for y in A, g(A) =
9(S,A) and since |A| = n, the left hand side of (A.0.2) is equal to

T a@) YYD aS,AAN o)

x#£0 A€&. n ye AU{0}
Az yF£
= - Z ) D a(S,AfAN{z}) + Z ) D s(AfAN{a}) .
z,y#0 A€Eun a:;éO A€, n,
i Adzy Adz

Notice that the second term on the right hand side is precisely the original
one. Consider the first term. Perform a change of variables B = S, A,

rewrite (S_,A)\{z} as S_,(A\ {z —y}) and recall that f(S_,(A\{z—y}) =
f(A\ {z — y}) if —y belongs to A because f is in Z,,_1, to rewrite this

expression as
LS al) Y a(AAN - )

x,y#0 A€ n
yF# Adz—y,—y
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A change of variables #' = x — v, ' = —y, shows that this expression is equal
to

S el —y) Y a(A)AN o).

z,y#0 A€&u n
Adx,y
To prove (A.0.2), it remains to recollect all previous identities. O

Corollary A.0.24. The operators £, + £_ and £4 are anti-symmetric with
respect to the inner product <, >>¢:

<F(Lr+L)g>00= — < (&4 + L), 9>00

<, Lag 00 = — < Laf, 9 >00

for all finitely supported functions f, g in F.. The same statement remains
in force if £, + £_ and £4 are replaced by I1,(L, + £)I1,, and 11, £411,,,
respectively, for every n > 1 with f and g in J,, defined in (5.0.4).

Remark A.0.25. From the previous Corollary, we get that < £4f,§ >>0,0=
< L4f,§ >00 for every | in F.. Consider k > 1. Given | € I¥, take §, € F.
such that ||f, — fllox goes to zero as n 1 co. Since £, and £5 are bounded
operators from 1F to 1°, we get that < £.§, >00=< Lsf, § >00-

Recall Theorem 5.0.1 from Chapter 5. Hereafter the constant Cy may
change from line to line.

Theorem A.0.26. There exists a finite constant Cy, depending only on the
probability p, such that

< Laf, 9 >2< Cp < f, —Lf >< g, —Leg >

for each §,g in L, ,. The same result remains in force if £4 is replaced by £,
or £_ with g in L, 41 and I, ,_1, respectively.

The proof of Theorem A.0.26 is divided in several lemmas. Before start-
ing, we need to introduce some definitions and recall some results. Since the
|| - [[1 norm plays a crucial role, we give its explicit form. For f € Z, ,, from
the definition of the operator £; given in (4.2.9), we get that
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<H-Lf> = 1/4Y sy—2) Y [[(Bay) — {(B)? (A.0.3)

+1/2) s(y) Y _[§(S,B) — §(B)]*
Y By

where B, , was defined in (4.2.7). Observe that first term of the previous
expression, may be written as

% dos) Y Y HAU{z+bh) - AU )] (A.0.4)
bezd 2€Zd A€« n_1
An{z,z+b}=¢

Theorem A.0.26 will be proved for loop probabilities. A probability = is
said to be a loop probability of length m if it is of the form

1
m(z) = Zal{zzyi—yi—l}

i=1

where 0 = 4o, Y1, ..., Ym = Yo € Z%. Tt will be denote by 7 = {40, , Ym }.
Consider the jumps a; = y; — y;_1 and think that 7 assigns mass 1/m to
each a;. Observe that they do not need to be different so 7 is not necessar-
ily a uniform probability measure. The symmetric part of 7 assigns mass
1/2m to +a;, for i = 1,...,m. The value of the anti-symmetric part of the
probability 7 is 1/2m for a; and —1/2m for —a; for i = 1,..., m. We prove
in Appendix B that every mean zero probability p may be decomposed as a
convex combination of loop probabilities. Considering formula (A.0.3), there
is no loss of generality in the proof of Theorem A.0.26, assuming that p is a
loop probability.

For a loop probability we prove Theorem A.0.26 by induction on the
length of the loop. For the inductive step, we need to relate the || - ||
norms corresponding to different probabilities. For this purpose, we define
the following objects. Given a probability p, we say that x is in the support
S, of pif p(z) > 0.

S,={x:p(x) >0}. (A.0.5)
We say that x is attainable if it may be connected with the origin in
the following sense: there exists a sequence zy = 0,21,...,2, = = with
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p(zis1 — zi) > 0. We say that z is attainable after m steps if m is the
length of a shortest path connecting = with the origin. We note by A, the
set of attainable points for the probability p. Observe that for mean zero
probabilities, A, = A; where s is the symmetric part of the probability p.
This result is clear for a loop probability and then, by the decomposition
result, the same holds for every mean zero probability.

A straightforward computation considering that we are working in Z, ,,,
shows that Dirichlet forms associated to different probabilities are related in
the following way:

Remark A.0.27. Given two mean zero probabilities py and ps with S,, C
A, , there exists a finite constant C' such that

< fa_££1f> S C < fa_££2f>a

where £ are the operators defined in (4.2.9), corresponding to the probabil-
ities p; fori=1,2.

In what follows, we deal with the operators defined in (4.3.3), associated
to different probabilities. In order to avoid confusions, we will use £7 for
x = s,d,+,—, to denote the corresponding operators related to the proba-
bility 7. We are now able to start proving Theorem A.0.26. Almost all the
computations are obtained performing some change of variables and consid-
ering that we are working with functions in the space Z,.

Lemma A.0.28. Given a loop probability m there exists a finite constant C,
depending only on the probability w, such that

<g L1f>*< Cp <f,-£[f><g,-L{g>,
foreach €L, 1, 9 €Ly

Proof: The proof of this result is by induction in the length of the loop.
We show the inductive step and prove the result for a loop of length three.
Note that the constants C' and C); may change from line to line.

Fix a loop probability @ = {yo, - ,¥m}. An elementary computation
shows that
<gLif> = 2) > aly—x)g(A)f(A\ {y}) (A.0.6)
A€y n xyeA
+ 2 3 S a@) ()[4 {2}) - §(S.(4\ {2})] -
A€y n €A
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Observe that a(y — x) = +1/m for y — x = +a; and a(y — ) = 0 otherwise.
Then, except for y —x = a; or y —x = —a;, a(y — x) = 0. Thus,the first term
in the right hand side of (A.0.6) is equal to

“Y Y Y fAuesAu e +a)

i=1 2#£0,—aq; A€&i n_2
An{z,z+a;}=¢

=YY Y fAuesu s -a)).

1=1 2#0,a; A€ n—2
An{z,z—a;}=¢
We perform a change of variables in the second term of the previous expres-
sion and get that the difference is equal to

%Z D [f(AU{a:})—f(AU{x+az’}) g(AU{z,z+a;}) .

i=1 x#0,—a; A€&« n_2
An{z,z+a;}=¢
Recall that a(z) = 1/2m for x = a;, a(z) = —1/2m for x = —a; and use
this fact to write the second term on the right hand side of (A.0.6) as

% DY [f(A) - f(SaiA)] g(AU{ai})

i=1 A€&« n-1
An{a;}=¢
m

3 Y [ - 15w )]s {-ai})

=1 Aeg*,n—l
Aﬂ{—ai}:qb

1 m
=23 3 [HA) ~ f(Sa )] s(AU a))
Ci=1 A€E. 1
An{a;}=¢
where we performed a change of variables in the second line (B = S_,,B
and used that for g € Z, we get that g(S,, BU {—a;}) = g(S.,(BU{a;})) =
g(B U {a;}) to obtain the last identity. Let

No= 30 3 [fAufe) - fAU{z+) |s(Au{r b)) . (A.07)
x#0,—b  A€&i n_2
An{z,x+b}=¢
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My= > [§4) = H(S4)|s(A U b)) . (4.0.8)
Aeg*,n—l
An{b}=¢

so that
1 — 2
Tis=— S N, + =5 M, .
<g,LTf> m; Z+m; .

We are ready to perform the inductive step. Let z = > " . a; and con-
sider the loop probabilities w1 = {yo, y1, Y2, Yo} and T = {yo, Y2, Y3, ** » Ym }
corresponding to jumps ai, as, z and —z,as, - - - , @y, respectively. Observing
that N_, = —N, and M_, = — M, we get that

<g,L0f> =1/m[(Ney + Noy +N,) + N_, + > " Ny,
+1/m [(Ma1 + Ma2 + Mz) + M—Z + ZZ? Mai]
=3/m < g, Lf>+m—1/m < g, £7f> .

Since S;, C A, by Remark A.0.27 we get that < j,—£lif >< C <
f, —£7f > for ¢ = 1,2. This fact and the inductive hypothesis give that

<g,Lhf>" < C{<f,£’s”f><g,£7s”g>—i—<f,£7sf2f><g,g7sfzg>}
< C <, LT ><g,87Tg >,

which concludes the inductive step.

Now, we need to prove the estimate for a loop probability of length three.
Consider 7 corresponding to jumps a; for ¢ = 1,2,3 with a; + as + a3 = 0.
We start showing that {377 N, }? < C <}, £7f >< g, £7g > and then we
prove the same kind of bound for {Z?:1 M,,}?. To keep notation simple, let
d =1 and take a; = 1, ap = 2 and a3 = —3. According to definition (A.0.7)
for Ny, we get that
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SLiNe= > Y [HAU{z) —f(AU{z+1)|s(A U {z,a + 1)

z#0,—1  A€&¢ n-1
An{z,x+1}=¢

+ D > [f(AU{fE+1})—f(AU{x+3})]g(AU{:c+1,x+3})

r#£—1,-3 A€y n—1
An{z+1,z+3}=¢

+ Y > [aufz+sh - fAaush]a(Au s +3)),

2#0,—3  A€&x n—1
An{z,z+3}=¢

(A.0.9)
where for the second and last line we performed a change of variable. We
will decompose this sum in three terms: Zf’zl No, =T, + T, +T5. The
decomposition appears because we want to add over the same values of z
and then we work for adding in the same sets A. For T3, take from (A.0.9)
xr = —3 in the first line, x = 0 in the second line and = —1 in the last
one. T; is obtained taking x # 0,—1,—3 in the three sums of (A.0.9) and
imposing A to contain x 4+ 3, x and x + 1 in each line, respectively. Finally,
T; is obtained taking x # 0, —1, —3 in all the sums and imposing A not to
contain each of the previous elements. Recall that we are working with finite
sets A in Z¢. Sometimes we omit from the notation the cardinal of A. Some
others we put in evidence that AN {0} = ¢. For T}, we get

no= Y [HAU{-8) — HAU{-2}|a(AU{-2,~8N0.10)

AN{—3,-2,0}=¢

+ Y [fau{h) - (aush]eau (1,3}

AN{0,1,3}=¢

+ Y [auEh-iau{-1h]aau{-1,2}).

AN{—1,0,2}=¢

Let S3A = B in the second line of (A.0.10) and Sy A = B in the third one to
get that
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no= Y [fAu{-3) - fau{-2}|s(au{-2 -3}

AN{—3,-2,0}=¢

> [iSsAU 1)~ i(SssA U {3D)]a(SsA U {1,3))

AN{—3,-2,0}=¢

LD

AN{—3,-2,0}=¢

f(S-2A U {2)) — §(S2AU {~1})|a(S24 U {-1.2}) .
Recall that, by definition of S,, S_sAU{-1,2} = S 2(AU{-2,-3}). In
this case, since f and g belong to Z,, we get that g(S_,AU{-1,2}) =

g(S 2(AU{-2,-3})) = g(AU {-2,-3}). Tt is not difficult to check, using

this kind of identities, that the previous expression vanishes. For T5, we get
that

L, =YY [f(AU{xx+3})—f(AU{x+1,:1:+3})]g(AU{x,x+1,:1:+3})
+ X5 AUz, + 1) = (AU {22+ 3} |o(AU {z,2 + 1,2+ 3))
+E T [fAU{z+ 1043} — (AU {n 2+ 1] |a(AU fo, 0 + 1,0+ 3)),

where the first sum in each line is for z # 0, —1, —3 and the second one is
for A € £,,,—3 such that AN {z,z+ 1,2+ 3} = ¢. Then T, vanishes too.
Finally, for T3, we get

T= Y M [iAuf{e }) - f(Aufe+1)]g(AU{nz+1}) (A0.11)
33 HAU{r 11 = (AU {o+3D)]g(AU {2 + 1,5+ 3})
+3 S [iAU e +3}) - (AU {eh)|s(AU {2 +3})

where the first sum in each line is for z # 0, —1, —3 and the second one is for
A € &, g such that AN{z,2+1,2+3} = ¢. Add and subtract f(AU{z+1})
in the first factor of the last line in (A.0.11) to get that
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T=Y% [(AU{z+3}) (AU {o+1})]

(AU {o,2+3}) — g(AU{z+1,2+3})
+[f(AU{z+1}) — j(Au {z})]

o(AU {2, +3}) — g(AU {z,2+1})].

By Schwarz inequality, the previous expression is bounded by C' < §, —£7, >
< g,—L7, g >, in view of formula (A.0.3).

We turn now to the expression S0, M, (see (A.0.8) for definition of
M,). Tt may be rewritten as

> 2 [f(A)—f(SaiA)]g(Au{ai}):

i=1 Am{oaai }:¢

> i) - i(si4)]e(au {1} (A.0.12)
An{0,1}=¢

+ Y (i) — S e(siA U {2))

An{1,3}=¢

- Y [ - iS4 a(ssau {-3}

AN{0,3}=¢

where the last two terms in the previous expression are obtained after the
change of variable SoA = B and S_3A = B, respectively. We decompose
each expression in two, to obtain sums carried over the same sets. In the
following expression, the first three terms correspond to the terms obtained
by imposing A not to contain 3, 0 and 1, respectively in each of the three last
lines of (A.0.12). The sum over the sets A that contain 3, 0 and 1, correspond
to the last three lines. Therefore,
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Do Mu= Canpimes |4 - (S:4)|a(AU (1))

+[1(514) = §(S;4)] a(s14 U {2})

—[14) = §(S;4)] s(Ss4 U {-3})

+[i(Au {3} — f(S14u {21 |a(A U {1,3})
(
(

+[{(8140 {-1}) = §(Ss4 U {-3})]a(S14 U {2, -1})

—[HAU{1}) = 1(Ss4 U {2} |a(Ss4 U {3, -2}).

After some operations recalling the definition of S, and the fact that f
and g belong to Z, (as we did when working with T7), we get that the sum
of the last three terms vanishes. For the three remaining, add and subtract
f(S1A) in the third line, to get

> i) - i) [s(au {1h) - g(au {3})]

AN{0,1,3}=¢

D [f(SlA)—f(SgA>] [g(Sl(Au{s}))— g(Sg(AU{S}))].

AN{0,1,3}=¢

By Schwarz inequality, this expression is bounded by C/||f||1||g||1, in view of
expression (A.0.3) for || - ||;. This concludes the proof of the lemma. o

Lemma A.0.29. Given a loop probability  there exists a finite constant Cy,
depending only on the probability w, such that

< gang >2§ C’0 < f’ E’ff >< gag’fg >,
for each f € I, g € I,.

Proof: This result follows from Lemma A.0.23 and Lemma A.0.28. In any
case, we can perform the computations. For the inductive step,

No= Y > [Aufe b - f(Au{zh]s4),

a:;éO,—b AEE* n
An{z,z+b}=¢
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we get that

1 m
is=—S "N, .
<g, &> m; l

As in the previous lemma, define z = > . a;. Observing that N_, =
—N,, we obtain that

m—1

3
<gLlj>=— <g L0f >+ < g, L£0f >,

where 7, and 7, are concentrated in aq, as, z and —z, as, . . ., a,,, respectively.
This proves that the induction works. To prove the estimate for the case
m(a;) = % where a; + as + az = 0, we perform the same kind of estimations

done in Lemma A.0.28 to show that {327 | N, }2 < C < f, £7f >< g, £Tg >.
O

Lemma A.0.30. Given a loop probability 7 there exists a finite constant Cy,
depending only on the probability w, such that
< g, L0 >?< Oy <}, L7 >< g, L7g >
for each f, g9 € Z,.
Proof: We follow the strategy used in the previous cases. Observe that
<g,L4f > = 1/(2m) 3200 No, + 1/(2m) 3200, Mo,

where

No=Toso X ace (AU L +0) = f(4,U(s))]
[8(4 U {2}) +a(AU {o +0})]
My =Y aee.. [H(Sh4) = 1(4)] [8(4) + a(S4)] -

An{b}=¢

This decomposition allows us to repeat the same kind of computation
performed when proving Lemma A.0.28 and Lemma A.0.29. O
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Appendix B

Decomposition of a mean zero
probability as a convex
combination of loop
probabilities

We start explaining what a loop probability is. Given ay,...,ay points in Z¢
such that SV a; = 0, consider the probability 7 that assigns mass 1/N over
each a;, for : = 1,....N. As we do not require the points a; to be different,
this is not necesarily an uniform probability. Observe that 7w is a mean zero
probability; we call it a loop probability. In order to motivate the name of
this probability, set y; = Z;Zl a; and observe that y, = 0. This means that
starting from the origin, jumping from y; to y,; we arrive back to the origin.
The 41, ...,y form a loop (or cycle). y;11 — y; = a; is called a jump.

Definition B.0.31. A probability w is a loop probability if there exists a
closed path vy, ..., y, in Z such that

1 n
71-(:E) = ; Z I{x:yi+1—yz’}‘
=1

We will prove that every compactly supported mean zero probability in
Z® may be written as a convex combination of loop probabilities.
Lemma B.0.32. Given a probability P in Z¢ such that P(x) = 0 for |x| big
enough (compactly supported) and Y x P(x) = 0, there exists a;; > 0 with
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>y

=1 and loop probabilities m; such that

P:ZOéj Ty

Proof: We will use z; to denote vectors in different spaces and z; for the
i-th coordinate of the vector z;. Observe that if P(x;) € Q for all z;, then
P is itself a loop probability. In this case we get that P(x;) = m;/b with
> m; = b. This corresponds to a loop probability taking the jump z; my
times.

We will prove the lemma by induction in n, the number of point in the
support Sp of the probability P, defined in (A.0.5) (n = #{x : P(z) > 0}).

1-

: n=2. In this case we get that exist x,,z, € Z% such
x1P(21) + 2P (22) = 0 and P(z1) + P(z2) = 1.

This two equations determine P. Solving for P(z;), P(xs), we get that
P(z1) = —ay/ (2} — ) and P(zp) = 27/ (a — ) ,
independently of i. This shows that the probability P takes values in

Q and then it is a loop probability.

Inductive step: Consider P supported in a set of cardinality n: #Sp =
n. We would like to write

P=cpi+(1—c)P

for same 0 < ¢; < 1, p; a loop probability, P a mean zero probability
supported in a set with less than n points. In this case, by the inductive
hypothesis, we will be able to decompose P as a convex combination
of loop probabilities and therefore, the same holds for P.

The problem is reduced to prove the existence of 7, a loop probability
concentrated in Sp = {xy, -, z,}. If such m; exists, take

¢ = miin P(xz;)/mi(x;).

Since both P and 7, are probabilities, ¢; < 1. If ¢, =1 then P =7, and P
is a loop probability. Otherwise, P defined by

Is(xz) _ P(z;) — ey ()

1—01
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is a mean zero probability whose support is smaller than the support of P,
as we wanted.

We will now prove the existence of a loop probability concentrated in
x1,---,%,. We are looking for a linear combination of x; with rational posi-
tive coefficients that adds up to zero, i.e., ¢; € Q, ¢; > 0 such that > ¢; z; = 0.
Then, we normalize and obtain the desired probability.

Without loss of generality, we may suppose that {x1,...,2,} is a basis of
the linear subspace in R? generated by zi,- -+, z,.

Set w; = x; for j = 1,...,s. There exist constants 8F € Q (after all the
vectors are in Z4) for k=1,...,sand [ = 1,...,n such that

S

l
E 5k W = T
k=1

Consider the matrices W € Q¢ where W;; = wj-, B € Q%™ given by

By = Bt and X € Q" with X, ; = x; With this notation, we get that
WB=X.

Let o € R". Since the columns of W are linearly independent,

Y aiw; = Xa = WBa=0 <= Ba=0 (B.0.1)
=1

We have chosen the basis w; in such a way that w; = x;, so the first s X s
block of the matrix B is the identity in R***. We have B = [I;, A] where
Ais an s X (n — s) matrix with rational coefficients. For each o € R", put
a = (aq,09) where &y = (g, -+, ;) and Gy = (yq, -+ ,0p). With this
notation, condition (B.0.1) may be read as

Y airi=0 = & =—Ad (B.0.2)

i=1

Now consider the linear operator (—A) : R"* — R®. By hypothesis, we
know that Y P(z;)z; = 0. Then, using condition (B.0.2), we set that

(P(x1), -+, P(xs)) = —A[(P(z511), -+, P(n))]
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with all the entries of P(x;) for 1 < i < n positive. By continuity of the linear
transformation (—A), we can choose (¢s11, - , qn) close to (P(xs11), -+, P(xy)),
positive and rational, such that (—A)[(gsi1, - ,qn)] is also positive (and
clearly it is rational because (-A) is a rational matrix). Then
(= A)[(gss1, 5 @)l (@sa1, -+, qn) are the coefficient that we are looking for.

mi
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