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Introduction

It is an open problem to determine for which maps f a compact invariant set
A carries an ergodic invariant measure of full Hausdorfl dimension. This is known
when f is conformal and expanding, and is a consequence of the thermodynamic
formalism introduced by Ruelle and Bowen (see [B1], [B2] and [R]).

This kind of questions in the non-conformal setting were first considered by
Bedford [Be| and McMullen [Mu|. They showed, independently, that, for the class
of transformations called general Sierpinski Carpets, there exists an ergodic measure
of full Hausdorff dimension. Moreover they showed that generically in that class the
Hausdorff dimension and the box dimension are not equal, a phenomenon that does
not occur in the conformal setting. Following [Mu], Gatzouras and Lalley [GL] gen-
eralized these results for certain self-affine transformations. Then, Gatzouras and
Peres [GP| considered non-linear maps of the form f(z,y) = (f1(z), f2(v)), where
f1 and fo are conformal and expanding maps satisfying inf | D f1| > sup |Dfz], and
showed that, for a large class of invariant sets A, there exist ergodic invariant mea-
sures with dimension arbitrarly close to the dimension of A. They used arguments
of bounded distortion for approximating these non-linear maps by self-affine trans-
formations.

In this work we further extend these results to a class of skew-product expanding
maps of the 2-torus of the form f(x,y) = (a(z,y),b(y)) satisfying a domination
condition — in rough terms, the y-direction is less expanding than the z-direction
— and consider invariant sets which possess a simple Markov structure. Combining
a mixture of techniques of [Be| and [Mu] with a bounded distortion argument, we
show that there exist ergodic invariant measures with dimension arbitrarly close to
the dimension of the invariant set. As a starting step, we use our methods to give
a new treatment of the self-affine case considered in [GL].

As an application of these results we are able to show that certain exceptional
sets that appear in Ergodic Theory, e.g. in connection with the Ergodic Theorem,
have full Hausdorff dimension. The latter kind of problem had been treated, e.g.
in [BS], in the conformal setting.

1. Main results

We begin by describing what we mean by a general Sierpinski carpet. Let T™ =
R"/Z" be the n-dimensional torus and fy: T2 — T2 be given by fo(z,y) = (lz, my)
where | > m > 1 are integers. The grid of lines [0,1] x {i/m}, i = 0,...,m — 1,
and {j/I} x [0,1], 7 =0,...,l — 1, form a set of rectangles each of which is mapped
by fo onto the entire torus (these rectangles are the domains of invertibility of
fo). Now choose some of these rectangles and consider the fractal set Ag consisting
of those points that always remain in these chosen rectangles when iterating fo.
Geometrically, Ag is the limit (in the Hausdorff metric) of n-approzimations: the
l-approximation consists of the chosen rectangles, the 2-approximation consists in
dividing each rectangle of the 1-aproximation into I x m subrectangles and selecting
those with the same pattern as in the begining, and so on (see Figure 1). We say
that (fo,Ao) is a general Sierpinski carpet.

9
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FIGURE 1. | =4, m = 3; l-approximation and 2-approximation

DEFINITION 1. Let (fo,Ap) be a general Sierpinski carpet. There exists € > 0
such that if f is e—C" close to fy then there is a unique homeomorphism h: T? — T?

close to the identity which conjugates f and fo, i.e, foh = ho fo (see [S]). The

f-invariant set A = h(Ag) is called the f-continuation of Ag.

DEFINITION 2. Let S be the class of C2 maps f: T? — T2 of the form

f(z,y) = (alz,y),b(y)).
Notation: dimyg A and dimyg p stand for the Hausdorff dimension of a set A and

a measure (i, respectively.

THEOREM A. Let (fo, o) be a general Sierpinski carpet. There exists € > 0
such that if f € S is e — C? close to fy, and A is the f-continuation of Ag, then

1, p is f-invariant and ergodic}.

dimg A = sup{dimg p : p(A)

We also give a description of the maximizing measures in terms of equilibrium

measures for the relativised variational principle.

obtain the following

By the proof of Theorem A we

COROLLARY A. Let (fo, o) be a general Sierpinski carpet and € > 0 be given

by Theorem A. Then

NS> f+— dimyg Ay

)

Bez(fo, €

is a continuous function. Here Bez(fo,

€) is the ball in the C? topology, centered at

fo of radius €, and Ay is the f-continuation of Ag.

I

1 for any f-invariant Borel probability

1

Z o(f(z)) converges, for all ¢ € C(M)

n—1

4

1
BfZ{xEM:—
n

Let M be a compact metric space and f: M — M a continuous map. Denote
see [M]),

by C(M) the space of all continuous functions ¢: M — R. We define

(

Birkhoff’s Ergodic Theorem: u(By

measure p on M.

Then

)

M\By. Then

We define the Birkhoff exceptional set by &y
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THEOREM B. With the same hypothesis of Theorem A,
diIIlH 5f\A = diIIlH A.

2. Preliminaries

Let us mention some basic results about fractal geometry and pontwise dimen-
sion. For proofs we refer the reader to the books [F]| and [P].

We are going to define the Hausdorff dimension of a set F' C R™. The diameter
of a set U C R” is denoted by |U|. If {U;} is a countable collection of sets of
diameter at most d that cover F, i.e. F C |J;2, U; with |U;| < § for each i, we say
that {U;} is a d-cover of F. Given t > 0, we define the t-dimensional Hausdorff
measure of F as

HY(F) = }i_r)%inf {Z \U:|" : {U;} is a §-cover of F} .
i=1

It is not difficult to see that there is a critical value t¢ such that

’Ht(F)— oo ift <ty
N 0 if t > to.

We define the Hausdorff dimension of F, written dimy F, as being this critical
value t.

Now we are going to define another type of dimension which is very usefull
in practice, as we shall see. Let F' be a non-empty bounded subset of R™ and let
N(F,§) be the smallest number of balls of radius § needded to cover F'. We define
the box dimension of F as

— — log N(F
TmgF — i eNEY
s—0 —logé
We always have dimy F' < dimpF, and we have equality at least for one-dimensional
dynamically defined Cantor sets (see [PT]).

PROPOSITION 1. Let E C R™ and F, F; C R™. Then
(1) dimg(E x F) > dimyg E + dimyg F;
(2) dimp(E x F) < dimg E 4 dimgF;
(3) dimu(U;2, F;) = sup, dimy F;;
(4) HBF = dimBF.

The first two items show the importance of considering the box dimension.
The last two items show, essentially, the difference between the two dimensions
considered.

PROPOSITION 2. Let F C R™ and suppose that f: F — R™ satisfies a Hélder
condition

@)= fl < Clz —y|* (z,y €F).
Then dimy f(F) < (1/a) dimg F'.
In particular, this proposition shows that Hausdorff dimension is invariant
under bi-Lipschitz transformations.
Let p be a Borel probability measure on R™. The Hausdorff dimension of the
measure p was defined by L.-S. Young as

dimy g = inf{dimyg F : u(F) = 1}.
So, by definition, one has

dimy F' > sup{dimg p : u(F) = 1}.
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In practice, to calculate the Hausdorff dimension of a measure, it is usefull to
compute its upper pointwise dimension:

- — 1 B
r—0 logr
where B(x,r) stands for the open ball of radius r centered at the point . The lower
pointwise dimension d,,(x) is defined similarly using lim. The relations between

these dimensions are given by
PROPOSITION 3.
(1) If d,(z) > d for p-a.e. x then dimyg p > d.
(2) If du(z) < d for p-a.e. x then dimg p < d.

(3) If d,(x) = dy(x) = d for p-a.e. x then dimy p = d.

PrOPOSITION 4. Ifd, () < d for every x € F' then dimy F' < d.



CHAPTER 1

Variational principle

The goal of this chapter is to prove Theorem A. As a preparation, we describe
how our methods apply to the situation treated in [GL]. In particular we obtain a
new proof of their main result. Later, when dealing with our more general skew-
product maps, we shall focus on the bounded distortion argument and refer to the
earlier situation for steps that are similar to the self-affine case.

1. The self-affine case

Let S1,895,...,8, be contractions of R?. Then there is a unique nonempty
compact set A of R? such that

”
A={]SiA).

1=0
This set is constructed like the general Sierpinski carpets (there, the contractions
are the inverse branches of fy corresponding to the chosen rectangles, and the
equation above simply means that the set is fo-invariant). We will refer to A as
the limit set of the semigroup generated by Si, Ss, ..., Sy

We shall consider the class of self-affine sets A that are the limit sets of the

semigroup generated by the mappings A;; given by

o Qi 0 Cij .o
A,J_<0 bi>x+<di>’ (i,7) € T.

Here 7 = {(i,7) : 1 <i<m and 1 < j < n;} is a finite index set. We assume
0 < a;j < b; <1, for each pair (i,7), > g b; <1, and Z;L:l a;j < 1 for each i.
Also, 0 < dy < dy < ... < dpy, < 1 with dj41 — d; > b; and 1 — d,,, > by, and, for
each i, 0 < ¢j1 < ¢z < ... < Cin; < 1 with ¢;j41) — ¢ij = @in,. These hypothesis
guarantee that the rectangles

R;j = A;;([0,1] x [0, 1])
have interiors that are pairwise disjoint, with edges parallel to the z- and y-axes,

are arranged in “rows” of height b;, and have height > width (see Figure 1).
Within the setting described above we have

THEOREM 1. Zm |

. i—1 Di 108 P;

dimpg A = sup { &=Lt 2 1 ¢ } 1
" pp { > pilogb; ) e

where p = (p1,D2, .., Pm) 18 a probability vector, and t(p) is the unique real in [0, 1]
satisfying

Mg

m i
Zpi log Z aigp) =0.
i=1

i=1

13
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FIGURE 1

REMARK 1.

(1) The expression between brackets in (1) is the Hausdorff dimension of a
Bernoulli measure pup.

(2) Tt is easy to see that the function ¢ +— 37, p;log(>_; af;) is strictly decreas-
ing, so the number ¢(p) is well defined.

(3) The formula obtained by [GL] is slightly different from ours: they take the
supremum over all Bernoulli distributions {p;;}; we take the supremum
over the “vertical” Bernoulli distributions {p;}.

(4) The number t(p) is given by a random Moran formula relative to the
distribution p.

PROOF. There is a natural symbolic representation associated with our system
that we shall describe now. Consider the sequence space Q = ZV. Elements of
will be represented by w = (w1,ws,...) where wy, = (in,jn) € Z. Given w €  and
n €N, let w(n) = (w1, ws,...,wy) and define the cylinder of order n,

Cony ={w € Q1w =w;, i =1,...,n},
and the basic rectangle of order n,
Ri(n) = Aijy © Aigjy © -+ 0 Ai 5, ([0, 1] x [0, 1]).
We have that (R,(n))n is a decreasing sequence of closed rectangles of height

[T, b;, and width ;" a;,j,- Thus (), R, ) consists of a single point which

n=1
belongs to A that we denote by x(w). This defines a continuous and surjective map
x: 2 — A which is at most 4 to 1, and only fails to be a homeomorphism when
some of the rectangles R;; have nonempty intersection. Nevertheless, this lack of
injectivity will present no problem when dealing with Hausdorff dimension.
Let d be the expression in the right hand side of (1).

Part 1: dimg A > d

This part is based on [Mu, GL]. Define

>t pilogp;
d, = &=t 7ol 4y
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Let fip be the Bernoulli measure on 2 that assigns to each symbol (7,7) € Z the
probability
o)
j

n; _t(p)’
k=1 Qik

Pij = Pi

In other words, we have
n

ﬂp(cw(n)) = Hpiljl,-
=1

The existence of such a measure is guaranted by Kolmogorov’s Existence Theorem
(see [Bi]). Let up be the probability measure on A which is the pushforward of fi,
by X, i.e., pp = fip © X 1. We will see that dimy yp = dp. This proves Part 1,
because dimyg A > dimy pyp.

For calculating the Hausdorff dimension of up, we shall consider some special
sets called approximate squares. Given w €  and n € N, define

n k
Ln(w):max{k'z 1:Hbiz SHaim} (2)
=1 =1

and the approrimate square
Bo(w)={w"€Q:j=i,l=1,...n and j, =j,l=1,...,L,(w)}

We have that each approximate square B, (w) is a finite union of cylinder sets, and
that approximate squares are nested, i.e., given two, say By (w) and B, (w'), either
Bp(w) N By (w') =0 or By(w) C By (w') or By(w') C By(w). Moreover,
int(B,(w)) NA C x(Bp(w)) C Bu(w)NA
where Bn(w) is a closed rectangle in R? with sides parallel to the z— and y—axes,
height [T, b;,, and width Hfz"l(w) @iy, (The rectangle B, (w) is the intersection
of the rectangle Ry, () with the horizontal strip of height Hzn=1 b;, containing
Rw(n)) By (Q)a
Ly (w)
H Qi gy
1< =
H b’il
=1
hence the term “approximate square”.
The importance of approximate squares is that they allow us to construct Moran
covers, as we shall explain now (see [PW or P|). Fix 0 < r < 1. Given w € Q, let
n(w) denote the unique positive integer such that

< max ai_jl, (3)

n(w) n(w)+1

H b, >, H by, <. (4)
=1 =1

We have that w € B,,(,)(w), and if " € B, () (w) and n(w’) < n(w) then B, (,)(w) C
B, (w)(w'). Let B(w) be the largest approximate square containing w with the
property that B(w) = By, (w) for some ' € B(w) and By, (w”) C B(w) for
any w” € B(w). The sets B(w) corresponding to different w €  either coincide
or are disjoint. We denote these sets by B*), k = 1,...,N,. Then the sets B*) =
x(B®), k =1, ..., N, comprise a cover of A which we denote by U, and refer to as
a Moran cover.

The fundamental property of Moran covers, beside being constructed using
basic cylinders, is that, given z € A and r > 0, there exists a number M > 0 which
does not depend on z, » with the following property: the number of sets B®) in a
Moran cover U, that have non-empty intersection with the ball B(z,r) is bounded
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from above by M. We call M a Moran multiplicity factor. This property will be
crucial in calculating Hausdorff dimension and box dimension. With this end we

define | ((Ba@))
_ — logu(x w
dym(z) = inf lim ——————22

nM) = 00 P Tog I (Buw))
where g is a probability measure supported on A and z € A. Similarly, we define

d,, pm(2) using lim. Then, it is proven in [PW, Theorem 7] or [P, Theorem 15.3]:

?

LEMMA 1.

(1) du(2) < d, m(2) for all z € A;
(2) d, (2 )§d (2) for p-a.e. z € A;

(3) if dy p(2) = dpa(2) & d(z) for p-a.e. z € A, then d,,(z) = d,(2) = d(z)
for p-a.e. z € A.

We are now ready to prove
LEMMA 2. dimpg pp = dp.

PRrOOF. If there exists some 7 such that p; = 1, then the problem is essentially
one-dimensional and its solution is known (we leave the details to the reader). So,
we assume that p; < 1 for all 5. Then, if A is the union of the borders of all basic
rectangles, one has pp(A) = 0. According to Lemma 1 together with Proposition
3, one is left to prove that

log jip (B
lim M = dp for jip-a.e. w.
n—oo Zl:l log bil

Let
Plw,n,d)=4{1<l<n:iyy=i}t fori=1,...m
By Kolmogorov’s Strong Law of Large Numbers (KSLLN) (see |Bi]),

P(w,n,i) ~
—— — p; for fip-ae. w.
n n—oo
We have that
n Ln(w) P
— . . —Z J
N=1Ir - 1l =
=1 =1 Jj= 10 ¥
thus
log i1, (B LS logp; Ln(@) 100 ai -
0g fip(Bn(w)) _ n2.=1'08Pi + t(p) - &=L 08 Qiyjy
27:1 log b;, % 27:1 log b;, 27:1 log b;,
Ly i t
mo S e(ShAP)
_ =a p)-B— —.
oo n LS log b, )
By (KSLLN),
iy pilogpi
o — % for fip-a.e. w.
Write L)
ﬁ—1—|— 1 E n (W 1ogaim —Z?:llOgbil :1+l.ﬁ.
LS logh;, n 6
By (3), we have that 0 < 5 < log (max a;l). Also, 6] > log (min b; ') > 0. So,

8 — 1. By (KSLLN) and definition of ¢(p),

o~ P(w, Ln(w), 1)
= log Zat(p) — 0 for fip-a.e. w.

i=1
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Since n/Lyn(w) > 1, we have that |§] > log (min b; ') > 0, and so, 7/ — 0, thus
completing the proof. [l

Part 2: dimg A <d

This part is based on [Be] and inspired by Formula 2 in Proposition 1. First,
we introduce some notation. Let 7: [0,1]2 — [0, 1] be the vertical projection given
by w(x,y) = y. Then, m(A) has a natural symbolic representation which we denote
by xv: {1,...,m}¥ — m(A). There may be some exceptional points in 7(A) that
have two representations. Now fix y € 7(A), and assume that y = xv(i1,i2,...)
has unique representation. Then A, = AN {(x,y) : € [0,1]} also has a symbolic
representation that we denote by x,: ¥, — Ay, where ¥, = [[,2,{1,...,n;,}. As
before, given a sequence 8 = (j1,jo,...) € ¥, and n € N, define the horizontal
cilinder of order n,

ijljz-.,jn = {9/ €3y ]l/ =ji, l=1,...n},
and the basic horizontal interval of order n,
A ain = Riinj)(iaga). (ing) N (@) 12 € [0,1]}
Then, x,(0) =~ A?jlh e

If y € 7(A) has unique representation (41,2, ...) then we define
Ply,n,i)=t{1<i<m:iy=1i} for i=1,...m

and t, as being the unique real in [0, 1] satisfying

i P(y,n,1)
Jm >, = Za -
i=1
If y € m(A) has two representations, say 61 and 6,, then procceding analogously,
we get two numbers 1, and f,. Define ¢, = max{t1,,t2,}. For defineteness, if

ty = tiy, we also define P(y,n,i) as before using the representation 6,. Then we
have

LEMMA 3. dimpA, <1, for ally € w(A).

PROOF. This lemma is essentially contained in [PW, Theorem 3] or [P, Theo-
rem 13.1]. Fix y € w(A). We assume that y = xv (41,2, ...) has unique represen-
tation (if not, we leave the details to the reader). Let d = dimgA,. Then, given
¢ > 0, there exists 79(¢) > 0 such that N(A,,r) > r<=% for 0 < r < ro(e). For
such an 7, we consider the Moran cover U, ,. of A, by basic intervals Aj, ;. 0 for
some 0y € ¥, k =1,..., N,. This cover is defined as before but instead of (4) the
number n(f) is defined by

n(0) n(0)+1

H Qg 5, > T, H a”ﬂ <. (5)
=1

Since this cover need not be optimal, we have N, > N(A,,r). By (5), if A =
max a{jl then we have for k =1, ..., N,,

Ok )+
H all]l —

:ulﬁ
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and hence 1 A
Cilog=—1<n(8) < C’glog7 +1
r

for some constants C1,Cy > 0. This implies that n(6) can take on at most B =
Cs log é — Cqlog % + 2 possible values. Then there exists a value that is repeated
at least %ﬂ times, i.e., there exists a positive integer N € [C] log % —1,Clog é +1]
such that

N, N(Ay,T) re=d 7
E:n()=N}>—> vl > > p2ed
#{k : n(6k) }_B_ 5  Colog &
if r is sufficiently small. It follows that
G P y7N i d—2e 1 d—2e
P Za =y los Z Haml
=1 LN =1
1 ) 1 .
. d—2e . d—2e
> N log Z H ag > Nlog Z r > 0.
k:n(0x)=N I=1 k:n(05)=N

Since N can be taken arbitrarly large, this implies that ¢, > d — 2¢. Since ¢ can be
taken arbitrarly small, this finishes the proof. O

Just by taking sublimits we get

Vy€7r(A) El Dty = t(p) (6)
This property will allow us to cover A by appropriate sets for calculating the Haus-
dorff dimension, and they are given by

Ap.e = {(z,y) € A:t, € B(t(p)) and

P, (y) has an accumulation point in B.(p)},

P . m
P,(y) = <(y,Tn,l)> and B(p)={q: ¢ —pi|l <e i=1,...,m}.
i=1

We have that, for every ¢, A = Up Ap.c. The use of € is just to get a finite union

by compacteness arguments.
First, we calculate the dimension of the vertical part. Let

Gp.e ={y € m(A) : P,(y) has an accumulation point in B.(p)}.
Then

LEMMA 4.

d B >ie1 4ilog g |
1My Gp’e = Sup Z,nq—logb q € Be(p) . (7)
i=1 4% %

PROOF. Let s be the expression on the right hand side of (7).

(=) Let
={yen(A): Puly) — p}.
Let vy, be the pushforward of pup by 7, i.e., vy, is the Bernoulli measure associated
to p. It is well known that (see Lemma 2)

>ie pilogpi
Z:n:l p; log b;
By Kolmogorov’s Strong Law of Large Numbers we have that v5(Gp) = 1, so

dimyg vp =

dimy Gp > dimy vp.
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The result follows because G4 C Gp.e for all q € B.(p).

(<) Let
Gp = {y € 7(A) : P,(y) accumulates in p}.
We have that
VyeGp,. JaeB.(p) 1 Y € Gq
and

g€ Gy lim 28Yalln) Lii dilogai
n—o0 10g |In(y)| Zi:l q; IOg bz
where I,(y) is the basic vertical interval of order n containing y (obtained by
projecting a basic rectangle of order n of a point in 771(y)). Thus
log va(ln(y)) _ (8)

v | : lim ————= .
y€Gp,c Ja€B.(p) n1—>_Hio log|In(y)| =8

We will see that (8) = dimpy Gp < s (see also Proposition 4, [Mu], [GL]).
Given §,1 > 0, we shall build a cover U, of G . of diameter < 5 such that
Z |U|s+2§ § M§
UGI/{&W

where Mj is an integer depending on § but not on 7. This implies the result. Let
b = max b; < 1. It is clear that there exists a finite number of Bernoulli measures
V1, ..., Vprs such that

X

I, n
VaeB.(p) Jke{1,... . Ms} * V:E-[n; <p°

for all basic vertical intervals of order n, I,,. By (8), we can build a cover of Gp . by
basic vertical intervals Iy,(y,), i = 1,2, ... that are disjoint and have diameters < 7,
such that

Vg (In(y:)) = |In(yq:)|s—|r(S

for some q' € B.(p). It follows that
D P20 <D gy + Hagwo

<3tk () b0 - o)

M

k=1 i
as we wish. |
LEMMA 5.
dimg Ap ¢ < sup {%2;12—1035 +tlp)+e:qe Bﬁ(p)} ) (9)
=1 47 7

PROOF. Let d be the expression on the right hand side of (9).
Note: We can use Moran covers for calculating the box dimension. ILe., if U, ,
is the Moran cover of radius r of A, then

N — logtlU
dimpAy = linb %.
r—0 —logr
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Using Lemma 3 and this note we get that, if y is such that ¢, € B.(t(p)) then there
exists a positive integer N such that

1
r< 5 =ty < ptP)—e, (10)
Let
An ={y: (z,y) € Apc for some z and (10) holds},
and

Ay ={(z,y) € Ape:y € An}.
Then Ap = U?vo=1 AN, and we are left to prove that dimg Ay < d for all N.
Since Ay C Gp,e, we have dimyg Ay < dimy Gp . So, if we take @ > dimy Gp,
there exists a cover U of Ay formed by basic vertical intervals of diameters < %

such that
Z lul* < 1.

ucl

Let wu e U, r = |u| and y € unN Ay. We are going to obtain an adequate cover of
Ay in the horizontal strip H = u x [0,1]. Consider the Moran cover U, , of A,.
To each element of U, , there corresponds a basic rectangle R,, of A, of a certain
order ng, k = 1,..., N,.. If n is the order of u then, by the domination property
b; > a;;, we have that n; < n. This implies that the rectangles R, cross the strip
H. Then U(u) = {R,, NH :k=1,..,N,} is a cover of Ay N H (because the basic
rectangles of order n form such a cover, and these must be contained in the Ry, )
(see Figure 2).

‘Zl(u}\

v lul

FIGURE 2. Construction of U(u)

By the property of a Moran cover, if v € U(u) then

r< vl < V1+ A2y (11)

By (10), U (u) < 7" P)=¢. So U, = {J, oy U(u) is a cover of Ay such that

Z |,U|a+t(p)+e < (\/1—|——AQ)a+t(p)+E Zra Z ptP)te

veU, ueU  wveld(u)
< (V1 + A2 )attP)te Z lu|® < (/1 + A2)attP)te,
ueU

This implies that dimyg Ay < a + t(p) + ¢, as we wish.
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Conclusion of Part 2

Consider the subspace A of R™*! given by the set of points (p, t) such that t = t(p).
Let B = AN ({(p1,-spm) + 2521 pi = 1, pi > 0} x [0,1]). By property (6), for
every point (z,y) € A there exists (p,t(p)) € B such that ¢, = t(p) and P,(y)
accumulates in p. The fact that B is compact is a consequence of the continu-
ity of the function p — ¢(p), which, in turn, is a consequence of the function

P(t) = S0 pilog (2;21 agj) satisfying ¢’(t) < log(max a;;) < 0. Thus, given

€ > 0, there exists a finite number of points p', ..., p¥ such that

N
B | Bob) x Bolt(o").
k=1

It follows from Lemma 5 that

Die gilog g;
Z?;l qi log b;
Letting € — 0, this concludes Part 2 and ends the proof of the theorem.

dimpy A < sup SUP{ +tp*) +e:qe Be(Pk’)} :
k

COROLLARY 1. There exists p* such that
dimp A = dimy pp-.

ProoF. It follows from Theorem 1, Lemma 2, and the continuity of the func-
tion p — t(p). O

2. The skew-product case

As in the introduction, fo: T? — T2 is the map given by fo(z,y) = (lz, my)
where [ > m > 1 are integers, and Ag is a general Sierpinski carpet for fy. Given
¢ > 0 small (depending only on ! and m, and to be specified along the proof),
we consider an ¢ — C? perturbation f of fy, of the form f(z,y) = (a(z,y),b(y)).
Then f preserves the horizontal lines and we say that f posesses a strong unstable
foliation. Following [S], there is a unique homeomorphism h: T? — T? close to
the identity which conjugates f and fy, i.e, foh = ho f;. We consider the f-
invariant set A which is the continuation of Ag, i.e., A = h(Ap). In general, h and
its inverse are only Holder-continuous with exponent ];’Ogg’?::, so this case cannot
be trivially reduced to the self-affine case. Geometrically, A is also constructed as
the general Sierpinski carpets but using a distorted grid of lines, as we shall explain
now. By imposition, f preserves the horizontal lines. There is also an f-invariant
foliation F¢ by nearly vertical C? curves. This is a direct consequence of the fact
that the vertical lines constitute a normally expanding invariant foliation for fy,
see [HPS]. In general, F° is not a smoth foliation (i.e., its holonomy maps are not
differentiable) but is at least Holder-continuous. Then, there are m horizontal lines
and [ leaves of F¢ that divide T? into I x m distorted rectangles each of which is
mapped by f onto the entire T2. As before, A is constructed by choosing some of
these basic rectangles of order 1 and then refining inductively by basic rectangles
of order n.

The idea for proving the variational principle in this case is fixing a big n, think
of f™ acting affinely on each basic rectangle of order n, and then use the techniques
of the self-affine case. Of course we get an error, but this error will aproach zero as
n increases, due to the bounded distortion property (see [PT]):

Notation: 9,a™(z) = H?;& dwa(fiz).
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BOUNDED DISTORTION LEMMA. There exists C' > 0 such that, given n € N
and points z,w belonging to a same basic rectangle of order n,
00" (z)
$ Dpan (w)
PRrOOF. From the fact that f is locally expanding it follows that, for some
o>1,

lo <C.

d(fiz, flw) <o " for0<i<n-—1.
Since 9;a is Lipschitz-continuous and is bounded away from 0, we have that log 9,.a
is also Lipschitz-continuous. It follows that, for some constant C' > 0,

dua(2) | A |
— < i _ i
8 B0 (w) | < ;O |log dsa(f'z) — log Dra(f'w)|
n—1 n—1
< 3" Cd(fiz flw) < 3 Co
i=0 i=0
C
< o1 C.

rl

REMARK 2.

(1) It is important to notice that the constant C' is universal, meaning that
it does not depend on the map f (in a bounded domain). That is why
we use the C? topology. In fact, given any 6 > 0, we could have used the
C™9 topology.

(2) We have a similar result using the map b instead of a. By taking maximum,
we can assume that the constant C' is the same.

From this we get the following

COROLLARY 2. If Hi and Hy are two horizontal segments of a same basic
rectangle then
length(H;) < €% length(Hy).

Proor. If H; and H, belongs to a basic rectangle of order n, then f™H; and
f"Ho are two horizontal segments with length 1. So, by the intermediate value
theorem, there exists z; € H;,i = 1,2 such that lenght(H;) = (9,a™(2;))~!. The
result follows by the Bounded Distortion Lemma. O

Note that if the e-perturbation is small then we still have the following domi-
nation property
min dza(z,y) > b'(y) for all y. (12)
xr

PrRoOOF OF THEOREM A. Let us introduce a new notation adequate to our
setting. Given n € N, and (ig,jr) € Z,k = 1,...,n, consider the n-tuples i =
(i1y .y n), 3 = (41, -+, Jn), and the basic rectangle and interval of order n

B = R(iyjy)(i2a) .- (inn) 204 B = T(R (i) (i) (1dn))-
Let,
Qsj,pn = WAX (0,a™)~t and b;,, = I%%x((b”)’)_l.
Let p™ = (p}") be a probability vector in R™™. We define ¢, (p") as being the unique
real in [0, 1] satisfying

> pilog | Y oa | =o. (13)
i j
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With this notation, what we shall prove is that

{zipi”logp? » (pn)},

dimyg A = lim sup

n—oo pn | 2o pf loghin "
Put
.ol log plt
o = BBy ()
Zip;n log b,

Part 1: dimg A > lim supyn dpn
n—oo

Fix n. Let p" be a probability vector such that p? < 1 for all i (we leave the
other case to the reader). Let upn be the Bernoulli measure for f™ on A given by

(")
ppn (B55) = pif %

Zk a’ik,n
We will see that the Hausdorff dimension of pipn is “approximately” dp». As before,
we shall use approzimate squares. Given w = ((i1j1)(i2j2)...) € Q and k € N, define

Li(w) =max{l >1: dpa™(z) < (b”k)’(y)} , (14)
where z = y(w) and y = 7(z), and the n-approximate square
Bl(w)={" €Q:if =i, l=1,....k and ji' =ji, I =1,..., L} (w)}.
We have that
int(BL (w))NA C x(Bp(w)) C BR(w)NA
where B}j (w) is the intersection of the basic rectangle Ry L7 () with the horizontal

strip containing R, (k) of the same height. If H is a horizontal segment of B}:(w)
then, by the bounded distortion property, we have that

< .
[ = ((%caan(w)(Z))_l =~ e€
By (14),
( ) < (bnk)/(y) <4 (15)
= amanL;'(w)(z) —= £

where A,, = maxd,a", so
_ length(H)
Cc 20 <A eC.
(R ()Tt T
Also, by bounded distortion,
—C < helg};lct(,Bk (wz) <
(b)) (y))~

Let o« > 0 be the maximum variation of the leaves of F¢. We have that &« — 0

—2C . .
when ¢ — 0, so we can take a@ < %5— (remember that C is universal). Then,

if = ((b™)(y))~1, it is easy to see that Bj(w) is contained in a ball of radius
(24, + V1 + a?)e“r, and contains a ball of radius (e~ — 2e“a)r. Hence the term
“n-approximate square”. We use the following notation

a=B+¢e means |a— (| <e.
Let B = (minlogd')~!. Then

: 2BC
LEMMA 6. dimp pipn = dpn £ ==
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PROOF. As in Lemma 2, one is left to prove that
1 » (x (B 2BC
m okg Hpr (X(BE (@) =dpr £ for ppn-a.e. z.
koo — 37 log(bn)! (bn(=Dy) n

We have that

k
log pp» (X (B (w))) _ 21—1 log py . Zle log by, n
=y log(bn ) (n(=Vy)  STF logbi, — Yo log(bn) (bn(-Dy)
n Ly (w) tn(P™)
4t (pn) . ZlL:kl(W) log Airji,n lekl 10g< i Tirjn )
n

— i og(bn) (bn0=Vy) ST log(bn) (bnU-Dy)
=a-f+t,(p")-y + 0.

That,
ZZ;? : 1oggszln and 0= 0 for pipr-a.c. 2
is as in Lemma 2. Now we sele that 8 and ~ are “approximately” 1. Write
B—1- L. iz logbin + Do log(®) (0" Ny) 1y
nk LS R og b (bly) nk 0

Since "Dy e R{, using bounded distortion we get || < kC. Clearly,
# > minlog?’. So |8 — 1| < ZZ. Write

Ly (w) L7 (w)
v=1- =3 Z 10g @syj,.n + Z log aman(fn(l—l)z)
=1 =1

k Li (@)
]. 1 - n n{t—
= [ D lg 0y () — 3 togdsa(£70 V)
=1

By bounded distortion, |¢| < kC, and by (15), || < log A,. So [limy — 1| < BC.
The result follows. O

This ends Part, 1.

Part 2: dimg A < lim sup,» dpn
Fix n. If y € 7(A) has unique representation (i1, iz, ...) then we define
Py, k1) =8{1l <1< k:i =i} for all i,

and t,,, as being the unique real in [0, 1] satisfying

. -P ty n
5 T (5 ) -
1
If y € w(A) has two representations we proceed as in the previous chapter. Then

LEMMA 7. Ves0 In.en Vnsn, Vyer(a) dimpAy <ty + €.

PRroOOF. This follows closely Lemma 3. Fix n and y. We assume that y =
Xv(i1 ,ig,...) has unique representation (if not, we leave the details to the reader).
Let d = dimpA,,. Then, given ¢ > 0, there exists ro(e) > 0 such that N(A,,r) >

re/3=d for 0 < r < ro(€). For such an r, consider the Moran cover U, of A, by
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basic intervals Ajl~~-jk(91)7 for some 0, € ¥, ! = 1,...,N,. This cover is defined as
before but instead of (5) the number k(6) is defined by

8xa"k(9)(z) < 7’_1, 8ma"(k(9)+1)(z) > ,r,—l’

where z = xv(6). Since this cover need not be optimal, we have N, > N(A,,r). It
follows that,

<=

k(61)
A
- H fnjzl STnv

and hence
1 A
Cnlog = —1<k(#) < D,log— +1
r r

for some constants C’n, D,, > 0. This implies that k(;) can take on at most B,, =
D, log Lo — O, log + 2 possible values. Then there exists a value that is repeated
at least ’ times, i.e., there exists a positive integer N € [C), log ~-1,D, log Lo 41]
such ’rha’r

N(Ay,7) < re/3—d

g{l: k(0)) = N} = g— >

if r <ri(e,n) is sufficiently small. It follows that

1 d—e/2
0< N log Z ré—¢
1 k(6)=N
1 k(6:) ' B
< N log Z H (3man(fn(1_1)zl))6/2_d
I k(6)=N j=1
1 T—c : :
< i log Z H(ecailjhn)d /21" by bounded distortion

Ji,enin =1

<Z Z%i”

€
<Z Zaun +§log)\n+C’,
where A\, = maxasj,n. If we take n. such that A, < 6_206_17 say
e [logminara ¢ ] +1h (16)

then
n>ne = glog)\n—l—CSO,

and thus
pr (
> Z i | 2
i
Since N can be taken arbitrarly large, this 1mplles that £, > d —e. O
Again, just by taking sublimits we get

VneN Vyer(a) Jpn : t_y,n = tn(p").
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Then we define appropriate sets for calculating the Hausdorff dimension that will
cover A by
Abe o ={(z,y) € Aty € Be(tn(p")) and
P (y) has an accumulation point in Bs, (p")},

where

P 7k’i n n n () .
Pil(y) = <%>, Bs(p™) = {q" : |¢' — pP'| < 6, for all i},

and d,, > 0 is chosen in such a way that

24 loga’ _ > pf logpf
e ) S g log by Z P log bin
We have that, for every ¢ and n, A = (J,» Aps .

Vpn an eEB

Let
Gpns =1{y € m(A) : P!(y) has an accumulation point in Bs(p")}.
Then
LEMMA 8.
) S gt log g BC
d Gon s = Lidi P4 . oncp it
PROOF. Similar to the proof of Lemma 4 using the bounded distortion argu-
ments used in the proof of Lemma 6. [l

LEMMA 9. For every e >0 and n > n.,

> b} log pf' BC
dimp A% : to(P") + — + 2e.
1nyg Ap E—Zpl logbln+ n(p)+ n + 2¢
PROOF. Similar to the proof of Lemma 5, using Moran covers U,",.. We just

note that, according to Corollary 2, instead of (11) we have

e Or < |u] <1+ A2,

which is also suitable. We got rid of the “sup” using y,. |

Using compacteness arguments as in the previous chapter we get

> pf log pf’ BC
< 1 1 n - 2 . 1
dimy A sup { S~ i log b +to(P™) p + - + 2¢ (17)

Letting n — oo and € — 0, this proves Part 2.
Conclusion

By Part 1, Part 2 and Lemma 6 we have

dimpg A = lim sup dimy ppn.

n—oo pn
As in the previous section, for each n, the supremum is attained. Thus
dimg A = lim dimg p,,
n—oo

where p,, is a Bernoulli measure for f™. Define the ergodic mean of u,, by

1n—1 )
= ;Zﬂnof_j-
" j=0
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Then fi, is an f-invariant measure on A. It is easy to see that fi, is ergodic. Since
fin(F) =1= u,(F) =1, we have dimy fi,, > dimy p,,, so

dimg A = lim dimg fi,.

n—oo

rl

REMARK 3. By Lemma 6, (17) and (16), there exists a universal constant
D > 0 such that, for all n > 0,

o

| dimyg A — supdpn| < —.
pn

3

REMARK 4. The existence of an invariant measure of full dimension is not
trivial, because the function p +— dimy p is not, in general, upper-semicontinuous.

REMARK 5. According to the proof of Theorem A, we have that
dimg A = lim sup{\,(p") + t(p")},
n—oo pn

where
_ 2.ipilogpy

> i P log by’
and t,, (p™) is defined implicitly by (13). Using the Implicit Function Theorem and
Lagrange Multipliers we get that, for each n, the supremum above is attained at a
probability vector p” satisfying

An =n tn —n Pn(f’n)
= bi,n(p )(Z a:j,flp )) ’
J

An(P")

where
) tn(P")
) (ﬁn)_M o =B =
n — - ) ij — M n(P")"
i @ylogasg,” Y Sh ey

When defining the number aj;,,, we took the maximum over the basic rectangle
Ri; of the function (0za™)~ . Because of the bounded distortion property we could
have used any other point in this rectangle. Similarly for b;,. So, we can use the
n-periodic points zjj,, € Rf} and 2, = 7(zij,,) (note that the symbolic dynamics
is a Bernoulli shift). In this way, we get that the measures

_ _n,
Un = § Dby 5Zi,'n, s
i

where 0, denotes the Dirac measure concentrated at the point z, are b-invariant.
Take a sequence (ny) such that v,, — v (limit on the weak® topology).

Problem: Can we take v ergodic?

If the answer to this question is yes then we believe that there is an ergodic measure
of full Hausdorff dimension.

PROOF OF COROLLARY A. We begin by introducing some notation. Since now
we are varying the map f, we explicit the dependence of the objects on the map.
Consider the numbers )\, ;(p") and ¢, ;(p") defined by using minimum instead of
maximum when defining the numbers a5, 5 and b; ,, ¢. If we use points z;; € Rﬁ ¥
and z; € Ry, then we get the numbers A, 7 (.1 (P") and t, 7 (.,;;(P"). Note that
An.f(P™) and ¢, (p™) are increasing functions of ajpn, f and by, f.
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In the proof of Theorem A we could have used any of these points so, see
Remark 3, we get a constant D > 0 such that, for all f € Ba2(fp,e)NS and n > 0,

n n D : n mn D
S;P{)\n,f(p ) +tnr(P")} — — <dimg Ay < S#P{An,f(p )+t (P} + s (18)

Let us see continuity at f. Let § > 0. Fix n such that £ < %. It is easy to see that

there exists p > 0 such that if g € Baz(f, p) NS then ‘

) )
|/\n»97{zi}(pn) - An1f7{zi}(pn)| < § and |tnygy{zij}(pn) - tnufy{zij}(pn” <

3
for all p™ and {z:} € R, N R}, {2} € R ;N R . So

i,g’ ij,g"

An,f(pn) + En,f(pn) < /\n,f,{zi}(pn) + t’n,f,{zij}(pn)

Wl >

< /\n,g,{zi}(pn) + tn,g,{zij}(pn) +

0
< Ang(P") +tng(P") + 3.

Taking supremum in p™ and using (18) we get
dimpg Ay < dimpg A, + 6.

Changing the roles of f and g we get the desired result.

3. Connection with the relativised variational principle

Let X, Y be compact metric spacesand let T: X - X, S: Y -V, m: X =Y
be continuous maps such that 7 is surjective and m o T = S o w. Let M(T) be the
set of all T-invariant probability measures on X. Given ¢ € C(X) and v € M(S),
the relativised variational principle (see [LW]) says that

s {u,@8)+ [ pdnf = [ PEes o). 09
neEM(T) X Y
uo7r_1=u

where h,(T|S) denotes the relative metric entropy of T with respect to S, and
P(T,p,Z) denotes the relative pressure of T' with respect to ¢ and a compact set
ZCX.

We say that u is an equilibrium state for (19) if the supremum is attained at
u. In [DG, DGH], sufficient conditions on (X,T,Y,S,7) (concerning expansion)
are given for the existence of a unique equilibrium state for (19) relative to any
v € M(S) and any Holder-continuous ¢. Moreover, they show that the unique
equilibrium state has a Gibbs property which will be usefull when calculating its
Hausdorff dimension. We are in these conditions with X = A, Y = w(A), T = f|A
and S = b|w(A).

Let ¢: T2 — R be given by ¢ = —logd,a. Given v € M(b|m(A)), there is a
unique real t(v) € [0,1] such that

/Y PUfIA 0o, (3)) dily) = 0.

The reason for this is that the function () = P(f|A,te, 7~ 1(y)) is continuous,
strictly decreasing because ¢ < —logmind,a < 0, ¥(0) = h(T, 7 *(y)) > 0, and
(1) < 0. Denote by u, the unique equilibrium state for (19) relative to v and
t(v)e.

Let Mg, (blm(A)) = M(b|m(A)) N {ergodic and non-atomic}.
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LEMMA 10. If v € My (b|m(A)) then
dimy p, = dimpg v + t(v).

ProoF. It follows from [DG, DGH] that the conditional measures of y,, on the
fibers m~1(y) — p,,, — have the following Gibbs property:

There are positive constants ¢;, ¢; and a Holder-continuous function A, : T! —
R satisfying [ log A, dv = 0 such that, for all y,

g v (B N1 (y))

— exp{t(v)Snip(2) 4 Sn(log Av)(y)
for all n € N, n-basic rectangle R,, and z € R, N7 '(y). As usual, S,¢(z) =
Z;:(} ©(f7(2)) and S, (log A,)(y) = Z;ZS log A, (b/(y)). Then, integrating and
using the bounded distortion property for ¢ and log A,, we find positive constants
¢ and ¢3 such that

7 < (20)

- < o (Hn)
~ exp{t(v)Snp(z) + Sp(log Ay)(y)} v(m(Hy))
for all n € N, horizontal strip H,, of an n-basic rectangle, and z € H,, y = 7w(z).
To compute the Hausdorff dimension of u,, we shall use the approximate squares
defined before (see (14)). We note that A, the union of the borders of all basic
rectangles, has p,-measure 0. This is because v € M,,(b|7(A)) and (20). Let
z € A— A, R,(2) be the basic rectangle of order n containing z, and B, (z) be the
approximate square containing z, which is the intersection of the basic rectangle
Ry, (-)(z) with the horizontal strip containing R, (z) of the same height. Then
B, (z) is “approximately” a square with side of length e5z»=%(*), By (21) we get,
for some ¢ > 0,

log p1,(Bn(2)) _ logv(m(Rn(2)))
Sp,)¥(2) SL,9(2)

<cé (21)

1
) + mSLn(z)(IOg Ay)(m(2)) j:E.
#(Z)SL"(z)(p(Z) n

[e3

Using Birkhoff’s Ergodic Theorem and [log A4, dv = 0, we see that o — 0 for p,-
a.e. z. Using Birkhoft’s Ergodic Theorem, Shannon-Mc Millan-Breiman’s Theorem

and
Sea@@®) |, 1S0,0elz) — Sul-logt)(x(z) |
Sp(—log?')(m(2)) n +5,(—logt/)(m(2)) ’
we see that | ((R(2))) o (5)
og v(m(Ry,(z v
f J-a.e. Z.
Se,2)9(2) - [ log ¥ dv OF Hmae. 2
By Lemma 1 and Proposition 3, we conclude that
. hy (D)
d =
Y [logt dv
So,
log NV(Bn(Z)) :
—————= > dimg v + t(v) for p,-a.e. z.
Sp,.(2)¢(2) )

Again, by Lemma 1 and Proposition 3, we conclude that

dimy p, = dimpg v + t(v).

THEOREM 2.

dimg A = sup dimpyg .
VEMp (bl (A))
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Proor. By the lemma above, we only have to see that

dimyg A < sup {dimyg v + t(v)}. (22)
VEMep (b (A))

Given v € Mg, (blw(A)) and n € N, let t,,(v) be the unique real satisfying
tn(l’)
Z (R{") log(z a5y )

We want to compare t,(v) with ¢(v). Let y € m(A) with unique representation
(i1,i2,...). Consider the n-Bernoulli measure yu, on A, given by

k tn(l’)
Ny(AjL--jk) = H IIJ; n(,, .
1=1 2.5 Yjn

LEMMA 11. dimy py = t(v) £ % for v-a.e. y.
PRrROOF. The proof is similar to that of Lemma 6:
k Py ki) ( ' @(u))
log py (Agy ) _ (v)- S logaig, 2k 108( 20 G
- 'n
IOglAjlmjk' log|Aj1-~~jk| %lOg|AJ1~--jk|
=t,(v) a—pf.

Using the bounded distortion property we see that |a — 1] < %. By Birkhoff’s
Ergodic Theorem and definition of ¢, (v) we see that 8 — 0 for v-a.e. y. The result
follows. (|

Then
dimyg Ay > t,(v) — % for v-a.e. y. (23)
On the other hand, by [K] we have that
dimyg A, = t(v) for v-a.e. y, (24)
S0
tn(v) <t(v)+ Bn_C'

Let us now return to the proof of (22). By the proof of Theorem A (see Remarks
3 and 5), there exists v, € M(b"|r(A)), which is Bernoulli for " with positive
weights, such that

D
dimyg A < dimg vy, + tn(vn) + —.
n

Let 0, € Mep(b|m(A)) be the ergodic mean of v,, as defined before. Then,
dimy 7, > dimpy vp,. Since 7, (RI') > v, (RY)/n, we have

ZV" RY) log(z afj’r(;’“ ) >

which implies ¢, (7,) > tn(vy). Thus
D+ BC

D
dimpg A < dimyg 7y, + tn(Pn) + — < dimy o, + ¢(0p) +
n n

Since n is arbitrarly big, this concludes the proof. O

PROPOSITION 5. For all v € M, (b|m(A)),

dimy A, = dimpA, = t(v) for v-a.e. y.



3. CONNECTION WITH THE RELATIVISED VARIATIONAL PRINCIPLE 31

Proor. It follows from Lemma 7 that
_ D
dimpA, < t,(v) + -~ for v-a.e. y (25)
(note that t,,, = t,(v) for v-a.e. y). By (23) and (25) we get

dimyg A, = dimgA, for v-a.e. y.

The equality with #(v) follows from (24). O
REMARK 6. The map
. hy (b
Mep(b|T(A)) 3 v — dimg v = fl#(b’)du

is upper-semicontinuous. By (23), (24) and (25) we see that the map M., (b|w(A)) >
v — t(v) is continuous. So the map M,,(b|7(A)) > v — dimpgp, is upper-
semicontinuous. However, we cannot conclude there is an invariant measure of
full dimension because the subset M., (b|m(A)) C M(b|m(A)) is not closed.






CHAPTER 2

Exceptional sets

The Birkhoff exceptional set £ defined in the introduction has 0-measure with
respect to every f-invariant probability measure. We would like to caracterize this
set from the topological point of view. For instance, if f is uniquely ergodic, i.e., has
only one invariant probability measure, then £ = (). On the other hand, if f has
plenty invariant probability measures, then £ might have full Hausdorft dimension.
The goal of this chapter is to prove Theorem B whose heart relies on Theorem A.
We begin by describing the conformal setting considered in [BS]. Then, using these
ideas and our methods, we extend these results, first for the self-affine case which
is simpler, and then for the skew-product case.

1. Revisiting the Bernoulli shift

The results already known, see [BS], concern the hyperbolic and conformal set-
ting which, essentialy, reduces to studying a symbolic dynamics with an appropriate
metric. We give a brief description of these results. Consider the topological space
Y = {1,....,m} and the Bernoulli shift o: ¥ — ¥ defined by o(z), = xp41 for
z = (x1,22,...) € B. As usual, we define the cylinder of order n as

Co(xy={yeX: iy, =w;,i=1,...,n}.

Given a positive function u € C(X), constant on cylinders of order 1, we consider
the metric on ¥ defined by

d(,y) = S0

where

|
—

Spu(z) = u(olz) and N =inf{n>1:z, #yn} —1

J

(if N = 0 we put d(z,y) = 1). Then diam(C),(z)) = e~ =) Here |C,(z)| = n.

In what follows, the function u is fixed and we consider the corresponding metric.
The next theorem is taken from [BS].

Il
o

THEOREM 3. dimpyg &, = dimyg X .

SKETCH OF PROOF. The following statement is the heart of the result:

Given € > 0, there exist distinct ergodic measures p1 and po such that
dimy p; > dimg ¥ —e€,¢=1,2.
We assume this statement, which is a consequence of the thermodynamic for-
malism. Say, dimg g1 > dimy po. Then the argument goes as follows:

(1) Construct a set Q C X by mizing generic sets for uy and us in such a way
that Q C &,.

(2) Construct a probability p on Q by mizing p1 and us in such a way that
dimy p > dimyg po — 2e.

33



34 2. EXCEPTIONAL SETS

(3) Then,
dimH gg Z dlmH Q Z dlmH 1% Z dlmH Y — 36./
and the result follows because ¢ can be taken arbitrarly small.

Since p1 # p2, there exists g € C(X) such that [ gdus # [ gdus. Let § € (0,¢€)
be such that | [ gdus — [ gdus| > 46. For each i = 1,2 and I € N, let I' be the set
of points x such that for n > [ one has

 log pi(Cr(2))

+Su9(0) ~ [ g e

By Birkhoft’s Ergodic Theorem and Shannon-Mc Millan-Breiman’s Theorem, there
exists an increasing sequence of positive integers ls such that, for every s,

ls €
lu’p& (]'_‘pg) > 1 - %’

where ps = s (mod 2). Let my be the increasing sequence of positive integers defined
inductively by m; = I3, mgs = (ms—1 + ls41)! (so that % — 0 and % — 0).
Define the families of cylinder sets by

Cs = {Cp,(2) :x €Tk},

<4 and > dimg p; — 6.

and

Dl = Cl, DS = {QU . Q c Ds—l» U c Cb}

o= U ¢

s>1C€eDy
Thus, if € € then for every s > 1 there exists C' € Dy such that x € C| and it is
not difficult to see that, for sufficiently large s,

c
1

& o)~ [ g, | <2
=0

Set

This implies that Q C &,.
We now construct a measure y on 2 by

{M(C) = u1(C) if CeDy

u(CC) = w(C)up,(C)  if CC € Dy, s > 1.
Then

s=1
and we can normalize p to make it a probability measure. In order to estimate the
dimension of u, we shall prove that

lim — log p(Cn ()
oo Spu(z)
Given z € Q2 and ¢ € N, let s, be such that |C%| < ¢ < |C*aF!| where
D, 412 C* T C Cyz) C C* € D,
Let us consider two cases. First, suppose that
|C%| < q < [C%] + 15,41 (26)

Then ﬁ — 1 when ¢ — oo, and

> dimyg pe — 26, for every x € Q.

—1

—N—
_logpu(Cy(x)) _ logu(C*) o ul)
Squ(x)  —  Sjesqu(z)  Squ(x)

> dimg pg — 20,
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for suficiently large ¢. If (26) does not hold, then
1(Cq(@)) = p(C*)pip, ., (C),

where Cy(x) = C*¢C, C contains an element of Cs, 41 and |C| >[5 ;1. Then

logu(Cyle))  logu(C) Sicrajula)
Squ(z)  Siraulz)  Squ(x)
B log i, ., (C) .S\CW(U‘]_‘Clw)
Sicju(oa=IClz) Squ(z)
’ S|qu|u(x) + S|C‘u(0'q_|c‘:17)
Squ(z)

=1

Z(dlmH Mo — 25)

for suficiently large ¢q. By Proposition 3, this implies that dimyg ¢ > dimyg pe — 26,
as we wish.

|

2. The self-affine case

Here we consider the transformations described in Section 1 of Chapter 1. Our
dynamics f: T? — T? is given by f(z) = A;jlz if z € Ry;.

THEOREM 4. dimp Efp = dimp A .

Proor. By Theorem 1 and its corollary, we can find a probability vector p*
such that

dimyg A = dimpy pp- = dimyg vp- + t(p™).
If there exists some ¢ such that p; = 1, then the problem is essentially one-
dimensional and it reduces to the previous section. So, we assume that p} < 1 for

all 4, which avoids technicalities envolving the borders of basic rectangles. Given
0 < § < dimpy vp+, we can find p (with p; < 1 for all ¢) such that

® Up F Up+,

o dimy vp > dimpyg vp+ — 6,
m ez .

° Zpi log Z az;p Ml <o log (min b; ).
i=1 j=1

Let b: T' — T! be the dynamics induced by f on the vertical, i.e, bom = wo f
(we say that b is a factor of f). By the techniques of the previous section, there
exist a set T C &jr(a) and a measure v on 7(A) with v(Y) = 1, such that, for all
y = xv(i1,i2,...) € T and all sufficiently large n,

logv(In(y)) _ ..
—— 77 > dimy V- — 6, 27
Sy logh, P @7)
" P(y,n,i) 2 et
. —2 "o a'®) )| < 5. log (min b7 Y). 28
;:1 - g j§=1 i <4 -log ( ) (28)

We construct a probability measure 1 on A by
no i)
(R (i1 j1) (inga) o (ingn)) = V(In(Y)) - H %
=1 Zj:i Q5
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Then 7= *(T) C &fa and p(r~1(Y)) = 1. As in the proof of Lemma 2, we have
that

log p(x(Bu(@))) _ logvTn(@)) , oy X4 logauy
27:1 log biz 27:1 log biz 27:1 log biz

m  P(y,L,(w),i g t(p*
Die1 W log( Ej:ll ai,(;‘) ))
L,:Ew) % E?:l log bil

Attending to (27), (28) and

Ln
[ og i,

Z?:l log bil
we get that, for all x(w) € 771(T) and all sufficiently large n,
log (X (Bn(w)))
21 logb;,
By Lemma 1 and Proposition 3, we get that dimy p > dimyg A — 36, thus
dimyg Epjp > dimy 7 YY) > dimpg g > dimy A — 36.

— 1,

> dimp vp- + t(p*) — 30.

Letting § — 0, we get the desired result.

3. The skew-product case
Now f and A are like in Theorem A.

REMARK 7. It follows easily from Theorem 4 and the proof of Theorem A that,
dil’IlH < U gntA) = dlmH A.
n=1

But, using Section 3 of Chapter 1, we can say more.

Proor oF THEOREM B. Given € > 0, by Theorem 2 there exist n € N and a
Bernoulli measure v, for b"|w(A) with positive weights such that

dimy oy, + t(7,) > dimg A — ¢,

where, as before, 7, is the ergodic mean of v,. As in Lemma 10, we consider the
Holder-continuous function A, satisfying

/log Ay, dvy, = 0.

It is easy to see that there exists another Bernoulli measure 7, for b™|7(A) with
positive weights such that, for 0 < § < min{e, dimy 7, },

Tn 7 VUn, (29)
dimy 7, > dimyg 7, — 6, (30)
| / log Ay, diln| < 6. (31)

In fact, if pi’ ;. ; are the weights of v, choose two indexes, iy and i_, and construct
1, with weights given by

Drig.in = Pivig.in i1 # iy and i # i,

QG igoin = Pivig.in TP

n _ o
Qi g i — Pi_in.in — P
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where p > 0 is small. So, 7n(Ri,i,..i,,) # Un(Ri,i,..5,) and (29) follows. Since 7y,
is arbitrarly close to v,, (30) and (31) follow by continuity. Then, as in Theorems
3 and 4, we construct a set T C &(a) and a measure v on 7(A) with v(T) = 1,
such that, for all y € T and all sufficiently large k,

log v (Ix(y))
Sk(—logd')(y)

1
ZSk(log Ay )(y)| <6 -minlogd’. (33)

> dimy 7, — 6, (32)

Now, we consider the probability measure p on A given by

H=v X Hiy s

where y;, , are the conditional measures of i, on the fibers 771(y) (see Lemma
10). Then 7= 1(Y) C &;a and p(r~1(Y)) = 1. Using (21) we get, for some ¢ > 0
and all z € 77 1(Y), y = 7(2),
log u(Br(2) _ logrUs®) 0y Sta9(?)
Sp(—log)(y) ~ Sk(=logt)(y) = " Sk(—logd)(y)
o S (o) (log 4z,) () N

C
i Sk(—logh)(y) ~ Kk

Using (32), (33) and
SL.(29(2)
LB P,
Sk(—logt')(y)
we get that, for all z € 771(Y) and all sufficiently large k,
log 11(Bx(2))
Sk(—logt')(y)
This implies that dimyg g > dimyg A — 4¢ and
dimy E¢p > dimy 77 H(Y) > dimy p > dimy A — 4e.

> dimy oy, + t(9,) — 30.

Letting € — 0, we get the desired result.






Commentaries

In Theorems A and B we took an e-perturbation of a general Sierpinski carpet.
The reason for doing that is to inherit from the linear system a domination condition
plus a Markov structure. Taking as reference any other linear system and noting
that, by [S], any expandig map f: T™ — T™ is topologically conjugate to a linear
expanding endomorphism (not necessarly close to each other), perhaps we could
consider more general systems.

In Theorems A and B we considered invariant sets which are continuations of
general Sierpinski carpets, thus posessing a Bernoulli shift as symbolic dynamics.
Using the techniques of [GP] perhaps we could consider more general invariant sets,
such as subshifts of finite type.

A non-trivial problem related to the variational principle is the existence (and
uniqueness) of an ergodic invariant measure of full Hausdorff dimension, see Remark
4. As mentioned is Remarks 5 and 6, this problem is related to the problem of
determining whether a limiting measure is ergodic or not. See the problem proposed
in Remark 5.

In this work we restricted ourselfs to skew-product maps. More general sys-
tems present a new phenomenon: the horizontal lines turn into an invariant fractal
foliation. The leaves of this fractal foliation are graphs of Holder-continuous maps
of the z-axis, which are the images by the conjugation of the horizontal lines.

EXAMPLE. Let us consider a perturbation of the form

f(z,y) = (lz,m(y — B(x))),
where §: T — T' is Cl-close to 0. Solving the equation h o fy = f o h with
h(z,y) = (z,y + ¢(x)), we come to

8(2) = (1) + B(a).

By the contracting mapping principle this equation has a unique continuous solution
¢, which in this case is given explicitly by

o(z) = Z m~ "B x).

This is an example of a Weierstrass function, which were introduced (by Weier-
strass), with G(z) = cos(27wz), to give examples of Holder-continuous functions
that are not differentiable at any point. In this case, the leaves of the fractal
foliation are just vertical translations of the graph of ¢.

More generally, let 1: [0,1] — R be given by
Yl@) =Y ATBA"),
n=0

where A > 1,0 < s < 1 and 8: R — R is a C! periodic function with period 1.
Denote by G(v) the graph of 1. A major problem in Dimension Theory is

39
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COMMENTARIES

Congecture: dimpy G(¢p) =2 — s “for most A and 3.
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