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Abstract

We prove that Hénon-like strange attractors of diffeomorphisms in any
dimensions, such as considered in [BC91],[MV93],[Via93] support a unique
Sinai-Ruelle-Bowen (SRB) measure and have the no-holes property: Lebes-
gue almost every point in the basin of attraction is generic for the SRB mea-
sure. This extends two-dimensional results of Benedicks-Young [BY93] and
Benedicks-Viana [BVO01], respectively.

Introduction

Extending the framework of [BC91], Mora and Viana [MV93] were able to show
that strange attractors (or repellers) of Hénon type occur, with positive probability
in parameter space, in the generic unfolding of homoclinic tangencies of surface
diffeomorphisms. Indeed, a renormalization scheme permits to construct, from
the original family of diffeomorphisms unfolding the tangency, a family (f,), of
diffeomorphisms of the plane arbitrarily close (in the C* topology, any k > 3) to
the family of quadratic endomorphisms

Qu(x,y) = (1 —ax*,0).

And Mora and Viana [MV93] extend the conclusions of Benedicks and Carleson
[BCO1] to such Hénon-like families.

Then Benedicks and Young [BY93] proved that all these Hénon-like strange
attractors support a unique SRB measure, that is, an invariant ergodic probability



measure [ such that
n

~1

,}iggo% ]Z%fp(f’(z)) = /fp du

for every continuous function ¢ : R> — R, and for a set of points z with positive

Lebesgue measure. This set is denoted by B(ut) and called the ergodic basin of .
More recently, Benedicks and Viana [BVO1] proved that Hénon-like strange

attractors have the no-hole property, thus solving a problem raised in the early

eighties by Sinai and by Ruelle, for this class of systems. The no-hole property

means that

Leb(B(A)\B(u)) =0,

that is, the measure p describes the time-averages of Lebesgue almost every orbit
that converges to the attractor. As a main step of the proof, they show that almost
every orbit in B(A) belongs to the stable set of some orbit of A.

Back in the early nineties, Viana [Via93] extended the results of [MV93] to
homoclinic bifurcations of diffeomorphisms on any manifold. In this setting one
assumes that the saddle-point associated to the homoclinic tangency is sectionally
dissipative: the product of any two eigenvalues is less than 1 in norm. Then a
renormalization scheme permits to find from that original family unfolding the
tangency, families (f,),, arbitrarily close to

Qa(x,y1,...,y) = (1 —axz,O,...,O),

which Viana [Via93] proves to display strange attractors A, for a positive Lebes-
gue measure set of parameters.

In the present paper we prove that these high-dimensional strange attractors
share the nice ergodic properties of their two-dimensional counterparts. Indeed
our first main theorem is

Theorem A. Let (f,), be a Hénon-like family of diffeomorphisms of Rt as
above. Then, for a positive Lebesgue measure set of parameters a, the diffeomor-
phism f, has a unique SRB measure L, and the support of this measure coincides
with the strange attractor A,.

The positive Lebesgue measure set of parameters in this and in the next theo-
rem is the one that was constructed en [Via93], for which A, is known to exist.

In [Via93] it is also shown that these Hénon-like families one obtains in the
context of sectionally dissipative homoclinic bifurcations are partially hyperbolic,



in the sense that there exists an open set K, containing the attractor A, for each a,
and there exists a continuous splitting

TR =EY@QE™, dimE™ =2,
of the tangent bundle restricted to K satisfying for some A > 1,

*Df..EF =E% , and Df,.ES" =ES . (invariance)

f@) f(2)
for every z € KN f~1(K);
» [DfIEF|| <A (uniform contraction)
* |Df|ES ||(DfZ|EZC")_1 || <A (dominating property)

In fact E}* and E* are defined for every parameter a (not just a positive mea-
sure subset) and they may be taken uniformly close to constant (i.e. parallel)
subbundles of R+

Our next main theorem is

Theorem B. Let (f,), be a partially hyperbolic Hénon-like family. For the same
set of parameters as in Theorem A, the attractor A, has the no-hole property:

(1) B(A) = UgcaW*(8) up to a zero Lebesgue set;
(2) Leb(B(A)\B(it)) =0

The proofs of these results occupies Sections 2 through 14. While we exploit
several ideas from the previous paper, a lot of new difficulties have to be dealt with
in this extension to high dimensions. Most important, the arguments of [BVO1] to
solve the basin problem on surfaces, especially their construction of a sequence of
pseudo-Markov partitions into rectangles, makes crucial use of the topology of the
plane. A seemingly natural generalization of this strategy to higher dimensions
soon runs into trouble: the geometry of successive partition elements becomes
more and more complicated (in 2 dimension they are all just rectangles), a difficult
which seems unsurmountable.

Instead, our strategy has been to carry out all our constructions on surfaces
transverse to the strong-stable bundle E*°. Partial hyperbolicity ensures that a
convenient family of such surfaces is preserved under forward iterates (we do not
need to assume existence of an invariant “central” manifold).



1. Notations, definitions and preliminary results

Let b be a small and positive constant. In the sequel, we will suppose that b

is much smaller than any other constants appearing in the text. Let a € [1,2]

and ¢, : R x R? — R x R? be the quadratic endomorphism given by ¢,(x,y) =

(1 —ax?,0). We consider parametrized families of diffeomorphisms (f,), in RY

such that || £, — ¢a||cs < Kb for all a € [1,2], where K > 0 is fixed but arbitrary.
Hence the derivative of f, at z has the form,

Dfa(z) = _zm’}ggR'(z) 2;‘;8 (1.1)

with ||Ri||c2 < KVbfori=1,...,4.

We fix § > 0 and [aj,az] C [1,2] satisfying b < 2 —ap <2 —a; < 6 and
(ap —ay) > (2—ay)/10. For these parameters, f, has a unique fixed point P,
that is a continuation for the fixed point of ¢, with x-coordinate positive. For
generic families like that, we know that A = W¥*(P,) (where W(P,) is the unstable
manifold associated to P,) is a strange attractor for each a in a set E C [a,a;]| with
positive Lebesgue measure.

From now on we fix a € E and write f = f, and write P = P,.

In order to describe precisely a context for what follows, let us introduce some
terminology and notation, besides a few results mostly present in [BC91],[MV93]
and [Via93].

» Having fixed b and 6 as above, we choose real numbers a, 3, 01,0 satis-
fyingy/e<o<om<2andd<Ka<k ff < 1.

* The strip I(0) = (—8,0) x R? will be referred to as the critical region.
» For z € W, let t(z) represent a unit vector tangent to W* at z.

» Throughout the text, we will use consistently C (and c) to represent an arbi-
trary large (respectively small) constant not depending on & or b.

* We represent a generic point in R x R? as (x,y) and the projection on the
first coordinate by 7y(-).

» The slope of a vector (x,y) € R x R? with respect to the horizontal direction
(corresponding to the first coordinate) is defined as

slope(x,y) = ||yl / |x].



» The vector (1,0,0,---,0) will be represented by wy.
= Given points z and w we write z < w whenever 7,(z) < m(w).
* The notation disty(z, w) stands for the horizontal distance from z to w.

» Given a point z in W* and a parametrization y of W¥ near z, the notation
Y(z, €) stands for the piece of unstable manifold extending € around z.

Definition 1.1 (C?(¢) curve). Given & > 0, a curve x — (x,y(x)) € R x R is said
to be C2(¢) if ||ly(x) ||, [|y/(x)|| and ||y”(x)]| are bounded by & for all x.

Definition 1.2 (Tangential position). Let z and w be points in R x R? associated
to respective tangent vectors u and v. One says that (z,w) is in tangential position
with respect to (w,v) if there exists a C%>(1/10) curve containing both points and
tangent to w at z and to v at w.

Definition 1.3 (Expanding points). Given A >0, a point z is said to be A-
expanding up to time n if ||Df-’ (z)w0|| > A/, forall 1 < j <n. If n can be taken
arbitrarily large we say simply that z is A-expanding.

Proposition 1.4 (Critical set).
Let f be as above. There exists a countable set © € W"(P)NI(8) whose members
C are called critical points and satisfy:

(a) m (L) <CVb;

(b) slope(t(&)) < CVb;
(c) slope(t(f(§)) > c/Vb;
(d) [IDf*(f(E))-t(f(E)I < (Ch)";

))-
)-wol| = of;

(
(e) [IDf"(f(E

(f) For each positive integer n such that f"(§) is in I(0) there exists a critical
point § € C such that (f"(),wo) is in tangential position with respect to

(C.4(0)).

Moreover there is a critical point { € C whose orbit is dense in the attractor.



We write W as union of compact segments Gy, k > 0, which are inductively
defined: Gy is the segment in W* joining f2(Z) to £(Z) where Z is the point in W N
{(x,y) ; x =0} closest to P, (in W*). For k > 0 we put Gy = fX(Go) \ f*"1(Go).

Now we collect some facts relating the critical set € to the segments Gy.

Proposition 1.5 (Critical points and generations).
Let C;, = CN Gy. Then the following holds:

(a) Cy is finite for every k > 0. In fact Cy contains exactly one point for k=0, 1;

(b) There exists a real number p > 0 such that for all k > 0, if { € C then
Y(£,8p%) is a C*(CV/b) curve;

(c) Forallk >0, if { € Cy then there exists k < k such that GZ contains a critical
point § with dist(£, ) < b¥/19,

Remark 1.6. We can suppose that every z € Gy, that is o7-expanding and such that
¥(z,8p%) is a C?(Cv/b) curve is effectively in € (see [MV93], section 4).

If z is a A-expanding point up to time m then sufficiently near z all points have
the same property. Then in a neighbourhood of z it is possible to define a vector
field tangent to the most expanding direction at each point. Such a field will be
represented by f (’")( -) and in view of the next proposition, it will often be more

convenient to write it as (1,?('" (-)). Furthermore, we will use E™(.) to repre-
sent the hyperplane { f("(-)}+ which naturally contains the maximal contracting
directions at the respective point.

Proposition 1.7. Let { be A-expanding up to time n. Let Vb < © < A% If €
satisfies _ _ _
dist(f/(8), f/(§)) <t/ forall 0<j<n-—1,

then, for any point z in the T"-neighbourhood of & and for every 1 < k < n we
have

(a) £®(2) is defined and slope(f*(z)) < Cv/b;
(b) angle(fU)(z), f®)(2)) < (Cb)! forall 1 < j <k;
(b) ||Df-i(z)e|| < (Cb)jfor all unit vector e € E® and 1 <j<k;

(© ||pf®)| < cvband |50 )| < v
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@ |[p@FiF9)@)| < (co) foratn1 < j <k

(e) 1/10 < |[Df"(E)woll / [|IDf"(z)woll < 10;
(f) angle(Df"(&)wo, Df"(z)wo) < (VCr)".

The preceding result implies that for points expanding for all times the con-
tractive hyperplanes E*) (z) converges exponentially to a limit hyperplane E(z) =
E>(z). In such a case according the next proposition, there exists a (exponen-
tially) contracting hypersurface tangent to F at each point. In the two dimensional
setting similar hypersurfaces (curves) exist even for points that are only expanding
up to some time n < co. Unfortunately, this is not the case in higher dimensions: in
general distributions of k-dimensional hyperplanes with k£ > 1 are not integrable.

Proposition 1.8. If z is an expanding point then there exists a neighbourhood I'(z)
of 7 in its stable set W*(z) that can be parametrized by RY > y — (x(y),y), with
Iyl < CVb and |¥|,||x"|| < CVb. Moreover, we have

dist(f"(z1), /" (z2)) < (Cb)"dist(z1,z2), forall z1,z0 € T'(z) and n > 1.
If 71,22 are expanding points, then

angle(rr(&1),1r(&)) < CVbdist(§1, &), forevery & € T(z1) and & € T(z2),

where tr(&;) stands for a unit vector tangent to '(z;) at §;,i = 1,2.

If we were able to construct hypersurfaces tangent everywhere to the contrac-
tive hyperplanes of each finite order, by a limit process we could get the proof of
the previous result. However, as explained before integral hypersurfaces for the
distribtion {E (z)}. can not be expected to exist in general and so we have to
follow another path. What we are going to do is to construct hypersurfaces that
are almost-tangent to such a distribution. These hypersurfaces will be contractive
too (for the same number of iterates) and will tend, as time goes to infinity, to a
hypersurface contractive for all iterates proving the previous proposition.

We postpone the results we have in mind to Section 6 when we will have
already defined some necessary notions.

Given a point z which is expanding up to some time m and a tangent vector v
at z it is often useful to split this vector into contracting and horizontal direction.
Next two lemmas states this procedure in a precise way.



Lemma 1.9. Let U C I(8) be an open and conex set such that in f(U) the A-
expanding directions of order m are defined. Let f (m) be the vector field of these

directions normalized in such a way that £ = (1,}(’")). Let V' be a unit vector
field defined in U. Then we can write

Df(z).V(z) = e(z) + B(z)wy (1.2)

with uniquely determined B(z) € R and e(z) € {f" (f(z))}* satisfying, for all
7,2€U,

L |B(z2) =B <[V(2) = V(@) +5]lz—7]
2. |le(z) —e@@)| < [[V(z) =V (2)[[+10]]z—Z]

Proof. We write f(z) for £ (f(z)) and observe that we can always write down
(1.2) simply putting

B(z) = (Df(2).V(2), f(2))
and

e(z) = Df(z).V(z) — B(z)wo.

Naturally we have,

B(z) = B(2)| = [(Df(2).V(2), f(2)) = (Df(2).V (2), £(2)]
<|Df(2)-V(z) =Df @)V @I @I +1f(2) = FE)l

But,
IDf(2).V(z) =Df @)V < IDf(z) =Df @I+ I1DF @IV (z) =V ()l
Since ||D2f|| < (4+Cv/b) and z € I(§), we get
IDf(2).V(z) = Df ).V @) < (4+CVb)|lz—Z| +58|V(z) - V()|
which implies the first item. In a similar way, we get,
le(z) —e@)|| < [[Df(2).V(z) =Df(2).V (@)l +[B(z) — B[]
where we can use the bounds just obtained to finish the proof. O

We can now restrict the previous reasoning to almost-horizontal curves inside
the critical region.



Lemma 1.10. Let U and £ be as before and let y(s) = f(s,y(s)), where (s, y(s))
is a C>(1/5) smooth curve on U. Then we can write

Y (s) = e(s)+ B (s)wo (1.3)

where B(s) € R and e(s) € { £ (y(s))}* are uniquely determined and satisfy,
for all s:

. |le(s)|| < Vb and || (s)|| < CVb
- |05 lle(s)lll < CVb

. |B(s) +2as| < CVb

- |B'(s) +2a] < CVb.

Proof. As in the previous lemma, we put

B(s) = (Y (s), £(2)) (1.4)

A W N~

and
e(s) =7 (s) = B(s)wo.
Let us write y(s) = (&(s),n(s)) and £(s) = £

esis on f (see 1.1) we easily can check that || (s)
and |E”(s) — 2al are all bounded by C\/b.
In view of (1.3) we must have

B(s){wo, £(s5)) = (Y (s) —els), £(5)) = (Y (5), £(5))-
But f(s) = (1, f(s)) and 7' (s) = (§'(s),n'(s)) and so
E'(s) = B(s) = (n'(s), F (s))-
This last relation yields to
&)~ )| <Cb  and  [E"(s)~B'(s)] < C%b.

which implies immediately (3) and (4). Since e(s) = (&'(s) — B(s),n’(s)), we
have (1) and (2) as well. O

(7(s)). In view of our hypoth-
') 1" (s)ll. & (s) —2as]

’ ’ )

Remark 1.11. If the curve above contains a critical point { = (sg,y(so)) and
is tangent to W* at this point then the splitting with respect to the contracting
hyperplane of order m will give us |B(so)| < (Cb)™. This is a consequence of
(1.4) and the angle estimates in Proposition 1.7.



2. Estimates for the critical region

Proposition 2.1. If { and & are distinct critical points then

distiy(,€) — Cvbangle(t(8),t(&))
dist(£, &) scvb

for some constant C.

Proof. We choose vectors u = (1,u) and v = (1,), respectively collinear with
t(¢) and ¢(&). Naturally, ||z|| and ||o|| are bounded by Cv/b.

Let y(¢) be a parametrization by arc length of the linear segment joining ¢ to
&, that is to say,

d—t t
t)=——C+—
v ="t te
where d = dist({, £). Similarly, we define a vector field V' on ¥ putting

d— t d— <
v - Tusbo- (15 5+ 5o) - (1.7 0)

In view of (1.1) we have

[ 2am )+ Rir) + R )V | [ W)
Df(?’(t)).V(t)—[ ARSI U ] { 1 )]

and since 0, (m,(Y(t))) = (7 (&) +td! (m(&) —me(8)) = distu (&, &) /d, we get

Wi(r) = —2a(dy /d)+
DRy(y(1)).Y (t) + DR ((1)).Y (¢).
Ws(t) = DR3(y(t)).Y (t) + DRa(¥(1)).Y ().
where dy = disty({, &).

Since ¢ and & are critical points, we can choose a maximal integer m such that
all points on f(y) are expanding up to time m. From Proposition 1.7 we know

that d ~ T > (Cb)™. Let f") = (1,?('")) be the field of expanding directions
defined on a neighbourhood of 7 (). Let us write f(z) for £/ (f(¥(r))) and f(¢)

V(1) +Ra(7(1))-V' (1)
V(t) +Ra(y())-V' (1)
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for f(m) (f(y(2))). By splitting Df(y(¢)).V (¢) into contractive and expanding
directions, we get

Df(y(1). V(1) = e(t)+B(H)wy  with e(t) € {f(1)}*
and so we must have
= (Df(y(t)).V (1) = B(t)wo, F(1)) = Wi (t) — B(r) + Wa(t). F (1)
Hence,
B(r) = Wi(t) +Wa(t). £ (1) @.1)
B/ (t) = Wi(t) + W3 (1). F(£) + Wa(t).DF (1). (2.2)
We have, for all 7 € [0,d],

(1) H < C\/E
lu—v|

H - ||C 4
fo)| <cve,

Df(t)H <CVb.

=ds/d

where d4 = |Ju —v|| =~ angle(t({),t(§)). Furthermore, using the bounds for
R;,j = 1,2 and their derivatives, we finally get

|B'(t) +2a(dy/d)| < 2CVb(3+da/d)

and so

min |B'(t)| > (du/d) — CVb(da/d) —3CVb

1€[0,d]

The fact that { and & are critical points implies that |f({)| and |B(&)| are
bounded by (Cb)™ and so,

2(Ch)" = 1B(E) = B(&)| = min [B'(1)] 1€~ &

1€[0.d]

Since |{ — &| =d > (Cb)™ we can suppose that 24~ (Ch)™ < C+/b. Putting these
estimates together, we conclude that

w_3cﬁgcﬁ
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which implies immediately the Lemma.
O

Corollary 2.2. Let zg and 71 be critical points. Then we can not have a smooth
C?(1/3) curve joining zo to z1 and tangent at these points respectively to t(zo)
and t(z1).

Proof. The hypothesis implies

angle(t(z0),t(z1)) < (2/3)disty(z0,21)

and
dist(z0,21) < (4/3)disty(z0,21)-

So, we get, using the same notations as in the previous proposition,

dy —d,sCVb

y > (3—CVb)/4> CVb,

which contradicts the previous result.
O

Corollary 2.3. Let z be a point and v be a tangent vector at z. If (z,v) is simul-
taneously in tangential position with respect to (zo,t(z0)) and (z1,t(z1)), where
z0 < z1 are critical points, then we can not have zg < z < z;.

From Proposition 1.7 it is easy to verify that every accumulation point of C
is also expanding for all times. But this is not sufficient to guarantee that such
a point belongs to C. This is intimately related to the (inductive) way how C is
constructed (see [BC91],[MV93] and [Via93]). Next Lemma states a sufficient
condition however, to guarantee that a point in W* arbitrarily close to € actually
be in C. Recall that for points z € W* we write ¥(z,€) for a neighbourhood of z in
W extending € to each side of z.

Lemma 2.4. Let p be the constant appearing in Proposition 1.5. Let z € G, N
clos(C) be a point of W* of generation n. If Y(z,p") is a C*(C\/b) curve then 7 is
in C.

Proof. First note that the hypothesis implies z expanding for all times. Choose m
sufficient large in order to have dp" < 27" where 7 is like in Proposition 1.7 (with

12



A = 1). Therefore all points in f(7) are expanding up to time m. Now we choose
& € @ satisfying

lz—&ll <7"/100 and [[t(z) - (&) < /100

Splitting ¢(z) and £(&) into contracting and horizontal directions as introduced in
Lemma 1.9 we get

B(2) =B(E) <5(llz— &l + [IE(z) —t(S)) < ="/10 (2.3)

But & is a critical point (see Remark 1.11) an so |B(&)| < (Ch)" < ™ which
yields to

B(z)] < 7"/5

We know from Lemma 1.10 that |3(z)| > 2 for all z. This implies the existence
of § € ywith B({) = 0 what means that { is a critical approximation of order m.
Since m is arbitrarily large, we conclude that z is limit of critical approximations
located on . Hence z is a critical point. (See Remark 1.6). O

Lemma 2.5. Ifz € W*NI(8) and y(z,p") is a C*(Cv/b) curve, then
B(z):=1{& € C; (z,t(2)) is in tangential position with respect to (&,t(&))}
is not empty.

Proof. Let d = dist(z,C). If d = 0 then by Lemma 2.4, z € € and B(z) is triv-
ially not empty. If d > 0 then let & € € be a critical point with dense orbit
in the attractor. If n > 1 is sufficiently large we will have dist(&,,z) < d and
(&) —t(2)|| < d. Let 2(5,,) be the binding critical point for &, assured by
Proposition 1.4. Then dist(&,, 2(5,1)) > d /2 which implies E (&n) € B(2).

O

The tangential position property will be the fundamental fact in order to extend
to generic orbits the estimates of growth that holds for critical orbits.
3. Itineraries of points

Given a point z in the domain of our system, almost surely (in a Lebesgue sense)
the orbit of z visit the strip I(0) infinitely many times. If n is a integer such that
f™(z) € I(8), we say that it is a refurn time for z. When this happens, the orbit

13



of z experiences some loss of hyperbolicity. If z is a critical point then we know
- see Proposition 1.4, item(f) - that there exists some critical point {, near f"(z),
such that (£,t({)) is in tangential position with respect to (f"(z),v), where v is
an appropriate almost-horizontal vector. We say that { is a binding (critical) point
for f(z) an the existence of such a point is a key fact that permits us by means of
a inductive argument to control that loss of hyperbolicity.

The previous section has enabled us to extend this argument to almost all
points on W¥.

We are often using the notation z, = f"(z) and, if z, is a return iterate with
binding critical point §, we write de(z,) = dist(z,, §).

We can now describe the itinerary of a typical point z € W* as a sequence of a

* Free returns - corresponding to return iterates occurring outside all bound
periods (defined below);

* Bound period - the maximal piece of orbit after a return while the iterates
of z follow closely that of their binding critical point;

» Free period - the iterates after the end of the bound period associated to a
free return and before the next (free) return.

Let us state in a more precise way the notion of bound period. Given a return
time n for z with binding critical point { we define the bound period of z,, as

p(zn,§) = max{p € N; dist(z,1,{;) < e P/, forall 0 < j < p} (3.1)

Note that we can have new returns inside bound periods, and this must be (and
in fact was) considered while proving the basic results that were referred before.
In the context of what follows, we can simply ignore these bound returns.

We finish this section with a well-known result.

Lemma 3.1 (Hyperbolicity outside the critical region).
Let 7 € R be a point whose positive orbit remains outside 1(0) up to time n. If v
is a unit tangent vector at z with slope less than 1/5 then

(a) ||ij(z)’v|| > c562j forall1 < j<n;
(b) slope(Dfi(z)v) <8 'CVb forall1 < j<n.

(c) If either z € f(1(0)) or f"(z) € I(0) then | Df"(z)v|| > o} and
slope(Df"(z)v) < CV/b.

14



4. Bound period estimates

This section is devoted to discuss the role of tangential position in achieving the
estimates in later sections.

In the sequence we write wy(z) for Df*(f(z))wo.

Let & be a point in W* having the following properties:

(a) Expansiveness up to some time p: ||wi(&)|| > of forall 1 <k < p;

(b) All returns up to p are tangential. More precisely, for every 0 < k < p such

that & € I(§) there exists a critical point { = £ (&) such that (&, t(&)) is
in tangential position with respect to (£, (§)).

(c) The returns have a kind of recurrence control: dist(&, &) > e~ % for all
returns 1 <k < p.

Among the points satisfying the requirements above, clearly we have the crit-
ical points themself. Nevertheless the properties stated here are all that it is nec-
essary to get the following construction.

Fix a point & € W* satisfying the three properties above. Let y be a C>(1/10)
curve passing through & and tangent to (). Let us parametrize ¥ by y(s) =
(s,¥(s)), with s € [sg,s1] and suppose that ¥(sg) = &. To simplify notations we
write w;(s) = w;(f(¥(s))), for any j > 0.

We extend the notion of binding not requiring that the binding point be a criti-
cal one. Accordingly we define the bound period of points in ¥ to & exactly in the
same way as (3.1).

Let us assume that all points in ¥ remains bounded to & for p iterates. This
implies that at each return 1 < k < p we have

dist(f*(7(s), f4(&)) < Ce P

and on the other hand

dist(f*(€),L(75(&))) = e % > ce P/,

These facts and the three properties above are the fundamental ingredients that
permit us to write

wj(s) = A(s)(w;(s0) + &(s)), 4.1)
with
c < A(s) <C, and |[g;(s)|| < ||w;j(s0)]|- 4.2)
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for all s € [sg,s1]

The arguments used to get (4.1) can be found in [BC91, Lemma 7.8] and
[MV93, Lemma 10.5]. .

It follows that w;(s) &~ w;(0) > o7, by item (a) above, and therefore all points
¥(s) are expanding up to time p.

Let t(s) = t(f(y(s))). Using the splitting algorithm of Lemma 1.10 we get

t(s) = e(s) + B(s)wo(s),

with e(s) € {fP)(f(v(s))} .
Iterating by f we get

ti(s) :==DfI(f((s))t(s) = ej(s) + B(s)w;(s), (4.3)
where e;(s) = Df/(f(¥(s)))e(s).

Fix § € (s0,s1] and write z = (5). We can estimate dist(zj11,&j41) as

[llas

Using (4.3) and (4.1), we get
dist(41.E1:1) = /jllej(s)ﬂi(s)l( 5)(awy(s0) + &5(s)) | ds
/||/3 ) (w;(s0) + &(5))]|| ds + (Cb)’
This last integral is bounded by
Jwitsoll | 26118~ Blo)las+
OB w0 ds+
[ ROIBGI e as
Recall that |B(s) — B(so)| ~ 2a|s — so|. In particular, if & is a critical point, we
know that |B(so)| < (Cb)P. With this in mind, and taking into account the lower

and upper bounds of A(s) as well as the fact that ||&;(s)|| < ||w;(s0)|| we can
conclude that
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dist(zj4+1,&j11) ~ || wj(so) || dist(z, §)*.

This key fact is basic for the proof of the next fundamental result. Details can
be found in [BVO1, Section 2].

Lemma 4.1 (Bound period estimates).
Let z € W". If n is a return time for z with p = p(f"(z)) as the corresponding
bound period, then

(a) (1/5)log(1/de(zn)) < p < Slog(1/de(zn));
(b) ||wnsp(2)]| > "3 w,_1(2)]|  and  slopewny () < (C/8)Vb;

() ||wnsp(2)|| de(zn) > ce Pt |lw,_1 (2)]|;

>

(d) ||lwj(za)|| > 0] for1<j<p and slopew,(z,) < (C/8)Vb.

5. Proof of Theorem A

The proof of Theorem A relies on these fundamental results.

Lemma 5.1 (Orbits ending in free returns).
Let z € WY be a free return iterate. Then we have

|Df 7 (2)-4(2)|| <e
for some ¢ > 0 and for all j > 0.

Proof. See [BY93, Lemma 3], [Via93, Lemma 6.2(f)], [MV93, Lemma 9.4] and
[BC91, Lemma 7.13]. O

Lemma 5.2 (Maximal free segments).
Maximal free segments of W* intersecting X(8) are C*(Cv/b) curves.

Proof. See [BY93, Section 2.2.1] and the arguments in [Via93, Lemma 7.3]. [

Proposition 5.3 (Main Proposition of [BY93]). If y is a C>(C\/b) curve on W*
intersecting 1(8) then there exists a critical point § such that for all 7 € Yy we have
(z,t(z)) is in tangential position with respect to (§,t(()).
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Proof. Observe that it suffices to prove the claim when 7y is a maximal free seg-
ment. The previous lemma says that int this case Y is an almost-horizontal curve.
Furthermore, if some extreme point of Y is in I(§), then it is in a bound return
state. Suppose that |y| < p” and that z is a extreme point of Yin I(8). Let { be the
critical binding point of z. Let n be the generation of y and j < n be the minimal
integer such that £ = f~/(z) is in a return time. Let ¢ be the binding critical point
of Z. Then we have

dist(f/(),0) > e
and A
dist(f/(), f1(2)) < e Pl <™.
Hence _
dist(z,§) > e % > e % > p".

This implies that all points in Y are in tangential position with respect to E
On the other hand, if |y| > p” then Lemma 2.5 applies and so, writing

1, = {z€T; all points § € B(z) satisfy & < z}
vk ={z€T; all points & € B(z) satisfy z < £}

and using Corollary 2.3 we have y= 7, U (yNC) U 1&.

If there exists { € YN C then the assertion is trivial, since v is C>(Cv/b) and
all points in the curve are in tangential position with .

Otherwise, we have Y = 7, U Y. It is easy to see that y; and Y are disjoint open
sets in ¥ and so one of them must be empty. If y = ¥ it suffices to choose § € B(z)
where 7 is the extreme point to the right of . The other case is analogous.

O

With these facts we can construct the SRB measure for f in exactly the same
way as in [BY93, Section 3]. Let us briefly sketch the necessary steps.

= Let §y = (xo,y0) be a critical point lying on a C2(Cv/b) curve y. Consider
the exponential partition

(_675) = U|[J|2[JOII,17 Uy =~ 10g(5)

where I, = (e #~! e~H). Each I, is at your turn subdivided into u? intervals I,
of equal length.

Since we have |xp| < & and ¥ is almost horizontal, the partition above induces
easily another partition P(¢; on ¥ centered around &o.
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= We fix Py = Pg |A where &o is the critical point of generation zero and A is

the component of Py corresponding to [e~(Ho+1) ¢=Ho),

» Next define a sequence of partitions P, P,,--- which are successive refine-
ments of P and are obtained in such a way that points in the same element of
o € P, have the same itinerary up to time » - that is to say, the same sequence of
returns, critical binding points, bound and free periods, an so on. More precisely,
to each @ € P, there exists a sequence of return times ny <ny < --- <m <n
and, among these returns, some escape times, which are those return times ¢; cor-
responding to iterates where f(®) contains some ;. For details, see [BY93,
Section 3.1].

» At this point we need a bounded distortion result:

Lemma 5.4 (Distortion estimate).
If 71 and z; are points of W*N1(0) having the same itinerary up to time n, as
induced by P,, then

IDf )] _
[Df"(z2)t(z2))]| —
for some constant C > 0.
Proof. See [BY93, Section 2.5] O
» Define
1 n—1 .
mpy = — Zf* (LeblA)
Ly
and

=1 ¥ fi(Leblo)
n weP;
ti(w)<n

and put 771} = Aiy|ay

= Next we note that there exists a subsequence (n;); such that (n%,’:]), and
(my;) j converge respectively to measures A and f1. Let us write I (AT) =AT xRY
and W}, (z) the component of W"(z) NI(AT). Let X C I(A™) be such that for all
7 € X we have WY, (z) C X and Leb(R? — X)) = 0. Let Q be a partition of X into

\+-leaves and {iZQ} be a canonical family of conditional measures of 2. with

respect to the partition Q. Let {mZQ} be the analogous family for the Lebesgue
measure 1.

» The measures iZQ and mzQ are equivalent for A-ae. z.
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= The measures (2|X)Y and m? are equivalent for d-ae. z.

Define X = {z; dA/dfi > 0} and let i be the saturation of f1|X under f. That
is,

m=7y fla[(XN{R>n}))
n=0
where R : X — Z* is the first return time to X under f.
* Both measures /ft|f and 1 have absolutely continuous conditional measures
on W-leaves.
All we have to do is to choose (L as one of the ergodic components of L.
Uniqueness of u follows easily from the fact that, by construction, Lebesgue
almost all points of W* are generic for . Since, for each SRB measure v sup-
ported in A there must exists a Lebesgue positive set of points v-generic in W we
are forced to conclude that v = .

6. Stable leaves

Our aim now is to construct contracting hypersurfaces which can play the role of
stable curves of finite order in dimension two.

Lemma 6.1. Let n be a free return for a point & which is A-expanding up to time
n. Then there exists a hypersurface T'(§) passing through & that is exponentially
contracted up to time n at a rate of (C1b) for some constant C; > 0. Furthermore
this hypersurface admits a parametrization of the form (x(y),y), with ||y|| < CvV/b
and ||Dyx(y)|| < Cvb.

Proof. Let U C R4t be the set of all points that are expanding for f up to time 7.
Let H = {x = m,(f"(&))} be the vertical hyperplane passing through f"(§). We
define I'(§) = f"(H)NU(&) where U (&) is the conex component of U contain-
ing £.

Let vy be a tangent vector to I'(€) at a point z and let £")(z) be its maximal
n-expanding direction. Let us split vy into contracting and expanding components
as

vo=eo+ P Jfo
where fo = " and eo is a unit vector in {fo}*. Let v; = Df/(z).vo, fj =
Df/(z).fo and e; = Df/(z).eq for 0 < j < n. Note that e, = {f,}* and so the
slope of v,, with respect to the direction of e, is given by |B|| full/||€x]||. Since
n is a free return, by Lemma 3.1 we have slope(f,,) < Cv/b. This turns out to be
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the bound for the angle between e, and the vertical hyperplane {x = m,(f"(z))}.
Hence if v, is tangent to such a hyperplane then we must have

| en]]
< cVb.
Bl<17
Since

vl < llejl| + IBI| £5]
we get

|vj]| < (Cb)! +47CVB(A ™ Ch)"
< 477 (4ChY +CVb(4L7ChY T (427 Ch)/
< (41" 'cb)’

foralll1 < j<n.
This proves that all tangent vectors to I'(§) are expanding up to time n. A
parametrization like in the claim can be found as a direct consequence of the

slope estimates in the argument above.
O

7. Symbolic dynamics

We will construct now the equivalent to the partitions defined in [BVO1]. There,
the authors work with rectangles, i.e., regions bounded by two segments of W*(P)
and two stable leaves, in that case one-dimensional manifolds. Here we have to
circumvent the problem that with pieces of W*(P) and almost-vertical codimen-
sion-one manifolds we can not determine a canonical region. The approach we
are going to follow is to choose, with some flexibility, two-dimensional surfaces
bounded by segments of the unstable manifold and by contractive curves. With
some machinery we are able to proof that these rectangles will have the same
dynamical behaviour as your counterpart in dimension two.

First of all, we need to establish the existence of abundant long stable leaves
in order to be able of doing any partitioning of the described region.

We know from Proposition 1.8 that there exists stable leaves passing through
each expanding point. Hence our goal now is to find expanding points near critical
values. Next lemma states sufficient condition in order to get expansiveness.
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Lemma 7.1. Let z € I(8) and k > 1. Let 1 <nj < --- < ng < k be the return
times of z up to k. Suppose that for every 1 < j < s there exists a critical point &;
such that (f"(z),wn,~1(f(2))) is in tangential position with respect to (§;,t(&;)).
Then
(a) Ifdist(f"(z),&;) > e 2P forall 1 < j < s then f(z) is /0 -expanding up
to time k;
(b) Ifdist(f"(2),&;) > e forall | < j <sthen f(z) is A-expanding up to
time k, with A > 10~%0,

Proof. See Lemma 3.4 and Remark 3.2 in [BVO1]. O

We call a point satisfying the hypotheses of the preceding lemma as having
controlled returns.

Next proposition will establish the existence of a large number of such points
nearby every critical point. This will enables us to construct a family of long
stable leaves accumulating exponentially the long stable leave passing through a
given critical value.

Proposition 7.2 (Families of stable leaves).

Let & be a critical point and let T = {(x(y),y) ; |[y| < CV/b} be its long stable
leave. There exists a family of long stable leaves {Ty;; r > A,0 < [ < r*} satisfy-
ing:

(a) disty (T, T) = e forevery 0 <1 < r?;
(b) disty(Lry—1,T) = e 2 /12 for every 1 <1 <r?;
(c) Forl> 0T, is to the right of I';;_;.

(d) Each I'y; intersects W" in a point z which has all its returns controlled in
the sense of Lemma 7.1. More precisely,

de(f"(2)) = e P
for each free return n of z.
The proof of this Proposition is an easy consequence of the following

Lemma 7.3. Let v be a free segment of W" intersecting 1(8) and fix 0 < € <
1/100. If length(y) > ede(z) for all z € y then there exists a point zy € Y with
controlled returns.

Proof. See Lemma 3.1 of [BVO1] including Remark 3.1. O
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8. The rectangles

In order to proof Theorem B, the strategy we are going to follow is closely related
to that present in [BVO1]. According, given an arc y of W, we consider a good
set of points in a neighbourhood of ¥ and try to get dynamical properties of such
points mirroring the behaviour of that arc. Unfortunately, however, the explosion
of combinatorial complexity in the geometry of iterates of arbitrary sets leads us to
restrict our efforts in stating conditions where the context, while being an almost
two-dimensional one, permits us to mimic the arguments of the referred paper.

Recall that we are assuming that A = W¥ is a partially hyperbolic set for f.
Let us be more precise about that.

Let A be a real number larger than 3. We suppose that in a open neighborhood
V = (—A,A)4"! of A there exists two continuous subbundles E** and E* of TV,
such that T,V = E*(z) @ E“(z) for all z in V, and there exists a real number
0 < A < 1 such that

(2) Df..EY =E3;

(b) Df..E& =Ef{, forall ze VN FHv;

© |[DEIE?|| < 4;

forallze VN f1(V);

@ |DEIES||||(DL|ES) | < A.

Furthermore we assume that £ admits a integral foliation F** and is an almost
constant subbundle, that is to say, there exists a parallel subbundle (of codimen-
sion 2) E defined in V and a small real number € > 0 such that

angle(E%(z),E) < & forallze V.

Analogously, we admit that E“ is uniformly close to a parallel subbundle #
of dimension two.

All these assumptions are satisfied for a large class of examples observed while
considering families (¢ ), unfolding a homoclinic tangency associated to a hy-
perbolic fixed point p of @ that is sectionally dissipative and whose eigenvalues
satisfy: |o| > 1> |4] > [A3| > - > |?Lq|. For details about this, see [Via93]
sections 2 and 3.

Observe that in this context, we are supposing that D@(p) has a unique least
contracting eigenvalue. Naturally the existence of exactly one or two least con-
tracting eigenvalues is a robust assumption. Nevertheless Palis and Viana proved
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in [PV94, Section 5] the following fact: given a C? one-parameter family of dissi-
pative diffeomorphisms like ¢, above which at it = 0 goes through a homoclinic
tangency associated to a hyperbolic fixed (or periodic) point p there exists a se-
quence of parameters [; — 0 and points p; — p such that each p; is a hiperbolic
periodic point for @; with an unique weakest contracting eigenvalue.

With this scenario in mind let us describe the construction of our rectangles.

Consider the critical point &) € Gy. We know that f(Gy) intersects the stable
leave I'® of the fixed point P exactly in two points. These points together with the
critical value f({y) determine an arc y; of W* as shown in Figure 1.

Figure 1: The surface S.

Let S be a compact surface having as border y; Uy, where 9 is a curve on
I'. For all z in ¥ we can assume that t(z) € E““(z) and since this subbundle is
almost constant it is easy to get S transversal to F*°. Moreover, we can admit that
S is the graph of a function y : £(0) — R4+ satisfying || Dy/|| < ¢ for some small
constant c.

The domination property (d) above permits us to conclude that all iterates
£"(S) will be similarly graphs of functions v, : £(0) — R4+! with the same
bounds in their derivatives.

Consider the critical point &y € Gy. Using Proposition 7.2 we can divide the
region between the stable manifold of the fixed point P and the stable leave asso-
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ciated to f({p) as shown in Figure 2.

P L I*(&o)

—

//

W*(P)

Figure 2: Initial partition.

Observe that two adjacent stable leaves are connected by two segments of W¥.
Each pair of adjacent stable leaves determine over the surface S in a natural way a
region which we treat as a typical rectangle. Observe that such a region is bounded
by two arcs of W¥ and two arcs in these stable leaves.

To each rectangle that can be constructed this way we attach an identifying
symbol iy consisting of the tuple (r,/, {p) associated to the leave I',; that defines
the left border of the rectangle.

9. [Itineraries of rectangles

Let R(ip) be one of the rectangles whose construction has been just described. We
consider the points of R(ip) as bounded to the critical point &y. During a certain
amount of time R(ig) will follow the orbit of &y. Let us consider the bound period
p1 of R(ip) as the minimal bound period among all of its points:

p1 =min{p(z,80) ; z€ R(iv)}

Let ny > p; be the first time when R := ™ (R(io)) intersects I(8), thats to say,
the first free return of R(ip).
Assume for a while that the following holds:
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Claim. The unstable borders of R are almost horizontal curves and each one
contains a critical point or both are simultaneously in tangential position with
respect to a same critical point.

Let us describe how to proceed with the inductive partitioning of R(ip) con-
sidering separately the two possibilities.

Case 1. Each unstable border contains a critical point.

The picture looks like in Figure 3. The left side shows the situation at return
time n1. The right side, one iterate after the return.

P
\

\

—
N

I1(o)

—
\
/

/

W (P)

L(81)

BN
0)
/

(o)

f(&)

(G1)

Figure 3: Partition after returns - Two critical points.

Let us call 9 and 7y; the two unstable borders of R and £y and {; their respec-
tive critical points. We can suppose we have f({;) to the right of f({p).

We consider the family of stable leaves

{Tr(80) }UATi(G1) 5 Tra(&1) s to the right of (o)}

= The strip between the stable leave of the fixed point P and I's o({p) is iden-
tified as the triple (0,0, p);

» The strip formed by the leaves I',;_1({.) and I',;(,) is identified as the

triple (r,, {.), where * can be 0 or 1;
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At your hand, these strips induces a natural partition of R and so of R(ip) itself.
Namely we put i1 (z) = the triple corresponding to the strip where f"(z) lies. Ac-
cordingly, we call R(ig,i1) the subrectangle of R(iy) formed by these points.

Case 2. There is a common critical point with respect to which the two unstable
borders are in tangential position.

[\\

)

Figure 4: Partition after returns - One critical point.

The respective picture is shown in Figure 4. Let us call o the critical point
with respect to which the borders of the rectangle R is in tangential position.

= The strip between the stable leave of the fixed point P and I's ¢({p) is iden-
tified as the triple (0,0, p);

» The strip formed by the leaves I',;_1({p) and I';({p) is identified as the
triple (1,4, %o);

In a similar fashion as in the previous case, these triples will be used as the
identifying symbols of distinguished itineraries, given place to a collection of sub-
rectangles R(ig,i1) of R(ip).

Let us proceed now by induction. Assume the itinerary of the rectangle R :=
R(ig,..ix_1) has been assigned up to time n;_;. Suppose the triple identified as
ir_1 be (r,1,£). Then we follows the same steps before:
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» Consider all points in R as bounded to the critical point .

» Determine the bound period
pr—1=min{p(z,{) ; z € R}
= Determine the next free return

ny =min{n > p;_1; f(R) intersects I(0)}

» Use algorithm above to get the new partitioning of R.

This algorithmic procedure will be completely legitimated when we prove the
claim, which we are going to get as a consequence of the next lemma.

Lemma 9.1. Let ¥ and Y} be the unstable borders of f™ (R(io,--- ,ix). Let g
and zT be its respective right extreme points. Then the following holds.

(a) y'is a C*(CV/b) curve;
(b) angle(t(zy ),t(z)) < (1/10)dist(zy, §);
(c) length(y$) < (1/10)dist(zg, §);

Items (b) and (c) holds if we replace za' and zf by z, and 7|, the left extrem points
of V.

The proof of this lemma will be given later. Let us show how to proof the
claim with the aid of this Lemma. Let &; be the binding critical point of ;. Write
d; = dist(z;", &;) and put

dmay = max{dp,d1} and  d;,; = min{dy,d; }.
Let us suppose that & < z; and z{ < & Let m be an integer such that
T < e < T

Note that (Ch)" < t"*! < d,4. Furthermore, all points in f(¥;) are expanding
up to time m. Using the sppliting argument of Lemma 1.10, we get

1B(z)| < (Cb)™ — do(2a+CVb)
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and

1B(z))| > —(Cb)™ +do(2a — CVb).

Hence
1B(z) = B(zg)| > —2(Ch)™ +4adyin > 2dmin.

On the other hand, by Lemma 1.9 we know that
|B(e) = Blo)| < [[t(zg) =t +5 15 — 2 [ < (2/3)dmin-

These two estimates contradict each other, and so we conclude the claim.

10. Height of the rectangles at return times

Proposition 10.1. Let k > 1. Let v* be any of the unstable borders of (R (i,
, ik—1)) and let § be a point in this rectangle. Then there exists a point & in y*
such that

(a) dist($.&) < (Co)™/2;
(b) dist(f~"=1(8), f~™=1(£)) < min{10(Cb)"~1/2e"-1 10(Ch)™-1/4}.

Proof. Recall that ny = ng_1 +my_1+ 1. Let R = f"™(R(ig,--- ,ix_1)). Let E:
f™=1(&). Since E is expanding for the next my_ iterates and the return n; is
free, we can use Lemma 6.1 and construct a stable hypersurface I' of order m
passing trhough C This hypersurface will determine a point & in f~"1(y") as
follows. If I intersects f~"™-1(y*) then let § be the intersection point. Other-

wise I must intersect one of the stable borders of f~"%-1(R) and we let & be the
intersection point between this stable border and f~"-1(y*). In any case, note

that during the next iterates & and § will get closer at a rate of (Cb). After my_
iterates (at time ny) we will have

dist(§, "1 (8)) = dist(£™1 (§), £ (§)) < dist(8, ) (Ch)™ .

We wish to state that it is sufficient to put & = f™-1(£) in order to prove part (a).

Therefore all we have to do is to find a good upper bound for dist({, &) which is
precisely the content of part (b). In fact assuming that (b) is true, we get

diSt(C, 5) < 1()(Cb)"k—1/26rk_1 (Cb)mk—l
< 10(CB)" 21 (Ch) M2 < ()2,
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where we use that r;_| < my_1 which implies e'+-! <« (Cb)(mk*' -1/ 2; N

Now we prove item (b) by induction. At time ny we have that { and & are
points in R(ig), whose height is bounded by Cv/b and so item (b) is trivially ver-
ified. As for k > 1, let us to divide the proof into two cases depending on the
relative sizes of the rectangle and the distance to its critical binding point at time
Ng—1.

Case 1. ¢~ "1 < (Ch)™-1/4

Let us parametrize the unstable border f~"-1~1(y*) of f~™-1"1(R) as 7 (x) =
(x,y(x)). First of all observe that the induction hypotheses implies the existence
of some x( such that

dist(f~1(&), 7 (x0)) < (Cb)™-1/2

Therefore for all x we have,

dist(£(£),7(x)) < dist(f " (&), 7" (x0)) +dist(7*(x0), 7*(x)).

But all points in f~"%-1(R) are at a distance at most ¢’*-! of the binding critical
point §;_ and since ¥ is C>(Cv/b), we get

dist(f~1(£),7(x)) < (Cb)™*1/% + (1 +CVb) dist(xg,x) < (ChY'"-1/? 4 4e "1,

This last inequality implies immediately item(b).

Case 2. e~"-1 > (Cb)"-1/4
See [BVO1, Lemma 3.10]. O

11. Close returns

From earlier results, we know that whenever a rectangle returns (freely), say at
time ny, and we are faced up with the case when neither unstable border contains a
critical point then both borders are in tangential position with respect to a common
critical binding point. Naturally the same happens with every point inside the
rectangle.

On the other hand, when there are two critical points, one on each unstable
border, we can expect that some points in the rectangle be in tangential position
with respect to one of these critical point only if the length of the rectangle is
substantially bigger than its height. According to the result in the previous section,
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we have to show that in this case the length is much greater than (Cbh)™/2. Since
our aim is to get expansiveness and we already know that tangential position and
control of recurrence are the two fundamental conditions for that, we are lead to
distinguish returns that are too close of the binding critical point. More precisely
we have,

Definition 11.1. Let (i, i1, -, i, -+ ) be an itinerary with associated returns ny,ny, -+ ,ng, - - -

Some of these returns will be called close returns of this itinerary as follows. We
put Vo = ng and define, inductively, for £ > 0, the close return v; as

Vi = min{nl,- > V131> S(Hj - Vk_])}
Note that we can have v; = oo for some k.

The notion of close returns will help us to characterize when and in which
extent subrectangles arising from a repartitioning of a given rectangle having a
return time will be at a bad position with respect to to its binding point. More pre-
cisely, we are going to show that points following a given itinerary are expanding
between successive close returns.

Proposition 11.2. Let v be a close return for a rectangle R = R(iy, . . . ,i). Then
for all iterates v, < j < Vi1 all points in R remain expanding and their returns
are tangential. More precisely, if z € R, then

||Dfi(ka+l(Z))’U)0|| > Ai for 1<i< Vi1 — Vi — 1

and for each return time n of z occurring between Vi and Vi1, with associated
binding critical point &, we have that (f"(z),Df" V<=1 (f+1(2))wy) is in tan-
gential position with respect to (£, t(()).

See [BVO1] Section 3, for details. The proof of this proposition is an application
of Lemma 7.1. The previous considerations on the height of the rectangles on
return times and its length imply the recurrence control present in item (b) of that
lemma. As for the tangential position requirement, this is precisely the contents
of Lemma 3.11 of [BVO01] and is proved much the same way in this context. [

Consider now a rectangle R = R(io, ...,ix_1). Each stable border y* of R has
(typically) some preimage in a stable leave I' constructed as in Proposition 7.2.
Recall that one such a stable leave cross W* in a point which have all its returns
controlled in the sense of Lemma 7.1(b). If the unstable borders of f”(R) have a
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common binding critical point then this recurrence control permits us state that n
is not a close return for R.

If there are two critical points, however, some points inside R will necessarily
have a close return at time n. On the other side, in a measure theoretical sense,
this is a rare phenomenon as will be shown in the next sessions.

12. Angle estimates

In order to get probabilistic estimates about close returns, will state now some
Lipschitz bounds on the angles of tangent vectors to the unstable borders of a
rectangle at return times.

Proposition 12.1. There exists a unit vector field ® defined in ™ (R(io, -, ix_1))
tangent to its unstable borders and with | D®| < Cb~e*=Vs) where vy is the last
close return strictly before ny.

The proposition implies that if 7y and z; are points in distinct unstable borders
of f™(R(io, - ,ix—1)) then [[£(Z0) — ¢(Z1)|| < Cb~ T,

The strategy of proof is as follows. Let v, be the last close return before ny.
We construct a field ®y with good properties in f¥*1(R(i, - -- +ik(s))) and let the
derivative of f push forward this field to the return n;. The field & which we are
looking for will be the normalized version of f*~s—!(®(). Lemma 12.2 will es-
tablish the existence of ® taking special attention to the case s = 0 corresponding
to the first return ny. This enables us to use the Proposition in a inductive way.
Under Df the field ® is expanding according Lemma 12.3. This fact permits us
to conclude the proof.

Let 1 and ¥ be the unstable borders of f¥s(R(io,- - ,ix(s))) and let Zi(x) =
(x,yi(x)) be a parametrization of ¥;, for i=0,1. Let z;(x) = f(z;(x)).

Let us write Ry, 11 = ¥ (R(ig, - ,ik(s)))- Then every point in Ry, is ex-
panding up to time m = my ). Hence we can use the splitting algorithm and write,
fori=0,1,

Z4(x) = Ei(x) + Bi(x)wo,  with E;(x) € E™ (z(x))
Since |B’| ~ 2a and cf. Remark 1.11, we can state that

|Bi(x)| > e~ for all x. (12.1)
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We define @ for points on the unstable borders ¥y and y; of Ry, 41 putting
_E()
Bi(x)

Lemma 12.2. The field ® defined above admits an extension to the whole rect-
angle Ry 11 satisfying

CI)()(ZL'(X)) —+ wy.

(1) ||®o(z)|| < Ce"  forallz € Ry t1;
(2) ||D®@o(z;(x)))-Z:(x)|| < CVbe*  for all x.

Proof. First we check that ® satisfies (1) and (2) for all points in the union of
the unstable borders of f¥*!(R(ig, - -- Jik(s)))- We get [|[@o(z0(x))]| < Ce” as an
immediate consequence of Lemma 1.10.1. and (12.1). Moreover, the derivative
of ®( on the tangent directions to the borders satisfies

_ IB)E(x) — B/ () E®)|
ﬁiz(x)
< e (41x]||ELx)|| + 4| Ei(x)]) < CVDe™.

ID®o(zi(x)) -2 ()|

In order to extend ® to the whole rectangle, let us establish the Lipschitz condi-
tion

[P0 (z0(x)) — Po(z1 (x))]| < Cb™ e ||zo(x) — 21 (x)]].

To prove this, note that Lemma 1.9 gives us

‘ Ey(x) _ Eo(x)

and Lemma 1.10 yields to

< & B1 (x) (Eo(x) — E1(x)) — (Bo(x) — B1 (x) ) E1 (x)]|
< & ((4]x| +CVDb) || Eo(x) — E1(x)| +CVb|Bo(x) = Bi(x)])

Bo(x)  Bo(x)

10 (20(x)) — Po (21 ()| < Ce¥ (||zh(x) =24 ()] + [20(x) = Z1 ()] (12.2)

Next we find a bound to the angles after a return. Let us write

f(xay) = (1 _ax+R0(xay)7R1(x7y)7”' 7Rq(x7y))
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and observe that

J=q
|20(x) — 21 ()| < ZE)H(?XRI,-(x,yo(x)) — OkRj(x,y1(x)) ||+
J=

i=q
L 195, 30(x))5% () — AR ey () (9]
J=

Each term in the first sum is bounded by Cv/D ||yo(x) — y1(x)]|. As for the second
sum we can bound each term by

[9R; (x,y0(x)) — R e, y1 ()| [y (o) || + [| R G, y1 () || [l (x) = ¥i (o) ]

By applying the mean value theorem to R; we can find a point y in the segment
joining yo(x) to y;(x) in RY satisfying

[[0uR; (6. 3) || [yo(x) =1 ()] = [|R;(vo(x)) = R; (31 ()],
and so || oyR;(x,y1(x)) |||y (x) — ¥} (x)|| is bounded by

| OVR;(x,y1(x)) — AR (x, 9)]| || (x) — 1 (x) || +
[9uR;(x.3) || lyo(x) =¥ )| . (12.3)

Putting these estimates altogether and taking into account that

y1(x) =¥ < lyo(x) =y1 ()| = [[zo(x) —z1(x) ]|
as well as
IR (vo(x)) — R;(y1 ()| < llz0(x) — 21 (x)ll,
we get

120(x) =21 ()| < CVbl[Zo(x) =21 (%)l +
—1
[1600) =1 )| 1yo(x) =1 ()17 llzo(x) =21 (x)]| -
At this point we need to treat the special case when s = 0. Recall that in this case
the unstable borders of R(ip) are image of segments in Gy and Gy. Let d ~ CvVb

be the distance between Gy NI(8) and Gy NI(§). Since ||yj(x) — ¥} (x)|| < CVD
we can state that

(12.4)

[13606) =4 )| Iyotx) =31 ()| <d~'eVb <b7le".
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Otherwise if s > 0 we assume by induction that Proposition 12.1 holds at time vy
and this ensures that

176 (x) =¥ () || yo(x) =y ()] 7! < o~ VsVe) < pler, (12.5)

where we use the fact that r > 5(v; — v;_1), since vy is a close return, and we can
make (Vs — Vs—1) > py(s—1)+1 arbitrarily large by decreasing 0.
By applying the mean value theorem to f~! we get ||D fF! || < b~ ! and so

Z0(x) =z ()]l < b lz0(x) =z ()] (12.6)
Replacing these last estimates into (12.4) we get
|20(x) — 2 (0)]| < Cb~ e ||z0(x) — z1 (%) - (12.7)

Then combining these last estimates into (12.2) the Lipschitz estimate in (12) is
proved.

We can now define the field ® for points inside the rectangle. Recall that
according explained in Section 8, Ry 11 can be parametrized in such a way that it
is almost the inclusion of a compact subset of R2. This enables us to write, with a
slightly abuse of notation,

Do(120(s) + (1 = 1)z1(s)) = 1Po(20(s)) + (1 = 1)Po(z — 1(s))

where we use tacitly the parametrization referred before.
This extension clearly respect the bounds on the derivative of the field and
concludes the proof. Il

With the field just constructed we define in a natural way corresponding fields
in the next iterates of R(ig, - ,ix(s)). Let m =ng — vy — 1. We define fi(z,v) =
Df(z)v/|IDf(z)v||, and put inductively

D;(2) = f(f 1 (2), ®j-1(f ()

for1 < j<m.
Lemma 12.3. Given § € f™(R(io, - ,ix(s))), let & = f'({) for each 0 < i <m.
Then '
D (G)®i(&)|| =1 forall0<i<m.
Proof. See as Lemma 4.4 of [BVO1]. O

To finish the proof of Proposition 12.1, we define ® = ®,,, as defined above
and check the bounds on the derivative of ®. This is accomplished using the
previous lemma in exactly the same way as Lemma 4.5 of [BVO1].
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13. Probabilistic estimates

Our aim now is to establish that close returns are statistically improbable in a
sense that will be made precise later.

Lemma 13.1. Let R = R(iy,...,ix_1) and S C R be the set of points in R for

which ny is a close return. If v is the last close return before ny then there exists
0 € (0,1) such that

Leb(S) < min{6 'e~ (%) 1 — 9} Leb(R)

Proof. As remarked before, we have to proof the claim only if f(R) contains
two critical points one at each unstable border. The arguments here are identical
to those in [BVO1], Section 4.3 and so we are very sketch. Let ¥ be any of the
stable borders of R := f™(R) and { the corresponding critical point. We begin by
observing that

dist(y*, &) > e~ 40u=v)

This is consequence of the recurrence control present in Lemma 7.1(b) and the
comments above.

We fix one of the unstable borders of R and call { its critical point. Since the
height of R is much smaller than its length and as a consequence of Corollary 2.2
we conclude that all points of f(S) are in the intersection of the vertical strip
extending e 3(=Vs) of each side of .

The last paragraph states that from an one-dimensional (more precisely, hor-
izontal) point of view, the proportion of points in f"(S) compared with f"(R)
satisfies a relation as in the claim. However, we need to proof that the distribution
of surface area in f"¢(R) is sufficiently well behaved in order to holds this ratio in
a two-dimensional setting.

This can be accomplished with the help of the vector field @ that was con-
structed over R in Proposition 12.1. Since this field is Lipschitz, using a Gronwall-
type argument we end up with an estimate like

Leb(f%(S)) < min{0'e~ %) 1 — 0} Leb(f"(R)).

To be able to conclude that this relation holds at time 0, we need to know that
there is a bounded area distortion for points in R up to time n;. With this control,
which is stated in the next lemma, the claim follows immediately. O
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Lemma 13.2 (Area distortion bounds).
If 7 and w are points of a same rectangle R = R(iy, i1, -+ , i) then

|detDf/|T.R|
|detDfJ|T,,R| —

for every 0 < j <mny.

Proof. Recall that the rectangle R is contained in the initial surface S that was
constructed at the beginning of Section 8. This surface is transverse to the strong
stable foliation F*°. Using [ABVO00, Proposition 2.2] we conclude that

log [detDF|T.f/(S)||, 0<j<m,

is Holder continuous. The rest of the argument is exactly the same as [BVOI,
Lemmas 4.7 and 4.8]. O

Using repeatedly the Lemma 13.1 above, we can easily conclude that a fixed
proportion of points in each rectangle have only a finite number of close returns.
This is the contents of

Lemma 13.3. There is some 6y € (0, 1) such that for any rectangle R = R(ig, - - ,
ix), the set of points H C R for which no return nj with j > k is a close return
satisfies

Leb(H) > 6yLeb(R)

Proof. See Lemma 4.10 of [BVOI]. O

14. Proof of Theorem B

As a direct consequence of Lemma 13.3 we conclude that each rectangle R(ip)
contains a full Lebesgue measure set R(ig) of points that have only a finite number
of close returns. For a typical z € R(ip), let n; be its last close return. Then, in
view of Proposition 11.2, we get that f"(z) is expanding for all times and so
passing through this point there is a stable leave. Furthermore this stable leave is
sufficiently long and cross the unstable manifold W* in a point £ which implies
at your turn that f"(z) € W*(&). Hence the point z itself is contained in the stable
set of the attractor. So we can write

UR(Go) < U w*(6).

io EecA
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Recall now that F* is absolutely continuous with respect to Lebesgue and note
that if z € R(ip) NW*(§) for some & € W* then F%(z) C W*(§), where F*(z) is
the strong-stable leave passing through z. This enables us to write

AC U WS(&E) (up to a zero Lebesgue measure set)
EcA

where A = Ui() UzGR(io) F5s (Z)

To finish the proof of part (1) of Theorem B we have to show that almost surely
(in a Lebesgue sense) points in B(A) visit the set A. This can be carried out with
arguments close to [Via96].

As for the part (2) of Theorem B, pick an arbitrary rectangle R = R(ig, i1,
.-+, @) and let H C R be the set of points without close returns after ny, as in
Lemma 13.3. Each point in f"(H) is expanding for all times and the collection
of stable leaves passing through these points intersect W*. Let H = W* N f"(H).
Since the set B(u) of generic points of u has full (one dimensional) Lebesgue
measure in W* we end up with H N B(u) having zero Lebesgue measure. It fol-
lows that the set of points in f"*(H) that are not generic for u are precisely those
points whose stable leaves intersect W* in the exceptional set H N B(tt). The Lip-
schitz control on these stable leaves present in the second part of Proposition 1.8
yields to Leb(f"(H))\ B(u) = 0 and so Leb(H) \ B(u) = 0. Taking into account
every possible itinerary for points in R and applying the same arguments before
we conclude that almost surely points in the set A are generic for . Since we
have shown that points in B(A) visit the set A with probability one the proof of
Theorem B is complete.
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