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Abstract

We prove that for a C'-generic (dense G§) subset of all the conservative
vector fields on 3-dimensional compact manifolds without singularities, we
have for p-a.e. point p € M that either the Lyapunov exponents at p are
zero or X is an Anosov vector field where p is the Lebesgue measure. We also
prove a similar version of the previous result in the setting of conservative non-
autonomous linear differential systems in the C° topology. Finally we prove
that for a C''-dense subset of all the conservative vector fields on 3-dimensional
compact manifolds with singularities, we have for u-a.e. p € M that either
the Lyapunov exponents at p are zero or p belongs to a compact invariant set
with (m,-)dominated splitting for the linear Poincaré flow.
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Chapter 1

Introduction and statement of
the results

Lyapunov exponents measure the exponential behavior of the tangent map of
a dynamical system and if they are non-null together with Holder regularity
and the Pesin Theory of non-uniformly hyperbolic systems we get a rich in-
formation about geometric properties of the system, namely stable/unstable
manifold theory for u-a.e. point in M and this geometric tools are the base of
most of the central results on dynamical systems nowadays. So it is of utmost
importance detect when do Lyapunov exponents vanish.

A central result in this direction for discrete systems is the Mané-Bochi
theorem, which provides a C'-residual set of area-preserving diffeomorphisms
on surfaces where either we have Anosov systems or for p-a.e. point zero
Lyapunov exponents. This theorem was announced in the beginning of the
1980’s by Mané (1948-1995) in [10] but there was only available a sketch of a
proof, see [11], the complete proof due to Bochi appeared in [3].

Motivated by these results, Bochi-Viana in [4] extend this result to a large
class of discrete systems: volume preserving diffeomorphisms with arbitrary
dimension, symplectic maps and also linear cocycles. For a survey of the
theory see [5].

Highly inspired by their results we explore here the continuous-time case
by following closely the strategy for the proof of discrete case doing the nat-
ural adaptations and developing the required techniques for perturbations of
vector fields. Our first result is the analogous to the Mané-Bochi theorem for
volume-preserving vector fields in 3-dimensional compact manifolds without
singularities;

Theorem 1 There is a residual R C X, (M)* such that if X € R then we
have:

(a) X is Anosov or

(b) Zero Lyapunov exponents for j-a.e. p € M.
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Then we treat the more general setting of linear differential systems over
continuous flows in compact Hausdorff spaces. For that we consider a dynamics
in the base given by a C? flow ¢! : X — X and a dynamics in the 2-dimensional
fiber bundles given by a continuous-time C° cocycle ®* : X — GL(2,R).
For the area-preserving case, say when ®f(p) € SL(2,R), we induce the flow
A(p'(p)) = L%(p)|s—y o [®'(p)]~" which is traceless. We denote by @, the
cocycle associated to A. Analogously we also consider the setting of mod-
ified area-preserving cocycles ®f(p) € GL(2,R) satisfying for p ¢ Fix(¢?),
det®!(p) = a(z(t?;)) for some non-null sub-exponential continuous function
a: X — R and for p € Fix(¢") we have det®’(p) = 1 for all ¢ € R. This
set mimics the volume preserving flows in 3-dimensional manifolds eventually
with fixed points. In both settings we have:

Theorem 2 There is a residual R such that if A € R then for p-a.e. p € X:
(a) ®',(p) has a dominated splitting or

(b) the Lyapunov exponents are zero.

Finally using the ideas we developed to prove the previous Theorems,
jointly with some simple observations and again in the 3-dimensional setting
we are able to prove the following:

Theorem 3 There is a dense ® C X} (M) such that if X € D, then there
erists X'-invariant sets D and O satisfying u(D U O) =1 and

(a) For p € O we have zero Lyapunov exponents.

(b) D is a countable increasing union of compact invariant sets A,,, admitting
a my-dominated splitting for the linear Poincaré flow.



Chapter 2

Preliminaries

2.1 Notation

We denote by X,(M) the set of all vector fields X : M — T'M defined on a 3-
dimensional compact, connected, without boundary C*° Riemannian manifold
M. We assume that %L(M ) is endowed with the C' topology. The measure
1, associated to the volume form w, will be called Lebesgue measure. We
have an associated flow X? which is the infinitesimal generator of X, that is

%ﬂt:s (p) = X(X*(p)). This flow has a tangent map DX which is the solution

of the non-autonomous linear differential equation u(t) = DX x+(,) - u(t) called
the linear variational equation. The subset of X} (M) formed by the vector
fields without singularities will be denoted by X, (M)*.

2.2 Oseledets’s Theorem for 3-flows

The Oseledets’s Theorem [14] is valid in the setting of discrete-time cocycles
(for a prove see [12]). It holds in particular for any dynamical cocycle over a
diffeomorphism f : M — M defined by a continuous map F(p,v) = (f(p), Df,:
v) which verifies [To F' = f oIl where Il : TM — M is the canonical projection
and F(p,-) is linear on the fiber T,M. Oseledets’s Theorem asserts that we
have for p-a.e. point p € M a splitting T,M = E; @ ... D E;f(p) (Oseledets
splitting) and real numbers A;(p) > ... > Ay (p) (Lyapunov exponents) such
that D f,(E,) = Ej}, and

i~ log | Dy - of]| = ()

for any v* € E! — {0} and i = 1,..,k(p). Consider X € X)(M) and the
associated flow Xt : M — M. Since Oseledets’s Theorem is an asymptotic
result and DX (), for fixed r, is an uniformly bounded operator we may replace

the tangent map DX; = DX%n 0 DX) by the least integer time-n map.
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DX, and reformulate Oseledets’s Theorem. Oseledets’s Theorem allow us to
conclude also that:

k(p)
1 ¢ : ;
tl}inoozlog [det(DX))| = E Ai(p).dim(E,) (2.1)

=1

which is related to the sub-exponential decrease of the angle between any sub-
spaces of the Oseledets splitting along p-a.e. orbits. Since we have DX(X (p)) =
X (X*(p)), we already know one of the Oseledets subspaces, RX (p), and also
that its associated Lyapunov exponent is zero. For the other two, in the
conservative setting on 3-manifolds we have [det(DX)| = 1, so by (2.1) we
have Ai(p) + A3(p) = 0, hence either A\i(p) = —A3(p) > 0 or both are zero.
The former case gives for py-a.e. p € M two directions £} and EJ respec-
tively associated to the positive Lyapunov exponent and the negative one
with asymptotic exponential behavior. We denote by O(X) the Oseledets
points, OFT(X) C O(X) the points with positive Lyapunov exponent and
OYX) C O(X) the points with all Lyapunov exponents zero. We note that
OT(X) = O(X) —O%X). When there is no ambiguity we denote O(X) by O
omitting the vector field.

2.3 The linear Poincaré flow

Let R be the set of non-singular points for the vector field X. X induces
a decomposition of the tangent bundle in a way that each fiber T,/ has a
splitting N, @ RX (p) where N, = (RX(p))! is the normal sub-bundle for
p € R. Consider the automorphism of vector bundles:

DXtZ TRM e TRM
(p,v) — (X'(p),DX'(p)-v)

In spite of R being X'-invariant and RX (p) being DX '-invariant, there
is no reason for the sub-bundle Np to be DX tinvariant. So consider the
quotient space Ngp = Tr M /RX (R) of equivalence classes which is isometrically
isomorphic to Ng via ¢ : Ng — Np. The restriction map DX? |5, is DX
invariant. There exists an unique map P%(p) : N — Npg such that the
diagram commutes:

Pl

NR — NR
ol ¢l
Np 25 Ni

The linear map Pk (p) : N, — Nxt(p) is defined by
Pi(p) - v=1lxt) 0o DX (p) - v,
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where Iy, denotes the canonical projection on Nxt(,. The linear map
is also a flow since Pi*(p) = P4%(X*(p)) o P§(p).

We call {P%(p) }ier the linear Poincaré flow at p associated to the vector
field X and this notion was first introduced by Doering in [7] to prove the
hyperbolicity of robustly transitive 3-dimensional flows.

In our setting, if we have an Oseledets point p with X (p) # 0 and p € O,
the Oseledets splitting on 7,M induces a P%(p)-invariant splitting on N, say
I, (E]) = N for 0 = u,s. If p € OO then the Pl-invariant splitting will be
trivial, that is, it is just the normal sub-bundle.

The next lemma shows that the dynamics remains the same.

Lemma 2.3.1 The Lyapunov exponents of P4 (p) associated to the subspaces
N} and N} are respectively 0 < A, (p) and Ay(p) < 0.

Proof: Consider a vector n* € Ny and denote by 6y = Z(X(X*(p)), E.(,))-
Then

.1 u .1 u
Jim = log ||Px(p) - n"|| = lim —log |[Txe() 0 DX - (. X(p) + )]
for some o € R and v* € E;j. But then

.1 "
hin n log |l Ilx:(y) 0 DX} - (X (p)) 4+ Ixe () 0o DX - 0")|| =

t—=Foo T

1 u
= lim n log [lov.ITx¢(p) 0 X (X' (p)) 4 Ixt() o DX} - 0")|| =

t—=+oo

.1 : u
= tl}inoo n log(sin(6y).| DX, - v"|) =

1 1
= lim [? log sin(6;) + n log DX, - v"]]] = Au(p),

t—=+o0

and analogously for NJ. O

Therefore to decrease the Lyapunov exponents associated to the tangent
flow we decrease the Lyapunov exponents associated to the linear Poincaré
flow.

In this conservative context we may restate the Oseledets’s Theorem for
the linear Poincaré flow as;

Theorem 2.3.2 Let X € %}L(M) For p-a.e. p € M there exists the upper
Lyapunov exponent \*(X,p) defined by the limit tlizrn %log“P}((p)H that is a
non-negative measurable function of p. For u-a.e. point p € OV there is a

splitting of the normal bundle N, = N}' & N, which varies measurably with p
such that:



Ifa #v € N, then flz'in 2log|| Pk (p) - v|| = AT(X, p).

p’

If 0 # v e Ny, then lim tlog| P(p) - vl = =\ (X.p)

If 0 #v¢ NU NS, then
lim Hog| Py (p) - vl| = X*(X,p) and lim_ Hog|| P (p) -]l = ~\*(X.p).

Next we recall a Lemma due to Doering [7] that relates the hyperbolicity
of the linear Poincaré flow with the hyperbolicity of the tangent flow. Here
the compactness of A plays an important role.

Lemma 2.3.3 Let A be a X'-invariant and compact set. Then A is hyperbolic
for the flow if and only if the linear Poincaré flow is hyperbolic on A.

2.4 Dominated Splitting for the Linear Poincaré
flow

Let A be a X'-invariant subset of M. A splitting of the normal bundle N =
N!' @ N? has m-dominated structure for the linear Poincaré flow if it is P%-
invariant and we may find an uniform m € N such that for any point p € A
the following inequality holds:

m 1
Ay - IEOIN 1 0

P () |NZIl — 2
In this case we say that we have a m-dominated splitting. A few words about
this definition; If we take p € O7(X) an Oseledets regular point for X*, with a
non-trivial splitting (i.e. not all Lyapunov exponents zero) positive Lyapunov
exponents only guarantee that we will see expansion for large iterates, say for
Py » )(p), but this function m(-) varies from point to point, and possibly is
not bounded along the orbit of p. So the information given by the Oseledets’s
Theorem is blind to uniformity.

If A has a dominated splitting, then it varies continuously from point to
point and we may extend the splitting to the closure. Moreover, the decom-
position is unique and the angle between the two subspaces is bounded away
from zero on A.

Next we define a X*-invariant set A,,(X) has

{p € O (X) : p has m-dominated splitting for the linear Poincaré flow}

Let Ty (X) i= OF(X) — A (X).



The set of points in O (X) that do not have m-dominated splitting, i.e.
(2.2) does not hold we denote by A,,(X). Then for some p € A,,(X) maybe
there exists some iterate X*(p) that has m-dominated splitting, so we consider
the saturated set thXt(Am(X)) that is equal to I',,,(X).

2.5 Ergodicity of sets with dominated split-
ting for vector fields in X7,(M)*

First we present a result which is a version of a classical theorem of Bowen.
Our result says that any hyperbolic set, not necessarily a basic piece, of a
non-Anosov conservative C? 3-flow without fixed points has zero measure. For
that we adapt Theorem 14 in [5] to our context.

Proposition 2.5.1 Let X € X%(M)* and Ay, be a X'-invariant set with m-

dominated splitting for the linear Poincaré flow. Then pu(A,,) = 0 or X is
Anosou.

For the proof we will need the following lemma which says that dominated
splitting on the conservative setting without singularities is tantamount to
hyperbolicity.

Lemma 2.5.2 For X € %}L(M)*, if A # 0 then A, is a hyperbolic set.

Proof: Any p € A,, has m-dominated splitting for the linear Poincaré flow.
Since we do not have singularities and we have constant dimensions of the
sub-bundles this splitting extends to the closure and we get A(p,m) < % for
every p € A,,. Of course for any i € N we have A(p,i.m) < 2i For every
t € R we may write t = i.m +r and since || P%|| is bounded, say by M, we take
C =2w.M?and 0 = 27w to get A(p,t) < C.o' for every p € A,,, and t € R.
We denote by oy the angle Z(Ng. (). Nx:(,))-

Claim 2.5.1 If A,, has m-dominated splitting, then for all p € A,, we have
(o7 2 6 > 0.

Since P¥(p) is a linear isomorphism its co-norm

m(Px(p)) := inf [Px(p)- vl

is given by [[P¥'(p)] '||™". Let u € N} and s € NJ be unit vectors. Since

sin(%) = ”“’2;9”, we prove that ||u — s|| is bounded away from zero. By domi-

nated splitting we have 2||P¥(p) - s|| < ||P¥(p) - u|| so
2[|1Px(p) - sll < [ Px'(p) - (u— s +s)|| < [|1PX'(p) - (u—s)[| + [ PX'(p) - (5)]]
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and we get
175" (p) - sl < [[P5 (p) |1 (w = s)]I.
Since [[[P(p)] 7" < [P¥'(p) - s|| we obtain

PR @I < IPF ) (w = s)]

and therefore,
IPE )] H P @) < Hlu — sl

Now we just note that P¥(p) is continuous and M is compact and the claim
is proved.

Since we do not have singularities there exists K > 1 such that for all p € M,
K=t < || X(p)|| < K. Since the flow is conservative we have:

X (X ()l

sin(a0) = I1P& (1) vy | 1P 1) o -sim(cv) e

So;

t > _ sin(a) [ X(p)l
||PX(p)|N1§|| - sm(at)||X(Xt(p))||A(p’t) S

< A(p,yim +7r).sin(3)"L.K?* < o'.C.sin(f) 1. K?

Analogously we get

o sinlad IXKOD ) o

sin(ag) [ X(p))]
< Ap,im+r).sin(3)" L K? < o'.C.sin(3) 1. K2,

1P () vy

and we have E_hyperbolic for the linear Poincaré flow. Now by Lemma 2.3.3
we conclude that A,, is hyperbolic for the flow.

O

Now we use standard smooth ergodic and hyperbolic dynamics theory to
prove Proposition 2.5.1.

Denote by pu, the 1-dimensional Lebesgue measure on the unstable man-
ifold. Suppose that the norm is adapted to get the hyperbolicity constants
C'=1and o € (0,1). In what follows we assume that p(A) > 0.

Lemma 2.5.3 There exists a segment of orbit (z+)=o on A such that p, (W (z:)—
A) — 0.

t—o0

10



Proof: There exists x € A such that p,(W!(z) N A) > 0, otherwise Vz € A
pu(WH(z) N A) = 0 and since X' is twice differentiable we get absolute conti-
nuity along unstable manifolds and by a Fubinni disintegration argument we
contradict p(A) > 0. We take this point z and since g, (W (x) N A) > 0 there
exists y € A with density one on W*(z) N A. We define z,, = X"(y) and we
get fu, (X (W(xy))) e 0. Therefore,

W) <)
(W () =00

Claim 2.5.2 Let x1,20 € W¥(x,) such that d,(xi,22) < D. There exists

DX | g |
K > 0 such that for all t > 0 we have ———2- < K.
DXz Tz, |

To prove the claim we use a standard application of the bounded distortion

properties. The sub-bundle E" is v-Holder so we can define a (C,v)-Holder

function on A as p(x) = log||DX ! Since maK<||DX;’"|E;‘|| is bounded
xE

and our result is asymptotic we consider time-1 maps,

u .
EJ’?

OgHDX‘"IEu I
DX ey, |l
—1 n—1
< logll “DX w1)|E i >“ B logl_! IDX ‘1(w2)|E§—i(m2>” -
n—1 n—1
= > (X7 (@) = o(X(22))) < ZC-du(X‘z(xl),X‘l(xQ))” a3
i=0 i
n—1
< Y Cotdy(z1,32)" < CDVZO'W < CDVZO'W < CD"S,
=0 i=0 i=0

where S is sum of the geometric series. We take K’ = CD"S and K = e’
and the claim is proved.
Now we have:
pu (W (24) — A) < gt
fu(We(2t)) fu(We(2t)) t—00

therefore g, (W (x) — A) — 0. O

Claim 2.5.3 There exists xy € A such that W*(xy) C A.

Let (x¢)i=0 be the orbit given by Lemma 2.5.3. Since A is closed and z; € A
we define xg = hm 0z € A. By continuity of the unstable manifolds we get

Wi(xy) — W (xo) and by Lemma 2.5.3, (W2 (x¢) — A) — 0 so we conclude

11



that p, (W*(xo) — A) = 0. But A is closed and W*(xg) is open on W*"(xq) so
W(xg) — A is an open set on W*"(zq) with zero measure, therefore empty and
W(zo) € A. The claim is proved.

Lemma 2.5.4 There exists a hyperbolic periodic orbit X'(p) € A such that
W(p) C A.

Proof: By continuation of hyperbolic sets we may define the maximal invari-
ant set A = tﬂRXt(Ug) for any neighborhood Uy of A such that dy (A, Us) < f.
S

Consider a point zy given by Claim 2.5.3 and a small transversal section X
to {X%(xg)}ter at t = 0. Since we can always suppose that the measure is
supported on A, the induced measure, fi, defined on transversal sections (see
section 3.1.2) verifies fi(39 N A) > 0 so by Poincaré recurrence we have for
jra.e. x € YgN A a time s such that X*(z) € ,. If all points in 3, are
a-close to xg we get a a-pseudo periodic orbit. By the shadowing lemma we
know that given any (3 > 0, there exists a > 0 such that any a-pseudo orbit
in A is f-shadowed by an orbit in M. Take an adequate § so we obtain an
orbit, ngX !(p), in A, that shadows the a-pseudo periodic orbit. Since, by

expansiveness, this orbit is unique and X*(p) also shadows, we get X*(p) = p
and this orbit is periodic. p € A is hyperbolic because it belong to A, therefore
have stable/unstable manifolds that are close to the stable/unstable manifolds
of xg, we may suppose transversality between W*(xy) and W?(p). Claim 2.5.3
guarantees that W*(zp) C A and by Palis A\-lemma it converges to W"(p).
Since A is closed we get W¥(p) CA. O

Abbreviate A, = W¥(p) and define W?(A,) == U W2(z).

z€h,
Lemma 2.5.5 W?(A,) is X'-invariant and it is an open neighborhood of A,,.
Proof: For ¢t > 0 take § € (c'¢, €), so:
XHW3(A,) € XAWE(A,)) © XUWA(A,)) € WEL(A,)) € Wi (A,).
By the volume preserving property we get:
W35 (Ap) = XH(W5(A,)] = 0.
Since u[Wg(A,) — XHWE(A))] > u[Wi(A,) — XH(WE(A,))] we conclude that:
ulWi(Ay) = XU (W5 (A,))] = 0.

) is close and p is Lebesgue we get that

)
A,)) is an empty set, and since it contains
(Ap) = XH(WE(Ay)) = 0.

Since W(A,) is open, X' (W(A,
the open set W(A,) — X{(Ws(A,
W3 (Ap) = XH(WE(A)) we get W

12



Since this is true for all § < e we conclude W (A,) — XY (WE(A,)) = 0 so:
W2 (Ay) = XT(WE(A)). (2:3)

€

And we have the X' invariance.

For the second part of the lemma, we prove that A, N W*"(z) = W"(z) for
any z € A,. We note that A,NW"(2) is closed on W*"(z), let us see that it is also
open; Take z € A, by definition of A, there exists {2, }nen € W"(p) such that
zn — 2. WH(z,) € W*%(p) C A, and this local unstable manifolds verifies

n—oo

Wi(z,) — WHX(z). Now, since W¥(z,) C A, and A, is a close set, this imply

that z belongs to the interior of A, N W"(z). Therefore A, N W*(z) = W"(2)
so the union of all unstable manifolds of points of A, is A, itself. Since the
local stable manifolds vary continuously with the point we get that W(A,)
has an open neighborhood of A,,.

O

Proof: (Proposition 2.5.1) Consider a set A,, with m-dominated splitting, by
Lemma 2.5.2 we get A,, hyperbolic. We take A = A,, and we follow previous
lemmas assuming p(A) > 0.

By (2.3) we get W5(A,) = tQOXt(WES(Ap)) but tQOXt(WES(Ap)) = A,, there-
fore W?(A,) = A,. Again by Lemma 2.5.5, we have W?(A,) open so A, is

open and is also closed, therefore A, = M, but A, C A, finally A = M and X
is Anosov. 0O

The conservative flow X is called aperiodic if u(Per(X?)) = 0.

Lemma 2.5.6 There exists D C XL(M)" such that D is C'-dense and if
X € D, X! is aperiodic, X is of class C* and all its sets with dominated
splitting for the linear Poincaré flow have zero or full measure.

Proof: We take the C?-residual given by Robinson version of Kupka-Smale
theorem, see [15]. This residual set of vector fields is of class C? and the
associated flows have countable periodic points. Since %i(M ) is a Baire space,
it follows that we have a C?-dense set D, therefore C'-dense, of vector fields
with countable periodic orbits on Xi(M ). By Zuppa theorem, see [16], Xi(M )
is C'-dense on X, (M), so D is C'-dense on X, (M) and all vector fields in D
are C?. Since, by Proposition 2.5.1, hyperbolic sets have zero or full measure
and X! is aperiodic the lemma is proved. O

2.6 Strategy for the proof of Theorem 1

Given X € X, (M), let AT(X,p) = tliELn +log| Pk (p)|| be the upper Lyapunov

exponent which exists u-a.e. p € M by Oseledets’s Theorem. When there is
no ambiguity we denote AT (X, p) by AT (p).
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We define the “entropy function” by the integration over M of the upper
Lyapunov exponent:

LE: X\(M) — [0, +00)
X — [y X(p)du(p)

Remark 2.6.1 Let f : W — R where W is a topological space. f is upper
semicontinuous iff for every § the set {x : f(x) < d} is open. Moreover, the
infimum of continuous functions is an upper semicontinuous function.

Lemma 2.6.1 LE(X) = infL [\ log| P%(p)||du(p), therefore it is upper semi-
n>1

continuous.

Proof:

LEX) = [ N @utp) = tim 7 [ 1oglPy)lldutr) -

.1 n
=t [ LB PR du(p)
M

n—-+oon,

Now the sequence z,(X) = [,,log||P%(z)||du(p) is sub-additive, therefore

satisfies ¥ ¥
lim zn(X) _ jnfm_

n—-+o0o n n>1 n

Thus LE(X) = 11;f1 %, and since each z,(X) is a continuous function, by

remark 2.6.1, LE(X) is upper semicontinuous. O
Formally we will prove the following;

Proposition 2.6.2 Let X € X!,(M)" be of class C?, aperiodic and with hy-
perbolic sets of zero measure. Let €,6 > 0 be given. Then there exists a
conservative vector field Y ¢ — C'-close to X, such that LE(Y) < §.

We assume Proposition 2.6.2 and prove Theorem 1:

Proof: (of Theorem 1)

By Lemma 2.5.6 we have a dense set such that every X is C?, aperiodic
and with hyperbolic sets having full or zero measure.

The set of conservative Anosov vector fields, denoted by A, is open.

For all k € N the set Ay = {X € X,(M)* : LE(X) < k~'} is open by
Lemma 2.6.1 and Remark 2.6.1. By Proposition 2.6.2 with § = k= we get A},
dense in A€, so the set:

R =[)AUA,
keN

14



is a C'-residual set. But R= AU A, =AU{X € %}L(M)* - LE(X) =0},
keN
therefore for X € R we have either that X is an Anosov vector field or

LE(X) = [,;ATdu(p) = 0. This last equality implies that p-a.e. p € M
has zero Lyapunov exponents. 0O

In the next four Chapters we prove Proposition 2.6.2. The maint steps are
as follows. First, we take advantage of the lack of domination behavior to mix
the Oseledets directions along one orbit, and this causes a decay on the norm
of PL(p) for Y C'-close to X. Being a C! perturbation allows us to shrink
its support, which is crucial to our proof. Then we make this strategy global
by almost covering M with self-disjoint flow boxes, which control most of the
orbits. We estimate LE(Y) = [,, AT(p)du(p) considering a finite time ¢ by
Lemma 2.6.1. Then we split M into two sets, the one satisfying || PL(p)|| < e
and the other negligible with respect to .
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Chapter 3

Perturbation of vector fields

3.1 Auxiliary lemmas

3.1.1 A conservative straightening-out lemma

The following theorem, due to Dacorogna and Moser [6], will be used to obtain
a conservative local change of coordinates which trivialize a vector field.

Theorem 3.1.1 (Dacorogna-Moser) Let 0 be a bounded open subset of R"
with C° boundary 0Q and g, f : Q — R positive functions of class C° (s > 2).
Then there exists a diffeomorphism ¢ : Q — ©(2) C R™ with ¢ of class C* and
satisfying the partial differential equation:

detDpag(p(q)) = AMf(q), (3.1)

for all ¢ € Q where X\ = [ g/ [ f. We also have ¢ = Id at 9.

Denote by X0 (p) = {X3(p) : s € [0,t]}. We say that the a segment of
an orbit X (p) is straightened-out if X!%™(p) C {(x,0,0) : z € R}. Denote
by Mxt(,) the normal plane at X (X*(p)). Denote by B(X*(p),r) the ball with
radius r centered at X'(p) inside X (X*(p))* = Nxr(p). Let T : R — R3 be
the constant vector field defined by T'(z,y, z) = (¢,0,0) for some ¢ > 0 and §,
¢ be the flowboxes § := XI*U(B(p,r)) and & := TOU(B(p, r)).

Lemma 3.1.2 (Conservative flowbox theorem) Given a vector field X € X3 (M)
(for s > 2) and a non-singular point p € M (eventually periodic with period

T > 1), there exists a conservative C° diffeomorphism ¥ : € — § such that
X=U,T.

Proof:  Assume that p = (0,0,0) and X(p) C {(x,0,0): 2z € R}. Let

Xi(z,y, z) be the projection into the first coordinate of X (x,y, z). We define a
function g : B(p,r) — R such that g(y, z) := X1(0,y, z) for (0,y,2) € B(p,r)
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(see Figure 3.1). Since g € C* we apply Theorem 3.1.1 to Q = B(p,r) C R?
so there exists a diffeomorphism ¢ : Q — () C R? with ¢, o~ ! of class C*
and satisfying the partial differential equation g(¢(7,z))detDyyz= = A, for all
(7,z) € Q where A = [ g/ [ 1, and p|sq = Id. Now we define the C* change

Figure 3.1: Construction of a conservative change of coordinates straightening-
out all orbits.

of coordinates by:

U: RxO — M
(7,7,2) — X '7((0,¢(7,%))

First we claim that:
det D g5 = 1 for all (0,7,%) € R x Q. (3.2)

Let II; denote the projection into the i*-coordinate, for i = 1,2, 3.

Note that, %(0, 0(7,%)) = %Hl(o, ©(7,%Z)) = 0 and for i = 2,3 we have that,

8x9 _ _ — -
L(0,0(7.2)) = 211(0,0(7.2)) = 2(4i(7.7)). For = we proceed analo-

gously. Now we use these computations to derive,

TX(X00,,2)) 0 0
D¥ogz = [ 3X2(X°0,9,2)) Blan Elos
0 0
%X3(X0(O,y,z)) %kyz) %kyz)

and we get detD\i/(07y7g) = 1X1((0,y,2))det D= = Mdethpmg) =1 by
using (3.1) of Theorem 3.1.1. Therefore (3.2) is proved. Now we will see that:

det DV 7, 7 =) = 1 for all (To, T, Z0) € R x Q.
We have:

U(7,7,7) = XN (XN @0)((0,0(7,2))] = X ™ [W(T — 7o, 7, 7)),
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A A lx A

D\]:I(Eryvz) = DX 13 ?T?O,y Z)D\]:I(E_E():yvz)'
Evaluated at T = T we get:
A A— 1=

D\Ij(fo,yﬁ) = DX\II(O y,z)qu(O Y.Z)
We use (3.2) and the fact that the flow X* is volume preserving to conclude
that: )

detD\Il(ioﬂoyzO) =1.

Finally take ¢ := A and consider the constant vector field 7' := (A,0,0). Let

(x,y,2) = @(T,@, Z).
We have:

~

\IJ*T(.Q?, Y, Z) = D\:A[j(iy’g)T(T, y, E)) =

i x Tz
1T 0,5,2) 2 (0.0@.3) 237 4 o) A
1 A1z A1z
= |t 0w 2 "00@) " (0¢@.2) 0
1, (X*”% v, 2)) J—Bg ©¢@2) i (0,4m,2) 0
A A1z A1z
(Xl(X (0 Y,z ))’XQ(X (O’ya )) X3 X an,z

= X(¥(z,7,%))

therefore X = U,T. O
3.1.2 More notation, definitions and lemmas

Coordinates: For technical reasons, given by previous section, it is useful
to take X of class C?, therefore we consider the vector field X in Proposi-
tion 2.6.2 of class C?. Given p € M and a small r > 0 let ¢ € XO™(B(p,r)).
We will use the conservative flowbox theorem to get a C? change of coordi-
nates U := ‘il_l, hence, a C' vector field which has all orbits straight-out,
ie., XIOU(B(g, 1)) is sent into T (B(¢,r")) by ¥. Since for these change of
coordinates we fix ¢ € [0,1], M is compact and ¥ € C? we conclude that exists
O := max{||DW,|, | DT : p € M}. We take Oy := max{[|[D*VU || : p €
M} and also © := max{O, O,}.

Perturbations and metrics: All the perturbations in this paper will be
developed using the trivial coordinates given by ¥. © will be useful to control
the size of the perturbation. Therefore if ¢ > 0, X := V., T and Z :=T + P
is a perturbation such that |[P|cr < §, then [|Y — X|c1 = [|[W.P|er < e
According to Moser’s Theorem, (see [13] Lemma 2), given a volume form w
there exists an atlas % = {a; : U; — R3}, such that (o;).w = dz A dy A dz,
moreover by compactness of M we can take 2 finite. The Riemannian norm
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at T, M will not be used, instead we consider the norm ||v||, := ||(Da), - v||.
Given two linear maps A(t) : T,M — Txt,»M and B(t) : T,M — T'xio M we
estimate the distance between them by using the atlas 2 and translating the
base points to (0,0,0) € R3. Therefore

JA(t) — B(t)|| = l(Daxe ) xipmAt) (Day),  — (Dax(g)) xtqB(t)(Dag),; |

Analogously we estimate the distance between the linear Poincaré flows based
at different points.

Holonomy of linear flows: Assume that p = (0,0,0) and also that the
segment of orbit X[7Tl(p) is straight-out. In this case the tangent flow at p
has the following simple form:

ox!  oax! oax!

% oy P z(t) y(t) =(t)
DX;=| 0 2 F2| =1 0 a®) b)], (3.3)
g 9Xi axg 0 ct) d(t)
Oy 0z p

where z(t) = || X (X'(p))|||| X (p)||~!. Hence we have the following action,
P;{ : Np — NXt(p)
o (at) v (v
) — (4 ) (2)
Let ¢ = (0,y,2) € M, and ¢ € [0, T], then:
X'(g) = X'(p)+ DX, q+0%(q) =
= X0+ 0 +(0,0.0) + 0.7 (1)) +070),

where O=?(q) is the remainder of the Taylor expansion. So for |y|, |z| small

X(0.9,2) s approximately X'(0,0,0) + 0, 74(0.0.0)- (*)).

Measures at transversal sections: In this context we may consider the
time arrival function 7(p,t) : M, — MNx+(,) which is a well defined continu-

ous function, due to the implicit function theorem. For B C 91, denote by
X7D((B)(B) the set,

{XT®Y9(q) 1 g € B} C Ny,

Given § > 0, there exists B sufficiently small such that X™®"5)(B) is the
intersection of the self-disjoint flowbox X 0+9(B) with Mx:(,).
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Let X7 . N, — MNx¢(p) be the Poincaré map between two sections. Given
niy,ne € M, and using the volume form w we can define a pair of 2-forms
by @p(n1,m2) = wp(X(p), n1,n2) and @y(n1,na) = wp(X (p)|X ()|, 01, m2).
The 2-form @ is the interior product of the volume form w by the vector field.
ie., @, == (ixw), Denoting P(:) = X Y0 (.) we have P&, = &,. The
measure 77 induced by the 2-form @ is not necessarily P;-invariant, however
both measures are equivalent. We call 7 the Lebesgue measure at normal
sections or modified area. In fact we have for ny,ny € N,

Piwp(ni,ng) = Wxep) ((DP)p - na, (DR - o) =

= e (XX ) o ) —

- X (p)(HX(Xt(p))H ’ (DRf)p 1, (DPt)p 2)

SRS <0 I {7
TIXOI XX )]

= z(t)'w X(p) Ny, Ng) =

R PR

= 2(t)" '@y (n1, na)

By conservativeness of the flow we have |det P% (p)].|| X (Xt (p)||[| X (p)|| 7! =
1, so |detP%(p)| = x(t)~!. Therefore we can give an explicit expression for
the infinitesimal distortion area factor of the linear Poincaré flow, which is
expressed by the following lemma.

Lemma 3.1.3 Given v > 0 and T > 0, there exists r > 0 such that for any
measurable set K C B(p,r) C M, we have [A(K) — z(t). m(X™PIE)(K))| < v
for all t €10, 7).

Proof: We choose r > 0 such that |det P% (p) —det(DFP;),| < vz(t)~! for every
q €M, with |[¢g—p| <randt e [0,T]. Let Pi(q) = X(p)+ Pi(p)-q+0>2(q).

Since
A(PU)) = / L= / det(DP),dfi(q)
and
AWy = [ an= [ derioyn
we get:

[A(P(U)) = APk (p)(V))] = I/U(detP;?(p) — det(DP,)q)dfi(q)| < va(t)™".
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Now we just have to note that

|z(8). 5 (P(U)) — a(U)]
[2(OR(PUU)) = z(OR(Px (p)(U))] + [=(O)R(Px (p)(U)) = AU)] <
v+ [2(t)us(Px () (V) = AU)] = v + [2() tpy, (2 (U) = AU)| =

)
) [ detPi(pdn =m0 = v

IA A

(
= v+ |zt

And the lemma is proved. O

Given an open set U C B(p,r) we are going to make perturbations sup-

ported on the flow box [Ld ]XT(p’t)(U)(U). We start with a ball B, (p’) cen-
te|0,n

tered in p’ with radius 7/, such that B.(p') € M,, then we straight-out the
orbit of p’. However, B(p/,r") C N, is different from B, (p') unless the vector
field is horizontal. We define explicit perturbations with support contained in
XYB(p',r")) for t € [0,n]. Let n1,m2 > 0, we define a flow box:

F= U XT@OBXEE.0-m) (X (Y, (1 —m)r))

te [Ovn_772]

Figure 3.2: Considering a perpendicular section at X" (p’).

The next lemma says that given any sufficient thin flow box [LOJ ]X @8 (B(p,r))
te|0,n

(where X7 (p) is a straightened-out orbit), a point p’ € B(p,r), a small ball

B,/(p') €N, and the flow box [LOJ ]XT(p DB ((B(p')), we can always take
tel0,n

another flow box with right-angle sections contained in [U ]X @By ) (B (p)))
tel0,n

and very close to it. This can be done because r > 0 can be considered close
to zero. We leave the proof to the reader (see Figure 3.2).
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Lemma 3.1.4 Take n € N. For every ny,ns > 0 there exists r > 0 such that
for all v" < r we have B(X™(p'), (1 —m)r") C Nxmapy and

C U XTe)B) (B (p))).
5S4 (B )

3.2 Realizable linear flows

The next definition adapts the definition of realizable sequence given by Bochi
in [3] and will also be central in the proof of our theorem, in broad terms we
consider modified area-preserving linear flows acting in the normal bundle at
p, L*(p) : N, — Nxt(p) that do exactly what we want, and ask whether they
are (vy-almost C') realizable as the linear Poincaré flow of Y, e-C'-close to X,
computed on small transversal neighborhoods of one point.

Definition 3.2.1 Given X € X, (M), e >0, 0 < x < 1 and a non-periodic
point p, we say that the modified area-preserving sequence of linear flows:

N, 2% Nyigy =5 Nxogy =2 .. 222 Nyaoay = Nyngy)
is a (¢, k)-realizable linear flow of length n at p if:
Vy > 0, 3r > 0 such that for any open set ) # U C B(p,r) C N,, there
exrists:

(a) A measurable set K C U,

(b) A zero divergence vector field Y, e-C*-close to X, such that:

(i) Yt = Xt outside the self-disjoint flowbox U XT®™MU)N(U) and

tel0,n]

DX, = DY, for every q € U, X"»MU)(U);
(i) i(K) > (1 = r)a(U);
(iii) If g € K, then |Py(Y7(q)) — L;|| < forj € {0,1,...,n—1}.

Remark 3.2.1 In the definition of realizable flow we consider integer iterates,
but there is no restriction if we consider any intermediate linear flow, like
Lj: Nyt — Nty with t; < t;j41 and Z?:_Ol t; = n. The point p may
also be periodic, but with period larger than n. The realizability is with respect
to the C* topology.

Now we exhibit how to produce some elementary realizable linear flows,
the linear Poincaré flow itself and also juxtaposition of realizable linear flows
are realizable linear flows.

Lemma 3.2.1 Let X € X}, (M) and p € M be a non-periodic point.
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(1) Given any t € R, Pk (p) (trivial linear flow) is (¢, k)-realizable of length t
for every ¢ and k.

(2) Let { Lo, ..., L,_1} be (¢, ky)-realizable of lengthn atp and { Ly, ..., Lyim_1}
be (e, ko)-realizable of length m at X" (p). For k such that k < k1+ky < 1
the linear flow { Lo, ..., Lyym—1} is (€, k)-realizable.

Proof:

(1) Given v > 0, by continuity of the linear Poincaré flow, there exists a
sufficiently small > 0 such that for all ¢ € B(p,r) we have the inequality
| Py (X(q)) — PL(XP(p)|| < ~ for j = {0,....,n — 1}. Let r > 0 be also
sufficiently small such that XU(B(p,r)) is a self-disjoint flowbox. For any
open set U C B(p,r), we choose K C U satisfying (ii) of Definition 3.2.1 and
Y equal to X. So (i) of Definition 3.2.1 follows by choice of Y and r, (ii)
follows by choice of K and (iii) is clearly true.

(2) Let 11, 79 be the radius according to Definition 3.2.1 related to realizable

linear flows { Ly, ..., L,_1} and {L,, ..., L,y m_1} respectively. We take any non-
empty open set U C B(p,r,), if we have X™B®r)2)(B(p,r))) C B(X"(p),r2)
fine, otherwise we choose a smaller r < ry. Given v > 0, decrease r > 0 if
necessary, by using Lemma 3.1.3, to get [(K) — z()@(X™®DUF)(K)| < v for
all t € [0,n] and any measurable set K C B(p,r). By definition and choice of
the radius 7 > 0, we have that the flowbox {X™®OU)(U) : t € [0,n 4+ m]} is
self-disjoint, again by definition, given any U C B(p,r) we get a measurable
K, C U and a vector field Y] satisfying (i), (ii) and (iii) of Definition 3.2.1. Also
for any non-empty open subset of B(X"(p),y), in particular for X ) U) (1),
we get a measurable Ky CX ) U) () = : U and a vector field Y5 satisfying
(i), (ii) and (iii) of Definition 3.2.1.
Now define the vector field Y = Y; in the flowbox {X™®HW)(U) : ¢ € [0, n]},
Y = Y, in the flowbox {X7X"@Hn)U) () : ¢ € [0,m]} and Y = X else-
where. Y is C! because by definition (DY), = DX, = (DY3), for any
q € X™®mWUN), so Y and U verifies (i). To check (ii) we define K :=
KN Kg where K5 is such that XT(”’”)(KQ)(KQ) = KQ.A By Lemma 3.1.3 we get
z(n)p(U) < a(U) + v and also (U — K3) < z(n)i(U — Ks) + v. So we get:

) <
AU — (K1 N Ky)) <17 (U Ki)+ (U — Ks) <
rafi(U) + ()(Uj 2) +v <
kif(U) + z(n)repi(U) + v <
sif(U) + koi(U) + kv +v =
FA(U) + (1 + ko).

Therefore i(K) = fi(U) —a(U — K) > (1 — r)a(U) — (1 + ko)v and the result
follows considering a sufﬁment small v. Finally (iii) follows by definition. O

iU - K)

VANVANRVAN

The next lemma says that we only have to prove realizability on balls.
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Lemma 3.2.2 We only have to prove the realizability of the sequence of linear
flows {Lq, ..., L1} for U = B(p',r") where B(p',r") C B(p,r).

Proof: We use Vitali’s covering lemma and we cover the open set U with
a finite number of balls { B(p;, ;) }i=1....m such that @(U — U, B(p;, 7)) is as
small as we want. By hypothesis, for each B(p;,r;) there exists a measurable
set K; C B(p;,r;) and a zero divergence vector field Y;, e-C'-close to X, such
that:

(a) Y} = X outside the flowbox {X7@:t(B@rd)(B(p;, 1)) : t € [0,n]} and
DX, = (DY;), for every q € B(p;,r;), X7 BCrI)(B(p;, r:));

(b) 7i(K) > (1 = m)a(B(pi, 74);
(c) For every q € K; we have ||P31,(Yl’) — Lj|| <y forj€{0,1,....,n—1}.

Then we may define the same objects in U by taking K = 1U K;; and

Y = X outside the self-disjoint flowbox {X™®OB@r)(B(p;, 1)) : t € [0, s]}
and Y =Y, inside it and the lemma is proved. O

3.2.1 Small rotations

Next we will construct realizable linear flows of time-1 length at p, which
rotate by a small angle £ the action of the linear Poincaré flow, i.e., Ly :=
P%(p) o Re where R is a rotation of angle &. We may expect that increasing
the length will allow us to rotate by a larger angle but unfortunately this is
not possible, because the size of the perturbation depends on the dynamics,
on the angles between the bundles and also on the change of coordinates given
by Lemma 3.1.2.
Denote the rotation matrix by:

1 0 0
Ry:= |0 cos(f) —sin(0)
0 sin(d) cos(6)

Given a 3x 3 matrix A denote by A the 2 x 2 matrix obtained after removing
the first row and first column from A so:

fo= (o) ).

Lemma 3.2.3 Given X € .’{i(M), a non-periodic point p € M, ¢ > 0, 0 <
k<1,v>0 and a fizred time T'= 1. There exists r > 0 (depending on p), an
angle & (not depending on p) and a zero divergence vector field Y, e-C*-close
to X such that:
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(a) Y — X is supported in the flowbox { XTPHEEN)(p)(B(p,r)) : t € [0,1]},
(b) For every q € B(p,rv/T — k) we have ||P:(q) — PL(p) o Re|| < 7.

Proof: We take p € M anon-periodic point. Let C':= max{||DX}]|| : p € M}
and suppose that this constant is valid for any vector field e-C'-close to X.
Using Lemma 3.1.2 we obtain a C? conservative diffeomorphism ¥ : § — €.
Consider the constant © defined at section 3.1.2 and suppose that this constant
is also valid for any vector field e-C'- close to X.

Next we define two C° bump-functions g and G. Note that for ¢ € B(p,r)
the orbit X[*!(g) in general crosses Nx1(p), nevertheless for all n > 0 exists a
small 7 > 0 such that we have X1=7/2/(q) N Mx1,) = 0, for all ¢ € B(p,r).
Let n > 0 be sufficiently small to get:

(1) || Rea — Rel| < v/8C for a € [1 — 1,1 —n/2] and also for all ¢ € B(p,r) we
have X (q) N My, = 0.

Now let g : R — R be a C* function such that g(t) = 0 for t < 0, g(t) =t for
ten1—mnland g(t) = a for t > 1 —n/2 where a €]1 —n,1 —n/2] is fixed.
We take a sufficiently small r > 0 such that for all ¢ € B(p,r) we have:

(ii) IHy1 (g —IIx1()|| < 55 for any vector field Y = X outside § and e-C''-close
to X;
(iii) |DY, — Id]| <

oo

(iv) For ¢ € B(p,r) and any vector field Z = T outside € and e-C'-close to

X we have;
1 .
”D‘I’ZI(\P(q)) D‘I’Zl(wp»” < 3105’
. HD\IJ D\IJ <

5206
(V) Iyl [2] < ge5e for any & such that 0 < & < 1;
Vi) [yl =] < &-

We take the angle £ such that,

(1- T=5

< 202

For r > 0 satisfying the properties above let G : R — [0, 1] be a C* function
such that G(p ) 1 for p < r\/1—% and G(p) = 0 for p > r. Note that

max|G| < \/1_” Let p = v/y? + 22 and consider the rotation flow acting
on N, deﬁned by:



1 0 0 0
Regyap)(0,y, 2) = (0 cos(€g(t)G(p)) Sin(ﬁg(t)G(p))> (y>
0 sin(§g(t)G(p)) cos(Eg(t)G(p)) z

Denote the time derivative by Rgg(t)g(p) = %(Rgg(t)c(p)). A simple computation
shows that,

0 0 O
R&g(t)G(p)-Rg_gl(t)G(p) = £9(t)G(p) (8 (1) —01) : (3.4)

Inducing the adequate vector field:
We consider the flow T associated to the vector field T and we define for

¢ = (0,y,2) € Bp,r), T(t,q) = T"(Regnycp)(q)). We denote Regrcp)(4)
by Ri(q). Let H(t,q) := (t, Ri(q)) and F(t, Ri(q)) := T*"(R:(q)) so we obtain
Y(t,q) = F o H(t,q). We take time derivatives at ¢t = s:

d d
S Qs = STUR(a))lims = DFuiog) - DH, =

= (OF OF) .. (%Z)g:
= (T(T*(R.)) DTy,) (Rj(q))’

and we get

d .
ET(t’ Q)|t=s = T(T* o Rs(q)) + DTg, () © Rs(q)-

So the C*! vector field Z is defined in flowbox coordinates by:
Z()=T()+ DTIS%S(q) © RS(R—S oT*)(")

Let T°(Rs(q)) = (cs,y,2). Since T *(cs,y,2z) = (0,y, z) and DTy o = Id
by (3.4) we obtain that the C'-perturbation is defined by Z = T + P where:

P(x,y,z) = £9(x)G(Vy* + 2%)(0, =z, y). (3.5)

Properties of Z =T + P:
Z' is volume preserving;

. . oG . oG .
leZ(x,y, Z) = leT(l'a Y, Z) - 8_1/59(:1:) + ESQ(CE) -

= ¢ 0.

g(fﬁ)[—G\/WerG\/my] =
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We also have that the support of the perturbation P is B(p,r) x [0, ca].
Estimation of the C' norm of the perturbation P:
By (vi) |yl |z] < ¢/© so ||P|lco < ¢/©. To compute the C* norm we take
derivatives:

0 0 0
59( )G( ) ()5 y+G( )] £9(x) G2y

For the first column we use (v), but we must verify also that the other terms
are unaffected by the choice of r > 0 small. We take, for example, ‘9Gz and

polar coordinates (y, z) = (pcos(3), psin(3)) then we have,

2 2 ) . 202
G_GZ _ 0G(\y +z)Z:G vz . 2p

S At L <
dy dy Vyi+2 T e T

2p 2

= (1—,/1—§)r§(1— 1-5)

For the other three terms, %y, Y and z we proceed analogously. Since

G and g are bounded and £ < Y2 V5 e get ||[DP||co < ¢/©% Note that

267
we are allowed to take y, z close to zero without interfering with the size of

the perturbation. This is a key property of the C' topology. Next we make
use of this fact to get properties (a) and (b). The perturbation is defined, in
the original coordinates, by Pi(-) = D\IJ\I,()P(\IJ( )). We have g(x) = 0 for
x>1-—n/2and x < 0. For ¢t € [0,1 —n/2] and ¢ € B(p,r) we guarantee
that X*(¢q) does not intersect Mx1(,), so by (i) above we get that P, =Y — X

is supported inside the flowbox [UI]XT(I’ DBE) (p)(B(p,r)) and (a) follows.

Now we are interested in k’s close to zero and since V¥|pppy = Id we have
U(B(p,mvV1—k)) € B((0,0,0),7y/1 - %). Therefore for ¢ € B(p,rv1 — k)
we have Z1(¥(q)) = (¢, Rea(¥(q))), so:

DZy ) = Rea- (3.7)
We use (iii) and X = U, T to get:

DX, Rea — DY 41 gy D20 DYl =
- ”D‘I’Tl(\l/( ))Dqu,(p)D\IJpRga - D‘I’;ll(\p(p))DTxlll(p)RéaD‘I’p” <
< DY I DTa 11 DY Rea — Rea D[ <
< O[(DYy, — Id)Reo + Rea(Id — DV,)|| < /8.

Therefore:

IDX ] R, — DU} (3.8)

1
21wn P Zum PVl <

|2
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Since Y = ¥, Z we get DY1 D\IJZ}(\IJ(q))DZ\},(q)D\I/q so using (iv) we get:

Zl(‘P( )

IN

ZH(¥(q))

+

ZH(¥(p))

N+ +

AN+ +

+IDYHIDZ Y =5

<
240@ 240@ -

Z1(¥(p) DZ&/(p DV H =
HD\IJ DZ‘If(p DY,|| <
Z1(¥(p))
H(D\If 1 — DU ! )DZ}P(q)D\DqH +
1DV 4 = DY oy 11D Zi i 1D | +
2402
Y

|DY, — DV,
1
DZyyDVy — DV g0
1DV gy P23 DVg — DV 1 g D Zg ) DY+
1
||D‘I’ZI(\P(p>>DZ\P(q>D‘I’ DV 1 4 5 D Za ) DV +
1D on P2y D = DY 1 4y D Za iy DVl =
?) Z1(¥(p))
DY (DZi(q) — DZy,;)) DY, || +
||D\Ile(\y(q))DZ\},(p (DY, — DV,)|| <
IDY i ||||Dun ) = DZy I DYl +
1DV, (\p(q))l\l\Dqu(p DY, — D, || <
IDZY || DV o b + [ D[ DY |5
g.
Therefore:

IN

[

1 1
|DY, = DV 4 D23y DTl < 3

and (3.8) and (3.9) imply ||DY,' — DX Reo|| < 7. Jointly with (i) above we
get:

(3.9)

IDY,) = DX, Re|| < |[DY,) — DX, Reol| + | DX, Reo — DX, Re|| <
< /A4 DX ||| Rea — Bell <
<

v/2.

Finally we use (ii) and we obtain:

1) = Px(p) o Rell = |y1gy) 0 DY, —Ixi() 0 DX, R =
[Ty1q) © DYy =Ty (g © DX, Re| +
MTy1q) © DX, Re — Txip) 0 DX, Re|| <
Iy || DY, — DX, Rel| +

My (g) = Mxagn |1 DX, Re | <

-

IN + IN +

Estimation of the C! norm of P;:

(1-/T5)

Above in (vi) we consider [y|, |z| < ¢/© and we choose § < —55—* and

we obtain ||DP||co < ¢/©% Now since Pi(q) = D\Ilqj(q)P(\IJ( )) and we have
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(DPy), = DQ\IJE,%q)DP\I,(q)D\Ilq we obtain that ||Pi]|co < O||P||lco < € and also

that ||DPy||co < ||D*U~LY|||DP]|||D¥|| < ©2||DPJ| < e. We conclude that,
1Y = Xller = [[Paller <,
and the lemma is proved. O

Lemma 3.2.4 Given X € .’{i(M), a non-periodic point p € M, ¢ > 0, 0 <
k<1,v>0 and a fired time T' = 1. There exists r > 0 (depending on p), an
angle & (not depending on p) and a zero divergence vector field Y, e-C*-close
to X such that:

(a) Y — X is supported in the flowbox U XT®=OEE(B(p,r)),

tel0,1]

(b) For every q € XT=DBENI=AI)(B(p (1 — k)r)) we have the following
inequality || Py (q) — Re o Px (X~ (p)l <.

Proof: We proceed like in Lemma 3.2.3, this time for X ~! finding a change of
coordinates U(z,y, z) = X_)‘_lz(O, ©(y, 2)). Then we consider Rg_gl(t)c:(p)v t>0
and we find Z. We define Y = ¥, Z and we get:

PHa) = B (Y (@)™ ~ [Px'(p) o R =
= Reo[Py'(p)] " = Re o Py(X'(p)),

and the arguments are equal to the ones used in the proof of Lemma 3.2.3. O
Now we use the two previous lemmas to build some realizable linear flows.

Lemma 3.2.5 Given X € %i(M), e >0,0< k<1, anon-periodic point p
and a fized time T = 1. Then there exists an angle & (not depending on p)
such that Ly = PL(p)o Re and Ly = Reo PL(p) are (¢, k)-realizable linear flows
of length 1 at p.

Proof: We prove that Ly = PL(p) o Re is (e, k)-realizable. Let v > 0. By
Lemma 3.2.2 we may choose the open set U to be a ball, say B(p',r") C B(p,r).
Now we apply Lemma 3.2.3 and we get a zero divergence vector field Y, e
CO'-close to X such that Y — X is supported inside the flowbox defined by
(X OBE) (B 1")) : t € [0,1]} and for every ¢ € B(p/,7'vI— k) we
have ||PL(q) — PL(p') o Re|| < 7. Note that since r > 0 is small the arrival
time for points at B(p,r) is almost 1.

The support of the perturbation is contained in the flowbox. For the pertur-
bation P defined in Lemma 3.2.3 we have DPy(,) = [0] for ¥(q) € B(0,7'),
T'(B(0,7")) and for t > 1 —n/2 so DX, = DY, for any q belonging to B(p', ")
and also to X™®DEE ) (B(p! ")), Therefore (i) on Definition 3.2.1 is true.
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We take K C U equal to B(p',7"v/1 — k) and we get ((K; ”(lﬁ_.r'fgﬁ =1—k
and (ii) follows. Finally (iii) follows from (b) of Lemma 3.2.3 and the continu-
ity of the linear Poincaré flow.

For Ly = RgOP)l(( ) we proceed analogously now using Lemma 3.2.4. Given any
open set U C Ny 1) we take U = X7X T @DO)({7) C N, then we measure
theoretically fill up this open set U by taklng a finite union of balls { B; }i=1....
We denoted this covering by €. Let ¢ C U be such that X™X ' ®:D(O(¢) = Qﬁ.
Of course ,u(U C) can be made as small as we want, and the realizability
follows. O

We continue to produce realizable linear flows.

Lemma 3.2.6 Given X € %i(M), €>0,0< k<1 and a non-periodic point
p, there exists an angle & such that for |&| < &, i =1,2;

PL(p)oR Py Re 0P (X712
N, Y N B Ny ST N

is a (e, k)-realizable linear flow of length r + 2 at p.

Proof: Takey > 0. By Lemma 3.2.5 for k1 < k we get ¢ such that P} (p)ofw?g1
and Re, o PL(X"+2(p)) are (e, k1)-realizable. By Lemma 3.2.1 (1) the trivial
flow P% is (e, ky)-realizable. Now if k1 < k/3 then we use Lemma 3.2.1 (2)
and obtain the (e, k)-realizability. O

3.2.2 Large rotations

Now we find conditions under which we can rotate by large angles. In the
previous section we were able to rotate by time-1, so what happens if we
increase time? We want to rotate by an angle 27, thus we take a time m such
that ém = 27, But £ is in general very small, so m must be very large. Note
that the choice of m may affect the norm of the perturbation because ||¥||,
for ¥ given by Lemma 3.1.2, depends on m and in general increases with m.
Furthermore the dynamics along the orbit may also obstruct the construction
of a small norm perturbation. Let us consider a situation for which this last
problem is minimized, say when we have simultaneously:

(a) No domination conditions for each bundle, i.e. P%(p) is “almost confor-
mal” for all ¢ € [0, m)].

(b) The angle between N%,(p) and N3, (p) is larger than a fixed £ for all
t €[0,m].

Even if we have properties (a) and (b) our perturbations may not have a
small C'-norm, because as we already said, the entries y(¢) and z(t) of DX}
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(see (3.3)) may obstruct the construction of a vector field ¥ — X with small
norm. So we will concatenate several small rotations, however this concate-
nation worsens . In [3] this problem is bypassed by using a nested rotation
lemma (Lemma 3.7 in [3]) and here we will adapt this procedure. Note that
if we had y(t), z(t) bounded, then under conditions (a) and (b) we could per-
form large rotations with just one single perturbation. In fact this is what we
did when we carry out the development of perturbations for linear differential
systems, see section 7.6.2.

Since we will juxtapose several rotations beginning with a ball it turns
out that after the first time-1 iteration, by the linear Poincaré flow, it will
became an ellipse. We consider vector fields which induce elliptical rotations
over normal sections, so take the elliptical rotation flow defined by:

1 0 0
By = | 0 acos(€g(t)G(p)) —asin(§g(t)G(p)) |,
0 dsin(&g(t)G(p)) deos(Eg(t)G(p))

where d > a are the axis of the ellipse. Let F = \/g . Asin [3] we call E

the eccentricity of the ellipse, so eccentricity close to one is equivalent to be
almost conformal. A simple computation shows that:

0 0 0
Egg(t)g(p).Eggl(t)G(p)=gg(t)G(p) 0 0 —E%]. (3.10)
0 E> 0

The number E measures how large is the norm of a modified area-preserving
linear map that sends a ball into the ellipse. The ball B(p, 1) is mapped into
an ellipse denoted by B(p) C 9M,,. Let 0 < ¢ < 1 and we denote by B(p, () the
ellipse B (p) after a shrinking by a factor of (.

Lemma 3.2.7 Given X € %i(M), a non-periodic point p € M, ¢ > 0, 0 <
k<1,v>0 a fired timeT =1 and E > 1, then there exists r > 0 and ¢ > 0
such that if B(p,r) is an ellipse with eccentricity less than E, diam(B(p,r)) <
¢ and ||PL(p)Ee — PL(p)|| < & for € > 0, we may find a C* zero divergence
vector field Y, e-C'-close to X such that:

(a) Y — X is supported in the flowbox [Léll]XT(p’t)(%(m))(%(p, ),
te|0,

(b) For every q € B(p,rv/1 — k) we have | PL(q) — PL(p) o E¢|| < ~.

Proof: The proof is the same of Lemma 3.2.3, but the angle £ depends also
on F, because rotations of ellipses with large E imply large perturbations.

By (3.10) we get ||E§g(t)G(p).E§_gl(t)G(p)|| < F?¢. Let ¢ > 0 be sufficiently small.
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So we have || PL(p)Ee — Pk (p)|| < ¢, therefore a,d ~ 1. Consequently E? ~ 1
and we rotate approximately £&. O

The next lemma says that if we fix a small ellipse in a small ball B(p,r) C
N, and consider its arrival into Mx1(,), then this set is almost the image by
the linear Poincaré flow at p of the same ellipse modulo translations. A similar
statement is proved in Lemma 3.6 of [3] (see Figure 3.3).

@ DEB @)
x B@»

Figure 3.3: For small r > 0, X" ®D(B@)(9(q)) is almost an ellipse.

Lemma 3.2.8 Let X' : M — M be a C*-flow, ¢ €]0,1] (near 1), E >
1. There exists r > 0 such that, for all ellipses B(q) C B(p,r) C N, with
eccentricity less or equal than E we have:

(A) Px(p)(B(q.¢) — q) + X™PDW(q) € XD (B(g))
(B) X™@DED)(B(q)) C Px(p)(B(q.2 — () — q) + X @D (g).

Since P%(p) is modified area-preserving, we measure the non-conformality
using its norm || P%(p)|| in the following way. Suppose that P%(p) has a matrix

a 0
0 d
E = \/g. Since || P%(p)|| = d, and by volume-preserving we have a~! = d.z(t)

we conclude that £ = \/g =/ Px(t) = dy/x(t) = | Pk (p)||\/x(t).

In next lemma we adapt Lemma 3.3 of [3].

representation > with d > a. Then the eccentricity of P%(p)(B(p,1)) is

Lemma 3.2.9 Given X € %i(M), a non-periodic point p € M, ¢ > 0, 0 <

k<1,v>0and E > 1, suppose that for a fired n € N we have ||P)]((p)|| <
E\/z=1(j) for j =0,1,....n— 1. Then there exists ¢ > 0 such that if:

L L Loy
N, =5 Nxi(p) = ... "= Nxonp)

18 a sequence of linear flows satisfying:
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(a) Lj—1 0.0 Ly(B(p,1)) = P%(p)(B(p,1)) for j =0,1,...,n—1;

(b) | Px(X7(p)) = Lyll <€ for j =0,1,..n—1,
then {Lg, L1, ..., L,_1} is a (e, k)-realizable linear flow.
Proof: Let v > 0 be given. Take ¢ given by Lemma 3.2.7 and depending on
X, ¢, k, E and v/3.

Choice of r:
We choose rg > 0 such that:

(1) ||PL(q)|| < 2E+/z~1(j) for all ¢ € B(p,rov/T — &) and for j = 0,1,....,n —
1;

(2) For all ¢ € XTw)B@r)(B(p,ry)) we have || Px(q) — Py (X7 (p))|| < 5%

(3) Any vector field Y e-Cl-close to X and also such that X = Y outside

XOn(B(p,ro)) satisty: ||PH(Y(q)) — PH(z;)|| < %, for any ¢ € B(p, 7o)
and .’Ifj c ’)th(p).

By hypothesis HPg{(p)H < E\/z~!(j) and also we have by (a) Lj_y 0 ...0
Lo(B(p,1)) = P%(p)(B(p,1)) for j =0,1,...,n — 1, then we take E; the ellip-
tical rotation with eccentricity less or equal than E and define,

L; = Px(X(p)) o Ej.

Now we choose kg < k by taking A €]0, 1] near 1 satisfying A" (1 —rg) > 1 —k.
We take ¢ €]0, 1], such that ¢ €]\, 1] and 2—¢ €]1, A7![. By Lemma 3.2.8 there
exists 7, > 0 such that for all ellipses B(q) C B(p,r1) C M, with eccentricity
less or equal than E we have:

(A) Px(p)(B(q,¢) — q) + X 0D (q) € X™NE@) (5 (q))
(B) X7 (B(q)) C Px(p)(B(g,2 — () — q) + X™®D)(q).

Again by Lemma 3.2.8 we have for all j € {1, ...,n—1} that there exists 741 > 0
such that for any ellipse B(q) € B(X7(p),7j41) C Mxi(p) with eccentricity less
or equal than F we have:

XT@DE@D) (9 (g)) D Py (X (p))(B(g, ) — q) + XX D) (g),
After applying Lemma 3.2.8 n times, we choose 7,1 > 0 such that:
XT@BErmt))(BPrat1)) C B(X’(p),rj41) for j € {1,...,n — 1}.
We define the value of » > 0 in Definition 3.2.1 by:

min{riy/z(5)};1%
ri= .
3FE

Defining Y and K:
By Lemma 3.2.2 we consider U = B(p/,r") C B(p,r). We define a sequence
of ellipses B C Ny, for j € {0,1,...,n — 1} all of eccentricity < E by:
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BY = B(p/, sr’) for s €]0, 1];

B = P() (B, sr') — ) + X0 () for j € {1,....,n —1}.
Denote X™®)®) (p') = p’. It follows from P7 (B( r)) C B(X?(p), E/21(5)r),

7

XT®DBE)(B(p,r)) C B(X7(p), 2B/~ ) and from the ch01ce of r that,
B C B(X(p),3E\/z~(j)r) C B(X’(p),rj11) for all j = {0,....,n — 1}.

These ellipses are in the conditions of Lemma 3.2.8 so for all j € {0,1,...,n—1}
we have:

%]—H %]—H

PL Dol D XTI () o It D Bl

We apply Lemma 3.2.7 to pf;, ko, B7 and E;, with s = A", So there exists an
angle £(¢€) and a vector field Y; € U such that:

(a) Y; — X is supported in the flowbox [Lél]XT(pJ’t) *")(%] )i
te

(b) For every ¢; € %inm we have || Py(q;) — Px(p}) o Ee| < /3.

We get Y; for j = 0,...,n — 1 with disjoint supports and define ¥ := Z" ! Y;.
Defining K := gizn\/m = B(p/, \*"/T — k) we get,

A(K) _ m(ny/T = ror')?
aU) mr’?

:)\477,(1_/{0) >1— k.

Let us see that when we iterate we have a nested sequence, i.e., for all ¢ € K,
we have Y/ (q) € %;n = forallj € {0, 1,..,n—1}.

We have Y70/ D(E: )(% ) C %5(2 o C %s)\ 1, so for every j = {1,2,...,n— 1}
we obtain Y7 (%1)(% )C B, C %g)\ ». Hence for s = AQ"M we get

Y@ DI () C B, ==, and the orbit of ¢ will be always inside the domain
of the rotations.
Finally we prove that for all ¢ € K we have |P}(Y7(q)) — L;|| < v by using
(3), (b) and (2),

1PHY? (@) = Lyl = [PH(YP(q)) = Px(X7(p)) 0 By <
1PH(Y7 () = Py(g)l| + [ Py(g) = Px(p) o Byl +
1P%(0}) © B — Px(X7(p)) o Byl| <
/3 +7/3+ 1 Px(v)) = Px (X7 ()l ]l <~

and the lemma is proved. O

IN 4+ IA
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Chapter 4

Exchange of the Oseledets
directions along an orbit
segment

When we have an orbit without dominated splitting, along an orbit segment
X[0ml(p) of this orbit it may occur an “exchange on the dominance” during a
period of time r, i.e. for ¢ > 1,

PR (X (P)[ Nyl .
1P (X PDIN eyl —

A(X'(p),r)

Therefore the dynamics sends vectors near Nyr(p into vectors near Nyi.,
during that period. The next simple lemma, whose prove may be found in [3],
explicit this behavior. Denote by ny € Ng(*(p) two unit vectors, for o = u, s.

Lemma 4.0.10 Given an angle &, there exists ¢ > 1, such that if we have
A(X*(p),r) > c then there exists a non-zero vector v € Nxtg) such that
4(/07 n?) < é and 4(P)T((Xt(p))vvnz‘g+r) < g

The next lemma gives us sufficient conditions under which we may apply
Lemma 3.2.9.

Lemma 4.0.11 Let & > 0 and d > 1 be given, there exists EE > 1 such that:

If for all t € [0,m]: Z(N%u) Niiy) > € and d < 1 < . then

1P @®)nyll =
| Pl < BV T for all t € [0,m].

Proof: We define Z(N%
preserving we get

Niiy) =1 & > € for all t € [0,m]. By volume

“(p)

_ _,sin&y
= () PPyl S

1% ()

N
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therefore

| Px(p) N
Pt . 2: -1 —1 < —1 si -1
1 Px (p)|n; x(t) —|\P§{(p)|NuH & < x(t) dsin™ ¢
and we obtain || Py (p)|n;|| < v/x(t)'d.sin” €.
Analogously:

P @) gl - IR

||P)t((p) Ny |2 < Jf(t) IHP):(TNPSIH 1& < LI?(t) 1d.SlIl 15
X

and we also obtain || P%(p |Nu < V/ax(t)~ld.sin~¢.
We conclude that ||[PL(p)| < /2x(t)~'d.sin~'¢, for all t € [0,m], so the
statement holds taking E = 2d.sm 1§ . O

Now we are able to mix the Oseledets subspaces by small perturbations
along orbits with lack of hyperbolicity.

Lemma 4.0.12 Let X € X(M), ¢ > 0 and s € (0,1). There exists m € N,
such that for every p € A,,(X) there exists a (¢, k)-realizable linear flow such
that:

L™(Ny) = Nxmp)-

Proof: First we set up the constants. Take & > 0 the minimum of the angles
satisfying simultaneously Lemma 3.2.5 and Lemma 3.2.6 and depending on X,
¢ and k/2. Take C := max{||DX*!|| : p € M} and c given by Lemma 4.0.10
depending on the angle &. It also will be useful to take ¢ > C?. Lemma 4.0.11
gives us £ > 1 depending on ¢ and d = 2¢®. Let ¢ > 0 depending on X,
€, K and F given by Lemma 3.2.9. Let § > 0 be such that for & < 3,
| Re, — Id|| < C~'E~2¢. Finally we take a very large m € N satisfying m > %’T
I - Angle between Oseledets subspaces small:

If along the orbit segment there is a time r such that the angle between N X" (p)
and N Xr(p) 18 less than & say:

For some r € [0, 7] we have Z(Ny. (), Nxr(,)) < & (4.1)

We take advantage of this fact and define a realizable linear flow of length 1 in
the following way; If 7 < m—1 the linear flow is based at X"(p) and defined by
Ly := P4 (X"(p)) o R¢ and if r > m — 1 the linear flow is based at X" ~!(p) and
defined by Lg := R¢o P4 (X" !(p)). Now we use Lemma 3.2.5 and concatenate
from right and left, if necessary, with trivial realizable linear flows by using (1)
of Lemma 3.2.1. We obtain L™(N,) = Ngm,-
IT - Locally N° dominates N“:

Now we suppose that:

For some 0 < 7+t < m we have A(X",r) > c. (4.2)
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We use Lemma 4.0.10 and there exists a vector v € Ny () such that Z(v,n{) <
¢ and Z(Pg(X'(p)) - v,ny,,) < & Since ¢ is small we apply Lemma 3.2.5 to
both extremes at X*(p) and at X' (p). By choice of ¢ we get r > 2 and so we
have disjoint perturbations. Therefore our first rotation allow us to send N¥t(p)
onto v.R, the dynamics help us and maps this direction into Py (X*(p)) - v in
time 7, finally and another rotation sends P%(X*(p))-v.R onto N Xttr(p): NOW
we use Lemma 3.2.1 and concatenate the three realizable linear flows, say
rotation-trivial-rotation, by using Lemma 3.2.6 and we get L™(N) = N, )
IIT - Lack of dominance behavior:

We suppose that we do not have both (4.1) and (4.2). We set up the conditions
of Lemma 4.0.11. Since A(p,m) > 3 and (4.2) is false we conclude that,

A(X7(p),t) = AX™(p),m —t —r) " Alp,m)A(p,r)~" > (2¢3) 7,

therefore since d = 2¢? and we get:

_1 ||P§<(P)|N;;r(p)||
d S Pt
1P% (P) | vy

X7 (p) ||

< d for all r,t such that 0 < r +t < m.

In particular for r = 0 we have Vit € [0,m]: Z(Ny: (), Nxi(,)) > € we use

Lemma 4.0.11 and conclude that ||P%(p)|| < E+/z(t)~! for all t € [0, m].
Take &1, &2, ..., &m—1 such that each & is less than 3 and also take 27:_01 & =
Z(Ny,N;). We define:

Lj: Nxipy — Nxi+1(p)

v+ P{(p)oRg o [Pi(p)] v

Let us see that we are in the hypotheses of Lemma 3.2.9:
Since by definition L;_j o...0 Ly = P{(p) o Rgm-1, we have

Lj—l ©...0 LO(B(p7 1)) = P)]((p)(B(p, 1))

and it verifies (a). Now we have:

1Px (X7 (p)) = Lyl < IPx(X7(p)) = PX™(p) 0 Re; o [Py (p)] ]| =
= [|[Px(X?(p))[Id = P (p) o Re, o [P (p)] '] <
< PR (XI)III1P% (p)[Td — Re, [P (0)] ']l <
< P (X )P )Pk (p)] M Hd = Re, || <
< CEVaY(j)Ev/z(j)||Id — R,

In last inequality we use | Px’|| < E+/x(t). Therefore we have:
1Px (X7 (p)) — Lyll < CE?||Id — Re|| <
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and (b) is true, so by Lemma 3.2.9 we have the realizability of our linear flow
therefore:

L™(N}') = L1 0...0Lo(N}) = P¥'(p) ORE;n—lgj(Ng) = Py'(p)-N, = Nxmp)

i—0

which proves the lemma. O
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Chapter 5

Lowering the norm - Local
procedure

Now we consider two lemmas, the first one we adapt Lemma 3.12 from [3],
to the continuous-time case. This lemma gives us information about when
we have a recurrence to a positive measure set. The second lemma is an
elementary result and it relates the original norm with a new norm which is
better when we do the computations.

Lemma 5.0.13 Let Xt : M — M be a measurable p-invariant flow, A C M
a positive measure set, its saturate I' = tURXt(A) and v > 0. There exists
€

a measurable function T : T' — R such that for p-a.e. p € T', all t > T(p)
and every T € [0,1] there exists some s € [0,t] satisfying |3 — 7| < v and
X*(p) € A.

Proof:  We denote the characteristic function on the set A by ya. Let
B(t) = f(f Xa(X7(p))dr. We claim that for py-a.e. p € I' we have flim 1B(t) =
a > 0. The existence of the limit follows from Birkhoff’s ergodic theorem, the
positivity follows from the diffeomorphism version [3], where we have

n—1
1 )
lim — J = :
nhoom 27':0 xa(f!(p)) =a>0
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Note that ¢(p) = fol Xa(X*(p))dt is integrable, then:

o1 1"
hm; Xa(X"(p))dr = lim — Xa(X"(p))dr =
0

t—o0 n—oon, 0

1 n—1 i1
= Jm s> [ ) -
j=0 v J

n—oomn <

n—1 1
- lm Z/ Xa (X" (p))dr =
j=0 0

n—ooTl <

n—1

= [ S sV ) -

n
)=

1
= / adr = a > 0.
0

Let p € " and ¢ € (0,a) satisfying (a + ¢)/(1 +v) < a — e. Since we have
lim $ B(t) = a > 0 we choose to such that |B(t)/t —a| < ¢ for all t > ¢, and

t—o0

take T'(p) such that w(io—e) < T(p). The proof follows by contradiction, suppose
that:

I >T(p),Ir€[0,1] : Vs € [t(t — ), t(r + )], X*(p) & A.
Take [a, B] = [t(T — ), t(r + )] N[0, ¢t], B >ty + .

If o > tg, then:

W oo BB _Bla) _ Bl@) _  Bla) a+e
B B T a+ty all+ty/a) 1+t

<a-—e€,

which is a contradiction, so a < ty and in this case;

B t
a—e€< (6)< @ e
J6] a+ty At

we obtain again a contradiction. O
Consider p,q := X*(p) € " and the map P : N, — N, with matrix written
relative to the Oseledets basis (given by {ny,n;} and {ny,n;}) as:

a’uu aus
)
Let HP“max = max{|auu|’ |aus|’ |(ZS“’|, |(ZSS|}.

Lemma 5.0.14 (a) || P|| < 4zt 1Pllsss (6) [Pllas < sty 1P
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Proof: See [4], Lemma 4.5. O

Lemma 5.0.15 Let X € .’{i(M), with X' aperiodic and the measure of hy-
perbolic sets zero. Let e,6 > 0, 0 < k < 1. There exists a measurable function
T : M — R such that for pu-a.e. p € M and every t > T(p), there exists a
(¢, k)-realizable linear flow at p with length t such that | L*(p)|| < €.

Proof: First we take m € R large enough given by Lemma 4.0.12 depending
on X, ¢, k/2, abbreviate I' = T’} (X) and A = A,,,(X). The union of I" with the
Oseledets points with zero Lyapunov exponents is a full measure set, otherwise
we could get a positive measure set with m-dominated splitting and by Propo-
sition 2.5.1 X is Anosov and this contradicts the hypothesis of hyperbolic sets
have zero measure. We suppose p(I") > 0 because if p(I") = 0 then for u-a.e.
point p € M we have A" (p) = 0 and the proof is over because a trivial linear
flow does the work. Remember that I' = thXt(A). For p-a.e. p € I' the

Oseledets’s Theorem gives us (Q(p) such that V¢ > Q(p) we have:
(1) %logHP)t((p) -n"|| < AT (p) + 6 for all n* € N} — {0};

(2) Log|| P (p) - n°|| < —A*(p) + 6 for all n* € N3 — {0};

1
(3) IOgsiné(N;‘gt(p)vN‘;mm) < t6.

By using Lemma 5.0.13 with 7 = 1/2 we get recurrence to A approximately in

the middle of the orbit segment, but to get good estimates to the norm of the

linear flow L', points in the orbit after this time, must also satisfy (1) and (2),

that is why we consider the following sets; We define B, := {p € I": Q(p) < n}

for n € N, of course that B, C B,;1 and u(I' — B,) e 0. Consider a family

of sets defined by:

Co:=0,C = tteJRXt(A NX""™(B1)),....Cp:= UX(ANXT(B,)),..

teR

Clearly C,, — T, so the measurable function 7" : I' — R will be pu-a.e.

defined on each C, — C,_y for n € N. Taking ¢ > 2max{||DX}| : p € M}
yields the Lyapunov exponents of any p € O less than ¢. For p we have non-
null Lyapunov exponents so we have the Oseledets 1-dimensional subspaces
N} and N;. Let v = min{1/6,9/c}. Now we use Lemma 5.0.13 substituting
A by ANX"™(B,) and I" by thXt(AﬂX_m(Bn)), so by this lemma for each n

there exists a measurable function 7;, : €, — R such that for py-a.e p € C),, and
for all t > T,,(p), there exists some s € [0,¢] satisfying X*(p) € AN X"™(B,)

and ¢ — 1| < 4. Now we define a sufficiently large T'(p) for p € C,, — Cy_1;

m 1 4

T(p) > max{T,(p), pot 6Q(p), SIOgm} (5.1)
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Let p € C,, — C,_1 and t > T(p), since t > T'(p) > T,(p) by (a) above
X*(p) € A, so by Lemma 4.0.12 we may define a (¢, £/2)-realizable linear flow
Ly : Nxs@py — Nxs+m(p), sending N“S(p) into N§,9+m(p). Now we concatenate
from right and left with trivial linear flows and by Lemma 3.2.1 we obtain a
(¢, k)-realizable linear flow defined by:

L L L
Np —0> NX@(F) —1) NXS-}—'m(p) —2) NXf(p)

with Ly = P§(p) and Ly, = PLY ™ %(X*™(p)). Now we estimate ||L!(p)]|,
and for that we consider the linear maps relatively to a suitable unitary basis
{n%: () xr )t for 7 € [0,¢] that is invariant for the linear Poincaré flow, so
they have the form:

() puv  pus a'™ 0
L2 - < 0 Css> 7L1 - <beu bss) 7L0 - < 0 ass) .

The key observation is that 0** = 0, and this is the reason why we send N¥. )
into N.im(,)- Hence we will be able to get all entries of the product matrix
small, whereas if b“* # 0 this could not be done. So consider the product

matrix:
B = (o )
Claim 5.0.1 Forpe C, —C,,_1 and t > T(p) we have:
(a) logla™| < 1t(A\T(p) + 46);
(b) logla®| < 5t(=A*(p) + 49);
(¢) log|c™| < $t(AT(p) + 46);
(d) log|c**| < $t(—=A*(p) + 46).

Proof: (of the claim) For (a) we have s > ¢(1/2 —~) > t/3 > T(p)/3 > Q(p)
so by Oseledets’s Theorem we have log|a®| = log| P%(p) - ni| < s(A*(p) + )
and also log|a®| = log|P%(p) - ny| < s(=AT(p) +0). Since YA (p) < ve < ¢
and v < 1/2 we obtain;

s(AT(p) +0) < t(1/2+7) (A (p) +0) < t(AT(p)/2+6/2+ AT (p)y +70) <

<t (P))2+8/2 46+ 5/2) < %t(v(p) + 45)

and (a) follows. We note that (b) is analogous to (a) by taking —A*(p) in-
stead. For (c) we make use of the fact that X®(p) € X (B,), therefore
Xst™(p) € B, and by definition of B,,, Q(X**™(p)) < n, so we will have the
approximation rate given by Oseledets’s Theorem if t —m —s > n. By (5.1) for
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t > T(p) we have —m/t > —v, —s/t > —1 — ~ and we know that —y > —1/6

SO:
m S

1 t
) — ¢ — 2 Z_ z >
t—m—s=1t(1 ; t)>t(2 27)>6>Q(p)_n
Now:
log|c™| = log| Py ™ *(X*"™(p)) - nsimp| < (t—m —s)(AT(p) +0) <

< t(1—=m/t—s/)(AT(p) +0) <ty +1/2)(A\T(p) + ) =
= t(Y AT () + 0+ AT (p)/2+/2) <

< HE+ /24 N (p)/246/2) = %t(v(p) 1 46).

Again (d) is analogous to (c¢) by taking —A*(p) instead and the claim is
proved. O Now we estimate ||L1||max. First note that;

s+m>t(1/2—vy+m/t) >t(1/2—7) >t/6>Q(p) >n

so again by Oseledets’s Theorem (3) we have an estimate for the angle, i.e.,

Sln A(NX s+m (p), Nf(s-}—m,(p)) < 6(S+m)6 < 6t6

Since Ly is (¢, k)-realizable we conclude that ||L; — P (X*(p))| is small, there-
fore since t > T'(p) > m/v and yc < § we have || L] < e™ < ¢ < . By
Lemma 5.0.14 (b) we get:

| L1 || max < sin_lé(N}‘(erm Nistmp )||L1|| < e,

(p)

Now we give estimates for each of the entries of the product matrix:

|auubuscss| < % (AT (p)+48)+2t5+ L t(—A (p)+45) _ — fto
|assbsucuu| < 6%( )\+(p)+45)+2t6+ t(AT (p)+48) _ 6.
| a5 b Css| < e%( At (p)+40)+2t5+ St(—AT (p)+49) < e—t)\+(p)+6f6 < 610

This implies the inequality || L!(p)||max < €%°. Again by Lemma 5.0.14 (a) we

have:
1

IL' D) < 4—— 7y 1L () s
sin/ (N, N¥)

< e and we get ||Li(p)|| < e™.

< e and the lemma is proved. O

But t > T( ) 110gszn4(N“ Ns ) einé(]%];;,N;)
Replacing § by /7 we conclude that ||Lf(p)|

5.1 Realizing vector fields

Let X € %i(M )*, with X* aperiodic and also with all hyperbolic sets with
zero Lebesgue measure. Given ¢,0 > 0 and 0 < xk < 1, we suppose that
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Figure 5.1: Realizing vector fields given a linear flow L.

m is large enough to satisfy Lemma 4.0.12. By Lemma 5.0.15 there exists
a measurable function 7' : M — R such that for p-a.e. p € M, for every
t > T(p), there exists a (¢, k)-realizable linear flow at p with length ¢ such that
| Lt (p)]| < e¥. By Definition 3.2.1 V7 > 0, 3r(p,t) > 0 such that for all open
set ) # U C B(p,r), there exist:

(a) A measurable set K C U,

(b) A zero divergence C! vector field Y, e-Cl-close to X, such that:

(i) Y = X outside the self-disjoint flowbox {X™®*)U)(UV) : s € [0,#]} and for
every ¢ € U, X"PYU)(U) we have DX, = DY;

(if) Z(K) > (1 = w)p(U);
(iii) If ¢ € K, then ||PL(q) — Lt|| < .

By (iii) and ||L!(p)|| < €' we conclude that ||P{(q)|| < e + ~ for all ¢ € K,
and we note that « is very small. So the vector field Y is the one who realizes
the property of having small norm for the orbit of p, and this property is
shared by large percentage of points inside any open set inside 91, near p (see
Figure 5.1). This property is crucial because after we perturb X the point
p may no longer be in O(Y), however most points (relatively to Lebesgue
measure) near p have norm close to the norm of p, therefore small norm.
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Chapter 6

Lowering the norm - (zlobal
procedure

6.1 Sections of flows and special flows

Now we use the local construction of realizable linear flows with small norm
to get a conservative vector field Y near X with LE(Y) small.
First we define a special flow built under a ceiling function h. Consider:

(a) A measure space X;

(b) Amap R: ¥ — ¥

(c) A measure fi defined in ¥;
(

d) An integrable function h : 3 — R*, with h(x) > « > 0 for all z € ¥ and
Js h(x)di(z) = 1.
Consider the flow on the product space M;, C ¥ x R where M), is the set below
the graph of h(x), on which the dynamics is defined by:
S5 YxR — Y xR
(z,r) +— (B"(z),r+s— >y h(Ri(x)))
and n € Z is uniquely defined by:

ih(R“‘(az)) <r+s< Zh(Rf(x)).

Informally speaking this flow S* moves any point (y,r) € My, to (y,r + s) at
time-one speed until hits the graph of h after that the point returns to the
base Y and proceed its journey, see Figure 6.1.

The following lemma, see [1], gives a representation of an aperiodic flow by
a flow build from a ceiling function h.
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Figure 6.1: A Kakutani castle or a special representation of a flow.

Lemma 6.1.1 (Ambrose-Kakutani) Any aperiodic flow X*: M — M is iso-
morphic to some special flow.

The isomorphism is given by a measure preserving transformation W : M —
Mj,. The measure p* = W*u is decomposed into the product of Lebesgue
measure in R and an R-invariant measure f in 3, i.e.:

h(zx)
y f(av,s)d,u*:/z/o flx,s)DDSfi(x). (6.1)

So we have a simplified representation of our flow X*(p). In what follows
we consider that our flow have this representation. Given a special flow over

a section ¥ the set Q = |J X*(X) is called Kakutani castle and the tower of
teR
height i, denoted by T;, is the set below the graph of h(B;) where B; = {x €

Y:h(z)=1i}so T, = U XYB).
te(0,4)
Next we consider lemma which is a time-continuous version of Lemma 4.1

of [3]:

Lemma 6.1.2 Let Xt : M — M be p-preserving aperiodic flow. For every
positive measure set U C M and every h € R, there exists a [i-positive measure
section B C U such that:

(a) XIOM(B) is a self-disjoint flow box;

(b) B is mazximal (i.e. no set containing B and with larger measure has the
same properties as B).

Proof:  Suppose that for all By C U with g positive measure, we have
A(XO(B)AXIO(By)) = 0, therefore ji-a.e. x € By is fixed for X* or peri-
odic with period less then n but X! is aperiodic, so there exists B; C U with
fi(B1) > 0, such that X®"(B)) is a self-disjoint flow box.
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If (U — X=m7(By)) = 0 there is no chance of getting a set B, with larger
measure. If (U — X["7(By)) > 0, then we extract By C {U — X[7(B))}
such that X7 (B,) is a self-disjoint flow box and repeat by method of ex-
haustion. O

For p-generic point p, Lemma 5.0.15 gives us T'(p), which, in general is
very large. Hence Lemma 6.1.2 will be very useful to avoid overlapping of
perturbations.

6.2 The construction of an adequate section

Now we prove Proposition 2.6.2 and for that purpose the next step is the
construction of a special flow over a section. Consider X € X, (M), of class
O?, aperiodic, with hyperbolic sets measuring zero, ¢ and § given by Proposi-
tion 2.6.2.

For all Y ¢ — C! close to X we define C' := lgé%(HP}(p)H

We take k = 62. Using the measurable function given by Lemma 5.0.15 we
define:

Zp={peM:T(p) <h}. (6.2)
Of course that u(M — Z;) — 0 so taking h sufficiently large guarantees
u(M — Zy) < 6° (6.3)

We intend to build a special flow with ceiling function with height not less
than A and section inside Z),. Since Zj, has almost full measure by Lemma 6.1.2
we get a fi-positive measure set B C Z;,. The function h(z) satisfy h(z) > h
and since x € B C Z;, we have h > T(x) so we are in the conditions of
Lemma 5.0.15. Let @ be the castle with base B, i.e. Q = Y Xt(B)

We have Q D Z; in measure theoretical sense, this follows because if by
contradiction there exists U; C Z;, with p(Uy) > 0 and U; N Q = (), then
by Lemma 6.1.2 we could extract a section By C U; with i(B1) > 0 and
XOH(B) would be a self-disjoint flow box. But since Q = U Xt(B) and

tURX "(B)NU; = 0 we contradict the maximality of B. So by (6.3) we get the
€

inequality: )
u(Q) < 6% (6.4)

Define the subcastle ) C Q by excluding the towers of Q with height bigger
than 3h and we (like in [3] Lemma 4.2) obtain:

Lemma 6.2.1 1(Q — Q) < 362.
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Proof: Let B, ={x € B:h(z) =i}, T; = % ]Xt(B,-) and Q = 'ghT,-. Take
te[0, >
i,7 € R with i« > 2h and j € [h,i — h]. We have, by definition of tower,

that U X9(B;) is self-disjoint, furthermore is disjoint from U X*(B), by
J€lhyi—h] te[0,h]

choice of 7 and j.

[U ]Xj(Bi) C Zj in measure theoretical sense, otherwise since the set
jelhyi—h

U  X’(B) is disjoint from U X*(B) we extend B with more elements
j€[hyi—h] te[0,h]

and obtain p( [hU' h]X-j(Bi) NZy) # 0.
Jj€lh,i—
Each T; for i > 2h decomposes into three floors T}, T? and T} where:

T! C U X*%B) with length h;
t€[0,h]

T?C U XYB) with length > i — 2h;

b telh,i—h[

T3 C U X'YB) with length h.

YT teli—h,i]

So if i > 3h, then the length of T? is bigger or equal than h, hence by (6.3) we
have:
p( U Ty) < 3p( U T7) < 3u(Z5) < 30°.

i>3h
O

6.3 The zero divergence vector field YV eC'-
close to X

Now we make use of the realizability of vector fields and the properties of
special flows to construct a conservative vector field Y inside the subcastle )
by gluing a finite number of local perturbations supported on self-disjoint flow
boxes.

Next we follow Lemma 4.14 of [4].

Lemma 6.3.1 Given v > 0, there exists Y, e-Cl-close to X, a castle U for
Yt and a subcastle K for Y such that:

(a) The castle U is open;

(b) p(U = Q) <7 and p(Q —U) < 2v;

(¢) (U = K) < r(1+7);

(d) YH(U) = X' (U) and Y' = X outside the castle U;
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= h(q)/2

e e SuppdHD

= h(q)/2

B

Figure 6.2: The subcastle Q support all perturbations.

(e) If q is in the base of K and h(q) is the height of the tower of K that
contains q, then
I ()] < e™@ .

Proof: The castle () is a measurable set and since u is Borel regular, there
exists a compact J C @ with:

~

wQ —J) < yu(Q). (6.5)

We choose this compact such that it is a X?-castle with the same structure as
Q (i.e. preserving the same dynamics of bases and towers as the castle @ do).
Now we choose an open castle V' such that J C V with:

WV —J) <vu(Q), (6.6)

and also with the same structure of ) and J.

For every point p; in JNB, we have p; € B and so it follows that h(p;) > h.
Since (JNB) C Z;, we have T'(p;) < h, therefore T'(p;) < h < h(p;). So we are
able to construct a conservative vector field which realizes a linear flow who
has the property of having small norm, i.e., for all t; > T'(p1), and for ~ fixed,
there exists a radius 71 (p1, t1) (take a smaller one if we leave the open castle V)
such that for almost (related with x = ¢%) all point in U; = B(py,r1) € N,,,
more precisely for all point ¢ € K; C Uy, we have a vector field Y; supported
in a small tubular neighborhood of the orbit segment X**l(p;) such that:
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1P (g)]] < €™ + 7.

Now we continue by choosing p.s and by Vitali’s arguments we fill up the
base of J, denoted by Bj, by finite pairwise self-disjoint balls U/s satisfying
By —U;) < yil(By) so,

w(J =U) <yp(]). (6.7)

U is a X'-castle with section the union of the Us. So we get a vector field
Y; supported in a small tubular neighborhood of the orbit segment X0l (p;),
e-C'-close to X and such that for all ¢ € K; C U;:

1P (@)]] < ™ + .

Now we define Y =Y; inside the flow box te[LOJt ]Xt(Ui) and Y = X outside.
Since these flow boxes are pairwise disjoint, the vector field is well defined
and it is e-C'-close to X. Note that V is also a castle for Y, U is also a
Y'-subcastle of the Y'-castle V' and have for base the union of all U/s. We
take K the Y'-subcastle with section (base of the castle) the union of K/s. By
construction of U we get (a), (d) and (e).

Now we prove (b). By (6.7) and since by (ii) of Definition 3.2.1 n(K;) >
(1—r)a(U;), we obtain u(U — K) < ku(U). By (6.6) and recalling that V D U
and J C K we get:

p(U = Q) < u(V —J) < yu(@) < 7.
To prove that u(Q — U) < 2y we use (6.5) and (6.7) so:
wQ=U) < p(@Q— )+ u(J = U) < 29u(Q) < 27.
Finally for (c) since (b) implies:
n(U) < p(@Q) +p(U = Q) <147,

we use the inequality (U — K) < ku(U) and get:
w(U — K) < k(14 7).

O

6.4 Computing LE(Y)

By Lemma 2.6.1 we have:

) 1 n
LE(Y) = it [ ~1ogPp(p)duto).
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The next inequality is valid for any positive integer in particular for ¢t = hé !
(we may assume that this is an integer),

LEW) < [ Jlogl B ldu(p),

M

By what we did above for orbit segments inside the castle K and starting in
the base, we guarantee small upper Lyapunov exponent, so we define the set
of points whose orbit stay for a long time in K by,

G={peM:Y*@p) e KVselt]}.
Its complementary set is:
G={peM:3s€[0,t] : pe Y *(K)}.
Lemma 6.4.1 For p € G we have | PL(p)|| < e!1+6109€)3,

Proof: Let p € G. We split the orbit segment X% (p) by return-times at
By (the section of the castle K), say t = b+ r, + ... + 7o + 11 + a where
all X2(p), X1t (p), Xr2tmta(p), . XZi=mita(p) are in the base Bg. By re-
striction of height a,b,r; €]0,3h] except when p € By, where a = 0, and
X*(p) € Bk, where b =0 (see Figure 6.3).

Note that,

b nrita
IPL(p)|| = PS>t )| <
™ rita T =l ta
< | PR (XTEre ()| x (| P (X T ()| x
x| P (X ()| % || PE(p)]|-

But these maps are based at points in B so we recall Lemma 5.0.15 and get:

||P5t/(p)|| < C3h62?:1r7;503h < e(b+2?:1r7;+a)éc6h <
< 6t506h < 6t5066t < et(1+610gC)6'

O
We conclude that points in G are controllable, i.e. the norm || PL(p)|| is
small, but we still do not know what happens outside G, however next lemma

says that G has small measure.

Lemma 6.4.2 Let v < 62k~ then u(G¢) < 96.
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Supp(H)

Figure 6.3: The global procedure at G.

Proof: Assuming the following inequality we prove the lemma:

A

Q- G) < 86. (6.8)

We have: X X
w(G) < p(Q°) + pu(Q — G).

By definition of @, see (6.4), we have u(Q°) < 6% and together with (6.8) we
get:
(G < 8% + 85 < 94.

So let us prove inequality (6.8):
We have:

Q-G=Qn{peM:3se€0,t]:pec Y *(K)}
Since:

KC(U-K)U@Q-U)U(Q-Q)U(M-Q)

we have Q — G contained in the union of the following sets:

A={pe M :3s€[0,t] :peY (U - K)};
B={peM:3s€[0,t]:peY5(Q —-U)};
C={peM:3sef0,4]:peY(Q-Q)
D={pe M:3s€ 0,1 :pe¥Y*(Q°)}
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Now we prove that each one of the four sets above have small measure:

A.

We have pu(A) < tji(By_k) and since U — K is a Y'-castle with towers
larger than h:

h(z)
wU-K) = [ [ asdate)z [ hdpta) = lBo-)h
By-k Y0 Bu—_k
We recall that x = 6%, v = §°h™! and t = hd ! and by Lemma 6.3.1 (c) we

obtain:

1 2
h(s 52(1 + i]

(U K) < (1+7) ) < 29.

b‘lw
b‘lw

n(A) <

B:
By Lemma 6.3.1 (b) we get:

w(Q—U) <2y <20°ht =262 161 =267,
so we have tu(Q — U) < 24, it follows that:
w(B) < tu(Q —U) < 20.

C:
We have (1(C) < ti(Bg_g)-
For the X'-castle Q (@ the towers are large by definition, so the area of

its bases are small, we denote the bases of this castle by BX o S

(B} g) < 5@ Q) (6.9)

By Lemma 6.3.1 (b), u(U — Q) < 7 so we use this inequality, Lemma 6.2.1,
(6.9) and estimate:

_ w@Q — Q) 6
A <l - 77 < — .
u(BQ_Q) < = +v < A + 7y
Therefore: 52 2 5
< —_—) = .
p(C) < (5 +7) = hi (5 + ) =20
D:

We have YS(QC) —Q°C Y*(U — Q). By definition of Q we get u(@c) < §?
and by Lemma 6.3.1 (b) we have pu(U — Q) < 7 so,

D) < Q)+ (t—s)u(Y*(Q) — Q) < w(Q°) + (t — s)u(Y* (U — Q)) =
— 1(0°) + (t— $)u(U — Q) < 8% +ty = 82 + 6 < 24.
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Finally we estimate u(Q — G):

A

w(@Q —G) < u(A)+ u(B) + u(C) + u(D) <20 + 20 + 20 + 20 = 80
and (6.8) is proved. O
Proof of Theorem 1:

Now we finish the proof of Proposition 2.6.2, therefore Theorem 1:

LE(Y)

. o 1
it [ iogl PEp)dutr) < | 108l P p)dutr) <
n21l far n M 3

1 1
< A ~log|| P (p) [ du(p) + L ~logl|[ Py (p) [l dpa(p) <
< (1 + 6logC)Su(G) + logCu(GS).

Now we use Lemma 6.4.2 and conclude that,
LE(Y) < (1 + 6logC)d + 9logC = (1 + 15logC')d.

Afnd the Theorem 1 is proved by substitution of § by W‘logc) along the
proof.
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Chapter 7

Dichotomy for generic
conservative linear differential
systems in OV topology

7.1 Basic definitions

Let X be a compact Hausdorff space, u a Borel regular measure and ¢! : X —
X a one-parameter family of continuous maps for which p is ¢'-invariant.

A cocycle based on ¢! is defined by a flow ®'(p) differentiable on the
time-parameter ¢ € R and continuous on space-parameter p € X, acting on
GL(2,R). Together they form the linear skew-product flow:

Ut X xR?2 — X x R?
(p.v)  — (¢'(p), '(p) - v)
The flow ®! verifies the cocycle identity:

D (p) = *(¢'(p)) 0 (p),

forallt,s € R and p € X.
If we define a map A : X — GL(2,R) in a point p € X by:

d

Alp) = %q)s(p)ls:o

and along the orbit ¢f(p) by:

d

= 0% (p)[s= 0 [ (p)] 7, (7.1)

A (p))

then ®(p) will be the solution of the linear variational equation:

d

u(8)e= = A(#'(p)) - ult), (7.2)
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and ®'(p) is also called the fundamental matrix. Given a cocycle ®' we can
induce the associated A by using (7.1) and given A we can recover the cocycle
by solving the linear variational equation (7.2), from which we get ®',. We
are interested in two kind of systems, the ones with det®’ = 1 which we call
area-preserving or traceless, denoted by GL(2,R,Tr = 0), and the modified
area-preserving, denoted by GL(2,R, '), by establishing a link to the flow
!, To define this setting we need to consider a continuous non-negative sub-
exponential function a : X — R which is positive outside Fiz(¢') and we say
that A is modified area-preserving if:

det®’, (p) = a(i(f();)) for all p ¢ Fiz(¢") and t € R,

det®’,(p) = 1 for all p € Fiz(").

By Liouville formula we get: eJo TrA(* (P))ds — = det®’(p), so,

S TeAG ))as _ D)

a(et(p))

7.2 Topology and conservative perturbations

Consider the set of linear differential systems A which are continuous and
denote it by C°(X,GL(2,R)). We endow C°(X,GL(2,R)) with the uniform
convergence topology defined by ||A — Bl = mgchA(p) — B(p)]|-

)

We also define a L*>-topology, this time on the set of measurable and p-a.e.
bounded maps L (X, GL(2,R)), such that ||A — Bl|« = esssup||A(p) — B(p)||.
Therefore we may speak about conservative C°(or L)-perturbations of sys-
tems A € C°(X,GL(2,R)) (or A € L*(X,GL(2,R))) along the orbit ©'(p) as
A+H where H € C°(X,GL(2,R)) (or H € L>(X,GL(2,R))) and TrH (¢*(p)) =
0. This follows by direct application of Liouville formula, because,

oo TrA(e* (D) +TrH (o (P)ds _ [y TeA(" (p))d = det®’(p).

Given a conservative perturbation of A, say A+ H, we denote by ®%_ ,(p) the
solution of the related linear variational equation (7.2), i.e., of

0(t) = [A(t) + H(t)] - v(t).

7.3 Oseledets’s Theorem and the entropy func-
tion

The Oseledets’s Theorem, see [14], has also an analogous version for linear
differential systems, (see [8] for a simple proof). Moreover, for our particular
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2-dimensional conservative linear differential systems we have the following
version;

Theorem 7.3.1 Let ®' be as above. For p-a.e. p € X there exists the upper
Lyapunov exponent A\t (p) defined by the limit . lz'in %log||<1>t(p)|\ that is a non-

negative measurable function of p. For u-a.e. point p € OF there is a splitting
of R? = Ny @ N, which varies measurably with p such that:

Ifa # v € N}, then ) lz’in 2log|| P (p) - v = AT (p);
[fa #v € N, then . lz'in Tlog||®*(p) - v|| = =AT(p);

I 0 #v¢ NU NS, then
lim Hog|®'(p) ]| = X (p) and. lim_Hog|®'(p) - o] = ~X* (1),

Let OF := O7(A) denote the set of points with non-zero Lyapunov expo-
nents and let O°(A) denote the set of points with both Lyapunov exponents
Zero.

Note that the symmetry of the Lyapunov exponents follows from (2.1).

Consequently, for the area-preserving case we have A\T(p) = —A"(p). For
the modified area-preserving case we have the equality, det®'(p) = a(:(fg)))

and since a(-) is sub-exponential and positive along non-fixed orbits we get
At(p) = =X (p). For fixed points the former equality follows directly from
det®?, = 1.

We also define the entropy function of the system A, this time over any
measurable, ¢'-invariant set I' C X by:

LE(T): GL(2,R) — [0, 400)
A — [r AT (p)du(p)

using the subadditivity of the norm we obtain:

1 .
LE(AT) = inf= [ log]|8"(5) ldu(p)
nz1ln Jr

Since LE(-,T") is the infimum of continuous functions it is upper semicontinu-
OlIS.

7.4 Hyperbolic structures

Let A be a linear differential system over a flow ¢!, the set A C X is said
to be uniformly hyperbolic set if there exists uniform constants C' > 0 and
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o € (0,1) such that for u-a.e. p € A there is a ®(p)-invariant decomposition
R? = Ny @®N, Varymg measurably with p and satisfying for ¢ > 0 the following
equahtles H<I> ‘(P)nall < Co® and || (p)|n; || < Co'. If A = X, then we say
that A is uniformly hyperbolic.

A pl-invariant set A,, € X has m-dominated splitting for A if for p-a.e.
p € A, there is a @' (p)-invariant decomposition R? = Ny @ N varying mea-

surably with p and satisfying, % <3 L for any ¢ = X*(p).
Another definition equivalent to this one is considering contants C' > 0 and

€ (0,1) such that % < Co'. In this case we say that the ¢'-invariant

set has (C, o)-dominated sphttmg.

Let A(p,m) := % We define the following sets:
A (A) = {p € X : the orbit ¢’(p) has m-dominated splitting for ®};
Fm(A) =X - Am(A)7
I (A) =T (A) N O™ (A);
[ (A) ={pel,,(A):p g Per(¢")}
Apn(A) ={p € X : Alp,m) = 5}

Before moving on to the proof of Theorem 2 we would like to recall some
facts. First of all note that if ¢ € T',,(A), then for some point in the orbit of
q, say ©'(q) = p, we have A(p, m) > 1/2, and therefore p € A,,(A). Moreover
r, = tEJRgot(Am). The set A, is again of utmost importance because that

is where we will apply a perturbation to the original system, like we did for
vector fields.

7.5 Disregarding periodic points in O"(A)

Our main objective will be decay LE(B,T,,(A)) for a system B close to the
original system A. We say that a flow is aperiodic if the measure of periodic
points is zero, clearly ' : T'f (A) — I'f (A) is aperiodic. We will use Ambrose-
Kakutani theorem, see [1], which gives us a special representation of ¢’|rs (4).
Next we perturb inside I'f (A) to decrease LE(B,I: (A)). However we have
no information about I';,,(A) — I} (A). For our purposes, points in I';,,(A) with
zero Lyapunov exponents will not be a problem, whereas the set I';t (A)—T"% (A)
may cause some trouble. Lemma 7.5.1 says that u(T';(A) — ' (A)) is small
(depending on m), therefore we will obtain LE(B, T} (A) —T% (A)) also small.
We note that for a fixed m € N we have p € T} (A) — T'* (A) if p is periodic,
has positive Lyapunov exponent and belongs to I',,(A).

Lemma 7.5.1 Foranyd > 0, there existsm € N such that we have (I} (A)—
I'*(A)) <9.
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Proof: Let P be the measure of all periodic points in O7(A). If P = 0 then
there is nothing to prove, so consider P > 0. Define

Per(n,\) = {p € OF : ©'(p) = p for some t < n and A" (p) > A}

So u( UNPer(n,O)) = P therefore for all 6 > 0, there exists ng, Ay such that
ne
w(Per(ng, Ag)) > P — 0.
If p € Per(ng, \g), then p has m’ dominated splitting for some m/’, therefore

there exists a large m such that Per(ng, A\g) C U/, A; and we get:
I'H(A) —T%(A) C UNPer(n, 0) — U™, A; so:
ne

I (A) = T5,(A)) < p( U Per(n, 0) — UL, Ay) <
< u(nLGJNPer(n, 0) — Per(ng, \o)) =
= u(nLEJNPer(n, 0)) — p(Per(ng, o)) < 0.

7.6 Perturbations of linear differential systems

We begin by lowering ||®%_ ;(¢)| along a segment of the orbit, this is valid in
both settings GL(2,R, Tr = 0) and GL(2,R, ¢"). In order to achieve this goal
we carry out some perturbations which we explains in the next section.

7.6.1 Small rotations by time-1 perturbation

Lemma 7.6.1 Given a conservative system A and e > 0, there exists an angle
&, such that for all p € X (non-periodic or with period larger than 1), there
exists a system B such that:

(a) [A=B| <¢

(b) B is supported in ©'(p) fort € [0,1];

(¢) B is conservative and

(d) ®4(p) = @Y (p) o Re, where Re is a rotation of angle &.

Proof:
Let 0 <p < 1andg: R — R the bump-function defined by g(t) = 0 for
t<0,g(t)=tforten1—mn]and g(t) =1 for t > 1. Define:
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o (alt) bit)  (cos(eg(t)) —sin(gg(t)
¥lp) = <c<t> >> and Heg( = (m(ggu)) m(gg(t)))-

We know that u(t) = ®'(p) is a solution of the linear variational equa-
tion (7.2). Take ®*(p) - Rey(r) and compute the time derivative:

U
—~
~

(®'(p) - Regy) = (2'(9))Regir) + ' (p) Regry =
= A(¢'(0)®"(p) Regrr) + ©'(p) Regry =
= A" (p) P (p) Regry +
+ O (p) Regy Roco( [®' (p)] @' (p) Reg() =
= [A@' () + " (p) Regny R—eon) [®' (0)] '] - (D (p) Reger))-
Define B(¢'(p)) = A(¢'(p)) + H(¢'(p)) where:

H(¢'(p)) = H(&,t) = ' (p) Regey Regory[ @ (p)] .

)
We conclude that v(t) = ®*(p)Rey1) is solution of the linear variational equa-
tion:

%U(S)w:t = [A(¢"(p)) + H(&, )] - v(2) (7.3)

Since,
. ) 0 —1
Regiy - Boeoy = €9 (| ()
we easily derive

L) (b0d() Faelt)  —b(0)? — alt)?
H<€=t>—detq)t(p>( A2 +e(t)?  —b)d(t) — a(t)elt <>>'

Hence TrH (&,t) = 0 and the perturbation is conservative according to our
definition, and so (c) follows. Moreover since ¢(t) = 0 for ¢t ¢]0, 1], its support
is ¢'(p) for t € [0,1] and (b) is proved. Since ¢t € [0,1] and all the terms in
the definition of H(&,t) are uniformly bounded for all p € X, given any size
of perturbation allowed by ¢ > 0 we take £ sufficiently small to guarantee that
|H|| < € and obtain (a). Finally, for (d), we note that v(t) = ®%(p) - Regqr) is
solution of (7.3). So for t = 1 we obtain ®4(p) = ®!(p) - R¢ and the lemma is
proved.

O

Lemma 7.6.2 Given a conservative system A and e > 0, there exists an angle
&, such that for all p € X (non-periodic or with period larger than 1), there
exists a system B such that:

60



(a) [A=B| <¢

(b) B is supported in ©'(p) fort € [0,1];

(¢) B is conservative and

(d) ®L(p) = Re o DY (p), where Re is an elliptical rotation of angle €.

Proof: We use the same notation of Lemma 7.6.1. Define the one parameter
elliptical rotation by:

Regy = ©'(p) - Regtry - ' (#'(0) (7.4)

Now we consider Re, ) - ®(p) and take time derivatives:

(Regry - ' (p)) = (@'(p) - Regry - @' ("(p)) - @' (p)) = ('(p) - Reg)) =
= [A(¢'(p) + H(¥'(p))] - (qjt(p)Rggm) =
= [A(¢'(p) + H(£' ()] - (Regy - (),

and we reduce to the proof of Lemma 7.6.1. O

Remark 7.6.1 We will need Lemma 7.6.2 to perform some small rotations,
and we point out that this lemma gives us an elliptical rotation. So after
the change of coordinates the angle may decrease depending on how large the
norm of this change of coordinates is. However we can always find & < &
depending on | ®%(p)|| (fort € [0,1]) and conclude that the perturbation realizes

4 i (p) = Ry - P4(p)-

7.6.2 Large rotations by time-m perturbation

We recall Lemma 4.0.11 which give us a control of the norm of ®'(p). In the

case of GL(2,R, Tr=0) we take % = 1. Lemma 4.0.11 says that given

£>0,p€e X and d > 1, there exists £ > 1 such that if for all ¢t € [0, m],

u s —1 1@ (p)| s t a(p)
LNy Norpy) > € and d7F < m < d, then |®'(p)|| < E oGy for
all t € [0,m].

In order to perform rotations of large angles we could try, under some
particular conditions and like we did for vector fields, to concatenate smoothly
several time-1 small rotations until obtain the desired angle. Otherwise, which
is easier, we could induce a time-m perturbation to generate the rotations of a
given large angle, however this cannot be done in general, because again some
hyperbolicity in the dynamics obstruct the whole construction.

Under the conditions of Lemma 4.0.11 it is possible to rotate large angles by
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time-m keeping the norm of H(&,t) for t € [0, m] small. Since the explicit
perturbation is given by,

B(y*(p)) = i[@i‘*s () - Registty * Pu*(@°(0)]1io P (P) - Regis) - @4°(9° (D)),

Cdt
we expect that some control of ||®%| is needed, so Lemma 4.0.11 will play
again an important role.

Lemma 7.6.3 Given a conservative system A and €,d, & > 0, there exists
m € N, such that if the following conditions are satisfied for p € X non-
periodic or with period larger than m namely,

(1) £Z(Ng

' (p)

NS

' (p)

) > ¢ for allt € [0,m)]

||’1’t(p)|N5||
—1
(2)d— < ||<1>t_<p>|N§|| < d,

then there exists a system B such that for all « € [0, 27], we have:
(a) [A=B| <¢
(b) B is supported in ©'(p) fort € [0,m];
(¢) B is conservative and
(d) @5(p) = @4 (p) o Ra.

Proof:

For any m € N we consider n > 0 close to zero and g : R — R the bump-
function such that g(t) = 0fort < 0, g(t) =t for t € [n,m—n] and g(t) = 1 for
t > m. We use then the same procedure of Lemma 7.6.1 by defining Rgg4). Let
a € [0,27]. Take 6§ < <% and m = . There is no restriction while considering
m € N, by taking a smaller 8. Now fix the function g depending on this m.
Clearly we will obtain H such that (b), (c) and (d) are verified. We claim
that (a) is also true. By hypothesis we have (1) and (2), so by Lemma 4.0.11

we conclude that [|®'(p)|| < Ey/—2E— and since E = /2d.sin"'¢€ we get

a(pt(p))

0 < 555 Using the same notation of Lemma 7.6.1, the perturbation is defined,

for t € [0, m], by,

) (b)) + aelt) bt — at)?
HO = Gowap) ( A2+t —b(D)d(t) - a<t>c<t>> '

Let us see that ||H|| < e (consider the norm of the maximum):

IH 0, 8]l <
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09(t) M s
et ()] L, (DO + a(t)e(B)], =b(1)* — a(t)’,d()* + e(t)?} <

0g(t) Pt 2
< 2w

Now, by Lemma 4.0.11 we obtain:

09(t)
Hdeta (p)

Which concludes the proof. O

Q

0) ., 000 g alp)

170, 0)]| < a(¢t(p)) = “|detd(p)| " a(¢'(p))

2d.sin "¢

7.7 Lowering the norm - Local procedure

The next lemma is analogous to Lemma 4.0.12.

Lemma 7.7.1 Let A be a continuous conservative system and ¢ > 0. There
exists m € N such that, given any p € I'f (A), there exists H satisfying ||H|| < ¢
and @7, (Ny) = NJ

o™ (p)”

Proof: Let £ > 0 be given by Lemmas 7.6.1 and 7.6.2 in order to guarantee
time-1 e-perturbations. Let ¢ > 0 be given by Claim 4.0.10. Let E > 1 be
given by Lemma 4.0.11 depending on ¢ and d = 2¢*. Let m € N be given
by Lemma 7.6.3 and depending on E, hence depending on d and £. Consider
p € T* (A) and ®'(p) for t € [0,m].

Small angle: If for some ¢ € [0,m] we have Z(N ), NJi(,)) < & we use a
small rotation by a time-1 perturbation and, if £ + 1 < m we get H such that
Dy (Niy) = Nory- It +1>m we get H such that @ 5 (N3,)) =
N1, and in both cases |[H| < e. Consequently we obtain %, 5 (Ny) =
N o
Now(lgve consider the case when there exists r,t € R with 0 < r +¢ < m such
that A(¢*(p),r) > c. We use Claim 4.0.10 in order to obtain a vector v € Nt ()
such that Z(v, N2i,)) < & and Z(®"(¢"(p)) - v, Niuir() < & Now, since & is
small we make two small rotations at both extremes ©'(p) and ™" (p). The
choice of ¢ sufficient large guarantees disjoint perturbations. Therefore, our
first rotation @} 4 (¢'(p)) = 4 (¢'(p))Re, induced by the perturbation Hj,
allows us to send NV ot (p) Ito v - R, the dynamics of ®”, help us and send
this direction into ®"(¢'(p)) - v in time 7 (see Figure 1) and another rotation,
DY, (P H D)) = Re- L ("1 (p)), induced by the perturbation H,, maps
(' (p)) - (v-R) into NS, Now we concatenate smoothly the five matrix
transitions, say,

O (T () (T D) @2 (0 (0)) By, ((9)) B (),
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and we get (I)Z\Z—i-H(N;) = Nsm(p). Note that H(p) = Hl(p) + Hg(p) and
I|H;|| <e, fori=1,2.

Large angle: Finally, we have for all ¢t € [0, m], A(Nf;,,(p), N;t(p)) > ¢ and

since for all 7, t € R with 0 < 7 + ¢ < m we have A(¢'(p),r) < ¢. Sincep € A,
we also have A(p, m) > 1/2. Therefore, we conclude that,

A(p'(p),7) = A" (p),m — t — r)A(p,m)A(p, £) " > %

So for t = 0 and r € [0,m] we have (2¢*)~! < A(p,r) < ¢ and since d = 2¢?

we obtain,
L 1@yl
~ 27 () |y

for all » € [0,m]. The conditions of Lemma 4.0.11 are now satisfied and by
applying Lemma 7.6.3 we are able to use rotations by large angles and therefore
U,y (Ny) = Nium(, which proves the lemma. O

d < d,

In the next lemma we only give an outline of the proof and skip technical
arguments already explained in Lemma 5.0.15.

Lemma 7.7.2 Let A be a continuous conservative system, ¢ > 0, and § > 0.
There exists m € N and a measurable function T : Tt (A) — R such that
for p-a.e. q € T, and every t > T(q) there exist a traceless {H(v*(q))}ser,
varying smoothly with s and supported on the segment @ (p) such that:

(o) [H| <,
(b) 3logl| @y u(a)l < 0.

Proof: First, using Lemma 7.7.1, we choose a sufficiently large m in order
to send N} into N;m(p) under e-small C%-perturbation, for Osededets regular
points p € Ap,. So, for our perturbation A + H we obtain @7, ,;(p)(N,) =
N ;m(p)'

Given ¢ in the saturated set I}, (A) and using a qualitative recurrence result
(see [3], lemma 3.12) for all ¢ > T'(q) we have to fall into A,, approximately
in the middle of the journey, say ¢"(q) = p, for 7 ~ t/2. We take t >>
m. Now we perturb and we get @y, ;(q)(Ny) = NJi(,)- The contribution
of the exponential growth along the direction N¢ in the first half, will be

annihilated on the other half by an exponential decreasing bundle N o5 m(g)

implying || ®%,, 4(¢)|| < €. That is the reason why we mix the two directions.
O]
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7.8 Lowering the norm - Global procedure

For the global case we construct a special flow by using Ambrose-Kakutani
theorem over the aperiodic flow ' : I — T'* but first we use Lemma 7.5.1
to increase m € N if necessary and obtain:

u(Ty(A) = T7,(4)) <o (7.5)
Using the measurable function given by Lemma 7.7.2 we define
Zn =A{p eT,(A): T(p) < h}.

Of course that u(I': (A) — Z;) — 0 so holds we take h sufficiently large such

that: e
(5, (A) = Zy) < (T, (A)). (7.6)

Let us now increase h and use Oseledets’s Theorem, which is an asymptotic
result, to get for points p € O°(A) the inequality:

|®%|| < e for all t > h. (7.7)

Suppose that we have a ceiling function over a section B C Z, satisfying
h(z) > h. We denote by Q the Kakutani castle with base B. Excluding all
towers with height above 3h we define a subcastle which we denote by Q.

We claim that x(Q — Q) < 382u(T%,(A)), as in [3] Lemma 4.2. Now we
will decay the entropy function LE(-,I',,(A)) at A, by a small perturbation
B = A+ H of the system. We start with a L*-perturbation and the idea for
the continuous ones comes from noting that H(-) is measurable and therefore,
by Lusin’s theorem, we have that measurable functions are almost continuous
and since we are only interested on almost all points in the base the same
result will follow.

The next lemma give us a L perturbation.

Lemma 7.8.1 Let A be a conservative system and €,0 > 0. Then, there exists
m € N and a traceless system H € L>®(X,GL(2,R)) such that:

(a) [H]loo <€
() [H(p)|| = 0 for any p & I'm(A);
(¢) LE(A+ H,T',,,(A)) < 6.
Proof: Suppose that u(T',,(A)) > 0, otherwise, there is nothing to prove.

The equality:

neNN

1 .
LE(A-+ H.T(4) = int- [ PR LRI
I'm
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will allow us to prove that LE(A+ H,T',,(A)) is small by proving that

1
2 [ gl (o)
Tm(A)

is small for a large fixed t = hd~!.
Note that those points that stay for a long time in () will necessarily have
low contribution for LE(A + H,T',,(A)). So we define

G={peTl;,(4):¢(p) €Q,Vs €[0,t}

and we claim that:

W% (A) - G) < 156 (7.8)

which is a consequence of Lemma 6.4.2. Note that since ¢ is large and the castle
() has height bounded towers and large measure, the orbit leaves () often, but
by (7.8), it is highly likely to enter @) again. So we split the orbit segment
©l04(p) for p € G by return-times to B, say t = b+ 1, + ... + 10 + 11 + @
where all ©%(p), "+ (p), "2 T1H9(p), ..., 2i=1"4(p) are in the base B, and
a,b,r; € [0,3h[. Given g € B the height of its tower h(q) verifies h(q) > h,
but B C Zj, so h(q) > h > T(q), therefore Lemma 7.7.2 says that for every
t > T'(q) there exists a traceless { H(©*(q)) }ser, varying smoothly with support
on the segment ¢>™(p) such that:

(a) [[H| < € and

(b) Hog|['y, 4 (a)]] < 6.

Note that

b mrida
19 () = 9% )] <
< @by, (@ T D] () - D ()] - (1% ()]

Take C' = sup||®4 4 (p)||. By (b) and the fact that the towers are smaller
peEM
than 3h we conclude that:

||‘I)f4+H(p)|| < C3h'62?:1 rié.c?;h < e(b—l—Z?:l mé—l—a)écrfih < 6t5.06h

and we get 1log||®’,, , (p)|| < 6(1 + 6logC'). Therefore, since

[n(A) DT7,(4) DT7,(4) O G,
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we obtain:

1
LE(A+ H,Tn(4) = / logl|, y(p)ldia(p) +
Lo (A)-THh(4)
1
v F1og][ () [du(p) +
I (A)-T5, (A)
1
b [ log@)lduts) +
s (A)-G
1
+ [ Fodl®p)duto)

Now we use (7.7), (7.5), (7.8) and the fact that Tlog||®’,, , (p)|| < 6(1 + 6logC)
in order to get:

LE(A+ H,T,,(A)) < 8+ dlogC + 156logC + (1 + 6logC)é.

Substituting d by W‘log_c) along the proof we cause a decay on LE(-,I',,,(A))

by a e-small perturbation of the original system.

O
In the next lemma we will construct a C° perturbation.

Lemma 7.8.2 Given a continuous conservative system A and ¢, > 0 there
exists m € N and a continuous traceless system Hgy such that B = A+ H,
verifies:

(a) [|[A— Bl <€
(b) A(p) = B(p) for any p ¢ I'p(A);
(¢) LE(B,Tm(A)) < 0.

Proof: By Lemma 7.8.1 we obtain m € N and a traceless H € L>(X,GL(2,R))
such that for t = hd~! we have:

LE(A+ HTn(A) < [ Jloglty(0)ldun(e) < 6

m(A)

We now use Lusin’s theorem which states that for any measurable function,
for instance H, there is H, € C°(X, GL(2,R)), such that:

(a) Hi(p) = H(p) for any p ¢ I',,(A);
() | Hillso < €

(c) w(E) = pu({p € M : Hi(p) # H(p)}) < 6t
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Since for points p € E we do not necessarily have TrH;(p) = 0 we change,
say the entry 1 — 1 of the matrix, obtaining a new matrix Hy this time with
TrHo(p) = 0. We define the C° perturbation B = A + H, which verifies
TrA = TrB.

Now we define the sets

L={pe X : Hyp)=H(p)} and

Gr={pe X :¢"(p) € T(A)NL,Vs €[0,1]}.
Clearly G C T',,(A) and we have:

p(Tm(A) = GL) < tu(E) < 6. (7.9)

Therefore we conclude that,

. 1
LE(B.Tm(A)) = inf / Llogl[ @ (p)lldu(p) <
T (A) T

neN

1
< [ Joglem)ldutr) -
I'm(A)

1 1
_ / “log|| @, (p) | du(p) + / “log|[ @t (p) [ du(p) =
(A)-Gp t o t

1 1
_ / “log]| @Y (p) | dyi(p) + / “log]| @y, 1 (p) |l dps(p)-
L (A)—Gp b ¢

Gr,

Let C = ma})z<||(1>}3(p)|| and since G, C I',,,(A) we get:
pe

LE(B,T(A)) < uTn(4) = GulloC+ | {1og|®)y(0)]dutr).

I'm(A)
Now by (7.9) and Lemma 7.8.1 we obtain:

LE(B,T,,(A)) < dlogC + 6.

We then reconstruct the proof replacing § by m.

O

7.9 End of the proof of Theorem 2

Denote by I'o(A) the set QNFm(A). The following lemma will be useful to

prove Theorem 2.
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Lemma 7.9.1 Given a continuous conservative system A and e¢,0 > 0, there
erists B, e-close to A such that:

LE(B, X) < LE(A, X) — /F PRACRLIORY

Proof: By Lemma 7.8.2 there exists m € N and a continuous conservative
system B such that:

(a) [A = Blloo < ¢

(b) A(p) = B(p) for any p ¢ I'n(A);

(¢c) LE(B,T,,(A)) <.

So, we have:

LE(B,X) = LE(B,T,(A))+ LE(B,X —T,,(A)) =
— LE(B,T,(A)) + LE(A, X — Tp(A)) <
< 5§+ LE(A, X —To(A )): + LE(A,X) — LE(A,To(A)).

O

Theorem 7.9.2 Given A in the set of continuous conservative systems, we
have that if A is a continuity point of the entropy function LE(-), then for
pu-a.e. p € X the following dichotomy holds:

(a) Either the Oseledets splitting is dominated

(b) or Lyapunov exponents are zero.

Proof: Take A a continuous linear differential system (area-preserving or
modified area-preserving). Suppose that A is a continuity point for LE(-).
Suppose (X — UNAm(A)) > 0, otherwise the statement is proved.

me

So p(X N QN(I’m(A))) = u( QNI’m(A)) > 0, and therefore, u(I'w(A)) > 0.

Consequently we must have that LE(A, ' (A)) = 0, otherwise by Lemma 7.9.1
we break the continuity and get a contradiction. So, for any p € O(A) we have
zero Lyapunov exponents or if it has positive ones, then p ¢ I'o.(A) and there-
fore it has m-dominated splitting for some m € N.

|
The conclusions of Theorem 7.9.2 are sufficient to guarantee that A is a
continuity point of the entropy function. By hypothesis, X = D U O(mod 0),

where D are points with dominated splitting and O are points with null ex-
ponents. Since LE(A,O) = 0 and LE is upper semicontinuous we conclude
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that LE(B,O) is close to LE(A, O), for B close to A. Moreover, D has also
dominated splitting for B with rates of dominated splitting close to the ones
belonging to A.

Proof of Theorem 2:
Theorem 2 now follows by using the fact that the set of points of continuity
of upper semicontinuous functions is a residual set, see [9].

7.10 Some consequences of Theorem 2 - Er-
godic flows

Corollary 7.10.1 If s ergodic, then there is a residual subset R of area-
preserving systems such that for every A € R we have ®Yy uniformly hyperbolic
or Lyapunov exponents are zero for p-a.e. point p € X.

Proof: Take the residual R given by Theorem 2 and A € R. If u(A,,) = 0 for
all m, then the theorem follows, otherwise if p(A,,) > 0 for some m, we have
a full measure set A,, with m-dominated splitting, because A,, is (’-invariant
and g is ergodic.
Conservativeness yields det®’(p) = 1 for all ¢ € R and p € M. Given a
p-generic point p € M we have:
sin(Z(Ny', Np)) = [[9"(p) w119 (0) s | sin( £ (N ), Ngegy))- - (7.10)

P>
Claim 2.5.1 and (7.10) implies that:

12" () 1|12 () '

> sin” “a.

N;
Again by dominated splitting, there exists constants C' > 0 and o € (0, 1) such

that 1) s
P)Ins
P> 7 >ginla||® 7 (p)
50)

| —_—
||q)_t(P)|N;,L|| <V Csin~ta(at?).

Now it suffices to take the constants of uniform hyperbolicity C’' = VCsin™!a
and ¢’ = /o and to proceed analogously for N* in order to prove the corollary.
|

2

Co

u
NP

and consequently

Corollary 7.10.2 If u is ergodic and Fiz(p') = (0, then there is a residual
subset R of modified area-preserving systems such that for every A € R either
@', is uniformly hyperbolic or LE(A) = 0.
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Proof: Since a(-) is a non-null continuous function on a compact set X, the
quotient % has an upperbound K and a lowerbound K~!'. Conservative-
ness, dominated splitting and the nonexistence of fixed points for the flow !
guarantees that:

Co' 2 70 > Sin_laK2||(I>_t(p)|N;||2,

and we proceed as in Corollary 7.10.1. O
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Chapter 8

Dichotomy for vector fields with
singularities

8.1 Global dichotomy under additional hypoth-
esis
Consider the following hypothesis again in the 3-dimensional context:

Hypothesis 8.1.1 Let %i(M) and A, be a X'-invariant set with m-dominated

splitting for the linear Poincaré flow. Then u(A,,) =0 or X is Anosov.

Under this hypothesis we prove an analogous to Proposition 2.6.2. The
measure of singularities may be neglected by using Lemma 7.5.1, so we do not
need to make any perturbations on singularities. Moreover, when we estimate
the C'' norm of the perturbation P, defined in (3.5), the first column of the
matrix was given by,

(0, =64(2)G(Vy? + 22)c 2, £5(2) G (Vy? + 22)cMy).

Note that near singularities ¢! is very large, however since the radius depends

on the point p we can decrease the radius r(p) and control the C! norm. So
the perturbations we developed work equally on this setting.

Theorem 8.1.2 Under Hypothesis 8.1.1 there exists a residual R C %}L(M)
such that if X € R then we have:

(a) X is Anosov or

(b) Zero Lyapunov exponents for p-a.e. p € M.
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8.2 Proof of Theorem 3

8.2.1 Adapting the proof of Theorem 1

If in Theorem 3.1.1 we take €2 with C* boundary and g, f also C*°, the diffeo-
morphism ¢, provided by Dacorogna-Moser, is also C°°. So our conservative
flowbox theorem guarantee a conservative change of coordinates ¥ € (.
Note that the perturbation P, defined in (3.5), is also C*°, moreover we know
by [16] (for other proof see Theorem 3.1 of [2]) that X°(M) is C'-dense in
%}L(M ). The following Proposition is similar to Proposition 2.6.2. The main
difference is where the computation of the entropy function is done.

Proposition 8.2.1 Let X € X{°(M) and ¢,6 > 0. There exists m € N and a
zero divergence C™ vector field Y, e-Ct-close to X that equals X outside the
open set ', (X) and such that LE(Y, T, (X)) <.

Proof: We note that for a fixed m € N we have p € T} (X) — T (X) if pis
periodic, has positive Lyapunov exponent and belongs to I',,(X). We consider
again the following simple claim proved in Lemma 7.5.1.

Claim 8.2.1 For any 0 > 0, there exists m € N such that we have p(T'} (X)) —
' (X)) <é.

To find m € N we first proceed like in Lemma 4.0.12, then we take m € N
sufficiently large to satisfy also Claim 8.2.1. Now we consider the measurable
function T': T}, (X) — R similar to the function of Lemma 5.0.15. We define
Zn ={p € I (X) : T(p) < h}. Of course that u(I'f (X) — Zp) = 0 so
we take h sufficiently large to satisfy u(T'%,(X) — Zy) < 8%u(T';,(X)). Now we

increase h, if necessary, and use Oseledets’s Theorem, which is an asymptotic
result, to get for p € O°(X) the inequality:

| PL(p)| < e for all t > h. (8.1)

Clearly X' : I'f (X) — I'* (X) is an aperiodic flow. Now we follow the con-
struction of section 6.3 and finally we compute LE(Y,I'f (X)). We define
again the set of “good” points, G := {p € I'} (X)) : Y*(p) € K,Vs € [0,t]}. By
Lemma 6.4.2 u(UUT? (X) —G) < 125. Define A = A(p,t,Y) := Llog|| Pt (p)||.

t

LEW.Ia(X) < [ o, Adp) <

IN

Adp(p) + /

Adp(p) + / Adp(p).
Uurt (x)-G¢ G

/F,,,(X)—(UUF?,’,,(X))
By (8.1) and since Y = X outside U we obtain,

Alp,t,Y)du(p) < / A(p,t, X)dpu(p) < 6.

/rm(X)—(Uur,;(X)) [ (X) =T (X)
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Since C' := max{||Px(p)| : p € M} we use Claim 8.2.1 and Lemma 6.4.2 to
conclude that, fUUF+ (X)-G Adp(p) < 136. Finally at G our construction allow

us to obtain fp Adp(p) < ¢ and the proposition is proved. O

8.2.2 End of the proof of Theorem 3

Let X € X! (M) and € > 0 be given. We will prove that exists Y € X, (M),
é-C'-close to X satisfying the conclusions of Theorem 3. For ¢ = /2, there
exists X € X°(M) e-C'-close to X. Tt suffices to prove Theorem 3 for the
vector field X and € > 0.

Proof: (of Theorem 3)

Let X € X3°(M) and € > 0. We will find ¥ e-C'-close to X and a partition
M = D U O into Y'-invariant sets such that:

(a) For p € O we have zero Lyapunov exponents.

(b) D is a countable increasing union of compact invariant sets A,,, admitting
a m,-dominated splitting for the Linear Poincaré flow. We define the sequence
{Xntnzo € X57(M), m,, € N and eventually ¢, > 0 for n > 0.

Take Xo = X, 6 > 1 (near 1) and ¢, = 0.

If me(X) AT (X)dp = 0 for some m € N, then we are finished by taking Y = X,
D = A, (X) and O a full measure subset of I';,,(X). Otherwise for some
m = mg we have meo(X) AT(X)dp > 0. Let ¢g € (0,¢/2) be sufficiently small
such that:
/ N (Z)dp < 0 / M (Xo)d,
Fmo (XO)

Fmo (XO)

for all Z 2¢q-C'-close of Xy and Z = X outside I',,,(Xp). ¢o always exists be-
cause LE(-,T',,(Xo)) is upper semicontinuous and I',,,(Xp) is simultaneously
invariant for X! and Z°.

Knowing Xy, mg and ¢y we are going to define X; € X;°(M), m; € N and
eventually ¢; > 0.

By Proposition 8.2.1, there exists m; € N and X; € X;°(M) a perturbation of
Xo €9-C'-close, with X; = X, outside T',,,, (X) and such that:

/ )\+(X1) < 0.
T, (Xo)

Suppose that m; > mg. Note that T',,,(Xy) C I (Xy) C Ty (Xo). If
mel(Xl) AT (X;) = 0, then we are finished by taking Y = X3, D = A, (X3)

and O a full measure subset of I';,,, (X). Otherwise if mel(Xl) AT(X7) > 0 we
choose €1 € (0,¢€9/2) such that B(X7,2¢) C B(Xy, ) and also

/ AT (Z)du < 9/ AT (Xy)du,
le(Xl)

Ty (X1)
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for all Z 2¢;-C*-close of X; and Z = X; outside T',,,, (X1).

Recursively knowing X,,_1, m,_1 and ¢, 1 € (0,€27") we are going to define
X, € X2(M), m,, € N and eventually ¢, > 0.

Again by Proposition 8.2.1, there exists m, € N and X,, € X{°(M) a pertur-
bation of X,,_; ¢,_1-C'-close, with X,, = X,,_; outside I',,,, ,(X,_1) and such

that:
/ AT(X,) < 6,
F’mn (Xn_l)

Suppose that m, > m,_1. Now I'y, (X,) C I\, (X,) C Th,_, (Xpoq). If
Joo (xy AT (Xn) = 0, then we are finished by taking Y = X,,, D = Ay, (V)
and O a full measure subset of I, (Y'). Otherwise if fl“mn (X0) AT(X,) > 0 we
choose ¢, € (0,€,-1/2) so that B(X,,2¢,) C B(X,_1,€¢,-1) and also

/ N (Z)dp < 0 / M (X)dp,

Ty (Xn) Lo (Xn)

for all Z 2e,-C'-close of X,, and Z = X,, outside T',,, (X,,).

We continue this procedure and if for some n € N we obtain fl“m (X M(X,) =

0 we are over, otherwise the sequence {X,},>o converges C' to some Y €

X, (M), moreover since €, < €/2" we have Y e-C'-close to X.

Let D = UNAmn(Xn). Since A, (Xn) 2 Ap, (Xp-1) and Y = X, at
ne

A, (X)), Y has m,-dominated splitting at A,,, (X,).
Let ' := | UNAmn(Xn)]C = ﬂNan (X,), clearly I' C I',,, (X,,). To finish the
ne ne

proof of Theorem 3 we must see if [ AT(Y)du = 0.
Note that Y € B(X,,2¢,) for all n € N. So we have

/)\JF(Y)du < / M(Y)dp < 9/ A(X,)du = 66, — 0.
r Ty (Xn)

We conclude that we have zero Lyapunov exponents in a full measure subset
O of I' and Theorem 3 is proved. O

Finally we consider the reason why Theorem 3 is stated for dense subset
instead of a residual subset? In [4], we find a strategy developed to obtain a
residual subset, unfortunately this are not applied to our case, let us see why.
They start with a C' system which is a continuity point X of the function
LE(-, X). Then they define the “jump” of the function at X by LE(X, T (X))
where ' (X)) := mQNI’m(X ). Of course that being a continuity point implies

that the “jump” is zero. So p(T's(X)) = 0 or AT (p) = 0 for p-a.e. point
p € I'o(X) and the statements of Theorem 3 are verified. Note that to estimate
a lower bound for the “jump” we perturb the original vector field X like we did
to prove Theorem 3. But our conservative flowbox theorem may not be applied
to X, unless X is of class C?, so this argument only works for X € X2(M).
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However this set equipped with C! topology is not a Baire space, so in general
residual sets are meaningless.

76



Bibliography

1]

2]

3]

[4]

8]

[9]
[10]

[11]

Ambrose, W., Kakutani, S. Structure and continuity of measure pre-
serving transformations . Duke Math. J., 9:25-42, 1942

Arbieto,A., Matheus,C. A Pasting Lemma I: the case of vector fields,
Preprint IMPA 2003.

Bochi,J. Genericity of zero Lyapunov exponents. Ergod. Th. & Dynam.
Sys., 22:1667-1696, 2002

Bochi,J., Viana, M. The lyapunov exponents of generic volume pre-
serving and symplectic maps. to appear Ann. Math

Bochi,J., Viana, M. Lyapunov exponents: How often are dynamical sys-
tems hyperbolic? Advances in Dynamical Systems. Cambridge Univ.
Press, to appear

Dacorogna, B., Moser, J. On a partial differential equation involving
the Jacobian determinant. Ann. Inst. Henri Poincaré, vol. 7, nl, pp-1-
26, 1990

Doering, C.I. Persistently transitive vector fields on three-dimensional
manifolds. Proceedings on Dynamical Systems and Bifurcation Theory.
vol. 160, pp. 59-89. Pitman, 1987

Johnson, R., Palmer, K., Sell, G. Ergodic properties of linear dynamical
systems. STAM J. Math. Anal. 18, 1-33, 1987

Kuratowski, K. Topology, vol. 1. Academic Press, 1966

Mané, R. Oseledec’s theorem from generic viewpoint. Proceedings of
the international Congress of Mathematicians, Warszawa, vol. 2, pp.
1259-1276, 1983

Mané, R. The Lyapunov exponents of generic area preserving diffeo-
morphisms. International Conference on Dynamical Systems (Montev-
ideo, 1995), Pitman Res. Notes Math. Ser., 362, pp. 110-119, 1996

7



[12] Mané, R. Ergodic theory and differentiable dynamics. Springer Verlag,
1987

[13] Moser, J. On the volume elements on a manifold. Trans. Amer. Math.
Soc., 120, pp.286-294, 1965

[14] Oseledets, V.I. A multiplicative ergodic theorem: Lyapunov character-
istic numbers for dynamical systems. Trans. Moscow Math. Soc., 19,
pp. 197-231, 1968

[15] Robinson, C. Generic properties of conservative systems. Amer. J.
Math., 92, pp.562-603, 1970

[16] Zuppa, C. Regularisation C*° des champs vectoriels qui préservent
I’elément de volume. Bol. Soc. Bras. Mat., vol. 10, n 2, pp.51-56, 1979

Mario Bessa (bessa@impa.br)
IMPA, Estr. D. Castorina, 110
2460-320 Rio de Janeiro

Brazil

78



