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Abstract

In this work we show, on a manifold of any dimension, that arbitrarily
near any smooth diffeomorphism with a homoclinic tangency associated to a
sectionally dissipative fixed (or periodic) point (i.e. the product of any pair
of eigenvalues has norm less than 1), there exists a diffeomorphism exhibiting
infinitely many Hénon-like strange attractors. In the two-dimensional case
this has been proved in [2]. We also show a parameteric version of this result
is true.
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Introduction

The two-parameter Hénon family of transformations of the plane
ha,b(x7 y) = (1 - a:UQ + Y, bx)

was studied by Hénon [3] to show, via a numerical approach, how a simple
model of an invertible dynamical system suggests the presence of a non-
hyperbolic strange attractor. However, the possibility that the attractor
observed by Hénon was just a periodic orbit with very high period could
not be excluded. In a remarkable work Benedicks and Carleson ([1]) showed
that this is not the case and they exhibited a positive Lebesgue measure sub-
set of parameters (a,b) for which the map h,; has a nonhyperbolic strange
attractor.

An important application of Benedicks-Carleson’s methods ([1]) was
done by Mora and Viana in [5] in the setting of homoclinic bifurcation on
surfaces. More precisely, they showed that generic one-parameter families
of surfaces diffeomorphisms unfolding a homoclinic tangency always include
the presence, for a Lebesgue positive measure set of parameter values, of
Hénon-like strange attractors or repellers.

The result in [5] was extended by Viana ([15]) to homoclinic bifurcations
on manifolds of any dimension. Later on, Colli [2] showed a diffeomorphism
of surfaces having a homoclinic tangency can be approximated by diffeomor-
phisms exhibiting not only a strange attractor, but also by diffeomorphisms
displaying infinitely many of such strange attractors.

Our purpose in the present work is to extend the existence of infinitely
many strange attractors in [2] to higher dimensions in its full generality of
dissipative homoclinic bifurcations. Our main result is as follows

THEOREM A. Let ¢ : M — M be a smooth diffeomorphism on any
manifold with a homoclinic tangency associated to a sectionally dissipative
point. Then, there exists an open set U of Diff®(M) containing ¢ in its
closure, such that every v € U can be approrimated by a diffeomorphism
exhibiting infinitely many nonhyperbolic strange attractors.

In the statement above, smooth means that ¢ : M — M is C'°°, M being
a n-dimensional manifold. We also recall that a homoclinic tangency is just
a tangency between the stable and unstable manifolds of a saddle periodic
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point. The saddle is called (codimension-one) sectionally or strongly dis-
stpative if it has just one expanding eigenvalue and the product of any two
eigenvalues has norm less than one. Asin [15], we define attractor of a trans-
formation ¢ to be a compact, p-invariant and transitive set A whose basin
WH(A) = {z € M : dist(¢"(2),A) — 0 as n — oo} has nonempty interior.
We call the attractor strange if it contains a dense orbit {¢™(z1) : n > 0}
displaying exponential growth of the derivative, that is,

|Dg" (z1)]| > e for all n >0 and some ¢ >0

We also obtain a one-parameter version of Theorem A. More precisely,

THEOREM B. For a generic subset of smooth one-parameter families
{ou} of diffeomorphisms, on any manifold, that unfold a homoclinic tan-
gency at parameter value p = 0 associated to a sectionally dissipative fized
(or periodic) point there exist sequences I, — 0 of intervals and dense sub-
sets B, C I, such that for all € E,,, the corresponding map ¢, displays
infinitely many nonhyperbolic strange attractors.

By smooth one-parameter family of diffeomorphism we mean that & :
RxMw— M, ®(pu,x) = (1, u()) is a C*° map and ¢, is a diffeomorphism
for all p.

It is worth to point out that diffeomorphisms with the homoclinic tan-
gencies are not only approximated by ones displaying the phenomenon de-
scribed before but also for different ones. For instance, it has been shown
that homoclinic tangencies are approximated by Newhouse’s infinitely many
sinks (attracting periodic orbits) ([6],[7]) and cascades of period doubling
bifurcation ([16]). Still, it is conjectured that such an important phenome-
non concerning infinitely many attractors might be rare for parameterized
families of diffeomorphisms going through bifurcation of homoclinic tangen-
cies: a conjecture in [8] and [9] states that for most parameter values, the
corresponding diffeomorphisms display only finitely many attractors.

It is worth to point out also, that in the direction of existence of infin-
itely many strange attractors, some particular results have been found. In
1990 [4], Gambaudo-Tresser constructed an example of C? diffeomorphism
in the two-dimensional disk exhibiting infinitely many hyperbolic strange
attractors. In 2000 [12], Pumarino-Rodriguez exhibited a C*° family of
vector fields in R3, related to a saddle-focus connection, which, with a posi-
tive Lebesgue measure set in the parameter values, displays infinitely many
Henén-like strange attractors.

Among the difficulties to extend the result in [2] from two to higher
dimensions we have that projections along the invariant foliations (in our
case unstable foliations) of a basic set may not have a much regular metric
behavior: in general, these projections are not Lipschitz but just Hélder con-
tinuous. We follow some ideas presented in [11] to bypass these difficulties



and also to obtain further estimates necessary to prove Theorems A and B.
On the other hand, to construct strange attractors we need to display a high
dimensional renormalization scheme for heteroclinic tangencies in 2-cycles
and then apply results in [15].

This work is organized as follows. In Chapter 1, we review the con-
struction used to prove that infinitely many coexisting attracting periodic
orbits for diffeomorphisms in high dimensions as presented in [11]. We take
special care with the expansion and contraction rates of the basic sets in-
volved. This chapter finishes with the Theorem 1.1 which summarizes the
facts established in the previous sections. In Chapter 2, we proved some
preliminary machinery to show the main theorems. In Section 2.1, we de-
scribe a higher dimension version of the renormalization scheme in 2-cycles
of periodic points with a heteroclinic tangency in [2], following ideas in [10]
and [15]. This renormalization scheme depends on a delicate relation be-
tween the contracting and expanding eigenvalue of periodic points involved.
In section 2.2, we give a brief summary of the main result in [15] and derive
several consequences of its proof. In section 2.3, we make a special pertur-
bation for one-parameter families of diffeomorphisms to obtain new families
which have linearizing coordinates in a neighborhood of the periodic points,
as in section 2.1. Such perturbation is necessary since in the renormalization
scheme of section 2.1 we assume that there exist linearizing coordinates in
a neighborhood of the periodic points. In Chapter 3, we prove Theorems A
and B. The proofs are consequence of the a main lemma showed in section
3.4. The proof of Theorem B is more delicate and we have to be more careful
in applying the main lemma.



CHAPTER 1

Preliminaries

In this section, we follow ideas and rewrite some results in [11] to create
a language which we shall use in the proof of the main theorems. We start
by giving a formal definition of stable thickness for a hyperbolic basic set
whose stable foliation have codimension one. We show a condition given
in [11] to obtain a basic hyperbolic set with ”intrinsically” C' unstable
foliations. Moreover, the projection along leaves of W"(A;) is intrinsically
C'. In the next section we give a formal definition of unstable thickness for
a hyperbolic basic set A; whose unstable foliation has codimension bigger
than one. In this case we assume that A; has a periodic point displaying
a unique weakest contracting eigenvalue. Later on, we show that we can
obtain such a condition.

0.1. Cantor sets and thickness. A Cantor set in R, is a compact,
perfect and totally disconnected set. Let K be a Cantor set and [ its convex
hull, i.e. the minimal (closed) interval of R containing K. A gap of K
is a connected component of R\ K. A presentation of K is an ordering
U = {Up}n>1 of the bounded gaps. An ordered presentation of K is a
presentation U such that ¢(Uy,) < ¢(Uy,) for all n > m, where ¢(U,,) denoted
of length of U,. The bridge at u € 0U,, U, € U, is the component of
I\ (UyU---UU,) that contains u. The thickness of K is the number

7(K) =inf{r(K,U,u) : ue K},
where U is any ordered presentation of K,
(<)
((Un)’
and where C'is the bridge at u € U,,. this definition of thickness not depend

on the ordered presentation U (see [10]).Let k € K. The local thickness of
K at k is the number

T(K, k) = ii_r)%(sup{r(f() : K C KN B.(k) a Cantor set })

T(K7 u? u) =

Let K7, Ko be Cantor sets and I, Is their convex hulls. We say that
the pair (K1, Ko) is linked if Iy NIy # (). I; is not inside a gap of Ky and I
is not inside a gap of K7.The link is called stable if the same condition are
verified by the interiors int(Iy), int(ly) of Iy, Io.

Let A be a nontrivial basic set of a C? diffeomorphism ¢ : M +— M,
whose stable foliation is of codimension one, i.e., such that dimW?*(z) =

1



n—1,n=dimM, for all x € A. Let 2 € W*(A) and ¢ : [~a,a] — M be a C*
embedding transverse to W*(A) at z = ¢(0). The local stable thickness of A
at z is 75(A, 2) = 7(¢~1(W*(A)),0). This is independent of the choice of ¢,
as a consequence of the fact that (under codimension-one assumption) the
holonomy maps (i.e., the projections along the leaves) of the stable foliation
of A can be extended to C'' maps. Actually, this smoothness of the holonomy
of W#(A), together with the transitivity of ¢|a, also implies that 7°(A, 2)
has the same value for every z € W#(A). We denote by 7°(A) this constant
value and call it the local stable thickness of A. This is a strictly positive
(finite) number and depends continuously on the diffeomorphism, in the
sense that if Ay, denotes the smooth continuation of A for a diffeomorphism
¢ which is C*-close to ¢, then 7%(Ay) is close to 75(A).  Local unstable
thickness (A, z) and 7%(A) are defined in a similar way, when W"(A)
has codimension one. In particular, both the stable thickness and unstable
thickness are well-defined if M is a surface.

In the proof of the main theorems we will use the following two important
results involving thick Cantor sets,

PrOPOSITION 1.1. (Newhouse’s Gap Lemma) Let K1, Ko be Cantor sets
in R such that 7(K1)-7(K2) > 1 and (K1, K2) is linked. Then, K1NKy # 0.

The next result is used by Colli [2] to show the existence of infinitely
many strange attractors for diffeomorphisms on a manifold of dimension
two.

ProPOSITION 1.2. (Linking Lemma) Let K, Ky be Cantor sets in R,
with 7(K1) - 7(K2) > 1, and I1, Is the conver hull of K, Ko, respectively.
Let 95 : I1 — R and ¥g : Is — R be such that

a.- Ug and 55 are topological embedding, for all B € R;

b.- Yg(x) and 5ﬁ(y) are differentiable with respect to 3, for all z € K,
and y € Ka;

c.- Ogvg(z) —0g(y)] > ¢ >0, for allz € Ky and y € Ko;

d.- sz(l C Ky and I~(2 - KQNCLTG Cantor subsets and let By € R be such
that the pair (95,(K1), 9g,(K2)) is linked. Then, for any e > 0,
there is 3 such that

i) ‘ﬂ_ﬁ0|<‘€;~ —
ii) the pair (Vg(K1), ¥3(K2)) has two (stable) sublinks.

0.2. Intrinsically smooth foliations of hyperbolic sets. Let X C
R™ be a compact set and ¢ : X — R"™ be continuous. We say that ¢ is
intrinsically C' on X if there exists a continuous map Ay : X x X
L(R™ R™) such that

o(x) —(z) = Ap(z,2) - (x — z) forall z,ze€ X.



Such a Agp (which is, in general, far from unique) is called an intrinsic
derivative of . We say that ¢ is intrinsically C'*7 on X if it admits some
~v-Hoélder continuous intrinsic derivative.

Remark 1: Let ¢ : X +— R” be Lipschitz continuous and U C X x X be
such that {|lz — z|| : (x,2) € U} is bounded away from zero. Then, there is
a Lipschitz continuous map A : U — L(R™,R") such that ¢(z) — ¢(z) =
Az, z) - (x — z) for every (x,z) € U.

Let go be a transverse homoclinic point associated to some hyperbolic
fixed (or periodic) saddle point p of a C? diffeomorphism ¢ : M + M.
We assume ¢qp ¢ W5¥(p) and another mild (open and dense) transversally
condition to be stated in (1) below. Then, our goal, in this section, is to prove
that there exists a hyperbolic basic set A1 containing p and ¢y and whose
unstable foliation is intrinsically C'. We assume that ¢ is C? linearizable
on a neighborhood U of p.

Let us denote by o1,...,04,A1,...,As, 4+ s = m, the eigenvalues of
Dy(p), with |oy| > -+ > o1 > 1> |A1] >+ > |As]. We define 1 <w <'s
by [Ai| = - = |A\y| and let E¥ = E™ @ E*® be the invariant splitting such
that Dy(p)|gw has eigenvalues Ai,..., A, and Dp(p)|gss has eigenvalues
Awil,---,Xs. We choose C? linearizing coordinates (&1,...,&u, (1, .., Cs)
on a neighborhood U of p and, furthermore, we may assume that

Cl- W¥(p) c{G=-=¢=0}and W*(p) C {&t ="+ =& =0}

C2.- EY ={0"} x RY x {0°"} and the strong manifold (tangent to E**

at p) satisfies WiS(p) C {61 = = €4 = (1 = - = Gy = O}.

Up to a convenient choice of riemannian metric we have, for o = ||,
A= )\1‘ = ’)\w| and 6 = ‘)\w+1|7

C3.- (o —9)||v|| < [|De(p)v||, for all v e E*
C4.- (A =e)|jv]| < |1Dp(p)v] < (A+e)|v||, for all v € E*
C5.- || De(p)v|| < (6 + ¢)]v|l, for all v € E**

where € > 0 is fixed small enough so that 8§ +2c < A —2¢ < A+ 2 < 0 — 2.
(In the case w = s, i.e., if all contracting eigenvalues have the same norm,
E* = {0}, W**(p) = {p} and we leave 6 undefined).

Now we will construct a hyperbolic set whose unstable foliation is in-
trinsically C' using the tranversality between W*(p) and W%(p) at qo.
Fix ¢,r € U in the orbit of ¢y in such a way that ¢ € W?*(p),. and
r = N(q) € W¥D)joe. Take

V=Vs={ll,. . &)l <o} x {lI(C,..., ¢l < p}

where § > 0 is small and p > 0 is fixed in such a way that {¢,7} C int(V') C
V CcU. Let n = n(d) be minimum such that r € int(¢"(V)). (We suppose
that § is conveniently adjusted so that ™™™ (V) cuts V in two cylinders.



We define

N+n
A= ﬂ eWNFEY) and Ay = U o' (V).
kEZ i=1

It is well know that A; is a nontrivial hyperbolic basic set, see [13]. We
assume the following generic (open and dense) condition

(1) Doyyuw () is an isomorphism.

Here D denotes the usual derivative and (1) means that unstable/weak-
stable directions are not sent to strong-stable directions by ¢ = ¢. With
this condition it is shown in [11] that for every point x € Aj, the intrinsic
tangent space to Ay

IT,A; = span {v . there is (z,), € Al sothatz, — 2 and ﬁ — v}
n

(for simplicity we consider here M = R") is contained in (u+w)-dimensional

space. Moreover the intrinsic tangent space to W% (A1) at every point x €

Wk .(A1) is contained (u+w)-dimensional space. In particular, IT,W"(A1) C

E* @ EY. The fact that we have a good property for the unstable foliation

is showed in the following result.

PROPOSITION 1.3. (1) Suppose that oV satisfies condition (1)
above and consider Ay also as above. Then, the map F : W"(A1) o>—
T, W¥(x) is intrinsically C* on compact parts of W*(Ay).

(2) Let S, 1 be (small) C sections transverse to W*(z) for some
x € W*(A1) and let m: Xg N WH*(A1) = EN W™ (A1) be to denote
the projection along the leaves of W% (A1). Then, 7 is intrinsically
ct.

0.3. Thickness in higher dimension. In this subsection we want to
define the local unstable thickness of a basic set with unstable foliation of
codimension greater than one.

Consider A; as it was constructed in the previous section. And we
suppose that for a periodic point p, D¢(p) has a unique (necessarily real)
weakest contracting eigenvalue A\ = \;, and ¢ is C? linearizable near p.
Then, we consider m: A1 N W} (p) — R to be an arbitrary intrinsically C*
map such that kerA(7(p,p)) does not contain IT(A; N W (p)) = EY (i.e.,
An(p,p)|EY is bijective) and we define

(A1, p) = T(w (A1 N Wi (p), m(p))

the local unstable thickness of Ay at p. It is shown in [11] that the definition
above does not depends on 7 as taken above, also it is strictly positive and
varies continuously with the diffeomorphism: if v is a C2-small perturbation
of ¢, 7%(A1(¢), p) is a small variation of 7%(Aq, p).



Let my : AiNWE (p) — R be the restriction to Ay N (p) C {0} xR®
of the projection (&1,...,&,, (1, ..., (s) — (1. Ty is @ homeomorphism onto
its image K% and moreover 7! is intrinsically C1™7 on K™, see [11]. The

fact that 7 o 7;! is an intrinsically C! map with

A(rom,')(0,0) = Ax(p, p) - Am,'(0,0) # 0.

Then, 7(m(A1 N WE.(p)),7(p)) = 7(K™,0) as a consequence of 7(A; N
W (p)) = (momyt)(KY) and the following result. See [11],

LEMMA 1.1. Let K C R be a Cantor set, y € K and g : K — R be an
intrinsically C* map with Ag(y,y) # 0. Then, 7(9(K),g(y)) = 7(K,y).

It is also shown that K" is dynamically defined Cantor set, in the same
sense as in ([10], Ch.IV), i.e., 7(K"™) > 0. Moreover, if 1 is a diffeomorphism
C2-close to o, T(K™(1)),0) is close to 7(KY,0).

The following result shows that the definition of unstable thickness does
not depend on transverse section to W*(A1). We will use such fact in the
section 4.

PROPOSITION 1.4. (a) Let ¢ € W¥(p), ¥ be a C* section trans-
verse to W"(p) at the point ¢ and 7 : W* (A1) N X — R be an
intrinsically C1 map such that ITy(W*(A1) N'X) is not contained
in ker(An(q,q)). Then, T(m(W"(A1) N X),7(q)) = 7“(A1,p).

(b) More generality, given z € W"(A1), ¥ a transverse section to
W™(A1) at z and 7 : W*(A1)X — R a submersion with IT,(W"(A1)N
¥) € ker(Am(z,2)). Then, T(m(W*(A1)N), 7(2)) = 7%(A1,p).

0.4. Unique least contracting eigenvalue. Let {¢,} be a C* one-
parameter family of diffeomorphisms generically unfolding at ; = 0 a qua-
dratic homoclinic tangency associated to saddle fixed (or periodic) point p
of . We also assume once more that there are C? py-dependent coordinates
(&15--+,&usC1y - - -, Gs) linearizing the ¢, for © near zero, on a neighborhood
U of the analytic continuation p, of p. Moreover, these coordinates can be
taken to satisfy conditions (C1)-(C5) of Section 2.2.

We assume in this section that Dgg(p) has exactly two weakest contract-
ing eigenvalues and these are complex conjugate numbers, this means that,
w=2, A1 = Xe 7, Ay = X" with A > |\3| and v € R\ {km : k € Z}. Here
we may even assume that Dy, (p,)|gw is conformal with respect to Euclid-
ean metric introduce by coordinates (q, (2. On the other hand, we may take,
say for p > 0, points ¢, W} (pn), 7, € W)t.(pu) depending continuously on
1, such that goﬁf(ru) = qu for some fixed N > 1, rg, qo belong to the orbit of
the tangency and 7., g, are points of the transverse intersection of W"(p,)
and W#(p,) for every 1 > 0. Recall that, moreover, there exists a sequence
of parameter value p; — 0 such that W*(p,) and W*(p,) also have point of
tangential intersection.



For each fixed p = p; and every sufficiently large n > 1, there is a
neighborhood of V=V (j,n) of {p,,q.}, as in section 2.2, such that

A(G,n) = () etk
keZ

is a gofy T invariant hyperbolic set and gofy " A(4,n) is conjugate to the
2-shift. Moreover, given any periodic point p € A(j,n), there are parameter
values g arbitrarily close to p; for which ¢g has homoclinic tangencies as-
sociated to (the analytic continuation of) p. We consider p = p(j,n) to be
the unique ng+N -fixed point in A(j,7n) \ {pu}. Clearly, the orbit of p passes
arbitrarily close to p, if j and n are sufficiently large. The following result
show our goal in this subsection,

PROPOSITION 1.5. Suppose that o satisfy the condition (2) below.
Given j sufficiently large. Then, there exist values of n = n(j) arbitrar-

ily large such that Dgoﬁf t(p) has a unique weakest contracting eigenvalue.
Consider
A’U/lL AU’UJ A’lLS
A A
N _ _ uu uw
DSD# - Awu Aww Aws ) Au - ( Awu Aww )

ASU AS'LU ASS

where the expression of anfy with respect to the splitting E* x E* x E® =
R* x R? x R*"2. We also denote

A A Aus
DSO;N = A'L_uu Al_vw A;}s
Ase A Ass

The generic assumption in the proposition above is (cf. (1))
(2) A,—o(ro), andsoalso A_ (1 =0,qo) is an isomorphism.

Of the proof of the Proposition 2.5 above we can obtain that dimW*(p) =
dimW*(p), dimW?*(p) = dimW*(p) and D@Z*N (p) is sectionally dissipative

if Do (p) is.
We conclude that there exist a sequence of parameter values fi; — 0 such

that g, exhibit homoclinic tangencies associated to pj — p and Dgoﬁé (Pj),
k; is the period of p;,has a unique weakest contracting eigenvalue.

0.5. Thick invariant Cantor sets. Let ¢ be a C* diffeomorphism
with a quadratic homoclinic tangency at qp associated to a fixed (or peri-
odic) point p. We suppose that dimW"(p) = 1 and Dy(p) is sectionally
dissipative, i.e., the product of any two of its eigenvalues has norm less than
one.

Let {¢,} be a C* one-parameter family of diffeomorphisms with ¢g = ¢,
such that generically unfold the homoclinic tangency. We suppose once more
that the ¢,, p near zero, admit C? p-dependent linearizing coordinates



(¢,Z) € R x R"! on a neighborhood U of p. We fix these coordinates
in such a way that W} (p,) C {Z = 0} and W} _.(p,) C {{ = 0}. The
assumption on the eigenvalues of Dyg(p) means that we may choose a norm
in R™ to be such that

lou| - ||Sull <1 for every p near zero

where o, is the expanding eigenvalue of Dy, (p,) and S, = Dy, |E*(p,).

It is shown in [11] that, there are a constant N (positive integer) and
for each positive integer n, reparametrization p = M, (v) of the variable u
and (u, n)-dependent coordinates transformation

(I/, x, Y) — (Mn(l/)a ®n,y)(xv Y))
such that the map
(V, x, Y) — (V, @;}, o (P?XZL](\{,) © @n,l/(a:v Y))v

converge, in C2-topology, to the map (v,2,Y) ~ (v,22 + v, Az), where
AeRM L

The existence of a hyperbolic basic set Ay with arbitrarily large thickness
follows of the fact that for the map = +— 2? 4+ v, and also for
Yo i (2,Y) — (2% — 2, Az), there exist invariant expanding Cantor sets
K with thickness 7(K;) — +o00 as j — +00. Moreover, these K are tran-
sitive and have a dense subset of periodic orbits. It is follows that each K;
has , for n large, p = M, (v) and v close to —2, an analytic continuation as
a hyperbolic basic set K(n, u) of

(65,11/ ° 90%](\;) °© Ony(z,Y)).

In particular, the set K;(n, 1) has codimension-1 stable foliation and stable
thickness 7(Kj(n,p)) close to 7(Kj;) > 1.  Then, we just take
Ay = Ao(p) = O (Kj(n, 1)) with j and n large and p = M, (p), v close to
—2. It is also shown that parameter values v,, — —2 can be taken in such a
way that

fy(f) = @r_z,zl/n © ‘p%](\i/n) © Onp,

have periodic points P(n,v,) and Q(n,v,) € Kj(n,u), p = My (vyn), which
are heteroclinic related and W*(Q(n,v,,)) also has nontransverse intersec-
tions with W#(P(n,vy)).
Nowforf:fy(:), there are 0 < A= \An) < A=An)<1,1<o<7c

and ¢ = ¢(n) > 0 such that

(1) e [lull < [DfH () - ull < 7" ul;

(2) ¢ NJo]l < |IDf () - ol < eX'Jo]l,
for all x € Kj(n,p), u € EY, v € Ej and i > 0. If Ay = A(n,pu) =
On, (Kj(n, ) is a hyperbolic basic set for "™ where u = M, (v,) and

I3

z € Ay is a periodic point of LpZJFN of period k = (n + N)j. Then, z =



O, (x), where z is a periodic point of f of period j. We conclude that if
o9 is the expanding eigenvalue of Dcpfi(z). Then,

therefore, oo < T — 1 , as m — +00. For p near Z€T0 and y near
go;N(qo) in U, we have HD(pr(z)H < k, for a large constant k, and if S&M =
Dgoﬁ(z) E%, we have

I |
IS501 = IDGEIE ) < 1D B (o (2) 0 Dyl | E*(2)
< RISl <1,

for n sufficiently large, that mens, [|Sa,| < Ao < 1 for n large, where Ag
does not depend on n.

For the discussion above together with section 2-4 we concluded this
section with the following result which is a summarized of this chapter.

THEOREM 1.1. Let g be a smooth diffeomorphism having a homoclinic
tangency associated to a sectionally dissipative saddle fized (or periodic)
point. Then, there exists a smooth diffeomorphism o arbitrarily near g
such that

a.- ¢ has hyperbolic basic set Ay and Ay with 7 (A2) - T (A1) > 1;

b.- there are periodic points p1 € A1 and py € Ay such that W"(p2) has
a transversal intersection with W*(p1) and W*(p1) meet quadrati-
cally in a point q with W*(p2);

c.- the hyperbolic basic set Ay has intrinsically C* unstable foliation
and p1 € A1 has a unique least contracting eigenvalue;

d.- there exists ¢ > 0 such that if Q1 € A1 and Qo € Ay are periodic
points of period k1 and ka respectively, denote \; = ||S; = D<’0|E5Qi I
and afi the unstable eigenvalue of Do, i =1,2. Then,

dl) [Ay- 02| < 1;
d2) |o?%¢ - Ao| < 1;
d3) oy is so small that |og - (\o)?| < 1.



CHAPTER 2

Renormalization scheme and quadratic-like
families

In this chapter we describe a higher-dimensional version of the renor-
malization scheme in 2-cycles of periodic points with a heteroclinic tangency
following ideas from [15] and [10]. We Also state and comment about
quadratic-like families as considered in [15]. Finally we make a delicate
discussion on how to perturb a one-parameter families of diffeomorphisms
to obtain linearizability.

0.6. Renormalization scheme in 2-cycles. Let ¢ be a C™ diffeo-
morphism having basic sets Aj, Ay and fixed (or periodic) points p; € A;
and pa € Ag, such that dimW"(p1) = W*(p2) = 1; W*(p1) and W"(p2) have
a transverse intersection in a point 79 and W*(p;) have a nontransverse
contact (i.e. tangency) with W#(p2) in a point g, see figure 1. We suppose
that Dy(p1) is sectionally dissipative, (i.e. the product of any two of its
eigenvalues has norm less than one). We also suppose that the tangency is
quadratic.

Let {¢,} be a C*° one-parameter family of diffeomorphisms with pg = ¢
and generically unfolding the tangency. We assume that ¢q is C* lineariz-
able near p; and py. As Ck-linearizable is an open condition (see [14]).
We assume that the ¢, , o close to zero, admit C* p-dependent linearizing
coordinates in a neighborhood of p; and ps, that means, there are neigh-
borhoods Uy of p; and Uz of ps such that the expression of ¢, u small,
in Uy is (&, H) — (01§, S1,H), in Uy is (n,J) — (01,21, S2,J) where o1,
and oy, are the expanding eigenvalue of Dy, (p1) and Dy, (p2) respectively
and Sy, = Doulps(p,), @ = 1,2. We may suppose that ¢ = (1,0n 1 € Uy,
therefore, there exists N > 1 such that cpﬁ[(q) = (0, Jo) € Uy, see figure 1.
We assume that for (i1, &, H) close to (0,1,0""!) we may write npf)’(&,H) as

(A€ =12+ 8 H + ap+ (€ = 1, H), Jo+7(€ — 1) + R(u,& — 1, H))
where we have a,a € R, 8 € LIR" 1 R), v € L(R,R""!) and
(3) 7 R,Dr,DR,0¢r,0yer and Oppr vanish at (0,1, 0" 1)

The hypothesis of nondegeneracy of the tangency amount to having
a # 0 and a # 0. Moreover, using a p-reparametrization and p-dependent

9



linear changes of the space of coordinates, we may even assume a = 1,
r(1,0,0) =0, R(p,0,0) = 07! and O¢(1,0,0) = 0.

W*(p2)
Wh(p2) / (1,0)
p2 | oo
, @ (nos Jo)
.
(10, Jo)
W#(p1)

q=(1,0) W (p1)

FIGURE 1. Renormalization scheme

We still have to consider the transition map among the neighborhoods
Us of po and U; of p; and their “transverse” intersection. We may suppose
that ro = (1,0) € Us, then there is N1 > 0 such that wgl(ro) = (0, Ry) € Uy,

for u small. Suppose that Lpfyl, for (n,J) near (1,0), has the form

B —1
Ni(p,J) = (0,R +(a“ “)(" >+0 n—1,7),0(un—1,J
' () = (0. Fo)+\ " J ((MU ):© (s ))
where a, € R, B, € LR" L R), ¢, € LRR"Y), D, € LR* ),
0(11,0,0) =0, ©(u,0,0) = 0 and

(4) DO, DO vanish at (u,n—1,J)=(1,0,0).

By transversality between W"(py) and W*(p1) we have a,, # 0, for p small.
Now we fix Ay < 3 a real constant. Fix N and N; as above. We denote
®:RxM— RxM,C>®map, ®(u,x) = (1, ¢u)-

THEOREM 2.1. Let N, Ny positive integer as above and let 0 < ¢ < 1 be a
small constant such that the following hold |03¢-Xa| < 1 and |oa-(A\1-01)%?| <
1. Choose n = n(m) such that (¢/2) -m < n(m) < c-m. Then, there exists
a sequence Oy 1 [1/Ag, Ao] X [—Ao, Ag] — R x M of C* diffeomorphisms



such that the sequence fpnm = @nin o @N+nt+Nitm g © Op,m converge to the
map

qﬁ(a,x, Yi, - 7y7L—1) - (G, 1- CL[EQ, On_l)
in C* topology, as n,m — oo.
Proor. We first describe a construction of ©, ,,. We start observing
that if one look at cp;Nl(WS(pl)) in U coordinates near (1,0). Then, it

is the graph of a function  — I',(z). Analogously, W"(p2) near (0, Ry)
is the graph of a function x — A,(z) in U; coordinates. For n and m

sufficiently large, we also define the functions z — P,(Lm) (z) and y — A,([L) (y)
whose graphs correspond to (p;Nl ({{ = ij}) and gofyl {J = Sy, - Jo})
respectively.

Using the notation above, we take ng = n(()n’m) (1) = oy mF(m)(SSL - Jo),
such that, (o7, A" (07,)) = @l o @ (o, Jo), e

(5) oy, =aulosmo — 1) + BuSy,Jo + 0(p, o3,m0 — 1, 55,Jo)  and

(6) AL")(af#”) = Ro + cu(ogyno — 1) + DuS3,Jo + ©(p, 03,m0 — 1, 55,,Jo).

Consider the (n,m)-dependent reparametrization

a
(1) = piam(a) = *0157102,1 ‘H?O_‘Tlu ‘72umﬁ STA u)(alu)

Recall that 8 € L(R"1,R). From (5) we have

() a=anmu) = —aoTiodln — ofiodm + - SLAD (o7,

It is easy to check that any constant given Ay > 0 for (n, m) sufficiently
large anm (1) maps a small interval I,,, in p-space, close p = 0 diffeomorphi-
cally onto [—Ap, Ap]. Then, we introduce (u,n, m) dependent coordinates
(x,Y) given by

én’m (CL, x, Y) = (un,m(a) =u, gl_ino'2“ a: + 1o, J2IJ "a,Y + Jo)

with o, = 01_#” -w", where 1 < w < min{aly, VA1)~ } Denote
(,m,J) = Onm(a,x,Y) . Then, the return map ®N+"+N+m in the
(u,m, J)-coordinates is given by

(in ) — (1, al€=12+B-H+p+r(u.e—1,H),
Jo+7(E =)+ R(u,£ ~ 1. H)),



where §(n,J) =07, [au(ag’fm — 1)+ BuSy,J +0(p,o5n—1, S;ZJ)] and
H(n,J) =8}, [Ro+culoh,n— 1) + DuS5.J +O(u,08,n — 1,85, J)].
Then, the return map in (a,x,Y)-coordinates is given by

(a,2,Y) = (a, (~a/a)otioqm [a(¢ = 1)+ 5 H+ pot v, €~ 1, H) =]

oh(en) " [HE = 1) + R(u, €~ 1, H)))

where
(z,Y) = a’fu{au [O'QM( Ulinagima:c + o) — 1]
+BS3, (03, anY + Jo) +0(p, 05,m — 1 ,S5J)}
and

H(z,Y) = S{‘“{Ro +cu [02“( 015"0257”33: +n0) — 1]
+Dp S5 (09, " anY + Jo) + O(u,05,m — 1 SQZJ)}.
Using the definition of 79 = 1™ (1) and iy, m(a), i.e. using (5),(6) and
(7) we have

fn,m(aaxay) @ nm O(I)N+n+N1+mO@ ( SU,Y)
= (a,H(a,z,Y ), Hy(a, Y))

where
Hi(a,z,Y) = (- z/a)a%ﬁaggb[ auoy, 09, e + 07, BuSy,05," anY
—i—Ul/ﬂnm(a x Y)] + J%ZO’%L”( a/a) [ﬁSmD Sﬁaz_umanY
ﬁSlMcy,Ulu e 701_5”02_5’" + BS7, Onm(a,z,Y)
+r(p, & — )f
and
HQ(a7x7 Y) = Uﬁ(af)il [7( aﬂglu 0—2;1 ax+aluB S2u02u oY
+o1,0(a,2,Y)) + R(u, & — 1, H))
where

Onm(a,z,Y) = H(M , JQM( 015"0237”“:): +no) — 1, S%(agumanY + Jo))
—0(p, o7}mo — 1, 857 Jo))
and
Onm(a,z,Y) =0O(u,05, =0y, " 2x +1m0) — 1, S5, (05" Y + Jo))
—O(u,0}mo0 — 1,5%,Jo))
We have to show the following convergence:
(1) 01,09, [—aﬂal_#"agﬂm%x + J?MBHSSLJQ_MmanY
— a
+01,0nm(a,z,Y )] — a0 %
(2) (—a/a)a%ﬁagff [BS{LD S;ZagﬂmanY ﬂSmcualu GQ# S

a _
—— oy, + B Onm (@ 2, Y ) + (s € — L H)| — 1



(03
(4) ofpotir(p,&(x,Y) =1, H(z,Y)) — 0;
(5) ofy(an) ' R(p,&(2,Y) = L, H(2,Y)) — 0
To obtain the convergence, we choose a compact part of R"*1, so that
|(a,z,Y )| < const., where the convergence will take place and let K be a
sufficiently large constant(there will be some slight abuse of notation when
dealing with K).
Observe that the hypothesis imply that, for p small,

(3) aﬁ(an)_l [—auafﬂnagumﬁx + U?#BHSg’LagumanY] — 0;

(9) oA o)™ — 0 as m — 400
(10) Ufn(m) Ay — 0 as m — +oo

In the proof of the convergence of the items (1) to (5), we will make use
of (9) and (10) or their weaker versions. Recall that |09, - Agy| < 1.

We start estimating part 1,2 and 3. Observe first that Ufﬂn(an)_l -0
and [|o771 ST, 0nY || < KlofpAl,om| < K[(\/A101,)" = 0 as n — +oo. It
is clear that
2n\ym
L 1 2u

—n __—m
|| Uzﬁaégﬁ ’ S{L,uclto-l,u O-E,u x” < K|O-SZL §p|a
I 01,,05,'0 - S?MDMSSLU%W‘O[”Y | < K|alﬁag;)\?#)\g;an],
HU’zZ(Oén)iUfM”UEMmUCH < Kl(on)"toy,| and
||0{’L(an)_ J?#Busgza%manYH < K|0?H)\3L

converges to zero as n, m — +o0o.
To by remining to estimate convergence of 6, ,, and ©,,,, to complete

(1) and (2). We have
Onm(a,2,Y )| < K|050(a, 7, Y )| |07,/ 05" |+ K [0y 0(a, %, Y)||-|o3," X, 0en

1Onm(a,z.Y)|| < K[0:0(a,7,Y)]-|oy,"05,"
+K[|0yO(a, 2,Y)| - |03, A3, an]

for some (a,#,Y ) between the points

(a, —afi"agum%:n%—agzno —1,55, (09, a+Jo)) and (03),n0—1, S3,,Jo). From

inequalities above and using (4) we have that ]a%ﬁa’ﬂ@n,m (a,z,y)],

||J{‘#J§ZJ?HBMS§L0¥”&”Y|| < Klo anl,

lotso3: ST, On.m (@, 2, y)|| < llofo3 AL, Onm(a z,y )| and

|aﬁta§’;(an)_15(a, x,Y )| converges to zero as n, m — +oo.
On the other hand, it is not difficult to see that

§(a,2,Y )| < Kloy,;'0y,"], [H(a,2,Y )| < K[\],| and |u] < Kloy,"|.
Finally, we want to see that
lotpos (1, §(a,2,Y) — 1, H(a,2,Y))|  and
o5, ()~ R(u, €(a, 2, Y ), H(a, 2, V)



converges to zero as n,m — +oo, for that, we write Taylor expansion of 7,
up to order 4 near (u,0.0). We recall that, O¢r and Oyr are null at (4, 0,0),

4 .
I ~ ~
r(luaé_lvH):Z Z WT(Maé_laH)(g_l)ﬁlHﬁQ+R4(/’L7§7H)
J=1p1+p2=j 7§ “H
where L
R4(:u7 fa H)
— = =__
(k. &, H)|
H?% is a homogeneous polinomy of degree (B in the coordinates of H =
(h1,...,hp—1).  Then, ‘J%EO%?T(,U,&(CL,I’,Y) — 1,H(a,a:,Y))‘ — 0
as m,m — oo as a consequence of the estimative of &(a,z,Y ), H(a,z,Y),
|| and (3), (9) and (10).
We also write, Taylor expansion of R near (u,0,0) up to order 2 and we
use essentially the same argument as above applies to R, we have that
Ha%(an)*lR(u,ﬁ(a,x,Y),H(a,x,Y)) H —0 as n,m — oo.
Then, this proves that
fam(a,z,Y ) — a(a, x,Y)= (a, 1- aa%x2 ,0”71)

as n,m — +oo (uniformly on [—Ag, Ag] X [—Ap, Ao]™). Moreover, the
same kind of estimates apply to all derivatives up to order k, k > 3, it proves
that this convergence (items (1) to (5)) holds in the C* topology.

Since, 5 as above is conjugated to ¢(a,z,Y ) = (a,1 — ax? 0"1) by
hia,z,Y) = (a, %x,Y). Then, taking ©,,, = én,m oh we have
O 1, 0 @NFTIHNIFM 0 @, 1 converge to the map

Qs(aaxayla o 7yn71) = (CL, 1- a$270n_1)

in C* topology, as n, m — oo.

and [|(u,&, H)|| = 0,

O

0.7. Quadratic-like families. Being motived by the Theorem 3.1
above we will consider quadratic (or Hénon)-like families as considered in
[15].

We say that U = {1, } is a quadratic (or Hénon)-like family if {14} is a
C" one-parameter family of diffeomorphisms, r > 3, and {1, } is sufficiently
close to {¢q} = @, where ¢(a,z,Y ) = (a,¢q(x,Y)) and ¢q(z,Y ) = (1 —
az?,0"1), for all a.

THEOREM 2.2. (Viana [15]) Let 0 < ¢ < log(2) and ¥ = {1} be a
quadratic (or Hénon)-like family. Then, there exists a set E = E(c,V) C
(1,2), with m(E) > 0 such that for every a € E, there is a compact, 1)q-
invariant set A = A satisfying that W*(A) has nonempty interior and there
is Z1 € A such that {¢™(Z1) : n > 0} is dense in A and | DY (Z1)| > e,
for all n > 0 and some ¢ > 0.



In the theorem m denote the Lebesgue measure and the set A above is
called a strange attractor. In the proof of the Theorem 3.2 the point Z; is
taken to be critical in the sense that there exists a direction in the tangent
space to M at Z; which is exponentially contracted by both positive and
negative iterates of D1),. Clearly, the presence of such point is an obstruction
to (uniform) hyperbolicity of the attractor.

From the proof of the Theorem 3.2 above can be derived another proper-
ties of the set E' = E(c,V): E is constructed from exclusions of parameters
of a host interval (compact interval) Qo C (1,2) which depends only of the
quadratic family {¢,}. In fact the interval £y can be chosen near 2, such
that if {1, } is sufficiently close to {¢4}, m(E) > (1—9)|Q| for chosen § > 0.
However, if we consider only a finite number of exclusions of parameters of
Qp, we can see from the proof that they varies continuously with ® = {¢,}.
Considering this comment about properties of the set F we conclude the
following

LEMMA 2.1. Let E(V) C Qo be the set obtained in the Theorem 2.2.
Let I C Qg be an interval such that m(E N1I) > c|I|, for ¢ > 0. Then,
given € > 0, for all U = {th} sufficiently close to {1bg}, there exists a
set E = E(U) such that m(EN1I) > (¢ —¢e)|I| and for a € E, 1, has a
nonhyperbolic strange attractor.

Let {¢,} be a C* one-parameter family of diffeomorphisms unfolding
a heteroclinic tangency at g = 0 in 2-cycles involving periodic points p;
and ps as considered in the first part of this section. Then, by Theorem
3.1 there exists a sequence of host intervals (), ,, in the p-space, going
to zero as m,m go to infinity, each one corresponding to Q¢ by (u,n,m)-
reparametrization. Moreover, if we embed the family {y,} in a C*° two-
parameter family ¢, o} we have that, for each « sufficiently small, there
is a sequence €y, ,, () of host intervals going to pr(a), where pp(«) is the
value of the tangency between W#(p2(«r)) and W*(p1(«)). In addition, by
the form of the (u,n, m)-reparametrization, given in the Theorem 3.1, it is
easy to see that €, () depends continuously on . And also, the con-
vergence of the families in the Theorem 3.1 is uniform in «. So for each
a small there is a set Ej, () C Q0 (a) with m(E, () > 0 and for all
p € Eym(a), pua has a strange attractor, by application of the Theorem
3.2. These assumptions imply the following

Remark 2: Fix ag > 0 small. Then, given € > 0, there are ng = no(ap),
mo = mo(ag) such that for all Q, (o) with 0 < o < ag, n > ng and
m > mgy we have

2.1 sup{|p — pr()] : p € Qum(a)} <e;
2.2 m(Epm(a) N Qo (@) > 3| m(@)];
2.3 Qy,m(a) varies continuously with respect to a.



0.8. Special perturbation. Let {¢,} be C* one-parameter family of
diffeomorphisms, we want to show that if a saddle fixed (or periodic) point
po of ¢p, which is sectionally dissipative (i.e. the product of any pair of
eigenvalues has norm less than 1), is not C*-linearizable, that means, the
eigenvalues of Dyg(pg) are resonant, see [14], there exists an appropriate
arbitrarily small perturbation of the family {¢,} such that it is possible
to destroy the resonance and turn p, the continuation of the point pg in
C*-linearizable one for almost every p near zero. To be more specific,

LEMMA 2.2. Let {¢,}ucr be a one-parameter family of diffeomorphisms
having a saddle periodic point py of po which is not C*-linearizable, where I
is an small interval around zero. Then, There exist a one-parameter family
of diffeomorphisms {1} er arbitrarily close to {¢,} and a subinterval I' C
I around zero such that for almost every value p € I', v, is C*-linearizable
near p(y,), k > 2, where p(1,,) is the continuation of po.

Remark 3: The family {¢,} in the theorem which is arbitrarily near to
{¢u}uer does not depend on the interval I.

PROOF. Denote by A1, ..., A, the eigenvalues of Dyg(pg). Suppose that
po is not C* linearizable, k > 2. Then the eigenvalues satisfy the resonant
conditions of Sternberg, see [14], i.e. there exists j with 1 < j < n such that

k
Aj = AR for 2<) ki <k, with k>0, 1<i<n.
=1

Consider the following holomorphic functions

hi(Z)=(1+2Z)\; and H(Z)= ﬁ[(l +2)\)", zec.

=1

Note that hj(Z) = H(Z) at Z = 0. In addition, h(Z) = A; = h;(0)
, for all Z € C and H'(0) # h}(0) since H'(0) = > 1 ki [T, )\fjf% =
> iy kil (0) = h(0) Y21, ki, where d;5 is 1if i = j and 0 if 4 # j. Then,
hij(Z) # H(Z), for all Z € B.(0) and Z # 0, for some € > 0, where
B.(0) is the ball in C the radius ¢ and center 0. ¢ depends on j and k;,
i=1,---,n with 2 < E?Zlk,; < kand 1 < j <n. Then, ¢ depends on a
finite number of conditions. Therefore, we can take e sufficiently small such
that h;(Z) # H(Z) for all Z € B.(0) and Z # 0. In fact, for € small enough
h;(Z) # H'(Z) for all Z € B.(0).

On the other hand, let ¢, : W — R" be a C* family of local charts
defined in a neighborhood W of py with 1, (po) = 0, for all u € I. We take
W sufficiently small so that ¢ (W) NW =0 for all 0 < j < ng, where ng is
the period of pg. Let £ be a C*° bump function on R satisfying



E(s)=0, if s>2
&(s)=1, if s<1
0<¢(s) <1, Vs € R.
Let v > 0 be a small constant such that B(0) C 1, (W). We define the
perturbed families {¢,+} by ¢ut = fut 0 ¢u, where

T
fua) = v (14t €@ )] (@), i we W
and 5 (y) =¢ %), for all y € W. First observe that the eigenvalues of

D% (pu) are (L+1) A1y, (1+8)A2p, ..., (1 +1) Ay, where Ay, and p, are the
continuation of A\; and pg respectively, 7 = 1,...,n. We also have that (g
is C¥ linearizable near pg for all 0 < |t| < &, where ¢ is as above. We define

{ fup(z) =, if reM\W

n by
Tl Z2) = ][0+ 2] = (1 + 2)Aju
i=1

where k = (k1,...,kn).
Claim: There exist intervals I' C I around p =0 and J C [—eo, o] around
t =0, e >¢e9 > 0 such that if for each t € J define Zy = {u € I' :
L. 7(n,t) = 0}. Then, the set L ={t € J : m(Z;) > 0} is countable.

By the claim, we conclude that for all ¢ € J\ {countable set}, ¢, is ck

linearizable for almost every p € I'.
U

PROOF. (of the claim) Recall that 021", 7(0, Z) # 0, for all Z € B-(0)
and I',£(0, Z) # 0, for all Z € B(0) \ {0}. Then, by Implicit Function,
there exist 0 < g9 < € and I’ C I a subinterval with 0 € I’ such that if
Iz, t)) = 0. Then, I'; (1, ) # 0, for all ¢ € [—eg, 0] \ {t'}. Define

1
Zy={pel : Iip(n,t) =0} and Ly = {t € [~€o,c0] : m(Z;) > ﬁ}

Observe that Z; N Zy = 0 if t # t' for all t,t' € [—&p,e0]. So, Ly, is a finite
set, t.e. L={t € J : m(Z;) > 0} is countable set. O



CHAPTER 3

Proof of the main result

0.9. Fixring some notation. Let ¢ be a C* diffeomorphism that has
a homoclinic tangency associated to sectionally dissipative periodic point pg.
Then, by the Theorem 2.1 there exists ¢ a C*° diffeomorphism, arbitrarily
close to @, exhibiting hyperbolic basic sets A1, A2 and periodic points p; €
Ay and po € Ag satisfying items (a) to (d) of the Theorem 1.1. Let U be a
neighborhood of ¢ of hyperbolic continuations of A; and As, it means that,
there exists a C'*° function

(I)ZZ/{ — CO(AZ,M)
v — i)

such that A;(¢) = ®;()(A;) is a basic set for 1 € U, where CY(A;, M) is
the space of injective and continuous functions h : A; — M . In fact, ®;(1))
conjugates |z, to Y[, (), i = 1,2.

We denote by ro the point of transversal intersection between W*"(p2)
and W?(p1). Let § > 0 be a small constant such that for all ¢ € U,
x € Bs(p1) N Ay and y € Bs(p2) N A2, W¥(y,1) meet transversally in a
neighborhood of ry, where Bs(p;) is the ball of radius § centered at p;,
i=1,2.

Let U be a sufficiently small neighborhood of ¢ which is the quadratic
tangent point between W*(py, ¢) and W*(p2, ). We take C* coordinates
(V,u) € [-1,1]""1 x [~1,1] in U in such a way that

(1) ¢ has coordinates (0"~1,0);

(2) The connected component of W#(p2) N U containing ¢ is given by
{u=0}

(3) for v € U and y € Bs(pa) N Ay the connected component of
W*(y, ) NU is given by {u = As(y)(V <¥):v € [-1,1]" 1}

(4) for v € U and = € Bs(p1) N A1 the connected component of
W(x,1) N U corresponding to the obvious way to the connected
component of W*(p1,¢) N U containing q is given by

{(V(2),u(@))(t,¥) : t € [-1,1] };
(5) (V(p1),u(p1))(0,0) = (0"~1,0) and dyu(p1)(0, p) = 0.

Furthermore, for each v € U the maps

Yy — AQ(y)([_17 1]n7171/}) and 7 — (V(‘T)7u(m)) ([_17 1]7¢)
18



are continuous in the C'*° topology and the maps
Ay(y) : [-1,1]"t xUd — [~1,1] and (V(z),u(z)) : [-1,1] xU — [-1,1]"
are C°, for all y € Bs(p2) N Ag and for all z € Bs(p1) N Ay.

W*(p1)

W*(p2)

W (p1)

/ W*(p2)

1 P2
|

FIGURE 1. Heteroclinic tangency

0.10. Control of the orbits. As in the case of dimension two, we
need some control of the orbits of strange attractors.

Suppose that there is ¢ € U with periodic points Q1 € Bs(p1) N A;
and Q2 € Bs N Ay of periods k; and ky respectively such that W*(Q1) and
W*(Q2) are tangent (quadratically) inside U. Assume that @* linearizable
near Q1 and @*? linearizable near Q2. Take a one-parameter family {¢,} C
U with ¢y = @ generically unfolding the tangency. By the Theorem 3.1
and the Theorem 3.2 there are a sequence of host intervals 2, — 0, as
n — 400, subsets E, C Q, with m(E,) > 0 and integers k, — +00 as
n — +o0, such that for p € E,, (ﬁﬁ" has a nonhyperbolic strange attractor
Ay, = Ap(p) inside U. Then, as in two-dimensional case, we can take U, U
and J sufficiently small such that for some ng > 0 sufficiently large we have
that for all n > ny,

Pl(A)NU =0, 0<j<ky,

and ¢, (U)NU = 0 and ¢, '(U)NU = (. This implies that any perturbation
done inside U but outside a neighborhood of the strange attractor A,, does
not affect the remaining of the orbit.



0.11. Persistence of the tangency. In this subsection we take U,
U, and § as in the previous section. Recall that ¢ have hyperbolic basic sets
Ay and Ay with periodic points p; € A; and py € Ay satisfying items (a) to
(d) of the Theorem 2.1. Let Uz be a neighborhood of A such that W*(As)
admits an extension to a C! foliation F5 = F5 (1)) defined in Us. By C! we
mean here that the tangent spaces to the leaves T,F5(z) vary in C! fashion
with the point z. F3 depends continuously on ¢ € U. Clearly we can take
q, the point of tangency between W*(p2) and W*(py), to belong to Us and
UcCU,.

Now we need the following implicit function,

LEMMA 3.1. (Implicit Function) Let X C R™ be a compact set and I C R
be a compact interval. Let F: X x I — R be a intrinsically C* map and
(zo,tg) € X x int(I) be such that

(11) F(.ro,to) =0 and AFz(to,to) 75 0.

Then, there exist V. C X a compact neighborhood of xo and unique
intrinsically C* map f : V. — I such that f(zo) = to and F(z, f(z)) = 0,
forallz e V.

We apply this lemma of the following way, we define & = &,(¢) a C*
vector field on U orthogonal to the leaves of F3(v). By the Proposition 2.3,
WU(A1) N U contains an intrinsically C! diffeomorphic image Y of X x I,
where X is a small neighborhood of p; in W} (p1) N Ay and I is a compact
interval. Let &, = £,(¢) be some intrinsically C! vector field on Y tangent to
the leaves of W*(A1(v))NU and finally we define F(y,v) = &.(y, ¥)-&s(y, V),
which is a intrinsically C' map and the hypotheses (11) in the Lemma
4.1 correspond to have a quadratic tangency at ¢ between W"(p1, ) and
W#(pa, ). Observe that F'(q,¢) = 0. Then, by the lemma we get that there
exist V1 a compact neighborhood of py in WS (p1) N A1(¢) and 71, : Vi —
W*(A1(¢)) NU an intrinsically C* map such that each m,(z), z € V4, is a
point of tangency between W*(z) and some leaf of F3 ().

On the other hand, we also introduce mj, : U — W (p2) the projection
along the leaves of F5 (1)) onto W} (p2), for all ¢» € U. We identify W} (p2)
with an interval in R by the following C! diffeomorphism X, : W (p2) — R
with Xy (p2) = 0, for all ¢ € U. If it is necessary, we perturbed ¢, so that
ATio(p1,p1) - ITy, (A N W (p1)) is not tangent to the stable leaf F3(q),
see section 7 in [11]. Then, X, o 7} o M, is a intrinsically C! map and
A(X, o S, o m1,)(p1,p1)|EY is bijective, that means, by Proposition 2.4,
that 7(A1,p1) = 7(X, o 75, 0 T1,(V1),0). We put K = X, o w5, 0 miu(V1),
i.e. T(K$,0) = 7%(A1, p1).

Now, we define K, = Xy (Wj5.(p2) N Ag) and Kjj = Xy 0 may 0 m14(V1),
for ¢ € U, which are near K¢ and KJ, respectively, if ¢ is near to ¢. By
the Section 2.3 we have that 7(A1 (), p1) = 7(K,0), for all ¢ € U, where
Ky = m/(V1), taking my as we defined it in the section 2.3 and V4 sufficiently
small compact neighborhood of W2 (p1,1) N A1. The value 7(K v 0) varies



continuously with the diffeomorphism v € U in C? topology and the sets
K, and K are dynamically defined Cantor sets, see [11].

The applications hy : KZ — K defined by hj(z) = mf o CI)l(w)
(wg)_l(x) and hy : K3 — K deﬁned by hiy(x) = XypoPo (1) o (X, ) L(x) are
the natural equivalence between Kg and K It and, K¢ and K, & respectively.

By the Theorem 1.1 we have
T(K;’,O) : T(K[:’,,O) > 1+tg, for some tg >0

By continuity of thickness, the definition of local thickness and considering
U small enough, there is (50 > 0 such that for each 0 < § < §p we can find
Cantor sets K“’ C K3 N Bs(0) and KS C K3 N Bs(0) whose continuations

IN(:Z’ of IN(;’ and IN(;Z of f(j, satisfy
T(KY)-T(K5) > 1+to/2 V) €U
Now define the following functions 19% t KZJ — Rby

Uy (x) = Xy omy, 0 my 0 @1(¢h) o (wZ)‘l(w)
and 9y, : K3 — R by 95, (z) = Xy 0 @(¢) 0 X, (x). Then,

H(OHRD) - T03(Re) 2 1+ 2, W eU.

Let {®u}ue[-1,1) € U be a one-parameter family of diffeomorphisms,
with @9 = ¢, generically unfolding the tangency between W*(p1,¢) and
W#(p2, ). Then, for 6y > 0 sufficiently small and considering that Cantor
sets K and K as we defined above, there exists a parameter value pg close
to u = 0 such that the pair <19%M0 (IN(;“) , 193%0 (I?;)) is a stable linked.

Let Z be a small neighborhood of {$,} in the space of one-parameter
families of diffeomorphisms and I an interval such that for each family
{¢u} € Z we have that (U3 (K3, 95, (K3)) is a linked pair, for all p € I.
We define

W={p,eU:{p,} €Z and pel}

which is an open set by the openess of linking property. Observe that Z is
arbitrarily close to ¢. W is called open set of persistence of tangencies.

LEMMA 3.2. (Main Lemma) Let I’ C I be any subinterval. Then, there
exists a residual subset R of Z such that for each family ¥ = {¢,} € R,
there is a parameter value i € I' such that the corresponding map g exhibit
infinitely many nonhyperbolic strange attractors.

Proof of Theorem A: Let ¢ be a C%° diffeomorphism with a homoclinic
tangency associated to a sectionally dissipative saddle point. Then, by the
Theorem 2.1 there exists ¢ arbitrarily near to ¢ and as we see above there
exists VW an open set arbitrarily near to ¢, which, by the Main Lemma,



satisfies that every diffeomorphism ¥ € W can be approximated by a dif-
feomorphism displaying infinitely many nonhyperbolic strange attractors.
Taking U, the union of this open sets we obtain Theorem A.

COROLLARY 3.1. There exists a residual subset R of Z such that for
each family ¥ = {1} € R the set of parameter values € I, for which 1,
has infinitely many nonhyperbolic strange attractors, is dense in I.

Proof of Theorem B: First, we see the following remark of the Theorem 2.1

Remark 4: Let ® = {p,} be a C° one-parameter family of diffeomor-
phisms such that g has a homoclinic tangency associated to sectionally
dissipative saddle point. Among the families with this property, there exist
a residual subset which satisfies the following conditions: C? linearizabil-
ity of saddle point, quadratic tangency at g, generic unfolding as p varies
through 0, and conditions (1),(2) of the Chapter 2. Furthermore, we can see
that, in the considerations done above, the Theorem 2.1 holds for a generic
subset of C* families of diffecomorphisms (see [11], Sect. 7), that means,
if {¢,} belongs in this generic subset, there exists a sequence of parameter
values p1, — 0 such that ¢ = ¢, satisfies items (a) to (d) of the Theorem 3.1
and the subfamilies {t,} with ¢, = ¢,4,, v near zero, generically unfold
the heteroclinic tangency of item (b) of the Theorem 2.1.

Then, proof of the Theorem B is followed by of the Corollary 4.1 above
and, keep in mind, that countable intersection of residual subsets is a residual
subset.

0.12. Proof of the Main Lemma. The proof of the Main Lemma
will be done by induction. In this subsection, B, denotes the ball of radius
r, B,(x) denotes the ball of radius r and center x € M and m denote the
Lebesgue measure in R. We also denote 7y, the restriction of m,, to 1y (V1).
Let U, U as in the previous sectionand Z DRy DRe D - DRy D+ be
a sequence of sets satisfy that

a.- for N > 1 and each family ¥ = {v,} € Ry, there exists a compact
set Ey = En(¥) C I', m(Ey) > 0, such that for p € Ey, ¢,
has N distinct strange attractors S1 = S1(¥),...,Syv = Sy(¥);
furthermore,

a.l) each attractor S;, i = 1,---, N, is generated as in Chapter
2, ( Theorems 2.1 and 2.2) together with the section 3.2 and
the orbit of S; intersects U only once, inside B,, C U, where
BrimBTj =0, 1 # j;

a.2) EN—H(\I/) C EN(\I’);

b.- for each ¥ = {¢,} € Ry and p in a neighborhood of the convex
hull of Ey (), there are bridges Cf, D}, of K3 and C', DY of K,
i=1,---, N, such that N

b.1) theirimages J;, (C7) = C7(¥; p) and 9y, (CYNKY) = CF (¥; )
form a stable linked pair, see figure xx;



b.2) images of their intersections in U satisfy
On (W3 1) = (may,) ™ 0 Xy H(CF (W31) N CF(U5 ) C By

b.3) images of D3, 03, (CR) = CX(¥; ) and DY, 03, (D}(,ﬂl?:,f’) =
D}, (¥; ) form a stable linked pair;

b.4) images of their intersections in U, satisfy

Dav(W: 1) = (ma,) ™" © X5 (Dio(Wi ) (1 DY (W 1)) € By,
where B, C U and B,, N Be,, = 0.

We will show that R is open and dense in Z and Ry 41 is open and dense
in Ry, for all N > 1. Then, the proof of the Main Lemma follows taking
R = (\n>1; Ry which is a residual subset of Z and for each ¥ = {¢,} € R,
there exists a sequence of the following way, I’ D E; D Ey D --- D Ex D -+
of compact sets as item (a) above. Therefore, for each 7t € (|, ¥, exhibits
infinitely many strange attractors. N

R

CU(¥, w) I

I C{ (¥, 1)

CU (T, p)
I C*(T, )
D (¥, ) I I D3 (U, u)

FIGURE 2. induction

The openness of Ry, is a consequence of the following fact, linking
property is an open condition (i.e. item (b) is open) and applying Lemma
3.1 to item (a)(i.e. it is open). Now we will prove that Ry is dense in
Ry, N > 1 ( the proof also shows that R; is dense in Z; for that, for
U = {¢u} € Z we take Eo(¥) = I', D§ the convex hull of K3, Dy = K
and proceed as below with N = 0).

Let ¥ = {¢,} € Rn. We show that after four perturbation of the family
{®,}, to be described below, we get a family {¢,} € Ry41 C* arbitrarily
near to W.



Part 1. Let pun be a total density point of Ey, i.e.
m(En N [un — 6, un +6])/(26) — 1, as 6 — 0.
Let dg be the distance from
() Dn(¥,p) to R™\ B
HEEN

Take 0 < 71 < dp/2 and gy be the center of B.,. Define the following
function

3
&WWWZ&%ﬂWWW—QWH—@N—%m
where £ is a C*° bump function satisfying
E(s)=0, if s>2
fs)=1, if s<1
0<¢(s) <1, Vs € R.
for a small, we define the C**° diffeomorphism
Go:M — M
r — o, if xeM\U
Viu) — Vyu+a-En(Vyu), if 2e€U
First, note that G, o ¢, = 1,. Then, for a = 0 and for all ;. For each «
small, denote G 0oV the family {Gn o1, }. The Cantor sets D3 (GaoV; un),
D% (Gq o ¥; un) have 0 # a-velocity with respect each other. By item (b)
of induction hypothesis D3 (V; un), D% (V; un) form a linked pair, we get
that all the hypotheses of the Proposition 2.2 (Linking Lemma) are satisfied.

Then, there is aq arbitrarily small such that the linked pair above has two
stable sublinked. We also have,

3\"
||Ga0 oWV — \I/HCr < Const.]a0| . ||§N||Cr < Const.|a0| . <%> .

Observe that the perturbation above does not affect U \ Be,, i.e. does not
affect items (b.1) and (b.2) of induction hypothesis. Take ¥ = {G,01),} =
{wi} and let

<C}9V+1(‘I'1§NN)7C]1<I+1(‘I’1§NN)> and <D}9V+1(‘I’1§MN)» %+1(‘I’1§MN)>
be the sublinks pairs of (D3(¥1; un), D% (VY uy)). where (for 3 = s, u)
CRn (W1 8) =970 (O 1 V) and DYy (W5 o) = 07 ) (D1 NK),
EN KN

for some bridges Cyr,, Cyyq of f{; and Dy, Dy of I?f; Since the
sublinks are distinct, there exist rny4+1 > 0 and ey41 > 0 such that

Cn1 (U ) = (Xy, omay,) " (CRyp (B, ) NCR 1 (¥ 1)) C By, C Bey
and

DNH(\I’l;N) = (XWOWMH)_I(DJSV-H(‘I’laM)QDJ%-Fl(‘I’l;M)) C B€N+1 C Bey
and By, N Bey,, =0.



Part 2. Take 72 > 0 small and B, , -2+, C Bry,, concentric to the ball
By, i-e. they have the same center. On the other hand, by gap lemma,
C1 (U un) NCY 4 (U ) # 0. For 42 > 0 sufficiently small we obtain
that the tangency between W*(x) and W*(y), for some x € Ay (1/1,&1]3)QB5 (p1)
and y € AQ(@ZJELII\),) N Bs(pz2), is inside By, 2y,. Then, there are periodic
points Q1 € Al(@bglj\),) near x and Q2 € AQ(@Z),(}A),) N Bs(p2) near y such that
W“(Ql,zﬂl%) and W#(Qq, %(;11\),) cross By, —2y, C By, and

AQa)(V: 9fl)) — A@)(V, ufl)] < 56

(V@)@ 488 — (Vi) ul) (60D < 261

for every V € [-1,1]"71, t € [-1,1] and 0 < 201 < 172. Let ny and no
be the periods of ()1 and ()9, respectively, and fix § > 0 small. Then,
by the Lemma 2.2 we obtain a one-parameter family of diffeomorphisms
U2 = {zb,(f)} arbitrarily near W', independently 3, such that (@b,(f))”l is C*
linearizable near ()1 and (¢L2))”2 is C* linearizable near Qs, k > 4, for almost
every point p € [un — 3, un + 3. Since W? is arbitrarily near to ¥!, and by
the Lemma 2.1 there exists a compact set En(¥2) with m(ExN(¥?) > 0 and
En(%2) C [un — B, un + 3] such that Ex(¥?) satisfies item (a) of induction
hypothesis. Then, we consider py, € En(¥?) a total density point such that

(1/)22,) )™ is C* linearizable near @ and (1/1/(5))”2 is C* linearizable near Q.
N N

The family U2 can be chosen arbitrarily close to ! and Wy sufficiently
near to uy such that D%, (9% 1)y) and D34 (% 1y) form still a linked
pair,

~

Dy11 (9% ply) = <X¢i, © May2, )~ (D (W2, ) N Dy (925 py)
N N
CcB

EN+1

and W“(Ql,wl(f,)) and Ws(Qg,wl(f,)) cross By, —2y,. Moreover,
N N

AQ)V, 42 — AQV, 4] < o

V(@) u(@u)(4) ~ (V(Qu), u(@u) (9l < 50

where 61 + [ < %’yg.

Part 3. Let gy be the center of the ball B
map

and define the following

TN+1?

En(Viu) = 5(32[||<v, w) — )l — (rva1 —12)])



Equal to the first perturbation, we define the diffeomorphism éa, for
small, by

Go:M — M
x — z, ifxe M\U
Vou) — (Vouta-En(V,w), if z€U.

Then, there is o, with |a1| < const.(28; +3) < 372, such that W*(Q1, G, 0

¥?) and W*(Q2,Ga, o ¥?) have a tangency inside B, ,,—,. Take ¥3 =

G, © U2 observe that En(02) = En(¥3) and (wl(f,’))"l is C* linearizable
N

near ()1 and (wﬁ))m is C* linearizable near Q. Also,
N

3 T
|¥? — ¥3||cr < Const.|ay]| () :
72

Part 4. Define GooU? = Gy, 0P2 As the family {éalow,(?)} generically
unfolds the tangency for the parameter value u = gy, for each v small, there

. ~ 3 ~ 3
exists pup(«) such that W“(Ql,gla o 1[)LT)(Q)) and W*(Q2,Gq4 0 @ZJ;T)(Q)) are
tangent. Although, the family {G, o¢/§3)} generically unfolds this tangency.
Observe that p7(0) = iy and if « is sufficiently small, (Gy 0 ¢£3))”1 is OF
linearizable near Q1 and (éa o @bf’))m is C* linearizable near Qs, for a near
to a = 0 and p near to p = py. As py € En(¥?) is a total density point,
there is £y > 0 such that

(12) m(En(U3) N [y —t, 1y +1]) >t, YO <t <ty

Let © be a host interval of strange attractors in the pu-space for the
family W3 such that || < to and m(E(¥3)) > 2|Q|. Take Q satisfying
control of the orbits as in Section 4.2. Then, by the discussion in section
3.2 (summarized in Remark 2) consider Q(«) be the natural continuation
of Q = Q(0) arbitrarily near pr(a) (ie. |Q(a)| < to) corresponding to
the family {Ga o w&g)} such that the relative measure of E(«a) C Q(«) of
strange attractors satisfies m(E(a)) > 2|Q(a)|. We may suppose, without
loss of generality, that («) is on the right of up(«), for @ small, and pr(a)
decreases as « increases. So that, we can choose ag > 0 close to @ = 0 and
Q = Q(0) near pur(0) = py such that

pr(az) < p < pr(0), Yu € Qaz)
If we denote by p.(a) the center of the host interval 2(«). Then, there exists
az with 0 < ag < as such that p.(as) = pr(0) = py. From this and (12)
follow ( even using that y/y is a total density point of Ey(¥3) = En(Gao®?),
for all o small) that

m(Ex (Gay 0 U3) 1 B(ag)) > (i _ ;) (as)| > 0.



Finally, we take ® = {p,} = Gqy 0 U3 and Eny1 = En(®) N E(a3).

Also,
@ — 03| < Const. (ya3| (3> )
Y2

‘We conclude that

T r T
|® — ¥l cr < Const. gao!(f’l) +\041V<%> HO@’(%))
+ W — 2o

ag can be taken arbitrarily small with respect to v;, a1 and ag can be taken
also arbitrarily small with respect to 7 and by the Lemma 3.1, || U —W2||cr
is arbitrarily small for any r. Then, ||® — V|| is arbitrarily small for any
r. This concludes the proof of the Main Lemma.
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