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Aos meus grandes amigos e coterrâneos Sergio e Felipe o apoio de
vocês foi fundamental.

Aos meus novos amigos portugueses, nepaleses e brasileiros pelos
muitos encontros divertidos na cidade maravilhosa.

Ao IMPA e seu espetacular ambiente cient́ıfico.

Ao personal de ENSINO, obrigado pela boa e eficiente atencação.

Ao CNPq pelo apoio financieiro.



Contents

i

Agradecimentos ii

Abstract iv

Introduction v

Chapter 1. Preliminaries 1

Chapter 2. Renormalization scheme and quadratic-like families 9
1. Renormalization scheme in 2-cycles 9
2. Quadratic-like families 14
3. Special perturbation 16

Chapter 3. Proof of the main result 18
1. Fixing notation 18
2. Control of the orbits 19
3. Persistence of the tangency 20
4. Proof of Main Lemma 22

Bibliography 28

iii



Abstract

In this work we show, on a manifold of any dimension, that arbitrarily
near any smooth diffeomorphism with a homoclinic tangency associated to a
sectionally dissipative fixed (or periodic) point (i.e. the product of any pair
of eigenvalues has norm less than 1), there exists a diffeomorphism exhibiting
infinitely many Hénon-like strange attractors. In the two-dimensional case
this has been proved in [2]. We also show a parameteric version of this result
is true.
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Introduction

The two-parameter Hénon family of transformations of the plane

ha,b(x, y) = (1− ax2 + y, bx)

was studied by Hénon [3] to show, via a numerical approach, how a simple
model of an invertible dynamical system suggests the presence of a non-
hyperbolic strange attractor. However, the possibility that the attractor
observed by Hénon was just a periodic orbit with very high period could
not be excluded. In a remarkable work Benedicks and Carleson ([1]) showed
that this is not the case and they exhibited a positive Lebesgue measure sub-
set of parameters (a, b) for which the map ha,b has a nonhyperbolic strange
attractor.

An important application of Benedicks-Carleson’s methods ([1]) was
done by Mora and Viana in [5] in the setting of homoclinic bifurcation on
surfaces. More precisely, they showed that generic one-parameter families
of surfaces diffeomorphisms unfolding a homoclinic tangency always include
the presence, for a Lebesgue positive measure set of parameter values, of
Hénon-like strange attractors or repellers.

The result in [5] was extended by Viana ([15]) to homoclinic bifurcations
on manifolds of any dimension. Later on, Colli [2] showed a diffeomorphism
of surfaces having a homoclinic tangency can be approximated by diffeomor-
phisms exhibiting not only a strange attractor, but also by diffeomorphisms
displaying infinitely many of such strange attractors.

Our purpose in the present work is to extend the existence of infinitely
many strange attractors in [2] to higher dimensions in its full generality of
dissipative homoclinic bifurcations. Our main result is as follows

Theorem A. Let ϕ : M 7→ M be a smooth diffeomorphism on any
manifold with a homoclinic tangency associated to a sectionally dissipative
point. Then, there exists an open set U of Diff∞(M) containing ϕ in its
closure, such that every ψ ∈ U can be approximated by a diffeomorphism
exhibiting infinitely many nonhyperbolic strange attractors.

In the statement above, smooth means that ϕ : M 7→ M is C∞, M being
a n-dimensional manifold. We also recall that a homoclinic tangency is just
a tangency between the stable and unstable manifolds of a saddle periodic
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point. The saddle is called (codimension-one) sectionally or strongly dis-
sipative if it has just one expanding eigenvalue and the product of any two
eigenvalues has norm less than one. As in [15], we define attractor of a trans-
formation ϕ to be a compact, ϕ-invariant and transitive set Λ whose basin
W s(Λ) = {z ∈ M : dist(ϕn(z), Λ) → 0 as n → ∞} has nonempty interior.
We call the attractor strange if it contains a dense orbit {ϕn(z1) : n ≥ 0}
displaying exponential growth of the derivative, that is,

‖Dϕn(z1)‖ ≥ ecn for all n ≥ 0 and some c > 0

We also obtain a one-parameter version of Theorem A. More precisely,

Theorem B. For a generic subset of smooth one-parameter families
{ϕµ} of diffeomorphisms, on any manifold, that unfold a homoclinic tan-
gency at parameter value µ = 0 associated to a sectionally dissipative fixed
(or periodic) point there exist sequences In → 0 of intervals and dense sub-
sets En ⊂ In such that for all µ ∈ En, the corresponding map ϕµ displays
infinitely many nonhyperbolic strange attractors.

By smooth one-parameter family of diffeomorphism we mean that Φ :
R×M 7→ M , Φ(µ, x) = (µ, ϕµ(x)) is a C∞ map and ϕµ is a diffeomorphism
for all µ.

It is worth to point out that diffeomorphisms with the homoclinic tan-
gencies are not only approximated by ones displaying the phenomenon de-
scribed before but also for different ones. For instance, it has been shown
that homoclinic tangencies are approximated by Newhouse’s infinitely many
sinks (attracting periodic orbits) ([6],[7]) and cascades of period doubling
bifurcation ([16]). Still, it is conjectured that such an important phenome-
non concerning infinitely many attractors might be rare for parameterized
families of diffeomorphisms going through bifurcation of homoclinic tangen-
cies: a conjecture in [8] and [9] states that for most parameter values, the
corresponding diffeomorphisms display only finitely many attractors.

It is worth to point out also, that in the direction of existence of infin-
itely many strange attractors, some particular results have been found. In
1990 [4], Gambaudo-Tresser constructed an example of C2 diffeomorphism
in the two-dimensional disk exhibiting infinitely many hyperbolic strange
attractors. In 2000 [12], Pumariño-Rodriguez exhibited a C∞ family of
vector fields in R3, related to a saddle-focus connection, which, with a posi-
tive Lebesgue measure set in the parameter values, displays infinitely many
Henón-like strange attractors.

Among the difficulties to extend the result in [2] from two to higher
dimensions we have that projections along the invariant foliations (in our
case unstable foliations) of a basic set may not have a much regular metric
behavior: in general, these projections are not Lipschitz but just Hölder con-
tinuous. We follow some ideas presented in [11] to bypass these difficulties



and also to obtain further estimates necessary to prove Theorems A and B.
On the other hand, to construct strange attractors we need to display a high
dimensional renormalization scheme for heteroclinic tangencies in 2-cycles
and then apply results in [15].

This work is organized as follows. In Chapter 1, we review the con-
struction used to prove that infinitely many coexisting attracting periodic
orbits for diffeomorphisms in high dimensions as presented in [11]. We take
special care with the expansion and contraction rates of the basic sets in-
volved. This chapter finishes with the Theorem 1.1 which summarizes the
facts established in the previous sections. In Chapter 2, we proved some
preliminary machinery to show the main theorems. In Section 2.1, we de-
scribe a higher dimension version of the renormalization scheme in 2-cycles
of periodic points with a heteroclinic tangency in [2], following ideas in [10]
and [15]. This renormalization scheme depends on a delicate relation be-
tween the contracting and expanding eigenvalue of periodic points involved.
In section 2.2, we give a brief summary of the main result in [15] and derive
several consequences of its proof. In section 2.3, we make a special pertur-
bation for one-parameter families of diffeomorphisms to obtain new families
which have linearizing coordinates in a neighborhood of the periodic points,
as in section 2.1. Such perturbation is necessary since in the renormalization
scheme of section 2.1 we assume that there exist linearizing coordinates in
a neighborhood of the periodic points. In Chapter 3, we prove Theorems A
and B. The proofs are consequence of the a main lemma showed in section
3.4. The proof of Theorem B is more delicate and we have to be more careful
in applying the main lemma.



CHAPTER 1

Preliminaries

In this section, we follow ideas and rewrite some results in [11] to create
a language which we shall use in the proof of the main theorems. We start
by giving a formal definition of stable thickness for a hyperbolic basic set
whose stable foliation have codimension one. We show a condition given
in [11] to obtain a basic hyperbolic set with ”intrinsically” C1 unstable
foliations. Moreover, the projection along leaves of W u(Λ1) is intrinsically
C1. In the next section we give a formal definition of unstable thickness for
a hyperbolic basic set Λ1 whose unstable foliation has codimension bigger
than one. In this case we assume that Λ1 has a periodic point displaying
a unique weakest contracting eigenvalue. Later on, we show that we can
obtain such a condition.

0.1. Cantor sets and thickness. A Cantor set in R, is a compact,
perfect and totally disconnected set. Let K be a Cantor set and I its convex
hull, i.e. the minimal (closed) interval of R containing K. A gap of K
is a connected component of R \ K. A presentation of K is an ordering
U = {Un}n≥1 of the bounded gaps. An ordered presentation of K is a
presentation U such that `(Un) ≤ `(Um) for all n > m, where `(Un) denoted
of length of Un. The bridge at u ∈ ∂Un, Un ∈ U , is the component of
I \ (U1 ∪ · · · ∪ Un) that contains u. The thickness of K is the number

τ(K) = inf{τ(K,U , u) : u ∈ K },
where U is any ordered presentation of K,

τ(K,U , u) =
`(C)
`(Un)

,

and where C is the bridge at u ∈ ∂Un. this definition of thickness not depend
on the ordered presentation U (see [10]).Let k ∈ K. The local thickness of
K at k is the number

τ(K, k) = lim
ε→0

(
sup{τ(K̃) : K̃ ⊂ K ∩Bε(k) a Cantor set })

Let K1, K2 be Cantor sets and I1, I2 their convex hulls. We say that
the pair 〈K1,K2〉 is linked if I1 ∩ I2 6= ∅. I1 is not inside a gap of K2 and I2

is not inside a gap of K1.The link is called stable if the same condition are
verified by the interiors int(I1), int(I2) of I1, I2.

Let Λ be a nontrivial basic set of a C2 diffeomorphism ϕ : M 7→ M ,
whose stable foliation is of codimension one, i.e., such that dimW s(x) =
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n−1, n = dimM, for all x ∈ Λ. Let z ∈ W s(Λ) and φ : [−a, a] 7→ M be a C1

embedding transverse to W s(Λ) at z = φ(0). The local stable thickness of Λ
at z is τ s(Λ, z) = τ(φ−1(W s(Λ)), 0). This is independent of the choice of φ,
as a consequence of the fact that (under codimension-one assumption) the
holonomy maps (i.e., the projections along the leaves) of the stable foliation
of Λ can be extended to C1 maps. Actually, this smoothness of the holonomy
of W s(Λ), together with the transitivity of ϕ|Λ, also implies that τ s(Λ, z)
has the same value for every z ∈ W s(Λ). We denote by τ s(Λ) this constant
value and call it the local stable thickness of Λ. This is a strictly positive
(finite) number and depends continuously on the diffeomorphism, in the
sense that if Λψ denotes the smooth continuation of Λ for a diffeomorphism
ψ which is C2-close to ϕ, then τ s(Λψ) is close to τ s(Λ). Local unstable
thickness τu(Λ, z) and τu(Λ) are defined in a similar way, when W u(Λ)
has codimension one. In particular, both the stable thickness and unstable
thickness are well-defined if M is a surface.

In the proof of the main theorems we will use the following two important
results involving thick Cantor sets,

Proposition 1.1. (Newhouse’s Gap Lemma) Let K1, K2 be Cantor sets
in R such that τ(K1) ·τ(K2) > 1 and 〈K1,K2〉 is linked. Then, K1∩K2 6= ∅.

The next result is used by Colli [2] to show the existence of infinitely
many strange attractors for diffeomorphisms on a manifold of dimension
two.

Proposition 1.2. (Linking Lemma) Let K1, K2 be Cantor sets in R,
with τ(K1) · τ(K2) > 1, and I1, I2 the convex hull of K1, K2, respectively.
Let ϑβ : I1 7→ R and ϑ̃β : I2 7→ R be such that

a.- ϑβ and ϑ̃β are topological embedding, for all β ∈ R;
b.- ϑβ(x) and ϑ̃β(y) are differentiable with respect to β, for all x ∈ K1

and y ∈ K2;
c.- ∂β

[
υβ(x)− υ̃β(y)

] ≥ c > 0, for all x ∈ K1 and y ∈ K2;
d.- if K̃1 ⊂ K1 and K̃2 ⊂ K2 are Cantor subsets and let β0 ∈ R be such

that the pair 〈ϑβ0(K̃1) , ϑ̃β0(K̃2)〉 is linked. Then, for any ε > 0,
there is β such that

i) |β − β0| < ε;
ii) the pair 〈ϑβ(K̃1) , ϑ̃β(K̃2)〉 has two (stable) sublinks.

0.2. Intrinsically smooth foliations of hyperbolic sets. Let X ⊂
Rm be a compact set and ϕ : X 7→ Rn be continuous. We say that ϕ is
intrinsically C1 on X if there exists a continuous map ∆ϕ : X × X 7→
L(Rm,Rn) such that

ϕ(x)− ϕ(z) = ∆ϕ(x, z) · (x− z) for all x, z ∈ X.



Such a ∆ϕ (which is, in general, far from unique) is called an intrinsic
derivative of ϕ. We say that ϕ is intrinsically C1+γ on X if it admits some
γ-Hölder continuous intrinsic derivative.

Remark 1: Let ϕ : X 7→ Rn be Lipschitz continuous and U ⊂ X ×X be
such that {‖x− z‖ : (x, z) ∈ U} is bounded away from zero. Then, there is
a Lipschitz continuous map ∆ : U 7→ L(Rm,Rn) such that ϕ(x) − ϕ(z) =
∆(x, z) · (x− z) for every (x, z) ∈ U .

Let q0 be a transverse homoclinic point associated to some hyperbolic
fixed (or periodic) saddle point p of a C2 diffeomorphism ϕ : M 7→ M .
We assume q0 /∈ W ss(p) and another mild (open and dense) transversally
condition to be stated in (1) below. Then, our goal, in this section, is to prove
that there exists a hyperbolic basic set Λ1 containing p and q0 and whose
unstable foliation is intrinsically C1. We assume that ϕ is C2 linearizable
on a neighborhood U of p.

Let us denote by σ1, . . . , σu, λ1, . . . , λs, u + s = m, the eigenvalues of
Dϕ(p), with |σu| ≥ · · · ≥ |σ1| > 1 > |λ1| ≥ · · · ≥ |λs|. We define 1 ≤ w ≤ s
by |λ1| = · · · = |λw| and let Es = Ew ⊕ Ess be the invariant splitting such
that Dϕ(p)|Ew has eigenvalues λ1, . . . , λw and Dϕ(p)|Ess has eigenvalues
λw+1, . . . , λs. We choose C2 linearizing coordinates (ξ1, . . . , ξu, ζ1, . . . , ζs)
on a neighborhood U of p and, furthermore, we may assume that

C1.- W u(p) ⊂ {ζ1 = · · · = ζs = 0} and W s(p) ⊂ {ξ1 = · · · = ξu = 0};
C2.- Ew = {0u}×Rw×{0s−w} and the strong manifold (tangent to Ess

at p) satisfies W ss
loc(p) ⊂ {ξ1 = · · · = ξu = ζ1 = · · · = ζw = 0}.

Up to a convenient choice of riemannian metric we have, for σ = |σ1|,
λ = λ1| = |λw| and θ = |λw+1|,

C3.- (σ − ε)‖v‖ ≤ ‖Dϕ(p)v‖, for all v ∈ Eu

C4.- (λ− ε)‖v‖ ≤ ‖Dϕ(p)v‖ ≤ (λ + ε)‖v‖, for all v ∈ Ew

C5.- ‖Dϕ(p)v‖ ≤ (θ + ε)‖v‖, for all v ∈ Ess

where ε > 0 is fixed small enough so that θ +2ε < λ− 2ε < λ+2ε < σ− 2ε.
(In the case w = s, i.e., if all contracting eigenvalues have the same norm,
Ess = {0}, W ss(p) = {p} and we leave θ undefined).

Now we will construct a hyperbolic set whose unstable foliation is in-
trinsically C1 using the tranversality between W s(p) and W u(p) at q0.
Fix q, r ∈ U in the orbit of q0 in such a way that q ∈ W s(p)loc and
r = ϕ−N (q) ∈ W u(p)loc. Take

V = Vδ =
{‖(ξ1, . . . , ξu)‖ ≤ δ

}× {‖(ζ1, . . . , ζs)‖ ≤ ρ
}

where δ > 0 is small and ρ > 0 is fixed in such a way that {q, r} ⊂ int(V ) ⊂
V ⊂ U . Let n = n(δ) be minimum such that r ∈ int(ϕn(V )). (We suppose
that δ is conveniently adjusted so that ϕN+n(V ) cuts V in two cylinders.



We define

Λ =
⋂

k∈Z
ϕ(N+n)k(V ) and Λ1 =

N+n⋃

i=1

ϕi(V ).

It is well know that Λ1 is a nontrivial hyperbolic basic set, see [13]. We
assume the following generic (open and dense) condition

(1) Duwφuw(r) is an isomorphism.

Here D denotes the usual derivative and (1) means that unstable/weak-
stable directions are not sent to strong-stable directions by φ = ϕN . With
this condition it is shown in [11] that for every point x ∈ Λ1, the intrinsic
tangent space to Λ1

ITxΛ1 = span
{

v : there is (xn)n ∈ ΛN1 so thatxn → x and
xn − x

‖xn − x‖ → v

}

(for simplicity we consider here M = Rn) is contained in (u+w)-dimensional
space. Moreover the intrinsic tangent space to W u

loc(Λ1) at every point x ∈
W u

loc(Λ1) is contained (u+w)-dimensional space. In particular, ITpW
u(Λ1) ⊂

Eu ⊕ Ew. The fact that we have a good property for the unstable foliation
is showed in the following result.

Proposition 1.3. (1) Suppose that ϕN satisfies condition (1)
above and consider Λ1 also as above. Then, the map F : W u(Λ1) 37→
TxW u(x) is intrinsically C1 on compact parts of W u(Λ1).

(2) Let Σ0, Σ1 be (small) C1 sections transverse to W u(x) for some
x ∈ W u(Λ1) and let π : Σ0 ∩W u(Λ1) → Σ ∩W u(Λ1) be to denote
the projection along the leaves of W u(Λ1). Then, π is intrinsically
C1.

0.3. Thickness in higher dimension. In this subsection we want to
define the local unstable thickness of a basic set with unstable foliation of
codimension greater than one.

Consider Λ1 as it was constructed in the previous section. And we
suppose that for a periodic point p, Dϕ(p) has a unique (necessarily real)
weakest contracting eigenvalue λ = λ1, and ϕ is C2 linearizable near p.
Then, we consider π : Λ1 ∩W s

loc(p) 7→ R to be an arbitrary intrinsically C1

map such that ker∆(π(p, p)) does not contain IT(Λ1 ∩W s
loc(p)) = Ew (i.e.,

∆π(p, p)|Ew is bijective) and we define

τu(Λ1, p) = τ(π(Λ1 ∩W s
loc(p)), π(p))

the local unstable thickness of Λ1 at p. It is shown in [11] that the definition
above does not depends on π as taken above, also it is strictly positive and
varies continuously with the diffeomorphism: if ψ is a C2-small perturbation
of ϕ, τu(Λ1(ψ), p) is a small variation of τu(Λ1, p).



Let πw : Λ1∩W s
loc(p) → R be the restriction to Λ1∩W s

loc(p) ⊂ {0u}×Rs

of the projection (ξ1, . . . , ξu, ζ1, . . . , ζs) 7−→ ζ1. πw is a homeomorphism onto
its image Kw and moreover π−1

w is intrinsically C1+γ on Kw, see [11]. The
fact that π ◦ π−1

w is an intrinsically C1 map with

∆(π ◦ π−1
w )(0, 0) = ∆π(p, p) ·∆π−1

w (0, 0) 6= 0.

Then, τ(π(Λ1 ∩ W s
loc(p)), π(p)) = τ(Kw, 0) as a consequence of π(Λ1 ∩

W s
loc(p)) = (π ◦ π−1

w )(Kw) and the following result. See [11],

Lemma 1.1. Let K ⊂ R be a Cantor set, y ∈ K and g : K → R be an
intrinsically C1 map with ∆g(y, y) 6= 0. Then, τ(g(K), g(y)) = τ(K, y).

It is also shown that Kw is dynamically defined Cantor set, in the same
sense as in ([10], Ch.IV), i.e., τ(Kw) > 0. Moreover, if ψ is a diffeomorphism
C2-close to ϕ, τ(Kw(ψ), 0) is close to τ(Kw, 0).

The following result shows that the definition of unstable thickness does
not depend on transverse section to W u(Λ1). We will use such fact in the
section 4.

Proposition 1.4. (a) Let q ∈ W u(p), Σ be a C1 section trans-
verse to W u(p) at the point q and π : W u(Λ1) ∩ Σ → R be an
intrinsically C1 map such that ITq(W u(Λ1) ∩ Σ) is not contained
in ker(∆π(q, q)). Then, τ(π(W u(Λ1) ∩ Σ), π(q)) = τu(Λ1, p).

(b) More generality, given z ∈ W u(Λ1), Σ a transverse section to
W u(Λ1) at z and π : W u(Λ1)Σ → R a submersion with ITz(W u(Λ1)∩
Σ) * ker(∆π(z, z)). Then, τ(π(W u(Λ1)∩), π(z)) = τu(Λ1, p).

0.4. Unique least contracting eigenvalue. Let {ϕµ} be a C∞ one-
parameter family of diffeomorphisms generically unfolding at µ = 0 a qua-
dratic homoclinic tangency associated to saddle fixed (or periodic) point p
of ϕ0. We also assume once more that there are C2 µ-dependent coordinates
(ξ1, . . . , ξu, ζ1, . . . , ζs) linearizing the ϕµ, for µ near zero, on a neighborhood
U of the analytic continuation pµ of p. Moreover, these coordinates can be
taken to satisfy conditions (C1)-(C5) of Section 2.2.

We assume in this section that Dϕ0(p) has exactly two weakest contract-
ing eigenvalues and these are complex conjugate numbers, this means that,
w = 2, λ1 = λe−iγ , λ2 = λeiγ with λ > |λ3| and γ ∈ R \ {kπ : k ∈ Z}. Here
we may even assume that Dϕµ(pµ)|Ew is conformal with respect to Euclid-
ean metric introduce by coordinates ζ1, ζ2. On the other hand, we may take,
say for µ ≥ 0, points qµW s

loc(pµ), rµ ∈ W u
loc(pµ) depending continuously on

µ, such that ϕN
µ (rµ) = qµ for some fixed N ≥ 1, r0, q0 belong to the orbit of

the tangency and rµ, qµ are points of the transverse intersection of W u(pµ)
and W s(pµ) for every µ > 0. Recall that, moreover, there exists a sequence
of parameter value µj → 0 such that W u(pµ) and W s(pµ) also have point of
tangential intersection.



For each fixed µ = µj and every sufficiently large n ≥ 1, there is a
neighborhood of V = V (j, n) of {pµ, qµ}, as in section 2.2, such that

Λ(j, n) =
⋂

k∈Z
ϕ(n+N)k

µ (V )

is a ϕN+n
µ -invariant hyperbolic set and ϕN+n

µ |Λ(j, n) is conjugate to the
2-shift. Moreover, given any periodic point p̃ ∈ Λ(j, n), there are parameter
values µ̃ arbitrarily close to µj for which ϕeµ has homoclinic tangencies as-
sociated to (the analytic continuation of) p̃. We consider p̃ = p̃(j, n) to be
the unique ϕn+N

µ -fixed point in Λ(j, n) \ {pµ}. Clearly, the orbit of p̃ passes
arbitrarily close to pµ if j and n are sufficiently large. The following result
show our goal in this subsection,

Proposition 1.5. Suppose that ϕ0 satisfy the condition (2) below.
Given j sufficiently large. Then, there exist values of n = n(j) arbitrar-
ily large such that DϕN+n

µ (p̃) has a unique weakest contracting eigenvalue.

Consider

DϕN
µ =




Auu Auw Aus

Awu Aww Aws

Asu Asw Ass


 , ∆µ =

(
Auu Auw

Awu Aww

)

where the expression of DϕN
µ with respect to the splitting Eu ×Ew ×Es =

Ru × R2 × Rs−2. We also denote

Dϕ−N
µ =




A−uu A−uw A−us

A−wu A−ww A−ws

A−su A−sw A−ss




The generic assumption in the proposition above is (cf. (1))

(2) ∆µ=0(r0), and so also A−ss(µ = 0, q0) is an isomorphism.

Of the proof of the Proposition 2.5 above we can obtain that dimW u(p̃) =
dimW u(p), dimW s(p̃) = dimW s(p) and Dϕn+N

µ (p̃) is sectionally dissipative
if Dϕ0(p) is.

We conclude that there exist a sequence of parameter values µ̃j → 0 such
that ϕeµj

exhibit homoclinic tangencies associated to p̃j → p and Dϕ
kj

eµj
(p̃j),

kj is the period of p̃j ,has a unique weakest contracting eigenvalue.

0.5. Thick invariant Cantor sets. Let ϕ be a C∞ diffeomorphism
with a quadratic homoclinic tangency at q0 associated to a fixed (or peri-
odic) point p. We suppose that dimW u(p) = 1 and Dϕ(p) is sectionally
dissipative, i.e., the product of any two of its eigenvalues has norm less than
one.

Let {ϕµ} be a C∞ one-parameter family of diffeomorphisms with ϕ0 = ϕ,
such that generically unfold the homoclinic tangency. We suppose once more
that the ϕµ, µ near zero, admit C2 µ-dependent linearizing coordinates



(ξ, Z) ∈ R × Rn−1 on a neighborhood U of p. We fix these coordinates
in such a way that W u

loc(pµ) ⊂ {Z = 0} and W s
loc(pµ) ⊂ {ξ = 0}. The

assumption on the eigenvalues of Dϕ0(p) means that we may choose a norm
in Rn to be such that

|σµ| · ‖Sµ‖ < 1 for every µ near zero

where σµ is the expanding eigenvalue of Dϕµ(pµ) and Sµ = Dϕµ|Es(pµ).
It is shown in [11] that, there are a constant N (positive integer) and

for each positive integer n, reparametrization µ = Mn(ν) of the variable µ
and (µ, n)-dependent coordinates transformation

(ν, x, Y ) 7→ (Mn(ν), Θn,ν)(x, Y ))

such that the map

(ν, x, Y ) 7→ (ν, Θ−1
n,ν ◦ ϕn+N

Mn(ν) ◦Θn,ν(x, Y )),

converge, in C2-topology, to the map (ν, x, Y ) 7→ (ν, x2 + ν, Ax), where
A ∈ Rn−1.

The existence of a hyperbolic basic set Λ2 with arbitrarily large thickness
follows of the fact that for the map x 7→ x2 + ν, and also for
ψ−2 : (x, Y ) 7→ (x2 − 2, Ax), there exist invariant expanding Cantor sets
Kj with thickness τ(Kj) → +∞ as j → +∞. Moreover, these Kj are tran-
sitive and have a dense subset of periodic orbits. It is follows that each Kj

has , for n large, µ = Mn(ν) and ν close to −2, an analytic continuation as
a hyperbolic basic set Kj(n, µ) of

(Θ−1
n,ν ◦ ϕn+N

Mn(ν) ◦Θn,ν(x, Y )).

In particular, the set Kj(n, µ) has codimension-1 stable foliation and stable
thickness τ(Kj(n, µ)) close to τ(Kj) À 1. Then, we just take
Λ2 = Λ2(µ) = Θn,ν(Kj(n, µ)) with j and n large and µ = Mn(µ), ν close to
−2. It is also shown that parameter values νn → −2 can be taken in such a
way that

f (n)
νn

= Θ−1
n,νn

◦ ϕn+N
Mn(νn) ◦Θn,νn

have periodic points P (n, νn) and Q(n, νn) ∈ Kj(n, µ), µ = Mn(νn), which
are heteroclinic related and W u(Q(n, νn)) also has nontransverse intersec-
tions with W s(P (n, νn)).

Now for f = f
(n)
νn , there are 0 < λ = λ(n) < λ = λ(n) < 1, 1 < σ < σ

and c = c(n) > 0 such that
(1) c−1σi‖u‖ ≤ ‖Df i(x) · u‖ ≤ cσ i‖u‖;
(2) c−1λi‖v‖ ≤ ‖Df i(x) · v‖ ≤ cλ

i‖v‖,
for all x ∈ Kj(n, µ), u ∈ Eu

x , v ∈ Es
x and i ≥ 0. If Λ2 = Λ(n, µ) =

Θn,νn(Kj(n, µ)) is a hyperbolic basic set for ϕn+N
µ , where µ = Mn(νn) and

z ∈ Λ2 is a periodic point of ϕn+N
µ of period k = (n + N)j. Then, z =



Θn,νn(x), where x is a periodic point of f of period j. We conclude that if
σ2 is the expanding eigenvalue of Dϕk

µ(z). Then,

σk
2 = σ

(n+N)j
2 ≤ σ j ≤ ( n+N

√
σ)j ,

therefore, σ2 ≤ n+N
√

σ → 1 , as n → +∞. For µ near zero and y near
ϕ−N

µ (q0) in U , we have ‖DϕN
µ (z)‖ ≤ k, for a large constant k, and if Sk

2µ =
Dϕk

µ(z)|Es
z , we have

‖Sk
2µ‖ = ‖Dϕk

µ|Es(z)‖ ≤ ‖DϕNj
µ |Es(ϕnj

µ (z)) ◦Dϕnj
µ |Es(z)‖

≤ (k )j‖Sµ‖nj < 1,

for n sufficiently large, that mens, ‖S2µ‖ < λ0 < 1 for n large, where λ0

does not depend on n.
For the discussion above together with section 2-4 we concluded this

section with the following result which is a summarized of this chapter.

Theorem 1.1. Let ϕ0 be a smooth diffeomorphism having a homoclinic
tangency associated to a sectionally dissipative saddle fixed (or periodic)
point. Then, there exists a smooth diffeomorphism ϕ arbitrarily near ϕ0

such that
a.- ϕ has hyperbolic basic set Λ1 and Λ2 with τ s

loc(Λ2) · τu
loc(Λ1) > 1;

b.- there are periodic points p1 ∈ Λ1 and p2 ∈ Λ2 such that W u(p2) has
a transversal intersection with W s(p1) and W u(p1) meet quadrati-
cally in a point q with W s(p2);

c.- the hyperbolic basic set Λ1 has intrinsically C1 unstable foliation
and p1 ∈ Λ1 has a unique least contracting eigenvalue;

d.- there exists c > 0 such that if Q1 ∈ Λ1 and Q2 ∈ Λ2 are periodic
points of period k1 and k2 respectively, denote λi = ‖Si = Dϕ|Es

Qi
‖

and σki
i the unstable eigenvalue of Dϕki, i = 1, 2. Then,

d1) |λ2 · σ2| < 1;
d2) |σ2c

1 · λ2| < 1;
d3) σ2 is so small that |σ2 · (λ1σ1)c/2| < 1.



CHAPTER 2

Renormalization scheme and quadratic-like
families

In this chapter we describe a higher-dimensional version of the renor-
malization scheme in 2-cycles of periodic points with a heteroclinic tangency
following ideas from [15] and [10]. We Also state and comment about
quadratic-like families as considered in [15]. Finally we make a delicate
discussion on how to perturb a one-parameter families of diffeomorphisms
to obtain linearizability.

0.6. Renormalization scheme in 2-cycles. Let ϕ be a C∞ diffeo-
morphism having basic sets Λ1, Λ2 and fixed (or periodic) points p1 ∈ Λ1

and p2 ∈ Λ2, such that dimW u(p1) = W s(p2) = 1; W s(p1) and W u(p2) have
a transverse intersection in a point r0 and W u(p1) have a nontransverse
contact (i.e. tangency) with W s(p2) in a point q, see figure 1. We suppose
that Dϕ(p1) is sectionally dissipative, (i.e. the product of any two of its
eigenvalues has norm less than one). We also suppose that the tangency is
quadratic.

Let {ϕµ} be a C∞ one-parameter family of diffeomorphisms with ϕ0 = ϕ
and generically unfolding the tangency. We assume that ϕ0 is C4 lineariz-
able near p1 and p2. As Ck-linearizable is an open condition (see [14]).
We assume that the ϕµ , µ close to zero, admit C4 µ-dependent linearizing
coordinates in a neighborhood of p1 and p2, that means, there are neigh-
borhoods U1 of p1 and U2 of p2 such that the expression of ϕµ, µ small,
in U1 is (ξ, H) 7→ (σ1µξ, S1µH), in U2 is (η, J) 7→ (σ1µ2η, S2µJ) where σ1µ

and σ2µ are the expanding eigenvalue of Dϕµ(p1) and Dϕµ(p2) respectively
and Siµ = Dϕµ|Es(pi), i = 1, 2. We may suppose that q = (1, 0n−1) ∈ U1,
therefore, there exists N > 1 such that ϕN

µ (q) = (0, J0) ∈ U2, see figure 1.
We assume that for (µ, ξ,H) close to (0, 1, 0n−1) we may write ϕN

µ (ξ,H) as
(
α(ξ − 1)2 + β ·H + aµ + r(µ, ξ − 1,H) , J0 + γ(ξ − 1) + R(µ, ξ − 1,H)

)

where we have α,a ∈ R, β ∈ L(Rn−1,R), γ ∈ L(R,Rn−1) and

(3) r,R, Dr,DR, ∂ξξr, ∂µξr and ∂µµr vanish at (0, 1, 0n−1)

The hypothesis of nondegeneracy of the tangency amount to having
α 6= 0 and a 6= 0. Moreover, using a µ-reparametrization and µ-dependent
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linear changes of the space of coordinates, we may even assume a = 1,
r(µ, 0, 0) = 0, R(µ, 0, 0) = 0n−1 and ∂ξ(µ, 0, 0) = 0.

W s(p1)

W u(p1)

W u(p2)

W s(p2)

p2

(1, 0)

q = (1, 0)

(η0, J0)

p1

ϕm
µ (η0, J0)

R0

Figure 1. Renormalization scheme

We still have to consider the transition map among the neighborhoods
U2 of p2 and U1 of p1 and their “transverse” intersection. We may suppose
that r0 = (1, 0) ∈ U2, then there is N1 > 0 such that ϕN1

µ (r0) = (0, R0) ∈ U1,
for µ small. Suppose that ϕN1

µ , for (η, J) near (1, 0), has the form

ϕN1
µ (η, J) = (0, R0)+

(
aµ Bµ

cµ Dµ

)(
η − 1

J

)
+

(
θ(µ, η−1, J),Θ(µ, η−1, J)

)

where aµ ∈ R, Bµ ∈ L(Rn−1,R), cµ ∈ L(R,Rn−1), Dµ ∈ L(Rn−1),
θ(µ, 0, 0) = 0, Θ(µ, 0, 0) = 0 and

(4) Dθ, DΘ vanish at (µ, η − 1, J) = (µ, 0, 0).

By transversality between W u(p2) and W s(p1) we have aµ 6= 0, for µ small.
Now we fix A0 ≤ 3 a real constant. Fix N and N1 as above. We denote

Φ : R×M −→ R×M , C∞ map, Φ(µ, x) = (µ, ϕµ).

Theorem 2.1. Let N , N1 positive integer as above and let 0 < c < 1 be a
small constant such that the following hold |σ2c

1 ·λ2| < 1 and |σ2·(λ1·σ1)c/2| <
1. Choose n = n(m) such that (c/2) ·m ≤ n(m) ≤ c ·m. Then, there exists
a sequence Θn,m : [1/A0, A0]× [−A0, A0] −→ R×M of Ck diffeomorphisms



such that the sequence fn,m = Θ−1
n,m ◦ ΦN+n+N1+m ◦ Θn,m converge to the

map
φ(a, x, y1, · · · , yn−1) = (a, 1− ax2, 0n−1)

in Ck topology, as n,m →∞.

Proof. We first describe a construction of Θn,m. We start observing
that if one look at ϕ−N1

µ (W s(p1)) in U2 coordinates near (1, 0). Then, it
is the graph of a function x 7→ Γµ(x). Analogously, W u(p2) near (0, R0)
is the graph of a function x 7→ ∆µ(x) in U1 coordinates. For n and m

sufficiently large, we also define the functions x 7→ Γ(m)
µ (x) and y 7→ ∆(n)

µ (y)
whose graphs correspond to ϕ−N1

µ

(
{ξ = σ−n

1µ }
)

and ϕN1
µ

({J = Sm
2µ · J0}

)

respectively.
Using the notation above, we take η0 = η

(n,m)
0 (µ) = σ−m

2µ Γ(m)
µ (Sm

2µ · J0),

such that, (σ−n
1µ , ∆(n)

µ (σ−n
1µ )) = ϕN1

µ ◦ ϕm
µ (η0, J0), i.e.

(5) σ−n
1µ = aµ(σm

2µη0 − 1) + BµSm
2µJ0 + θ(µ, σm

2µη0 − 1, Sm
2µJ0) and

(6) ∆(n)
µ (σ−n

1µ ) = R0 + cµ(σm
2µη0 − 1) + DµSm

2µJ0 + Θ(µ, σm
2µη0 − 1, Sm

2µJ0).

Consider the (n,m)-dependent reparametrization

(7) µ = µn,m(a) = − a

α
σ−2n

1µ σ−2m
2µ + η0 − σ−2n

1µ σ−2m
2µ β · Sn

1µ∆(n)
µ (σ−n

1µ )

Recall that β ∈ L(Rn−1,R). From (5) we have

(8) a = an,m(µ) = −ασ2n
1µσ2m

2µ µ− σ2n
1µσ2m

2µ η0 + β · Sn
1µ∆(n)

µ (σ−n
1µ ).

It is easy to check that any constant given A0 > 0 for (n,m) sufficiently
large an,m(µ) maps a small interval In, in µ-space, close µ = 0 diffeomorphi-
cally onto [−A0, A0]. Then, we introduce (µ, n, m) dependent coordinates
(x, Y ) given by

Θ̂n,m

(
a, x, Y

)
=

(
µn,m(a) = µ ,−σ−2n

1µ σ−2m
2µ

a

α
x + η0, σ

−m
2µ αnY + J0

)

with αn = σ−n
1µ · ωn, where 1 < ω < min

{
σ1µ, (

√
λ1µ · σ1µ)−1

}
. Denote

(µ , η , J) = Θn,m(a, x, Y ) . Then, the return map ΦN+n+N1+m in the
(µ , η , J)-coordinates is given by

(µ , η , J) −→
(
µ , α(ξ − 1)2 + β ·H + µ + r(µ , ξ − 1,H) ,

J0 + γ(ξ − 1) + R(µ , ξ − 1, H)
)
,



where ξ(η , J) = σn
1µ

[
aµ(σm

2µη − 1) + BµSm
2µJ + θ(µ , σm

2µη − 1 , Sm
2µJ)

]
and

H(η , J) = Sn
1µ ·

[
R0 + cµ(σm

2µη − 1) + DµSm
2µJ + Θ(µ , σm

2µη − 1 , Sm
2µJ)

]
.

Then, the return map in (a, x, Y )-coordinates is given by

(a , x, Y ) →
(
a , (−α/a)σ2n

1µσ2m
2µ

[
α(ξ− 1)2 + β ·H + µ + r(µ , ξ− 1,H)− η0

]
,

σm
2µ(αn)−1

[
γ(ξ − 1) + R(µ , ξ − 1,H)

])

where
ξ(x, Y ) = σn

1µ

{
aµ

[
σm

2µ(−σ−2n
1µ σ−2m

2µ
a
αx + η0)− 1

]
+BµSm

2µ(σ−m
2µ αnY + J0) + θ(µ , σm

2µη − 1 , Sm
2µJ)

}

and
H(x, Y ) = Sn

1µ

{
R0 + cµ

[
σm

2µ(−σ−2n
1µ σ−2m

2µ
a
αx + η0)− 1

]
+DµSm

2µ(σ−m
2µ αnY + J0) + Θ(µ , σm

2µη − 1 , Sm
2µJ)

}
.

Using the definition of η0 = ηn,m
0 (µ) and µn,m(a), i.e. using (5),(6) and

(7) we have

fn,m(a, x, Y ) = Θ̂−1
n,m ◦ ΦN+n+N1+m ◦ Θ̂n,m(a, x, Y )

=
(
a , H1(a, x, Y ),H2(a, x, Y )

)

where
H1(a, x, Y ) = (−α2/a)σ2n

1µσ2m
2µ

[−aµσ−n
1µ σ−m

2µ
a
αx + σn

1µBµSm
2µσ−m

2µ αnY

+σn
1µθn,m(a, x, Y )

]2 + σ2n
1µσ2m

2µ (−α/a)
[
βSn

1µDµSm
2µσ−m

2µ αnY

−βSn
1µcµσ−2n

1µ σ−m
2µ

a
αx− a

ασ−2n
1µ σ−2m

2µ + βSn
1µΘn,m(a, x, Y )

+r(µ , ξ − 1,H)
]

and
H2(a, x, Y ) = σm

1µ(αn)−1
[
γ
(−aµσ−n

1µ σ−m
2µ

a
αx + σn

1µBµSm
2µσ−m

2µ αnY

+σn
1µθ(a, x, Y )

)
+ R(µ, ξ − 1,H)

]

where
θn,m(a, x, Y ) = θ

(
µ , σm

2µ(−σ−2n
1µ σ−2m

2µ
a
αx + η0)− 1, Sm

2µ(σ−m
2µ αnY + J0)

)
−θ(µ , σm

1µη0 − 1, Sm
2µJ0)

)

and
Θn,m(a, x, Y ) = Θ

(
µ , σm

2µ(−σ−2n
1µ σ−2m

2µ
a
αx + η0)− 1, Sm

2µ(σ−m
2µ αnY + J0)

)
−Θ(µ , σm

1µη0 − 1, Sm
2µJ0)

)

We have to show the following convergence:
(1) σn

1µσm
2µ

[−aµσ−n
1µ σ−m

2µ
a
αx + σn

1µBµSm
2µσ−m

2µ αnY

+σn
1µθn,m(a, x, Y )

] −→ − a0
a

α
x;

(2) (−α/a)σ2n
1µσ2m

2µ

[
βSn

1µDµSm
2µσ−m

2µ αnY − βSn
1µcµσ−2n

1µ σ−m
2µ

a
αx

− a

α
σ−2n

1µ σ−2m
2µ + βSn

1µΘn,m(a, x, Y ) + r(µ , ξ − 1,H)
] −→ 1;



(3) σm
2µ(αn)−1

[−aµσ−n
1µ σ−m

2µ
a
αx + σn

1µBµSm
2µσ−m

2µ αnY
] −→ 0;

(4) σ2n
1µσ2m

1µ r(µ , ξ(x, Y )− 1,H(x, Y )) −→ 0;
(5) σm

2µ(αn)−1R(µ , ξ(x, Y )− 1,H(x, Y )) −→ 0

To obtain the convergence, we choose a compact part of Rn+1, so that
‖(a, x, Y )‖ ≤ const., where the convergence will take place and let K be a
sufficiently large constant(there will be some slight abuse of notation when
dealing with K).

Observe that the hypothesis imply that, for µ small,

(9) σm
2 (λ1 · σ1)n(m) −→ 0 as m → +∞

(10) σ
2n(m)
1 · λm

2 −→ 0 as m → +∞
In the proof of the convergence of the items (1) to (5), we will make use

of (9) and (10) or their weaker versions. Recall that |σ2µ · λ2µ| < 1.
We start estimating part 1,2 and 3. Observe first that σ−n

1µ (αn)−1 → 0
and ‖σ2n

1µSn
1µαnY ‖ ≤ K|σ2n

1µλn
1µαn| ≤ K|(√λ1µσ1µ)n| → 0 as n → +∞. It

is clear that
‖σn

1µσm
2µσn

1µBµSm
2µσ−m

2µ αnY ‖ ≤ K|σ2n
1µλm

2µαn|,
‖σ2n

1µσ2m
2µ β · Sn

1µcµσ−2n
1µ σ−m

2µ x‖ ≤ K|σm
2µλn

1µ|,
‖σ2n

1µσ2m
2µ β · Sn

1µDµSm
2µσ−m

2µ αnY ‖ ≤ K|σ2n
1µσm

2µλn
1µλm

2µαn|,
‖σm

2µ(αn)−1σ−n
1µ σ−m

2µ x‖ ≤ K|(αn)−1σ−n
1µ | and

‖σm
1µ(αn)−1σn

1µBµSm
2µσ−m

2µ αnY ‖ ≤ K|σn
1µλm

2µ|
converges to zero as n,m → +∞.

To by remining to estimate convergence of θn,m and Θn,m to complete
(1) and (2). We have

|θn,m(a, x, Y ) | ≤ K|∂xθ(a, x̃, Ỹ )|·|σ−2n
1µ σ−m

2µ |+K‖∂Y θ(a, x̃, Ỹ )‖·|σ−m
2µ λm

2µαn|
‖Θn,m(a, x, Y ) ‖ ≤ K|∂xΘ(a, x̃, Ỹ )| · |σ−2n

1µ σ−m
2µ |

+K‖∂Y Θ(a, x̃, Ỹ )‖ · |σ−m
2µ λm

2µαn|
for some (a, x̃, Ỹ ) between the points
(a ,−σ−2n

1µ σ−m
2µ

a
αx+σm

2µη0−1, Sm
2µ(σ−m

2µ α+J0)) and (σm
2µη0−1, Sm

2µJ0). From
inequalities above and using (4) we have that |σ2n

1µσm
2µθn,m(a, x, y )|,

‖σ2n
1µσ2m

2µ Sn
1µΘn,m(a, x, y )‖ ≤ ‖σ2n

1µσ2m
2µ λn

1µΘn,m(a, x, y )‖ and
|σn

1µσm
2µ(αn)−1θ(a, x, Y )| converges to zero as n,m → +∞.

On the other hand, it is not difficult to see that

|ξ(a, x, Y )| ≤ K|σ−n
1µ σ−m

2µ |, |H(a, x, Y )| ≤ K|λn
1µ| and |µ| ≤ K|σ−m

2µ |.
Finally, we want to see that

|σ2n
1µσ2m

2µ r(µ, ξ(a, x, Y )− 1, H(a, x, Y ))| and

‖σm
2µ(αn)−1R(µ, ξ(a, x, Y ),H(a, x, Y ))‖



converges to zero as n,m → +∞, for that, we write Taylor expansion of r,
up to order 4 near (µ, 0.0). We recall that, ∂ξr and ∂Hr are null at (µ, 0, 0),

r(µ, ξ − 1, H) =
4∑

j=1

∑

β1+β2=j

∂j

∂β1

ξ ∂β2

H

r(µ, ξ − 1, H)(ξ − 1)β1Hβ2 + R4(µ, ξ̂, Ĥ)

where
R4(µ, ξ̂, Ĥ)

‖(µ, ξ̂, Ĥ)‖
→ 0 and ‖(µ, ξ̂, Ĥ)‖ → 0,

Hβ2 is a homogeneous polinomy of degree β2 in the coordinates of H =
(h1, . . . , hn−1). Then,

∣∣σ2n
1µσ2m

2µ r
(
µ, ξ(a, x, Y ) − 1,H(a, x, Y )

)∣∣ → 0
as n,m → ∞ as a consequence of the estimative of ξ(a, x, Y ), H(a, x, Y ),
|µ| and (3), (9) and (10).

We also write, Taylor expansion of R near (µ, 0, 0) up to order 2 and we
use essentially the same argument as above applies to R, we have that∥∥σm

2µ(αn)−1R
(
µ, ξ(a, x, Y ),H(a, x, Y )

)∥∥ −→ 0 as n,m →∞.

Then, this proves that

fn,m(a, x, Y ) −→ φ̃(a, x, Y ) =
(
a, 1− aa2

0x
2 , 0n−1

)

as n,m → +∞ (uniformly on [−A0, A0] × [−A0, A0]n). Moreover, the
same kind of estimates apply to all derivatives up to order k, k ≥ 3, it proves
that this convergence (items (1) to (5)) holds in the Ck topology.

Since, φ̃ as above is conjugated to φ(a, x, Y ) = (a, 1 − ax2, 0n−1) by
h(a, x, Y ) = (a, 1

a0
x, Y ). Then, taking Θn,m = Θ̂n,m ◦ h we have

Θ−1
n,m ◦ ΦN+n+N1+m ◦Θn,m converge to the map

φ(a, x, y1, · · · , yn−1) = (a, 1− ax2, 0n−1)

in Ck topology, as n,m →∞.
¤

0.7. Quadratic-like families. Being motived by the Theorem 3.1
above we will consider quadratic (or Hénon)-like families as considered in
[15].

We say that Ψ = {ψa} is a quadratic (or Hénon)-like family if {ψa} is a
Cr one-parameter family of diffeomorphisms, r ≥ 3, and {ψa} is sufficiently
close to {φa} = Φ, where φ(a, x, Y ) = (a, φa(x, Y )) and φa(x, Y ) = (1 −
ax2, 0n−1), for all a.

Theorem 2.2. (Viana [15]) Let 0 < c < log(2) and Ψ = {ψa} be a
quadratic (or Hénon)-like family. Then, there exists a set E = E(c,Ψ) ⊂
(1, 2), with m(E) > 0 such that for every a ∈ E, there is a compact, ψa-
invariant set Λ = Λa satisfying that W s(Λ) has nonempty interior and there
is Z1 ∈ Λ such that {ψn(Z1) : n ≥ 0} is dense in Λ and ‖Dψn

a (Z1)‖ ≥ ecn,
for all n ≥ 0 and some c > 0.



In the theorem m denote the Lebesgue measure and the set Λ above is
called a strange attractor. In the proof of the Theorem 3.2 the point Z1 is
taken to be critical in the sense that there exists a direction in the tangent
space to M at Z1 which is exponentially contracted by both positive and
negative iterates of Dψa. Clearly, the presence of such point is an obstruction
to (uniform) hyperbolicity of the attractor.

From the proof of the Theorem 3.2 above can be derived another proper-
ties of the set E = E(c, Ψ): E is constructed from exclusions of parameters
of a host interval (compact interval) Ω0 ⊂ (1, 2) which depends only of the
quadratic family {φa}. In fact the interval Ω0 can be chosen near 2, such
that if {ψa} is sufficiently close to {φa}, m(E) ≥ (1−δ)|Ω0| for chosen δ > 0.
However, if we consider only a finite number of exclusions of parameters of
Ω0, we can see from the proof that they varies continuously with Φ = {φa}.
Considering this comment about properties of the set E we conclude the
following

Lemma 2.1. Let E(Ψ) ⊂ Ω0 be the set obtained in the Theorem 2.2.
Let I ⊂ Ω0 be an interval such that m(E ∩ I) ≥ c|I|, for c > 0. Then,
given ε > 0, for all Ψ̃ = {ψ̃a} sufficiently close to {ψa}, there exists a
set Ẽ = Ẽ(Ψ̃) such that m(Ẽ ∩ I) ≥ (c − ε)|I| and for a ∈ Ẽ, ψ̃a has a
nonhyperbolic strange attractor.

Let {ϕµ} be a C∞ one-parameter family of diffeomorphisms unfolding
a heteroclinic tangency at µ = 0 in 2-cycles involving periodic points p1

and p2 as considered in the first part of this section. Then, by Theorem
3.1 there exists a sequence of host intervals Ωn,m in the µ-space, going
to zero as n,m go to infinity, each one corresponding to Ω0 by (µ, n, m)-
reparametrization. Moreover, if we embed the family {ϕµ} in a C∞ two-
parameter family ϕµ,α} we have that, for each α sufficiently small, there
is a sequence Ωn,m(α) of host intervals going to µT (α), where µT (α) is the
value of the tangency between W s(p2(α)) and W u(p1(α)). In addition, by
the form of the (µ, n, m)-reparametrization, given in the Theorem 3.1, it is
easy to see that Ωn,m(α) depends continuously on α. And also, the con-
vergence of the families in the Theorem 3.1 is uniform in α. So for each
α small there is a set En,m(α) ⊂ Ωn,m(α) with m(En,m(α) > 0 and for all
µ ∈ En,m(α), ϕµ,α has a strange attractor, by application of the Theorem
3.2. These assumptions imply the following

Remark 2: Fix α0 > 0 small. Then, given ε > 0, there are n0 = n0(α0),
m0 = m0(α0) such that for all Ωn,m(α) with 0 < α < α0, n > n0 and
m > m0 we have

2.1 sup{|µ− µT (α)| : µ ∈ Ωn,m(α)} < ε;
2.2 m(En,m(α) ∩ Ωn,m(α)) ≥ 3

4 |Ωn,m(α)|;
2.3 Ωn,m(α) varies continuously with respect to α.



0.8. Special perturbation. Let {ϕµ} be C∞ one-parameter family of
diffeomorphisms, we want to show that if a saddle fixed (or periodic) point
p0 of ϕ0, which is sectionally dissipative (i.e. the product of any pair of
eigenvalues has norm less than 1), is not C4-linearizable, that means, the
eigenvalues of Dϕ0(p0) are resonant, see [14], there exists an appropriate
arbitrarily small perturbation of the family {ϕµ} such that it is possible
to destroy the resonance and turn pµ the continuation of the point p0 in
C4-linearizable one for almost every µ near zero. To be more specific,

Lemma 2.2. Let {ϕµ}µ∈I be a one-parameter family of diffeomorphisms
having a saddle periodic point p0 of ϕ0 which is not Ck-linearizable, where I
is an small interval around zero. Then, There exist a one-parameter family
of diffeomorphisms {ψµ}µ∈I arbitrarily close to {ϕµ} and a subinterval I ′ ⊂
I around zero such that for almost every value µ ∈ I ′, ψµ is Ck-linearizable
near p(ψµ), k ≥ 2, where p(ψµ) is the continuation of p0.

Remark 3: The family {ψµ} in the theorem which is arbitrarily near to
{ϕµ}µ∈I does not depend on the interval I.

Proof. Denote by λ1, . . . , λn the eigenvalues of Dϕ0(p0). Suppose that
p0 is not Ck linearizable, k ≥ 2. Then the eigenvalues satisfy the resonant
conditions of Sternberg, see [14], i.e. there exists j with 1 ≤ j ≤ n such that

λj = λk1
1 · λk2

2 · · ·λkn
n for 2 ≤

k∑

i=1

ki ≤ k , with ki ≥ 0, 1 ≤ i ≤ n.

Consider the following holomorphic functions

hj(Z) = (1 + Z)λj and H(Z) =
n∏

i=1

[
(1 + Z)λi

]ki , Z ∈ C.

Note that hj(Z) = H(Z) at Z = 0. In addition, h′j(Z) = λj = hj(0)

, for all Z ∈ C and H ′(0) 6= h′j(0) since H ′(0) =
∑n

i=1 k1λi
∏n

j=1 λ
kj−δij

j =∑n
i=1 kiH(0) = h′j(0)

∑n
i=1 ki, where δij is 1 if i = j and 0 if i 6= j. Then,

hj(Z) 6= H(Z), for all Z ∈ Bε(0) and Z 6= 0, for some ε > 0, where
Bε(0) is the ball in C the radius ε and center 0. ε depends on j and ki,
i = 1, · · · , n with 2 ≤ ∑n

i=1 ki ≤ k and 1 ≤ j ≤ n. Then, ε depends on a
finite number of conditions. Therefore, we can take ε sufficiently small such
that hj(Z) 6= H(Z) for all Z ∈ Bε(0) and Z 6= 0. In fact, for ε small enough
h′j(Z) 6= H ′(Z) for all Z ∈ Bε(0).

On the other hand, let ψµ : W → Rn be a C∞ family of local charts
defined in a neighborhood W of p0 with ψµ(p0) = 0, for all µ ∈ I. We take
W sufficiently small so that ϕ j

0 (W ) ∩W = ∅ for all 0 < j < n0, where n0 is
the period of p0. Let ξ be a C∞ bump function on R satisfying







ξ(s) = 0, if s ≥ 2
ξ(s) = 1, if s ≤ 1

0 ≤ ξ(s) ≤ 1, ∀s ∈ R.

Let γ > 0 be a small constant such that Bγ(0) ⊂ ψµ(W ). We define the
perturbed families {ϕµ,t} by ϕµ,t = fµ,t ◦ ϕµ, where

{
fµ,t(x) = x, if x ∈ M \W

fµ,t(x) = ψ−1
µ

([
1 + t · ξ̃(‖ψµ(x)‖)]·ψµ(x)

)
, if x ∈ W.

and ξ̃(y) = ξ
(

4‖y‖
γ

)
, for all y ∈ W . First observe that the eigenvalues of

Dϕn0
µ,t(pµ) are (1 + t)λ1µ, (1 + t)λ2µ, . . . , (1 + t)λn,where λiµ and pµ are the

continuation of λi and p0 respectively, i = 1, . . . , n. We also have that ϕ0,t

is Ck linearizable near p0 for all 0 < |t| < ε, where ε is as above. We define

Γj,k(µ,Z) =
n∏

i=1

[
(1 + Z)λiµ

]ki − (1 + Z)λjµ

where k = (k1, . . . , kn).
Claim: There exist intervals I ′ ⊂ I around µ = 0 and J ⊂ [−ε0, ε0] around
t = 0, ε > ε0 > 0 such that if for each t ∈ J define Zt = {µ ∈ I ′ :
Γj,k(µ, t) = 0}. Then, the set L = {t ∈ J : m(Zt) > 0} is countable.

By the claim, we conclude that for all t ∈ J \ {countable set}, ϕn0
µ,t is Ck

linearizable for almost every µ ∈ I ′.
¤

Proof. (of the claim) Recall that ∂ZΓj,k(0, Z) 6= 0, for all Z ∈ Bε(0)
and Γj,k(0, Z) 6= 0, for all Z ∈ Bε(0) \ {0}. Then, by Implicit Function,
there exist 0 < ε0 ≤ ε and I ′ ⊂ I a subinterval with 0 ∈ I ′ such that if
Γj,k(µ

′, t′) = 0. Then, Γj,k(µ
′, t) 6= 0, for all t ∈ [−ε0, ε0] \ {t′}. Define

Zt = {µ ∈ I ′ : Γj,k(µ, t) = 0 } and Ln = {t ∈ [−ε0, ε0] : m(Zt) >
1
n
}

Observe that Zt ∩ Zt′ = ∅ if t 6= t′ for all t, t′ ∈ [−ε0, ε0]. So, Ln is a finite
set, i.e. L = {t ∈ J : m(Zt) > 0} is countable set. ¤



CHAPTER 3

Proof of the main result

0.9. Fixing some notation. Let ϕ̃ be a C∞ diffeomorphism that has
a homoclinic tangency associated to sectionally dissipative periodic point p0.
Then, by the Theorem 2.1 there exists ϕ a C∞ diffeomorphism, arbitrarily
close to ϕ̃, exhibiting hyperbolic basic sets Λ1, Λ2 and periodic points p1 ∈
Λ1 and p2 ∈ Λ2 satisfying items (a) to (d) of the Theorem 1.1. Let U be a
neighborhood of ϕ of hyperbolic continuations of Λ1 and Λ2, it means that,
there exists a C∞ function

Φi : U −→ C0(Λi,M)
ψ −→ Φi(ψ)

such that Λi(ψ) = Φi(ψ)(Λi) is a basic set for ψ ∈ U , where C0(Λi,M) is
the space of injective and continuous functions h : Λi → M . In fact, Φi(ψ)
conjugates ϕ|Λi to ψ|Λi(ψ), i = 1, 2.

We denote by r0 the point of transversal intersection between W u(p2)
and W s(p1). Let δ > 0 be a small constant such that for all ψ ∈ U ,
x ∈ Bδ(p1) ∩ Λ1 and y ∈ Bδ(p2) ∩ Λ2, W u(y, ψ) meet transversally in a
neighborhood of r0, where Bδ(pi) is the ball of radius δ centered at pi,
i = 1, 2.

Let U be a sufficiently small neighborhood of q which is the quadratic
tangent point between W u(p1, ϕ) and W s(p2, ϕ). We take C∞ coordinates
(V, u) ∈ [−1, 1]n−1 × [−1, 1] in U in such a way that

(1) q has coordinates (0n−1, 0);
(2) The connected component of W s(p2) ∩ U containing q is given by

{u = 0};
(3) for ψ ∈ U and y ∈ Bδ(p2) ∩ Λ2 the connected component of

W s(y, ψ) ∩ U is given by {u = A2(y)(V < ψ) : v ∈ [−1, 1]n−1};
(4) for ψ ∈ U and x ∈ Bδ(p1) ∩ Λ1 the connected component of

W u(x, ψ) ∩ U corresponding to the obvious way to the connected
component of W u(p1, ϕ) ∩ U containing q is given by{
(V (x), u(x))(t, ψ) : t ∈ [−1, 1]

}
;

(5)
(
V (p1), u(p1)

)
(0, ϕ) = (0n−1, 0) and ∂tu(p1)(0, ϕ) = 0.

Furthermore, for each ψ ∈ U the maps

y −→ A2(y)
(
[−1, 1]n−1, ψ

)
and x −→ (

V (x), u(x)
)(

[−1, 1], ψ
)
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are continuous in the C∞ topology and the maps

A2(y) : [−1, 1]n−1×U −→ [−1, 1] and
(
V (x), u(x)

)
: [−1, 1]×U −→ [−1, 1]n

are C∞, for all y ∈ Bδ(p2) ∩ Λ2 and for all x ∈ Bδ(p1) ∩ Λ1.

W u(p1)

W u(p2)

p1

W s(p1)

p2

W s(p2)

Figure 1. Heteroclinic tangency

0.10. Control of the orbits. As in the case of dimension two, we
need some control of the orbits of strange attractors.

Suppose that there is ϕ̂ ∈ U with periodic points Q1 ∈ Bδ(p1) ∩ Λ1

and Q2 ∈ Bδ ∩ Λ2 of periods k1 and k2 respectively such that W u(Q1) and
W s(Q2) are tangent (quadratically) inside U . Assume that ϕ̂k1 linearizable
near Q1 and ϕ̂k2 linearizable near Q2. Take a one-parameter family {ϕµ} ⊂
U with ϕ0 = ϕ̂ generically unfolding the tangency. By the Theorem 3.1
and the Theorem 3.2 there are a sequence of host intervals Ωn → 0, as
n → +∞, subsets En ⊂ Ωn with m(En) > 0 and integers kn → +∞ as
n → +∞, such that for µ ∈ En, ϕ̂kn

µ has a nonhyperbolic strange attractor
An = An(µ) inside U . Then, as in two-dimensional case, we can take U , U
and δ sufficiently small such that for some n0 > 0 sufficiently large we have
that for all n ≥ n0,

ϕj
µ(An) ∩ U = ∅, 0 < j < kn,

and ϕµ(U)∩U = ∅ and ϕ−1
µ (U)∩U = ∅. This implies that any perturbation

done inside U but outside a neighborhood of the strange attractor An does
not affect the remaining of the orbit.



0.11. Persistence of the tangency . In this subsection we take U ,
U , and δ as in the previous section. Recall that ϕ have hyperbolic basic sets
Λ1 and Λ2 with periodic points p1 ∈ Λ1 and p2 ∈ Λ2 satisfying items (a) to
(d) of the Theorem 2.1. Let U2 be a neighborhood of Λ2 such that W s(Λ2)
admits an extension to a C1 foliation Fs

2 = Fs
2(ψ) defined in U2. By C1 we

mean here that the tangent spaces to the leaves TzFs
2(z) vary in C1 fashion

with the point z. Fs
2 depends continuously on ψ ∈ U . Clearly we can take

q, the point of tangency between W s(p2) and W u(p1), to belong to U2 and
U ⊂ U2.

Now we need the following implicit function,

Lemma 3.1. (Implicit Function) Let X ⊂ Rn be a compact set and I ⊂ R
be a compact interval. Let F : X × I → R be a intrinsically C1 map and
(x0, t0) ∈ X × int(I) be such that

(11) F (x0, t0) = 0 and ∆Fx(t0, t0) 6= 0.

Then, there exist V ⊂ X a compact neighborhood of x0 and unique
intrinsically C1 map f : V → I such that f(x0) = t0 and F (x, f(x)) = 0,
for all x ∈ V .

We apply this lemma of the following way, we define ξs = ξs(ψ) a C1

vector field on U orthogonal to the leaves of Fs
2(ψ). By the Proposition 2.3,

W u(Λ1) ∩ U contains an intrinsically C1 diffeomorphic image Y of X × I,
where X is a small neighborhood of p1 in W s

loc(p1) ∩ Λ1 and I is a compact
interval. Let ξu = ξu(ψ) be some intrinsically C1 vector field on Y tangent to
the leaves of W u(Λ1(ψ))∩U and finally we define F (y, ψ) = ξu(y, ψ)·ξs(y, ψ),
which is a intrinsically C1 map and the hypotheses (11) in the Lemma
4.1 correspond to have a quadratic tangency at q between W u(p1, ϕ) and
W s(p2, ϕ). Observe that F (q, ϕ) = 0. Then, by the lemma we get that there
exist V1 a compact neighborhood of p1 in W s

loc(p1) ∩ Λ1(ψ) and π1ϕ : V1 →
W u(Λ1(ψ)) ∩ U an intrinsically C1 map such that each π1ϕ(x), x ∈ V1, is a
point of tangency between W u(x) and some leaf of Fs

2(ϕ).
On the other hand, we also introduce πs

ψ : U → W u
loc(p2) the projection

along the leaves of Fs
2(ψ) onto W u

loc(p2), for all ψ ∈ U . We identify W u
loc(p2)

with an interval in R by the following C1 diffeomorphism Xψ : W u
loc(p2) → R

with Xψ(p2) = 0, for all ψ ∈ U . If it is necessary, we perturbed ϕ, so that
∆π1ϕ(p1, p1) · ITp1(Λ1 ∩ W s

loc(p1)) is not tangent to the stable leaf Fs
2(q),

see section 7 in [11]. Then, Xϕ ◦ πs
ϕ ◦ π1ϕ is a intrinsically C1 map and

∆(Xϕ ◦ πs
ϕ ◦ π1ϕ)(p1, p1)|Ew is bijective, that means, by Proposition 2.4,

that τu(Λ1, p1) = τ(Xϕ ◦ πs
ϕ ◦ π1ϕ(V1), 0). We put Ku

ϕ = Xϕ ◦ πs
ϕ ◦ π1ϕ(V1),

i.e. τ(Ku
ϕ, 0) = τu(Λ1, p1).

Now, we define Ks
ψ = Xψ(W u

loc(p2) ∩ Λ2) and Ku
ψ = Xψ ◦ π2ψ ◦ π1ψ(V1),

for ψ ∈ U , which are near Ks
ϕ and Ku

ϕ, respectively, if ψ is near to ϕ. By
the Section 2.3 we have that τu(Λ1(ψ), p1) = τ(Kw

ψ , 0), for all ψ ∈ U , where
Kw

ψ = πw
ψ (V1), taking πw

ψ as we defined it in the section 2.3 and V1 sufficiently
small compact neighborhood of W s

loc(p1, ψ)∩Λ1. The value τ(Kw
ψ , 0) varies



continuously with the diffeomorphism ψ ∈ U in C2 topology and the sets
Ks

ψ and Kw
ψ are dynamically defined Cantor sets, see [11].

The applications hu
ψ : Kw

ϕ → Kw
ψ defined by hu

ψ(x) = πw
ψ ◦ Φ1(ψ) ◦

(πw
ϕ )−1(x) and hs

ψ : Ks
ϕ → Ks

ψ defined by hs
ψ(x) = Xψ◦Φ2(ψ)◦(Xϕ)−1(x) are

the natural equivalence between Kw
ϕ and Kw

ψ , and, Ks
ϕ and Ks

ψ, respectively.
By the Theorem 1.1 we have

τ(Kw
ϕ , 0) · τ(Ks

ϕ, 0) ≥ 1 + t0, for some t0 > 0

By continuity of thickness, the definition of local thickness and considering
U small enough, there is δ0 > 0 such that for each 0 < δ < δ0 we can find
Cantor sets K̃w

ϕ ⊂ Kw
ϕ ∩ Bδ(0) and K̃s

ϕ ⊂ Ks
ϕ ∩ Bδ(0) whose continuations

K̃w
ψ of K̃w

ϕ and K̃s
ψ of K̃s

ϕ satisfy

τ(K̃w
ψ ) · τ(K̃s

ψ) ≥ 1 + t0/2 ∀ψ ∈ U
Now define the following functions ϑu

ψ : Kw
ϕ → R by

ϑu
ψ(x) = Xψ ◦ πs

ψ ◦ π1ψ ◦ Φ1(ψ) ◦ (πw
ϕ )−1(x)

and ϑs
ψ : Ks

ϕ → R by ϑs
ψ(x) = Xψ ◦ Φ2(ψ) ◦ X−1

ϕ (x). Then,

τ((ϑu
ψ(K̃w

ϕ )) · τ(ϑs
ψ(K̃s

ϕ)) ≥ 1 +
t0
2

, ∀ψ ∈ U .

Let {ϕ̂µ}µ∈[−1,1] ⊂ U be a one-parameter family of diffeomorphisms,
with ϕ̂0 = ϕ, generically unfolding the tangency between W u(p1, ϕ) and
W s(p2, ϕ). Then, for δ0 > 0 sufficiently small and considering that Cantor
sets K̃w

ϕ and K̃s
ϕ as we defined above, there exists a parameter value µ0 close

to µ = 0 such that the pair 〈ϑu
bϕµ0

(K̃w
ϕ ) , ϑs

bϕµ0
(K̃s

ϕ)〉 is a stable linked.
Let Z be a small neighborhood of {ϕ̂µ} in the space of one-parameter

families of diffeomorphisms and I an interval such that for each family
{ϕµ} ∈ Z we have that 〈ϑu

ϕµ
(K̃w

ϕ ) , ϑs
ϕµ

(K̃s
ϕ)〉 is a linked pair, for all µ ∈ I.

We define
W =

{
ϕµ ∈ U : {ϕµ} ∈ Z and µ ∈ I

}

which is an open set by the openess of linking property. Observe that Z is
arbitrarily close to ϕ. W is called open set of persistence of tangencies.

Lemma 3.2. (Main Lemma) Let I ′ ⊂ I be any subinterval. Then, there
exists a residual subset R of Z such that for each family Ψ = {ψµ} ∈ R,
there is a parameter value µ ∈ I ′ such that the corresponding map ψµ exhibit
infinitely many nonhyperbolic strange attractors.

Proof of Theorem A: Let ϕ̃ be a C∞ diffeomorphism with a homoclinic
tangency associated to a sectionally dissipative saddle point. Then, by the
Theorem 2.1 there exists ϕ arbitrarily near to ϕ̃ and as we see above there
exists W an open set arbitrarily near to ϕ, which, by the Main Lemma,



satisfies that every diffeomorphism ψ ∈ W can be approximated by a dif-
feomorphism displaying infinitely many nonhyperbolic strange attractors.
Taking Uϕ0 the union of this open sets we obtain Theorem A.

Corollary 3.1. There exists a residual subset R of Z such that for
each family Ψ = {ψµ} ∈ R the set of parameter values µ ∈ I, for which ψµ

has infinitely many nonhyperbolic strange attractors, is dense in I.

Proof of Theorem B: First, we see the following remark of the Theorem 2.1

Remark 4: Let Φ = {ϕµ} be a C∞ one-parameter family of diffeomor-
phisms such that ϕ0 has a homoclinic tangency associated to sectionally
dissipative saddle point. Among the families with this property, there exist
a residual subset which satisfies the following conditions: C2 linearizabil-
ity of saddle point, quadratic tangency at ϕ0, generic unfolding as µ varies
through 0, and conditions (1),(2) of the Chapter 2. Furthermore, we can see
that, in the considerations done above, the Theorem 2.1 holds for a generic
subset of C∞ families of diffeomorphisms (see [11], Sect. 7), that means,
if {ϕµ} belongs in this generic subset, there exists a sequence of parameter
values µn → 0 such that ϕ = ϕµ satisfies items (a) to (d) of the Theorem 3.1
and the subfamilies {ψν} with ψν = ϕµ+ν , ν near zero, generically unfold
the heteroclinic tangency of item (b) of the Theorem 2.1.

Then, proof of the Theorem B is followed by of the Corollary 4.1 above
and, keep in mind, that countable intersection of residual subsets is a residual
subset.

0.12. Proof of the Main Lemma. The proof of the Main Lemma
will be done by induction. In this subsection, Br denotes the ball of radius
r, Br(x) denotes the ball of radius r and center x ∈ M and m denote the
Lebesgue measure in R. We also denote π2ψµ the restriction of πs

ψ to π1ψ(V1).
Let U , U as in the previous section and Z ⊃ R1 ⊃ R2 ⊃ · · · ⊃ RN ⊃ · · · be
a sequence of sets satisfy that

a.- for N ≥ 1 and each family Ψ = {ψµ} ∈ RN , there exists a compact
set EN = EN (Ψ) ⊂ I ′, m(EN ) > 0, such that for µ ∈ EN , ψµ

has N distinct strange attractors S1 = S1(Ψ), . . . , SN = SN (Ψ);
furthermore,

a.1) each attractor Si, i = 1, · · · , N , is generated as in Chapter
2, ( Theorems 2.1 and 2.2) together with the section 3.2 and
the orbit of Si intersects U only once, inside Bri ⊂ U , where
Bri ∩Brj = ∅, i 6= j;

a.2) EN+1(Ψ) ⊂ EN (Ψ);
b.- for each Ψ = {ψµ} ∈ RN and µ in a neighborhood of the convex

hull of EN (Ψ), there are bridges Cs
i , Ds

N of K̃s
ϕ and Cu

i , Du
N of K̃w

ϕ ,
i = 1, · · · , N , such that

b.1) their images ϑs
ψµ

(Cs
i ) = Cs

i (Ψ;µ) and ϑu
ψµ

(Cu
i ∩K̃w

ϕ ) = Cu
i (Ψ;µ)

form a stable linked pair, see figure xx;



b.2) images of their intersections in U satisfy

C̃N (Ψ;µ) = (π2ψµ)−1 ◦ X−1
ψµ

(Cs
i (Ψ;µ) ∩ Cu

i (Ψ;µ)) ⊂ Bri ;

b.3) images of Ds
N , ϑs

ψµ
(Cs

N ) = Cs
N (Ψ;µ) and Du

N , ϑs
ψµ

(Du
N∩K̃w

ϕ ) =
Du

N (Ψ;µ) form a stable linked pair;
b.4) images of their intersections in U , satisfy

D̃N (Ψ;µ) = (π2ψµ)−1 ◦ X−1
ψµ

(Ds
N (Ψ;µ) ∩Du

N (Ψ;µ)) ⊂ BεN ,

where BεN ⊂ U and Bri ∩BεN = ∅.
We will show thatR1 is open and dense in Z andRN+1 is open and dense

in RN , for all N ≥ 1. Then, the proof of the Main Lemma follows taking
R =

⋂
N≥1RN which is a residual subset of Z and for each Ψ = {ψµ} ∈ R,

there exists a sequence of the following way, I ′ ⊃ E1 ⊃ E2 ⊃ · · · ⊃ EN ⊃ · · ·
of compact sets as item (a) above. Therefore, for each µ ∈ ⋂

N≥1, ψµ exhibits
infinitely many strange attractors.

BrN

BεN

R

Br1

Cs
1(Ψ, µ)

Cs(Ψ, µ)

Ds(Ψ, µ)

Cu(Ψ, µ)

Cu(Ψ, µ)

Du(Ψ, µ)

U

Figure 2. induction

The openness of RN , is a consequence of the following fact, linking
property is an open condition (i.e. item (b) is open) and applying Lemma
3.1 to item (a)(i.e. it is open). Now we will prove that RN+1 is dense in
RN , N ≥ 1 ( the proof also shows that R1 is dense in Z; for that, for
Ψ = {ψµ} ∈ Z we take E0(Ψ) = I ′, Ds

0 the convex hull of Ks
ϕ, Du

0 = Ku
ϕ

and proceed as below with N = 0).
Let Ψ = {ψµ} ∈ RN . We show that after four perturbation of the family

{ψµ}, to be described below, we get a family {ϕµ} ∈ RN+1 C∞ arbitrarily
near to Ψ.



Part 1. Let µN be a total density point of EN , i.e.

m
(
EN ∩ [µN − δ, µN + δ]

)
/(2δ) −→ 1, as δ → 0.

Let d0 be the distance from⋂

µ∈EN

D̃N (Ψ, µ) to Rn \BεN .

Take 0 < γ1 < d0/2 and qN be the center of BεN . Define the following
function

ξN (V, u) = ξ(
3
γ1

[‖(V, u)− qN )‖ − (εN − γ1)])

where ξ is a C∞ bump function satisfying



ξ(s) = 0, if s ≥ 2
ξ(s) = 1, if s ≤ 1

0 ≤ ξ(s) ≤ 1, ∀s ∈ R.

for α small, we define the C∞ diffeomorphism

Gα : M −→ M
x −→ x, if x ∈ M \ U

(V, u) −→ (V, u + α · ξN (V, u)), if x ∈ U

First, note that Gα ◦ ψµ = ψµ. Then, for α = 0 and for all µ. For each α
small, denote Gα◦Ψ the family {Gα◦ψµ}. The Cantor sets Ds

N (Gα◦Ψ;µN ),
Du

N (Gα ◦ Ψ;µN ) have 0 6= α-velocity with respect each other. By item (b)
of induction hypothesis Ds

N (Ψ;µN ), Du
N (Ψ;µN ) form a linked pair, we get

that all the hypotheses of the Proposition 2.2 (Linking Lemma) are satisfied.
Then, there is α0 arbitrarily small such that the linked pair above has two
stable sublinked. We also have,

‖Gα0 ◦Ψ−Ψ‖Cr ≤ Const.|α0| · ‖ξN‖Cr ≤ Const.|α0| ·
(

3
γ1

)r

.

Observe that the perturbation above does not affect U \ BεN , i.e. does not
affect items (b.1) and (b.2) of induction hypothesis. Take Ψ1 = {Gα0◦ψµ} =
{ψ1

µ} and let

〈Cs
N+1(Ψ

1;µN ), Cu
N+1(Ψ

1; µN )〉 and 〈Ds
N+1(Ψ

1; µN ), Du
N+1(Ψ

1; µN )〉
be the sublinks pairs of 〈Ds

N (Ψ1;µN ), Du
N (Ψ1; µN )〉. where (for β = s, u)

Cβ
N+1(Ψ

1; µN ) = ϑβ

ψ
(1)
µN

(Cβ
N+1∩K̃s

ϕ) andDβ
N+1(Ψ

1; µN ) = ϑβ

ψ
(1)
µN

(Dβ
N+1∩K̃w

ϕ ),

for some bridges Cs
N+1, Cu

N+1 of K̃s
ϕ and Ds

N+1, Du
N+1 of K̃w

ϕ . Since the
sublinks are distinct, there exist rN+1 > 0 and εN+1 > 0 such that

C̃N+1(Ψ1; µ) = (Xψµ ◦π2ψµ)−1
(
Ĉs

N+1(Ψ
1, µ)∩Cu

N+1(Ψ
1;µ)

) ⊂ BrN+1 ⊂ BεN

and

D̃N+1(Ψ1;µ) = (Xψµ◦π2ψµ)−1
(
D̂s

N+1(Ψ
1, µ)∩Du

N+1(Ψ
1; µ)

) ⊂ BεN+1 ⊂ BεN

and BrN+1 ∩BεN+1 = ∅.



Part 2. Take γ2 > 0 small and BrN+1−2γ2 ⊂ BrN+1 concentric to the ball
BrN+1 , i.e. they have the same center. On the other hand, by gap lemma,
Cs

N+1(Ψ
1; µN ) ∩ Cu

N+1(Ψ
1; µN ) 6= ∅. For γ2 > 0 sufficiently small we obtain

that the tangency between W u(x) and W s(y), for some x ∈ Λ1(ψ
(1)
µN )∩Bδ(p1)

and y ∈ Λ2(ψ
(1)
µN ) ∩ Bδ(p2), is inside BrN+1−2γ2 . Then, there are periodic

points Q1 ∈ Λ1(ψ
(1)
µN ) near x and Q2 ∈ Λ2(ψ

(1)
µN ) ∩ Bδ(p2) near y such that

W u(Q1, ψ
(1)
µN ) and W s(Q2, ψ

(1)
µN ) cross BrN+1−2γ2 ⊂ BrN+1 and

|A(Q2)(V, ψ(1)
µN

)−A(x)(V, ψ(1)
µN

)| < 1
2
δ1;

‖(V (Q1), u(Q1))(t, ψ(1)
µN

)− (V (y), u(y))(t, ψ(1)
µN

)‖ <
1
2
δ1

for every V ∈ [−1, 1]n−1, t ∈ [−1, 1] and 0 < 2δ1 < 1
2γ2. Let n1 and n2

be the periods of Q1 and Q2, respectively, and fix β > 0 small. Then,
by the Lemma 2.2 we obtain a one-parameter family of diffeomorphisms
Ψ2 = {ψ(2)

µ } arbitrarily near Ψ1, independently β, such that (ψ(2)
µ )n1 is Ck

linearizable near Q1 and (ψ(2)
µ )n2 is Ck linearizable near Q2, k ≥ 4, for almost

every point µ ∈ [µN −β, µN +β]. Since Ψ2 is arbitrarily near to Ψ1, and by
the Lemma 2.1 there exists a compact set EN (Ψ2) with m(EN (Ψ2) > 0 and
EN (Ψ2) ⊂ [µN −β, µN +β] such that EN (Ψ2) satisfies item (a) of induction
hypothesis. Then, we consider µ′N ∈ EN (Ψ2) a total density point such that
(ψ(2)

µ′N
)n1 is Ck linearizable near Q1 and (ψ(2)

µ′N
)n2 is Ck linearizable near Q2.

The family Ψ2 can be chosen arbitrarily close to Ψ1 and µ′N sufficiently
near to µN such that Du

N+1(Ψ
2; µ′N ) and Ds

N+1(Ψ
2; µ′N ) form still a linked

pair,

D̃N+1(Ψ2; µ′N ) = (Xψ2
µ′

N

◦ π2ψ2
µ′

N

)−1
(
D̂s

N+1(Ψ
2, µ′N ) ∩Du

N+1(Ψ
2; µ′N )

)

⊂ BεN+1

and W u(Q1, ψ
(2)
µ′N

) and W s(Q2, ψ
(2)
µ′N

) cross BrN+1−2γ2 . Moreover,

|A(Q2)(V, ψ
(2)
µ′N

)−A(Q2)(V, ψ(1)
µN

)| < 1
2
δ1;

‖(V (Q1), u(Q1))(t, ψ
(2)
µ′N

)− (V (Q1), u(Q1))(t, ψ(1)
µN

)‖ <
1
2
δ1

where δ1 + β < 1
2γ2.

Part 3. Let q̃N be the center of the ball BrN+1 , and define the following
map

ξ̃N (V, u) = ξ(
3
γ2

[‖(V, u)− q̃N )‖ − (rN+1 − γ2)])



Equal to the first perturbation, we define the diffeomorphism G̃α, for α
small, by

G̃α : M −→ M
x −→ x, if x ∈ M \ U

(V, u) −→ (V, u + α · ξ̃N (V, u)), if x ∈ U.

Then, there is α1, with |α1| ≤ const.(2δ1+β) < 1
2γ2, such that W u(Q1, G̃α1 ◦

Ψ2) and W s(Q2, G̃α1 ◦ Ψ2) have a tangency inside BrN+1−γ2 . Take Ψ3 =
G̃α1 ◦ Ψ2 observe that EN (Ψ2) = EN (Ψ3) and (ψ(3)

µ′N
)n1 is Ck linearizable

near Q1 and (ψ(3)
µ′N

)n2 is Ck linearizable near Q2. Also,

‖Ψ2 −Ψ3‖Cr ≤ Const.|α1|
(

3
γ2

)r

.

Part 4. Define G̃α◦Ψ3 = G̃α+α1◦Ψ2. As the family {G̃α1◦ψ(2)
µ } generically

unfolds the tangency for the parameter value µ = µ′N , for each α small, there
exists µT (α) such that W u(Q1, G̃α ◦ ψ

(3)
µT (α)) and W s(Q2, G̃α ◦ ψ

(3)
µT (α)) are

tangent. Although, the family {G̃α ◦ψ
(3)
µ } generically unfolds this tangency.

Observe that µT (0) = µ′N and if α is sufficiently small, (G̃α ◦ ψ
(3)
µ )n1 is Ck

linearizable near Q1 and (G̃α ◦ψ
(3)
µ )n2 is Ck linearizable near Q2, for α near

to α = 0 and µ near to µ = µ′N . As µ′N ∈ EN (Ψ3) is a total density point,
there is t0 > 0 such that

(12) m(EN (Ψ3) ∩ [µ′N − t, µ′N + t]) ≥ t, ∀0 < t ≤ t0

Let Ω be a host interval of strange attractors in the µ-space for the
family Ψ3 such that |Ω| < t0 and m(E(Ψ3)) > 3

4 |Ω|. Take Ω satisfying
control of the orbits as in Section 4.2. Then, by the discussion in section
3.2 (summarized in Remark 2) consider Ω(α) be the natural continuation
of Ω = Ω(0) arbitrarily near µT (α) (i.e. |Ω(α)| ≤ t0) corresponding to
the family {G̃α ◦ ψ

(3)
µ } such that the relative measure of E(α) ⊂ Ω(α) of

strange attractors satisfies m(E(α)) ≥ 3
4 |Ω(α)|. We may suppose, without

loss of generality, that Ω(α) is on the right of µT (α), for α small, and µT (α)
decreases as α increases. So that, we can choose α2 > 0 close to α = 0 and
Ω = Ω(0) near µT (0) = µ′N such that

µT (α2) < µ < µT (0), ∀µ ∈ Ω(α2)

If we denote by µc(α) the center of the host interval Ω(α). Then, there exists
α3 with 0 < α3 < α2 such that µc(α3) = µT (0) = µ′N . From this and (12)
follow ( even using that µ′N is a total density point of EN (Ψ3) = EN (G̃α◦Ψ3),
for all α small) that

m(EN (G̃α3 ◦Ψ3) ∩ E(α3)) ≥
(

3
4
− 1

2

)
|Ω(α3)| > 0.



Finally, we take Φ = {ϕµ} = G̃α3 ◦ Ψ3 and EN+1 = EN (Φ) ∩ E(α3).
Also,

|Φ−Ψ3‖Cr ≤ Const.
(
|α3|

(
3
γ2

)r )

We conclude that

‖Φ−Ψ‖Cr ≤ Const.
(
|α0|

(
3
γ1

)r
+ |α1|

(
3
γ2

)r
+ |α3|

(
3
γ2

)r)

+‖Ψ1 −Ψ2‖Cr

α0 can be taken arbitrarily small with respect to γ1, α1 and α3 can be taken
also arbitrarily small with respect to γ2 and by the Lemma 3.1, ‖Ψ1−Ψ2‖Cr

is arbitrarily small for any r. Then, ‖Φ − Ψ‖Cr is arbitrarily small for any
r. This concludes the proof of the Main Lemma.
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133:73–169, 1991.

[2] E. Colli. Infinitely many coexisting strange attractors. Ann. Inst. H. Poincaré Anal.
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