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Resumo

Denotemos por H a transformada de Hilbert e seja n > 0. Mostraremos que os
problemas de valor inicial w; + vty + Ugee + N(Huy + Htgee) = 0, u(-,0) = o(+) e
up + %(ux)2 + Uggy + N(Huy + Higer) = 0, u(+,0) = ¢(-) sdo globalmente bem postos
em H*(R), s > 1, n > 0. Estudaremos o comportamento limite da solu¢ao da primeira
equacao quando 7 tende para zero em H*(R), s > 2. Além disso, provaremos um
teorema de continuagao tinica para a primeira equacao em F33(R) = H3(R) N L3(R),
n > 0, o que implica perda da propriedade de persisténcia.

Palavras Chave: Problema de Cauchy, Transformada de Hilbert, Equacao KdV.



Abstract

Let H denote the Hilbert transform and n > 0. We show that the initial value problems
Up + Uy + Uggy + N(Hty + Hitgey) = 0, u(-,0) = ¢(+) and uy + %(ux)2 + Uy + N(Hug +
Huzzr) = 0, u(-,0) = ¢(-) are globally well-posed in H*(R), s > 1, n > 0. We study
the limiting behavior of the solutions of the first equation as n tends to zero in H*(R)
and s > 2. Moreover, we prove a unique continuation theorem for the first equation in
F33(R) = H*(R) N L3(R), n > 0, which implies that the persistence property does not
hold.

Keywords: Cauchy problem, Hilbert transform, KdV equation.
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Chapter 1

Introduction

In this Thesis we will consider real valued solutions of the Cauchy problems associated
to the following equations

1
ug + 5(%)2 + Ugzz + N(Hty + Hiiger) = 0, u(-,0) = ¢(-). (1.1)
Wy + WWy + Waze + N(Hwe + Hweee) = 0, w(-,0) = ¥(+), (1.2)

where H denotes the Hilbert transform

wiw =tp [C W4 resm), (1.3)

T J ol — X

P represents the principal value of the integral and the parameter n is an arbitrary
positive number. Some of the properties of the Hilbert transform # (see [6] ) that we

~

will use along this work are: H € B(L?(R)), p € (1,00) and (Hf)(§) = ih(&)f(), for
all f € H*(R), where

no={ 1 esh (1.4

Equation (1.2) was derived by Ostrovsky et al. to describe the radiational instability
of long waves in a stratified shear flow [16]. It deserves remark that the fourth and fifth
terms represent, respectively, amplification and damping. B.F. Feng and T. Kawahara
([5]) studied periodic solutions and solitary waves associated with equation (1.2), from
a numerical standpoint. For every n > 0, a family of solitary wave solutions whose



members are distinguished by the number of "humps” is identified numerically. The
tails of these waves decay as O(1/|z|?) when |z| — oo independent of the value of 7
and the number of humps, consequently these waves decay to zero algebraically, which
is consistent with Theorem 5.4 that shows that there is an upper limit for the rate of
decay of the solution of equation (1.2). Theorem 5.4 implies that solutions do not fall
off arbitrarily fast even if the initial condition has this property.

Equation (1.2) can be regarded also as a non local perturbation of a modified version
of the generalized Ott-Sudan equation (w; + ww, + Wy + pBu = 0, where p > 0 and
B = —-9?, B =1or B = —H3,) which belongs to a class of nonlinear dissipative
equations and it models the unidirectional propagation of small-amplitude nonlinear
waves (see [1], [2]). Moreover, it is worth noting that if the Fourier transform of the
solution of equation (1.2) has support contained in R\ [—1, 1] for all times, then (1.2)
is a nonlinear dissipative equation, as we can see from equation (4.6) below.

The plan of this Thesis is as follows: In Chapter 2 we study the Cauchy problem
associated to the linear part of equation (1.1), and we obtain some useful properties
of the semigroup associated to the solution. The local theory for equation (1.1) in
H*, s > 1, and for equation (1.2) in H®, s > 1/2, is developed in Chapter 3. Chapter 4
is devoted to prove global well-posedness of equations (1.1) and (1.2) in H*, s > 1, and
to study the behavior of the limit of solutions of (1.2) in H®, s > 2, when 7 goes to 0.
Moreover, it is worth to say that if u is a solution of problem (1.1) then u, is a solution
of problem (1.2), with 1) = ¢'. Therefore global existence of the solution of equation
(1.1) in H®, s > 1, implies global existence of the solution of equation (1.2) for initial
data belonging to the set {¢) € L?(R)/3¢ € H'(R);¢ = ¢'}. Finally, in Chapter 5 we
obtain a unique continuation theorem for the solution of equation (1.2). We prove that
if the solution w(t) is sufficiently smooth (w(t) € H*(R)) and falls off sufficiently fast
as || — oo (w(t) € L3(R)) for all ¢ € [0, 7], then w(t) = 0, for all ¢ € [0, T].
Notation:

e ||-||s : the norm in H*(R), s € R.
e H : the Hilbert transform.

e B(X,Y) : the collection of bounded linear operators from X into Y. If X =YV
we write B(X).

o [2(R) = (H'(R))" and F,,(R) = H*(R) N L2(R).



Chapter 2

The Linear Equation

In this chapter we consider the Cauchy problem associated to the linear part of equation
(1.1), namely

Vi + Uggy + n(HUa: + %Ua:a:a:) - 0: U(’: O) - ¢()7 (2'1)

where ¢ € H®, for s € R and n > 0.
Let t > 0 and £ € R. Taking the Fourier transform in (2.1) and integrating the
resulting expression between 0 ant ¢ we get

(&, 1) = exp[ (i€ + (1] = €1%)) 1] H(6).
Fort > 0 and & € R, let

Fy(t,6) = exp[t (i€” — n(|¢]° — [€]))]- (2:2)
Let (E,(t))t>0 be the semigroup on L*(R) defined by
Ey(0)f = F 1 (F(t,)f), | € L*(R). (2:3)

Lemma 2.1. Let n > 0. Then, (E,(t))0 is a C° semigroup in H*(R), s € R.
Moreover,

1B ()]l as;me) < €. (2:4)

Proof. It follows easily from the definition of E,(¢) that E, (0) = I and E,(t+t') =
Ey(t) Ey(t').
The continuity of the semigroup is a consequence of the inequality

|Fy(7,6)| < e 0 <7 <t41/2, £€R,



and the Dominated Convergence Theorem.
Relation (2.4) follows easily from the fact that

e~ 2P ~leD) < 2t (2.5)

forall ¢ € Rand forallt > 0. B
Remarks:

1. Let ¢ € H*(R), then v(-,t) = E,(t)¢ is the unique solution of (2.1), in the class
C(0,00; H*(R)) N CY(0, 00; H*~ 3(R))
The fact that v(-,t) € C(0, 00; H*(R)) follows directly from the continuity of the
semigroup E,(t).
The fact that v, € C(0, 00; H*~3(R) is obtained as follows. Let t,7 > 0,
¢ € H*(R) then

+00
len(t) — w2y = / (1+)%ie® — (el — e

| HE (g —IeD) _ erien(eP~IED) 216 () 2dg. (2.6)
We see that [i€® —n(|¢]* — [¢])|* < ¢(n)(1+ £7)* and

|t € —n(eP—leD) _ rGE—n(EP—IED)| < ent 4 17 < 2eMH12) - fop 7 <t 41/2.

Then using the Dominated Convergence Theorem we have that [Jv,(t)—v;(7)||?_5 —
0, as 7 — t and therefore v; € C(0, 00; H*3(R)).

Now using the estimates

eh(i&=n(lg*=[¢N) _ 1

| < c(n)(1+&)°7,

h
1563 — n(1€)* = €D)]* < e(n)(1 + €%)? and the Dominated Convergence Theorem,
we see that
t+h)—o(t
lim || ot +h) —v(t) + Vggw + N(HVe + HUzee)||?_5 = 0, (2.7)
h—0 h

Finally, uniqueness follows by taking the Fourier transform of (2.1).



2. When n = 0, we obtain the unitary group associated with the KdV equation. In
this case ||E,(t)|| p(gs,usy =1, for all ¢ > 0.

Lemma 2.2. Lett >0, s € R, A >0 and n > 0 be given.
Then, E,(t) € B(H*(R), H***(R)). Moreover,

1 nt 8v/3)
IEn()lsir < ale” + (14 )PV g (2.8)

where ¢ € H*(R) and cy is a constant depending only on \.
Proof. Let n > 0,t >0, s € Rand A > 0. We see that

+o0 R
1B, (6|2, = / (1+ €D F (1, )(€) e

o0
“+00

o R TG

[e.e]

_ 3_
< sup|(1 + &%) e 21D g2
£€ER

< ¢y suple 2MIEPIED g2 o= 2ntIEP 1D | |2
¢eR

< e+ sup 2 eI g 2. (2.9)
S

The function £2e=2m(EP~1€D ig even, then it is enough to study the supremum of
this function for € > 0. Since &> — ¢ > 1//3&% — €, for € > 1/4/3, we have that
g2 e~ 2P —IE) < 22 (1/VEE-6) —. g(£) for € > 1//3 . If € > 0, then

\/§ \/§
! _ 2 _
g =0 = 5——26——2nt/\—0

%[\/§+\/3+8n@}. (2.10)

Let & := %[\/5 +4/3+ 877@] > 73 > % It follows easily from the definition of &,
that

— ¢

/ 8v/3)\
nt— A+ L 34 332 (2.11)

& ):ﬁ
4 4 nt

_2nt(ﬁ —



Therefore

2
sup 52)\6—27715(53—5) e 4 sup 52,\6—27775(6—5—5)
£€>0 £>1/V3

IN

62
—omt( 20 —
C)\€217t é-g/\e n (\/g €o)

C}\€217t + C)\(?))\ + (3 + 8,'7@)/\)6%(\/5—’_ v 3+877@)

IN

IN

ﬁﬁm . (2.12)
n

IN

C)\€217t + C)\(l +

Inequalities (2.9) and (2.12) imply

1 0t 8v/3)
1B, ()0l < exle™ + (1+ e (VB350 162 (2.13)

Finally from (2.13) we get (2.8). B

Lemma 2.3. Lett >0, s > —1/2 andn > 0 be given. Then, E,(t) € B(L'(R), H*(R)).
Moreover,

1

(nt) ™o

”En(t)@bus < CS(ent‘i‘ Ml (2.14)

for all ¢ € L'(R).
Proof: Let t >0, s > —1/2, 7> 0 and ¢ € L*(R).

+o0o R
1B, (ol = / (1+ €2)°|Fy (1, €)(€) e

o0
“+o0o

< (@n) Il / (1 + €2)re 216D g, (2.15)

—00

Let [ := [72°(1 + €2)%e 2 ~I€Nde. Then,

+o0
I = 2 / (1 4 £2)e~2mME -0 g¢
0
V2 +00 .
< 2 / 3% e d¢ + / (26%)% e 21ME =0 qg)
0 V2

+o0
< 93/235e2nt 4 95l /f £2eME ge (2.16)
2

7



where in inequality (2.16) we used the fact that &3 —¢& > £3/2, for &€ > v/2. Making the
change of variable x = nt£3 in the integral on the right hand side of (2.16) we obtain

3/2qs 2nt 2°+1 T hes _x
I < 23/2gset = 7T e dy
0

3(nt)*3
3/2q9s 2t 2ot 2541
2°123%e M 4 M1“( 3 )
3(nt) ™3
1
< (e + (7715)%). (2.17)

Combining (2.15) and (2.17), and taking the square root of the resulting expression
concludes the proof. B



Chapter 3

Local Theory in H°(R),s > 1,7 > 0

In this chapter we use Banach’s fixed point theorem in a suitable function space, to
find a local solution to the integral equation (3.1) in H*(R), s > 1. Proposition 3.1 will
give us a local solution for equation (1.1) in H*(R),s > 1. Similar considerations are
made for equation (1.2) in H*(R),s > 1/2.

Theorem 3.1. Let n > 0 be fized and let ¢ € H*(R), where s > 1. Then, there
exist Ty(s,||¢||s,m) > 0 and a unique function u := u, € C(0,Ts; H*(R)) satisfying the
integral equation

u(-,t) = Ey(t)o(-) - 1/0 Ey(t =) (ug)* (-, ¢)dt, (3.1)

where E,(t) is defined by (2.3).

Proof: Let M,T > 0 be fixed, but arbitrary. T will be conveniently chosen later.
Let us start considering the case s € [1,5/2). Consider

1 ! !/ !/ /
(N0 = B0 - 5 [ Ealt = O)@1 (0t (32
0
defined on the complete metric space

=(T) = {f € C(0, T; HS(R));teS[l(}IY)“] 1£(t) — E,(t)ells < M} (3.3)

i.) First we will prove that if f € Z,(T) then Af € C(0,T : H*(R)). In fact, let



f € Z4(T), then we have that

AN = (AN < II(Ey(E) — Ey(7))olls + %ll/O By(t =) (fa)*(t')dt!
- [ B -ty (3.4)
The first term on the right hand side of (3.4) goes to zero as 7 — t because E,(t) is a

C%-semigroup defined on H*(R). To study the second term on the right hand side of
(3.4) let us assume without loss of generality that 7 > ¢ > 0. Then

u / Ey(t — ) (f)*(t)d / CEy(r— )2 (1)t
< [ 1= )= Byfr = )@t + [ - O 65

Denote by I1(t,7) and I(t,7) the first and the second terms respectively in last ex-
pression. By Lemma 2.3 we get

T Tc em=t) 1 vdt
ntr) < [l ) U Ol

T / 1
< o (MP+ €2 |9]2) / (e 4 st ) dt!
t

(n(r —1))7s
(M2 + e[ 6]l

) n(rT—t) 1
— o / (" + ), (3.6)
0

where in the second inequality we have used the fact that [|(f,)2(#)||2 < ||f()]]?. Tt
follows easily from (3.6) that I5(¢,7) tends to zero as 7 — t.
On the other hand, using Lemma 2.3 again we have that

I(En(t = 1) = Ey(r = DLWl < 1Bt = ) (fo)* ()]s + I By (7 = ) (£2)* ()]s

1
< 2, (") 4 —————) sup ||F(1)]
< el ) i O

where the last term is an integrable function of ¢ € [0,¢]. It follows easily that
lim, , ||(E,(t — ') — E,(t — ) (f)*(t)|ls = 0, for all ¢ € [0,¢]. Applying the Dom-
inated Convergence Theorem we obtain that lim,_,; [;(¢,7) = 0. This completes the
proof that Af € C(0,T; H*(R)).

10



ii.)Next, we prove that we can choose T = T > 0 sufficiently small such that

A(Z4(T)) C Z4(T). Let u € Z,(T). Then,
(O - Byl < 5 [ 1B - O)@uf®)lat

' 1
< cosmp (] [ (@0
[O’T] 0

(n(t —1))

N 1
< cosupllull [ (e + —gr)ds
[0,7] n.Jo 6

2s+1

e N
< M2 Tl 112y (€

T=5%). (3.7)

We choose now T' = T > 0 sufficiently small such that the right hand side of (3.7) is
less than M.

iii.) Finally, we will prove that there exists T e (0, T], such that A is a contraction

on Z4(T). Let t € [0,T], u,v € Z4(T). Defining

e —1 6 _2s41, —2e45
9(T) := PRy oI
we get
| Au(t) — Av(t)]]s, < %Oggfu(&uﬂw—(axvf(t)Hng(T)
< EP (lu(®) = v@ L ([u@)l + o)1) g(T)
< (M + el g(T) sup [Ju(t) — v(t)]s. (3.8)

0<t<T

Taking 7" € (0,77 such that ¢,(M + e"[|¢||,)g(T) < 1, implies iii.).

From i.), ii.) and iii.) it follows that A has a unique fixed point u in Z,(7T") which
satisfies equation (3.1), where T = Ty(s,n,||¢[|s) > 0. The fact that u is the unique
solution of equation (3.1) in the class u € C(0,T : H*(R)) will be a consequence of
Proposition 3.2, to be proved below. This concludes the proof of theorem for the case
s€[l,5/2).

If s > 5/2, we have that ¢ € H* C H? and we consider equation (3.1) satisfied
by u € C(0,Ty; H*(R)), where Ty = Ty(s = 2,7, ||¢|l2) > 0 is the corresponding time

11



existence with ¢ regarded as an element of H?(R). We observe that E,(t)¢ € H*(R)
and E,(t — t')(ug)*(-, ') € H*(R), for all ¢ € [0,¢], because of Lemma 2.2. Then,
u(t) € H*(R), for all t € [0,T5]. We need to prove that u € C(0,7Ty; H*(R)). For that
purpose we analyse the cases s € [5/2,3), s € [3,7/2), and so on.

Let s € [5/2,3) and t,7 € [0,T5]. Assume 7 > t > 0, the other cases are treated
similarly.

[u(t) = u(7)]ls

IN

—N/ t—tuxtﬂwf—/ &ﬁ—#Kwaﬂﬁm
0

+HI(E Ey(1))olls
5/0 (Bt = 1) = Ey (1 — 1)) (1) (- ') || slt’

1 T
+§/ 1B (7 = ) (ua)* (- )]st + (| (£, (2) = Ey(7)8ls- (3.9)

t

The third term on the right hand side of (3.9) goes to zero as 7 — t because E, (1) is a

C%-semigroup. The first term in (3.9) is treated as the first term of (3.5) using Lemma
2.2, with A = s —1 € [3/2,2). For the second term in (3.9) we get

/fT 1B (7 = #) () (-, £) st

IA

T 1 2rot) (VB 3488 )
n(r—t") s 8 (r—t
< o 10 0 ) e
n(r—t)
< 2 gup ||u(-,t')||g/ [ 1 (14 —)ef (Ve g, (3.10)
N ¢ ef0,1v) 0 T2

where A = s — 1 € [3/2,2). Hence the last expression in (3.10) goes to zero as 7 — t.

For s € [3,7/2), s € [7/2,4), ... we proceed similarly. So we get u € C(0,Ty; H?),
for s > 5/2. When s € (2,5/2) proceeding in a similar way to the case s > 5/2 we find
that uw € C(0,Ty; H®). B

Theorem 3.2. Let n > 0 be fized and let ¢ € H*(R), where s > 1/2. Then, there
exist Ty(s,||¢||s,m) > 0 and a unique function u := u, € C(0,Ts; H*(R)) satisfying the
integral equation

) = By(060) ~ 5 [ Byt = )l )it (3.11)
where E,(t) is defined by (2.3).

12



Proof: Similar to the proof of Theorem 3.1. Use Lemma 2.2 (with A = 1) and the
fact that [|(u?)(¢)][s—1 < [[*(@)]s < [lu@)[7, s > 1/2. B

Proposition 3.1. Problem (1.1) (resp. (1.2)) is equivalent to the integral equation
(5.1) (resp. (3.11)). More precisely, if u € C([0,T]; H*(R)) is a solution of (1.1)
then u satisfies (3.1). Conversely, if uw € C([0,T]; H*(R)) is a solution of (3.1) then
u € CH[0,T); H*3(R)) and satisfies (1.1).

Proof: The first part was proved in Theorem 3.1 (resp. 3.2). The second part is
similar to the proof of Theorem 4.19 (with A =1) in [11]. W

Proposition 3.2 will prove the continuous dependance on the initial data for prob-
lems (1.1) and (1.2). Let us mention a known result we will use.

Lemma 3.1. Suppose 5 >0, v >0, 8+~v>1,a>0,b>0, uis nonnegative and
t7"tu(t) is locally integrable on 0 <t < T. If

u(t) <a+ b/ot(t — 8) 7 s u(s)ds

a.e. in (0,T), then
u(t) < aBs, ((O0(8))"1),
wherev=0+~v—-1>0,
Bools) = 3 ens™, 512
m=0

with co = 1 and cpy1/cm = T'(mv 4+ ) /T'(mv 4+ v+ B) form > 0. As s — oo,

Eps(s) = O(s'/2W/F=7) ~exp(§s”//3)).

Proof: See Lemma 7.1.2 in [7]. B

Proposition 3.2. Let ¢,v € H*(R) and let u,v € C(0,T; H*(R)) be the corresponding
solutions of equation (8.1). Let M = supyciom([|u(t’)|]s + [[v(#)]]s)-

13



1.) If s €[1,2), then

Jut) = v(t) s < 6 — bl Eose, (10), (3.13)
where
csMe"™ (nT)*5* +1_ 5—2s., s
Y= ( ( )% F( 6 )) o

2 n
and Es—  is given by (5.12) (with f =222 and v =1).
2.) If s > 2, then
Ju(t) = v(@®)]ls < €™ ¢ = V[|sEry2a (12), (3.14)
where
v = (aMF(T,n)I(1/2))?
and

F(T,n) = (27W)60T+§v3(nT)2+8¢§nT
’ 2\/ﬁ .

Inequality (3.14) remains true if ¢, € H*(R),s > 1/2 and if u,v € C(0,T; H*(R)),
s > 1/2 are the corresponding solutions of equation (3.11).

Proof: Let ¢,¢,u,v be as above. Let us start proving 1.). Let s € [1,5/2) and
w(t) =u(t) —v(t). Let M = supycjom(llu()|ls + [|v(@)|ls). From (3.1) we get

wlt) = B0 =) = 5 [ Byt =) (.8) = @) )t

By (2.14), (2.4) and the Cauchy-Schwarz inequality we obtain

t
s < ¢ — s E/\ ) ;21 x ? '7t, — \Ug 2 '7t, vdt!
lw®lls < e™llé =l + 5 i (" + (n(t—t’))%)n(v )7 t) = (ua)™( 1)l
t
< i - s E"T/\ 1 ! 2sF1 mQ'at/ - xQ'vt/ vdt!
< oo vl + 5 [0+ 0 - O
" 2041 o
< ool + et [(OD LA UWGOL,, (3.15)

0 76 (t—1t)7s

14



Applying Lemma 3.1 to (3.15), (3.13) follows.
We will now prove 2.). Let s > 2. Let w(t) and M be as before. By (2.8), with
A=1, we get

t (t—t") / 8v/3
C1 o 1 Tt (VB4 3423
|lw(@®)|ls < €HT||¢ —Y||s + 5/ [en(t "4 (1 + (n(t )e ’ e ]
0

— 1)1/
Nt = )l (3.10
Since s — 1 > 1 > 1/2 we obtain from (3.16)
@l < @6 v+ ST [0 4 (14 ) )
Jlw(-, )] sdt’. O (3.17)

On the other hand,

1 oy ]. n(t—t)v3 1 o Y
S (1 ) M VT

1 ,
< Z[ent=t") 1
< 2[6 +( +

;)eﬂ(t—t’)-l-%\/3772(t—t’)2+8\/§77(t—t')]

(77(75 _ t’))1/2

<(1+ ;)enT-l-%\/?»(nT)?T\/%T. (3.18)
- 24/n(t —1")

Combining (3.17) and (3.18) we get

Flw ()l

Jw(@®)lls < €™l = lls + L MF(T, n) o (E—t)12

dt'. (3.19)

Finally, applying Lemma 3.1 to (3.19), (3.14) follows.
Now consider equation (3.11). Inequality (3.14) is obtained similarly to item 2.)
for equation (3.1). Use the inequalities

1(W* () = u*( ¢))alls—1

ININA

[ () = w? ()]s
M|(v = u)(, )]s

to obtain the same estimate (3.17) for ||w(t)||;. W
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Chapter 4
Global Theory in H*(R),s > 1,7 >0

In this chapter we prove that problems (1.1) and (1.2) are globally well posed in H*(R),
s >1,n> 0. Lemma 4.1 gives us some a priori estimates to prove the global Theorems
4.1 and 4.2. Lemma 4.2 will be used in Theorem 4.3 to study the limit of solutions of
(1.2) when 71 goes to 0 in H®, s> 2.

Lemma 4.1. Let ¢ € H*(R),k > 3 and let u € C([0,T]; H*) be a solution of (1.1),
for some T > 0. Then, there exists a constant ¢ > 0 independent of n > 0 such that:

lull < (o]l + V2T ||¢'|/*e> 1) el (4.1)
luall < [l (4.2)

sl < 16”11 - exp[eT (0|6 [| "™ + )], (4.3)
[tazall < [16"]] - expleT (][] "e™™ +n)], (4.4)
a5 < 16115 - exp[cT(fol,ljp] [z (B)]]2 + )], (4.5)

where 0 <t < T, and j > max{3,k — 1}.

Proof. Let us start proving (4.2). Defining w := u, and differentiating (1.1) with
respect to x, it follows that w satisfies (1.2) with ¢» = ¢'. Multiplying equation (1.2)

16



by w and integrating over R we have

IN

IN

<

—77(11% Hwa:) - 77(?11, waww)
o [ (el - 6P o (6) )

1P [ (€)12d — €1 |w(&)]2d
¢L§w|wn|@|sﬁLNM|mm|@|o

n%;pa—mmmawa
w(&)|2d
m4m|@ns>

lwl]*.

Integrating the last relation between 0 and ¢, it gives

t
JulP < 1612+ 20 [ e Pt
0

An application of Gronwall’s inequality completes the proof of (4.2).

We will now prove (4.1). From equation (1.1) we have that

1d

5 7 llull®

2dt

—%((ux)Q,U) — n((Hug, w) + (Htge, u))

IN

1
Sllulleelluall® + nllul?

1/2 |5/2

lull"[lus|I** + nllul
(Fall? + aaa [1*7%) + 1l
(14 n)llull? + [|¢'[| 2t/

INIA A

(4.6)

(4.9)

where the first inequality was obtained in a similar way to (4.7), the second one using
the Gagliardo-Nirenberg inequality (GN1) and the third one by Young’s inequality (Y")
with p = 4, p' = 4/3, (see the Appendix). Integrating (4.9) between 0 and ¢ we find

that

t
Julf? < 1617 + 25T 4 20 45) [t Pt
0

17
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so Gronwall’s inequality leads to the following expression
a1 < ([[ol)* + 2[|¢'[|"*e! 2T T) - 20T, (4.11)

Taking the square root in (4.11) yields (4.1).

We will now prove (4.3). Let v := w, = Uy, differentiating (1.2) with respect to x,
it follows that

v + (U2 + Wvg) + Voza + N HUz + HUzee) = 0, v(-,0) = ¢”(')7 (4-12)

multiplying (4.12) by v and integrating over R we obtain

1d
Lo = —oiwnn) - (0.0%) = o, ) — (v, He)
= (v, wvy) = n(v, Hog) = n(v, Hozae), (4.13)
where we have used the fact that (v, v?) = —2(v, wvy).

(0, How) — 00, Hosms) = 1 / (€] — |EP)6(€) Pde
— _ 3 b Qd _ 3 ) Qd
n</|£ (el ielote) e+ / (1€l — 1€)l6(6)Pde)

§1>2

< /K GGG / (€l — I€[%)(¢) Pde)

§1>2

< alelP + /|£ ERRLGRD

IN

n(llvll* - &[0(6)[*d€). (4.14)

1€1>2

In the last inequality we also used the fact that v — 2® < —22, for x > 2. Using the
estimate (4.14), it follows that the left hand side of (4.13) is bounded by

1d
2dt
On the other hand,

[v]l* < (v, woa) + n(llv]l* - /|£|>2€2|@(€)I2d5)~ (4.15)

[[0]] o [l v
[l 2 oz |22 ]|

lwll(ellol® + € lva]®), (4.16)

(v, woy)

IN N INA

18



where the second inequality was obtained using Gagliardo-Nirenberg’s inequality (GN1)
and the third one by Young’s inequality (Y') with p = 4, p’ = 4/3. Then,

1d

SPTLCL \|w|!(6\|v|!2+6_1/3Hvx\l2)+n(HvH2_/ &*[o(€)[*de)
1€1>2
= (n+ellwlDloll® + [fwlle[[oa]* —n &10(&)[Pd¢
1€1>2
< (m+ellgle™)oll® + 16" le" e va 1> = n . 2f§2|@(§)l2d§7(4-17)
>
where in the last inequality we employed (4.2).
Now choosing
| o nT
€= (mﬁ >0, (4.18)
n
we have that
1d _ N
szll® < el ™ )loll® +nlle.l® —n &10(&)[Pd¢
1€1>2
= (n+n7°1¢ ") oll* + . &[0(¢)|*dg
g<2
< B+l e ™) o] (4.19)

Integrating (4.19) between 0 and ¢ gives

t
lo@)I1* < [l¢"1* + c(n + 77‘3H¢'H464"T)/ [Jo(t)|[*dt'. (4.20)
0
Applying Gronwall’s inequality and taking the square root we obtain (4.3).
We will now prove (4.4). Let r := v, = Wyp = Uge,. Differentiating (4.12) with
respect to x we obtain
Ty 4 30T + Wry + Tygpr + 77(%7‘9: + Hra:a:a:) = 07 T('v O) = (b”,(')v (421)
multiplying (4.21) by r and integrating over R we have

1d

th”rHQ = —3(2)7", T) - (w7TTI) - 77((7'[%,7") + (Hrmmmfr))

= 5(w,rry) — n((Hry,r) + (Hrugs, 1)), (4.22)

19



where the last equality was obtained because
(w,rry) = 1/2(w, (r*),) = —1/2(v,7%) = —1/2(vr, 7).
Following the ideas used to prove (4.3) we get

1d
2dt

Using (4.2) and choosing

| nT
€:= (M)?’ > 0,

we obtain
~—||r[|> < (73 (5]|¢'[|e™)* + 5m) || ||,

Integrating (4.25) between [0, t] gives

t
Ir@)I* < H¢”’H2+C(n+n‘3ll¢’\l464”T)/0 I (7).

Irl* < 5||w||(6||7“||2+6‘1/3||Tx||2)+77(||7“||2—/|§|>2€2|@(€)I2d§)~

(4.23)

(4.24)

(4.25)

(4.26)

Applying Gronwall’s inequality and taking the square root in (4.26) we get (4.4).

Now we will prove (4.5). From equation (1.2) we have

= —('w, wwx)j — ﬁ((w,wa)J + (W,Hwa:a:a:)j)

On the other hand,

—(w, Hwy)j = (w, Hwees); = _/(|€| — 1) (1 + €2) [ w(¢) [*dg

IN

[lwllf — (1 + &) |w(&)[*dg
j€1>2
< [wli,

where inequality (4.28) was obtained in a similar way to (4.14).

20
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Using inequality (4.29) in (4.27) we see that

1d

S lwl? < G, wg)s| + il

= (cllwllz +n)llwlf, (4.30)

< dlwllallwll} + nllwl;

where the second inequality was obtained using Kato’s inequality (K2), j > 3. Inte-
grating (4.30) between 0 and t we get

IN

t
@I < 115+ (c[sougllw(t)llz +2n)~/0 ()t

IN

t
I'117 + C(?Oug lw(®)ll2 +n) - /O lw(@)l5dt’. (4.31)

Using Gronwall’s inequality in (4.31) we see that

s (- )7 < M]3 - eXP[CT(?Oug [ua (-, ) [l2 + )], (4.32)
for 0 <t < T. This completes the proof of Lemma 4.1. B

Remark: Let ¢ € H¥(R),k > 2. Let w € C([0,7]; H*) be the solution of (1.2),
for some T" > 0. Then, by Lemma 4.1, there exists a constant ¢ > 0 independent of
n > 0 such that (4.2) - (4.5) are satisfied with u, replaced by w, ¢’ replaced by ¢ and
j>3in (4.5).

Theorem 4.1. Let ¢ € H*(R), s > 1. Then, for each n > 0, there exists a unique

u, € C(|0,00); H*(R)) solution to the problem (1.1), such that dyu, € C([0,00); H*3(R)).

Proof. If s € Z™, then the result follows from the local theory, Lemma 4.1 and the
next remark. By Proposition 3.1, Problem (1.1) is equivalent to the integral equation
(3.1), let

T* :=sup{T > 0; 3lue C([0,T]; H®) satisfying (3.1)}.
We will show that T* = oco. Suppose that T* < co. By Lemma 4.1 we have that

lu(®)|l, < K, forall t € [0,T%), (4.33)
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where K = K(||¢||s,n, T*) is a nondecreasing, continuous function of T*. We claim
that there exists limyup- u(t) in H*(R). In fact let ¢,7 € [0,7*), and suppose t < 7.
Using the integral equation (3.1) we find that

u(t) —u(m)lls < [[(By(t) = Ey(7))0lls +/0 [(By(t — ') = Ep(r — 1)) (ua)*(1")]] sdt’
+/tT | By (1 — 1) (uz)*(t)]] st (4.34)

Using similar computations to the obtained to estimate (3.4), but using now (4.33),
we find that the right hand side of (4.34) tends to zero as 7,t — T™*. Then, using the
Cauchy criterion, we conclude that there exists limyp« u(t) in H*(R). Moreover, the
last part shows that the integral representation (3.1) for u(t), is valid for all ¢ € [0, T™].
Using Theorem 3.1, again, we obtain a contradiction with 7% < co.

If s > 1 is not an integer we will use nonlinear interpolation theory. More precisely
we will use Theorems 1 and 2 in [4]. A similar proof was given in [3] for the KdV-
Kuramoto-Sivashinsky equation. Let k& > 2 be an integer, k — 1 < s < k, B} = L?,
B2 = C(0,T;L?), Bl = H* and B} = C(0,T; H*). Let A = &1 € (0,1) and § = ¢ €
(0,1). Then,

By, = [Bg, Bilo = (L% Hl\o = HY = H*,

By, = [B},Bllos=[L? H)go~ H" = H°*. (4.35)
Moreover, since 8 > A, we get (6,2) > (), 2), as in [4]. Let A be the mapping sending
the initial data ¢ € H” into the unique solution v € C(0,7; H*) to problem (1.1)
obtained in Theorem 3.1. This mapping satisfies:

(1.) A: H* — C(0,T; H*) is continuous.
(2.) The mapping
A:HY - 0(0,T; L),
is Lipschitz in the following sense
146 — A¥llcworiney < collldllm-r + ¢l me-1)ll¢ — Dl ¢, € H L (4.36)
(3.) And finally,
A:HF — C(0,T; H")
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is such that

148l < crlllgllm-)ldllme, ¢ € H, (4.37)

where ¢; : Rt — R', ¢ = 0,1 are continuous non-decreasing functions.

We will prove conditions (1.), (2.) and (3.) below. Thus, all the hypotheses of
Theorems 1 and 2 in [4] are valid in this context. It follows from Theorem 2 in [4] that

A [L27 Hk]@,? — [C(Ov T; L2)7 C(O7 T; Hk]9,2
continuously. But [L?, H*]y5 ~ H* and by Proposition 3 in [4],
[C(0,T;L?),C(0,T; H"yo C C(0,T;[L? H¥y5) =~ C(0,T; H?), (4.38)

where the inclusion in (4.38) is continuous. Hence A : H® — C(0,7T; H*) continuously.
Since k > 2, condition (1.) follows directly from Proposition 3.2.
Next, we turn to condition (2.). Let ¢, v» € H*1(R) and u = Ag, v = A¢. Let

w=u—"uv.

1d, ., 1
5%”11)“ - _5((u$+vﬁ)wzaw)_n(wa}lwz"i_%wmx)
1
< lhallal + sl e
ol / €210 (€)2de). (4.39)
[€]>2

On the other hand, we find that
[wallllwllzoe < llwellllws I [Jw]l M = [Jw]*/?[lws] [ < (ellw]* + €/ |lwa]|*).  (4.40)

Using estimate (4.40) in (4.39) we have that

1d 1 1 _
Sl < G+ DT+ m) ool 4+ (1] + 1) e o
—1) 2w (&) Pd€. (4.41)
l€|>2
Taking

€ = (1(||¢I|| + ||w’||)617T)3

>0
2 n
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into (4.41) we obtain

1d 5,1 4

S llwl® < [ (G U+ 11 1)e™) ™ + 5m) [|wl] . (4.42)
2dt 2

Integrating (4.42) between 0 and ¢ and using Gronwall’s inequality we get

(e ) < e (LI ) gy (1.43)

This completes the proof of condition (2.).

Finally, we will prove condition (3.). For k£ = 1,23, the result follows from
Lemma 4.1 , formulas (4.1)-(4.4). For k > 4, we use (4.5) and we apply induction
to flulli = lJulli—y + [Juzllz—,. ®

Theorem 4.2. Let 1) € H*(R), s > 1. Then, for each n > 0, there erists a unique

wy, € C([0,00); H¥(R)) solution to the problem (1.2), such that dyw, € C([0,00); H*3(R)).

Proof.The proof is the same as that of Theorem 4.1, the only difference being that
now we use

1d 9 1, 9
1
< Sllwal[(lull + llolDllwl e
+n(|Jw]]* = Ew(€)[*de),
[€]>2

to prove condition (2.). W

Lemmas 4.2 and 4.4 below, will be used to prove Theorem 4.3 that establishes the
convergence of the solutions of the equation (1.2) for > 0 to the solution of the KdV
equation as 7 tends to 0.

Lemma 4.2. Consider the initial value problem (1.1), with ¢ € H®, s = 2,3. Let
u € C([0,T]; H®) be the solution of (1.1) for some T > 0. Then, there exists a constant
¢ > 0 independent of n > 0 such that

c c /|4 g4nT
lusoll® < [(1+4T) - e Pi(ll6]l2) + Pa(][g]]2)] - e CHIEITE, (4.44)
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[tazal* < [Qs(lI¢lls) + (1 +0T)e ™ QulI6]11)] - exp {nT [e™ Qx(]|#l]1)
H(L+ (L4 0T)*) Ry(|| g]) e Tl (4.45)

fort € [0,T], and P, i = 1,2, Q;, j = 1,2,3, and Rg, k = 1,2, are nondecreasing
functions of their arquments.

Proof. Let us start proving (4.44). Defining w = u,, it follows that w is a solution
of the problem (1.2), with w(-,0) = ¢'(-).
As is well known, the functional

+0o0
By(w) = - / [%w?’— (w,)2)dz (4.46)

is conserved by the KAV flow and
wy = =0y (Ph(w)) — N(Hwy + Hwya), (4.47)

where ®)(w) = 1/2w? + wy,. Then,

0Py (w) = (Ph(w), wy) = —n(Ph(w), Hwy + Hwees), (4.48)
so that
1d [t 1 3 9 B N, N,

—U(wm, %wx) - n(w:m*, memm)

Integrating the last equation between 0 and ¢, we get

[ G = e - [ TGO - 6

[e @] —00

t t
= —77/ [(w?, Hwy) + (02, Hwees ) JdT — 277/ [(Wee, Hwy) + (Wi, HWyzy)|dT.
0 0
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From the last equality we see that

+00 1 1 t
el = [ gt = @)+ @)oo [ [ Hwn) + (02, H)lir

[e.e]

t
2y / (e, Hits) + (s, Mg )7
0

“+oo 1 1 t
= [ Gt - @+ @+ [ Hwar
t
+2n/ [_(wwxﬂ}lwﬁﬁ) - (wxa?{wm) - (wza%wmm)]d7—~ (449)
0

On the other hand, we have

—+00
3 2
[Tl <l ]
— 00
< ] ||
< allwe]? + e P lw] 02, (4.50)

where the second inequality was obtained using Gagliardo-Nirenberg’s inequality (GN1)
and the third one by Young’s inequality (Y), with p = 4 and p’ = 4/3. We also find
that

+0o0
/_ (¢ dz < || lI612 < clloll. (4.51)

o

16"11* < llglf3 (4.52)

and

|(w?, Huwg)| < Jlwlzee wll[[wg|| < ol [lws 2

[[wl® + [Jwa [, (4.53)

(w?, Hw,) <
<

where the last inequality was obtained using Young’s inequality with p = 4/3 and
p' = 4. Using the estimates (4.50) - (4.53), it follows that the left hand side of (4.49)
is bounded by

€1 1 ¢
wall> < —llwell” + —5 lwl|"* + cllgl3 + 1ell3 +n | (lwll® + ws*)dr
3 361/ 0
¢
—|—277/ [— (wwy, HWwey) — (Wa, HWey) — (W, HWggar )] dT. (4.54)
0
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Denote by B(7) the integrand in the second integral in the last inequality and let
Py(||9ll2) := c||d]2 + ||¢]|3- Taking €, = 1 in (4.54) and using inequality (4.2) we have
that

t
gllwmll2 < Ce"’"T||<b’||1°/3+P2(||¢||2)+77T(||¢’||€"T)6+77/0 (lwall® + 2B(r))dr,
t
< (1+77T)€C"TP1(H¢|!1)+P2(H¢H2)+77/0 (llwsl* +2B(r))dr,  (4.55)

where Pi([|¢l1) == c(1 + [[8ll7 + [|4]]9).
Definig v := w,, it follows that

B(r) < [(wv,Hvg)| — (v, Hog) — (v, HUgaz)
< olls=llelllesll + 1ol = [ €Jo(e)Pde
|€]>2
< ol lelllloa®? + ol — [ eloce)de
[€]>2
< Il + )+ ol = [ efcede
>
< G+ [lF]1e o], (4.56)

where the last inequality was obtained in the same way as (4.19). Using (4.56) in
(4.55), we get

t
lwal[* < (1 +nT)e™ Pu([|6]l1) + Pa(llgll2) + en(1 + ||¢’||464"T)/0 [wel[*dr. (4.57)

Finally, applying Gronwall’s inequality to (4.57) we have that

lutaall” < [(1+nT) - e Pi(|6]1) + Pa([|]lz)] - eI, (4.58)

The next step will be to prove (4.45). To this end note that

+o00
dy(w) = / (%w4 — bww? + 3w?,)dr, (4.59)

[e.e]
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is also conserved by the KdV flow. It follows that

O (w) = §w3 + 5(wy)? + 10wwgy + 6Wapps- 4.60
4 3

Calculating 9;(®4(w)), we obtain

0;(®4(w))

|

~—~
L
A~ o~

wy)
), = (@5 (w))z) — n(@y(w), Hws + Hiweas)

w® + 5(wy)? + 10Wwey + 6Wapee, Hwy + Hwye,)

g

~—

(w0 M) 2 (0, )+ 5((,)?, Hov,)

+5((wy)?, Hwaas) + 10(ww,y, Hwy) + 10(wway, Hweas)

Il |

[ |
s 3
W] ot ot

On the other hand, we find that:

|(w®, Huw,)] [wlZeo lwll [
][ Jws]
[

lwl® + llwss I, (4.62)

VAN VAN VARRVAN

where in the second and third inequalities we used Gagliardo-Nirenberg’s inequalities
(GN1) and (GN2) respectively and in the fourth one we used Young’s inequality with

p=p =2

|(w3a%wxm)| = 3|(w2wxa%wm)| §3l|w“%°@“wz””wm“

< 3lJwllfJwelP[lwzell < 3wl [|we.]*. (4.63)

sl zoe s 1 < lwall 2 wae |2 [[wsl P = [fws 1P/ was 2
[P/ llewaal| "7 < Nlwl*® + lwso 1, (4.64)

|((wx)2anx)| <
<

where in the last inequality we used (Y) with p = 8 and p' = 8/7. Next,

|((wx)27memm)| = 2|(wxwma7’twm)| < 2||wm||L°°||wm””wa:|l < 2||wx||||wa:a:||3/2||wmx”1/2

< 2fwsll(ellwasll® + €7 lwassll®), (4.65)
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where in the last inequality we used (Y) with p = 4/3 and p' = 4. Finally,

(W, Hwg)| < wllpoe[wag | [wall < [Jw]|"?]Jwe] [P | wae |
< Nl Nwll M lwae 1Y) 1wl | = [Jwll?* w7
< w|" + (w1, (4.66)

where the last inequality was obtained using Young’s inequality with p = 8/7 and
p' = 8. Using (4.62)-(4.66) we see that the left hand side of (4.61) is bounded by

0(@s(w)) < enfllwll® + [[waal* + [[w]*lwas]|* + lw]|"” + [[wae
"'”w:r:”(el||w:c:c||2 + 61_3““)%06“2)] — 100 (WWae, HWezz)
As a consequence of (4.2) we obtain

0(@a(w)) < e Qu(l@ll1) + ne™ Qo (ll611) llwe I

+C77||wa:||(€1||wa:a:||2 + 61_3||wa:a:a:||2) — 10n(wWee, HWeza)
_677 [(wxfm %wfvafv) + (wzza %wzzzzz)} ) (468)

where Q1([¢ll1) = c(ll¢lIF + [|#[1i°) and Q5(llll1) = (1 + [|4]13)-
On the other hand, we have that

(WWars HWaze) < [(WWee, HWeea)| = [(wr, Hrg)| < 7] pee ||w]]||72]]
<l M2 P2 < wll(eallr ) + 6 lral?),  (4.69)
where r := Wy, = Ugzee. We also obtain that

_(wzza %wvax) - (wzza %wzzzzz) = —(T, %T:v) - (T, %T:v:v:v)
Irll* — & [P(€)[Pd€. (4.70)

€1>2

IA

Hence, using (4.69) and (4.70) in (4.68), it follows that
0/(@4(w)) < e Qu(lllr) + ne Qx([l o]l 171

el ) clus] .
[ L 12 + €9 + S el + 6l )
Hirl2= [ @) pae

1€1>2
[ [ c
< e Qu(I6l) + ne QUGN + 61 [ (usslles + a2l
C _ — ~
gl + ol )l = [ (o] (471)
>
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where Q3([|¢[1) := Q5(]¢[l1) + 6.
Taking the square root in (4.44) we have

luaall < [T+ 0Te™ VE([6]) + v/ Po(l[]]2)] e 191D
< (T4 1+ 0Te ™) Ry(||Bll2) CnTech L)
< (14 T+ 0T)Ry(|| ]| ) e Falliol) (4.72)
where Ry (||¢]]1) := 2+ |¢[|1 and Ra(||@]|2) := /Pi(||9]l2) + /Pa(]|¢]]2) are nondecreas-

ing functions of their arguments.
Combining (4.72), (4.2) and (4.71) we obtain

0i(w)) < 1e " Qul8l) + e Qo)
ten[((1+ VT 0T Ra(lol|)e ™ M0 ey 4 | 1]
4600 [((1+ VI HT)Ra((l9lla)e™ " B ID) e 4 | e, ) |

S E1F(€) P} (4.73)
Choosing
€ = (§((1 + /T 1T R (]| plJ) e Rl 12 g, (4.74)
e = (516" >0, (4.75)

it follows from (4.73) that

2(®a(w)) < 1eQu([dl) + ne QU(|| Il v
+en[((1 4+ T+ 1T)Ry(|| ]| ) e RaUol) 2 1 g7 47T |2

wmmW—/ €217 (€) [de). (4.76)
[£]>2
Since
a2 ﬁ%W%Z/ €217 (¢)Pde < 4|,
[€]>2 [€1<2
we obtain

O(Pa(w)) < neQ1(||oll1) + e Qa(||l11)]|r|I”
+en((1 4 T+ 0T) Ry(||g]])ece " Rty 212 (4.77)
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where Qa([|¢]]1) == Q3(II¢ll1) + 24 + c|g]]1.
Integrating (4.77) in the time interval [0, ¢] we obtain

/_O:O (15—2w — Sww’ + 3wz, )dz < /_O:O (152(<;3) —5¢/(¢")? + 3(¢")?) da

+nTe Q1 ([|oll) + {ne™ Qa(||8]]1)
+en((1+ T+ 0T) Ry (||9]]) cheC"TRl ||¢>||1))4/3}

/ I (7)|[2dr. (4.78)
On the other hand:

[tz < 1B~ N0IE < el BN6IR < clol: (4.79)
| [ 61(6"2da] <116 u~11018 < el (4.80)
[ < ol (481)

[utds < wlellolP < ol < ol ]
< clerllwaal? + & w] ), (4.82)

where in the last inequality we used Young’s inequality, with p = 4 and p’ = 4/3.
/w(wz)Qdm < Nwellpolfwlllfwell < [w]l{we] P2 Jwge |2

< cllwl| M lwael* < cleallwal® + &P w]3),  (4.83)

the last inequality was obtained using Young’s inequality with p = 8/5 and p’ = 8/3.
Using (4.79)-(4.83) in (4.78) we obtain

BIrll> < efllolls + 113 + 1ol + enllrl” + e (U617 + el
+6 " (I¢/1e”) 3] + nTe ™ Qi (| élh) + en{e™ Qa(lg]11)

+((1+ /1 —|—nT)Rg(HQ5H2)6C"T€C”TR1(||¢||1))4/3}/0 |7 (7)||*dr. (4.84)
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Taking e; = 1/c = € > 0, defining Qs(||¢|ls) == c([|l3+ |3+ [|#ll5) and Qa(ll¢]l1) ==
cllgll*"?, we get

I < Qslolls) + e @8l + nTe Qulll8lh) + n{e™ Qu(ll0]1)
t
(1 (TP Ra(oll)e ™ 09} [ P (485)
0

Gronwall’s inequality applied to (4.85) implies that

ltawel® < [@s(161ls) + (1 +nT)e Qu(llof1)] - exp {nT [ @ (1611
(1 (L4 0T Ra (g ] e 10T}
(4.86)

where Q1(||¢||1) now stands for Q1 (||¢||1) + Q4(]|#]|1). This concludes the proof. B

Lemma 4.3. Let s > 3/2 be fized, ¢ € H®, and let w, € C(0,T : H®) be the solution
of (1.2) with n > 0. Then, there exists a T, > 0 depending on s and ||¢||s, but not on

0 <n <1, such that w, can be extended to the interval [0,T}], and there is a function
p € C([0, T]];R) such that

lwnOls < p(t), p(0) = [I6]l;, t€[0,T,]. (4.87)

Proof. Using (w, wge)s = 0, (K1) and (4.29), it follows easily from equation (1.2)
that

Oullwy(ON1F < 2nllwy ()1l + Csllwy (B)]IZ- (4.88)
Since n € (0, 1), we have that
Al @3 < Collwy (@)1 + wn (BIF)- (4.89)
Then, ||w,(t)]|? < p(t) in [0, T!], where p(t) satisfies the differential equation
(1) = Cs(p(t) + p(1)*?),  p(0) = |9 ]3- (4.90)
Solving the last differential equation we have that
o
plt) = N (1.91)

(L + lIglls — e“/2|g]l)*"
for t € [0,T}] , where T{ < 2/C - In((1 + [[¢]]s)/(ll¢]5)). ®
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Lemma 4.4. Let s > 2 be fized, ¢ € H®, and let w, € C(0,T : H*) be the solution of
(1.2) with 0 < n < 1. Then, there exists a constant C = C(s, T, ||d||2), such that

lwn @5 < 1917 - exp(C (s, T. [|6]12)T), (4.92)
Proof. Using (w, w.,)s = 0, (K2) and (4.29), we obtain easily from equation (1.2)
Orllwn (@[3 < 2nllwa (DI + Cillwy (B)]]2 - lwg (0I5 (4.93)

From Lemma 4.2 we have that the H? norm of w,(¢) is bounded by a function of T
and ||@]|2 but independently of n < 1. Since n € (0, 1), we obtain from (4.93)

Oullwy(IIF < C(s, T [1ll2) - lwy ()15 (4.94)

Gronwall’s inequality then leads to (4.92). W

Theorem 4.3. Let n > 0 and ¢ € H®,s > 2, be given, and let w, be the solution of
the equation (1.2) such that wy(-,0) = ¢(-). Then, the limit wy = lim,_,ow, erists
in C(0,T; H®) and is the unique solution of (1.2) with n = 0. Moreover, the map
¢ € H® — wy € C(0,T; H®) is continuous with respect to the corresponding topologies.

Proof: To prove this theorem we proceed as in [8] or [12].
Let w9 = w,;,j = 1,2, be the solutions of (1.2) with the same initial condition
¢ € H. Let w=w® —w®, then we obtain

wy + w(l)wg) — w@)wg(ﬂz) + Wege + M (Hwe + Hwege) + (1 — ng)(wa) + ’ng)T) = 0.

Multiplying the last equation by w and integrating over R we get

%%Hw(t)HQ = —(w,ww;(vl)) - (w7wxw(2)) - nl(wvax + %wmx)

—(m = mp) (w, Hul? + Huwiy)

1 2
< uwwmuwuu%H(;;Pumuww+(271uwu2
el — ma| (|l [JwS?]) + [l wee]l[|w$])
< e(flwDfy + [[w® s+ m)|w]?

el = na| (w2 + [w® ) [[w]];.
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Applying Gronwall’s inequality to the last relation we find

lwl* < eTln —n2| sup [([|wD]l2 + [[w® ) [|w®|y]
te[0,77

- expleT sup ([|w ™|z + [[w® 2+ n)]. (4.95)
te[0,77

By Lemma 4.2 the H? norms of w(") and w(® are bounded by a function of T and ||¢|»
but independent of 7 < 1. From (4.95) and because L? is complete, there exists the
limit wy(t) = lim, o w,(t) in L? uniformly with respect to ¢ € [0,T], i.e.

lim sup ||w,(t) —wo(t)|| =0, 4.96

tig sup_ (1) — o )] (4.96)
and therefore

woy € C(0,T; L?). (4.97)

Let us prove that wy(t) € H® for all t € [0,T]. In fact, let ¢t € [0, T] and take a sequence
(M )nen with m, > 0 and 7, — 0 when n — oo. Since L? — lim,_,cowy, () = wy(t),
there exists a subsequence which we again call (w,, (t)) such that

lim Ty (t,6) = Tt €), €~ ae (1.98)

Applying Fatou’s Lemma, we find that

Jasermeora < i [0+ eor
< 6l - exp(C(s, T, 16]L)T), (499

where the last inequality is a consequence of inequality (4.92).
We claim that

wy(t) = wy(t), in H® (4.100)

uniformly over [0,T] as n — 0. In fact, defining C? := ||| - exp(C(s, T, ||8]]s)T), as
on the right hand side of (4.92), let ¢ € H~* and let € > 0 be fixed but arbitrary then
by density, there exists an element ¢, € L? such that [[¢ — ¢.||_s < €/(3 - C), then

|o(wy(t) = wo())] < llp = @ell-sllwn(t) = wo)ls + le(wy(t) = wo(®))]-  (4.101)
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Since ¢, € L?, there exists o) > 0 such that 0 < n < &) implies |@(w,(t) — wo(t))] <
€/3, for all ¢t € [0, T7.
Using (4.92) and

lwo(®)lls < lim inf [|w, (B)]l, < C (4.102)

in inequality (4.101) we have that ¢(w, (t)—wo(t)) — 0 asn — 0, uniformly in ¢ € [0, 7.
Since w, € C(0,T; H®), it follows that w, € C*(0,T; H®). Then,

wy € C¥(0,T; H?). (4.103)
Let ¢ € H*=3. Then,
(wn(t),1)s—3 = (&) s-3
— /0 t(wn(t’)ﬁan(t’) + Bwy (1) + n(HOpwy, (1) + HOZw, ('), ¥)s—_adt!,  (4.104)

for all t € [0, T]. From (4.100) we have that
Pw, — 2wy, in H,
HO,w, = HOpwp, in H L
HPPw, — HOwy, in H* > (4.105)
uniformly over [0,7] as n — 0.
On the other hand, f, — fin H", g, — g in H" implies f,g, — fgin H", for r > 1/2.
Then w,(t")9,w, (') = we(t')dywo(t') in H*~, for all ¢' € [0,T].
By (4.92) we see that
[ () 0zwy () |s—3 < [|wy(#)pwy(t) |51 < ”wn(tl)”i
< lgll7 - exp(C(s, T, [|9]]2)T), (4.106)
for all ¢ € [0,T]. Then, using the Dominated Convergence Theorem, we get
t

lim [ (g (#)u0 (¢), ), _sdt = /0 (w0 (£)Dutg(£), )50t (4.107)

n—0 0

Using (4.105),(4.107) and letting n — 0 in (4.104), we obtain

(wo(t),V)s—3 = (¢, 1) s—3 — /0 (wo(t")Dpwo(t') + Bwo(t'), 1) s—sdt’, (4.108)
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for all v € H*™® and ¢ € [0,T]. Since t € [0,T] — wy(t)F,wo(t) + BPwy(t) € H* is
weakly continuous, it is strongly measurable, thus

t
wo(t) = qb — / wg(t’)(‘?xwo(t') + 82w0(tl)dt, (4109)
0
exists as a Bochner integral. Then
wy € AC([0,T); H*™%). (4.110)

As the equation (4.108) is valid for all ¢y € H*3, using the Fundamental Theorem of
Calculus we have that

Opwo(t) = —wo(t)Opwo(t) — Dwy(t), t€[0,T), (4.111)

with the derivative respect to t calculated in the H*3 norm. By Theorem 6.11 in
[11], there is a unique solution for the KAV equation in the class wy € C([0,T]: L?) N
C¥([0,T]; H)NAC([0,T]; H*~3) and this unique solution belongs to wy € C([0,T]; H*),
as we asserted. To establish that the solution depends continuously on the initial data,
we proceed as in [3]. This completes the proof of the theorem. H
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Chapter 5

Global Theory in F; s(R) and Decay
Properties of the Solution of (1.2)

Some decay properties of the solution of equation (1.2) for n > 0 are obtained, similar
to those obtained for the Benjamin Ono equation (see [8]). Theorem 5.4 is a unique
continuation theorem for equation (1.2). It implies loss of persistence for equation (1.2)
in F3 3, while for BO this occurs in Fj 4.

Lemma 5.1. Let F,(t,£) be defined by (2.2), wheret > 0, £ € R and n > 0. Then,

OcF,(1,€) = Fy(t, )t[3i€* — nh(€)(3¢* — 1)], (5.1)

O2F,(1,€) = F(1,)t*[3i€% — nh(&)(362 — 1)]” + 61€(i — nh(€)) Fy(t, &) + 2nt5, (5.2)
and

REY(,E) = Fy(t, O[3 = nh(€)(3¢* — 1)]” + 6t(i — nh(€)) Fy (¢, )
+F, (1, P [36°(n* — 1) — 72inh(§)€” + 12inh(§)€ — 120°¢]
+61°¢ (i — nh(€)) [3i€7 — nh(€) (36" — D] Fy(t, &) + 2ntd’,  (5.3)

where ¢ is the Dirac delta distribution and h(§) is the sign function.
Proof: This result follows easily using the chain rule. l

Lemma 5.2. Let n > 0 be fized. Then,
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1. Ey(t): Frp = Frp, forr =0,1is a C° semigroup and we have that

1E,(1)0l7,.. < e™On (B)l|¢]l .., (5:4)

for all ¢ € F,,, where O, ,(t) is a polynomial of degree r with positive coefficients
depending only on n and r.

2. If r > 2 and ¢ € F,,, the function E,(t)¢ € C([0,00); F.,) if and only if
(01)(0) =0, j=0,1,..,r —2. (5.5)
In this case we obtain also an expression like (5.4).

Proof: Similar to the proof of Theorem 2.4 in [8]. W

Now let us prove a local result for equation (1.2) in F»;(R).

Theorem 5.1. Let > 0 and ¢ € Fy1(R). Then, there exist T(||¢|5,,,n) > 0 and a
unique function u == u, € C(0,T; F1(R)) satisfying the integral equation (3.11).

Proof: Let M, T > 0. Consider the map

1 t
(N0 = B0~ 5 [ ot~ 000, 50)de. (5.6)
0
defined on the complete metric space
E01(T) = {f € C(0, T; 7:2,1(R))§t:[131%] 1 (t) = Ey(t)oll7,, < M}. (5.7)

Since £7e ME -8 < ¢Te=nt/26 for J € N and € > /2, we have the inequality

3 1
sup e ME < o( ) (=) + ™), JeN. (5.8)
€0 nt

i.) Let f € E5,(T). We will prove that Af € C(0,T : F51(R)). We remark that £, (¢)
is a C° semigroup on F,;(R) and moreover,

12, ()¢l 7, < e Ona (D)@l 5, (5.9)

for all ¢ € Fy 1, where ©,,(¢) is a polynomial of degree one with positive coefficients
depending only on 7. The last assertion can be proved using Lemma 2.1 and the
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expression (5.1).
By Theorem 3.2 and since E,(t) is a C° semigroup in F5;(R), it is enough to show
that

F(t) = /Ot E,(t — o, f()dt' € C(0,T); Li(R)).
Let 7>t > 0.
l=(F(t) = F(r)l| < /Ot |l (Ey (7 — ) — Byt — 1) 0 f (£)*||dt’
+ /tT |z E, (1 — t)ouf(t')?||dt (5.10)

Let g(t') := 0.f(t')?, for all ' € [0,T]. We remark that f(¢')f.(t') € H' N L2, for all
t' € [0,T]. Let t' € [0, T]. Then,

10: (F @) Lo (NI < 100 f W) zoe 10w f ()] + 1 () || oe N|0Z £ ()]
< c(lFE)20FEN +IFELFE]2)
< f@)%,, (5.11)
and
2 fE) L) < N fa@llzeollzf I < el FE2ILf )]z
G (5.12)
Hence, for every t' € [0,T], we have that
|z Ey (T =g = 0Fy (1 —1,6)g(t', ) + Fy(m — t/,£)04(t, )|
< ||By(r = 1,8 (7 = ) [(30 — 3nh(€))€” + nh(€)] (¢, )|

HIF(r =1, 8)0:4(t, )
c(m)(m = OIE (7 =, &l IEa(H, )|
(1 — )| Fy(r =1, )g(t", &) + €T |9gg (t', €|

_41\2/3 ,
< et - ) O 613)

IN

where in the last inequality we used (5.11), (5.12) and (5.8) with J = 1. Hence the
second integral on the right hand side of (5.10) tends to zero as 7 tends to t.
On the other hand, we know that ¢g(t') € Fy1(R), for all ¢ € [0,T]. Since E,(t) :
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Fi1 — Fiy is a C° semigroup, we conclude that ||z (E, (1 —t') — E,(t —t'))g(t')|| tends
to zero as 7 — t. Now using the estimate (5.13), the triangular inequality and the
Dominated Convergence Theorem, it follows that the first integral on the right hand
side of (5.10) tends to zero as 7 — t.

ii.)Now we will prove that A(Z,,(T)) C Z5.(T), for T = T > 0 small enough. Let
f € Z91(T). By using the proof of Theorem 3.2, it is enough to show that we can
choose T = T > 0 sufficiently small such that ||z (Af(t) — E,(t)¢)|| < M/2, for all
t €[0,T]. Let ¢t € [0, T]. Then,

le(A6) = By(0) | < 5 [ IeBy(t = )07 e

2/3

T
< C(n)(m +(T+1)e™) sup |f(#)%,, - T
t'€[0,T]

T2/3 9
< el (o + (T4 D) (M 4 e S Ot ()llollza)”- T

where the second inequality was obtained using (5.13). )
iii.)Next, we will prove that the map A is a contraction defined on (Z,(7)), for some
T €(0,T]. Let t € [0,T], u,v € (E21(T)). Then,
t
|z (Au(t) — Av@®)]| < [ |lzEy(t — )0 (u(t')? — v(¥)?)||dt". (5.14)

On the other hand, we have that

102 (u()? = o)) < [lu()* = o()*]s

< (supllu(®)[l +sup[[v(@)]l:) lu() — v(#)lx

[0,7] [0,17
< 2(M e t,Sl[tPT] Oy, (1)1l 5..) [8011713] [u(t) = o) 7.,
< e(m) (M + e (T +1))6l7,) p [u(t') = v(t)] 7, (5.15)
and
20, (u(®)? — o)) < 2([ledsu(t) (u(t’) — ()] + lzo(#)d: (u(t') — o))
< 2([l0su(t) IILwIIU( ) = o(t)|ez + llao@)[[[|0: (wt) = v(t))|z=)
< efllu@)l2llu®) = @)z + lo@)|z2llu(®) — v(t)]l2)
< 0(77) (M + ech(T + 1)”¢”f'—z 1) sup Hu( ) (tl)”fz,lv (5'16)

(0,7
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for all ¢ € [0,7T]. Taking the Fourier transform of the expression inside the norm in
the integral in (5.14), using (5.1), (2.5), (5.8) with J = 2, (5.15) and (5.16) it follows
from (5.14) that

/3

m + (T—i- 1)6”T) T

lz(Au(t) — Av@))|| < e (M + e (T + 1)[|¢]| 7. )

*Sup ”u(t,) - U(t/)Hfz,l'
[0,71
From i.), ii.) and iii.), it follows that A has a unique fixed point u € Z,,(7T),

T > 0, satisfying the integral equation (3.11). Uniqueness of the solution of (3.11)
in C(0,T; F21(R)) is a consequence of Theorem 3.2. W

Next Lemma is similar to Theorem 5.2.3, obtained in [1], for a regularized version
of the Ott-Sudan equation.
Lemma 5.3. Let n > 0 and ¢ € Fy1(R). Let u € C(0,T; F21(R)) be the solution of
the integral equation (3.11). Then, 87u € C((0,T]; L?(R)), for J = 0,1,2,3. Moreover,
HO,u, HOPu € C((0,T]; L3(R)).

Proof: First, we remark that ¢ € F,;(R) implies that 207 E,(t)¢ € L*(R), for
J =0,1,2,3 and t € (0,7]. The last assertion can be proved taking the Fourier
transform of z9; E, (t)¢ and using expressions: (5.1) and (5.8). Moreover, it is not
difficult, taking the Fourier transform, to prove that zdE,(-)¢ € C((0,T]; L*(R)), for
J=0,1,2,3.
Let ¢t € (0,7]. Let us call g(t') := u(t')0,u(t'), for all ¢ € [0, T]. Then,

t
[zdsu()|] < [lx0. Ey(1)o|| +/0 205 By (t — 1) g(t') || dt". (5.17)

We have that
120, By ()| < (| Fy (8, ©)S(E)|| + |60 Fy (t, )D(E) || + IEF, (£, £)Ied(©)],  (5.18)

where

1, (t, &) d(E)] < e|9]], (5.19)
I€O:F, (1, )DE) < cm)[tF,(t, OESE)] + ntl|EF, (1, €)d(E)]

t2/3
< C(U)(m +te")[|@ll2 + nte™||6]x

IN

t
) (75 +1e")loll. (5.20)
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and

IEF, (1, €)0eh(E)|| < NIEF,(t, ) || [|wo]| <

(7775)1/3 +€nt)||¢||f2,1' (521)

On the other hand, we find that

lad, Byt = g < 1Fy(t = .03t Oll + €0y (t — ¢, )a(tE)]
HIER,(t - ¢, )06 (FE)]|. (5.22)

Applying (5.11) and (5.12) to g(t') = u(t')0u(t"), we obtain

1E (¢ = ¢, gt Ol < 1Fy(¢ = ¢, )|z lg (¢, O < e jul)F,,,  (5.23)

160 F,y(t =1, ) gt < (e(n)(t = )WEF,(t —t',6)|1

+n(t — ) ||Fy(t — 1, )|l ) [1€9(E, €|

o (t—t’)1/3
772/3

IN

(=) ) )], (5.24)
and

1EF,(E =, )0eg (T < [IEF(E =1, &)l [10:9(£'E) |

< + O ), (5.29)

o ———
(n(t — 1))/
Using (5.18)-(5.25) in (5.17), we have that

¢33 1
le0u@l] < e (L +0e™ + o + i) 167,

+e(n) / t ((1—|—t—t’)e"(t_t')+<t_t’)1/3+ L) ()%, dt(5.26)
"l N T ) Rk C

Then, x0,u(t) € L?(R), for all t € (0,7]. The fact that x0,u € C((0,T]; L*(R)) is
obtained using the expressions (5.18)-(5.25) and the Dominated Convergence Theorem.
Now we consider the cases J = 2,3. Let ¢t € (0,7]. Then,

t
207 u(®)l| < l|20) B, ()¢ +/0 20y Ey(t — ) g(t') ||t (5.27)
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It is easy to see that

207 By (t —)g(t)| < T Fy(t =1, )t )l + |70 Fy (t — ', €)g(t', )|
HIETF (t = ¢, €)0ea(t, I (5.28)

Next, we will estimate each term on the right hand side of (5.28):

17 Ry (t =, g, &)l < €72 Rt — 1,9l I€a(t, €
< IETPR (=, )l |lu(t) |,
1
< o)) (———= + et %, (5.29
¢ ((n(t_t,)) ") |u(t')][%, )

1670 Fy(t — ¢/, €)g(t', )|
<)t =) (17 Fy(t =1, &)l + (|7 Fy(t = 1,81 [€9(F, )]

1 (t_t’)% N, nt—t") (12
< c(n, ) (—= + o+ =) ) u)lE, . (5:30)

N (t— 1) N

187 Fy(t = £, )0ea(t, Il < &'yt — 1, )l |60ea(t', )|

1 (t—t') /
< C(J)(W+€" Ngdea(t', )|, (5.31)
where
Hfagé(t' Nl = lu()du(t’) + 2(Dpu(t))? + wu(t)Ogu(t')]|
< c(lfu) e lu() [l + 110z (t') | oo lxdpu(t) ] + llzult) || e [[u(t)||2)
< e(lu()F,, + llu@)l2ladeu@)] + llzu@) |00 (zu@)) [ lu()]|2)
< c([lu®)I7,, + lu)l2llzdsu(t)]]
HlluE) 15, Qa2 + wdeu(t)[2)). (5.32)
On the other hand, if J = 2, 3, it is easy to see that
/td—t' = Spn (5.33)
o (E—t) 20 '
/t ! L dt' < 400 (5.34)
o (t—t)F 3 ’
/ L (5.35)
o (t—t)5 e
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Using the expressions (5.26), (5.28)-(5.35) in (5.27), and since 207 E,(t)¢ € L*(R), for
J=2,3,and t € (0,T], we find that 207u(t) € L*(R), for all t € (0,T], J = 2, 3.
Finally, HO,u, HO2u € C((0,T]; L}(R)), are consequence of the previous results and
the fact that [z, H]0,g = 0, for all g € L2(R), s > 1/2. &

Corollary 5.1. Let n > 0 and let u € C(0,T; F51(R)) be the solution of the equation
(1.2). Then, ou € C((0,T7; L3(R)).

Proof: It follows immediately from Lemma 5.3 and the next remark
2 (u(t)Opu(t) — u(to)Osulto)) | < llzu@)ll|0s (ut) — ulto)) ||
Hla (u(t) = ulto)) || 0zulto) | 1
(@)l 2 ||u(t) — ulto)l2 + lul®) — ulto) ||z l[u(to)]|>. W

IN

Next, we prove a global existence theorem for equation (1.2) in F5;(R), similar
to the proof of Theorem 5.2.10 in [1], where it is proved that the regularized Ott-
Sudan equation w; + wWwy + Wy — PHW, + €HWwyre = 0, with €, u > 0 is globally well
possed in F51(R). In that case the amplification and damping terms give, because of
their signs, (zw, Ho,(zw)) < 0 and —(zw, HO?(zw)) < 0 so (see Theorem 5.2 below)
%%wa(t)HQ < —(zw, rww,) — (Tw, TWaye) — n(zw, Hw) + 3n(xw, Hw,,), but in our
case that can not be done.

Theorem 5.2. Let ¢ € Fo1(R). Then, for each n > 0 there exists a unique solution
u=u, € C([0,00); F21(R)) of equation (1.2) such that Ou € C((0,00); F_1,1(R)).

Proof: To prove global existence for equation (1.2) in F»;(R), it is enough to
combine Theorem 4.2 with the next computations.

——H:vu(t)”2 = —(2u, ruuy) — (U, PUgyy) — N(@u, ©(Hug + Higes)),

(u, 2ung)| < lugllze [Joul® < ellull2lullZ;.

— (U, TUgee) = —(wu, [1,0;]u) = 3(xu, tgy) < 3l|ullpzllullz < cllullZ,

where by Lemma 4.1, ||u(t)||s < F(T,n,||¢||2), for all ¢t € [0, T]. Moreover,

—(zu, xHu,) = —(vu, [z, HO|u) — (zu, HOL(2u)) = (zu, Hu) — (zu, HO.(2zu)),
—(au, [z, HO|u) — (wu, HO2(zu)) = 3(au, Hugy) — (vu, HO2 (zu)),

—(2u, tHUzze)
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where we have used the identities

[z, HOJu = [z, H]|0,u — H[Oy, x]u,

[x,H]O,u = 0,
[0, x]lu = u
and
[z, H]PPu = 0,
(03, 2lu = 30%u.
Therefore

— (2, 2(Hug + Httgas)) < |lulll|ull + lzulllullz + lzul* < 3[jul%,, =

Theorem 5.3. Let n > 0 be fized and let T > 0. Assume that u € C([0,T]; Fo2(R))
is the solution of (1.2). Then, u(t,0) = 0, for all t € [0,T].

Proof: Multiplying (1.2) by 2% we obtain
Op(x?u) = =2 ud,u — 220°u — na (Hoyu + Hou). (5.36)
By assumption z?u(t) € L?(R), for all £ € [0,T]. Then, we have that
[a*udpul| < [|0pullpolla?ul] < [Jullallz®ull, (5.37)

and therefore v(t) := x*(ud,u)(t) € L*(R), for all ¢t € [0,T]. It follows easily that
v € C([0,T]; LA(R)), in fact

7 (#) = (G|l <
< lu®llr lult) = ulto)ll2 + [luto) l2llu(t) — ulto)ll7,,.  (5.38)

Applying the Fourier transform in (5.36) we get

——

0i0%i(t,€) = 7(1)(€) + i (Ea(1.€) — ndElh(E) (~€ + alr. ). (5.39)
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Since u(t) € Fyo for all t € [0, 71, it is easy to see that

BH)(E) = B2(E%a(t,€)) = 6Ealt,€) + 6620ea(t, €) + E3Ra(t, €)
€ O([0,T]; L? 4,(R)). (5.40)

And similarly, we have that

——

O [n(E)(—€ + E%)a(t, €)] = —26(€)a(t, 0) + T(£)(€), (5.41)
where
P/(75)(5) = —2h(£)0cu(t, &) — EM(E)DFu(L, €) + 6ER(E)u(t, €) + 6E7h(€)Deult, €)
+Eh(8)da(t,€) € C([0,T); L2 4(R)). (5.42)

From (5.39) - (5.41) we obtain

—_—— e~ ——

0i0a(t, €) = (1)(€) +iB(t)(€) + 2nd(§)a(t, 0) — nl'(t)(€). (5.43)
Integrating now (5.43) between 0 and ¢, we find that
200 (&) /Otzl(t’,o)dt’ € C([0,T]; L? 4(R)). (5.44)
The last expression implies that
/0 Ca(t 0)dt =0, for all t€[0.T], (5.45)

and therefore a(t,0) = 0, for all ¢t € [0,7]. W

Theorem 5.4. Let n > 0 be fized and let T > 0. Assume that u € C([0,T]; F33(R))
is the solution of (1.2). Then, u(t) =0, for all t € [0,T].

Proof: Multiplying (1.2) by 2* we obtain
Oi(z*u) = —r*ud,u — 2*Pu — na* (Hozu + Hou). (5.46)
By assumption z3u € L?(R). Then, we have that

lz*udzull < [10sull e llzull < flull2llzull. (5.47)
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Then, v(t) = 2*(u0,u)(t) € L*(R), for all ¢t € [0, T]. Similar to Theorem 5.3 we have
that v € C([0,T]; L*(R)). Taking the Fourier transform in (5.46) we find that

——

0,02(1,€) = —in()(€) +iBR(E (1, €) — ndR(h(O)(~E + E)it.0).  (5.48)
We easily see that

O (E20(t,€)) = 6a(t, &) + 18£0zu(t, &) + 920z a(t, €) + £20¢u(t, €)
c O([0,T]; L 5(R)), (5.49)

and

O (h(€)(=€ +&)u(t,€)) = 9(— 20(§)a(t,0) — 2h(€)d¢u(t, €) — Eh(€)d¢au(t, €)
+6Eh(€)i(t, §) + 66°h(8)Deur(t, ) + & h(§)dgult, €))

——

= —20'(§)a(t,0) — 40(&)u(t,0) + () (E), (5.50)
where

TH(E) = —h(€)d%alt, &) — ER(E)DFat, &) + 6h(E)(t, €)
+18Eh(€)ei(t, €) + 9€7R(€)0%a(t, €)
+En(8)da(t,€) € C([0,T); L2 5(R)). (5.51)

From (5.48) - (5.51) we get
—i0nRa(t,E) = —(1)(E) + R alt, ) + il (H)(E)
—2ind’ (§)a(t, 0) — 4ind (€)ou(t, 0). (5.52)
Integrating (5.52) between 0 and ¢, we have that
9ind(€) / LAt 0t — 4ins(€) / ot 0yt € C(0. T L2,(R).  (5.59)
0 0

Then,

t t
/ Betu(t', 0)dt' = / a(t',0)dt =0,
0 0
for all ¢ € [0, T]. The last expression implies that
deu(t,0) = u(t,0) =0, (5.54)
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for all t € [0,T7.

On the other hand, we have that u satisfies the integral equation

1

u(t,) = E,(t)o(-) — 5 /Ot E,(t —t)0,u*(t,-)dt. (5.55)

Denoting v := u?, w := 0,v and taking the Fourier transform in (5.55) we get

0,6 = 990 - 5 [ Rt~ 7,00, 0. (5.56)
Derivating three times equation (5.56), we obtain
Ru(t,€) = O(2F(1,€)9(8) +20¢F,(t,€)ed (&) + Fy (1, )9 (€)
——/a5 w(t', &)dt' — /a€ (t—1',8)0w(t', &)dt
- [ B -t e, ).

Then,
ORu(t, &) = OFF,(t, (&) + BOEF,(t,€)0h(€) + 30 F, (t,€)02p(E)
FE(ORKO 3 [ Rt O, i

__/ OFF,(t —t,€)du(t, €)dt ——/ OcFy(t — 1, €)0Fw(t', €)dt
_5/0 Fy(t =, 6)08w(t', €)dt'. (5.57)

Since n > 0, ¢, u,v € F3 3 and using Lemma 5.1, it follows easily that

Fy(t,€)020(€) = Fy(t, ) (3i€* — nh()(36* — 1)) % (¢) € C([0,T]; L*(R)) (5.58)
and
Fy(t,€)886(€) € C(0,T]; L*(R)). (5.59)
On the other hand, we can easily see that

2, €) = i(20:0(1€) + A20(1, €)),
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and

Rw(t', &) =i(3070(t, &) + £0z0(t',€)).

Then,
3 t
-3 [ ara—r.gtatt. o o1y (®), (5.60)
0
and
1 t
-3 [ Bl - 000, 9 € 0,1 R) (5.61)
0

Similarly, we find that

OFF,(,€)6(6) = fu(t, &) + mtd' (£)$(S), (5.62)

where f,(1,€) € C([0,T); LA(R)).
By (5.58) - (5.62) and making similar considerations to the other terms in (5.57), we
obtain from (5.57) that

t

Qlt,) = F(t.6)+ 2015 + o) 5 [ 2t~ )5 Ot e

= / 2(t — )5(6) (¢, €., (5.63)
where f(-,&) € C([0,T]; L*(R)). Since
8(£)Ded(€) = 5(€)9e0(0) = 0,

we have that
Blt.E) = 10,6+ (20t66) 1 [ (6= V)lt,it)5(6)
3y / (= )0t 0)drs (€). (5.64)

Since dZu(t, &) and f(t,&) are measurable functions for all ¢ € [0,7], it follows from
equation (5.64) that

t
/ (t— #)ded(t', 0)dt' = 0, for all ¢ € [0,T]. (5.65)
0
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Let t € [0,7]. Since u(t) € Fs3 it is easy to see that xu(t) € L3(R). Then x/u\(t) €
H?(R) and therefore zu(t,-) € L'(R). On the other hand, we have that

/|x8xu(t)2|dx = 2/|xu(t)8xu(t)|dx§ 2H8xu(t)\|Loo/|xu(t,x)|dx

< 2ffu®)]l2llzult, )z (5.66)
Then,
Oew(t,0) = — ;ﬁ/RxaxUQ(t,x)dx: J%_W/IKuQ(t,x)dx
= \/%||U(t)||2~ (5.67)

Combining (5.65) and (5.67) we get
t
/ (t — ) ||u(¥)|2d = 0, for all ¢ € [0, T]. (5.68)
0

It follows easily from (5.68) that ||u(t)|| = 0, for all ¢ € [0,7] and this concludes the
proof of the theorem. W
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Appendix

Kato’s Inequalities:

1. Let s > 3/2. If u is real valued, then

|(u, uDu)s| < Csl| Dulls—1Jull3.

2. If £ > 2 and w is real valued, then

|(w, uDu)| < Cillullalully.

Gagliardo-Nirenberg’s inequalities:

ull e < Null | Dull?, w e HY(R), s> 1,

1Dul| < Cllull=2/™ (| D™ ul/™, 0 < j <m, ue H™(R).

Young’s inequality:
Let a,b>0,¢>0,1/p+1/p'=1,1 <p < oo. Then,

1 /
ab<e-aP +¢e 1 .p".

ol

(GN1)

(GN?2)
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