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Abstract

In this work we study the Hausdorff dimension and limit capacity for
repellers of certain non-uniformly expanding maps f defined on a subset
of a manifold. This subset is covered by a finite number of compact
domains with pairwise disjoint interiors (the complement of the union of
these domains is called hole) each of which is mapped smoothly to the
union of some of the domains with a subset of the hole. The maps are
not assumed to be hyperbolic nor conformal. We provide conditions to
ensure that the limit capacity of the repeller is less than the dimension of
the ambient manifold. We also prove continuity of these fractal invariants
when the volume of the hole tends to zero.

1 Introduction

1.1 Background and Motivation

Fractal invariants such as the Hausdorff dimension have been an important topic
in many branches of Dynamical Systems. They have been used in topological,
geometric and ergodic approaches to Dynamics, providing information about
the dynamical behavior of maps and describing the geometrical structure of
invariant sets . In the thermodynamical formalism they constitute a beauti-
ful bridge between geometrical aspects and physical concepts such as entropy.
There is now a rich theory of fractal dimensions for invariant sets of uniformly
hyperbolic systems, especially in the case of surfaces. For instance, [5] provides a
formula for the dimension of horseshoes from which one gets that the Hausdorff
dimension and the limit capacity depend continuously on the dynamics, and are
strictly less than 2, at least when the dynamics is C2. For more information
see [8], chapter 4. In this work we extend some of the conclusions of this theory
beyond the uniformly hyperbolic set-up.

In a d-dimensional manifold, consider M a set which is the closure of its
interior. Suppose that f is a map defined on finitely many, compact domains
Ri ⊂ M with pairwise disjoint interiors, whose union is not the whole M . The
subset of M where f is not defined is called hole. Each domain Ri is mapped
onto a subset of M which is the union of some of the domains with, possibly,
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some part of the hole. Moreover we suppose that f is expanding in a non uni-
form fashion to be made precise later. The main object of interest is the set Λ of
points that never fall into the hole (the repeller) under iteration. Our first main
result states that limit capacity of Λ is less than the dimension of the ambient
manifold. In [4] Horita and Viana proved for a setting very similar to ours, the
analogous result on Hausdorff dimension. It is known that Hausdorff dimension
is less or equal than limit capacity, so their result is included in ours. Since our
methods are very different, the present paper gives, in particular, a new proof to
the main result in [4]. A second set of new results presented in this work is the
dependence of Hausdorff dimension and limit capacity on the Lebesgue measure
of the hole. We prove that the Hausdorff dimension and the limit capacity of
the repeller converge to the dimension of the ambient manifold if the Lebesgue
measure of the hole goes to zero. Clearly the result on limit capacity follows
from the one on Hausdorff dimension. Nevertheless we provide a different proof
to the former, whose main advantage resides on its simplicity. One interesting
setting where these results can be applied is the class of diffeomorphisms derived
from Anosov diffeomorphisms through a Hopf bifurcation. See [1], [3]. Using [3]
it follows from our results that the limit capacity and the Hausdorff dimension
of repellers derived from Anosov diffeomorphisms through Hopf bifurcations is
less than the dimension of the ambient manifold. Furthermore, both fractal di-
mensions converge to the dimension of the manifold when the map converges to
the bifurcating diffeomorphism. Our conclusions may be seen as an extension of
results of Diaz and Viana in [2] where they considered diffeomorphisms derived
from Anosov on the 2-dimensional torus. A fundamental difference is that our
repellers are neither uniformly hyperbolic nor conformal along invariant direc-
tions. Let us comment a bit more on this. Most results on fractal dimensions of
invariant sets of dynamical system rely on auto-similarity, which on its turn, is
often derived from hyperbolicity and conformality. The first of these properties
is used to ensure control of volumes proportions (through distortion arguments)
while conformality provides control of shapes of removed sets (pre-images of the
hole). Neither of these two properties holds in our setting. Our strategy is to
approach fractal dimensions through volume estimates. To begin with, we are
able to obtain volume distortion control with our assumption about non uni-
form hyperbolicity. Moreover, this approach also allows us to bypass the lack of
conformality: for the limit capacity statement, besides the volume estimates we
only need some control of limit capacity of pre-images of the boundary of the
hole, which is obtained following an argument from [4]. On the other hand, it
is a bit more delicate to avoid using conformality when dealing with Hausdorff
dimension. To go around this problem we propose an approach we call Volume
Comparison Method. Our key ingredient is a control of the spatial distribu-
tion of the removed sets, which we obtain using the structure of pre-images of
the domains where the map is defined by the inverse branches, more precisely,
controlling the diameters of such pre-images.

Let us also mention that ergodic properties of Anosov maps with holes have
been studied by [6] and [7]. For an account on fractal dimensions and dynamical
systems we shall refer to the recent Pesin monograph [9] .
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1.2 Definitions and Results

1.2.1 Map with Hole

Consider M a compact d-dimensional Riemannian manifold. Let M ⊂ M be
a set that is the closure of its interior and R1, . . . , Rm be domains in M whose
interiors are pairwise disjoint (we use the term domain to mean a compact path-
connected set) and such that the limit capacity of the boundary of Ri is less than
d for all i. The inner diameter of a subset of M is the supremum of the inner
distances between any two points in the same connected component, where the
inner distance is the infimum of all lengths of curves connecting the two points.
A map with hole is a map f : R1 ∪ · · · ∪ Rm → M such that log |det(Df (−1))|
is (C0, ε)-Hölder continuous for some C0 > 0 and ε > 0, for any inverse branch
f (−1) of f and the restriction of f to each Ri is a diffeomorphism onto some
domain Wi with the following properties:

• for all i ∈ {1, . . . , m}, there exists some j ∈ {1, . . . ,m} such that Rj ⊂ Wi;

• Rj ⊂ Wi whenever Rj ∩Wi 6= ∅;
• for all i ∈ {1, . . . ,m}, Wi have finite inner diameter (let us call ρ the

maximum inner diameter of Wi over i ∈ {1, . . . , m});
• Markovian property: the union of the boundaries of Rj for j ∈ {1, . . . , m}

is an invariant set, that is, if x belongs to the boundary of any Ri, its
image also belongs to the boundary of some Rj .

Notation 1. Defining D = min{Leb(Wi) : i = 1, . . . ,m} we say that f is a
(D, ρ, C0, ε)-map with hole according to the constants specified above.

Remark 1. The condition on log | det(Df (−1))| is satisfied if, for instance, f
is C1+ε.

The set Hf = M\(R1 ∪ · · · ∪ Rm) is the hole of f and we call ρ the inner
diameter of f . The repeller of f is the set Λf of points in M whose forward
orbits never enter Hf :

Λf = {x ∈ M : fn(x) ∈ R1 ∪ · · · ∪Rm for every n ≥ 0}

If we define

Λn = {x ∈ M : f j(x) ∈ R1 ∪ · · · ∪Rm whenever 0 ≤ j < n}

it follows that Λf = ∩n∈NΛn.

1.2.2 Expanding and Non Uniformly Expanding Maps

Given c > 0, a local diffeomorphism F is called c-expanding if there exist n
such that the derivative of any inverse branch satisfies ||DF (−n)(x)|| < e−nc for
all x in its domain of definition. For our purposes, that is, the study of the
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repeller, it makes no difference whether we deal with the original map or with a
fixed iterate (that is, to work with Fn instead of F ). Therefore, to simplify our
presentation, we shall assume n = 1. In our paper, the notation F is used here
to maps known to be expanding, while f is usually applied to what we call a
non-uniformly expanding map, according to the definition bellow. Given a local
diffeomorphism f we denote by f (−1) any inverse branch of f . Given n ≥ 1 and
α1, . . . , αn in {1, . . . ,m}, a set

C(α1, . . . , αn) = Rα1 ∩ f−1(Rα2) ∩ · · · ∩ f−(n−1)(Rαn
)

is called and n-cylinder for f .
For a map with hole f , we define the function

φn(α1, . . . , αn) =
1
n

n∑

j=1

inf
x∈Cj

log ||Df−1(f j(x))||−1

where Cj = C(α1, . . . , αj). We say that φn is the average least expansion.
Obviously, if f is immediately c-expanding, that is, if ||Df−1(x)|| ≤ e−nc for
all x, then φj(α1, . . . , αj) ≥ c for all j. Let us call S0(c) the set of points that
belong to some cylinder C(α1) such that φ1(α1) > c and Bn(c) the set of points
that belong to some cylinder C(α1, . . . , αn) such that φj(α1, . . . , αj) ≤ c for all
j ∈ {1, . . . , n}. We notice that the set Bn(c) is a union of cylinders. From now
on we will say that n is a c-expanding time for a cylinder Cj = C(α1, . . . , αj)
meaning that φj(α1, . . . , αj) ≥ c.

The definition of a non uniformly c-expanding map requires that the mea-
sure of cylinders that take a long time to have an expanding time decays in a
particular fashion. Let {δn(c)}n∈N be a sequence of real positive numbers con-
verging to zero. We say that a map f has c-decay δn(c) if Leb(Bn(c)) ≤ δn(c)
for all n ≥ 1. Since c will be fixed through most of this work, we refer to c-decay
just as decay. Given c ≥ 0, we say that f is non uniformly c-expanding if it
satisfies

(NU1) There exists a sequence δn(c) going to zero such that Leb(Bn(c)) ≤
δn(c).

We say that a non uniformly c-expanding map f has exponential decay if

(NU2) There exists c1 > 0 such that, for every large n, we have Leb(Bn(c)) ≤
e−c1n.

Any c-expanding map satisfies assumptions (NU1) and (NU2).
We say that a family F of non uniformly c-expanding maps has common

decay if

(NU3) There exists a sequence δn(c) going to zero such that for every f ∈ F
we have Leb(Bn(c)) ≤ δn(c).
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1.2.3 Fractal Dimensions

For α ≥ 0, the Hausdorff α-measure of a metric space X is defined by

mα(X) = lim
ε→0

inf{
∑

U∈U
(diamU)α : U is an open covering of X with

diamU ≤ ε for all U ∈ U}.

It is easy to show that there exists a unique number HD(X), called Hausdorff
dimension of X, such that mα(X) = ∞ for any α < HD(X) and mα(X) = 0
for any α > HD(X). The limit capacity or box dimension, of a metric space X
is defined by

Cap(X) = lim sup
ε→0

log n(X, ε)
| log ε| ,

where n(X, ε) is the smallest number of ε-balls needed to cover X.

1.2.4 Results

Our first main theorem provides an upper bound for the limit capacity of Λf ,
which is strictly smaller than the Hausdorff dimension of M , when f is a map
with hole satisfying (NU2).

Theorem 1. Consider f a non uniformly c-expanding map with hole with expo-
nential decay. Moreover suppose that the difference Hi = Wi\(R1∪· · ·∪Rm) has
non-empty interior for all i. Then Cap(Λf ) < d if and only if Cap(∂∪iHi) < d.

Remark 2. For the theorem above the Markovian property is necessary for the
only if part but not for the direct implication, that is, as we can notice along the
proofs, if f doesn’t have the Markovian property but except by this lack it fits
on the hypothesis of the theorem, we still verify that Cap(∂ ∪i Hi) < d implies
Cap(Λf ) < d. It is easy to see how the Markovian property is used in the only
if part: it implies that ∂Hi ⊂ ∪∂Ri ⊂ Λf . Therefore, with this property, if
Cap(∂Hi) = d then Cap(Λf ) ≥ d.

A second set of new results provides lower bounds for the limit capacity and
Hausdorff dimension of Λf depending on the volume of the hole. We use them
to prove the continuity of such invariants when the Lebesgue measure of the
hole tends to zero. That is, if Lebesgue measure of the hole tends to zero, the
fractal dimensions tend to the dimension of the manifold.

More precisely, we prove that, having fixed a few technical constants (namely,
the expansion constant c, the type δn(c) of decay the constants of Hölder conti-
nuity (C0, ε), an upper bound to ||Df (−1)||, the number m of inverse branches
and an upper bound for the inner diameter and a lower bound to Lebesgue
measure of the domains Wi) then there are lower bounds for the Hausdorff di-
mension and limit capacity of its repeller depending only on Lebesgue measure
of Hf . Moreover, these bounds imply that when Leb(Hf ) tends to zero, the
Hausdorff dimension and the limit capacity estimates converge to d. Although
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the last convergence follows directly from the former (recall the well-known in-
equality HD(X) ≤ Cap(X)) we provide an alternative and much simpler proof
to the result on limit capacity.

These statements are contained in theorems 2, 3, and 4. Theorems 2 and 3
provide respectively a lower bound to limit capacity and Hausdorff dimension of
the repeller as functions of Lebesgue measure of the hole in the case of expanding
maps with hole. Theorem 4 allows us to apply those theorems also to the case of
non uniformly expanding maps by the construction of an immediately expanding
map with repeller contained in the non uniform one, and such that the measure
of the hole is a function of the measure of the hole of the original map, converging
to zero when the latter converges to zero.

Theorem 2. Suppose that M is d-dimensional. Given c > 0, ε > 0, ρ > 0,
D > 0 and a constant C ′0, there exists a map

ψ0 : [0, 1] → [0, d]

such that ψ0(x) converges to d when x converges to zero and for any c-expanding
(D, ρ, C ′0, ε)-map with hole F we have that

Cap(Λ) ≥ ψ0(Leb(HF )).

Theorem 3. Suppose that M is d-dimensional. Given c > 0, ε > 0, ρ > 0,
D > 0 and a constant C ′0, there exists a map

ψ1 : [0, 1] → [0, d]

such that ψ1(x) converges to d when x converges to zero and for any c-expanding
(D, ρ, C ′0, ε)-map with hole F we have that

HD(Λ) ≥ ψ1(Leb(HF ))

Theorem 4. Given (C0, ε), c > 0, S > 0, ρ > 0, D > 0, m ∈ N, and a sequence
δn(c), there exists a constant C ′0 and a function ψ2 : [0, 1] → [0, 1] satisfying

lim
x→0

ψ2(x) = 0

such that if f is a non uniformly c-expanding (D, ρ, C0, ε)-map with hole with
the following properties:

(a) f has not more than m inverse branches (not more than m domains Rj);

(b) sup ||Df (−1)|| ≤ S;

then there exists a c-expanding (D, ρ, C ′0, ε)-map with hole F inM whose repeller
is contained in the repeller of f and such that Leb(HF ) < ψ2(Leb(Hf )).

Fixing the constants (C0, ε), c > 0, S > 0, ρ > 0, m ∈ N and D, consider
a family of non uniformly c-expanding (D, ρ, C0, ε)-maps with hole {fα}α, such
that all map in the family satisfies (a) and (b) with the fixed constants. Moreover
suppose that the family have common decay. For each α, let Hα be the hole of
fα and Λα be its repeller. In this setting theorems 2, 3 and 4 imply the following
result:
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Corollary 5. HD(Λα) and Cap(Λα) converge to d when Leb(Hα) tends to
zero.

Considering that M is a compact set in a Riemannian manifold it is covered
by a finite number of charts. For simplicity we assume that M is contained in
an d-dimensional unitary cube K (a d-cube), what is equivalent to consider M
covered by only one chart. The general case is analogous.

2 Auxiliary Notions and Results

2.1 Squared Partitions

Along all the next sections we use the following simple notation:

Definition 1. Given natural numbers k and n, the k-square partition of order n
is the partition of the d-cube in kdn disjoint cubes with volume 1/kdn. Each one
of this cubes is called an n-element. We say that n is the level of the element.

2.2 Induced Map and Bounded Volume Distortion Tools

The first step is to control the volume withdrawn at each step of the construction
of the repeller. This is done through a bounded distortion argument using an
expanding map induced from f . Consider Sn(c) = Bn(c)\(Bn+1(c)∪f (−n)(Hf ))
for all n ≥ 1 (we recall that S0(c) was defined at introduction). We notice that
the sets Sn(c) are disjoint and for n ≥ 0 the set Sn(c) is a union of (n + 1)-
cylinders, thus fn+1 is defined for Sn(c). Consider the map F : ∪n≥0Sn(c) → M
defined by

F (x) = fn+1(x) if x ∈ Sn(c).

It is easy to check that this is a c-expanding map. We state some distortion
results for it. Except for minor points, next results are found in [4].

Lemma 6. Given C0 > 0, c > 0 and ε > 0 there exists C ′0 > 0 such that
if log |det(Df (−1))| is (C0, ε)-Hölder for any inverse branch f (−1) of f then
log |det(DF (−1))| is (C ′0, ε)-Hölder for any inverse branch F (−1) of F .

Proof. See the proof of lemma 2.4 in [4].

Proposition 7 (bounded distortion). Let C1 = exp(C ′0
∑∞

j=0 e−cjε/2). Then

1
C1

≤ |det DF (−n)(y)|
| detDF (−n)(z)| ≤ C1

for every inverse branch F (−n) of Fn, any n ≥ 1, and for every pair of points
y, z in the domain of F (−n).

Proof. See the proof of proposition 2.5 in [4].
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Corollary 8. Let C2 = C2
1 . Then, given n ≥ 1 and any inverse branch F (−n)

of Fn, we have

1
C2

Leb(A)
Leb(B)

≤ Leb(F (−n)(A))
Leb(F (−n)(B))

≤ C2
Leb(A)
Leb(B)

for any measurable subsets A and B of the domain of F (−n).

Proof. See the proof of Corollary 2.6 in [4].

In our settings it will be useful the following particularization of the corollary
above:

Corollary 9. Given n ≥ 1, any inverse branch F (−n) of Fn and measurable
subsets A and B of the domain of F (−n) such that B ⊂ A we have

Leb(F (−n)(A)\F (−n)(B)) ≥ Leb(F (−n)(A))(1− C2
Leb(B)
Leb(A)

).

Proof. Since B ⊂ A we have that

Leb(F (−n)(A)\F (−n)(B)) = Leb(F (−n)(A))− Leb(F (−n)(B)).

Moreover corollary 8 implies that

Leb(F (−n)(B)) ≤ C2
Leb(B)
Leb(A)

Leb(F (−n)(A))

completing the proof.

An important fact to be noticed here is that the constants C1 and C2 depend
only on the expansivity constant c and on the Hölder continuity constants C0

and ε, they do not depend on f (or F ) itself.

3 Upper Bound for the Limit Capacity

Our goal in this section is to prove theorem 1.

3.1 Idea of the Proof

To explain the idea behind the argument, we first observe some facts about
a very simple fractal set. Let Q0 be a square with unitary side. Split Q0 in
four equal squares and remove the subset on the top and left. Let Q1 be the
set composed by the three remaining squares. Repeat this process with each
one of the three squares to obtain Q2. Let Q be the fractal set obtained as
the intersection of the sets remaining at each step if this operation is repeated
infinitely many times.

Clearly, for any n natural, we are able to cover Qn using 3n squares with sides
measuring (1/2)n, rewriting, we would do it with (1/2)−n log2 3 such squares.

Let us see that this intuitive property is sufficient to prove that limit capacity
of Q is less or equal to log2 3. Stating more precisely,
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Lemma 10. Let Q be a set. If there exists ε < 1 such that for any n > 0
there exists a covering of Q composed by ε−nd balls with ratio εn then the limit
capacity of Q is less or equal to d.

Proof. According to the definition of limit capacity, we have to prove that

Cap(Q) = lim sup
δ→0

log n(Q, δ)
| log δ| ≤ d,

where n(Q, δ) is the smallest number of δ-balls needed to cover Q.
For δ small enough (smaller than the fixed ε), there exists m such that

δ = εm+θ where θ ∈ (0, 1]. Therefore, if there is a covering of Q by ε−(m+1)d

balls of ratio εm+1, certainly there exists a covering of Q by ε−(m+1)d balls of
ratio δ (since δ ≥ εm+1). It follows that

log n(Q, δ)
| log δ| ≤ log ε−(m+1)d

| log εm+θ| =
(m + 1)d
m + θ

.

When δ converges to zero, m grows without bounds and last fraction converges
to d, proving the result stated.

Essentially, in the example of the classical fractal set mentioned above, what
allows us to easily state the existence of the desired covering is the fact that the
sets Qn, themselves, can be covered in such fashion. The point is that they are
very simple non-fractal sets and we are able to deal easily with them. But once
we have covered Qn, we have the covering of Q since Q ⊂ Qn.

The argument that we develop now is very similar to this one. We prove
that there are coverings to Λn with the properties stated in the lemma above,
and using this lemma we conclude that Λf has limit capacity less or equal to a
d′ < d.

In order to verify if it is possible to cover Λn as we want, the first attempt
is to consider the volume problem dividing Leb(Λn) by ε−d′n. Here we face the
first difficulty related to the lack of hyperbolicity: it is hard to estimate Leb(Λn)
since we don’t have control of distortion. If we had uniform expansion we could
use a bounded distortion argument and find η < 1 such that Leb(Λn) < ηn,
what would be very nice since it would give an affirmative answer to our first
test: the volume of Λn would be lower than the volume of ε−d′n balls with radius
εn (if d′ satisfies d− d′ ≤ log η/ log ε). Let us suppose for a while that we have
Leb(Λn) < ηn. This estimate does not assure the existence of an εn-covering of
Λn with no more than ε−d′n balls, but it ensures that we have such a covering
of Λn\Λε∂

n , where Λε∂
n is an εn-neighborhood of the boundary of Λn.

Therefore the work to find the upper bound to the limit capacity will be split
in two parts: first, to prove that even in our non-uniformly hyperbolic situation
we have the estimate Leb(Λn) < ηn, and then to show that we can cover Λε∂

n

with a small number of εn-balls. The second part consists in an adaptation of
arguments of proposition 4.1 in [4]. The former is done through the observation
that the volume removed at each step from the cylinders where we assure the
control of distortion is large enough to compensate the uncertainty about the
volume removed where we don’t have such a control.
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3.2 Proof of theorem 1

Lemma 11 provides a way to establish un upper bound for the limit capacity of
a fractal set obtained as limit of a sequence of nested sets requiring conditions
only on the nested sets (not on the fractal set itself). Lemma 12 and lemma
13 assure that the nested sets that generate the repeller of a map with hole
considered on theorem 1 satisfy these conditions.

Definition 2. Given a sequence of nested sets (Γn)n∈N, we say that it has d-
non significant boundary if given ε small enough exists d′ < d such that for all
j ∈ N we can find a covering of the εj-neighborhood of Γj by ε−d′j balls of radius
ε−j.

Lemma 11. If (Γn)n∈N is a sequence of nested sets with d-non significant
boundary such that Leb(Γj) ≤ ηj for some η ∈ (0, 1) then the limit set Γ = ∩nΓn

has limit capacity less than d.

Proof of lemma 11: For all natural number k the amount of elements of the
k-square partition of order n that are contained inside Γn is less or equal than
ηnknd, that is,

kn(d+ log η
log k ).

These elements cover Γn\Γ∂
n, where Γ∂

n is the intersection of a 1/kn-neighborhood
of the boundary of Γn with Γn. The d-non significant boundary hypothesis en-
sures that there is some d′ < d such that if 1/k is small enough we can cover Γ∂

n

with kd′n balls of radius 1/kn. It follows that for each n there is a 1/kn-covering
of Γ with not more than kn(d+ log η

log k ) + kd′n, so Cap(Γ) ≤ max{d′, d + log η
log k} <

d.

Now we turn to our setting of maps with hole and state

Lemma 12. If Cap(∂Hf ) < d, then the nested sequence Λn has d-non signifi-
cant boundary.

Lemma 13. There exist η ∈ (0, 1) such that Leb(Λj) ≤ ηj for all j ∈ N.

Proof of theorem 1: Since, by Markovian property, ∂Hi ⊂ Λf , it is obvious that
Cap(∂Hi) ≥ d implies Cap(Λf ) ≥ d. Lemma 11 ensures that if the sequence Λn

has d-non significant boundary and there is η ∈ (0, 1) such that Leb(Λj) ≤ ηj

for all j ∈ N, then it follows that Cap(Λf ) < d. These conditions are verified in
lemma 12 and lemma 13.

3.3 Proof of lemma 12:

Proposition 14. Let R be a domain in a d-dimensional manifold M such that
the limit capacity of the boundary of R is d0 < d. Consider any d1 ∈ (d0, d)
and g : M → M a local diffeomorphism. Given ε small enough there exists C
such that for any n ∈ N there is a covering of the εn-neighborhood of gn(∂R)
by εn-balls with no more than CKn(2d−d1)ε−nd1 elements (K > 1 is an upper
bound to ||Dg|| and ||Dg−1||).
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This proposition is an adaptation of proposition 4.1 from Horita-Viana [4]
and is proved along the same lines:

Proof. Given ε > 0 small enough there is a covering of ∂R by balls with radius
Knεn, with no more than C1(Kε)−d1n balls B(xi,K

nεn) (let us fix the points
xi). The images of these balls by gn are contained inside balls B(gn(xi), K2nεn).
Let us consider a covering of these images by the balls B(gn(xi), 2K2nεn). We
will verify that these balls cover an εn-neighborhood V of gn(∂R). Given y ∈ V ,
there exists x ∈ ∂R such that d(y, x) < εn, and then d(g−n(x), g−n(y)) < Knεn.
It follows that there is xi ∈ ∂R such that d(g−n(y), xi) < 2Knεn, and this
implies d(y, gn(xi)) < 2K2nεn. Since M is a manifold with bounded curvature
there exists C2 such that each ball B(gn(xi), 2K2nεn) may be covered by C2K

2nd

balls with radius εn, that is, we have the covering we were looking for with no
more than CKn(2d−d1)ε−nd1 elements.

Proof of lemma 12: Fix d2 ∈ (d1, d). The boundary of Λn is composed by the
union of boundaries of Hi and their pre-images (by n−1 iterations). By hypoth-
esis, for each Hi we have no more than

∑n−1
i=0 mi pre-images (H itself is here

considered as pre-image of order 0). This number is upper bounded by pn for
some p fixed. Therefore, according to the last proposition, we have a covering of
the εn-neighborhood of the boundary of Λn by no more than CpnKn(2d−d1)ε−nd1

balls.
CpnKn(2d−d1)ε−nd1 = C(pK2d−d1ε−d1)n ≤ Cε−d2n

if
− log ε ≥ 1

d2 − d1
(2(d− d1) log K + log p)

This proves the lemma.

3.4 Proof of lemma 13: Reorganizing Trajectories

Fix c in hypothesis (NU1). The first idea we develop for controlling the volume
removed at each step of the construction of Λf is is the observation that what we
really have to control is the trajectory of points considering a partition of M in
sets Sn(c) instead of the partition into domains {R1, . . . Rm}. In this direction
we shall now group cylinders that have the same behavior with respect to Sn(c).
Define

Gn(βn) = Bn(c)

and
Gn(βn−1α) = Sn(c)

for n ≥ 1 (observe that last definition implies G1(α) = S0(c)). We use βn to
denote that the point fell inside a set where the first expanding time is bigger
than n, while α assures the existence of an expanding time. We use the identity
βnβ = βn+1 in our notation.

Once defined Gn(βn) and Gn(βn−1α), given any

γn ∈ Γn = {γ1γ2 . . . γn where γi ∈ {α, β} for all i},
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we define Gn(γn) by induction. Suppose we have Gn(γn) for γn = γ1γ2 . . . γn−1α.
It is enough to define Gn+k(γnβk), Gn+1(γnα) and Gn+k+1(γnβkα):

Gn+k(γnβk) = {x ∈ Gn(γn) such that fn(x) ∈ Gk(βk)}

Gn+k+1(γnβkα) = {x ∈ Gn(γn) such that fn(x) ∈ Gk+1(βkα)}
Gn+1(γnα) = {x ∈ Gn(γn) such that fn(x) ∈ G1(α)}.

Notice that each Gn(γn) is a union of n-cylinders and we have

Λn = ∪γn∈Γn
Gn(γn)

Recall the map F defined in section 2.2. It is easy to see that

F (x) = fn(x) for all x ∈ Gn(βn−1α) for n ≥ 1.

Lemma 15. Consider γn = αa1βb1αa2 . . . βbkαak+1 , where
∑k+1

i=1 ai+
∑k

i=1 bi =
n and ai and bi are integers bigger than zero except, possibly, a1, that might be
zero. Then we have

fn|Gn(γn) = FN |Gn(γn), where N = k +
k+1∑

i=1

ai.

Proof. It is easy to verify that

f(Gn(αγn−1)) ⊂ Gn−1(γn−1) and fk+1(Gn+k+1(βkαγn)) ⊂ Gn(γn). (1)

Moreover Gn(αaγn−a) ⊂ Ga(αa) where fa = F a, so

fa|Gn(αaγn−a) = F a|Gn(αaγn−a).

Considering (1) now it is enough to see that

f b+1|Gn(βbαγn−b−1) = F |Gn(βbαγn−b−1),

what follows from the definition of F since Gn(βbαγn−b−1) ⊂ Gb+1(βbα).

Let us call Sn(γn−1β) the set Gn(γn−1β)\Gn+1(γn−1β2). We see that
Sn(γn−1β) is the union of Gn+1(γn−1βα) with a pre-image of the hole by
f−(n+1).

Last lemma states that the map fn restricted to Gn(γn−1α) coincides with
some iteration of the map F , what allows us to use the bounded distortion
argument for fn restricted to Gn(γn−1α). Therefore it is convenient to use the
following partition of Λn:

Λn = ∪γn−1∈Γn−1 [Gn(γn−1α) ∪ (∪∞j=1Sn+j−1(γn−1βj))] ∪ (∩∞j=1Gn+j(γn−1βj))
(2)

To find Leb(Λn) we just have to add together the measure of the sets on the
right hand side of last equation. Due to the lack of hyperbolicity while iterating
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inside sets Si it is not straightforward to show that Leb(Λn) < ηn. Nevertheless,
it turns out to be easy to prove a stronger fact: if, while computing the sum of
the measures of those sets, we replace the terms Leb(Si) by a special enlargement
of them, the sequence Ln, obtained instead of (and greater than) Leb(Λn), has
exponential decay. We now proposes a general formula for such a sequence Ln,
depending on a constant ε related to the “enlargement” of Si.

Consider the sequence

Ln =
∑

γn−1∈Γn−1

[Leb(Gn(γn−1α)) + (
∞∑

j=1

Leb(Sn+j−1(γn−1βj))
(1− ε)j

)]

where a small enough ε ∈ (0, 1) is fixed (the assumption of exponential decay
assures that the sum converges provided that ε is small enough).

From the equation (2) it is clear that

Leb(Λn) ≤ Ln

(recall that the non uniformly expanding assumptions implies that Leb(∩∞j=1Gn+j(γn−1βj)) =
0).

Therefore if we show that Ln decay exponentially, we will have a bound
Leb(Λn) ≤ ηn for some η ∈ (0, 1) and all natural n large enough

Next lemma shows that if ε in Ln formula is small enough then Ln+1 ≤
Ln(1− ε) (implying that Ln has exponential decay).

Lemma 16. Let H = Hi for i such that Leb(Hi) ≤ Leb(Hj) for any j =
1, . . . , m. If ε ∈ (0, 1) satisfies

Leb(H) ≥ C2ε + C2
2

∞∑

j=1

[
Leb(Sj(βj))
(1− ε)j+1

− Leb(Sj(βj))] (3)

where C2 is the distortion constant from Corollary (8) in section 2.2, then

Ln(1− ε) ≥ Ln+1.

Lemma 17. There is ε ∈ (0, 1) satisfying (3).

Proof of lemma 17: Since C2ε can be made arbitrarily small, it is sufficient to
prove that the same happens to

∞∑

j=1

[
Leb(Sj(βj))
(1− ε)j+1

− Leb(Sj(βj))]. (4)

Let us fix δ > 0 and show that if ε is small enough then (4) is lower than δ. By
hypothesis (NU2) Leb(Sj(βj)) decays exponentially. Therefore there is ε0 such
that if 0 < ε < ε0 then

Leb(Sj(βj))
(1− ε)j+1

13



also decays exponentially and then there is N such that

∞∑

j=N

Leb(Sj(βj))
(1− ε)j+1

<
δ

4
.

Clearly for this N we also have
∑∞

j=N Leb(Sj(βj)) < δ/4. Now just take ε1
such that if 0 < ε < ε1 then

N−1∑

j=1

[
Leb(Sj(βj))
(1− ε)j+1

− Leb(Sj(βj))] <
δ

2
.

Any ε < min{ε0, ε1} will turn (4) less then δ.

Proof of lemma 16:

Ln =
∑

γn−1∈Γn−1

[Leb(Gn(γn−1α)) +
∞∑

j=1

Leb(Sn+j−1(γn−1βj))
(1− ε)j

]

Ln+1 =
∑

γn∈Γn

[Leb(Gn+1(γnα)) +
∞∑

j=1

Leb(Sn+j(γnβj))
(1− ε)j

]

=
∑

γn−1∈Γn−1

{Leb(Gn+1(γn−1α2)) + Leb(Gn+1(γn−1βα))

+
∞∑

j=1

[
Leb(Sn+j(γn−1αβj))

(1− ε)j
+

Leb(Sn+j(γn−1βj+1))
(1− ε)j

]}

It is enough to show that

Leb(Gn(γn−1α))(1− ε) ≥ Leb(Gn+1(γn−1α2)) +
∞∑

j=1

Leb(Sn+j(γn−1αβj))
(1− ε)j

(5)

and
∞∑

j=1

Leb(Sn+j−1(γn−1βj))
(1− ε)j

(1−ε) ≥ Leb(Gn+1(γn−1βα))+
∞∑

j=1

Leb(Sn+j(γn−1βj+1))
(1− ε)j

(6)
Considering that

Gn(γn−1α) = Gn+1(γn−1α2)∪[f−n(H)∩Gn(γn−1α)]∪[∪∞j=1Sn+j(γn−1αβj)]∪[∩∞j=1Gn+j(γn−1βj)],

(where Leb(∩∞j=1Gn+j(γn−1βj) = 0), to prove (5) we only have to show that

Leb(f (−n)(H) ∩Gn(γn−1α)) ≥εLeb(Gn(γn−1α))+
∞∑

j=1

Leb(Sn+j(γn−1αβj))
(1− ε)j+1

−
∞∑

j=1

Leb(Sn+j(γn−1αβj)).
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Using lemma (15), assumption (3) and results from subsection (2.2) we have
that

Leb(f (−n)(H) ∩Gn(γn−1α)) ≥ 1
C2

Leb(H)Leb(Gn(γn−1α))

≥ 1
C2

[εC2 + C2
2

∞∑

j=1

Sj(βj)(
1

(1− ε)j
− 1)]Leb(Gn(γn−1α))

≥ εLeb(Gn(γn−1α)) +
∞∑

j=1

Leb(Sn+j(γn−1αβj))
(1− ε)j

−
∞∑

j=1

Leb(Sn+j(γn−1αβj)).

and the proof of (5) is concluded. Now we prove (6).

∞∑

j=1

Leb(Sn+j−1(γn−1βj))
(1− ε)j

(1−ε) = Leb(Sn(γn−1β))+
∞∑

j=1

Leb(Sn+j(γn−1βj+1))
(1− ε)j

.

(7)
Since

Gn+1(γn−1βα) ⊂ Sn(γn−1β)

the proof is complete.

Proof of lemma 13: There exists an ε such that Ln+1 ≤ Ln(1 − ε); then the
sequence Ln decays exponentially. From equation (2) it is clear that Leb(Λn) ≤
Ln. Then Leb(Λn) ≤ ηn for some η ∈ (0, 1) and all natural n.

4 Continuity of the Hausdorff Dimension: the
Volume Comparison Method

This section is dedicated to proving theorem 3. Later, in Section 6, we will
show how to extend this statement to the more general case of non uniformly
expanding maps with hole.

4.1 Ideas and Motivations on the Volume Comparison
Method

While for fixing an upper estimate to limit capacity and Hausdorff dimension
we just have to find a sequence of “efficient coverings of the set, to establish
a lower estimate it is necessary to show that there is no such sequence. More
precisely, to prove that HD(X) ≥ α we should find a constant κ so that any
sequence Un of coverings to X such that

sup
Uj∈Un

diamUj → 0 when n →∞

satisfies ∑

Uj∈Un

(diamUj)α > κ for all n big enough. (8)
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We name the method developed in this part of this article volume comparison
method. The first step in our proof consists of showing that, instead of consider-
ing all the sequences of coverings, we can just look at a smaller class of coverings
which we call square coverings, a sort of discretization of the set of coverings.
Although this simplification allows us to consider only countable coverings, we
still need to verify that each one of them satisfies property (8).

Next step in our method is to build a fractal set Φ whose Hausdorff dimension
we know. We call this set Φ a regular fractal set. Then we show that given any
square covering of our repeller, we can find a covering of this fractal set just
changing the position of the elements of that covering. This implies that our
repeller has Hausdorff dimension greater than the Hausdorff dimension of the
regular fractal set.

4.2 Discretization of the Set of Coverings

We will use here definition 1 of square partitions.

Definition 3. If S is a set contained in a cube we call k-square covering of S
any finite covering contained in the union of all k-square partitions of any order.
That is each element of the covering is an n-element of k-square partition for
some n.

We observe that two elements of a k-square covering either have disjoint
interiors or one is contained in the other. In our arguments k will always be a
fixed constant, so sometimes we will refer to square coverings omitting the k.

Lemma 18. In the definition of Hausdorff dimension for a compact set con-
tained in a cube it is enough to consider only k-square coverings (for any k
fixed).

Proof. Consider a compact set Λ with Hausdorff dimension h. Given α < h it
is obvious that for any sequence Vn of k-square coverings to Λ whose diameters
converge to zero when n tends to infinity we have that

∑

Vi∈Vn

diam(Vi)α (9)

goes to infinity with n. We claim that if β > h then there exists a sequence
Vn of k-square coverings to Λ whose diameters converge to zero as n tends to
infinity and such that

∑
Vi∈Vn

diam(Vi)β goes to zero. Let us construct such a
covering. Consider Un a sequence of coverings to Λ such that

∑

Ui∈Un

diam(Ui)β → 0

as n tends to infinity (such a sequence exists by the definition of Hausdorff
dimension). By compacity of Λ we can assume that Un is finite for each n.
Notice that if

1/k(j+1) < diam(U) < 1/kj ,
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U can be covered by 2d elements of the k-square partition of order j. Then we
replace U by those 2d cubes. The result is a new sequence of partitions Vn such
that ∑

Vi∈Vn

diam(Vi)β ≤ 2dkβ
∑

Ui∈Un

diam(Ui)β

The sequence Vn satisfies our claim.

4.3 Regular Fractal Sets

Next step is to define the k-regular fractal set Φ, the intersection of sets Φn that
we construct now. Again we consider k fixed and we use the term n-element
meaning an element of the k-square partition of order n (recall definition 1).

Definition 4. A k-regular fractal set is a set Φ that can be obtained as in-
tersections of sets Φn that are, by their turn, built according to the following
inductive procedure:

• Remove an 1-element from the unitary d-dimensional cube. The remaining
set is Φ1;

• For each Φl built, define a block of Φl as an intersection of Φl and an
l-element;

• To obtain Φl+1 remove from each block of Φl one (l + 1)-element.

This procedure results in a sequence of nested sets Φn. Each Φn is the union
of (kd − 1)n blocks. A k-regular fractal set Φ is a set obtained as limit of such
a sequence Φn. Figure 1 illustrate a set Φ3 when d = 2 and k = 3. The set Φ
obtained in this case, if we always remove the middle n-element from blocks of
Φn−1, is known as Sierpinski carpet.

Proposition 19. The Hausdorff dimension of a k-regular fractal set Φ is log(kd−
1)/ log k.

Proof. Consider the function ρ assigning to each square covering V = {V1, . . . , Vn}

ρ(V) =
n∑

j=1

diam(Vj)logk(kd−1).

If we consider Vn the square covering of Φ whose elements are the blocks of Φn

it is easy to verify that ρ(Vn) = 1 for all n. This implies that the Hausdorff
dimension of Φ is at most log(kd − 1)/ log k. On the other hand, we claim that
any square covering U satisfies ρ(U) ≥ 1. By lemma 18 this claim implies that
the Hausdorff dimension of Φ is at least log(kd−1)/ log k, so the lemma is proved
except by the claim. So let us prove it.

To prove the claim we show that any square covering can be obtained by
successive refinements of a square covering composed only by 1-elements, and
that during the process of refinement ρ does not decrease.
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Figure 1: Constructing Sierpinski carpet

Given a square covering U = {U1, . . . , Ul} we don’t lose generality assuming
that all its elements intersect Φ. We claim that this assumption implies ρ(U) =
1. Consider the covering U1 composed by the 1-elements that contain some
Ui ∈ U . Starting from U1 we construct by induction a sequence Un of square
coverings according to the following rule: Un is the square covering composed by
all the elements of Un−1 that coincides with some Ui ∈ U and all the n-elements
that contain some Ui ∈ U . There exists N such that Un = U for all n ≥ N .
Next two assertions are direct consequences of the definition of Un:

• Each Un cover all the blocks of Φn;

• Each n-element of Un is a block of Φn.

They clearly imply that ρ(U1) = 1, and we use them to show that ρ(Un) =
ρ(Un+1). Notice that if Ui is an n-element of Un than either it is an element of
Un+1 or it will be replaced by the (kd−1) blocks of Φn+1 contained in Ui. Since

(kd−1)
( 1

kn+1

)logk(kd−1)

= (kd−1)(kd−1)−(n+1) = (kd−1)−n =
( 1

kn

)logk(kd−1)

it follows that in any case ρ(Un+1) = ρ(Un), what proves our claim.

4.4 Comparing the Repeller with Regular Fractals

Now that we already know the Hausdorff dimension of k-regular fractals, we
shall use this information to estimate by comparison the Hausdorff dimension
of our repeller. Recall that we want to show that given α < d, the Hausdorff
dimension of Λ will be greater than α provided that the Lebesgue measure of
the hole is small enough. So let us consider an α < d fixed. First step is to chose
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the k-regular set adequate to the comparison, that is, the correct k, depending
on α. So now we fix k such that

α <
log(kd − 1)

log k
. (10)

Moreover let us fix an expansion constant σ satisfying

e−σ < 1/dk2d+1 (11)

Once fixed σ we choose N to assure that the FN is σ-expanding (it is enough
to consider N such that e−cN < e−σ). From now on we consider all these
constants fixed and when we refer to a cylinder or the repeller it is always with
respect to FN . We also use H to mean HF N and Λ instead of ΛF N . Notice
that the image domains Wi remain the same. We shall consider without loss
of generality that ρ, the maximum inner diameter of Wi, is equal to 1 and we
recall that D = inf{Leb(Wi) : i = 1, . . . , m}. Now we have a simple technical
lemma useful while dealing with square coverings to Λ.

Lemma 20. Consider a k-square covering P = {P `1
1 , . . . P `m

m } to Λ where P `i

is an element on level `i. Suppose `i ≤ L for all i. So P cover Λl for all l ≥ L.

Proof. The diameters of the cylinders in ΛL are at most e−σl (FN is σ-expanding
and ρ = 1), and the elements not covered by P are cubes whose sides are at
minimum 1/kL. So considering that 1/k ≥ e−σ it follows that if there is a
point of ΛL not covered it must exist a point in the boundary of L-cylinder
not covered, so P is not a covering of Λ (due to the Markovian property the
boundary of ΛL is contained in Λ). The result follows if we notice that Λl ⊂ ΛL

for all l ≥ L.

Proposition 21. Consider the constants fixed above. If

Leb(H)
D

<
1
C2

(1− kd − 1
kd

), (12)

where C2 is the distortion constant to FN (according to section 2.2), then the
Hausdorff dimension of Λ is bigger or equal than log(kd−1)

log k

Proof. We show that given any k-square covering of Λ such that the levels of
its elements are big enough we can use such covering to cover Φ, a k-regular
fractal set, rearranging the elements of the covering. Let U be a square covering
of Λ, and consider that its elements U1, U2, . . . , Un have levels `1 ≤ `2 ≤ · · · ≤
`n. We use Xj to represent M\(∪i≤jUi). We will construct a covering U ′ =
{U ′

1, . . . , U
′
n} to Φ where the level of U ′

i is `i for all i ≤ n (Ui and U ′
i have

the same level). We use X ′
j to represent Φ\(∪i≤jU

′
i), analogously to Xj . The

strategy is the following: notice that the volume of Λ`1 is bigger than the volume
of Φ`1 , use U ′

1 to cover some part of Φ`1 and then observe again that if it remains
something to be covered in Φ, the volume not covered in Φ`2 is smaller than
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Leb(R1 ∩ Λ`2), the volume not covered by U1 in Λ`2 . We repeat this procedure
until Φ be completely covered.

The volume of Φ`1 is ((kd − 1)/kd)`1 while the volume of Λ`1 is at least
Leb(Λ1)(1 − C2Leb(H)/D)`1 (by corollary 9), so, if `1 is large enough, (12)
implies that

Leb(Φ`1) < Leb(Λ`1).

Take U ′
1, an `1-element, to cover any block of Φ`1 . Since

Leb(U ′
1) = Leb(Φ`1 ∩ U ′

1) ≥ Leb(Λ`1 ∩ U1)

it follows that
Leb(Φ`1 ∩R′1) ≤ Leb(Λ`1 ∩R1).

Suppose, as induction hypothesis, that for 1 ≤ j ≤ n we have chosen sets
U ′

1, . . . , U
′
j to cover Φ such that each U ′

i is an `i-element and

Leb(Φ`j ∩X ′
j) ≤ Leb(Λ`j ∩Xj). (13)

If j = n the right hand side of last inequality is zero, and so the left too. In
this case the proof is complete. Also if there are no more blocks to be covered
in Φ`j , we have already covered Φ. Let us consider that j 6= n and we still have
some uncovered blocks in Φ`j and show that in this case we also have (13) with
j replaced by j + 1. We claim that:

Leb(Φ`j ∩X ′
j) ≤ Leb(Λ`j ∩Xj).

implies
Leb(Φ`j+1 ∩X ′

j) ≤ Leb(Λ`j+1 ∩Xj). (14)

(That is, (13) ⇒ (14).) Let us finish the proof of the proposition assuming
the claim. Chose a non covered `j+1 block in Φ`j+1 and consider U ′

`j+1
as the

respective element in the square partition of order `j+1 . Once again we have

Leb(U ′
j+1) = Leb(Φ`j+1 ∩ U ′

j+1) ≥ Leb(Λ`j+1 ∩ Uj+1)

what, since we assumed (14), implies

Leb(Φ`j+1 ∩X ′
j+1) ≤ Leb(Λ`j+1 ∩Xj+1) (15)

completing the proof (since we have shown that the induction step can be per-
formed), except by the claim. To show the claim we first notice that if `j = `j+1,
(14) is automatic, so we only have to consider the case `j+1 > `j . If Φ`j is not
completely covered, it remains uncovered at least one element of the k-square
partition of order `j , so

Leb(Xj ∩ Λ`j ) ≥ Leb(X ′
j ∩ Φ`j ) ≥ 1/kd`j .

We have to remove some pre-images of H from Λ`j to find Λ`j+1 , but we want
to do it in such a way that we keep the control over Leb(Xj ∩ Λ`j+1). We can
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use bounded distortion arguments only to those cylinders that are contained
in Xj . We use the condition on exponential decays of diameters of cylinders
to ensure that the `j-cylinders intersecting the boundary of elements on the
k-square partition of level `j are not representative in this context. The volume
of `j-cylinders that intersect the boundary of the square partition of order `j is
at most d(ke−σ)`j . Considering the assumption

e−σ <
1

dk2d+1

we have that

d(ke−σ)`j ≤ 1
d`j k2d`j

≤ 1
d`j kd`j

Leb(Xj ∩ Λ`j )

It follows that the volume of the cylinders in Λ`j
that are not contained in Xj

is bounded by a small fraction of Λ`j ∩ Xj and the remaining part, strictly
contained in Xj , has volume bigger or equal than

Leb(Xj ∩ Λ`j )− d(ke−σ)`j ≥ d`j−1kd`j − 1
d`j−1kd`j

Leb(Xj ∩ Λ`j )

Now we have that

Leb(Xj ∩ Λ`j+1) ≥
d`j−1kd`j − 1

d`j−1kd`j
Leb(Xj ∩ Λ`j )(1− C2

Leb(H)
D

)

while

Leb(X ′
j ∩ Φ`j+1) = Leb(X ′

j ∩ Φ`j )
kd − 1

kd

If `j is big enough we have (by hypothesis)

d`j−1kd`j − 1
kd`j

(1− C2
Leb(H)

D
) ≥ d`j−1kd − 1

kd

what implies the inequality (14):

Leb(Xj ∩ Λ`j+1) ≥ Leb(X ′
j ∩ Φ`j+1).

Now we prove the theorem 3.

Proof of theorem 3. Notice that the repeller ΛF is the same repeller Λ we had
for FN . Then HD(ΛF ) = HD(Λ). We recall that N may be token as the
smaller natural number such that e−cN > e−σ. It is important to notice that
N is a number that depends only on k, d and c.

We have to be careful because HF is not the same H from last proposition.
However, bounded distortion (more precisely, corollary 9) ensures that

1− Leb(H) ≥ (1− C2
Leb(HF )

D
)N ,
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that is,

Leb(H) ≤ 1− (1− C2
Leb(HF )

D
)N .

By proposition 21, to ensure that HD(Λ) < log(kd−1)
k it is enough to have

1− (1− C2
Leb(HF )

D
)N <

D

C2
(1− kd − 1

kd
).

Define the function κ(x) as the infimum over all k that realize the inequality

1− (1− C2
x

D
)N <

D

C2
(1− kd − 1

kd
).

or κ(x) = 1 if there is not such k. It is clear that κ(x) goes to infinity when x
goes to zero. Now we just have to define

ψ1(x) =
log(κ(x)d − 1)

log κ(x)

(ψ1(x) = 0 if κ(x) = 1), and the proof is finished.

5 Continuity of the Limit Capacity

In this section we prove theorem 2. Later, in Section 6, we will show how to
extend this statement to the more general case of non uniformly expanding maps
with hole.

By the well-known inequality HD(X) ≤ Cap(X) this theorem is a corollary
from theorem 3. On the other hand, as we shall see, the limit capacity is not so
dependent on volume distribution as Hausdorff dimension. Some of the efforts
involved in bypassing non-conformality when dealing with Hausdorff dimension,
turn out not to be necessary for limit capacity. This is substantiated by the the
fact that in the later context the proof is much shorter (about one page). The
development of this shorter proof is based on volume control through the steps
of construction of the repeller.

Proof of theorem 2. It follows from the c-expanding assumption that the volume
of cylinders have exponential decay:

Leb(Cn) ≤ e−nc

for all n-cylinder Cn.
On the other hand, considering the distortion constant C2 obtained in section

2.2, we have the following recurrence relation

Leb(Λn) ≥ Leb(Λn−1)(1− C2
Leb(HF )

D
)
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which implies that

Leb(Λn) ≥ (1− Leb(HF ))

(1− C2
Leb(HF )

D )
(1− C2

Leb(HF )
D

)n

For k large enough we can fix a natural number q such that

kd+1 > ecq > kd. (16)

Given a cylinder Cnq that intersects an element of the k-square partition of order
n, we claim that there is a point of the boundary of Cnq inside the n-element.
Indeed the volume of the n-element is bigger than the volume of any cylinder
Cnq, what proves our claim. If Nn is the number of elements of the k-square
partition of order n intersecting Λnq we have that

Nn ≥ (1− Leb(HF ))

(1− C2
Leb(HF )

D )
(1−C2

Leb(HF )
D

)nqknd = γ[(1−C2
Leb(HF )

D
)qkd]n (17)

where γ does not depend on n. As we saw, in each of these Nn elements, there
must be a point of the boundary of Λnq (thus a point of Λ). It is easy to see
that among these Nn points of Λ we can chose Nn

3d points such that the distance
between any two of them is bigger or equal to k−n. Consequently, any covering
of Λ by k−n-balls has at least Nn

3d elements. It follows that

Cap(Λ) ≥ − lim sup
n→∞

log(Nn/3d)
log k−n

.

Considering (17),

Cap(Λ) ≥ log[(1− C2
Leb(HF )

D )qkd]
log k

= d + q
log(1− C2

Leb(HF )
D )

log k
.

Now it is clear that if Leb(HF ) tends to zero, Cap(Λ) tends to d. Moreover,
considering (16), the function

ψ0(x) = max{d +
d + 1

c
log(1− C2

x

D
), 0}

satisfies the statement of the theorem.

6 From Non Uniform to Uniform Expansion

This section aims to provide results that allow us to extend the theorems
from last sections to the case of non uniformly expanding maps. This is done
through theorem 4. The goal is to use a map f satisfying (NU1) such that
log |det(Df (−1))| is (C0, ε)-Hölder for any inverse branch f (−1) of f to construct
an induced map F c-expanding such that Leb(HF ) is so small as we wish, pro-
vided that so does Leb(Hf ). Furthermore F shall be such that log |det(DF (−1))|
is (C ′0, ε)-Hölder for any inverse branch F (−1) of F and the constants C ′0 shall
depend only on C0, ε and c.
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Proof of theorem 4. Let us consider the map Fn such that for all j ≤ n, Fn(x) =
f j(x) if x ∈ Bj−1\Bj . In the set Bn we do not define Fn, we consider this set
as part of HFn

. Therefore we have

HFn
= Bn ∪ (f−1(Hf ) ∩ B1) ∪ · · · ∪ (f−(n−1)(Hf ) ∩ Bn−1).

Defining S = sup||Df−1||d, we claim that

Leb(HFn) ≤ δn + Leb(Hf )
n∑

j=0

mjSj

Indeed Leb(Bn) ≤ δn and Leb(f−j(Hf ) ∩ Bj) is bounded by the amount of
cylinders in Bj times the maximum Lebesgue measure of f−j(Hf ) for each
inverse branch. The amount of cylinders is bounded by mj and Leb(f−j(Hf )) ≤
SjLeb(Hf ).

Consider the function ψ : [0, 1] → R defined by

ψ(x) = inf
n∈N

(δn + x

n∑

j=1

mjSj)

We noticed that the infimum is attained for some n (the expression is increasing
after some n). Given f we will consider as F the map Fn such that n is the
natural that realizes the infimum ψ(Leb(Hf )). We define ψ2(x) = min{1, ψ(x)}.
It is clear that the map F and the function ψ2 so defined satisfy the assertion
of the theorem.

References

[1] M. Carvalho. Sinai-Ruelle-Bowen measures for n-dimensional derived from
Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys., 13:21–44, 1993.

[2] L. J. Dı́az and M. Viana. Discontinuity of Hausdorff dimension and limit
capacity on arcs of diffeomorphisms. Ergod. Th. & Dynam. Sys., 9:403–425,
1989.

[3] V. Horita and M. Viana. Hausdorff dimension of non-hyperbolic repellers
II: DA diffeomorphisms. Preprint IMPA, 2004.

[4] V. Horita and M. Viana. Hausdorff dimension of non-hyperbolic repellers I:
maps with holes. J. Statist. Phys., 105:835 – 862, 2001.

[5] A. Manning and H. McCluskey. Hausdorff dimension of horseshoes. Ergod.
Th. & Dynam. Sys., 3:251–260, 1983.

[6] R. Markarian N. Chernov. Ergodic properties of anosov maps with rectan-
gular holes. Ergod. Th. & Dynam. Sys., 20:271–314, 2000.

24



[7] S. Troubetzkoy N. Chernov, R. Markarian. Invariant measures for anosov
maps with small holes. Bol. Soc. Brasil. Mat., 20:1007–1044, 1997.

[8] J. Palis and F. Takens. Hyperbolicity and sensitive-chaotic dynamics at
homoclinic bifurcations. Cambridge University Press, 1993.

[9] Ya. Pesin. Dimension theory in dynamical systems. University of Chicago
Press, 1997. Contemporary views and applications.

25


