Instituto de Matematica Pura e Aplicada

On Some Nonlinear Dispersive
Systems

Author: Adan J. Corcho Fernandez

Adviser: Dr. José Felipe Linares

Rio de Janeiro
March, 2003



To memory of my father

To my mother



Abstract
We study local and global well-posedness of the initial value problem (IVP) associated to
the coupled Schrédinger-Korteweg-de Vries equation and Schrodinger-Debye systems. We
also consider the Benney system and discuss some ill-posedness issues regarding this system.
For the coupled Schrodinger-Korteweg-de Vries equation we obtain a local result for weak
initial data that allows to use the conserved quantities in the energy space to prove global
well-posedness in that space. Both results considerably improve the previous ones [2, 44].
Concerning the Schrodinger-Debye systems we also obtain local and global results improving
the ones given in [10]. As a consequence of our study of the Benney system we show that the
best local result for that system, in the focusing case, is for data in L*(R) x H~Y?(R). The
techniques used to prove our results are recents argument introduced by Bourgain, Kenig,

Ponce and Vega to study general nonlinear dispersive equations.
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Introduction

In this work we study the initial value problem (IVP) associated to the nonlinear coupled

system

i0yu + 60%u = auv + Slul?u, t,x € R, )
1
7O + AOpv + VP (0y)v + pwdyv = 0, (Jul?) + €|ul?,
where o, 3, 0, 7, A, p, v and € are real constants and P(J,) is a linear differential operator

with constant coefficients. This model describes various phenomena of physics and fluid

mechanics. For example,

(e1) the internal gravity wave packet [25] and the capillary-gravity interaction wave [18]

when y <0, d=7=1land = A=v=pu=¢€=0,

(e2) the capillary-gravity interaction wave [20, 30, 40, 50] when 6 =v=p=1, A=€¢=0
and P(9,) = 02,

(es) the sonic-Langmuir wave interaction in plasma physics [28,49] whend =7 =1, A = —1

and f=v=p=¢€=0,

(e4) the general theory of water wave interaction in a nonlinear medium [4] when § = 7 =

1, v=0, p=0o0ru=1and e =0,

(es) the motion of two fluids under capillary-gravity waves in deep water flow [20] when

d=17=v=1=A=p=€e=0,a>0, v>0and P(0,;) =0, H0,,

1



2 ADAN J. CORCHO

(eg) the motion of two fluids under shallow water flow [20] when 6 =7 =1, f=A=v =
u=v=€e=0, a>0and vy >0,

and

(e7) the nonlinear optics [10]l when d =1/2, 7 >0, a=v =1, f=A=pu=7=0, e = 1
and P(0,) = 1.

The objective of this work is to consider the well-posedness of the initial value problem
(IVP) for the interaction equation(1). The notion of “local well-posedness” to be used here
is in the sense of Kato, that is, the solution uniquely exists in certain time interval (unique
existence), the solution describes a continuous curve in X ( Banach space ) in certain time
interval whenever initial data belong to X (persistence), and the solution varies continuously
depending upon the initial data (continuous dependence). Global well-posedness requires
that the same properties hold for all time ¢t > 0.

In chapter 1 we study IVP for the coupled Schrodinger-Korteweg-de Vries equation

;

i0yu + 0%u = auv + Blul*u, t,x €R

$ 00+ 00 + 10,(02) = 10, (Ju), 2)

\u(x,O) = uo(z), v(z,0) = vo(x),

where u = u(x,t) is a complex-valued function, v = v(z,t) is a real-valued function and
a, B, v are real constants.

This system governs the interactions between long-wave, v = v(z, t), and short-wave, u =
u(x,t), and arises in fluid mechanics as well as plasma physics. The case § = 0 appears in
the study of resonant interaction between long and short capillary-gravity waves on water
of uniform finite depth [20], in plasma physics [40] and in a diatomic lattice system [50].

The coupled Schrédinger-Korteweg-de Vries equation (2) has been shown not to be a

completely integrable system (Benilov and Burtsev [12]). Therefore the solvability of (2) is
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dependent upon the method of the evolution equations. M. Tsutsumi [44] showed that for
(ug, vo) € HFY2(R) x H*(R) for k = 1,2,3... the coupled system (2) is globally well-posed

in H*+1/2(R) x H*(R) using the conservation laws

+o00
M) = [ Juls0Pds = 1(0), (3
+00 -
K(t) = /_ (o (z,t) + 2yIm(u(z, t)uy(z,t) )dz = K(0), (4)
and

0= [ (arnte,Dlute,0F + e OF + a0

Et) = ayv(z, t)u(z, t))? + v|ug(z, t 2—!—%2)9;:6,252
. )

— 20z, ) + Dlulz,0)|* )dx = E(0)

The single out nonlinear Schrodinger (NLS) and Korteweg-de Vries (KdV) equations
have been extensively studied. For instance, Ginibre-Velo, Cazenave-Weissler, Y. Tsutsumi,
more recently Bourgain and Kenig-Ponce-Vega have obtained several results regarding NLS.
In particular Y. Tsutsumi established the local well-posedness of the IVP associated to the
cubic NLS for data in L*(R).

For NLS equation with appropriate nonlinearity, well-posedness in H*(R) with s > 0 has
been shown by Y. Tsutsumi [47], Kato [29], Cazenave-Weissler [16], Ginibre-Velo [22] and
for negative Sobolev spaces we can see the works of Kenig-Ponce-Vega [36] and A. Griinrock
[26]. For KdV equation, L?-well posedness was shown by Bourgain [14] and for negative
Sobolev spaces by Kenig-Ponce-Vega [34, 35].

In [37] Kenig, Ponce and Vega showed that the best result for local well-posedness for
nonlinear Schrodinger equation with cubic nonlinear term (|u|?u) is for data in L?(R). They
have proved that this equation is ill-posed below L?(R) in the sense that the mapping data-
solution (ugp — wu(t)) is not uniformly continuous. On the other hand the well-posedness

for KdV equation in the Sobolev space with negative exponents has been obtained up to
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H73/4+¢(R), € > 0 [14, 34, 35]. In a recent paper [17], M. Christ, J. Colliander, and T. Tao
have proved that the KdV equation is locally well-posed in H~3/%, in the minimal sense*, from
the theory of the modified-KdV equation in H'/* by using a variant of the Miura transform
u — u, + u?, which maps solutions of defocusing modified-KdV to real KdV. They also
have proved that the KdV equation is not locally well-posed in H*® for any —1 < s < —3/4;
more precisely, the solution operator fails to be uniformly continuous with respect to the H*

norm.

A coupled system like equation (2) is more difficult to handle in the same spaces as in the
single equation is solved; the difficulty stems from antisymmetric nature of the characteristics
of each linear part. In [2] Bekiranov, Ogawa and Ponce showed that the coupled system (2)
is locally well-posed in H*(R) x H* '/2(R) with s > 0. These results include and extend
the previous results obtained by M. Tsutsumi in [44] for the local well-posedness cases. The
question arises is whether the coupled system (2) is well-posed in L?(R) x H~3/*+¢(R). In this
work we answer affirmatively this question. Indeed we obtain local well-posedness for weak
initial data (ug,vo) € H*(R) x H'(R) for various values of (k,[) where the lowest admissible
values are (k,l) = (0,—3/4 4+ ¢). To obtain our results, we use the Fourier restriction
norm method introduced by Bourgain [13, 14] and further developed by Kenig-Ponce-Vega
[34, 35, 36] and Ginibre-Tsutsumi-Velo [24]. For an instructive description of this method we
refer to [23]. Moreover our results cover the case (k,l) = (1,1) and hence we obtain global
well-posedness in H'(R) x H'(R) using the conservation laws improving previous results

obtained by M. Tsutsumi in [44] for global well-posedness.

*This alternative notion of local well-posedness is given in [17] to provide meaning to rough solutions
obtained through a limiting procedure of smooth functions, but the uniqueness of solutions may not be

guaranteed.
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In chapter 2 we study the Cauchy problem for the one dimensional Schrédinger-Debye

system

;

iOu+ 302u=wuv, z€R, t>0,

§ 7O + v = €|ul?, (6)

\u(x,()) =uo(z), v(z,0)=1vy(x),

where 7 > 0 and € = £1.

This system is derived from Maxwel-Debye equations
4

i0A + 5= AA = By A,

2kmno

\ TatV + v = 772|A|2,

A(z,0) = Ao(z), v(z,0) = 1p(z),

\

which describes the non resonant delayed interaction of an electromagnetic wave with a
media. In these equations A denotes the envelope of a light wave that goes through a media
which response is non resonant. This wave induces a change v of refractive index in the
material (initially 7o for an electromagnetic wave of frequency wg) with a slight delay 7. The
magnitude and the sign of the nonlinear coupling of the matter with the wave is described
by the parameter 7,. The light velocity in the vacuum is denoted by ¢ and k denotes the
wave vector of the incident electromagnetic wave.

Local solutions in time for the IVP (6) in Sobolev spaces have been obtained by B.
Bidégaray [9, 10]; more precisely local well-posedness in H*(R) x H*(R) with s > 1/2. In
these references, it is shown also that as 7 tends to 0 solutions to the system (6) converge

to those of the cubic nonlinear Schrodinger equation, namely

iOu + $02u = €|ul*u (7)
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at least on certain time interval and for compatible initial data vy = €|ug|*. If e = —1, solu-
tions to (7) exists for all time. We may expect to find similar behavior for the Schrodinger-
Debye equations. In this direction we obtain results concerning local and global well-
posedness for initial data (ug,vy) € H*(R) x H*Y/?*9(R) with 1/2 < s < 1 improving

the results in [10]. The conservation law in L? for the solution u of the IVP (6),

[t 0Pds = [ o), ®)

is the main argument used to obtain our global results.

In chapter 3 we study the Cauchy problem associated to the most typical case in the
theory of wave interaction
10 + 02u = aun + Blu*u, t,z €R,
O + Nyn = Y0, |ul?, (9)
u(z,0) = ug, n(x,0) = 1o,
where u is complex valued function, n is a real valued function, A = +1 and «,  and v are
real constants.

This system appears in general theory of water wave interaction in a nonlinear medium
and was introduced by Benney [4, 5]. The solvability of the system (9) has been studied by
several authors. Yajima and Oikawa [49] applied the inverse scattering method and found N-
soliton solutions of (9) when A =1, v = —1 and 8 = 0. Ma [39] proposed a simpler approach
of the inverse scattering method. Laurencot [38] considered the orbital stability for a weak
solution in H'(R) with 8 = 0. Tsutsumi and Hatano [45] showed local well-posedness for
a resonant case (A = 0) in H*"1/2(R) x H*(R) with k = 0 for 8 = 0 and with k positive
integer, for § # 0. They also obtained global well-posedness in similar spaces for A = 0 and

a = v = 1 via the conservation laws

+oo
L(t) = /_ lu(z, )2z = I,(0), (10)

o
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+o0
L(t) = /_ ( n(x, t)|u(z, t))? + |ug(z,t)|* + §|u(x, t)]* )dx = I,(0), (11)
and
+00 -
I3(t) = /_ (n°(z,t) + 2Im(u(z, t)uy(z, t) )dx = I3(0). (12)

Moreover using Gauge transformation they also extended these results to the case when
the system is not necessarily resonant [46]. Bekiranov, Ogawa and Ponce [1] showed well-
posedness for initial data (ug, 1) € H*(R) x H*1/2+¢R) with 1/2 < k < 1 and € > 0
when 8 # 0 and (ug, 1) € H*(R) x L'*(R) with 0 < k < 1/2 when 8 = 0. The best result
obtained for local well-posedness is in L?(R) x H~/?(R), this result has been proved recently
by Ginibre, Tsutsumi and Velo [24] and Bekiranov, Ogawa and Ponce [3].

In this work, we give an example to show that the IVP (9) is ill-posed in H* x H' with
—1/3 <k <0 and k(20 + 3) +1 > 0 in the focusing case T, which justifies, in this case, that
L*(R) x H-'Y2(R) is the best result for local well-posedness as was suggested by Bekiranov,
Ogawa and Ponce in [3]. The proof of this result is based on the ideas used by Kenig, Ponce
and Vega [37] to show ill-posedness for the nonlinear Schrodinger, Korteweg de Vries and
modified Korteweg-de Vries equations ( see also Biagioni and Linares [7, 8]). The notion
of local well-posedness used in the proof of the above result is the following: the existence,
uniqueness, persistence property and instead of continuous dependence of the solution upon
data we will require the mapping data (ug,n9) — (u(t),n(t)), be uniformly continuous,
where (u(t),n(t)) is the solution associated to the initial value problem. In the case when

this last requirement is not satisfied we will say that the IVP is ill-posed.

tSimilar to the theory of the cubic NLS we say the Benney system is ”focusing” in the case 3 < 0.



Notations

N ( natural numbers )

R ( real numbers )
e C ( complex numbers )

e O%uor u, , (partial derivate of u in the variable z of order k )

o B(z)={yeR:Jyl<r}

o F(u)(€):= f(€) := (2m)"V2 [ e ™ u(x)dx ( Fourier transform of u )

o T (u)(x) := f(x) := (2m) Y2 [, e€u(¢)dw  ( inverse Fourier transform of u )
o Dif =T H[EIPF(£)(§)) (Riesz potential )

o Hf:=3F '(—isgn(&)F(f)(€)) ( Hilbert transform )

e S(R") ( Schwartz space on R )

o 17l = (J +jgPrIfie pag)

e H*(R) := H® ( Sobolev space of order s with norm || f||s )

e C([0,7]: X) ( continuous functions from [0, 7] into X )

8
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1
1F oo = ([ |f 1)
1Flle = 11 £llzeey

1/q _
1llzgzz = (S NFCONGde) ™ (I llzgee o= 1 llzgaz T =00)

Iz = | () 176 0loar)

ClAMezee = N fllrgrg, T =o00)
I
X1 ( characteristic function of the set I )

a+ ( number slightly larger than a )

f(z) < g(x) (exists constant ¢ > 0 such that f(z) < cg(x) for all z)

f@)~g(z) (f(z) S g(r)and g(z) S f(2))



Chapter 1

Local and global theory of a coupled
Schrodinger-Korteweg-de Vries
equation

We consider de Cauchy problem for a coupled Schrodinger-KdV equation

;

i0yu + 0%u = auv + Blul*u, t,r € R,

N\

Oy + v+ 10,(v?) = Y0, (|u?), (1.1)

\u(:z:,O) = ug(z), v(z,0) = vo(x),

where v = u(x,t) is a complex-valued function, v = v(x,t) is a real-valued function and

a, 3, v are real constants.

Before stating the results we give the following notations. Let U(t) = € and V(t) =
e 1% be the unitary groups associated with the linear Schrodinger and the linear KdV
equations respectively. Now we introduce the function spaces for constructing the local

solutions. For s € R and b € (0,1) we let X** and Y"* be the completion of S(R?) with

10
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respect to norms

Il = ([[ €2+ €2 7o 5>|2de£>%

= [[U(=) f |l trp @, 11

ol = ( // (O = &)*[a(r, 5)\2dm€>%

= [[V(=t)gll o w11
where (-) =1+ |- | and  denote the Fourier transform of f in both 2 and ¢ variables
f(T, £ =(2m)" //W e T f (¢ 1) dtd.
In what follows v denotes a cut off function in C§°(R) such that 0 < () <1,
1if |t <1,
0 if ¢ > 2,

and let ¢p(t) := (%) for 0 < T < 1. Various constants are denoted by C.
In [2] Bekiranov, Ogawa and Ponce showed the following local well-posedness result

regarding IVP (1.1)

Theorem 1.1 For any s > 0, (ug,ve) € H*(R) x H*Y?(R) and b € (1/2,7/12), there exist
T = T(||uolls, [|volls—1/2) > 0 and a unique solution (u(t),v(t)) of the initial value problem
(1.1), satisfying

Yr(tu € XP  and  p(t)v € Y2, (1.2)

we C([0,T]: H*(R)) and ve C([0,T]: H?R)). (1.3)

Moreover, the map (ug,ve) — (u(t),v(t)) is locally Lipschitz from H*(R) x H*~'/?(R) into
C([0,T): H*(R)) x C([0,T) : H*"V*(R)).



12 ADAN J. CORCHO

We note that the best result given by the above theorem is in L*(R) x H~'/?(R). Our
purpose here is to establish local well-posedness in L*(R) x H~3/4*¢(R). The method of
the proof we will use to obtain our results will be a combination of estimates and the
contraction mapping principle . We follow analogous argument introduced by Bourgain
[13, 14] to study the KdV and NLS equations in the periodic case; extensively improved by
Kenig-Ponce-Vega [34, 35, 36] to establish their results for the KdV and NLS equations and
by Ginibre-Tsutsumi-Velo [24] for the Zakharov system.

The main ingredient is the use of space time weighted norms in the phase space to
see the smoothing effect of two dispersive linear equations and smoothing effects of the
quadratic nonlinearities which is seen as terms of a convolution of weight potentials. Since
the quadratic nonlinearities can be written as a form of convolution and the different nature
of each characteristic of the linear part of the Schrodinger and KdV equations, we are able

to avoid the difficulty of derivative loss which commonly appears to construct weak solution.

1.1 Main results

In this section we give the statements of our main results concerning well-posedness for the
IVP (1.1).

The local well-posedness result is as follows:
Theorem 1.2 For any (ug,vo) € H¥(R) x H'(R) with k >0 and [ > —3/4, provided:
(i) k—1<1<2k—-1/2 for k€]0,1/2],
(ii)) k—1<I<k+1/2 for k>1/2,

there exist T = T(||uolx, [|voll;) > 0 and a unique solution (u(t),v(t)) of the initial value

problem (1.1), satisfying

Yr(t)u € XPY2H and  op(t)v e YH/2H, (1.4)
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ue C(0,T): H*(R)) and v e C([0,T]: H(R)). (1.5)

Moreover, the map (ug,vy) — (u(t),v(t)) is locally Lipschitz from H*(R) x H'(R) into
C([0,T] : H*(R)) x C([0,T] : H(R)).

The key point in the proof of the Theorem 1.2 is the deduction and use of new bilinear
estimates in Section 1.3 for the coupling terms in system (1.1).

The following corollary is an immediate consequence of Lemma 1.3 in Section 1.2.

Corollary 1.1 For any (ug,vo) € H¥(R) x H'(R) with k > 0 and [ > 0, the solution given
by Theorem 1.2 satisfies

”u”prLg < 00, fO’I” 2/T = 1/2 - 1/Q7 VRS [27 +OO]7 (16)

”U“LZ}Lg < 00, fO’I” 3/T = 1/2 - 1/Q7 VRS [27 +OO] (17)
Concerning global well-posedness we have the following result

Theorem 1.3 Let a, v € R with ay > 0. Then for (ug,vo) € HY(R) x HY(R) the unique

solution provided by Theorem 1.2 extends to any time interval [0, T]

Remark 1.1 Figure 1.1 shows the region R of indices (k,1) for which local well-posedness
is achieved in Theorem 1.2. This region contains the line r:1=k—1/2 with k>0 corre-
sponding to the results proved by Bekiranov, Ogawa and Ponce in [2]. Moreover, the results

corresponding to the line segment [po,p1) = {(0,1) : =3/4 <1 < —1/2}, improve the results
n [2].
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Figure 1.1: Well-posedness’ region for IVP (1.1).

Remark 1.2 If u = 0, the system (1.1) becomes into the single KdV equation which is ill-
posed in H' with —1 <1 < —3/4 (see [17]). This observation and the fact that the best result
for local well-posedness for the cubic NLS equation is for data in L*(R) (see [47, 37, 17])
suggests us that Theorem 1.2 in some sense is the best possible except for the limit case,

(k,1) = (0,-3/4), which remains open.

1.2 Preliminary results
We consider the equation of the form
10w — ¢(—i0y)w = F(w), (1.8)

where ¢ is a measurable real-valued function and F' some nonlinear function.

The Cauchy Problem for (1.8) with initial data w(0) = wy is rewritten as the integral
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equation
t
w(t) = Wy(t)wo — 2/ Wyt —t')F(w(t))dt, (1.9)
0
where Wy(t) = e~ ##(=i%) is the unitary group that solves the linear part of the equation
(1.8).
Let X;’b be the completion of S(R?) with respect to norm
Hf”xg;b = HW¢(_t)f”Hf(R,H§.)
= I (P F () £) (7, )l 21
= (&) (T + d(E) F (T Ol 2z

The following lemma has been proved while establishing the local well-posedness of the

Zakharov system by Ginibre, Tsutsumi and Velo in [24].

Lemma 1.1 Let —1/2 <V <0<b<V0 +1 and T € [0,1], then for F € de)’b’ we have

[ (OWo(@)woll xs0 < Cllwollrs, (1.10)
t /
Jire) [ Wolt = O)F(, )it o < CT Py (1.11)
Proof. See Lemma 2.1 in [24]. 0O

In our case we shall use the spaces X;’b for the phase functions ¢, (§) = €2 and ¢,(&) = —&3.

Indeed we can rewrite the system (1.1) in the form

i0yu — ¢y (—i0,)u = auv + Blul?u,
(1.12)
Z‘atv - ¢2(_iaz)v = Zr}/ax(|u|2) - Z%ax(v2)

Then we have

X = XEL Wy, = U() = e,
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and
N =V, W= V() =,

where U(t) and V() are the linear Schrodinger and Airy unitary groups, respectively.
On the other hand, if b > 1/2, Sobolev lemma implies

Xk c C(R: H¥R)) and Y" c C(R:H.(R)). (1.13)

Now, we give some well known Strichartz type estimates for the Schrédinger and KdV

linear equations in terms of X*°-norms and Y*’-norms respectively.

Lemma 1.2 For b > 1/2, the following estimates hold:

”f“LZ”FLg < C”f“XO’ba fOT 2/T = 1/2 - 1/Q7 q < [27 +OO]7 (114)
[ Fllxos < ClFl o (1.15)

and
lgllzzrs < Cligllyos, for 3/r=1/2-1/q, q € [2,+0], (1.16)

< Cligllyo-» < Cllgll (1.17)

Ly
where 1/r+1/r' =1 and 1/q¢+ 1/q¢ = 1.

Proof. See [24], Lemma 2.4 with v = 1, for the proof of (1.14). Using duality we have
(1.15). For the proof of (1.16) and (1.17), see Lemma 2 in [27] plus duality. O

The next inequalities will be used to estimate the nonlinear terms in Section 1.3.
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Lemma 1.3 For p,q > 0,7 = min{p,q} withp+q>1+r, s >1 and t > 1/3 there exists
C > 0 such that

/ " da oY fi 0 (1.18)
< , Jor u>0, .
oo (At z —al)P(u+ [z = b)) = (n+la—b])
< dx C
—_— < — 0 1.19
| s for ato (119
o dx
<C. 1.20
/_oo (ap + a1z + agx? + %)t — (1.20)

Proof. The inequalities (1.18) with x = 1 and (1.19) follow from simple calculus. They are
given in [2, 3, 35]. We prove (1.18) for any p > 0 as follows

/°° dx B /°° wdy
oo (o —al)P(p+ o —b))0 o (4 [y — al)P(u + |py — b])?

= ptPa /OO dy
oo (L A+ 1y — p7tal)P(1 4 [y — p=1b[)9
C 1+r—p—gq
- ;= Cu—w
(14 p=ta —b]) (1 + la—0|)

where in the last inequality we have used the case u = 1.

1-p—q
7]

Finally, for the proof of (1.20) we can see Lemma 2.5 in [2]. 0

We use the generalization of (1.18) with x> 0 in the proof of Lemma 1.8 in next section.

The following result well be useful

Lemma 1.4 Letz, y >0, § >0 and o € [0,2). Then for n > 0 there ezists c(n) > 0 such
that

%y’ < na® + c(n)y” (1.21)

where

v= 2 o) =222 <3> e (1.22)
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Finally, we recall here the well-known Gagliardo-Nirenberg inequality
Proposition 1.1 Let ¢, r € [1,00] and j, m € NU{0}, such that 0 < j <m. Then
10%ulle < C(G,m, g7, )07 ul|7 [Jull;’ (1.23)
for all 0 € [L,1], where % =j+0(:—m)+(1—- 0)%.

Proof. See Friedman [19]. O

1.3 Nonlinear estimates

Here we give estimates for the nonlinear terms that are needed in the proof of Theorem 1.2.

We begin with the cubic nonlinear term.

Lemma 1.5 Let u, @ € X*° with b € (1/2,1) and k > 0. Then for a > 0 we have that

Hul*ullxr-a < Cllullies, (1.24)
uf*u = |a@*d] xe-o < C(llullfes + @5 ) lu = @l xes. (1.25)
Proof. See Lemma 3.1 in [3]. O

The following lemma is due to Kenig, Ponce and Vega in [35], (see also Bourgain [14]).
Lemma 1.6 Let v,o € Y'*. Then there exist C > 0 such that

10: (V) lly1-a < Cllvl3, (1.26)

102(0%) = 00 () llyt—a < C([[vllyro + 18]ly10)llv = Bllyo, (1.27)

hold in the following cases:
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(i) 1—a—b < min {—(20 + 1)/2, (4 + 3)/12}, be (1/2,1—a] with 1€ (~3/4,—1/2),
(ii) a € (5/12,1/2), be (1/2,7/12) with 1€ [=1/2,0),
(1ii) a € [1/4,1/2), be (1/2,1 —a] with 1> 0.

Proof. See references [34] and [35]. 0

Next we prove new bilinear estimates for the interaction terms. Our results improve the

estimates given by Bekiranov, Ogawa and Ponce for these terms in [2].

Lemma 1.7 Let u,@ € X** and v, € Y with b > 1/2, k > 0 and a € (1/6,1/2). Then
for k — 1 <min{1,3a} there is a constant C = C(a, b, k,l) > 0 such that

[uv]lxn-o < Cllullxssllollys, (1.28)

luv = @bl xr—o < ClJu— allxrsl[ollyrs + [|all xeellv = 0flye). (1.29)

Lemma 1.8 Let uj,ii; € X*° j=1,2, withb > 1/2 and k> 0. Then for 0 < a < b there
is a constant C' = C(a, b, k,1) > 0 such that

102 (urT2) [|y1—o < Cllun]|xnsl[uzllxre, (1.30)

102 (|1 [*) = Ou (@1 [*) lyr-a < Clllurllxns + lanllxre)llur — il xee), (1.31)
hold in the following cases:
(i) I — 2k <min{3a —2b—1/2,—-1/2}, for k€0,1/2],
(i) | —k<3a—b—1/2, for k>1/2 and be (1/2,k].

Remark 1.3 The estimates (1.29) and (1.81) can be deduced from the same argument used
to show estimates (1.28) and (1.80) respectively.
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Now we give the proofs of the statements above. We follow closely the argument in [2].

Proof of Lemma 1.7: We let

f(r. &) = (T + MO (r,€) and  g(7,€) = (1 — €)"(§)0(, )
to obtain the folowing:

Juv]|xema = [[{T + €2) 7€) T0(T, €) | 2.2

|I¢||L2 Sl
7€

= sup [W(u,v,¢)]

”LPHL? <1
L3

where

B ()" f « J
W(u,v,¢) = <<T +£2)a ((T +€2>b<§>k (r — §3>b(§>l> 7S0>>
//// 7-—1-52 Fo(r, &) f(r =1, € = &)p(r f)d 1dé drd€
- _ 51 (T — 71+ (£ = &) — &)

-] i S

with R* = Ry URy URs and R;, i = 1,2, 3, are defined as follows.

First we split R* into three regions A, B and C,
A={(r,7,§&) eR ¢ [§] < 2},
B={(r,m,§&) €R": |&] > 2 and 3¢} - 26, + 2¢] > 31&1[*},
C={(r,m,&&) €R : [&] > 2and |6 - & +2¢] > 31&%}.

Since

D= {(r7,§&) € R : |36 — 26 + 2¢| < 5l&*, 1€] — & + 28| < 5l&° and &1 ] > 2}
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is empty, we have that R* = AU B U €. Indeed if (7,7,&,£,) € D, then

&7 > |367 — 28 + 28] + &7 — & + 2€] > 267 — &] = |&112&6 — 1

and hence |£;| > |2&; — 1], which is a contradiction with the condition |&;| > 2.

Note that for any points in € we have that

T+ &+ =G+ Ir =+ (€= &) > 16 — & + 286 > Ha . (1.32)
Now we separate € into three parts,

€, = {(7',7'175751) €C: =& r—n+ (5—51)2| < |T+52|}7
Co={(r,m,&&) € [1+&, [r—m+ (=&)< |n - &I}
& ={(rm&a)el: [r+& In-gI<|r—n+E-&)}

so that one of the following |7 + 2|, |71 — &} or |7 — 71 + (€ — &)?| is larger than 1[¢]%.

We can now define the sets R;, i = 1,2, 3, as follows :
:Rl :.AUBUGM :RQZ 62, :R3 :€3

and it is clear that R* = Ry U Ry U Rs.
Now to estimate I; we integrate over 7y and & first and use Cauchy-Schwarz’s and

Holder’s inequality to obtain

2

9 7'1 51 T—lef—gl)XledTldfl
A" < HQDHLQLZ +§2 // (1) — (T— 1+ (E= &) - &) 1212
THE
Tl 51 (7 — 71,6 — &)X, did
d
// T+€2 // (r — Ur =7+ (6= &)7)0(E - &) T (1.33)

= // W <// (r = &) (&) (T fg{;ldicgl— £1)")(E — &)

X/ |9(7'1,§1)|2|f(7—71,5—51)|2d7'1d§1)d7d§



22 ADAN J. CORCHO

< ||f||i2Lz||g||i2 L2,

// Xﬂthldgl
7. + 52 7_1 53 2b 21(7. — 7+ (5 _ 51)2>2b<€ _ §1>2k

L L

= HUHik,bHvHQyw

// X, dT1dE
(T _|_ 52 () — E)25(e)2Ur — 7 + (€ — 51)2>2b<€ — &)k

L L

For I, we put ]?(T, &) = f(—1,-=¢), integrate over 7 and & first and folow the same steps

as above to get

|L* < llgll7, 12,

// 71 — 7,6 — P(T, &) xrodTdE
Ya(r — 1 + (€ — &))(E — &)*

Lzngl
< ||f||%g L2 ||9||%g 73
2
§>2kX§R2de€ 1
.34
H@l%n 532b//r+gwar—ﬁ+<s €= &0 |, .
&1
= HUHik,bHvHQm
// (€)* X, dTdE
i — e J] rr ey —n+ - aPPE - L .
1€

Note that f(7,€) = ()¥(r — €)¥a(=7,—€) and || fllz2zz = || fllzezz = llullxrs.

Now using the change of variables 7 = 7 — 7 and & =& — & the third region, R3, is

transformed into the set 523 such that

Ry C {(r,7,61,6) eR' s |G <€+ & —26&| <3| —&| and |&]> 2},
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Then I; can be estimated as follows

[° < NF1Zs 1z,

// (&1 — 9(m1,€)P(rs — 71, & — &)Xz, dT1d& ’
(Ea)M (2 —52 (11 —T2+ (& — &) m — &) (&)

L2 L2

T2 €9

<Nl iz llollze, 22

ngSdTldgl
‘ 52 2’“ 7'2 52 2 // 7'1 — T2 + ) >2a<7'1 §1>2b<§>

LELE
= ||u||§(kb||v||§zb
// — & Qngg dridé;
e || o B e P L
7279

(1.35)

Reviewing the estimates (1.33), (1.34) and (1.35) it suffices show that the following

expressions are bounded by a constant C':

Y

// X, dT1dE;
(T "‘52 (11— E)(&) (T — 11+ (6 — &)°)(E — &)

Lo L
(€)% xq,dTdE ’
H (€1)2(m — &) // (T4 E2)20(1 — 7 4 (€ — £)°)2(€ — &2k L?_?Lgo,
// —& Qngq?)dTldgl
(&) (my — £3)% (11 —7'2+ &2)?)%(m — 1) (&)™ LI

According to (1.18) with 4 = 1 in Lemma 1.3, noting that (&) < (&)(€ — &)

(&1 — &) < (£1)(&) and using that k > 0 it suffices to get bounds for:

B 1 <€1>2k—2ld€1
JO(T,@ - <T+§2>2“ / <7__|_€2 _gi’)_'_g% . 2€€1>2b on th

(1.36)

(1.37)

(1.38)

and

(1.39)
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5 2k—21 dg
Jl(ﬁ’&):éllzf%%/ g M (1.40)
1 5 2k—2ldf "
JQ(TQ,&):«Q—&%W/ <72—5§<—1§>%—5%+125152>% on %, (L41)

where we have used that min{a,b} =a and b>1/2.
We begin estimating Jy on R; = AU B U €. In region A, using |&] <2, a > 0 and
b > 1/2 it is easy to see that
d
& < O (1.42)

Jo(T, <C / <

(] < Cus [ gty
In region B, by the change of variables n = 7 + €2 — & + &2 — 2£¢£; and the condition
367 — 2& + 2¢] > 1]|&]? we obtain

2k—21
)1 < o | &)

e | B2 1o
1 (. 1.43
. <r+52>2a/ PHOER 4
< C.

Here we have used a > 0, k — [ < min{1, 3a}, || > 2 and Lemma 1.3-(1.19).
In region C; , by (1.32) we have that

sl <38lr+&% < 3(r +¢7)
and consequently using a > 0 we obtain
(T4 €)% < Coleal ™.

Then use k — [ < min{1, 3a} combined with Lemma 1.3-(1.20) to get

<€1>2k—2l
G e e
(&) 1.44
S Ca/ |€1|6a<7- + 52 _ 5%’) + g% _ 2€€1>2bd€1 ( )

< C,.
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Next we estimate J;. Making the change of variables, n = 71 — £ + 2£&;, using (1.32) and

the restriction in region Gy, we have
Inl < | — &+ 16 — & + 2661 < 4|n — & < 4n - &).
Moreover in Gy, since a + b — 1/2 > 0, we have
516 <3ln = &1 < 3(n - &)
and hence
<7_1 o 5?)—(2a+2b—1) < Cb|£1|_3(2a+2b_1)-

Then we can estimate .J; as follows

|J1(71,&1)] < (1) — &3)2 47|§4<71—§$’) 2/&| i

5 2k—21 1 —9g
- e gy (6 €)' 1)

5 2k—21 ‘
Cop |€1|<7_1< i>€i’>>2a+2b—1 (1.45)

<§1>2k—21

b | &, [Bat6b—2

<C,

S C1a,b7
where in the last inequality we have used that k£ — [ < 3a + 3b — 1 which follows from the
conditions £ — [ < min{1,3a} and b > 1/2.

Finally in the region 5%3 we note that
saP <3(n - &) = (n-&)* <Gl&a™

and from the conditions k£ — [ < min{1,3a} and 1/6 < a < 1/2 < b coupled with
Lemma 1.3-(1.20), we have that

<§1>2k_2ld§1
| Jo (72, &2)| < Cb/ 61|68 (my — €3 — &3 — €2 4+ 26,6,)% (1.46)

S Cba
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and hence the proof of Lemma 1.7 is completed.

Proof of Lemma 1.8: We let

T=T1—T §=& —&,
(1.47)

O-:T_€37 01:T1+£%7 0'2:7—24—5%7

and define

F(r, &) = (€)' 0 (1, &) and  g(m, &) = (&) (02) Ta(—12, —&). (1.48)

Hence we have

lurllxne = [1fllzz 22, and  (Juallxes = [lgllrz, 2 - (1.49)

Now using (1.47), (1.48) and (1.49) we estimate the left hand side of (1.30) as in the proof

of Lemma 1.7 to obtain:

[suiTallyi-e = (o)) Ou(mTa) 121
= ”i§<0>_a<5>la1 * ﬁ2(7'7 f)”Lng

<<|€<I<>> a5, ¢>‘ (1.50)

= sup W (uy,us9, )|
ez <1

= sup
||50||L2 <1
7€

where

W (uy, us, @ ////R4 ) (71, €T (T — 1, & — &)B(r, £)drydédrde

(1.51)
M. E R ndird
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and hence by applying the Cauchy-Schwarz’s inequality, we have that

T + T ,5 —|—§ To, &
W (uy, us, )|2 < H90HL2L2 |€| / i 2 Q)k( 2 b2)d7'2d52
(€2)F(02) 1212
he
2 2 E1P ()™ drad&s
< ||f||LZL§||9||L22L§2 ‘ )2a (€02 (51) 2 (£5)2F () D - (1.52)
a;
£)2
e o et
Xk xR (€02 (o) 2 (£5) 2k () 2 .
7 Lg

Then it suffices to get bounds for

£)” drod€o
J(1,€) // (£1)25 (01 )20 (£,) 2k (05) 2"

In order to estimate J we consider several cases:

Case-a: €| < 2.
Using £ >0, b>1/2, a >0, Lemma 1.3-(1.18) with g =1 and Lemma 1.3-(1.19) we

have

2o n,
109 < o [ | e

P a6,
< o) / CENERTTRE (1.53)
21
ELOT L e <

= g s
Case-b: |€] > 2 and |&| > 2]&;|.

In this situation we have

611 > 2|6 = [€] < [&1] + |&] < 36| = (&)™ < Ciul&)™. (1.54)
&1l = 28] = €] 2 |&] = [&] = |&]. (1.55)

622 = |62 < 3P = |8+ > 16 — |l > Jlel® = (€ £ ) > (). (1.56)
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1
| >2= % <L (1.57)
Now we consider two situations for parameters k£ and b:

(b1) k> 1/2and b e (1/2,k].

Apply (1.18) with =1 in Lemma 1.3 and (1.54) to get

(€)2|¢2(e) 2k dé, dry
R Kol R ey o e

ds
< G (o) / (Ea) 2R (T + €2 4 28£9)?

21—2k+2
= C, <§(a)2‘1 J(7,€).

<5 20—2k+2 (158)

Now using 1/2 < b < k, Lemma 1.3-(1.18) with pu(§) = 51

3 and (1.57) we compute J*

in the following way

* _ d§2
‘]”f”‘/k1+v+fl+%@v%r+@n%

dé;
S/}Lur+e+2&m%u+mm%

_ d§,
= (20¢))~*

/@@+@+§w+em%u+@wb
d&, (1.59)
(k1 + 162 + & (7 + €)' (3 + |2])”
(2le))-0-2

(g + o7+ €2)™
D> _ e

< (216~

<C@lh™

GHlrreD® e

Combining (1.58) and (1.59) and using 0 < a < b, (€3 + &) < (1 — &)1 + £) and
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(1.56) we have

<€>2l—2k+2(2|€|)2b—1

<€> 20—2k+4-2b+1

I8 < O™ ot aym < O~y gy
<€ 21—2k+2b+1 5)2[—2k+2b+1
< Cuforrap < Ot (160
<€>2l—2k+2b—|—1 -
< Ck,bw
S Ck,b7

where it was used the inequality [ — k + b+ 1/2 < 3a which holds from hypothesis (7).

(by) k€[0,1/2] and b > 1/2.

We note that in the previous situation to estimate J* we obtained the following estimate

s (2l
| irrrerreraTEE < en -6y

On the other hand using 0 < k < 1/2, b > 1/2 and (1.55) we have
<€2>2b—2k < <£>2b—2k. (1.62)

Then by (1.61), (1.62) and (1.56) we have

(£)21-2k+2 dé&s
J(1,8) < Cy )20 / (Eo)2R(T + £2 4 2£&5)2%

<£ 20—-2k+2 <£2>2b_2kd£2

()% / (147 4+ & +265)* (1 + &)
<5>2l—4k+2b+2 (2|5|)2b—1
(r=P (r+ &)
5 21—4k+4b+1 5 21—4k+4b+1
e < O

S Ck,bv

= ()}

<0, (1.63)

< Cip

where it was used the inequality [ — 2k 4+ 2b+1/2 < 3a which holds from hypothesis (i).
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Case-c: |€] > 2 and |&2] > 2|&|.

Clearly, we have (1.56) and (1.57). If we interchange the positions of & and & in (1.54),
(1.55) we get

()% < ep (&), (1.64)

€1 > &l (1.65)

Now using & = & — & and 75 = 7 — 7 we have

d§2d7'2 d§1d7'1
// (&1)%(01)20(£2)?F(02)? // (&) (01)2(&2) %k (02) 20 (1.66)

Similarly to case-b we consider two situations for parameters £ and b

(c1) k>1/2and b e (1/2,k].

Again we apply (1.18) with ;=1 in Lemma 1.3, (1.64) and (1.66) to get

(€)2[€]2(E) 2k d¢, dm
100 <6ECat— [ | e o T a

<€>2[—2k+2 d€1

NNGE / GVl — 2 1 2EE ) (167
<€>21 2k+2

= Ck <O_> (7—7 5)

Now using 1/2 < b < k, Lemma 1.3-(1.18) with u(§) = ﬁ and (1.57) we estimate
J (7, &) similarly to J*(7,€) in (1.59) to get

C(21g)h*!
(r — €2y2

Combining (1.67) and (1.68) and using 0 < a < b, (€3 — &%) < (7 — )7 — £2) and

J.(r,6) < (1.68)



SCHRODINGER-KORTEWEG-DE VRIES SYSTEM 31

(1.56) we have

<§> 21—2k+2b+1

<§>21—2k+2(2|§|)2b—1

J(Tv f) < Ck,b <0>2a<7_ — §2>2b < Ckvb <7. — €3>2a<7- _ €2>2a
(£)21-2k-+20+1 (£)2-2k+2b+1
Cop—i——— < Chp————
= CrTg g = O T (1.69)
<€>2l—2k+2b+1
< Ck,bw
< Crps

where we have used the inequality I — k+b+1/2 < 3a which holds from hypothesis (i7).

(e2) k€]0,1/2] and b > 1/2.

Here the calculations are the same as in the subcase (bz).

Case-d: |€] > 2 and L& < [€] < 2/¢].

Now we have

€] = |61 — &f <[] + [&] < min{3|& ], 3|&[}

and hence k£ > 0 implies

(€)M (&) < Cp(e) ™™ (1.70)

Then Lemma 1.3-(1.18) with g =1, (1.70) and a > 0 gives

B |£|2<£>2z dTo
18 =0 [ & | e e
() "lep dc,
SO / (L+]7+ &+ &)
(€)21-1k|¢ |2 (€)H-1k+1 (1.71)
{o)2e2[¢] (r =&
S Ck<£>21_4k+1

< Cy < Cy

< (C}
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where we have used the inequality [ — 2k + 1/2 < 0.

We note that (1.56) and (1.57) holds in this case. Moreover |£]| < |&| + |&2| < 3|&1| and
k> 0 imply (€)% < Cy(€,)?* as in (1.54). Consequently if £ > 1/2 and b € [1/2, k] we can
compute J(7, ) similar to case (by) to obtain J(7,&) < Cyp for il —k+b+1/2 < 3a.

Collecting the estimates given in the above cases, we complete the proof of Lemma 1.8.

1.4 Proof of main results

In this section we prove Theorems 1.2 and 1.3 regarding local and global well-posedness for
the IVP (1.1) respectively.

The Cauchy problem (1.1) is rewritten in a standard way as the integral system

u(t) = U(t)ug — 2/0 Ut —t){auw(t') + Blulu(t)}dt',

t (1.72)
o(t) = V(t)uo + /0 V(t — ) {10:(uP () — L0, (07(¢')) Yt
One replaces the system (1.72) by the cut off system
ult) = a0 (@ — ivr() [ Ule = 1) {auo(t) + SluPut)} .
0 (1.73)

v(t) = b (BV (E)vo + wT(t)/O V(t =) {10:(Jul*(t')) — 50.(v*()) }dt"

Solving the system (1.73) for all ¢ € R solves the system (1.72) locally in time for [¢| < T,
so that T will be the time of local resolution of (1.72).

1.4.1 Proof of Theorem 1.2

We follow similar arguments as the ones given in [2, 3, 24].

We consider the following function space where we seek our solution

Zs(M,N) := {(u,v) € XEV2 5 YRV )| ginpoes < M, ||v]lytryoes < N}



SCHRODINGER-KORTEWEG-DE VRIES SYSTEM 33

where 0 <0 <1 and M,N >0 will be chosen below.

Zs(M, N) is a complete metric space with norm

(s 0) | zsar,y = Mullxesoes + [0llyrarees.
For (u,v) € Zs(M, N) we define the maps
O (u,v) = 1 (U (t)ug — ithr(t) /Ot Ut — ) {auv(t') + Blul*u(t") }dt',
U(u,v) = 1)V (E)vo + ¢ (1) /Ot V(t =) {10 (lul*(t') — 50.(v*(t)) }at"
Let a=1/2—26, b=1/2+40 and § satisfying the following conditions:
(a) For k € [0,1/2], we take
a) 0 <& <min{1/12, —(20+1)/2, (4 +3)/12}, forl € (—3/4,—1/2).
az) 0 <6 <1/24, forl>—1/2.

(b) For k > 1/2 (i.e, we have | > —1/2 from hypothesis (ii) in Theorem 1.2), we take
0 <8 <min{1/24, k —1/2, (2k — 20 + 1)/14}.

Then according to Lemma 1.1 and Lemmas 1.5—1.8 we have

||(I)(U,,U)||Xk,1/2+6 < COHUO”Hk + 61T6(||uv||xk,—1/2+26 + |||U|2U||Xk,—1/2+26)
< colluollze + T ([[ullcrarassl[vllyiarzs + [ullenss)

S C()HU()”Hk + ClT(S(MN-F Mg),

”\If(u,U)Hyl,1/2+5 S CO”UOHHl + CQT6(|’8$U2‘|YI,—1/2+26 + H8$|U|2”yl,—1/2+26)
< collvoll 4+ 2T° ([[v][311/540 + llull3ckn/oes)

S C()H’U()“Hl + 027-'6(.]\42 + Nz)
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Now taking M = 2¢ol|uo||gx and N = 2¢g||vo|| ;1 we have that

1D (u, v)|| xr1r24s < L+, T (M? + MN),

||\If(u, U)||y1,1/2+5 < % + 02T5(M2 + NQ).
Then (®(u,v), ¥ (u,v)) € Zs(M, N) for

T° <

N[—=

: N
mln{CI(M12+N), CQ(MQJFNQ)}. (1.74)

Similarly we have that

||(I)(U,U) - (I)(ﬂ,f))HXk,l/z-;-é < 03’1—’5(]\42 + M + N)( ||U — 1~L||Xk,1/2+6 + ||U — @||yl,1/2+6 ),

||\Il(u,v) — \If(ﬂ,ﬁ)||yl,1/2+5 < C4T6(M + N)( ||u — 1~L||Xk,1/2+5 + ||U — f1||yl,1/2+5 )
Then
”((D(uvv)7 \Il(%v)) - ((I)(?],f)), \If(?], 6))”25(1\/“\7) < %H(%v) - (a,@)”Z(;(M,N)

for

1) .
T° < jmin {03(M2iM+N)v C4(1\41+N)} : (1.75)

Therefore the map ® x ¥ : Zs(M, N) — Zs(M, N) is a contraction mapping and we obtain

a unique fixed point which solves the equation for any 7" that satisfies (1.74) and (1.75).
Next, following similar arguments as in [3], we show the uniqueness of the solutions in

the the class defined by the conditions (1.4) and (1.5) in Theorem 1.2. For this purpose, we

introduce the following auxiliary norms. For T" > 0, we let
ullxy = inf {[Jwl]|xri/ees 0 w € Xk240 and w(t) = u(t) in H*(R), for t € [0, 7] },

lollyy == ilquf {II8llyr120s + ¢ € YEV2T0 and ¢(¢) = v(t) in H'(R), fort € [0,T] }.
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Then, if ||u; — us|x, + [|v1 — v2||y;» = 0, we have u; = uy in H*(R) and v; = vy in HY(R) for
t€[0,7].

Now let (u1,v1) € Zs(M, N) the solution obtained above for the cut off system (1.73)
and (ug, v3) € X%? x Y be a solution of the same system with the same initial data (ug, vo)
and we assume 7' < 1.

We take
M :=max {M, ||us||xrs},
Ny :=max {N, ||va]|yts} -

For some T7; < T which will be fixed later, we have
t
uy(t) = Py (U (H)ug — i, (t)/ Ut — t'){quava(t') + Blusl*us(t') }dt,
0

va(t) = Yo ()V (H)vo + ¢y (i‘)/0 V(t =) {10 (lu2*(t')) — 50.(v3(t))) }at’,

for t € [0,T}].
Consider the difference u; — uy and wv; — vy. For any e > 0, there exists (we, ¢.) €

X5t x Vb guch that

wellxceo < flur — ual[x,, +€
e o (1.76)
[@ellyre < [lur — wallyy, +e,

and such that for ¢ € [0, 7}] hold

we(t) = uy (t) — ua(?),

Gc(t) = vi(t) — va(t).

(1.77)

Set, (i, ¢.) satisfying
¢

w(t) = —ipp, (t) / Ut —t') {a(wevr + usde) + Blwelus|* + wrus + weus) } dt’,
0

t
Cge(t) =7, (t)/o V(t - t/) {Va:c(weu_l + Weu?) - %813@567}1 + ¢602)} dt'.
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By (1.77) we have W (t) = w(t) = ui(t) — ua(t) and ¢ (t) = ¢c(t) for t € [0,T}].
We take 0 as the beginning of the proof. Then according to Lemma 1.1 and Lemmas

1.5—1.8, we have

lur = wzllxy, < 10el| xrarzes < esTP(MF + My + Nu)(flwellxrarzss + | dellyraress ),

lor = vallyz, < I @ellyrazes < a7 (My + N (Hwellxwarzes + 19ellytarzss ).

, we have

: d < 1 : 1 1
Hence, if Ty < mln{c3(Mf+M1+N1)’ c4(M1+N1)}

lur = allxz, + llor = vally, < 5(lwellxrarzss + 19ellyrarss),
and by (1.76) we conclude
lur — ual|xy, + [Jvr = vallys, <e

for all € > 0.
This proves u; = uy and v; = ve on [0,71]. Repeating this procedure, we obtain the

uniqueness result for any existence interval.

1.4.2 Proof of Theorem 1.3

Let vy > 0 and ¢ > 0. From (3) we have that ||u(t)||z2 = |[uol|zz = /M (0), and from (4)

we obtain

lo(®)I[Z2 = K (0) = 2‘/ s (1.78)

< K(0) + T/ M(0)[[ua(t) | 2.

Let 1 = min {|7|, L;'} Then using (5), (1.78) and (1.22) we deduce
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—

Mt (8) 22 + S (91132
+o0
+2 [ o) u(t) P

lua ()72 + lloa ()17 < &

+o00
+ 1 lo(t)[Pda + 'g—;'/ lu(t)|*dz

— 00 — 00

IN

2O 4 22 0)| el (D130 + 2o (t)]3 + L2 a5
EOL 2o ()3, + 2o ()35 + 2 u(t)]114
EELO)I +OK(0)+ 2 \/—Hux ()] 12
|"“|Hv( HIEs + %‘f“'l!u(t)\lm
+ SR (0) + 25 M(0) + Llus ()12,

'a' o @)l13s + 2F2 ()17

(1.79)

IN

IN

IA

Using Gagliardo-Nirenberg’s type inequalities and (1.22) we obtain

Lo s < 2l ()1 lv@)]5%
< CoI (0)"H|on (8)]17 + CLM (0)/% fug (8) 175 [ () 175"
g (D25 + Cok (00 + H|ug (1)][2 + C5M(0)7/3 |ug (2)]]5 (1.80)
[va(8)][2: + CoK (0)*% + Hlug (D132 + CoM(0) + Hvg ()]
Uwa ()12 + Hllua (D32 + C2K (0) + CuM (0)°.

IN I/\
A~ =

and

O (1) 144 < 2 llu(®)|[2

=Q¥Mﬂfﬂmomz (181)

a7+|,37| ||U:c( )

< Hjug(t)])72 + C5M(0)?.

where Cy, ..., C5 are positive constants depending only on «, 3, and ~.
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Then by (1.79), (1.80) and (1.81) we have

o 4
lua(®) 172 + [0z (ONF2 < Fllua(®lFe + 3llva(®)[72 + F2 + SEE(0) + 55 M (0)

(1.82)
+ CoK(0)°% + CyM(0)° + Cs M (0)?,

and hence from (1.78), (1.82) and L?-norm conservation for u we have
lu@®l7: + vl < GM(0), K(0), E(0)).

Since the last quantity is constant, we can repeat the argument of local existence of solution

at time T arriving to a solution for any positive time. The same holds for negative time.



Chapter 2

Local and global theory of a coupled
Schrodinger-Debye equation

We consider the IVP associated to the Schrodinger-Debye system,

4

iOu+ $02u=uv, zER, t>0,
§ 70w + v = e|ul?,

u(z,0) = up(x), v(z,0)=wvy(z),

\

where 7 > 0 and € = +1.
We can simplify the system (2.1) by eliminating v(z,t) to obtain the decoupled integro-

differential equation

i0pu + $07u = e Tuvg(x) + Cu [y e O ()2, x €R, t >0, (22)
u(x,0) = up(x).

where 7 > 0 and € = £1.

39
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Using the Duhamel formulation of this equation we have
t
u(t) = S(t)ug — z/ St —t)(Fo(u(t) + Fy(u(t')))dt', (2.3)
0

it it
where S(t) = e2% = F. le=2¢F, is the unitary group associated to the linear equation

iOyu + 30%u = 0 and
t
Fo(u(®) = "uwn(a), Fifa(t) = £u [ e O uft) Pt (2.4
0
In [10] B. Bidégaray showed the following result

Theorem 2.1 For (ug,vg) € H"(R) x H"(R) with r > 1/2 the system (2.1) has a unique
solution in C([0,T] : H"(R)) for a small enough T and solutions depend continuously on the

initial data.

Our purpose here is to establish local and global well-posedness results for thr IVP (2.1)
in the spaces H*(R) x H*~'/?*(R) with § =0 for s =1/2and 0 < § < 1/4for1/2 < s < 1.
To obtain our results we will use the so called LP — LY estimates. These type of estimates

were first established by Strichartz [43] for solutions of the linear Schrédinger equation, i.e,

Wu+Au=0, xzeR" t>0,
(2.5)

u(z,0) = ug(x).

He showed that solutions of (2.5) satisfy

n/2(n+2)

</ |eimu0(x)‘2(n+2)/n dxdt) < c||uol| 2-
R JRn

Generalizations of this result have been obtained by several authors. For instance, Ginibre-
Velo [21] and Kenig-Ponce-Vega [31].
We will also use the smoothing effect obtained by Kenig, Ponce and Vega [32, 33| for the

non-homogeneous term in one-dimensional case, that is,

t
||Di/2/ ettt )a’%G('vt/)dt'HLg?L% < OG- (2.6)
0
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We proceed as follows. Instead of working with the system (2.1) we use its equivalent
integral form (2.3). Then we use the LP — L7 estimates and the smoothing effect (2.6) to
show via the contraction mapping principle that there exists a time 7" > 0 where (2.3) has
a unique solution.

To establish global well-posedness we use the same procedure to prove our local theorem

combined with the conservation law in L? to obtain a priori estimates of the solutions.

2.1 Main results

Concerning well-posedness we have the following results

Theorem 2.2 Let 1/2 < s < 1. Then for any (ug,vo) € H*(R) x H*"Y/?*9(R) (with § = 0
for s =1/2 and 0 < § < 1/4 for 1/2 < s < 1) there exist T = T'(s, ||uols, ||vo|s—1/2+6) > 0
and a unique solution (u(x,t),v(x,t)) of the IVP (2.1) such that for q € [2, 0]

(u,v) € O([0,T] : H*(R)) xC([0,T] : H*/*(R)), (2.7)
lulls s < oo, with 2/r=1/2-1/q, (2.8)
10zull pee 2, < o0 (2.9)

Moreover the map (ug,v9) — (u(t),v(t)) from H*(R) x H*"Y*(R) into C([0,T] :
H*(R)) xC([0,T] : H*"Y*(R)) s locally Lipschitz, that is, for (uon,ven) € H*(R) X
H7V2H(R) such that (ugn,von) — (ug,ve) in H5(R) x H*~Y2+9(R), the corresponding
solutions {(u,(t),v,(t))} satisfy

lun = wllogemg + llun = wllig Lg + 1100 (un = u)llpeerz < CLT)|luon — wollns,

(2.10)

”’Un — UHL%OH;—l/2+6 S CQ(T)(HUOn — UO”HS + ”’Ugn — U()”Hs—1/2+5),

as n — oQ0.
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Theorem 2.3 The unique solution provided by Theorem 2.2 extends to any time interval

[0,T]. Moreover,

ullegems + llullzgrg + 1[0zull pee 2. < Ki(T),

(2.11)

s—=1/2445 S KQ(T).

101l e g
2.2 Linear estimates

In this section we collect known results on smoothing effect estimates of free Schrodinger
evolution group.
Firstly, we use the stronger one-dimensional version of the smoothing effect for the ho-
mogeneous term of the linear Schrédinger equation
+00 1/2
sup (/ |D;/2S(t)u0|2dt> < C|uol|z2 (2.12)
zeR —00

and the version for the non-homogeneous term, that is,

“+o00
)
z€R —00

Both (2.12) and (2.13) were proved by Kenig, Ponce and Vega [31, 32].

t 9 1/2
o, / St — 1)G(a, ¢)dt dt) < CGllpuz. (2.13)
0

Next, we state other smoothing effect for the non-homogeneous term.
Proposition 2.1 For any 0 € [0,1], we have
t
”Dz/2/ S(t—t)G(, t')dt'HL%OLg < CT(l_Q)/Q”GHLE/(”‘))L%' (2.14)
0

Proof. Using Stein’s theorem of analytic families of operators (See [41]) we obtain (2.14)

by interpolation between

t
||D?Z7/0 S(t =G (1) dt | o0z < CT?|Gl 21z, nER (2.15)
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and
t
||D:};/2+”7/0 St =G (-, t")dt || er2 < ClGllipz, n€R (2.16)

The estimates (2.15) and (2.16) were proved by Kenig, Ponce and Vega in [32, 33].

Lastly we give the Strichartz estimates for the homogeneous and non-homogeneous terms.

Proposition 2.2 For any pairs (r;,q;) with ¢; € [2,00] and 2/r; = 1/2 — 1/¢; (i=1,2) we

have
1S uollzpar < Clluollz, (2.17)
t
|| /0 (= )G sz < CIGH s (2.18)
! 1/rh—1/2
H/Ov S(t—t’)G(’atl)dtIHLTTngl < oT/ra=1/ )HG”LgéL%’ (2.19)

R 11
where m-i—r,?—l and q2+q(2 1.

Proof. See Strichartz [43] and Ginibre-Velo [22] for the proof of the first estimate (2.17).
For the proof of (2.18) we can see Ginibre-Velo [22], K. Yajima [48], Cazenave-Weissler [16]
and Kato [29]. The last estimate (2.19) is a slight modification of the (2.18). Indeed, we

note that

G>2=ry>4=1r,<4/3<2,

@ >2=2>q.
Then, using Holder’s and Minkowski’s inequalities we have
”G“L;,?LZ’? < T(I/TQ_I/Q)HG“L?TLié < T(I/T:’_I/Q)“G”L?L%’

and hence, (2.19) follows from (2.18). 0
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2.3 Nonlinear estimates

In this section we give the main results that will be used to estimate the nonlinear terms in

the proof of Theorem 2.2.

To handle the nonlinear terms with fractional derivates, we need the following commu-

tators estimates deduced by Kenig, Ponce and Vega in [33].

Proposition 2.3 Let a € (0,1), aj,as € (0,a), a1 +az = a and p,p1,P2,¢,q1,q2 €

(1,00). Then
1Dz (f9) = [Dgg — gD3 fllrzrg, < CIDZ" fll o |1 D32 gl 12 o2,
1 1 1 1,01 1
with T T and ato =

D3 (fg) — fDgg — ngf”LgL?T < C||f||L’;1Lg9||Dgg||L§2L;7

11 11
with ot =

1D2(f9) = fD3g — gD fllzry, < CIDZ fllz par [1D22 gl o2 2

withpil—i-i:landi—i- L—1,

p2 P T

||D$(f9) — fDgg — ngf”L;L‘_f’p < C“Dglf”L’;quTl ||D529||L’;2L‘1T2,

o1 1 1 11
wzthp—1+p—2—1 and ato =1

1D:(fg9) — fD3g — gD f ez < Cllflleee 1DZ gl 2

Proof. See Appendix in [33].

We also use the following Sobolev type inequality:

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Lemma 2.1 Let0<a <1 and % = % — a. Then we have

| fllawy < Col|D* fll 2wy (2.25)

This lemma is an immediate consequence of the Hardy-Littlewood-Sobolev Theorem.
Finally we prove the following proposition which will be useful in the proof of the Theo-

rem 2.2.

Proposition 2.4 Let 1/2 < s <1 and Fi(u) as in 2.4. Then we have
1D 2P ()| ae < S(T 4 T°2) ||ulf? (Nullzge s + ullg e ). (2.26)

L HS?

Proof. First we consider the particular case s = 1/2 and we get

t
IF@lusas < Elullag ) | e att) Pt |,

IN

CTV2 |ul pge 2 Nl 2 1

IN

ETV2 |ull pee 2 | . 12

IN

§T1/2|Iu||L%°L%||“||L4T/3L§ lullza poe

IN

§T5/4HUH%%OL3”“”L4TL36

IN

ST+ ) lullige s (Nl goze + Null e )-

Next, for 1/2 < s <1 we have

||D;_1/2F1(U)||L;L?r < %(Al + As + A3)

with

t t
A = ||D:i_1/2( u/ 6—(t—t’)/r|u(t/)|2dt/ )_u/ 6_(t_t,)/T.D;_1/2|U(t/)|2dt/
0 0

t
= (D) [ O Pt |y
0 e
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t
A= [[(D37) [ O et |
0 zHT

t
As = [Ju / e~ /T D=2y (¢ |2t
0

lzss

Proposition 2.3-(2.22, 2.23), Minkowski’s, Holder’s and Sobolev’s inequalities yield

t
A < CHDZ/Q_IMU||Li/(3_25)L3~/(3_25) Di/2—1/4/ e_(t—t’)/7'|u(t/)|2dt/ HLi/(1+25)L4T/(25_1)
0

< COT2s~1/4 ||D;/2_1/4u ‘ ‘ 14/(3-28) [ 4/(3=25)
T x

t
/ e O DYV (8 2t || v
0

< CTZs—1)/4 ||ch/2_1/4u ‘ ‘ [4/(3=25) [ 4/(3-25)
T x

D3> uf? ”L?/““”L#
< CT”Z||D§/2_1/4UHL%OLg/<3—25>( 2(|ullzz Lz ||D§;/2_1/4U||L3/<2s—1>,3;r
+ C”Di/4_1/8uHL§/(5‘25)L2THD;M_I/SUHLi/(GS‘S)L; )

< CT1/2”D2_1/QUHL%OL3( 2||“||L2TL3

D:};Q“HL%L%“L C||D§/2_1/4“||L2TL§ HDiM_S/Qu”L%L% )
< CT3/2||U||L9,1°H§_1/2( lullzgorz [lullge mry + “““Lg?Hi‘l/Q“u“L%oHi )

< CT3/2”U”§/9FOH;—1/2HUHL%’Hg

< C(T°* + T?’/Q)”“”ig,ogg—lﬂ( [l g oo + [Jull Lgo ms ).

From 1/2 < s <1 we have 2 < 4/(2s—1), 2 <8/(5—2s) and 2 < 8/(6s—3). We have used
this fact to apply Minkowski’s and Sobolev’s inequalities. Next by Holder’s and Minkowski’s

inequalities it follows that
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Ay < D37 2]y Pl 2
< OT"?lfull e ge-vvsull s 015
< OTfull o ool 2l g
<@+ TPl oo (ol + lulizens ).

Finally using Holder’s and Minkowski’s inequalities and Proposition 2.3-(2.24) we have that

Az < HUHLngTHD;_l/2|u|2”L§L1T

< T2 |ul| ger2

D;_1/2|U|QHL1TL3

Ds—l/?

< O Plluluaz g |05 o

< T ullgers ol o vl g e

< C(T* + T3/2)”u”i%<>H;—1/2( [l 14 00 + lullsems )-
Collecting the estimates for A;, As and A3 we obtain the desired estimate (2.26). O

2.4 Proof of main results

In this section we prove the theorems enunciated in the beginning of this chapter. We use
the point fixed method for the proof of local result and we obtain a priori estimates for the

proof of global results.

2.4.1 Proof of Theorem 2.2

We define the complete metric space X¢ for 7' > 0 and a > 0 as

Xp ={uwe((0,T]: H*R)) / lullr < a}, (2.27)
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where

lullr = llullg s + llull s re- (2.28)
We also define
Xy ={ue C([0,T]: H*R)) / [Jullr < oo}, (2.29)
and we consider the map
t
D(u) = S(t)ug — z/ S(t— t’)(Fo(u(t’)) + Fl(u(t’)))dt’. (2.30)
0

It will be established that for appropriate choices of a and T', depending only on s, ||ug|| zs
and ||vo||gs-1/21s, that if v € X& then w = ®(u) belongs to X¢& and ® : X§ — X¢ is a
contraction map. Thus most of what follows is the estimation of ||[®(u)|r. We need to

bound the non linear term in (2.30).

Now by Proposition 2.2-(2.17) we have that

IS @) uollr < Colluollm, (2.31)

and for 0 < § < 1/4 we apply (2.14), (2.19), (2.21) and Minkowski’s, Holder’s and Sobolev’s
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inequalities to obtain

I [ sti= Rt < ([ st )R
[0 = RN g+ 102 [ S0~ R 52
< (T el + 10870 [ DI ez
0
< <T1/4||€_t/TU0||L§L%°||U||L§L% + T5||ch—1/2+5(e—t/mou)||L316/<1_5>L%) (2.32)
< (T3/4‘|U0”L2|yu|yL%oLg + T5|’D;—1/2+5uHLi/(1—26)L%He—t/TUo”L%L%O
T full - 103 (e 00) 12050 )

S Cl(T3/4 + T<5+1/2 )HUO‘

o-syssallull e

< CUT + T vl o oo llullr

Further by (2.14), (2.19) and Proposition 2.4 we have

I st =Rl < €|l [ St =Rt gy

t t
Hl [ S~ R ) g + 105 [ St~ ORE)d512)
0 0

< <T1/4||F1(u)||L;CL% + ||D;—1/2F1(u)||L%L%> (2.33)

IN

IN

Co (732 4 T 4 T3/ 4 52 )”u”i%OH;_l/z (s

IN

G (T3 4 T - 754 )H“Hi%oyg—l/””“”lT'

Therefore we see from (2.31)-(2.33) that
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1@ (w)llr < Colluollms + CL(T3* + T2 ) ||vg|| go-r/ows [Jullr

+ (T4 T T T2, lulle
G (2.34)

< Colluoll s + aCy(T3* + T2 g || gro-r/245

+ @ C (T2 4 T 4+ T/,

Thus we first choose a = 2Cy||ug||gs and then T satisfying the following conditions
CL(T¥* + T2 ) Jwg | ra-ryors < 3 (2.35)
and

%(T3/2 4 T4 /4 )a2 < % (2.36)

It is easy to see that if u € X% then w = ®(u) € C([0,T] : H*) (see [32]). Then we conclude
that ® : X% — X2
Using

(2.37)

similar arguments show that

@ (u) = (@) e < CUTY* + T2 vl gror2ss llu — @l (2.38)

+ (T2 + T+ T ) (fullz + el + Nl e — allr.

Consequently ® : X¢ — X is a contraction map and hence there exists a unique v € X¢

with ®(u) = u.
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Now we let (r,q) with ¢ € [2,00] and 2/r = 1/2 — 1/q. Using (2.12), (2.13), Proposi-
tion 2.2-(2.17, 2.19) and that the solution u satisfies u = ®(u), we have

”aquLgoL% + ”U”L}L?E S COHUO”HS—U? + Cl (]‘ + T1/4) HFO(U)HL:}:L%“ (2 39)

+ S (1+ T [|Fy ()| e

Hence, the additional regularities (2.8) and (2.9) hold.

On the other hand the solution v(z,t) satisfies
t /
v(t) = e Ty + f/ e () 2t t e [0,T). (2.40)
0
Then for 1/2 < s <1 and 0 < 0 < 1/4, using (2.20) and Lemma 2.1 we have that

[0(®)llz2 + 1D 0 (t) |2 < lvollze + 1D/ vl 2

t t
_|_l/(; 6_(t_t,)/7|||u|2||L2dt’+%/(; e—(t—t/)/T||Di—1/2+6|u|2||L2dt/

!
<|lvollzz + [| D52 w2 + %HuﬂHLlTLg + %HD;_I/Q”(uﬂ)HLlTL%
< lwollz2 + 1D5 2wl 12 + Fllull g nge lull age , + LTV Dy (w) || 2
< floollze + 1032wyl 2 + ATl g el 2 24D
+ 2| D E Ry Hlullpg g 1Dl 1
< lwollz2 + I1D5* owollz2 + LT%*|ull 1 poo |l e 22
+ LTV DA e + 2TV ull g oo |1 D500 e 12

< ol garrzss + L (T34 + T2 + TV4) [Jul2.

Hence v(t) € H*~Y/?%% in [0, 7).
Finally we explain how to extend our uniqueness result in X to the class X; defined in
(2.29). Suppose w € Xy, for some T} € (0,7) is a strong solution of the IVP (2.1). We take

b = max{a, |w|r, }. For Ty < T} will be fixed later; the argument used to obtain that ® is a
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contraction map shows that
lu — wllz, < T + T ) ol go-srevs llu — wllay
+ (1) + T+ 1) ([l + Nl lwle, + lwld) e — wllz,
< CUTY™ + T3 ) [voll go-ssvs llu — wlla,
+30 2 (1) + T+ 1) Ju — wll,.
Then taking T), satisfying

CU (T + T3 % ) |vo

gs—1/245 < %
and
R+ L) <5

we have ||u — w|r, = 0. Hence u(t) = w(t),t € [0,T3]. By reapplying this argument this
result can be extended to the whole interval [0, T]. This yields the uniqueness result in X7

and the proof of local theorem is completed.

Remark 2.1 Ifs > 1/2, we have C([0,T] : H*(R)) () L+LL = C([0,T] : H*(R)) from Sobolev’s
lemma. In this case, our solution satisfies the “most natural” definition for local well-
posedness: For any R > 0 there exists T = T(R) > 0 such that the data—solution map s
uniformly continuous and uniquely defined from the ball {uy € H*(R) < R} to the space
C([0,T] : H*(R)).

2.4.2 Proof of Theorem 2.3

In order to prove global well-posedness we give the a priori estimate for the solutions given
by Theorem 2.2.

Let [0, T*) be the maximal time interval on which the Cauchy problem (2.2) has a unique
solution u € Xy for any T' < T™*. Suppose that T* < oo and we will show that it leads to

the contradiction.
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First we note that the solution u(z,t) of the IVP (2.2) satisfies ®(u) = u and from (2.34)

we see that

lullr < Colluollz= + CL(T** + T2 ) [Jvg| | gorass fullr

(2.42)
+ LT LT T |ul e llullr
T i1
for any T < T™.
Now we consider two cases:
(i) s=1/2and 6 = 0.
Using the conservation law (8) in L? and (2.42) we have that
lullz < Colluoll /2 + pa (T lullz + p2(T) lullr (2.43)
where
1 (T) = CL (T3 4+ T2 ) |Jwg]| 2, (2.44)
wo(T) = %(T‘Q’/Q—l—T7/4+T5/4 Mluol|3 - (2.45)

The functions p; and ps are continuous and p;(0) = p2(0) = 0. Hence we can take

T € [0,T*] so that
p(T) <1/4 and  pp(T) < 1/4
with 7' depending only on ||ug||z2 and ||vg||z2. Then from (2.43) we obtain
el < 2Co|uoll g1/2 (2.46)

for any 7" € [0, 7).
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If T = T*, we have that the solution u of the IVP (2.2) can be extended to the time
interval [0, T*] with

sup {[u(t)|| 12 < 2Col|uoll g2,
t€[0,7]

and we see that it contradicts the maximality of T*. Therefore, suppose that T < T*.
Let m € N be such that 7* < mT" and replace T by T = T*/m.

Now consider the Cauchy problem

i0u® + 102u® = e~ uWyg(z) + Cu f7 e/ W)2dt

) ] (2.47)
uV (2, T) = u(x,T), z€R
Uniqueness of solutions yields that
u(x,t), telo,T],
(2.48)
uV(z,t), te[T,2T),
is a solution of IVP (2.2) in [0, 277.
Using that ||ug||z2 = |[u(T)]||,2 and the same procedure to obtain (2.46), we have
lull7 < max {2Colluoll gz, 2Colu(P)lm»
(2.49)
< max {2C0|luoll1/2, 4CG|uol| 12 -
Then, repeating this process m times, we see that
lullz- < max {2Co|[uol| 12, ACT w0l sz, ooy (2C0)™ |uo]l 2} (2.50)

which contradicts the maximality of T*. Hence T* = +4o00.

We also note that for any 7" > 0 we have

lullr < K(T) := max {2Co|luoll g2, ACT [[uoll sz, ey (2C0)™ P luo|p11/2 }
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(ii)

where m(T) = [%] + 1. Consequently

”UHL%oHl/? < K(T). (2.51)
1/2<s<land 0<¢§<1/4.
Since H* — H'/?, we may regard the solution as being contained in H'/2. Moreover

“u“L%OHS—l/? < ||U||Lgs>Hl/2 < K(T). (2.52)

Again, we suppose that T2 < oo, where [0, T7) is the maximal time interval of existence

of the solution.

Now we put
Ky:=sup {K(T): T €[0,T] }. (2.53)

Then from (2.42) and (2.52) for any 7" € [0,7) we have

lullz < Colluollas + pa (T)lullr + p2(T) luflr (2.54)

where
pi(T) = CoL(T*™* + T2 v | gre-1/24s, (2.55)
po(T) = 2(T32 +- T + TY* K3, (2.56)

Now using (2.54), (2.55) and (2.56), we can choose T', depending only on ||vg|| s-1/2+5,
sufficiently small such that

p(T) <1/4 and  pp(T) < 1/4
and consequently

lullz < 2Col[uol| ars (2.57)
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for any 7" € [0, 7).

Similar to case (i) we get T = +oo and |Ju|r < K1(T') for any T > 0. Then the proof

of Theorem 2.3 is completed.



Chapter 3

Ill-posedness for the Benney System

We consider the IVP associated to the Benney system, that is,

iy + O2u = aun + Blul*u, z€R, teR,
Oy + A0y = 70, (|ul?), (3.1)
u(x,O) = U,()(x), 77(%0) = 770("17)7

where v is a complex valued function, 7 is a real valued function, A = 1 and «, § and ~ are
real constants.

The following result is due to Ginibre-Tsutsumi-Velo [24].

Theorem 3.1 The Benney System (3.1) is locally well-posed for initial data (ug,ny) €
H%(R) x H((R) provided

~1/2<k—1<1 and 0<I+1/2< 2k (3.2)
The solution satisfies:
ue C([0,T], H*(R)), ne C([0,T),H'(R)). (3.3)

o7
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Note that if k — [ is fixed the lowest allowed values of (k,l) are attained for k — 1 = 1
and are given by (k, 1) = (0, —1/2). Moreover local well-posedness was shown by Bekiranov,
Ogawa and Ponce [3] in the line [ = k — 1/2 with k& > 0.

In the work of both, Ginibre-Tsutsumi-Velo [24] and Bekiranov-Ogawa-Ponce [3], the
best result obtained for local well-posedness for IVP (3.1) is in the space L*(R) x H~'/?(R).
Since scaling argument can not be applied to the Benney system to obtain a criticality notion
it is not clear that whether this result is optimal. In this work we are going to prove that

this result is in fact the best possible to get local well-posedness. For this, we prove the

following theorem concerning ill-posedness for IVP (3.1).

Theorem 3.2 The Benney System (5.1) is ill posed in H*(R) x H'(R) for 3 < 0 provided

~1/3<k<0 and k(21+3)+1>0. (3.4)

To prove the Theorem 3.2 we follow the argument used by Kenig-Ponce-Vega [37] to
show ill-posedness for some canonical nonlinear dispersive models. The main ingredient in
our proof is the use of the properties of the solitary wave solutions of the system (3.1). The
existence of such special functions for any speed of propagation, ¢ > 0, and the exponential

decay are strongly applied.

Remark 3.1 For 8 > 0, it is not possible to apply the same argument used in the proof of
Theorem 3.2. Nevertheless, we can give a criticality notion for the special case f = X = 0.

Indeed, if (u,n) is a solution of the system (8.1) with initial data (uo(z),no(x)) then

u(w, 1) = 1 Pu(p, 1°t),

mu(x,t) = p’n(pw, 1),
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3/2

solves (8.1) with initial data u,g = P ?ug(px) and n, = p?no(px). Now taking the homoge-

neous derivative of order k and | in L* for u, and 1, respectively yields the following

IDzuullz> = 12| Dyl

1Dyull> = 172 | Dl

Hence, the notion of criticality is well defined for the Benney system with initial data
(ug,m0) € H¥(R) x H(R), and the critical values turn out to be k = —1 and | = —3/2.
We note that the optimal relation between k and l is k —1=1/2.

In Figure 3.1 we compare the results for local well-posedness given by Theorem 3.1 with

our results for ill-posedness in Theorem 3.2.

R(21+3)+1=0

Figure 3.1: The region A contains indices (k,l) where local well-posedness was shown in

[3, 24]. Tll-posedness is shown by our example for indices (k,l) in region B

3.1 Solitary waves

In this section we obtain solitary wave solutions for the Benney system.
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We will look for solutions of equation (3.1) of the form:

u(z,t) = e“'op(x —ct) and n(z,t) = Y(x — ct) (3.5)

where w > 0, ¢ > 0 and ¢ and 9 are two smooth functions of L? which decrease rapidly to
zero at infinity. See [38].
Substituting (3.5) in (3.1) we have the following system of ordinary differential equations

for ¢ and v

—icd' —wd + ¢" = agp + Blo*¢

(3.6)
(A =)y = (o).
Taking ¢ > |A| = 1, we obtain
—icd! —wé+ 9" = (8+ 7)o, (3.7)
Setting ¢(z) = "% h(x), where h is a real valued function and using (3.7) we have
R PR B (38)
YTy c—XN" '

We can see [6] and [42] for the following statements. The equation (3.8) has positive,

even, smooth and exponentially decreasing solutions if the conditions

2

w—CZ>O and flc—A)—ay<0 (3.9)
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are satisfied. The solution in this case is given by

W) = —H7 o sech(o) (3.10)

6—0'117 _|_ 60'117

where,

= 2e =) and o= w—é
M_\/M_ﬁ(c_” d T (3.11)

The set of non trivial solutions of (3.8) in H'(R) is empty if the condition (3.9) fails.
Remark 3.2 Forc>1 and w > %, the condition (3.9) holds in the following cases:
(i) <0, ¢>max {1,)\—|—%}.
(ii) B=0, ay>0.
(iti) B>0, 1<c<A+G.

We are interested in the case (i). Here the speed of propagation (¢ > 1) is not restricted to
a bounded interval and this fact is strongly used in our argument.

Finally, we have the following expressions for the solitary waves:

( .
L(z—ct)

Ue (T, t) = ele pgs(x — ct),

nc,w(xyt) - —#&_)\)gg(m’ — Ct), (312)

9o(7) := og(ow), g(x) = sech(z).

\
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3.2 Proof of Theorem 3.2

The idea of the proof is the following: we will take two solitary waves as in (3.12) as our

initial data. We will see that under some assumptions the will remain close at initial time

and the we will see the evolution of the solutions associated to them to find a contradiction.

Without loss of generality, we may assume § = —1 and a =~y = A= 1in (3.1).

Taking
N>1, C=2N and w=N?+o?

and using (3.12) we have that the pair

(

Ug (2, 1) = e V=) eiNT (N g (2 — 2EN),

Non(T,1) = —%g?,(x — 2tN),

L N(N) = 2]\17\[_17

(3.13)

(3.14)

is the solution of the Benney system (3.1) with initial data (e’"*u(N)g,(z), —+ g2 ().

Taking Fourier transform we have

' - N
U, (&5 1) = e”<N2+02—2Nsm(N)§(5 )

o
and
0 ey (€
AJ 1) = —— —2itN¢ 2(_)‘
Let us set
Nj~N, N <Ny, wj=N 40’ j=1,2
and write

Uj({l?,t) ‘= Ug;,N; (l‘,t) and Nj = MNo; ,N; (Qf,t).

(3.15)

(3.16)

(3.17)

(3.18)
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The fundamental theorem of calculus and the mean value theorem yield the following

inequalities

et il )

()
1) = w0 P (S
/Olg,(f— Ny + t(Ny —N1)> (N2 - Nl)

g o

1 (N1) |9

~

+ [(Ny) — pu(N2)[? ‘ (5 N2)‘
A,<§—Nz+t(N2—N1))‘dt)2

< |Ny —N1|20_2</ g
0

o
! 2 5 N2 ‘
+ I (N PIN = N [5(5=)
with Ny € (N1, N), @/ (Ny) = ———— ~ 5. Hence
2NZ V/2No—1
Ny — N2
[[ur (- 0) = ua (- 0)[I§ S [Ny — Nof?0 211 + “Tﬂb (3.19)
where
1
_ 2k (& — No+t(Ny — Ny) ‘ 2
n= [ ([ o (R a)
and
_ §— Ny
b= [a+epra(t=2) e
Let
o=N"2, (3.20)

Taking k > —1 (N"2* < N), £ € B,(tNy + (1 — t)Ny) then |£] ~ N for ¢ € [0,1] and using
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that § € S(R) and g concentrates in B;(0) we have the following estimates for I; and I5.

A,<§ — N +¢(N — Nl)) ‘Zdt)df

nos fasiere(f s !

[/ 416 @'(5 NN )

o
ON% g N (1 t)N2> 2

) ‘ngdt

IN

dydt

AN

C“ I2’

and

— Ny 12
I, ~ N%/‘gj<§ 2)‘d§
g
= N%0|gl17: = |lg]l7--

Using (3.19) and the estimates above it follows that

o, 0) ~ ol 0)7 5 13y — Nt 4 N (321)
Now we consider the solutions u;(x,t), 7 = 1,2, at time ¢t = T, observe that
lui (DT = Nlui (- 0)[I; = N*0ollgll7., seR  j=1,2. (3.22)
If s =k in (3.22) then
o (-, D)% == llgllZ- (3.23)

On the the other hand, the frequencies of u;(-,7), j = 1,2, are localized in B* =
B,(N7) U B,(N3). Hence || ~ N and consequently

lur (-, T) = uz (-, T)[E = N [Jua (-, T) = uz (-, T)[72 (3.24)

Now, u;(-,T) concentrates in B,-1(2T'N;), j = 1,2. Therefore giving T' > 0, are taking NV
and Ns such that

TIN, — Ny| > 07! = N, (3.25)
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We have that there is no interaction of u;, j = 1,2, at time ¢ = T'; hence using (3.22) with

s = 0 we obtain

lur (-, T) = ua(, D72 = [Jus (-, 72 + [Jua(, T)72 = 0.

Combining (3.24) and (3.26) we obtain
lur (-, T) = ua(, T)|Ig > CN* o = C.
Taking
Ny =N and No=N+6N"* with §>0
we get from (3.21)
s (-, 0) = ua(-, 0)i < C8*(1+ N71HHY) < 042,

here we have used that £ > —%.

Since k < 0, given §, T > 0, we can take N so large that

1
TIN, — No| = TON % > N* «—= N %> 75

and hence (3.25), (3.26) and (3.27) hold.

The initial data n;(z,0), j = 1,2, satisfies

0.2

ol = 7 [ i)

o
0.3

= m/(1+02y2)l|92(y)l2dy
J
0.3—|—2[

N2

12

[ gy

lg?l7, 1>0
N 2(k(20+3)+1)

IN

N*¥lg?[[72, <0

IN
Q

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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whenever
1
E(2l+3)+1>0, forl >0 and k> —3 for I < 0. (3.31)

On the other hand,

(0 =m0l = (5 - x) [ eI C)Pag

3

o ~
= - N2 [ (1 ) i) Py
ot ks ak 2\ 730 |2
= TN [ g Py
Il 120
< §EN2k2+5)+2)
N2, 1<0
< o,

where in the last inequality we use that
2
k(20+5)+2>0, forl >0 and k> —% for [ < 0. (3.32)

Note that for £ < 0 the condition (3.31) implies the condition (3.32) and the proof is

complete.



Concluding remarks

Here we give an account of the principal results obtained in this work and point out some
open problems.

In Chapter 1 we proved that the IVP associated to the Schrodinger-KdV system is locally
well-posed for the given initial data in L*(R) x H~3/*t¢(R). According to the method we
utilized, this result is the best possible because the trilinear estimate in Lemma 1.5 is false
for k < 0, and the bilinear estimate in Lemma 1.6 is false for [ < —3/4. But at this point, it is
not clear whether we can have the local well-posedness result in the space L*(R) x H3/*(R).

Moreover, we proved that the system 1.1 is globally well-posed in the energy space
H'(R) x H'(R) using the conservation laws. We believe that this result could be improved
to get global solution in H*(R) x H'(R) with k, [ < 1. One example which gives insight in
this direction is the following particular case. If we take § =~y = 0, the IVP 1.1 turns to

i0pu + 0*u = auv, x €R, tER,
(3.33)

v + v+ 30,0 =0,

with initial data u(z,0) = we(x) and v(z,0) = vo(z). In this case, if we take (ug,vg) €
H*R) x HY(R) with 1/2 < k < 1, using Theorem 1.2, the fact that H*(R) with k& > 1/2
is an algebra and the H'-conserved quantities for the KdV equation we can obtain global
solutions. Also we observe that, using recently introduced Bourgain’s techniques to obtain

global solution in spaces where there are no conservation laws, it could be possible to obtain

67
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global solution to system 1.1 in H*(R) x H*(R) with kg < k <1 and ko € [1/2,1).

In Chapter 2 we proved local and global well-posedness for the IVP associated to the
Schrédinger-Debye system for given data in H*(R) x H*~ /2% (R) with § = 0 for s = 1/2 and
0<d<1/4for1/2 < s < 1. We believe that, using the same techniques utilized to prove
Theorem 1.2 it is possible to obtain local well-posedness result for IVP (2.1) in the sobolev
spaces with negative indices. Also, we think, it is interesting to conduct a similar study of

local and global well-posedness for the following modified Schrodinger-Debye system

4

iatu—k%agu:uv, r€eR" n=2,3,1t>0,

/\

TOWw +v =¢€ulP;, p>0 (3.34)

u(z,0) = ugp(x), v(z,0)=wvy(z),

\

where 7 > 0 and e = £1. This system was proposed by B. Bidégaray in [10], which was
inspired from the general NLS equations.

In Chapter 3 we proved that the Benney system is ill-posed in the space H*¥(R) x H!(R)
for —1/3 <k <0 and k(2/ + 3) +1 > 0 whenever 3 < 0. To obtain this result we used the
existence of solitary wave solutions to the system (3.1). This result shows that the space
L*(R) x H™'2(R) is the best possible to have local well-posedness. We consider that it

would be interesting to resolve the following open problems:

e In the case A = § = 0, we have the notion of criticality with critical values (k,l) =
(—1,—3/2). At this point, we do not know whether or not the system (3.1) is locally
well-posed in H¥(R) x H'(R) with (k,1) € Q@ = [-1,0)x[-3/2,0).

e In the case § > 0 we can not use the solitary wave solutions to obtain the results as in
the case f < 0. We think it may be possible to get ill-posedness result using argument
analogous to the ones used by M. Christ, J. Colliander, and T. Tao in [17] to obtain
ill-posedness to NLS-defocusing and KdV.
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e Finally, we observe that, in the case A = § = 0, orbital stability of solitary waves is
studied by Laurencot in [38]. But in general case, we don’t know whether this result

still holds.
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