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Abstract

We analyze the coupling across an interface of fluid and porous media
flows. Some applications are: Coupling surface and groundwater water
flow, well and oil reservoir and biofluid dynamics models (several organs
can be viewed as a porous medium, organs like brain, heart, lung). We
consider the Stokes equations in the fluid region and Darcy law for the fil-
tration velocity in the porous medium. Beavers-Joseph conditions for the
interface are considered. We use the porous pressure as a Lagrange multi-
plier to couple the model and develop inf-sup conditions at the continuous
and discrete levels. Using the second order Taylor-Hood and the lowest
Raviart-Thomas finite elements, optimal discrete approximations and inf-
sup conditions based on constructing Fortin’s interpolations are provided.
Numerical experiments are presented.

Keywords: [nf-sup condition, Stokes-Darcy, Finite Elements.
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Introduction.

In this short chapter we present an overview of some applications of cou-
pling fluid flow with porous media flow (and related models, i.e., models
that consist of heterogeneous submodels.).

Application to oil industry. The main application to oil industry is
the oil reservoir modeling. We can obtain more realistic models of coupling
well-reservoir that include the geometry of the well completionl. Overall
productivity of perforated wells is influenced by this geometry, for instance,
the number and length of the perforations. We also can consider models of
loss of recovering due to obstructions in perforated wells.

We have applications to modeling of disconnected fractures (the frac-
tures are separated from each other with a gap).

Similar models can be applied to situations involving interfaces between
domains with different physical properties, for example, linear and nonlin-
ear coupling.

Coupling groundwater and surface water flow. Consider water,
and sand as the porous media. In this case the model helps in the task
to understand how beach are formed and how is the dynamic caused by
the water. This model can be used to simulate the effect of flooding in dry
areas and combined with transport-diffusion models can be used to study
the propagation and diffusion of pollutants dispersed in water. We remark
that in the model presented here, the interface between the fluid and the
porous media is a rigid hypersurface. Models with not rigid and/or moving
interface have a different analysis.

On the other hand, groundwater is an important water source for both
domestic and agricultural usage. The ability to manage groundwater re-
sources requires an understanding of groundwater/surface water interac-
tions and if we (somehow) know the geometry of water reservoir we can
apply models similar to the one presented here in order to improve the rep-

10pen-Hole completion or a Through-Casing completion using “perforating guns”.

X

Free Fluid

A simplified transversal
view of a perforated well.

A simplified transversal
view of a disconnected
fracture.

Coupling groundwater
and surface water flow.
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X INTRODUCTION.

resentations of these interactions.

Applications to Biomathematics. In the human body we can find
several organs that we can view as a porous medium (organs like brain,
heart, lung, and kidney) and several (bio)fluids (as blood) that interact with
them?. For instance, the numerical modeling of solutes absorption pro-
cesses by the arterial wall helps to understand the relationships between
the local features of blood flow and the arterial wall (in this case the arterial
wall must be considered as rigid). The dynamics of different blood solutes
(as oxygen and low density lipids) as well as their absorption through the
arterial walls, could play a relevant role in the genesis of some pathologies
(such as astherosclerosis). In the case of arterial walls we can model in-
terstitial flow in media. In a simplified transversal view of a blood vessel
wall the main components are the media which is considered as the porous
medium. The internal elastic lamina which is an impermeable barrier to
water flow, except for fenestral pores, that separates intima (the most inner
part of the vessel wall) from media.

2Although blood is not a Newtonian fluid (it is a suspension of red blood cells, white blood
cells and platelets in plasma), the Newtonian assumption is considered acceptable as a first
approximation for the flow in medium-to-large vessels.



Chapter 1

Preliminaries and
Notations.

The aim of this chapter is to present a survey of background results needed
in this work. Basic notions and notations are presented.

Section 1.1 presents some results from Sobolev spaces. Most of the mate-
rial consists of standard definitions and basic results. The main results for
our purpose are Lemmas 1.6, and 1.7. They characterize the Sobolev space
HY*(T) and its dual. The space H'/?(T) is chosen for one of the variables
(the Lagrange multiplier) in the weak formulation of the problem stud-
ied in Chapter 2. Lemma 1.14 is used to establish the inf-sup condition,
in order to get existence and uniqueness of the solution. Section 1.3 dis-
cusses the general abstract saddle point theory which is the framework to
study numerical solutions of Stokes equation and related models. Basic re-
sults about finite element approximations are presented. Fortin’s criterion
(Lemma 1.21) is an important tool to achieve our objective.

1.1 Sobolev spaces.

Given O C R", a Lipschitz domain!, let L?>(Q) be the space of square
Lebesgue integrable functions, that is:

12(Q) = {1,1) Q> R/ /Q P < oo}

1This means that 9Q is locally the graph of a Lipschitz continuous function and that Q lies
on one side of this graph. Usually, n is two or three and Q is a bounded and open set.

1

| A Lipschitz domain.




A Non Lipschitz domain.
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with the usual norm given by [[{[|;2(q) := (Jq [¢[*)? which is obtained
from the inner product:

(47/ I!))LZ(Q) = /Q Y.

Denote by L3(Q) the subspace of L?(Q) involving the functions of zero
average.

The space L?(Q) := L?(Q)" is the cartesian product of L?(Q) n times
with the norm

n
“f”%Z(_Q) = ; ||fi||%,2(_Q)'

Let C5°(Q) be the space of infinitely differentiable functions having com-
pact support in Q. Let &« = («y,..., ) be an n-tuple of nonnegative inte-
gers. « is called a multiindex. Define:

n
|| := Zocj, al = axglao! ..l
1

It is used the shorthand 0 i = -C% for partial derivatives on R". Higher-
]

order derivatives are expressed by:

o (D) (2 (2"
0x1 Xy U\ 0xy '
Denote by du, Vu or gradu the n-tuple of functions (dqu, ..., dyu).

Let D(Q) be the space C{°(Q) with the following sense of convergence:
{fu} converges if there exist a function f € C{°(Q) such that the supports
of {f,} are all contained in a compact subset of Q and their derivatives
{0%f,} converge uniformly to 0*f for all multiindex «.

Let the dual of D(Q) be the space of distributions, i.e., the space of lin-
ear functionals on D(Q) that are continuous with respect to the notion of
convergence defined above. It is denoted by D'(Q).

The notation (-, -) is used for the duality pair between D(Q) and its dual,
that is, we write:

(f,¥), $eDQ), feD(Q).

If f is a distribution and « is a multiindex it is possible to define its
derivative (in the sense of distributions) 0*f by:

@f,w) = (=1)P(f,0%), ¥ € D(Q).
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Now we define a very important family of subspaces of L%(Q), the Sobolev
Spaces. By definition, a function f € L?(Q) belongs to H*(Q), k € N, if
|| < k implies 3% f € L?(Q), or more precisely:

HY(Q) = {f € 12(Q) : Va|a| <k, exists fo € L2(0),

st (@*f,0) = [ fa, V€ D)},

In H*(Q) it is considered the following inner product:

(frg)Hk(Q) = Z (0%f, aag)Lz(Q)'

|l <k

which gives the norm:

1By = Dy = L 110 Isey = X [ 1071

o<k |a|<k

A very important functional on H*(Q) is the seminorm given by:

flhn = I 171 = T | 102

|| =k

For other definitions of Sobolev (and related) spaces see [11].

There are different ways to define H°(Q), s € R, (see [5],[7],[11]). Here
we use the one based on the following norm:

||u”25 ”u“H[s + |M|%+(Q)

with [s] the integer part of s and the seminorm:

(0%u(x 8"‘u(y))2
|u|Hb(Q | | / / ||x_y||n+2<r dxdy.

where 0 = s — [g].

Define H;(Q) as the closure of P(Q) in H*(Q). For s < 0, H°(Q) is by
definition the dual space of H;*(Q) with the usual norm.
With Q open and Lipschitz continuous, define the space H*(dQ) by the
norm:
”u“HS 0Q) " ”u“H[s](aQ) + |u|%—IS(BQ)

with the seminorm:

. (0u(x) — 9u(y))’ B
o) = mg[s]/aa s = gt oSy o =5l
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For I' ¢ 0Q), with non-vanishing (n — 1)-dimensional measure and rel-
atively open with respect to dQ, it is possible to define H*(T) in the same
way as H°(dQ), that is, using the norm:

||u||%‘l“( - ||MI|H[~ + |Ll %_Is(r)

with the seminorm (o = s — [s]):

9%u(x) — 2
| |H> . Z //( ||x_y||2(7+n(yl)) dsde‘/

|o|=

Under suitable conditions on Q this is equivalent to the following definition:
H(T) := {u = U‘r : veH(0Q)}
with the norm suggested by it.
Define:
Hgo(T) :={u € H(T) : Eo(u) € H(9Q)}

where Eg(u) is the extension by zero outside I'. Put N = 0Q \ T. Let ' and
N be connected subsets of Q) and S, S, the end points of I' and N. When
n = 2if u € H'*(T) we have from the definition of the H'/>(0Q) seminorm

Eou(x) — Equ 2
|EO(U)|H1/2(9|-) :/BQ aQ( 0 ( ) 0 (y)) dedSy

llx =yl
(u(x) — u(y
= Jh s
(0—u(y))?
2 ~— 7 4S.d
+ / e ”2 5,45,
=|u|H1/2(F)+2/r( / = dedSy

= [ulaqry +2 [ () r(y)dsy

where for y € T, 7(y) := [y ||x — y||72dSx. Now let s; be the distance along
0Q with S; as starting point and let x(s;) be the point on dQ whose distance
to §; is s;. There exists € > 0 such that

0 <s; < eimplies x(s;) € T
0 >s; > —e implies x(s;) € N.

Then |Eo(u)]1/2(50) < o0 is equivalent to the conditions:

€ € 1 .
/0 (u(y(sj)))Z/() Wdtdsj < 00, j=12. 1.1
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This follows from the fact that the function (y(#)) is bounded in the region
given by s; > € and that u € L%(T). We also use the fact that the function
llx(s;) — y(t)|| is equivalent to the function |s; — | when s; < €. To ensure
this we have to suppose that the “angles” between I' and N at S; are not
zero.

From (1.1) we get the conditions

/Oe (u(y(sj)))zsljdsj< o, i=1,2.

These two conditions can be expressed as

/OL (u(y(s1))) [l + 7 _1 51] ds; < o0, i=1,2.

51

where L is the length of I'. Then an equivalent norm for Hy/*(T) is obtained
by :

sy 5= s + [ @lul)? |5+ 2

The following well known result will be used (see [11], [7], [14]):

Lemma 1.1 (Trace Theorem). Let Q be Lipschitz continuous. Then the
operator vy : C*(Q) — C*®(0Q), mapping a function into its restriction on
the boundary, can be extended continuously to an operator vy : H'(Q) —
HY2(0Q). Also, there is a continuous lifting operator Rq : H'/*(0Q) —
HY(Q), such that yoRou = u, for all u € H/*(0Q).

The operator g is known as trace operator on dQ. Similarly, given
I' C 0Q with non-vanishing (n — 1)-dimensional measure and relatively
open with respect to dQ), a trace on I' can be defined. We denote by H} (Q, T
the subspace of H'(Q) of functions that vanish on T.

Let P, be the space of polynomials of degree k or less. Next lemma is
very useful in order to look for equivalent norms in Sobolev spaces.

Lemma 1.2. Let Q be a (Lipschitz) continuous domain. k,1 € Z%, f;, i =
1,...,l continuous functionals (not necessary linear) on H*(Q) such that ¢ €
Pr_1 implies:

!
Zf(d) P=0 < ¢=00nQ. (1.2)

Then there exists a constant, depending only on Q and the functionals f;,
such that,

1/2
lullie ) < Ca[Jfe o +Z|f i
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Proof. Assume that for all n € Z™ there exists a function u,, € H*(Q) with
ltnll (o) = 1 such that

! 12 1
I:lunlfik(ﬂ)—f—i:zilﬁ(u””z] < e

Then, if |«| = k we have
D%u, =0 (1.3)

and f;(u,) — 0 for all i. Using the well known fact that the inclusion of
HY(Q) into H-'(Q) is completely continuous when Q is continuous? (i.e.,
0Q is continuous and Q is locally at one side of 0Q), see [11], pag. 108
theorem 6) we can pass to a convergent subsequence in H<1(Q). Let

u= lim u,.
Hk-l(_Q)

From (1.3) we see that u, — u in H*(Q) and D*u = 0 when |«| = k.
Since D*u = 0 when |a| = k it is possible to construct uj, # € R such

that u;, € P,_; and u;, — u when h — 0 (see [10], pag. 72). Then since P;_; is
closed in H*(Q) we get u € P,_;. In fact we can use:

wn(x) = 1 [ wnx= )y

where
2
s
r= [ T and wy(x) = 2T <
Il <t 0, if [|x|| > h
Now, u € P, fi(u) =0fori=1,...,/ and (1.2) imply u = 0.
On the other hand:

lull ey = Hm [fun || e ) = 1-

which gives a contradiction. This ends the proof. WE«

The following two lemmas are important applications of Lemma 1.2
when k = 1 and they turn out to be particular cases of the functionals

fi-

Lemma 1.3 (Poincaré Inequality). Let u € H'(Q). Then there exist con-
stants, depending only on Q, such that

2

2When k = 1 this fact is known as the Rellich Theorem.
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In particular the seminorm |- |1,o is equivalent to the norm || - || ;10

in H'(Q) N L3(Q). We can obtain similar results using the integral over
a subset of Q or even in part of the boundary using the Trace Theorem
(Lemma 1.1).

Lemma 1.4 ( Friedrichs Inequality). Let I' C 0Q with non-vanishing
(n — 1)-dimensional measure and relatively open with respect to 0Q. Then
there exist constants, depending only on Q and T, such that for u € H'(Q),

||u||%2(_()_) < Cll”l%—ﬂ(g) + C2||u||%2(r)~

In particular, if u € Hj(Q,T) the H'(Q)-seminorm is a norm equivalent
to the H'(Q)-norm.

Next lemmas are going to be useful, they characterize the space H'/*(T).
Lemma 1.5. Given u € H'/*(T), define:
-Ap=0 inQ
E, (1) := yo(¢) where ¢ is the solution of { ¢ =p onT (1.4)
dpp=0 ondQ-T
then Eq (1) € HY2(902) and. |[En(1)ll112050y < Cllcll ooy

This follows from classical regularity results (see [11], [13]) and the
Trace Theorem (Lemma 1.1).

Remark. In Lemma 1.5 we also have ||P‘||H1/2(r) < ”Eﬂ(“)”Hl/Z(aQ)'

Using Lemma 1.5 we can consider H'/2(T) as a subset of H'/?(dQ). Then
we have the following result:

Lemma 1.6. Let Q) be Lipschitz continuous and I' C 90Q with non-vanishing
(n — 1)-dimensional measure and relatively open with respect to 0Q). Then
for all u € H'2(3Q) there exist u; € H'*(T) and uy € Hy(9Q \ T") such that
u = En(uy) + Eo(ug). This decomposition is unique.

Proof. Let u € H'/?(0Q) and put N = 9Q \ T. Take
uy = ulr and  ug = ¢|y where ¢ = u — E,(uq)
and observe that u; € H*(T) and
VEn () lrzoy < Cllellrzgey < Cllallnoay

so ¢ € H'/?(0Q), and E(up) = ¢ because u and E,(u;) coincide on T'. For
the uniqueness, if 0 = E,;(u1) + Eg(uo) then E; (1) is a weak solution of the
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problem:
—Ap=0 inQ
¢=0 onTl (1.5)
dpd=0 ondQ-T

souy = 0. MR«

The space H/2(dQ) is by definition the dual of H/2(dQ) with the usual
norm. For I' C dQ with non-vanishing (n — 1)-dimensional measure and
relatively open with respect to 0Q we have two dual spaces, the dual of
H*(T), denoted by H;i/*(T), and H/3(T) the dual space of H/2(T). The first
one is larger than the second.

If f € H'/?(0Q), then f|- = 0 means by definition that:

(f,Eo(d))aq =0 forall ¢p € HYX(T). (1.6)
We have the following result:

Lemma 1.7. Forall f € H'2(9Q), there are fi € HYA(I and f, € Hy/*(0Q \
I such that, for all u € H'*(0Q), u = Ey(u1) + Eo(uo) as in Lemma 1.6,
and we have:

(f,u)ao = {f1, u1)r + (fo, to)n (1.7)
Proof. For uy; € H'*(T") define:
(fr,un)r = (f, En(u1))ao

and for uy € Hy)*(N)
{(fo,uo)n = (f, Eo(u0))aa

we have:
<f1,u1>r < ”fllH—’l/?(aQ)”En(”l)||H1/2(3Q) < C”f”H—UZ(aQ)”u] ”H'I/Z(r)

-1/2

so f1 € H/*(T), analogously fy € Hy/ (N). Moreover:
(fr,un)r + (fo, uo)n = (f, En(u1) + Eo(u0))aa = (f, t)ao-
P

Remark. In particular, if f € H'/?(0Q) and f|y = 0, i.e., if (1.6) holds
in HY*(N), we have from (1.7) that:

(f,u)aq = (f1,u)r (1.8)

Then functionals in H/2(0Q) which are zero restricted to 0Q \ T can be
identified with functionals in H/*(T).
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Lemma 1.8. Given fi € H'/*(TI") we can define f € H'*(dQ) by {f, u)a :=
(f1,u1)r, where u = E;(u1) + Eo(uo) as in Lemma 1.6.

We have a similar result for fy € H;/*(0Q\ ).

In Lemma 1.2, when k = 1, the principal element of the proof is that
the inclusion H'(Q) C H°(Q) is completely continuous. Since the inclusion
H'?(3Q) C L?(9Q) is compact when Q is an open and bounded Lipschitz
domain, we can prove the following in the same way :

Lemma 1.9. Let Q be a continuous bounded domain and f;, i = 1,...,1,
| € Z*, continuous functionals in H'/?(0Q), such that, if ¢ is constant on
2Q

I
Y Ifi(@))=0 < ¢=00n00.
i=1

then, there is a constant, depending only on Q and the functionals f;, i =
1,...,k such that:

2 ’ 2 12
lullzoa) < Cr[l#limpa) + K A@IF]

With the help of this lemma we can find equivalent norms in subspaces
of H/?(dQ). In particular, we can obtain similar results as the Poincaré
Inequality (Lemma 1.3). This is still true if we consider I' C dQ with non-
vanishing (n — 1)-dimensional measure and relatively open with respect to
Q.

Other important function space is defined with the div operator, the H-
div space:

H(div, Q) := {u = (u)l € L*(Q) ’ Vou = fa"u,» € LZ(Q)}
1

with the norm: ”u”%-l(div,(l) = ||u||%2(ﬂ) + ||V-u||%2(ﬂ).

The following lemmas are going to be used:

Lemma 1.10 (Normal Trace Theorem). Let O be Lipschitz continuous.
Then the operator v, : C®(Q) — C®(dQ), mapping a vector function into
its normal component on the boundary, can be extended continuously to an
operator vy : H(div,Q) — HY?(0Q). Also, there is a continuous lifting
operator Ry, : H'*(dQ) — H(div, Q), such that yyRyu = u, for all u €
H2(0Q).

Lemma 1.11 (Green’s formula). If u € H(div, Q) and ¢ € H'(Q), then
the following holds:

Lu-v¢+/ﬂv-u¢>:[m(u‘n)qb. (1.9)
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The space Hy(div, Q) consists of functions in H-div with vanishing nor-
mal component on 0Q. H (diVO, Q), consists of functions in H-div with van-
ishing divergence. Hy(divp, Q) is their intersection. Using (1.6) we can
define the space Hy(div, Q,T), T C 0Q, as the subspace of H(div, Q) of func-
tions that its normal trace restricted to I is zero.

In the next chapter we are going to work on an open domain Q with
two disjoint open subdomains Q; and Q, such that Q; UQ, = Q. Put
IN:=0;N0z and Tj:= dQ;\ . Then we are interested in vector functions
u defined on Q such that u|o, belongs to (H}(Q,T1))? and u|q, belongs to
Hy(div, Q, ). See Section 2.2.

Lemma 1.12. There is a constant C > 0, which depends only on Q, such
that for each u € H(div, Q) with [y u-n = (u-n,1)30 =0

C Sup M S ||un||H_1/z(aQ) S Sup (u'nl ¢) .
beH2p0) |¢|H1/2(Bﬂ) HpeHY2p0) ld)lHVz(Bﬂ)
$# constant $# constant

Proof. Observe that if « is a constant (u-1, «) = a{u-1,1) = 0 and that for
¢ € H'/*(0Q), ¢ nonconstant:

(u-n,(l)) < <u'n/¢>
||¢||H1/2(ao) B |¢|H1/2(DO)I

then
u-n, u-n,
||u‘71||H—1/z(aQ) = sup —”<¢”n 9) < sup —|<¢|" ¢)
peH2p0) H200)  genPpq) | 1H200)
¢# constant ¢# constant

which gives the right inequality.
By using Poincaré Inequality (Lemma 1.3), there exists a positive constant
which depends only on Q, such that

”1!)”12_11/2(3()) S Cllpliil/Z(aQ)

holds for all ip € H'/2(0Q), with [ = 0. For ¢ € H'/2(dQ) nonconstant
we have that

vi=¢— [ #0

and
wny) _ (wn¢) 1wnd) 1 (und)
“Irb”H'l/Z(an) ”11’“111/2(99) - ¢ |¢|H1/2(an) ¢ |¢|H'1/2(ag)

Using the argument in the last proof we can show:
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Lemma 1.13. Let I' C 0Q with non-vanishing (n — 1)-dimensional measure
and relatively open with respect to 0Q. There is a constant C > 0, which
depends only on Q, such that for each u € HV*(T) with frp = (u,1)r =0

C Sup (“‘/ (b)l" S ||/J||H—l/2(|") S Sup <"L/ d))l" .
seripy 1Pling seriry 19ling
G# constant G# constant

This gives an equivalent norm in the subspace of H/?(T) of zero average
functions. Define, for u € H/2(T), u with zero average ((i, 1)r = 0):

<"L/ ‘p)l' = su (FL/ d))l"

|I~1|H_1/z n = sup .
M peH2n) |¢|H1/2(I') beHY2( |¢| H2(n)
¢# constant I =0

We have the following result:

Lemma 1.14. For ¢ € H'/*(T) with |. ¢ = 0 we have:

<.u'r¢)l"
9Lz = sup || '
pert/2(ry 1HIE-172(r)
(1,1)=0

Proof. Denote | : ’HUZ(F) by I : I% and “ : ”HUZ(F) by “ : “%
Let G := {a¢ : a € R}. Define the linear functional ¢ : G — R by

g(ag) = a9l
Let p : H'/*(T) — R defined by
pA) = 0y AT

we have g(a¢) < p(a¢) for all « € R. Then from Hahn-Banach theorem
(see [3]), g can be extended to a linear functional uy defined on H'/?(T) with:

(o, ) < p(A) = |9, |Al; VA€ H'A(D),

then, using that | - | 1< [ - ||% we get 1y € H/2(T) and moreover, if we put
p1 = pg — Jr po we have:

(1, @)r = (uo, d)r = 8(4) = o]}

and

(1, A) (10, A)
bl = sup SEEE = sup SEES = 4]y
AeH2(r) 3 AeH2(r) 3
JrA=0 JrA=0
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Then
o]
Sup <‘LL, ¢>r Z <“1/ ¢>F — 2 _ |d)|1
peH1/2(0) |“|H-1/2(r) |P‘1|H-1/2(r) |¢|% 2
Jru=0

On the other hand, it is clear that for all 1 with zero average we have:

(“r d))l"
|PL|H—1/2(|-) > |¢)|%

which gives the other inequality. This ends the proof. M«

An alternative proof is obtained by considering (H*(T') N L3(T))’, the
dual space of H'/?(T) N L3(T), and by observing that a functional 1 defined
on H'?(I') N L3(T) can be extended to one defined on H'/*(T), say u, by the
following formula: (i, A) := (ug, Ag) where A € H/2(T) and Ag := A — [, A

Sometimes it is useful to work without worry about the domain “size”,
only the shape matters. Because of this fact, it have been used scaled norms
instead of the norms defined above.

We can obtain a scaled norm of H*(Q), QO with diameter H, by taking
the standard definition of || - ||H5( )> Where Q is a region of diameter one
with the same shape of ), and doing a dilatation.

Using this procedure we obtain:
2 1 2 2
"lul"Hl(_Q) Ty ”u”LZ(Q) + |u|H1(Q)'

We can, of course, consider the dual spaces with the norm subordinated
to the scaled norm. As an example of the use of scaled norm we present the
next result which is the analogous of the trace theorem in H—div.

Lemma 1.15. Given u € H(div,Q), H the diameter of Q, then there is a
constant C > 0, which is independent of the diameter of Q, such that:

2oy < €[l + HIV-llFaigy) (1.10)

Proof We first state the result for a reference region Q of diameter one and
then the general result follows after applying a scaling argument.

Considerer ¢ € H'/ 2(E)ﬁ). Denote by ¢ its extension Rg(¢). Then using
Green’s formula we have:

Lﬁd)uﬂ:[ﬁde)—i-/ﬁVud)
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then

wn,¢) = [ oun < [uunp AT ]||¢||H1

< C[”u”LZ(Q + ”Vu“LZ ] ||¢”H1/2(ag)

this ends the proof. VE

Note that the right hand side of (1.10) is a multiple of a scaled norm in
H(div, Q).

If we work with scaled norms, then the constant that appears in Lem-
mas 1.5, 1.7, 1.12, and 1.13 are independent of de diameter of Q. (See [15]).
1.2 A note on Green’s formula.

In Section 1.1 all the definitions of Sobolev spaces were based in the space
L%(Q). There are analogous definitions for spaces based on L?(Q) where

1(Q) = {w (/] w»v’)% < oo}

with the norm suggested by its definition. We denote by W;(Q) the analo-
gous to H*(Q) based on L7 (Q) instead of L2(Q). That is, W, (Q) is defined
by the norm:

P — P p
[|| 5(Q) = “””W?gs] + |”|W;;
where for m integer:
Wl = X 1%l
|| <m
and the seminorm | | f is defined by:
(0%u(x) — 9%u(y))"
p —
|u|W’s) Z / / e = g dxdy, o=s—[s].

We have the following result (see [7]):

Lemma 1.16. Let Q be a bounded open subset of R" with Lipschitz bound-

ary. Then
W (Q) C Wy (Q) (1.11)

for0<t<sandg>lsuchthats—n/l =t—n/q.
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Let n > 2. Given p’ < 2, we have W;,(Q) C W[?,(Q) where 1 — 5 = -4
orq = %’. Then if € L7(Q) where % + ﬁlf =1,ie.,

!

___np
1= (1.12)

the integral [, ¢ is well defined for ¢ € W;,(Q). Note that ”2—Jf2 <p <2
implies 1 < g < 2.

In the Green’s formula, Lemma 1.11, we note that if u € (LP(Q))" with
V-u € L1(Q), gin (1.12), and ¢ € W;,(Q), % + Flr = 1, then the left side of

equation (1.9) still makes sense, that is, we can compute the expression

/Q uVo+ A) V-ugp

for all ¢ € W;,(Q). In particular this makes sense for u € (LP(Q))" with

V-u € L2(Q) when g < 2 (because L?(Q) C L1(Q)).
Then the Green’s formula remains valid in these spaces (Q is a bounded
open subset of R” with Lipschitz boundary, see [7]). That is:

/Qu-v¢+/ﬂvu¢:/m(u-n)¢. (1.13)

¢ € W, (Q) and u € LP(Q) with V-u € L1(Q), g in (1.12).
We have the following general result about trace of functions in W;(Q)
(see [7], pag 38, theorem 1.5.1.3.).

Lemma 1.17. Let Q) be a bounded open subset of R" with a Lipschitz bound-
ary 0Q. Then the mapping u — you which is defined for u € C%'(Q), has a

_ ’
unique extension as an operator from W;,(Q) onto W;, 1p (0Q). This oper-

ator has a right continuous inverse independent of p'.

Now if p > 2 we have p’ < 2 and in order to (1.13) makes sense we only
need V-u € L7(Q), g in (1.12).

Observe that if I' C dQ and f is defined by f = 1 on T and f = 0 on
0Q \ T then f belong to W;_l/p (0Q) = H''/7'(3Q) because 1 — %r < 3.
Then (since f is bounded on Q) we have that f € W;,_]/ P (9Q) so we can

use Lemma 1.17 to find ¢ € W;,(Q) such that ¢|;o = f. Applying Green’s
formula we see that we can calculate:

Jen
To

|/r0u’77| < Clllullpay + 1V-ulli2(q)]-

when V-u € L?(Q). Summarizing, given a function in H(div, Q) N LP(Q),
p > 2, we can compute the mean of u-n in part of the boundary dQ of Q.

with
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1.3 Approximation of saddle point problems.

1.3.1 Abstract variational problems.

In this section it is presented a quick overview of basic results of abstract
variational problems (see [1] chapter 4, or [6] chapter 2).

Let X and M be two Hilbert spaces with norms || ||x and || ||» and dual
spaces X' and M'.
Supposethata: X x X - Rand b : X x M — R are two continuous bilinear
forms, then there is associated the following two linear operator A : X — X'
and B : X — M’ defined by:

(Au,vy =a(u,v) V(u,v)€ XxX.
(B, ) = b(v,u) V(v,u) € X x M.

Consider the following problem:
Fort e X" and x € M, find (u,A) € X x M such that:

a(u,v)+b(v,A) =({l,v) VveX (1.14)
b(u, ) =(x, 1) YueM.

which is equivalent to the problem:

For € X"and x € M, find (u,A) € X x M such that:
Au+BA=¢ inX' (1.15)
Bu=x in M’

If®: XxM — X' x M, defined by ®(u,v) := (Au + B'u,Bv), is an
isomorphism from X x M onto X’ x M’, then the problem (1.15) is said well-
posed.

Set V(x) := {v € X/Bv = X} and consider the problem :

FindueV h that:
{ ind u (x) such tha (1.16)

a(u,v) = (L, v) YveV=V(0).

Consider the set V0 = {g €X' : (gv)y=0in V(O)}.

Lemma 1.18. Under above considerations the following assertions are equiv-
alent:

(i) Thereis a constant 3 > 0 such that:

inf sup bv, 1)

>pB>0
neM yex [[vllx Il m
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(ii) B'is an isomorphism from M onto V° and ||B'u||x > Bllullm
(iii) B is an isomorphism from V+ onto M' and ||Bv||yy > Bl|vlx, v € VL.

And if m: X' = V' is defined by:
(nf,v)y={f,v) VfeX VYveV

Then the problem in (1.14) is well-posed if and only if mwA is an isomor-
phism from V onto V' and b(, -) satisfies the inf-sup condition, i.e., condition
(i) above.

The following result is an important corollary of Lemma 1.18.

Lemma 1.19 (Brezzi’s splitting theorem). If a(-,-) is V—elliptic (or co-
ercive), i.e., if there exists a constant « > 0 such that:

a(v,0) > a||o||% forallve X

then the problem (1.14) is well-posed if and only if the bilinear form b(-,-)
satisfies the inf-sup condition.

For the purpose of this work, Brezzi’s splitting theorem will be more
useful since we work with continuous bilinear forms that are elliptic. For
instance, the bilinear form defined by (u,v) — (Vu,Vv)q where u,v €
Hi(Q,T) (see [11, [13]).

1.3.2 Approximation.

Now, we are interested in solving problem (1.14) numerically. The Ritz-
Galerkin approach is used.

Let X" ¢ X and M" C M be finite dimensional spaces. The parameter / is
the discretization parameter. Consider the problem:

Fort € X' find (u", p") € X" x M" such that:
a(u,v) +b(v, p") = {£,v) VYoeVvh (1.17)
b(u",q) =0 Vqe Mt

As before define V" := {v € X" : b(v,q) = 0 Vg € M"}. Then the
problem (1.17) is equivalent to:

Find u" € V" such that:
(1.18)

a(ut,v) = (L,0) Yoe V.

and find p" € M" with b(v, p") = —a(u",v) + (¢,v) in X". We have the fol-
lowing lemma which is easy to prove (see [2], chapter 8 and 10).
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Lemma 1.20. Let V and V" be subspaces of a Hilbert space X. Assume that
the bilinear form a : X x X — R is C-continuous and a-elliptic on V" for all
h. Given £ € X' let u € V solve:

a(u,v) = {£,v) forallveV. 1.19)
and u" € V" solve
a(u,v) = (¢,0) forallve V" (1.20)
Then
1 . h
lu—u"||x < <1+E) inf |lu—ol|x+~ sup MA
& /) vevh veVi\ {0} o]l x

Let Q be an open and bounded domain such that QO = Q; U Q,, where
Q; and Q, are disjoint open sets. Let I':= Q; N Q, be the interface between
Q; and Q7 and I'; := dQ\ T, j = 1,2. The model presented in Chapter 2,
coupling fluid flow with porous media flow is going to be reduced to problem
(1.14). To get an approximated solution we use problem (1.17). The solu-
tion u is a function defined on Q such that u; := u|q, € (H(Qq,T1))? and
up = u|q, € Hy(div, Q,,I>) and u; and u; satisfy a continuity condition on
I' (see Section 2.1.3). In order to obtain an approximated u we first use the
above result to show that we can approximate 1 and u, separately. Finally
we use this result to show that we can approximate the set of functions 14
and u, satisfying the required condition on (the interface) I'.

In order to apply Lemma 1.20 we need to show that there exists a u € X
such that (1.19) holds. As before, in order to obtain existence and unique-
ness in the discrete problem, i.e., problem (1.17), we have to verify the inf-
sup condition w.r.t the spaces X" and M". A very useful result in this direc-
tion is the following (see [1] and [13]):

Lemma 1.21 (Fortin’s criterion). Suppose that b : X x M — R satis-
fies the inf-sup condition (i.e., the continuous inf-sup condition holds). Are
equivalents:

i) There exists a bounded linear operator . X — X" such that

b(v—T"(v),p") =0 forall p" € M".

" (2)1x

Tollx < ¢, cis a constant independent of h.

and ||TT"|| = SUP,cx\o

ii) The finite element spaces X" and M" satisfy the inf-sup condition.
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Proof. Let p" € M" then

b(v, h
Bl < sup A2)
vex\{0} o]l x
b(1M"(v), p")
= sup —r7——
vex\{0} [lollx

b nh ), h

sup 1( i)P)

vex\{o} T (@)|lx
h . h

=c sup M
vexifoy I9"llx

continuous in f-sup condition.

and conversely, given v € V define 17" (v) by:

(M (v), w)x + b(w, p") = (v,w)x Yw € V"

(1.21)
b(ﬂh(v),qh) — b(v, qh) th c M".

the bilinear form (-, -) is X-elliptic then we use the previous section results
to obtain unique solution IT"(v) and:

" (0)llx < éllvllx

which gives the bound required for IT" because the constant ¢ depends only

on the coercivity constant.
WER«

1.3.3 A note on triangulations.

Let O C R" be a bounded polygonal or polyhedral domain with Lipschitz
continuous boundary. A triangulation or mesh is a non-overlapping parti-
tion of Q into elements. In the next chapter we are going to use triangula-
tions consisting of triangles in two dimensions. In general a triangulations
consists of triangles or affinely mapped rectangles in two dimensions, and
of tetrahedra or affinely mapped parallelepipeds in three dimensions®. Let
h > 0, a family of triangulations of Q is a partition of Q 7" such that:

T" = {K: K = Fg(K)}
K is a reference element e Fx is an affine mapping.
Ugert K=0Q; KNK' = empty if K # K';

h = max hx where hg := sup ||x — y||r» is the diameter of K
KeT" Kx K

3Affinely mapped from a reference element. In the case of two dimensional triangulations
made of triangles the reference element has vertices (0,0),(0,1) and (1,0).
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A family triangulations T is called geometrically conforming if the in-
tersection between the closure of two different elements is either empty, a
vertex, and edge, or a face that is common to both elements.

The family 7" is called shape regular if there exists a constant indepen-
dent of /g, such that

hg < Cpg, forallK e T".

where pg is the radius of the largest circle or sphere contained in K.
If 7" is shape regular and there exists a constant independent of  such
that
hx > Ch forall K € T".

we say that 7" is quasi-uniform.
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Chapter 2

Coupling fluid flow with
porous media flow.

In this chapter is presented the problem of interest of these notes. First the
PDE framework is introduced and later the weak formulation is analyzed.

In Section 2.1 is presented the problem to be analyzed together with
the systems of differential equations that constitute the model, including
the interface matching conditions which are the central part of the model.
Section 2.2 is the heart of this chapter (and of the whole work). It is derived
the weak formulation of the model presented in Section 2.1 and the inf-sup
condition is established. This condition (according to the abstract saddle
point theory) guarantees the well-posedness of the problem.

2.1 The problem.

Consider the following problem: An incompressible fluid in a region Q); can
flow both ways across an interface I' into a saturated porous medium do-
main Q,. The model that is going to be used for this problem is the Stokes
equations for the fluid region and Darcy equations for the porous region.
These two systems are going to be coupled at the interface with adequate
conditions.

In general, Q;, Q, C R", Q = int(Q; UQ>), Q1 and Q; are Lipschitz, so
it is possible to define outward unit normal vectors, denoted by n;, j = 1, 2.
The tangent vectors to I' are denoted by 71 (n = 2),or 7;, j = 1,2 (n = 3).

Define I'; := 9Q;\ T'. The fluid velocities are denoted by u; : Q; — R",
j=1,2. The fluid pressure are p; : Q; - R, j =1,2.

21

The Problem: Coupling
fluid flows with porous
media flow
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L= —pny+2uD(u1)m
is the Cauchy stress
(or traction) vector
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The velocities and pressures have different (physical) roles in each re-
gion, and for this reason they are studied separately and later we study the
interface conditions.

2.1.1 The fluid region.

As it was mentioned previously, the model for the fluid region is the Stokes
equations. The equations basically consist of conservation of mass and con-
servation of momentum and we have:

V-au; =0 in Qq conservation of mass, (2.1)

—pAuy +Vpy =fi inQ; conservation of momentum,
uy =0 onl} noslip,

where p is the viscosity.

It is possible to express this formulation in an equivalent way that is
going to be more useful. Let Dv = (d;;(v))nxn Where

1, ,
dl-]-(v) = 5 (8’0]- + 8101-) .
D is the linearized strain tensor. Note that 2Dv = Vv + [Vv]’. Define the
operator T(v, p) = (T;j(v, p)) where:
Tij(v, p) := —pdij+ 2ud;j(v).
Then T(v, p) = —pl + u(Vo + Vo) and:
V-T(v, p) = =V-(pI) + u(V-Vo + V[Vo]").

Condition V-v = 0 implies V-[Vo]” = 0. Then (2.1) can be written as:

V-u; =0 in Q4 conservation of mass, (2.2)

—V-T(u1,p1) = f1 inQi conservation of momentum,
u;y =0 onl; noslip,
Observe that from Cauchy formula we get that

X(uy,p1) :=T(u1, p1)m

is the force on 0Q); acting on the fluid volume inside Q4, i.e., I is the Cauchy
stress (or traction) vector. The force on I' from Q1 is then —X(uq, p1).

2.1.2 The porous region.

For Q, it is used Darcy’s law, i.e., (uy, p») satisfies on Q,:

u, = —«Vp inQ, Darcy’slaw
Vi, =g in Q, conservation of mass, 2.3)
uyny, =0 onTy no flow through I, :

f% g =0 solvability condition,
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Here, k represent the rock permeability divided by the fluid viscosity.

The (only) force acting on the interface from Q; is the one given by p; in
the direction of 17, and must be equal to the component of X in this direction.
The other component of X, i.e., -1 is more difficult to analyze and we
consider it separately in Section 2.1.3.

Note that it is assumed that Q, is saturated with the same fluid and
only absolute permeability of the porous region is considered. More general
cases can be analyzed in a similar way, for example, the case with two fluids
in which it has to be considered relative permeability instead of absolute
permeability, etc.

2.1.3 Interface matching conditions.

The systems presented above must be coupled across I'. The following con-
ditions are imposed:

Conservation of mass across I': It is expressed by:
uprn +uxnz=0onT. (2.4)

This means that the fluid that is leaving a region enters in the other one.

Balance of normal forces across I':
p1—2uniD(u)n =p> onT. (2.5)

Note that this was already mentioned in the previous section and it results
from applying the Cauchy stress (or traction) vector to 1.
Observe that:

2nID(u)ny = 0l (Vu+ VuT)m =211 Vun,.
Then (2.5) can be written, more familiar but less intuitive, as:
p1—2uniVun, =p, onT. (2.6)

Beavers-Joseph-Saffman condition: This condition is a kind of em-
pirical law that gives an expression for the component of X in the direction
of T. It is expressed by:

T = —‘:—Ezn{p(ul)rj j=1,d—1; onT, @.7)
1
Herel & = ux.
A related conditions is
(41 —mp)-1; = —§2n1TD(u1)1'j j=1,d—1; onT. (2.8)
1

1In general k is a symetric and uniformly positive definite tensor, in this case & = T j UK T

Q;: Fluid region

\\\\\\\\\\\\\\\ rr;,
\\\\\\\\

Wil
2ubm

\

P

Q5: Porous medium

[£=—pm +2uD(m)n1 |
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which is known as the Beavers-Joseph condition. But it turns out in prac-
tice that the component of u; in 7; is small compared with that of u;. Ac-
cording to the previous subsection, when more general cases are considered,
suitable interface conditions have to be imposed. An analytical way to find
the right interface conditions is via homogenization (see [8]).

2.2 Weak formulation and analysis.

Let:

Xy = {U1 € Hl(Ql) 01

:0and/ o7 :o}, My = 12(Q1),
n 20, 1M1 1 ()( 1)

note that if I has non-vanishing (n — 1)-dimensional measure and is rela-
tively open with respect to Q1 then the H'(Q1)-seminorm is a norm equiv-
alent tO“ ||H1 (.O.)’

Observe that velocities in X; have zero mean flux across () and that
X1 C (Hp(Q, )"

For (O, we have the following spaces:

XZ = {’02 c H(le,Qz) . 772"12

:0and/ Uy :0}, My := L2(Q),).
5 50, 212 2 0(Q2)

The restriction of v,-1, to I; is taken in the sense given in (1.6). Using
Lemma 1.13 we have an equivalent norm to || - ||;-1/2(5q) involving only the

seminorm of H'/2(Q). Note that X, C Hy(div, Q,T3).

Define X := X; x X, with the usual norm, i.e., given v = (v{,v;) € X,
then

1211% = lloallzp q,) + 102/l aiv,00)-

Given g = (q1,92) € M1 x My, define §: Q — R by:

- _ )M ian
1= qz inQ2

and M := M; x M, with ||‘1||%\/1 = [|g1 “iZ(()l) + ||5I2||i2(gz) = ||‘7||i2(g)-

We start with the Stokes equation (2.1). For all v; € X; we have:

(—uAuy + Vp1,v1)q, = (—uAuy, v1)o, + (Vp1,v1)a, = (fi,o1)a, (2.9)
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From the Green formula we get:

—(Auy,v1)0, =— (V-Vuy,v1)q,
=(Vuy, Vour)o, — (Vum,m)aol
=(Vuy, Voi)q, — (Vuin, v1)r
n—1
=(Vuy, Voi)a, — (mni Vurm + Y TjTjTVulm,vl)r
i=1
n—1
=(Vuy, Vo1)a, — (n] Vurny, vrm)r — Y (T]-Tvul N1, 01 T))r,
j=1

Using the fact that V-u; = 0 implies

VulT Vo = / VulTn1~vl,
(o} 00,

we get

n—1
—(Auy,01)q, =2(D(11), Vor)o, = 2(n{D(w1)ny,01m)r —2 Y (] D(ua)m, 017))r.
=1

For the second integral in (2.9) we have:

(Vp1,v1)0, = (pr,o1m)r — (p1, V-o1)a,

By replacing in (2.9), using conditions (2.6) and (2.7) and defining:

n— 1
a1(u1,v1) :=2u(Duy, Voy)o, + \/_ (u1 Tj,v1-Tj)r forall uy, v € Xy,
j=1

(2.10)
by (vl,ql) = —(ql,V"U1)_Q1 for all v; € X; and q1 € My, (2.11)
we get forall vy € Xy and g1 € My
{ ai(u1,01) + b1(v1, p1) + (p2,orn)r = (fr,v1)q, 2.12)
by(u1,q1) =0.
For all v, € X, we have
(k" Yuz 4+ Vo, v2)0, = (ktuz, v2)0, + (Vp2,v2)0, = 0. (2.13)

By using Green’s formula we get

(Vp2,v2)0, = (p2,v2m2)r — (p2, V-v2)q,,
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and defining
ax(up,v2) = (k"up, v2)q, forall uy, vy € Xy,

bz(vz, pz) = —(}72, V'Uz)gz for all u, € X; and p2 € My,
we have for all v, € X; and g € M,

0

{ as(up, v2) + ba(va, p2) + (p2, v2m2)r
_(82/ qZ)Qz

by(u3,92) (2.14)

Definea: X xX - Randb: X x M — R by:

a(u,v) = ay(uy,v1) +az(uz,v2), b(v, p) = b1(v1, p1) + b2(v2, p2), (2.15)

then we obtain, using (2.4):

a(u,v) +b(v,p) + (vrm +orn, p2)r = (f1,01)q,
b(u,q) = —(82.12)q, (2.16)
(urm +uxmno, go)r =0.

To uncouple the two subproblems we use the Darcy pressure, this could
also be done using Stokes problem. Introduce the Lagrange multiplier A :

A =ps=p1—2uni Vun. (2.17)
Then we get :
a(u1,01) + b1(v1, p1) + (orn, Ar = (f,v1)a, Vo1 €Xy
ax(uz,v2) + by (02, p2) + (vrm2, A)r =0 Vo, € X
by (u1,q1) =0 Vg1 € M; (2.18)
ba(u2,92) =—(g2,92)0, Vg €M,
(urmy +uymn, wr =0 YueA

where A is not yet defined.

We have to choose a suitable function space A for A. Observe that A has
to be applied to functions of the form v n;, where v; € (Hj(Q,T))" and
v, € Hy(div,Q,,T>). This implies v1-n1 € Hy)*(1) and then Ey(v;-11) €
H'/2(dQ,) C H7/?(30Q,). Here we use the fact that H),*(T"), which is the
set of restrictions of functions in H}(Q1,T), is equivalent to the trace of
H}(Qj,T) on T if the shape and the measure of Q; are of the same order
as those of Q, (see [7], [11]). The Normal Trace Theorem, Lemma 1.10,
implies that vy 1, € H'/2(0Q5). Then vy:11 + vy 12 € HY2(0Q)).

Remember that v,-1; ‘ . = 0 means that:
2

(0212, Eo($)) =0 Vo € Hy) ()
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and that Lemma 1.6 says that
H'(003) = Hy*(Ty) & H'(T).

Then we choose for A the subspace A := H'2(T). Other reason to choose
HY2(T) instead of H,/*(T) as in [9] is that the Lagrange multiplier in this
case is pressure, and there is no physical reason for the pressure p, to van-
ish on the interface relative boundary points (with respect to dQ ).

Observe that when I' = 905, i.e., when the porous region is totally sur-
rounded by the fluid region, Hy,*(T) = HY*(T) = H/2(30Q;).

Define br : X x A — R by:

br(v,p) :== (vrny, wr+ (v, wr, v=(v1,v2) EX,p€AN, (2.19)

here (, )r for v; € H'/*(Q;) and u € H'/*(T) is given (as in Lemma 1.7) by:

(vjnj, W = /rvj'njli = (vj-nj, En;(1))aq, (2.20)
where E;(p) is defined in Lemma 1.5. See the Remark after Lemma 1.7.

Lemma 2.1. by : X x A = R defined in (2.19) and (2.20) is continuous.
Proof. Let u € H'*(T). Then

sz'nzu = (U2'712rEn(IJ)>aQQ

= vy Mo E
/mz 212 n(#)

< ||172||H_1/2(Q2) 1 En(m) ||H1/2(8Q2)
< Cllollxlllia-

The same holds for j = 1. £:d

If A is a constant function, we already have br(v,A) = 0 for v € X. Then
it is convenient to modify A to

A= HA(M)NLG(N)  with norm |- [g1py.- (2.21)

We finally arrive to the weak formulation of the problem: find (u, p, A) €
X x M x A satisfying, for all (v,q, 1) € X x M x A:

{ a(u,v) +b(v,p)+br(v,A) =£(v)
b(u,q) =g(q) (2.22)
bl‘(u/ ,LL) =0.

I p

[ #0Q,.

Ip

M= 00,.
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where {(v) := (f1,v1)q, forall v € X and g(q) := —(g2,92)q, for all g € M.

Remark. We note however that the space we choose for A is richer than
Hy(T) (which is the one used in [9]) and therefor closer will be v1-11 and
vy - 12 near the interface end points.

Remark. The Korn inequality implies that the bilinear form a, defined
in (2.10) is Xq-elliptic (See [1], [11]). Then the bilinear form a defined in
(2.15) is X-elliptic.

Define
Vi={veX: br(o,u) =0 VueA}. (2.23)

The set V is closed because the linear map Br : X — A’ defined by Br(v)u :=
br(v, 1) is continuous and V = ker(Br).

Then we can formulate problem (2.22) as:

a(u,v)+b(v,p) =4(v) VoveV
(2.24)

{ b(u, q) =g8(q) VgeM

Now, define
Z:={veX: bv,g)=0VgeM}. (2.25)
Then we can also formulate problem (2.22) as:

a(u,v) +br(v,A) =4L(v) VveZ

{ br(, 1) 0 Vuea (2.26)

Remember that we are working with pressure of zero mean in each sub-
domain, then from the usual inf-sup condition for Stokes we can easily
derive the inf-sup condition needed in formulation (2.24).

Lemma 2.2. There is a constant o« > 0 s.t:

infsupM >a>0.
vem oey |of| x| pllm
P#0 w0
To show that the weak formulation (2.26) is stable next lemma shows
that the inf-sup condition between spaces Z and A holds (see [13]).

Lemma 2.3. There is a constant y > 0 s.t:

inf sup br(, A)

L > > 0.
i vez lI2lxlIAllA

Proof. Fix A € A then A € H'*(T) and [. A = 0, in particular if A # 0 then
is nonconstant.
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From Lemma 1.14 we have that there exists pu; € H/?(T) such that
(11, 1)r = 0 and:

m > %IAIHl/zm- (2.27)
From Lemma 1.8 and (1.13) we get u € H'/2(9Q,), given by:
(1 ®)aq, = (11, ¢lr)r. (2.28)
with
‘/"|H-1/2(agz) < Cll#l‘H—l/Z(r) (2.29)

and zero mean on 0Qy, (i, 1)50, = (11, 1)r = 0.

By using the normal trace theorem, Lemma 1.10, and a continuous Stokes
problem ( y has zero mean on 0Q),) we can find v, € H(div, Q,) with V-v =
0 in O, and such that:

1921 1aiv,05) < Coll /200, (2.30)
v = L. (2.31)

Observe that v, € X5. In fact if ¢ € Hy/*(T) then:
<7’2'772, 49)0(12 = <Plr ¢>aoz = <le ¢|r>r = <l41,0>r =0
and (v 12, 1)302 =(,1)r=0.

Choosing v; = 0, we have v := (v1,v7) € Z and:

br(v,A) _ (v1-n, A)r+(v2-1m2, A)r
lollx 102 r(div, 0,)
_ 04 (v2:m2, Eqy(A))aq,
B 102l m(aiv, 0,)
_ (v2:m2, Eny(A))aq,
o2l aav.a,)
1 (v2:m2, En,(A))an,

> — by (2.30)
C |#|H-1/2(agz)

_ i <“/ Eﬂz(A))BQQ
CZ |”|H—1/2(9Q2)

— i<ul’Ele(A)|r>r by (228)

G |IJ|H—1/2(3Q2)
i (le/\>l‘
CZ |"L|H'1/2(8Q2)

11
C_2§|/\|H1/2(I") by (2.27)

by (2.19)

by (2.20)

by (2.31)
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:d

With Lemma 2.2 and Lemma 2.3 we can show:

Lemma 2.4. There is a constant (3 > 0 s.t:

inf sup b, p) + br(e, A) >pB>0.
(yesxnoex [lollx[llpllm + 1AlA]
PEOAA0 030

Proof. Given (p,A) € M x A, p # 0, A # 0, from Lemma 2.2 there exists
v € V such that
b(v, p)

lollx
where « independent of p. From Lemma 2.3 there exists z € Z such that

> allplim >0,

br(Z, /\)
llzllx

> 7lIAlla >0,

where y independent of A. Observe that v + z # 0. Then from definitions of
V (2.23) and Z (2.25) we get b(z, p) = 0 and br(v,A) = 0 and:

b(v+z,p)+br(v+2A) _ b(o,p)+b(zp)+br(v,A) +br(z,A)

o+ =l o+ zllx
_ b(v,p)+br(z,A)
= ol
_ alplulioly + VIl =l
. o+ =x
> minfoc, RS [

> min{a, v} [Ipll + 1Al1A]

= & [l + 111A]

2.3 Remarks about the weak formulation.

Remark 1. In the Stokes equation (2.1) we have used zero divergence
and zero boundary conditions. It is possible to start with nonhomogeneous
boundary conditions and nonzero divergence, i.e.,

—pAu +Vp =f1 in(Q,
V-ul =N in Ql (2.32)
u; = h1 on l"l.
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The nonhomogeneous boundary condition can be reduced to the homo-
geneous case when hy € (HY/?(I}))". In fact, since h; € (HY*(I))" we can
consider u := E,(h;) and define:

hy:=u+co, (2.33)

where 9 ¢ Hééz(l“) with [0-177 = 1 (so ﬁ1|r] = h;) and the constant c is
chosen such that:

= hy-my. (2.34)
0, 81 20, 1711

It is possible to construct wq such that?:
wilyn, =h and Vewy =g; in Q.

Now put #; = w1 + ¢ where u; satisfies (2.32). So we are looking for ¢;
that satisfy:

—uAG +Vp = fi+pAw; in
Vg =0 in O, (2.35)
C1 =0 on l“1

Analogously, we use homogeneous boundary conditions in the porous
region. The nonhomogeneous case, i.e.,

u = —«Vp inQ; Darcy’slaw.
V'uz =82 in Qz (236)
urn, =hy on s

can be considered. In this case we need i, € H'/(I;). We can define
hy € H'2(0Q5) by:

(h2, AYaq, = (1-m2, Alr)r + (h2, Alry)ry (2.37)
and then use the (normal) trace theorem to get w;, € H(div, Q;) such that:
wy n = hy.

Put u, = wy, + . Then we look for ¢, such that:

O = —KVP— Wy in Qz

V-Cz =8 - V~CU2 in Qz (238)
on =0 I,

where the last equation follows from the definition of /1,. The compatibility

condition is now:

2 — V~w2 =0
/Qz (8 ) =0,
—Aw+Vp =0 in .
2Take w solution of Vw =g in Q; , note that fﬂl 1= faﬂl hy-m1.
w =h ondQ




32 CHAPTER 2. COUPLING FLUID WITH POROUS MEDIA FLOW

but
V-w; = (Iip,1
/()2 wy = (hy, 1)
= (112, 1) + (hs, r, by definition of /i, (2.37)
Z—/fl1'n1+/ ha
r T
=/ ﬁ1'ﬂ1—/ g1+/ hy by (2.34)
F1 Q] FQ

=/ h1-n1+/ hz—/ 81
r B fol

then the compatibility condition becomes:

+ —/h- —/h:O 2.39
/(1131 ngz . 1°M 2 (2.39)

which is quite intuitive. This become more clear if we look at the weak
formulation. With w; constructed as before define w := (w1, w;). We have
to: find (¢, p, A) € X x M x A satisfying, for all (v,q, 1) € X x M x A:

{ a(¢,v)+b(v,p)+br(v,A) =4L(v) —a(w,v)

b(u,q) = g(q) +b(u,q) (2.40)
br(¢, 1) =0,

which is the same problem (2.22) with a different right hand side.

Remark 2. Instead of the spaces X and M used to obtain the weak
formulation (2.22) we can use:

Y; = {111 € Hl(Ql) 01

L= } Ni = L2 ().

1

and

Y, = {v2 € H(div,Q) : vy 12| = 0} ’ Ny := LZ(Q2)~

b}

with Y :=Y; x Y, and

N::{(ql,q2)€N1XN2: / ql-l-/ qZZO},
04 Q,

and obtain an equivalent weak formulation. This is the weak formulation
presented in [9]. The advantage of the weak formulation (2.22) is that per-
mit us to work with seminorms instead of norms and that the space A for
the Lagrange multipliers is bigger and is not restricted to have zero value
at the end points of the interface. The equivalence between the two formu-
lations follows from the solvability condition and the divergence theorem.



Chapter 3

Finite Element
Approximation

In Section 2.1 was presented the problem of coupling fluid with porous me-
dia flow in its continuous form, now a finite element approximation is dis-
cussed. The discrete spaces are defined in Section 3.1 for both regions and
for the Lagrange multipliers. The properties of these spaces are analyzed in
Sections 3.2 and 3.3. Finally in Section 3.4 we establish the discrete inf-sup
condition related to the weak formulation (2.24).

3.1 Discretization.

From now on we assume that Q is two dimensional and it has polygonal
boundary. Let 7;.” be a (geometrically conforming, shape regular and quasi-

uniform) triangulation of ;. We assume that they match at the interface
I' which is a polyhedral. We choose the following spaces for the fluid region:

X = {u € Xy : ux =digxoF ' on K and g € PZ(K)Z} nc%(Q;)?,  ((3.1)
where uy := u|x and
Mi={peM : pc=peoF onKand pc € Pi(R)}NCO(@), (3.2)

that is, we use the triangular Taylor-Hood finite elements of order two ( see
(2], [4], [13D).

For the porous region we are going to use the lowest order Raviart-
Thomas finite elements based on triangles. In general the Raviart-Thomas
elements in a cell are defined by (see [1], [4], [6]):

RT(K) := (Pe(K))" + Pe(K)x,

33
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and if u € RTy(K) then V-u € Pi(K) and u-n|., € P(e;), for all edge e;. Then
we choose:
Xl ={ueX,: ulx =ux € RTH(K)}, (3.3)

and
Ml .= {p € M : plk=px=pxoF;' onKand px € PO(IZ)Z}. (3.4)

Observe that in the previous definitions the boundary conditions are in-
cluded.

For the Lagrange multiplier space we choose:
A":={A€A: A, = A, is constant for all edge e in T'}. (3.5)

We note that we use nonconforming finite elements associated to A since
picewise constant functions do not belongs to H'/*(T).
Define X" := Xf X X’; and of course:

vh .= {v eX": br(o,u)=0Vpue /\”}.

3.2 Approximation properties of Taylor-Hood
finite elements.

The domain of reference is Q1. In order to simplify the notation we omit
the subscript that refers to the domain. In particular, in this section X"
denotes X' .

Let 711 : X — X' be the Ly-projector! defined from X into the space X"
in (3.1), i.e., m is defined by:

m(v) € X", /nl(v)~w:/v~w for all w € X"
K K

It is know (see [1]) that 71; is bounded, i.e.,
1) 1o < Cllellnay (3.6)

and )
||Z) - 7-[1(0)||L2(Q)2 < Ch”UHHl(Q)2 (3.7)

Given K € 7" and e edge of K let ni = (1!, 72) denotes the normal to ¢
exterior to K, T, = (7}, 72) the tangential vector to ¢ and x, the midpoint of

the edge e. Each interior edge belongs to two triangles K; and K,. Let n,
denote one of the directions ngkl) or nékz). For boundary edges 1. denote nfz’().

1We can use Clement interpolation instead of the L,-projector. See [1].
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Let d)i.K), i = 1,2,3, be the Taylor-Hood basis functions based on the
midpoints of the edges of K. Put II)EK) = d)gk) Ne;, i = 1,2,3, and wgk) =
(I)(K)Tgi, i=1,2,3. Observe that:

i

S me 70, pPr, =0 i=1,2,3.

3.8)
wEK)(xei)'Te,. #0, wEK)~nei =0i=1,2,3.
Consider the following subspaces of X”:
.= {ve X":v|x € Span{yp!, i, p{I}} N X" (3.9)
and
Wh = {v e X" : o[k € Span{w!{", wl’, w{’}} N X" (3.10)

Note that if v € ", then v-n|r € Hj/*() and v-7|,o = 0. Also note that
if v € W then v-7|r € HY*(T) and v-1]5q = 0.

Let 71y : X — ¥" be (locally) defined by :
m(v) € Span{y}, 5, P45}, such that / mo(v)-n = / v, i=1,2,3.
e; [

for all K € 7" . In other words, 7o(v) = a1 + axpy + a31p3 where

o= Je,oom
YL

We can interpret 71y as a normal trace on each edge ¢;, i = 1,2, 3, (which
is continuous in the norms || - || 1) and || - [|y1/2()) followed by an L pro-

jectionin the piecewise constant functions en each ¢; and then each constant
is replaced by some multiple of ;. Then it is continuous. From the Trace
Theorem and a scaling argument, or by using the the scaled H'(K) norm
presented in Section 1.1, we have that:

1
o[> < ¢ (ﬁ“v”iZ(K)z + ’v|%41(1<)2> :
Then
< 2 ¢ Ly 2 311
|70(0) 1) < €1 max |eif” < s { llulliz gy + Ui a) (3.11)

and

2 2 2 2 2,12
Im0(@) I ap < e2h® max ool” < e ([folfz qp + 1ol qy) - (312

Taylor-Hood basis func-
tion based on the mid-
points of an edge of K.
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Observe that

/Kv‘no(v) = /81< my(v)-n = /aKzrn = /KVv. (3.13)
Define py : X — X" by:
po(v) := m(v) + my(v — m (v)), (3.14)

then we have the following result,

Lemma 3.1. The operator pg defined in (3.14) is bounded

o0 (@) [l 1(0y2 < Colloll a2 (3.15)
and
o= po(0) 202 < Cohloll1 0 (3.16)
We also have
/,oo(v)'rlf = /v-ne for all edge e. 3.17)

Proof From (3.12) we have

Y N = m@)Iye <es ¥ (Ilo = m@)Eage + 1o = m(©) 3 .0)

KeT" KeT"
<c (C2h2||v||2 1o+ (14 C)2h2||v||i1(m2) by (3.7)
< h*C?||v||? (3.18)

al(q)?

then, using an inverse estimate (see [1]) and (3.18) we get

A1 A~
l710 (2 = 711 (@) 112 < € ll70(@ = 711 (0)) [l 1242 < CCl0[]110)2-
Then
“F)O(U)HHl(Q)Z < ||7T1(v)||H1(Q)2 + || 770 (v — 771(77))”1{1(;1)2 by definition of pg
< Cllollap + CClIRNL oy
< (C+COoll -
To show (3.16) we have that
lo = po(v) | 2102 = llo — () — 7o(v — m1(0)) || 202 by definition of po.
< llo = m()ll 202 + [l70(v — 7T1(7'))||L2(Q)2
< Chllollqye + Chllolla by (3.7) and (3.18)
< Coh“v”H'I(n)

The other assertion is straightforward. 23
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Remark. This is a situation similar to that of the MINI elements (see
[1]) where Taylor-Hood elements are enriched with a bubble function in each
triangle (this bubble is a function of degree three that is null on the bound-
ary of the element). In our case we have one “bubble” of degree two for each
edge (with support in the interior of at most two triangles) instead of one
bouble for each triangle. In this case the “bubbles” are already elements of
the finite element spaces under consideration.

Given g € M", define (locally) p;(p) € W" by

p1(q)|x € Span{w}", w}, wl"}
with
p1()(x) - n = 0and p1(g)(xe) - T = Va(x) T (3.19)
for all interior edge ¢; and p1(g)|. = 0 for all boundary edge e. Note that
p1(q) is zero at the vertices of all elements of 7" and observe that p;(q) €
H'(Q) because the above equation are consistent in neighbor triangles
which gives p1(g) continuous (see [1], Chapter II, theorem 5.2).

Lemma 3.2. Suppose that T" is non-degenerate and has no triangle with
two edges on Q) and consider the operator p, defined in (3.19). Then

o1 (0l 2y < C1le" () forallq" € M (3.20)

and there exists a positive constant such that:
h .v h > C' h|2 > C h12 ll h Mh (3 21)
L P Va2 Gl ) 2 Cillg"lIE o) forallq" € M. :

Proof. 1t is possible to calculate the integral of a quadratic function over a
triangle using the value of the function in the three edge mid points, this is
a quadrature formula (that integrate exact any affine quadratic function).
Applying this formula we get:

K
[ o1a9d = 5L Y pig) ) Vo'
K eCQ
= m Z |Tc'th(x€)|2 by (3.19)
3 eCQ
- @ Zfz |Te~Vq}]<|2 Vq}]< = (th)|1<is constant on K.
eC

ni2 1, with e C Q span R%2. K is a non-degenerated
2 |K|C|qu triangle with at least two edges inside O

— C/ \V/ 2
1<| ax|
Then
/Q p1(7") V" > Cla"F ) 2 Culld" 72 (3.22)
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here we used a Poincaré Inequality.

Using scaling argument on the functions wgk) and the fact that th is
constant in each triangle we obtain (3.20). M

From (3.21) and the boundedness of p; we get that the spaces W/ (with
the || [|,25-norm) and M" ( with the | | 1l(o)-norm) satisfy the inf-sup con-
dition independent of & with respect to the bilinear form defined (in (2.11))
by:

b1(v,q) == —(q,V-v)q forallv e Xandge M,
and observe that if v € W" then v-1 = 0 on 9Q and then b1 (v,q) = frv-Vp
by the Green formula.

Then, according to the Brezzi’s splitting theorem (Lemma 1.19), if 4 is
any continuous coercive bilinear form defined on W we can always get a
stable solution w € W" of:

{fz(w,v)—l—bl(w,p) =a(f,v)g VoveWh
bi(w,q) 1(f,9)a VqeM

where f € L2(Q). We use a(w,v) = [, vw, i.e., the L?-inner product.
Given f, denote by p,(f) the solution of (3.23), then

lp2(F)ll 20y < C2llfll 20 (3.24)
and b1 (p2(f), 4") = b1(f,q") for ¢" € M". We have the following result:

(3.23)

Lemma 3.3. Suppose that T" is non-degenerate and has no triangle with
two edges on Q. Then (X", M") satisfy the inf-sup condition.

This is a direct consequence of Fortin’s criterion (Lemma 1.21) and the
following:

Lemma 3.4. Suppose that T" is non-degenerate and has no triangle with
two edges on 0Q). There exists a bounded linear operator 7" X — X" such
that

by (v— 7(v), p") =0 forall p € M

and ||Z'"|| < ¢, c constant independent of h.

Proof. Define
7"(0) := po(v) + p2(v — po(v)). (3.25)
Observe that:

H
”IT (v)“Hl(Q) < ||p0(v)”H1(Q) + ”pZ(v - po(v))”Hl(Q)

-1 in-
< Collollir )+ C5 lo2(v = po(@))ll2q DY B:18) and iin

verse estimate.

~ 1
< COHUHHl(Q) + CCZE”U - PO(”)”LZ(Q) by (3.24)
< C0||U||H1(Q)+CC0C2||U||H1(Q). by (3.16)
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Then the operator 7'"is bounded (with constant independent of h). More
over for p" € M" we get:

b1(Z"(0), p") = b1(po(0), p") + b1 (p2(v — po (@), p")
= b1 (po(v), p") + b1 (v — po(v), p") by definition of ps.
= b1 (o, p").
M

Lemma 3.5. Consider the operator 7" defined in (3.25). We have:
TH,
lo-Z (U)HLZ(Q) < Ch”v”Hl(Q)' (3.26)
Proof From the definition of Z'" we have:

TH
o =2 (9)|li2(0y < llo = Po ()]l 2() + lP2(v = P0(V)) | 12(0r)
< o p0(@)lliay + Callo — po@)llizgy by (3.20
< (1+C2)C0h”v|lH1(Q). by (3.16)

id

3.3 Approximation properties of Raviar-
Thomas finite elements.

It is considered the case of interest k = 0. In this section the domain of
reference is ;. As in the previous subsection, we omit the subscript that

refers to the domain.

Note that the velocities in RTy(K), K € T, are of the form:

v(x1,x2) = (Z) +c (2)

By using the results presented in Section 1.2 we can work with function
in H(div, Q) less regular than funtions in H'(Q) (see [1], [4]).

Lemma 3.6. For K € T" and p > 2, p fixed, define Ty : H(div,K) N

LP(K)" — RTy(K) by
2w) nl. = g [0

and define T : H(div, Q) N LP(Q) — RTy locally by:

T(0)|x = I, (o).

Raviart-Thomas basis
function.
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Then
/ V-(v - I¥(0))q" = 0 forall ¢" € M"
Q
and there is a constant C > 0 such that || Z8(v) || n(aiv.0) < Cl|2|l#div0)ncro)-
Proof By using the divergence theorem and the definition of 7% we have:

fQV'(v—I”(v n—ZqK/V —I%0)) - n

KeT

=Yt ¥ [(0-T)n

KET e edge”®

of K
— h
=Y a ) 0
KeT e edge
of K

= 0.

To prove the second statement, observe that 7%(v) has constant diver-
gence in each element K and that the operator V- : RT, — M" is surjective.
In fact, given f € M" we can find? a unique u € H*(Q) N H}(Q) such that
Au = f in Q. Taking v = Vu it is easy to verify that

/VIRT /w—/f

and note that this construction from M into RT, is continuous. Observe
also that from Lemma 1.16 we obtain V-u € LP(Q). Finally observe that
the following diagram conmute:

H(div,0)nLP(Q)" Z5 RTH(Q)

v-| v |

s

L2(Q) 5 M)

where 7 is the L2-projection into M". This follows from the fact that

/K V.I0) = /K Voo = /K (V-0)

and that the first and last functions in this equality are constant in K. ¥

By using Poincaré Inequality (Lemma 1.3) and a scaling argument we
can show (see [1])

Lemma 3.7. Consider I8 defined in (3.6). Then if v € H'(Q)
v = Z%(0) | 12¢q)2 < h|olm(q)-

By using the Fortin’s idea we can establish the inf-sup condition for the
spaces (X", M") defined in (3.3) and (3.4) respectively.

2Here we need Q to be convex, but we can, if necessary, enlarge the domain by finitely many
triangles
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3.4 Discrete inf-sup condition.

We have the following

Lemma 3.8. Suppose that Tf‘ is non-degenerate and has no triangle with
two edges on dQ1. For p fixed, p > 2, there exists a linear continuous opera-
tor

v [XEx LP(Qy)"] — V!

such that
b(MMo — o, 4") =0 for all " € M" (3.27)

and
0| x < Cl|o||x. (3.28)

Proof. We can put IT"(v) = (TT%(v), TT%(v)) and use for 1! the operator given
by Lemma 3.4, i.e., TT"(v) := T(0v1).

We are going to construct Tl’z’.
Let A = TT"(v)|r = Z"(v1)|r. Construct® w, such that:

V~w2 = V'Uz in .Qz
{ wyr = EO(A) on E)Qz (3.29)

and |2 |10y < CUIV-02ll2(ay) + Al 20) < Cllollx.
We define TT4(v) as the finite element interpolant of w, € X; that is:

M (v) 1= T(w) (3.30)

where 7% is given in Lemma (3.6). Then (3.27) holds, let g = (g1, q2) € M",
for K € T we have:

(V-TTho, g2)k = (V-IF(w,), 42)k definition of T}
= (V-wy, q2)k by Lemma 3.6
= (V-o2,92)x by (3.29).

Finally we prove that IT"(v) € V. Let e be an edge that meets the
interface I' (i.e., e € T) and A € A". Then:

(My0-m2, A)e = (Z¥(@2) 12, A)e definition of TT%
= (wym2,A)e definition of 7%
= (l'l’fvnz, Ae Lemma 3.4 and (3.29).

Summing over ¢ C T and using the definition of V" (3.5) we get:
(Mho-1m — {012, A), = 0

which gives the assertion. E

3see the footnote on page 31.
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Remark. We can try to get w, in (3.29) (or a correction w, — vy) by using
Raviat-Thomas basis functions but this is as hard as solving (3.29) because
the normal degrees of freedom are linked in neighbor triangles.

Remark. If we assume that the solution is regular, say, it belongs to
VN HY(Q1)" x H(Q3)". Then from the definition of br in (2.19) we see that
011 = U1, in this case we do not have to solve (3.29) and then:

() = (T™(v1), T(0,)). (3.31)
In this case we have the approximations properties of both interpolations.

By using the Fortin’s idea we can establish the

Lemma 3.9. Suppose that 7?‘ is non-degenerate and has no triangle with

two edges on dQ1. Then (V", M") satisfies the discrete inf-sup condition,i.e.,
there is a constant 3 > 0 s.t:

b h h
inf supMZﬁ>0-
qhemh hevh ||U'||X||‘71||M
A#0 v#£0

Let (u, p) the solutions of the second weak formulation (2.24). Let (u”, p"*)
the discrete solution of the same formulation using the finite element spaces
presented in the previous section. Then we know that the continuous and
the discrete inf-sup condition is satisfied in the spaces (V, M) and (V", M?)
Then :

=l +lp = p"lla < €[ int llu = 0"l +inf p € M'llp = ] +

h h ¢ h
+ sup |a(u, v Hb(f p) — £(0")]
ohevin\{0} 0" x

To analyze the last term in this inequality define:
O(v") := —(po, ol-m + vh-mo)r, o' € V. (3.32)

Remember that A := p, and A € A. Define A € A" by A, := [, p, for all edge
e such that e C T'. Observe that A is the L2-projection of p2 into A", Then

O(v") = —(pa, vl-mi)r — (p2, vh-mo)r
= —(Pzrvlf'm)r— (/_\,Ug'nz)r vg'nz is constant in e

= (7_\ — P2, U’f"h)r
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hence

©(0")| = | L(A~ p2, 01 -m)]

ecT

< Y o2 1A = p2ll2 g
cr

=

< N9l 2qry [Z 1A - P2”i2(e)]

ecrl
Observe that from Poincaré and Freidrichs type inequalities we get
/ I
19112y < Cllo"llx
and that A is the L2-projection of p,, so:

IA— P2||L2(e) < Ch€|P2‘H1/2(6)

where /1, is the diameter of ¢; then

1

2 )
O] < C[ L helpalirg)?] 1ol

ecl’

which gives a bound for the consistency error.
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Chapter 4

Numerical Examples and
Final Remarks.

4.1 Numerical examples.

Consider the problem presented in figure (4.1).

1y (%, ) ={~2x—x2,0)

R
2 A2
=ie (4y”

Figure 4.1: Test problem 1.

More precisely, set Q1 = [-2,0] x [-2,10], Q, = [0,10] x [0,5], T =

45
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{0} x [0,5], T; = 0Q;\ T, j = 1,2. We have the problem:

( —0.01Au; +Vp =0 in Q;
V-u1 =0 in Ql
ui(x,y) = (-2x—x%0) onTp=[-2,0]x {10}
u(x, =(0,0 onl\T
\ : Zz - (—10)_8Vp in le\ * (4.1)
V'uz =0 in Qz
urny = 35(4y* —20y) onTyp = {10} x [0,5]
\ uyny, =0 on T\ op

This problem satisfies condition (2.39). Using discretization presented above,
i.e., Taylor Hood coupled with Raviart Thomas finite elements, we get the
velocities in figure (4.2). Mesh information is in Table (4.1).

Figure 4.2: Numerical Solution.

| | Free Fluid | Porous Medium | Interface |

Vertices 428 407
Edges 120 80 20
Triangles 834 732

Table 4.1: Mesh information. Test problem 1.

If we look at the geometry of the interface a more interesting example is
presented in figure (4.3). We used 1 = 0.01, k = 1078 and o = 0, 1. We look
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(Axyin

{

”1(—"13/):0

up{x, )10

Figure 4.3: Test problem 2.

=0

oy )

uz(xy) =0

| Free Fluid | Porous Medium | Interface |

Vertices 691 481
Edges 112 95 25
Triangles 1268 865

Table 4.2: Mesh information. Test problem 2.

47

for velocities such that V-1 = V-u, = 0, so this problem satisfies condition
(2.39). Using the same finite elements we get the results in figure (4.4),
(4.5) for velocities and (4.6) for pressures. Mesh information is in Table

(4.2).
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. Test problem 2, « = 0.

ion

Numerical Solut.

Figure 4.4

10

1.

Numerical Solution. Test problem 2, a;

Figure 4.5
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Remark that

0.

Numerical Solution. Test problem 2, o
pressure is not necessary equal at the interface because A

2un{D(u1)m.

Figure 4.6

p2 = p1—
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4.2 Final remarks.

In Chapter 2 we presented the problem of coupling fluid and porous media
flow. As we saw in the previous subsections this is a problem with many
interesting applications. The model was presented in its partial differen-
tial equations form and its weak formulation was derived. The appropriate
inf-sup condition was proved in order to get existence and uniqueness of
the solution. Then a finite element model was proposed using Taylor-Hood
finite elements for the fluid region coupled with Raviart-Thomas elements
in the porous region. Some examples of solution calculated using this finite
element scheme were presented.

More general models (with two submodels) can be considered. For ex-
ample the filtration on a cigarette. These models can be studied in a similar
way. The hardest part is to get the right interface conditions and to include
them in the weak formulation of the problem thinking in a computational
way. Other delicate part is to choose the right spaces of Lagrange multipli-
ers to uncouple the submodels.

More general models with several subdomains and adequate conditions
between neighbor subdomains can also be considered.

In applications as the examples above we have to be careful because one
of our hypothesis is that the domains are of the same order of magnitude
when they are compared with the size of the interface. By example in the
well reservoir simulation the size of the well is very small compared with
that of the reservoir, then it is convenient to use this model close to the well
coupled with other adequate model for the rest of the reservoir.
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