Espaços de Escala Discretos

Anderson Cunha, Ralph Teixeira e Luiz Velho

Abril de 2001

Resumo

Espaços de Escala nos fornecem um meio de organizar, comparar e analisar todas as escalas de um objeto em uma única estrutura. O espaço de escala linear de uma imagem é a solução da equação de calor (com a imagem como condição inicial) e é construído aplicando-se o filtro gaussiano com variâncias crescentes a essa imagem, obtendo-se uma estrutura tridimensional de imagens borradas. Neste trabalho discorremos sobre as principais propriedades teóricas de espaços de escala lineares contínuos e discretos como também descrevemos e comparamos vários tipos de espaços de escala discretos.

1 Introdução

O conceito de escala é inerente à observação de qualquer objeto físico. Para a obtenção de uma determinada informação ou detalhe de um objeto devemos usar uma escala apropriada, onde a informação é mais facilmente observável. Se observamos uma floresta e diminuímos a escala, vamos observar uma árvore dessa floresta. Diminuindo a escala, observamos um galho dessa árvore. Diminuindo ainda mais a escala, observamos uma folha desse galho.

Em cartografia, para a localização de uma casa no bairro a escala 1:10.000 deve ser apropriada. Para a localização dessa casa no planeta a escala 1:1.000.000 é apropriada.

A escolha apropriada da escala também se aplica ao tempo. Para certos fenômenos a escala de tempo é de micro-segundos; para outros, a escala de tempo é de bilhões de anos.

O conceito de escala está intimamente ligado ao conceito de resolução (ou detalhe). A resolução é o inverso da escala.

Se desejamos várias informações de um objeto, pode ser necessário a representação desse objeto em diversas escalas. Diante dessa necessidade surgiram vários tipos de representação multiescala de uma imagem, por exemplo: Quad-Tree, Pirâmides, Wavelets e Espaços de Escala.

As propriedades desejáveis em um espaço de escala são:

- Isotropia: não há direções preferenciais. A representação de um detalhe é independente de sua direção.
- Homogeneidade: invariância por translações. Não há locações preferenciais. A representação de um detalhe é independente de sua localização.
- Causalidade: não há criação de detalhes com o aumento de escala. Detalhes em escalas maiores sempre têm causa em detalhes de escalas menores. A representação do objeto em escalas maiores necessariamente tem menos detalhes que o objeto em escalas menores ou, ainda, o objeto em escalas maiores tem menos estrutura que em escalas menores.

Essas propriedades, particularmente a invariância por translações, obrigam a que o tamanho do suporte do objeto não mude com a escala, ao contrário de um mapa cartográfico, em que uma escala maior implica em um suporte menor do objeto.

O espaço de escala de uma imagem é um conjunto de imagens do mesmo tamanho (suporte) da imagem original. Com o aumento da escala, as imagens ficam mais borradas, como se estivéssemos olhando o objeto a distâncias cada vez maiores, mas com o mesmo tamanho do suporte. Isto se deve à propriedade da causalidade, que obriga que a imagem vá perdendo detalhes com o aumento da escala.

A estrutura do trabalho é a seguinte: na seção 2 vamos definir espaços de escala contínuos e listar algumas de suas propriedades. Na seção 3 vamos definir espaços de escala discretos e os diversos tipos de espaços de escala discretos implementados. Na seção 4 comentamos alguns detalhes da implementação de espaços de escala discretos e na seção 5 nós os comparamos.

2 Espaço de Escala Gaussiano Contínuo

Definição 1 Seja $f : \mathbb{R}^n \to \mathbb{R}$. O espaço de escala gaussiano de f é a função $L : \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}$ definida por

$$L(x,t) = f * G_t(x)$$

 $com L(x,0) = f(x) \ e \ onde \ G_t(x) = \frac{1}{(2\pi t)^{\frac{n}{2}}} e^{-\frac{1}{2t}(x_1^2 + \dots + x_n^2)} \ e \ a \ função \ gaussiana \ n-dimensional \ de \ va-riância t \ (desvio \ padrão \ \sigma = \sqrt{t}) \ e \ x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$

Na figura 1 temos amostras do espaço de escala de um simal bidimensional (imagem da Lenna) nas escalas 0 (imagem original), 0.5, 1, 2, 4, 8, 16, 32 e 64.

O espaço de escala gaussiano possui diversas propriedades importantes, algumas delas herdadas da função gaussiana. A seguir vamos comentá-las brevemente.

2.1 Propriedades

2.1.1 Linearidade e Invariância por Translações

Como definimos o espaço de escala a partir de uma convolução, ele é necessariamente linear e invariante por translações.

2.1.2 Isotropia

A função gaussiana n-dimensional é rotacionalmente simétrica (ver figura 2), o que implica do espaço de escala Gaussiano possuir a propriedade de isotropia.

2.1.3 Semigrupo

O núcleo gaussiano G possui a propriedade de semigrupo, isto é, $G_{t_1+t_2} = G_{t_1} * G_{t_2}$, o que implica em: $L(x, t_1+t_2) = L(x, t_1) * G_{t_2-t_1}(x)$. Essa propriedade é importante pois indica homogeneidade entre escalas, isto é, todas as escalas de L são tratadas da mesma forma.

Figura 1: Amostras do Espaço de Escala da Lenna.

Figura 2: Gaussiana Bidimensional com $\sigma=1$

2.1.4 Causalidade

A propriedade da causalidade obriga que o espaço de escala seja suavizado com o aumento do parâmetro de escala, isto é, $L(x, t_2)$ é mais suave que $L(x, t_1)$, se $t_2 > t_1$. A propriedade da causalidade pode ser definida como o princípio do máximo: os valores dos máximos locais de $L(x, t_0)$ (com t_0 fixo) não aumentam e os valores dos mínimos locais de $L(x, t_0)$ (t_0 fixo) não diminuem com o aumento do parâmetro de escala t.

2.1.5 Equação do Calor

O espaço de escala gaussiano $L(x,t) = f * G_t(x)$ é a solução da equação diferencial do calor:

$$\left\{ \begin{array}{l} F(x,0) = f(x) \\ \frac{\partial F(x,t)}{\partial t} = \frac{1}{2} \nabla^2 F(x,t) \end{array} \right.$$

2.1.6 Unicidade

O espaço de escala gaussiano é o único que satisfaz as propriedades listadas acima, isto é, a equação de calor define o único espaço de escala multidimensional, não-trivial, linear, invariante por translações e rotações que satisfaz a propriedade de semigrupo e o princípio do máximo. Para a demonstração consulte o capítulo 10 de [2].

3 Espaços de Escala Discretos

Na seção anterior vimos que o espaço de escala contínuo construído com o filtro gaussiano reúne propriedades importantes como semigrupo e causalidade. Como discretizar o espaço de escala, se possível mantendo essas propriedades, é o objetivo desta seção.Vamos definir um espaço de escala discreto como a aplicação de uma família de filtros a um sinal e, em seguida, comentar cinco possibilidades de espaços de escala discretos.

Definição 2 Seja g_t o núcleo de um filtro discreto qualquer na escala t. O espaço de escala discreto de $f : \mathbb{Z} \to \mathbb{R}$ é a função $L : \mathbb{Z} \times \mathbb{R}^+ \to \mathbb{R}$ dada por:

$$L\left[n,t\right] = f * g_t\left[n\right]$$

com L[n,0] = f[n].

Para sinais multidimensionais a definição é análoga. Abaixo temos a definição de espaços de escala discretos bidimensionais:

Definição 3 Seja g_t o núcleo de um filtro discreto bidimensional qualquer na escala t, o espaço de escala discreto de $f : \{0, 1, \ldots, M\} \times \{0, 1, \ldots, N\} \to \mathbb{R}$ é a função $L : \{0, 1, \ldots, M\} \times \{0, 1, \ldots, N\} \times \mathbb{R}^+ \to \mathbb{R}$ dada por:

$$L[m, n, t] = f * g_t[m, n]$$

 $com \; L\left[m,n,0\right] = f\left[m,n\right].$

3.1 Gaussiana Amostrada

A solução mais fácil para a discretização do espaço de escala gaussiano contínuo é discretizar a função gaussiana contínua com a sua amostragem pontual e uniforme.

Vamos analisar inicialmente o caso unidimensional. Amostramos a função gaussiana calculando seus valores nos inteiros. No entanto, como a gaussiana tem suporte infinito devemos limitar seu suporte e para isso usamos o fato de que para valores altos de x temos que $G_t(x) = \frac{1}{\sqrt{2\pi t}}e^{-\frac{1}{2t}x^2}$ tem valores próximos a zero. Um valor usual para a limitação do suporte de G_t é de $4\sigma = 4\sqrt{t}$.

Seja λ o menor inteiro maior que 4σ . A gaussiana amostrada de variância t é a função

$$g_t: \{-\lambda, \cdots, -1, 0, 1, \cdots, \lambda\} \to \mathbb{R}$$
 dada por

$$g_t\left[n\right] = \frac{1}{\sqrt{2\pi t}} e^{-\frac{1}{2t}n^2}$$

Infelizmente o filtro construído a partir da gaussiana amostrada não é normalizado. É necessário a normalização desse filtro, principalmente se t é pequeno (se $t \to 0$ então $g_t[0] \to \infty$).

Seja f um sinal unidimensional de N+1 amostras, isto é, $f: \{0, 1, \dots, N\} \to \mathbb{R}$. O espaço de escala com o núcleo gaussiano amostrado é a função $L: \{0, 1, \dots, N\} \times \mathbb{R}^+ \to \mathbb{R}$ dada por $L[n, t] = f * g_t[n]$, onde g_t é a gaussiana amostrada definida acima.

Infelizmente o espaço de escala com a gaussiana amostrada não satisfaz a propriedade de semigrupo e causalidade¹. Estendemos o espaço de escala com a gaussiana amostrada para sinais multidimensionais com o produto tensorial, isto é, $g_t [n_1, n_2, ...] = g_t [n_1] g_t [n_2] ...$

Na figura 3 temos amostras desse espaço de escala nas variâncias 0 (imagem original), 1, 10 e 100.

3.2 Gaussiana Recursiva

O cálculo do espaço de escala discreto pelo método da gaussiana amostrada é computacionalmente custoso se σ é grande.

Deriche [4] aproximou o núcleo gaussiano amostrado da seção anterior por outro que permita o cálculo recursivo da convolução, a saber:

$$e^{-\frac{1}{2\sigma^2}x^2} \approx e^{-1.783\frac{x}{\sigma}} \left(1.68 \cos\left(0.6318\frac{x}{\sigma}\right) + 3.735 \sin\left(0.6318\frac{x}{\sigma}\right) \right) - e^{-1.723\frac{x}{\sigma}} \left(0.6803 \cos\left(1.997\frac{x}{\sigma}\right) + 0.2598 \sin\left(1.997\frac{x}{\sigma}\right) \right) = g_{\sigma}\left(x\right)$$

Seja um sinal de entrada $x_i : \{0, 1, \dots, N\} \to \mathbb{R}$.

A convolução $y_i = x_i * g_{\sigma}[i]$ pode ser feita a partir das seguintes relações recursivas:

$$y_{i}^{+} = n_{00}^{+} x_{i} + n_{11}^{+} x_{i-1} + n_{22}^{+} x_{i-2} + n_{33}^{+} x_{i-3} - d_{11}^{+} y_{i-1}^{+} - d_{22}^{+} y_{i-2}^{+} - d_{33}^{+} y_{i-3}^{+} - d_{44}^{+} y_{i-4}^{+}$$
(1)

$$y_{i}^{-} = n_{11}^{-} x_{i+1} + n_{22}^{-} x_{i+2} + n_{33}^{-} x_{i+3} + n_{44}^{-} x_{i+4} - d_{11}^{-} y_{i+1}^{-} - d_{22}^{-} y_{i+2}^{-} - d_{33}^{-} y_{i+3}^{-} - d_{44}^{-} y_{i+4}^{-}$$
(2)

$$y_i = y_i^+ + y_i^- \tag{3}$$

onde $n_{00}^+, n_{11}^+, n_{22}^+, n_{33}^+, d_{11}^+, d_{22}^+, d_{33}^+, d_{44}^+, n_{11}^-, n_{22}^-, n_{33}^-, n_{44}^-, d_{11}^-, d_{22}^-, d_{33}^-$ e d_{44}^- são constantes calculadas em função de σ . Por exemplo, $n_{00}^+ = 2.3603$. $d_{44}^+ = e^{-7.012/\sigma}$. O valor de todas essas constantes podem ser encontradas em [4].

¹As definições de semigrupo e causalidade discretas são análogas às contínuas. Para maiores informações consulte [1] ou [2].

Figura 3: Espaço de Escala com a Gaussiana Amostrada.

 y_i^+ da fórmula 1 é calculado recursivamente da esquerda para a direita $(i = 0, \dots, N)$ e o cálculo de y_i^- (fórmula 2) da direita para a esquerda $(i = N, \dots, 0)$.

São necessárias 15 adições e 16 multiplicações para a cálculo recursivo de uma convolução com o núcleo definido acima, independente de σ , o que torna este método muito rápido computacionalmente.

Estendemos o espaço de escala com a gaussiana recursiva para sinais multidimensionais com o produto tensorial.

As imagens da figura 4 são amostras desse espaço de escala com variâncias 0, 1, 10 e 100.

3.2.1 Valores Iniciais da Recursão

Uma dificuldade para o cálculo de uma filtragem recursiva são os valores iniciais desta recursão. No caso da gaussiana recursiva, é necessário o cálculo dos valores iniciais $y^+[0], y^+[1], y^+[2] \in y^+[3]$ da fórmula 1 e de $y^-[N], y^-[N-1], y^-[N-2] \in y^-[N-3]$ na fórmula 2.

Para um sinal x com extensão periódica², o cálculo dos valores iniciais é feito levando-se em conta que os sinais y^+ e y^- também têm o mesmo período de x.

Se o sinal tem extensão periódica com período T + 1 temos que:

 $\begin{cases} y^+ [T+1] = y^+ [0] \\ y^+ [T+2] = y^+ [1] \\ y^+ [T+3] = y^+ [2] \\ y^+ [T+4] = y^+ [3] \end{cases}$

enquanto sucessivas aplicações da fórmula 1 levam a:

²Extensões de sinal serão discutidas na seção 4.

Figura 4: Espaço de Escala com a Gaussiana Recursiva.

$$\begin{cases} y^{+}[T+1] = a_{11}y^{+}[0] + a_{12}y^{+}[1] + a_{13}y^{+}[2] + a_{14}y^{+}[3] + A_{1} \\ y^{+}[T+2] = a_{21}y^{+}[0] + a_{22}y^{+}[1] + a_{23}y^{+}[2] + a_{24}y^{+}[3] + A_{2} \\ y^{+}[T+3] = a_{31}y^{+}[0] + a_{32}y^{+}[1] + a_{33}y^{+}[2] + a_{34}y^{+}[3] + A_{3} \\ y^{+}[T+4] = a_{41}y^{+}[0] + a_{42}y^{+}[1] + a_{43}y^{+}[2] + a_{44}y^{+}[3] + A_{4} \end{cases}$$

onde os coeficientes $A_1 \cdots A_4$ dependem do sinal de entrada x e de $n_{00}^+ \cdots n_{33}^+, d_{11}^+ \cdots d_{44}^+$ e os valores a_{ij} dependem somente de $d_{11}^+ \cdots d_{44}^+$ e de T, isto é, dependem somente de σ e do tamanho de x. Para o cálculo de $A_1 \cdots A_4$ basta tomar $y^+[0] = y^+[1] = y^+[2] = y^+[3] = 0$ e aplicar a fórmula 1 repetidas vezes para obtermos os valores $y^+[T+1] = A_1, y^+[T+2] = A_2, y^+[T+3] = A_3$ e $y^+[T+4] = A_4.$

O cálculo de a_{11} é feito tomando o sinal de entrada $x_i = 0, \forall i \in y^+[0] = 1 \in y^+[1] = y^+[2] = y^+[3] = y^+[3]$ 0 e então aplicamos a fórmula 1 repetidas vezes até obtermos o valor $y^+[T+1] = a_{11}$.

O cálculo dos outros coeficientes a_{ij} são calculados de forma análoga. Por exemplo: calculamos a_{34} tomando $x_i = 0, \forall i \in y^+[0] = y^+[1] = y^+[2] = 0 \in y^+[3] = 1$ e aplicando a fórmula 1 até obtermos y^+ [T + 3], que é o valor de a_{34} .

Depois de calculados os a_{ij} e os A_i e levando em conta que $y^+[T+1] = y^+[0], y^+[T+2] =$ $y^{+}[1], y^{+}[T+3] = y^{+}[2] e y^{+}[T+4] = y^{+}[3]$, basta resolver o sistema de equações lineares abaixo para obtermos os valores iniciais $y^+[0], y^+[1], y^+[2] \in y^+[3]$.

$$\begin{array}{l} \left(\begin{array}{c} (a_{11}-1)y^{+}\left[0\right]+a_{12}y^{+}\left[1\right]+a_{13}y^{+}\left[2\right]+a_{14}y^{+}\left[3\right]=-A_{1} \\ a_{21}y^{+}\left[0\right]+(a_{22}-1)y^{+}\left[1\right]+a_{23}y^{+}\left[2\right]+a_{24}y^{+}\left[3\right]=-A_{2} \\ a_{31}y^{+}\left[0\right]+a_{32}y^{+}\left[1\right]+(a_{33}-1)y^{+}\left[2\right]+a_{34}y^{+}\left[3\right]=-A_{3} \\ a_{41}y^{+}\left[0\right]+a_{42}y^{+}\left[1\right]+a_{43}y^{+}\left[2\right]+(a_{44}-1)y^{+}\left[3\right]=-A_{4} \end{array} \right)$$

Os valores iniciais $y^{-}[N], y^{-}[N-1], y^{-}[N-2] \in y^{-}[N-3]$ da fórmula recursiva 2 são calculados de maneira análoga.

Se o sinal tem extensão zero, que não é periódica, devemos calcular os valores iniciais teoricamente da expressão da transformada Z do filtro. Um método simplificado e que dá bons resultados é simplesmente considerar $y^+[-1] = y^+[-2] = y^+[-3] = y^+[-4] = 0$ para o cálculo de $y^+[i]$ e $y^-[N+1] = y^-[N+2] = y^-[N+3] = y^-[N+4] = 0$ para o cálculo de $y^-[i]$.

3.3 Gerador Infinitesimal

Na seção anterior vimos que a equação do calor $\frac{\partial L(x,t)}{\partial t} = \frac{1}{2}\nabla^2 L(x,t)$ define o espaço de escala contínuo gaussiano multidimensional. O caso discreto não é diferente:

Teorema 4 A equação do calor discreta $\frac{\partial L[x,t]}{\partial t} = \mathcal{A} * L[x,t]$ (onde \mathcal{A} é a discretização da metade do laplaciano) define o único espaço de escala discreto simétrico, linear, invariante por translações, e que satisfaz as propriedades de semigrupo e o princípio do máximo.

Demonstração: consultar o capítulo 10 de [2] ou o capítulo 4 de [3].

Para sinais unidimensionais, a discretização da metade do laplaciano é da forma:

$$\mathcal{A}=rac{1}{2}\left[1 \qquad -2 \qquad 1
ight]$$

Para sinais bidimensionais, \mathcal{A} é da forma (cap. 4 de [3]):

$$\mathcal{A} = \begin{bmatrix} \frac{1}{4}\gamma & \frac{1}{2}(1-\gamma) & \frac{1}{4}\gamma \\ \frac{1}{2}(1-\gamma) & \gamma-2 & \frac{1}{2}(1-\gamma) \\ \frac{1}{4}\gamma & \frac{1}{2}(1-\gamma) & \frac{1}{4}\gamma \end{bmatrix}$$

onde γ é um parâmetro entre 0 e 1. Note que quanto maior o parâmetro γ maior a influência das diagonais na matriz \mathcal{A} , que é chamado de gerador infinitesimal do espaço de escala.

Como $\frac{\partial L[x,t]}{\partial t} = \mathcal{A} * L[x,t]$, para Δt suficientemente pequeno temos que:

$$L[m, n, t + \Delta t] \approx (\delta + \mathcal{A}\Delta t) * L[m, n, t]$$

onde δ é impulso unitário bidimensional discretizado:

$$\delta = \left[\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Lindeberg [3] sugere o cálculo do espaço de escala discreto a partir do gerador infinitesimal \mathcal{A} :

$$L[m, n, t+t_0] \approx \underbrace{(\delta + \mathcal{A}\Delta t) * (\delta + \mathcal{A}\Delta t) * \dots * (\delta + \mathcal{A}\Delta t)}_{n \text{ vezes}} * L[m, n, t_0]$$

onde $\Delta t = \frac{t}{n}$. Pode ser mostrado ([3]) que:

- o núcleo $\delta + \mathcal{A}\Delta t$ é unimodal somente se $\gamma \leq \frac{1}{2}$.
- $\delta + \mathcal{A}\Delta t$ é separável somente se $\gamma = \Delta t$.
- Se $\gamma = \Delta t$, o núcleo unidimensional correspondente tem a propriedade de causalidade (princípio do máximo) se $0 \le \gamma \le \frac{1}{2}$.
- Para que $\delta + A\Delta t$ tenha máxima simetria rotacional é necessário que $\gamma = \frac{1}{3}$.

Na figura 5 temos amostras desse espaço de escala (com $\gamma = \frac{1}{3}$) nas variâncias 0, 1, 10 e 100.

Figura 5: Espaço de Escala com Gerador Infinitesimal

3.4 Convoluções Cruzadas

A espaço de escala com a gaussiana amostrada não possui as propriedades de semigrupo e causalidade, que o espaço de escala gaussuiano contínuo possuía. O espaço de escala discreto com propriedades semelhantes ao da gaussiana contínua é construído com o núcleo de Poisson, que tem suporte infinito e é definido da forma:

$$P_{t}[n] = e^{-t}I_{n}[t] = e^{-t}(\cdots, I_{-n}[t], \cdots, I_{0}[t], \cdots, I_{n}[t], \cdots)$$

onde $I_n[t]$ é a função modificada de Bessel³ de ordem n, que é definida como os coeficientes da expansão em série de potências de $e^{\frac{t}{2}(z+\frac{1}{z})}$, isto é:

$$e^{\frac{t}{2}\left(z+\frac{1}{z}\right)} = \sum_{k=-\infty}^{+\infty} I_n\left[t\right] z^n$$

O espaço de escala unidimensional $L[n,t] = f * P_t[n]$ construído com o núcleo de Poisson é o único que possui as propriedades de causalidade e semigrupo.

Para sinais bidimensionais podemos calcular o espaço de escala com o produto tensorial. Por exemplo, o espaço de escala de um sinal bidimensional f[m,n] é a função $L[m,n,t] = f[m,n] * P_t[m,n]$, onde $P_t[m,n] = P_t[m] P_t[n]$. Uma outra opção é fazer uso do teorema abaixo (demonstrado no cap. 6 de [2]).

Teorema 5 A solução da equação do calor discreta bidimensional $\frac{\partial L[m,n,t]}{\partial t} = \mathcal{A} * L[m,n,t]$ (com L[m,n,0] = f[m,n]) é dada pela convolução

$$L\left[m,n,t\right] = P_{(1-\gamma)t}^{x} * P_{(1-\gamma)t}^{y} * P_{\frac{\gamma t}{2}}^{x+y} * P_{\frac{\gamma t}{2}}^{x-y} * f\left[m,n\right]$$

³Em [7] temos uma rotina em C para o cálculo dos valores dos coeficientes do núcleo $I_n[t]$.

com $0 \leq \gamma \leq 1$. A notação P_{α}^{β} indica o núcleo de Poisson de variância α na direção β , por exemplo: $P_{(1-\gamma)t}^{x}$ é o núcleo de Poisson de variância $(1-\gamma)t$ na direção x (horizontal) e $P_{\frac{\gamma t}{2}}^{x+y}$ é o núcleo de Poisson de variância $\frac{\gamma t}{2}$ na direção x = y (diagonal de 45⁰).

O cálculo de L[m, n, t] é feito em 4 etapas:

1. Convolução da imagem f[m, n] com o núcleo $P_{(1-\gamma)t}$ nas linhas (direção 0^0).

- 2. Convolução do resultado do ítem 1 com o núcle
o $P_{(1-\gamma)t}$ nas colunas.
- 3. Aplicamos o filtro de Poisson de variância $\frac{\gamma t}{2}$ nas diagonais de 45⁰ (x = y).

4. Finalmente fazemos a convolução com o filtro de Poisson de variância $\frac{\gamma t}{2}$ nas diagonais de -45^{0} (x = -y).

Se tomamos $\gamma = 0$ temos que a convolução acima se resume ao produto tensorial $L[m, n, t] = f[m, n] * P_t^x[m] * P_t^y[n]$.

As imagens (estendidas por espelhamento com bordas repetidas) da figura 6 são amostras desse espaço de escala (com $\gamma = \frac{1}{3}$) nas variâncias 0, 1, 10 e 100.

Figura 6: Espaço de Escala com Convoluções Cruzadas

3.5 Splines

Vamos agora construir um espaço de escala discreto com splines. Maiores esclarecimentos das fórmulas e definições abaixo podem ser encontrados em [1], [5] ou [6].

Definição 6 A B-Spline de ordem n é definida por

$$\beta^{n}(x) = \underbrace{\beta^{0}(x) * \beta^{0}(x) * \dots * \beta^{0}(x)}_{n \ convoluções}$$

Figura 7: Comparação entre a função gaussiana (linha pontilhada) e a B-spline cúbica

onde $\beta^0(x) = \begin{cases} 1, se -\frac{1}{2} \le x < \frac{1}{2} \\ 0, \ caso \ contrário \end{cases}$

Devido a semelhança das B-Splines com a função gaussiana, como vemos na figura 7, podemos usá-las para construir espaços de escala.

Definição 7 Um espaço de escala contínuo de ordem n_2 de uma função f é definida por

$$L(x,t) = f(x) * \beta_t^{n_2}(x)$$

onde β_t^n (B-spline de ordem n dilatada pelo fator de escala t) é definida por $\beta_t^n(x) = \frac{1}{t}\beta^n(\frac{x}{t})$).

Na base de B-Splines β^{n_1} , temos que f é dada (ou aproximadamente decomposta) na forma:

$$f(x) = \sum_{k \in \mathbb{Z}} c[k] \beta^{n_1}(x-k)$$

Para valores inteiros de x ($x = k \in \mathbb{Z}$) e escalas t racionais ($t = \frac{m_1}{m_2}$, onde $m_1, m_2 \in \mathbb{N}$) o espaço de escala pode ser calculado da seguinte forma (apêndice A de [6]):

$$L\left[k,\frac{m_1}{m_2}\right] = m_2 \left(b^{n_1+n_2+1} * B^{n_1}_{m_2} * B^{n_2}_{m_1} * c_{\uparrow m_2}\right)_{\downarrow m_2} [k]$$
(4)

Neste trabalho consideramos $n_1 = n_2 = 3$ (B-splines cúbicas), logo a fórmula 4 pode ser escrita da forma:

$$L\left[k, \frac{m_1}{m_2}\right] = m_2 \left(b^7 * B_{m_2}^3 * B_{m_1}^3 * c_{\uparrow m_2}\right)_{\downarrow m_2} [k]$$
(5)

onde:

- $k \in \mathbb{Z}$ e $\frac{m_1}{m_2}$ é a escala racional $(m_1, m_2 \in \mathbb{N})$
- c[k] são os coeficientes na base de B-Splines cúbicas de um sinal de entrada.
- b^7 é a amostragem da B-spline de ordem 7. O filtro b^7 é centrado, simétrico e com os coeficientes:

$$b^{7} = \begin{bmatrix} \cdots & 0 & \frac{1}{5040} & \frac{1}{42} & \frac{397}{1680} & \frac{151}{315} & \frac{397}{1680} & \frac{1}{42} & \frac{1}{5040} & 0 & \cdots \end{bmatrix}$$

- B_m^3 é a spline discreta de ordem 3 e dilatada pelo fator de escala m, que é definida por $B_m^3 = B_m^0 * B_m^0 * B_m^0 * B_m^0$, onde $B_m^0 = \frac{1}{m} \underbrace{\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}}_{\text{tamanho } m}$
- os símbolos \uparrow e \downarrow indicam, respectivamente, os operadores decimação (downsample) e upsample, onde $k \in \mathbb{Z}$ e $m_1, m_2 \in \mathbb{N}$.

Obtemos $L\left[k, \frac{m_1}{m_2}\right]$ a partir da fórmula 5 com as operações em cascata indicadas no diagrama em blocos da figura 8.

Figura 8: Diagrama em blocos para o cálculo do espaço de escala

Se a escala é inteira $(m_2 = 1)$, o cálculo do espaço de escala é bem mais eficiente computacionalmente, pois podemos usar a fórmula abaixo:

$$L[k, m_1] = (b^7 * B_{m_1}^3 * c)[k]$$

O cálculo dos coeficientes da base de B-Splines cúbicas e do espaço de escala para imagens (ou dimensões maiores) é feito aplicando produto tensorial.

Na figura 9 temos o espaço de escala de splines da Lenna nas escalas $t = 0, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, 16$ e 32. A B-Spline cúbica β_t^n na escala t tem variância $\frac{t^2}{3}$, logo as variâncias da figura 9 são $0, \frac{1}{48}, \frac{1}{12}, \frac{1}{3}, \frac{4}{3}, \frac{16}{3}, \frac{64}{3}, \frac{16^2}{3}$ e $\frac{32^2}{3}$.

4 Implementação

4.1 Convolução e Extensão do Sinal

Neste trabalho vamos somente considerar sinais f com suporte de 0 a N e filtros cujos núcleos h tenham suporte de -M a +M, isto é:

$$\begin{aligned} f: \{0, 1, \dots, N\} &\to \mathbb{R} \\ h: \{-M, -M+1, \dots, -1, 0, 1, \dots, M-1, M\} &\to \mathbb{R} \end{aligned}$$

Nesse caso, a convolução é feita estendendo o sinal f. Para isso criamos o sinal $\tilde{f}: \{-M - N, \ldots -1, 0, 1, \ldots, M + N\} \to \mathbb{R}$ onde:

$$\left\{ \begin{array}{l} \tilde{f}\left[n\right]=f\left[n\right], \ \text{se} \ 0 \leq n \leq N \\ \tilde{f}\left[n\right] \ \text{depende do tipo da extensão, se} \ n < 0 \ \text{ou} \ n > N \end{array} \right.$$

A convolução $f * h : \{0, 1, \dots, N\} \to \mathbb{R}$ pode ser calculada da forma:

$$f * h [n] = \sum_{k=-M}^{+M} \tilde{f} [n-k] h [k] = \tilde{f} [n-M] h [M] + \dots + \tilde{f} [n] h [0] + \dots + \tilde{f} [n+M] h [-M]$$

Abaixo temos alguns modos de se estender um sinal:

Figura 9: Espaço de Escala de Splines

• Extensão por Zero

Na extensão por zeros, o sinal \tilde{f} é definido por:

$$\begin{cases} \tilde{f}[n] = f[n], \text{ se } 0 \le n \le N\\ \tilde{f}[n] = 0, \text{ caso contrário.} \end{cases}$$

A extensão por zero de um sinal tem a desvantagem de não ser periódica e a convolução não ser invariante por translações.

Todos as extensões mostradas a seguir são periódicas, logo as convoluções com essas extensões são invariantes por translações.

• Extensão Periódica

Na extensão periódica, o sinal \tilde{f} tem período N + 1 e é definido por $\tilde{f}[n] = f[n \mod (N+1)]$.

• Extensão por Espelhamento

Na extensão por espelhamento, o sinal \tilde{f} tem período 2N, logo calculamos $n_0 = n \mod 2N$. O sinal \tilde{f} é definido por:

$$\begin{cases} \tilde{f}[n] = f[n_0], \text{ se } 0 \le n_0 \le N \\ \tilde{f}[n] = f[2N - n_0], \text{ se } N < n_0 < 2N \end{cases}$$

• Extensão por Espelhamento com bordas repetidas

Na extensão por espelhamento com as bordas repetidas, o sinal \tilde{f} tem período 2N+2, logo calculamos $n_0 = n \mod (2N+2)$. O sinal \tilde{f} é definido por:

$$\begin{cases} \tilde{f}[n] = f[n_0], \text{ se } 0 \le n_0 \le N\\ \tilde{f}[n] = f[2N+1-n_0], \text{ se } N < n_0 < 2N+2 \end{cases}$$

Para maiores informações sobre convolução e filtragem discreta, consulte os capítulos 2 e 3 de [2].

4.2 Biblioteca

As bibliotecas para espaços de escala estão divididas em quatro partes: util, ss, deriche e splines e edge. Nas próximas subseções vamos descrevê-las brevemente.

Todas essas implementações (em C) de espaços de escalas, assim como de detecção de arestas (consultar [1]) podem ser encontradas em:

http://www.visgraf.impa.br/escala

4.2.1 Utilidades

A biblioteca util.c contém as definições das estruturas de sinais, filtros, espaços de escala 1D e 2D, rotinas de criação e destruição dessas estruturas, rotinas de entrada e saída, cálculo do sinal estendido e outros.

Por exemplo, as estruturas de sinal 2D e espaço de escala 2D são assim definidas:

```
typedef struct Signal2D {
```

```
int
        max_value;
        min_value;
 int
 int
        first_index_row;
 int
        last_index_row;
        first_index_col;
 int
 int
        last_index_col;
 int
        extension;
Real **sample;
} Signal2D;
typedef struct ScaleSpace2D {
   Signal2D
            *signal;
              num_levels;
   int
   Signal2D **ss2Dlevel;
   Real
             *variance;
   int
              filter_type;
} ScaleSpace2D;
```

A alocação de matrizes é feita como em [7].

4.2.2 Espaços de Escala Discretos

As rotinas para o cálculo de espaços de escala discretos, exceto splines e gaussiana recursiva, podem ser encontradas na biblioteca ss.c.

O cálculo dos espaços de escala com a gaussiana amostrada, gerador infinitesimal e convoluções cruzadas são feitos, respectivamente, pelas rotinas abaixo:

```
ScaleSpace2D *ScaleSpace2D_Gaussian (Signal2D *signal, Signal1D *variance);
ScaleSpace2D *ScaleSpace2D_Lindeberg (Signal2D *signal, Signal1D *variance, Real gama);
ScaleSpace2D *ScaleSpace2D_Ralph (Signal2D *signal, Signal1D *variance, Real gama);
```

As rotinas acima criam a estrututa *ScaleSpace2D* e fazem o cálculo das convoluções do sinal 2D *signal* na lista de variâncias indicadas por *variance*.

Os filtros gaussiano amostrado e de Poisson são calculados respectivamente com as funções abaixo:

```
Filter1D *Filter1DGaussian (Real variance);
Filter1D *Filter1DPoisson (Real variance);
```

Em [7] temos uma rotina em C para o cálculo dos coeficientes do núcleo de Poisson.

O cálculo da convolução pelo método do gerador infinitesimal (seção 3.3) ou por convoluções cruzadas (seção 3.4) são feitos respectivamente pelas rotinas:

Signal2D *LindebergConvolution (Signal2D *signal, Real variance, Real gama); Signal2D *RalphConvolution (Signal2D *signal, Real variance, Real gama);

4.2.3 Gaussiana Recursiva

As rotinas para o cálculo de espaços de escala com a gaussiana recursiva (seção 3.2) podem ser encontradas na biblioteca deriche.c.

O cálculo da convolução ou do espaço de escala com a gaussiana recursiva são feitas respectivamente pelas rotinas:

```
ScaleSpace2D *ScaleSpace2D_Deriche (Signal2D *signal, Signal1D *variance);
Signal2D *Convolution2D_Deriche (Signal2D *signal, Real variance);
```

A convolução com a gaussiana recursiva não está implementada corretamente para sinais com extensão zero (tomamos como sendo zero os valores iniciais para o cálculo da recursão, como visto em 3.2). Apesar disso os valores obtidos são bastante bons, como podemos ver na seção 5.3.

4.2.4 Splines

As rotinas para o cálculo de espaço de escala com splines são encontradas na biblioteca splines.c. Como visto na seção 3.5, o espaço de escala com splines na escala $\frac{m_1}{m_2}$ é calculado com a fórmula:

$$L\left[k, \frac{m_1}{m_2}\right] = m_2 \left(b^7 * B_{m_2}^3 * B_{m_1}^3 * c_{\uparrow m_2}\right)_{\downarrow m_2} [k]$$

O cálculo de $L\left[k, \frac{m_1}{m_2}\right]$ é feito com as operações em cascata indicadas no diagrama de blocos da figura 8.

A base de B-Splines cúbicas do sinal é calculado com a rotina:

```
Signal2D *SplinesBasis2D (Signal2D *signal);
```

Os operadores decimação (downsample) e upsample são calculados com:

```
Signal2D *DOWNSAMPLE (Signal2D *signal, int m);
Signal2D *UPSAMPLE (Signal2D *signal, int m);
```

O filtro b^7 é criado pela rotina:

Filter1D *CreateFilter1D_b7(void);

O cálculo da convolução com B_m^3 é feito com a rotina:

Signal2D *BinZeroConvolution2D (Signal2D *signal, int m);

A rotina SplineConvolution executa os passos acima para o cálculo de $L\left[k, \frac{m_1}{m_2}\right]$

Finalmente, para o cálculo do espaço de escala com splines temos a rotina:

ScaleSpace2D *SplineScaleSpace (Signal2D *signal, Signal1D *variance);

Essa rotina simplesmente chama SplineConvolution para as escalas indicadas por variance, que é escrito na forma: $n_1, d_1, n_2, d_2, \cdots$ sendo que as escalas são $\frac{n_1}{d_1}, \frac{n_2}{d_2}, \cdots$

O cálculo de convolução com splines é feito inicialmente nas linhas e posteriormente nas colunas para eficiência computacional.

A convolução com splines não está implementada para sinais com extensão zero.

5 Comparação dos Espaços de Escala Discretos

5.1 Análise Teórica

Na tabela abaixo temos um resumo das propriedades de cada um dos espaços de escala implementados.

	semigrupo	causalidade	parâmetro de escala em
gaussiana amostrada			\mathbb{R}
gerador infinitesimal	\checkmark	\checkmark	$\Delta t \mathbb{Z}$
convoluções cruzadas	\checkmark	\checkmark	\mathbb{R}
gaussiana recursiva			\mathbb{R}
splines			Q

Todos os métodos de cálculo de espaços de escala tentam aproximar a função gaussiana de diferentes modos e todos eles incorrem em algum tipo de erro em seu cálculo. Os espaços de escala com a gaussiana amostrada e convoluções cruzadas cortam o núcleo do filtro de convolução, que é infinito. O método do gerador infinitesimal faz a aproximação $L[m, n, t + \Delta t] \approx (\delta + \mathcal{A}\Delta t) * L[m, n, t]$. Os métodos da gaussiana recursiva e de splines aproximam o núcleo gaussiano por outro que permita filtragem recursiva.

5.2 Tempo

Na tabela abaixo temos o tempo teórico e o tempo gasto em segundos para o cálculo de uma convolução nas variâncias indicadas. Esses valores servem de comparação entre os espaços de escala e indicam que o cálculo de um espaço de escala é computacionalmente caro.

	teoria	var = 1, 0	var = 3, 0	var = 27, 0	var = 243, 0
gaussiana amostrada	$8\sqrt{var}N$	0, 22	0,27	0,67	1,87
gerador infinitesimal	10 var N	0, 4	0,95	7, 5	67, 6
convoluções cruzadas	$16\sqrt{var}N$	0, 22 - 0, 36	0,27-0,4	0,67-0,86	1,87-2,37
gaussiana recursiva	16N	0,57-0,15	0,57-0,15	0,57-0,15	0,57-0,15
splines	44dN	63, 0	0, 4	0,43	0, 5

A coluna teoria indica o número de multiplicações para o cálculo de uma convolução, onde N é o número de pixels da imagem, var é a variância do filtro e no caso de splines, d é o denominador da escala $\frac{n}{d}$.

As escalas de splines são racionais e da forma $\frac{n}{d} = \sqrt{3.var}$. Para as variâncias 1, 3, 27 e 243, as escalas de splines são, respectivamente, $\sqrt{3} \approx \frac{173}{100}$, 3, 9 e 27. Note que o tempo gasto pelo método de splines para var = 1, 0 é elevado pois a escala usada para splines $\left(\frac{n}{d} = \frac{173}{100}\right)$ tem denominador grande.

Na linha da gaussiana recursiva temos o tempo gasto para cálculo de convoluções com sinais de extensão periódica e sinais com extensão zero. Notamos que o cálculo dos valores iniciais da recursão são mais custosos que a própria recursão.

Na linha de convoluções cruzadas temos o tempo gasto para cálculo de convoluções com $\gamma = 0$ e $\gamma = \frac{1}{3}$. Note que se $\gamma = 0$ o tempo gasto é igual ao da gaussiana amostrada.

Os espaços de escala do gerador infinitesimal e convoluções cruzadas possuem a propriedade de semigrupo, logo podemos calcular escalas maiores usando escalas menores já calculadas, o que diminui o tamanho no núcleo de convolução, e consequentemente o tempo gasto nas convoluções.

5.3 Distância

A distância entre duas imagens $f, g : \{0, 1, \dots, M-1\} \times \{0, 1, \dots, N-1\} \rightarrow \mathbb{R}$ foi calculada com a fórmula:

$$dist(f,g) = \frac{1}{MN} \sum_{m=0}^{M-1N-1} \sum_{n=0}^{N-1} (f[m,n] - g[m,n])^2$$

Na tabela a seguir temos a distância entre as filtragens da imagem da Lenna com os métodos de convolução e variância indicados. A extensão do sinal é por espelhamento, se não explicitado o contrário.

			variância	dist
1	Gauss. Amostrada	Conv. Cruzadas ($\gamma = 0$)	3,0	0,115
2	Gauss. Amostrada	Conv. Cruzadas ($\gamma = 0$)	27,0	0,003
3	Gauss. Amostrada extensão zero	Gauss. Recursiva	3,0 - extensão zero	0,00005
4	Gauss. Amostrada	Gauss. Recursiva	27,0	0,00005
5	Gauss. Amostrada	Splines	3,0	0,100
6	Conv. Cruzadas ($\gamma = 0$)	Splines	27,0	0,265
7	Conv. Cruzadas ($\gamma = 0$)	Gerador Inf. $(\gamma = 0)$	27,0	0,0044
8	Conv. Cruzadas ($\gamma = 0$)	Gerador Inf. $(\gamma = \frac{1}{3})$	27,0	0,0029
9	Gerador Inf. $(\gamma = \frac{1}{3})$	Conv. Cruzadas $(\gamma = \frac{1}{3})$	27,0	5,074

• Observações:

1 e 2: Os espaços de escala da gaussiana amostrada e de Convoluções Cruzadas ($\gamma = 0$) são muito próximos.

3 e 4: A gaussiana recursiva é uma ótima aproximação da gaussiana amostrada, mesmo com extensão zero (caso em que a gaussiana recursiva não foi calculada corretamente).

5 e 6: Splines aproxima relativamente bem a gaussiana ou Convoluções Cruzadas ($\gamma = 0$).

7: Gerador infinitesimal (com $\gamma = 0$) aproxima Convoluções Cruzadas ($\gamma = 0$) muito bem.

9: A distância entre os métodos do gerador infinitesimal e de convoluções cruzadas é grande se $\gamma = \frac{1}{3}$.

6 Conclusões

Todos os espaços de escala discretos implementados, como vemos na seção 5.3, geram resultados próximos. O único método de cálculo de espaços de escala que resolve a equação do calor discreta de maneira exata (a menos do corte do filtro de Poisson) e portanto possui as propriedades de semigrupo e causalidade é o espaço de escala com convoluções cruzadas. Como o seu custo computacional é aceitável, ele é o nosso preferido.

O espaço de escala com a gaussiana amostrada foi implementado somente para comparação com o espaço de escala de convoluções cruzadas, pois este apresenta vantagens teóricas e o mesmo custo computacional para o cálculo de uma convolução (se $\gamma = 0$).

O espaço de escala com a gaussiana recursiva apresenta a vantagem do custo computacional ser independente da variância, o que pode ser útl para o cálculo com variâncias elevadas.

O espaço de escala com o gerador infinitesimal tem a desvantagem de ser caro computacionalmente para altas variâncias e de gerar o espaço de escala a partir de uma aproximação com a primeira derivada (método de Euler).

O método de espaços de escala com splines tem a desvantagem de não ser a solução da equação do calor discreta e não possuir as propriedades de semigrupo e causalidade. O custo computacional desse método é elevado se o denominador da escala racional é grande.

Um método não implementado é fazer convoluções (e consequentemente espaços de escala) a partir da transformada rápida de Fourier discreta (FFT), que é um modo matematicamente correto de implementar convoluções, sem erros de limitação de filtros de suporte infinito e ainda pode apresentar custo computacional vantajoso.

Referências

- [1] Anderson Mayrink da Cunha, Espaços de Escala e Detecção de Arestas, Dissertação de Mestrado, IMPA, Rio de Janeiro, Outubro de 2000. http://www.visgraf.impa.br/escala.html
- [2] Ralph Costa Teixeira, Introdução aos Espaços de Escala, Escola de Computação 2000, IME-USP, São Paulo, Julho 2000. http://www.visgraf.impa.br/Courses/eescala/index.html
- [3] Tony Lindeberg, Scale Space Theory in Computer Vision. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994
- [4] Rachid Deriche, "Recursively implementing the gaussian and its derivatives," Tech. Report 1893, Programme 4 - Robotique, Image et Vision, INRIA - Institut National en Informatique et en Automatique, April 1993.
- Unser, "Splines: [5] Michael aperfect fit for processing," signal and image IEEE Signal Processing Magazine, vol. 16,no. 6, pp. 22-38,November 1999. http://bigwww.epfl.ch/publications/unser9902.html
- [6] Yu-Ping Wang and S. L. Lee, "Scale-Space Derived From B-Splines," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 10, pp. 1040-1055, October 1998. http://wavelets.math.nus.edu.sg/~wyp/download_papers/Preprints.html
- [7] William H. Press et al., Numerical Recipes em C: the art of scientific computing. second ed., Cambridge University Press, New York, 1992.