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Resumo

Considere o seguinte processo de percolação dependente na rede Euclidiana tridi-

mensional,Z3: para cada coluna dessa rede que é paralela a um dos eixos co-

ordenados decidimos removê-la ou não de acordo com um certo parâmetro de-

pendendo apenas da sua direção. As colunas são removidas ou não de maneira

independente uma das outras e, após decidir-se o estado de cada uma delas, é

obtido um conjunto aleatório de sítios restantes, denominadossítios abertos. Esse

modelo apresenta dependências de alcance infinito que induzem propriedades in-

teressantes para o conjunto dos sítios abertos. Algumas delas não existem para

percolação de Bernoulli ou outros modelos em que as dependências são locais

ou mais fracas. É provado que, quando removem-se as colunas com alta prob-

abilidade, não há componentes conexas infinitas, quase certamente. Por outro

lado, caso elas sejam removidas com baixa probabilidade então tais componentes

passam a exisitir. Isso estabelece uma transição de fase para esse modelo. Tam-

bém mostra-se que a probabilidade da cauda relativa ao raio da componete conexa

contendo a origem decai exponencialmente quando ao menos dois dos parâmetros

são fixados grandes. Se, ao contrário, dois parâmetros são tomados relativamente

pequenos então a versão truncada dessa cauda tem decaimento, no máximo, poli-

nomial. Também prova-se que o número de componentes conexasna fase super-

crítica é, ou um, ou infinito.

Palavras chaves: Percolação dependente, transição de fase, decaimento de

conectividade.
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Abstract

We consider the following percolation process defined on theZ
3-lattice: For each

column that is parallel to one of the coordinate axis we decide whether to remove

it or not with a probability (or parameter) depending only onits direction. The

columns are removed or not independently, and after establishing the state of each

one of them we are left with a random subset of remaining sitescalledopen sites.

This model contains infinite-range dependencies that induce interesting properties

for the set of open sites. Some of them are not present in the Bernoulli percolation

or in percolation models having only local or weaker dependencies. It is proven

that, if the columns are removed with high probability then there are no infinite

components, almost surely. On the other hand, in case they are removed with low

probability, then such components indeed exist. This establishes the phase tran-

sition for this model. We also show that the tail distribution for the radius of the

open cluster containing the origin decays exponentially fast when at least two of

the parameters are fixed to be high. However, if two of the parameters are taken

relatively small, then the truncated version for this tail decays, at most, polynomi-

ally fast. We also prove that the number of infinite connectedcomponents in the

supercritical phase is either one or infinite, almost surely.

Keywords: Dependent percolation, phase transition, connectivity decay.
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Chapter 1

Introduction

1.1 Mathematical setting

We consider a sitepercolationprocess in which we remove the columns of theZ
3

lattice independently with intensity depending on their direction. More precisely,

we consider thecoordinate planes

P1 = {(x, y, 0); x, y ∈ Z}

P2 = {(x, 0, z); x, z ∈ Z}

P3 = {(0, y, z); y, z ∈ Z}

and, for eachi ∈ {1, 2, 3} we defineΩi = {0, 1}Pi endowed with theσ-field

generated by the cylinder sets that we denote byFi. We writeωi to indicate the

elements ofΩi. Fix pi ∈ [0, 1] and letPpi be the probability measure for which

{ωi(v); v ∈ Pi} are mutually independentBernoulli random variables with mean

pi. Take nowΩ1 × Ω2 × Ω3 with the productσ-field and the product measure

Pp1 × Pp2 × Pp3. This corresponds to take independently three two-dimensional

Bernoulli (or i.i.d.) site percolationprocesses each one defined in the correspond-

ing coordinate plane. A pointv ∈ Pi is said to beωi-openif ωi(v) = 1.

TakeΩ = {0, 1}Z3
with theσ-field generated by the cylinder sets and for a

site(x, y, z) ∈ Z
3 we define

ω(x, y, z) = ω1(x, y, 0)ω2(x, 0, z)ω3(0, y, z). (1.1)

1



2 CHAPTER 1. INTRODUCTION

Let p = (p1, p2, p3) and denote byPp the distribution of the random elementω

underPp1 × Pp2 × Pp3, i.e., for each eventA ∈ Ω let

Pp (A) = Pp1 × Pp2 × Pp3 ({ω ∈ A}) . (1.2)

We say that a site(x, y, z) ∈ Z
3 is ω-openor just open if ω(x, y, z) = 1.

Otherwise(x, y, z) is said to beω-closedor closed. The three dimensional per-

colation process with lawPp will be calledCoordinate Percolation onZ3. This

process clearly has infinite-range dependencies since, forinstance, knowing that

ω1(x, y, 0) = 0 implies thatω(x, y, z) = 0 for all z ∈ Z. The numberspi,= 1, 2, 3

will be called the parameters of the model. Our aim is to studythe connectivity

properties of the set of open sites inZ3 as the values of those components are

varied.

Remark1.1.

• We have definedω ∈ {0, 1}Z3
as a random element inΩ1 × Ω2 × Ω3.

However we will also refer to it as a process inΩ sampled by the measure

Pp.

• The processω could be defined without embedding the two-dimensional

percolation processes inZ3. However we prefer to do so in order to make

the arguments clearer geometrically.

• Sometimes, in order to simplify the notation, we may not distinguish be-

tweenPi andZ2. Thus if that is clear that we are referring to an element of

P1 we may write(x, y) instead of(x, y, 0). Similarly we may write(x, z)

for (x, 0, z) ∈ P2 and(y, z) for (0, y, z) ∈ P3.

For understanding the connectivity properties of this model it is useful to have

in mind the following picture: For each column that is normalto the planePi, toss

a coin having probabilitypi of landing head up. If it lands tail up then remove all

sites lying in that column. After performing all tosses independently and removing

the appropriate sites, declare all remaining sites to be open. Then we are left with

a random set of open sites that have lawPp.

Since we will need to use results on percolation theory for dimensions2 and3,

we give some definitions and state some results in general dimensiond. We write

Pp to refer to the measure describingBernoulli site percolationwith intensityp
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in Z
d. Denoting byη an element of{0, 1}Zd

, thenPp is the measure for which

the random variables{η(v); v ∈ Z
d} are mutually independent Bernoulli random

variables with meanp.

The origin ofZd and of the planesPi will be denoted by0. For a nonnegative

integern defineBd(n; v) = {w ∈ Z
d; |w − v|∞ ≤ n} theboxof radiusn around

v in Z
d where| · |∞ stands for thel∞-norm inZd. We writeBd(n) = Bd(n; 0).

The boundary of the boxBd(n; v) is ∂Bd(n; v) = {w ∈ Z
d; |w − v|∞ = n}. A

path inZd is a sequence of sitesΓ = {v0, v1, . . .} such that|vi+1 − vi| = 1 for all

i. We will also consider finite pathsΓ = {v0, v1, . . . vm} defined in the same way.

Given an elementη ∈ {0, 1}Zd

we say that the pathΓ is η-openor simply open

if η(v) = 1 for all sitesv ∈ Γ. For a pair of sites ofZd, v andw we denote by

{v ↔ w} the event that there is an open path starting atv and ending atw. In case

this event happens we say thatv is connected tow. For a setA ⊂ Z
d we define

{v ↔ A} = ∪w∈A{v ↔ w}. We also define{v ↔∞} = ∩∞n=1{v ↔ ∂Bd(n)}.
For a fixedη ∈ {0, 1}Zd

, the maximal connected components of open sites

of Zd are calledη-clustersor simply clusters. We denote byC(v) the cluster

containingv. Then{v ↔∞} = {|C(v)| =∞} corresponds to the event that the

sitev lies in an infinite cluster (here| · | stands for the cardinality of a set). For

the origin we simply writeC = C(0). Note thatC(v) is empty whenη(v) = 0.

Analogously we defineCi(v) theωi-cluster inPi containingv ∈ Pi.
For Bernoulli site percolation inZd we defineθ(p) = Pp({0 ↔ ∞}) and

pc(Z
d) = inf{p ∈ [0, 1]; θ(p) > 0}. It is well known that0 < pc(Z

d) < 1 for all

d ≥ 2 (see for instance, [Gri99, Theorem 1.10, page 14]). We then say that there

exists aphase transitionfor this model.

For the percolation model given by (1.1) we define the percolation function by

θ(p) = Pp({0 ↔∞}). For a givenp ∈ [0, 1]3 we say that there is percolation if

θ(p) > 0. Otherwise we say that there is no percolation. It is a simplefact that

the percolation function is increasing in each parameter, assumes the values zero

if some of them is equal to zero, and assume the value one if allof them are equal

to one. From now on we will restrict ourselves to the cases in whichpi > 0 for all

i.

The next theorem establishes the analogous result for our process.

Theorem 1.2. There existspc(Z2) ≤ p∗ < 1 such that ifpi > p∗ for all i ∈
{1, 2, 3} thenθ(p) > 0. On the other hand, ifpi ≤ pc(Z

2) andpj < 1 for two
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indicesi 6= j ∈ {1, 2, 3} thenθ(p) = 0.

Suppose that we restrict ourselves to the casep1 = p2 = p3 = p and define as

for the Bernoulli percolation,

pc = inf{p ∈ [0, 1]; θ((p, p, p)) > 0}

Then, as a consequence of the last theorem we have:pc(Z
2) ≤ pc ≤ p∗.

Theorem1.2 is proven in Chapter2. The proof is separated in two steps. In

Corollary2.4we show that there is no percolation for small values of the param-

eters, establishing thus the second statement of this theorem. The first statement

of this theorem is proven as a consequence of Theorem2.9. We will also show

thatpc ≤ [p′c(Z
2)]1/3 wherep′c(Z

2) stands for the critical probability for oriented

percolation onZ2. It is an interesting question whether or notpc > pc(Z
2). We

believe that this inequality holds, however we do not have a proof.

We say that a parameterpi is sub-critical (resp. supercritical) ifpi < pc(Z
2)

(resp. pi > pc(Z
2)). The next result establishes bounds for the decay rate of

the tail probability for the radius of the cluster containing the origin. Those rates

depend on the number of sub-critical and supercritical parameters.

Theorem 1.3. Consider the coordinate percolation process inZ
3. If at least two

parameters are sub-critical, then there exists a constantψ(p) > 0 such that

Pp

(

{0↔ ∂B3(n)}
)

≤ exp (−ψ(p)n) . (1.3)

On the other hand, if at least two of the parameters are supercritical while a third

one is non-zero then there are constantsα(p) > 0 andα′(p) > 0 such that

Pp

(

{0↔ ∂B3(n), |C| <∞}
)

≥ α′(p)n−α(p). (1.4)

The proof of equation (1.3) is given in Section3.1while the proof of equation

(1.4) appears at the end of Section3.2. For the latter, several block arguments are

used in order to constructω-open paths inZ3 with high probability. The details

are provided throughout Sub-sections3.2.1and3.2.2.

It has been proved by Menshikov [Men86] and by Aizenman and Barsky

[AB87] that for Bernoulli percolation inZd there is a constantψ(p) > 0 such

that

Pp

(

{0↔ ∂Bd(n)}
)

≤ exp (−ψ(p)n) (1.5)
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wheneverp < pc(Z). Equation (1.3) above gives the same behavior for our model

when (for instance) all the three parameters of the model aresub-critical. On those

cases we say that there isexponential decayfor the tail distribution for the radius

of the cluster of the origin.

On the other hand, if we set two of the parameters to be supercritical (but not

equal to one) while the third one is taken sub-critical, thenin view of Theorem1.2

there is no percolation thus equation (1.4) can be rewritten as

Pp

(

{0↔ ∂B3(n)}
)

≥ α′(p)n−α(p). (1.6)

This gives a quite different behavior for the sub-critical phase of our model when

compared to the Bernoulli percolation processes and we say that we havesub-

exponential decayfor the tail distribution of the radius of the cluster of the origin.

In fact the rate of decay for this tail distribution is at mostpolynomial. In particu-

lar, considering the case in which all the three parameters are equal to each other,

if pc > pc(Z
2) really holds then equations (1.3) and (1.6) would give us a change

in the rate of decay for those tail distributions within the sub-critical phase. This

behavior is not present in the Bernoulli case.

Equation (1.4) is also interesting for the supercritical regime of our model. In

fact, it follows from the works of Chayes, Chayes and Newman [CCN87] (see

also [Gri99, Chapter 8.4]) that for supercritical Bernoulli percolation inZ
d there

are positive constantsA(p, d) andσ(p) > 0 such that

Pp

(

{0↔ ∂Bd(n), |C| <∞}
)

≤ A(p, d)nd exp (−nσ(p)) .

Thus if one setspi > p∗ for all i ∈ {1, 2, 3} then by Theorem1.3 our model

exhibits a quite different kind of decay.

Although we expect thatpc > pc(Z
2) some techniques used in the proof of

Theorems1.2 and1.3 can be used to show that if we fix two parameters slightly

greater thanpc(Z2) and then set the third one to be high enough than there is

percolation. More precisely we have:

Theorem 1.4. Let pi, pj > pc(Z
2) for two indicesi 6= j ∈ {1, 2, 3}. Then there

exists aǫ > 0 (depending onpi andpj) such that if the third component ofp is

greater than1− ǫ thenθ(p) > 0.
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This result add some more information about the phase diagram of the model

and is proven in Chapter4. Note that this is equally good for proving the second

statement in Theorem1.2.

In percolation theory one is usually interested in studdingthe number of dis-

tinct infinite clusters. This is a random variable that we denote byN . We have

that

Theorem 1.5. Consider coordinate percolation onZ3. Almost surely underPp,

N is a constant random variable that takes values in the set{0, 1,∞}.

The proof for this theorem is given in the Chapter5. The fact thatN ∈
{0, 1,∞} has been proved before by Newman and Schulman [NS81a, NS81b]

for a class of percolation processes that are ergodic under the lattice translations

and that satisfies a property known asfinite energy condition. Intuitively this con-

dition states that it is possible to perform local changes inan event having positive

probability obtaining at the end an event that still have positive probability. Af-

ter that, Aizenman, Kesten and Newman [AKN87] showed that, for a broad class

of translation-invariant percolation processes inZ
d, there is at most one infinite

cluster. That includes the Bernoulli case and some long range percolation mod-

els. Some years later Burton and Keane [BK89] produced a simple proof for the

uniqueness of the infinite cluster, when it exists, for all translation-invariant mod-

els that have finite energy. This class of models include the Bernoulli percolation

process and the Ising model. Due to the fact that the measurePp have infinite

range dependencies it does not satisfy this condition, so wecannot apply their

results directly. However the measurePp1 × Pp2 × Pp3 have finite energy and we

use this fact in the proof of the result.

1.2 Related models

In the last section we have introduced theCoordinate Percolationand have stated

the main results that we will prove about this process. As they were stated we have

also compared them to their corresponding results for theBernoulli percolation.

Due to the dependencies that the coordinate percolation exhibits, in many situa-

tions those results are quite distinct from those availablefor Bernoulli percolation.

Also the proofs of many results such as the existence of a phase transition requires
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new ideas as we shall see in Chapter2. That is not peculiar to coordinate perco-

lation. In fact there are many important percolation modelsin which the state of

different sites may not be independent of each other, and usually, even to show

that a phase transition occurs or not for those models is a challenging question.

In this section we present a quick introduction to some of those models and state

some of their properties that have been proved by many different authors.

An example of the physically important dependent percolation is theRandom

Cluster modelthat couples Bernoulli percolation and thePotts model. Depen-

dencies also appears naturally when one wants to study the ocurrence of some

events in Bernoulli percolation by using someblock arguments. For that one starts

by dividing the original lattice into some (usually large) blocks in such a way

that the probability of observing some set of configuration within those blocks is

high. Blocks for which those configurations are observed will be called heregood

blocks. The main idea is to define a block to be good ‘carefully’ in order to guar-

antee that if there are sufficiently many good blocks then theoriginal event in the

initial scale will happen. We will use some block arguments in Chapter3.

For the kind of dependent percolation models mentioned in the previou para-

graph we have that the dependencies decay with the distance in the sense that

the configuration within two set of sites become almost independent as those sets

are taken to be far apart from each other. For models containing this kind of de-

pendencies we can use the general methods of Liggett, Schonmann and Stacey

[LSS97] and guarantee that some increasing events will occur by dominating the

process from below by a Bernoulli percolation process (see Section2.2.3for more

precise information).

However, as for the coordinate percolation, there are some important models

in which the dependencies may not decay with the distance. One notable example

is a model introduced by Winkler (see [Win00]) and commonly known asWinkler

percolation. This model was introduced in terms of colliding random walks as

follows: Consider a connected graphG and let{X(i)}i∈N and{Y (i)}i∈N be two

independent copies of a single random walk inG. The graphG is said to be

navigableif there is a positive probability of finding a pathγ lying in the positive

quadrant ofZ2 such that, for all(i, j) ∈ γ we have thatX(i) 6= Y (j). This is

equivalent to saying that one can delay or move back one or both random walks

in a clever way so that they still move arbitrarily forward onthe long rung without
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colliding to each other.

If we considerG = kn the complete graph withn vertices, then this problem is

equivalent to the following dependent percolation processin Z
2: For each colunm

and each row ofZ2
+, select uniformly at random and independently one number in

the set{1, . . . , k}. Declare a site to be open if the numbers assigned to its column

and its row are different. Then look for a path inZ2
+ composed only of open sites.

It it has been proved independently by Winkler [Win00] and Ballister, Bol-

lobás and Stacey [BBS00] that the graph is navigable whend ≥ 4. For applica-

tions in distributed computation one is mainly interested in restricting the pathsγ

to be oriented. If there is a postive probability of finding such paths then we say

that there is percolation. It has been conjectured by Winkler that there is a posi-

tive probability of finding such paths whenevern ≥ 4 and this conjecture remains

open in its full formulation. However, analogously to what is observed for our

coordinate percolation process onZ3 (see equation (1.4)) it has been proved by

Gacs [Gác00] that if there is percolation in the oriented case, then the probability

for the origin to be connect up to distancek but not to infinity decays at most

polynomially ink.

There exists also an example ofbond percolationmodel inZ2 in which the

state of each of its edge is determined by random variables indexed by the columns

and rows of this lattice: TheCorner Percolationmodel. More precisely we con-

sider two independent sequences ofi.i.d. Bernoulli random variables with param-

eter1/2: {η(i)}i∈Z and{ξ(j)}j∈Z. Let {(i, j), (i, j + 1)} be the ‘vertical’ edge

connecting the vertices(i, j) and(i, j + 1). We declare this edge to be open if

j is even andη(i) = 1 or if j is odd andη(i) = 0. Otherwise we declare this

edge to be closed. Similarly we declare each ‘horizontal’ edge{(i, j), (i+ 1, j)}
to be be open ifi is even andξ(j) = 1 or if i is odd andξ(j) = 0. This rules of

retention induces a random configuration of open edges such that for each site of

Z
2 there are exactely two open edges incident to it. Furthermore those two edges

are perpendicular to each other.

Corner percolation was introduced by Balint Tóth as a degenerate case of the

Six Vertex Modelalso known as theIce-Type Model, a very popular model in

statistical mechanics (see for instance [Bax82]). For that model, it was shown by

Pete [Pet08] that there is no percolation. In fact, he shows that all clusters are

finite cycles of open edges. He also computes exponents for the rate of decay of
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the tail probability for the diameter of the cycle containing the origin. In that case

the decay is polynomial and the exponent is shown to be equal to−(5−
√
17)/4.

Despite from the similarity with the Winkler percolation, the coordinate perco-

lation process that we have introduced in the last section was inspired by a rather

different depedent site percolation model calledRandom Interlacements. This

model was introduced in [Szn10] by Sznitman and consits of studing the vacant

set of sites of a Poisson point process in the space of double-infinite trajectories on

Z
d modulo time shifts. Loosly speaking it is the complement of aPoisson ‘soup’

of doubly-infinte trajectories of a random walk inZd for d ≥ 3. If the intensity

of the Poisson process is high one should expect that the vacant set of the ran-

dom interlacements contains no infinite connected components whereas for low

intensities such a component should appear. This means thatthe random inter-

lacements should exhibit a phase transition as the intensity of the Possion process

is varied. In fact, Sznitman [Szn10] and Sidoravicius and Sznitman [SS09] proves

that this phase transition takes place.

This process can be thought as a model for corrosion if one imagine that sites

are being removed as some corrosive particle diffuses into amedium performing

simple random walks. The vacant set can then be regarded as the set of sites that

have not been removed by the corrosive particle. Indeed, in [Win08] it shown that

if a random walk runs in a d-dimensional discrete torus up to atime proportinal to

its volume then the local picture left by the trace of that random walk converge to

the law of a random interlacement inZd.

What if instead of removing sites lying in the trace of some random walk, we

just remove sites in straight lines? If we remove straight lines that are parallel

to the axis independently we will just have the coordinate percolation process

discrebed in Section1.1.

Recently, also inspired by the random interlacements process, Tykeson and

Windisch [TW10] have considered the same sort of question in a continuum set-

ting defining aPoisson cylinderpercolation model. More precisely, they study the

percolative properties of the the vacant set of a thickeningof a Poisson process

defined on the space of lines inRd. Equivalently, their model consist in studing

the set of points ofRd that has not been covered by the union of all bi-infinite

cilynders having diameter one and having their axes given bythe lines in a re-

alisation of such a Poisson process. Note that, differentlyfrom our model, their
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model is isotropic (all directions are equivalent) and is defined for all dimension

d ≥ 3. For this model they are able to prove that there is a phase transition for all

d ≥ 4: If the intensity of underlying Poisson process is high thenthere is no per-

colation, while there is percolation if the intensity is sufficiently small. Although

they are able to prove that there is no percolation ford = 3 with high intensity it

is still open to prove that there is percolation for small intensities. In fact they also

show that for anyd ≥ 4, if the intensities are low enough then there is an infinite

connected component already in subspaces of dimension2. Ford = 3 this is not

the case: They show that the probability of having percolation on any subspace of

dimension2 vanishes.



Chapter 2

Phase transition

In this chapter we prove Theorem1.2, establishing thus the phase transition for

the model described in the previous chapter.

2.1 Absence of percolation for small parameters

Let πi : Z3 → Pi be the projection fromZ3 into Pi. Then equation (1.1) can be

rewritten as:

ω(v) =
∏

i=1,2,3

ωi (πi(v)) . (2.1)

Identifying a configurationω ∈ Z
3 with the set of its opens sitesω−1({1}) :=

{v ∈ Z
3; ω(v) = 1} and similarly for theωi andω−1

i ({1}) ∈ Pi this equation

shows thatπi(ω) ⊂ ωi. Furthermore, since the processesωi defined in each plane

Pi are independent Bernoulli percolation processes with parameterpi > 0, if w

is aωi-open site inPi, then the columnπ−1
i (w) has infinitely manyω-open sites

(Pp-almost surely). Thusωi = πi (ω) almost surely with respect toPp. Let

B2
i (n) = πi (B

3(n)) be the boxes of sizen in Pi and define the events:

Ai(n) = {ω ∈ Ω; πi(C(0)) contains a path connecting0 to ∂B2
i (n)}.

Note that, ifω ∈ Ai(n) thenωi ∈ {0↔ ∂B2
i (n)}.

Lemma 2.1. For anyv ∈ Z
3, πi (C(v)) is a connected subset ofCi (πi(v)). In

particular, if |Ci(0)| <∞ then{ω ∈ Ai(n)} does not happen for infinitely many

indicesn.

11
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I

x

y

I × {z1}

I × {z2}

C ′
P1

Figure 2.1: The blue setC ′ in the planeP1 representsπ1(C(0)). In red we have

theω2-closed segmentsI × {z2} andI × {z3} contained in the planeP2. The

ω-cluster at the origin has to be contained in thetubehaving the other two blue

sets as the top and bottom.

Proof. Let w′, w′′ ∈ πi (C(v)). Pick v′ ∈ π−1
i ({w′}) ∩ C(v) and v′′ ∈

π−1
i ({w′′}) ∩ C(v). SinceC(v) is connected there exists an open pathΓ =

{v1, . . . , vm} with v1 = v′ andv2 = v′′. We can considerΓ as being a contin-

uous curve inR3 by joining each pair of sites(vi−1, vi) by the line segment that

connect them. The projection of this curve intoPi is a continuous curve connect-

ingw′ andw′′ and containing only points inPi and the segments connecting them

soπi(Γ) is a path that connectsw′ to w′′. Since, in additionπi(ω) ⊂ ωi we have

that this path isωi-open.

Corollary 2.2. If ω ∈ {0↔ ∂B3(n)} then for at least two indicesi, j ∈ {1, 2, 3}
ω ∈ Ai(n)∩Aj(n). In particularωi ∈ {0↔ ∂B2

i (n)} andωj ∈ {0↔ ∂B2
j (n)}.

Proof. Let ω ∈ {0 ↔ ∂B3(n)}. Then there is anω-open pathΓ = {v1, . . . , vm}
such thatv1 = 0 andvm ∈ ∂B3(n). Let i be so thatπi(vm) ∈ ∂B2

i (n). By the

previous lemma,πi(C(0)) contains aωi-open path connecting0 to πi(vm) in Pi,
soω ∈ Ai(n). The proof is finished by noting that there are at least two possible

choices of indicesi such thatπi(vm) ∈ ∂B2
i (n).

We shall use Corollary2.2in order to prove that the origin cannot belong to an

infiniteω-cluster if some of theωi-clustersCi(0) is finite. The (informal) idea for

the proof is the following: Suppose thatC1(0) is finite. By the previous lemma,

the projection ofC(0) intoP1 is contained inC1(0), thenC(0) must be contained
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in the ‘tube’ π−1
1 (C1(0)). However, the projection of this tube intoP2 is a ‘strip’

S that have finite width. Then almost surely we will find someω2-closed paths

traversingS. This means that the tube will be cut above and beneath the planeP1

preventingC(0) from being infinite (see Figure2.1). More precisely:

Lemma 2.3. If eitherp2 6= 1, or p3 6= 1 then

Pp1 × Pp2 × Pp3 ({ω ∈ {0↔∞}} ∩ {|C1(0)| <∞}) = 0.

Proof. For simplicity, we fix for this proofp2 6= 1. We also writeP for the

measurePp1 × Pp2 × Pp3. Note that ifC1(0) = C ′ for a finite setC ′ ⊂ P1 then,

by Lemma2.1, A1(n) cannot happen forn larger than the diameter ofC ′. If in

addition{0 ↔ ∂B3(n)} happens forn larger than the diameter ofC ′ then, by

Corollary2.2, ω belongs toA2(n) ∩A3(n). So we have:

P ({ω ∈ {0↔∞}} ∩ {|C1(0)| <∞})

=
∑

C′⊂P1
|C′|<∞

P

(

∞
⋂

n=1

{

ω ∈ {0↔ ∂B3(n)}
}

∩ {C1(0) = C ′}
)

≤
∑

C′⊂P1
|C′|<∞

P

(

lim sup
n
{ω ∈ A2(n) ∩ A3(n)} ∩ {C1(0) = C ′}

)

≤
∑

C′⊂P1
|C′|<∞

lim
n→∞

P ({ω ∈ A2(n)} ∩ {C1(0) = C ′}) .

(2.2)

Let us fixC ′ ⊂ P1 a finite connected set. LetI = {x ∈ Z; ∃ y ∈ Z such that

(x, y) ∈ C ′} and letS = {(x, z) ∈ P2; x ∈ I} (see Figure2.1). Note thatI is a

finite set of integers and that, by Lemma2.1, if C1(0) = C ′ thenπ1(C(0)) ⊂ C ′.

Thus we have that

π1 (π2(C(0))) = π2 (π1(C(0))) ⊂ I × {0} := {(x, 0) ∈ P2; x ∈ I} ⊂ P2

and, in particular,π2(C(0)) ⊂ π−1
1 (I × {0}) = S. Then it follows that

{ω ∈ A2(n)} ∩ {C1(0) = C ′} ⊂
{

0↔ ∂B2
2(n) in S

}

,

where the event on the right hand side is a cylinder inP2. Thus

lim
n→∞

P ({ω ∈ A2(n)} ∩ {C1(0) = C ′}) ≤

lim
n→∞

Pp2

(

{0↔ ∂B2
2(n) in S}

)

= 0,
(2.3)
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where the fact that the limit in the right hand side is zero canbe justified with

the following argument: sincep2 < 1, thenPp2-almost surely there are (random)

integersz1 < 0 andz2 > 0 such that thesegmentsI × {z1} andI × {z2} are

ω2-closed so that{0↔ ∂B2
2(n) in S} cannot happen ifn > max{−z1, z2}.

The proof is now completed by plugging equation (2.3) into (2.2).

Of course we can choose any combination of indices other that1 and2 for the

statement of the last lemma. Recall that ifpi < pc(Z
2) then the event{|Ci(0)| <

∞} has probability one underPpi. Then a direct application of the last lemma

gives us the proof of the second statement in Theorem1.2that we state as a corol-

lary.

Corollary 2.4 (Second statement in Theorem1.2). If for i 6= j ∈ {1, 2, 3} we

have thatpi 6= 1 andpj < pc(Z
2) thenPp ({0↔∞}) = 0.

2.2 The existence of the supercritical phase

2.2.1 Directed paths inPi and their ‘lifts’

An argument similar to that in the proof of Lemma2.3 can be used in order to

show that the probability of percolation within any slab ofZ
3 is zero (this is true

if, for instance, at least parameters amongp1, p2 andp3 are different from one, re-

gardless of how high they are chosen). However, that is not the case for Bernoulli

percolation. In fact Grimmett and Marstrand [GM90] have shown that the criti-

cal value for the Bernoulli percolation process restrictedto a slab of thicknessk

converges topc(Zd) ask goes to infinity. The fact that this does not hold for our

model restricts the tools that can be used in order to study the properties of the

supercritical phase of this model. In particular, in order to prove that this super-

critical phase indeed exists it is hopeless to look for infiniteω-components lying

in any coordinate planePi or in a slab ofZ3. Instead we construct a sort of ori-

ented subgraph ofZ3 in which we can forget about the strong dependencies of the

original process. We begin the construction in this sectionwhere we define what

is adirected pathand itslift .

We say that a pathΓ = {v0, v1, v2, . . .} ⊂ Z
2 is a directed pathif vn+1 ∈

{vn + (0, 1), vn + (1, 0)} for all n ≥ 0. Similarly we define the directed paths in
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eachPi using the identification withZ2 as in Remark1.1.

Let Γ = {v0, v1, v2, . . .} ⊂ Pi be a infinite directed path havingv0 = 0. Fix

n−1 = −1, n0 = 0 and for each integerj ≥ 1 set

nj = inf {n > nj−1 ; 〈vn − vn−1, vn+1 − vn〉 = 0}

where〈· , ·〉 stands for the restriction of the inner product ofR
3 toPi. Informally,

those are the indices for which one have to turn by an angle of90 degrees when

going along the pathΓ. DefiningΓj =
⋃

nj−1<n≤nj
{vn} thenΓ =

⋃∞
j=0 Γj . Since

theΓj are disjoint this induces a partition ofΓ into ‘straight segments’.

For a finite integerM we say thatΓ isM-directedif

sup{nj − nj−1; j ∈ Z} ≤M.

In this case we have that each ‘segment’Γj contains at mostM sites. IfΓ is a

infinite M-directed path, then for each integert ≥ 0 there is a uniqueΓ(t) ∈ Z

such that(t,Γ(t)) ∈ Γ. We say thatΓ′ is lower thanΓ if for each t we have

Γ′(t) ≤ Γ(t). For any collection of infiniteM-directed paths there exists the

lowest pathin this family defined as the pathL = {(t, L(t)); t ≥ 0} whereL(t) is

the minimum ofΓ(t) asΓ runs over all paths in the collection.

For each directed pathΓ ⊂ Pi let us define itslift Γ̃ as being the subgraph of

Z
3 given by:

Γ̃ = π−1
i (Γ) .

It can be visualized as a copy of theZ2-lattice that has been alternately folded left

and right at the columnsπ−1
i (vnj

) by an angle of90 degrees and then embedded in

Z
3 in such a way that its projection intoPi is exactlyΓ (see Figure2.2). Defining,

for eachj, Γ̃j = π−1
i Γj thenΓ̃ =

⋃∞
j=1 Γ̃j is a partition into the disjointstripsΓ̃j.

We conclude this section proving that if we choosepi to be high enough then,

underPpi, the probability that there exists an infiniteM-directed open path start-

ing from the origin is positive. For that we use some simpleoriented percolation

arguments in a rescaled lattice. In our context oriented percolation onZ2 (or in any

lattice isomorphic to it) will consist in looking for the existence of infinite directed

paths in configurations sampled fromPp (or the in the corresponding measure for

other lattices) and in studying the properties of those paths and of the connected

components emerging from the model. As for ordinary Bernoulli percolation, it
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(a) (b)

vn5
vn3

vn6

x

Γ̃4

vn0

Γ

π1

y

z

Γ̃

Γ̃3

vn2
vn4

vn6

vn5

vn3

vn1

vn2

vn4

vn0

vn1

Γ̃6Γ̃5

ψ(v)v

Γ̃1 Γ̃2

Figure 2.2: (a) The directed pathΓ and the graph̃Γ; (b) the graph̃Γ is isomor-

phic toZ2.

is well known that this model also exhibits a phase transition: there exists a crit-

ical value0 < p′c(Z
2) < 1 such that the probability of finding such paths is zero

for eachp < p′c(Z
2) while it is strictly positive for anyp > p′c(Z

2). For more

information on oriented percolation see [Dur84].

When considering oriented percolation we restrict the kindof allowable paths

it is harder for the origin to percolate, sop′c(Z
2) ≥ pc(Z

2). If we increase further

the restriction on the paths and look for the existence of infiniteM-directed paths

then it is intuitively clear that, as we increase the value ofthe parameterp, there

might exist some threshold above which the probability of finding such a path

starting from the origin is positive. Next we outline an argument for proving this

fact forM = 2 that we state in Proposition2.5. The reader who accepts this fact

can skip the discussion below going to Section2.2.2.

Let Z2
∗ = {(x + 1/2, y + 1/2); x, y ∈ Z} be thedual latticeof Z2. We

identify each site ofZ2 with the uniquefaceof Z2 having this site lying in its

center. Consider the following subset

L =
{

(x+ 1/2, y + 1/2 ∈ Z
2
∗; x+ y = 3k, k = 0, 1, 2, . . . andy/2 ≤ x ≤ 2y

}

and add directed edges connecting each face(x+ 1/2, y + 1/2) ∈ L to the faces
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(a) (b) (c)
faces and

associated sites
open faces

y = 2x

0 642

8

6

4

2

y = x/2

8

Figure 2.3: (a) The regionL with an oriented path of open faces; (b) The corre-

sponding oriented path onZ2
∗ (c) The corresponding oriented path of associated

sites ofZ2.

((x+ 2) + 1/2, (y + 1) + 1/2) and((x+ 1) + 1/2, (y + 2) + 1/2). Note that this

lattice is isomorphic to the positive quadrant of theZ
2-lattice endowed with ori-

ented arcs connecting its sites (see Figure2.3,(a) and (b)).

We say that a face(x+ 1/2, y + 1/2) ∈ Z
2
∗ is openif the sites(x, y), (x+1, y)

and(x + 1, y + 1) are all open. Those sites will be called thesites associatedto

the given face. Thus we have thatPp ({(x+ 1/2, y + 1/2) is open}) = p3. It

follows that if we setp > [p′c(Z
2)]

1/3 then thePp-probability of finding an infinite

directed path of open faces inL is positive. Now if we fix such an infinite path and

look to the set of sites associate to each face in it, then we find a infinite2-directed

open path inZ2 (see Figure2.3(c)). From the discussion in the previous we have

proved the following proposition:

Proposition 2.5. Letp > [p′c(Z
2)]

1/3. Then

Pp ({∃ an infinite2-directed open path starting at0}) > 0. (2.4)

2.2.2 Restriction to the lift of directed paths

A random elementX defined in{0, 1}Zd

is called aK-dependent percolation if

wheneverA,B ⊂ Z
d are two sets lying atl1-distance greater thenK apart from

each other then the families{X(v)}v∈A and{X(v)}v∈B are independent. The
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notion of aK-dependent percolation process is extended to other graphsnaturally

by considering the graph distance on them.

We will consider the processω restricted tõΓ. The point in doing so is that if

we writeω(w) = ω1(π1(w))η(w) whereη(w) = ω2(π2(w))ω3(π3(w)) thenη is a

M-dependent percolation oñΓ.

For a matter of concreteness, from now on we fixΓ = {v0, v1, v2, . . .} ⊂ Pi a

M-directed path satisfying

v0 = (0, 0, 0) and v1 = (1, 0, 0) (2.5)

For each sitew ∈ Γ̃ let j(w) be the unique index such thatw ∈ Γ̃j andk(w)

be the unique index such that

π1(w) = vk(w) (2.6)

A sitew ∈ Γ̃ will be uniquely represented as

w = (k(w), h(w)) (2.7)

whereh(w) is the value of thez-coordinate ofw, which we call theheightof w

(see Figure2.2).

Set, on the one hand,l′(w) = 2 if j(w) is odd andl′(w) = 3 if j(w) is even

and, on the other hand,l′′(w) = 2 if j(w) is even andl′′(w) = 3 if j(w) is odd.

Then define the following random fields iñΓ:

ω′(w) = ωl′(w)
(

πl′(w)(w)
)

(2.8)

ω′′(w) = ωl′′(w)
(

πl′′(w)(w)
)

(2.9)

Using the definitions ofl′, l′′ and equations (2.6), and (2.8) we can rewrite

equation (2.1) as

ω(w) = ω1(vk(w))ω
′(w)ω′′(w) = ω1(vk(w))η(w) (2.10)

whereη is the percolation process iñΓ given by

η(w) = ω2(π2(w))ω3(π3(w)) = ω′(w)ω′′(w). (2.11)

Next we show that the processesω′ is a Bernoulli percolation process inΓ.
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Proposition 2.6. LetΓ ⊂ P1 be aM-directed path satisfying the condition (2.5)

and setp2 = p3 = p. Then underPp, the processesω′ defined oñΓ by (2.8) is a

Bernoulli site percolation with parameterp.

Proof. Since the mappingw 7→ πl(w)(w) from Γ̃ ontoP2 ∪ P3 is injective, we

have that{ω′(w)}w∈Γ̃ is a random field defined in terms of a collection ofi.i.d.

Bernoulli random variables having meanp (underPp). Thus it is a Bernoulli site

percolation with parameterp.

Using the last result we can characterizeη as aM-dependent percolation on

Γ̃.

Proposition 2.7. LetΓ ⊂ P1 be aM-directed path satisfying the condition (2.5),

and setp2 = p3 = p. Then underPp, the processη defined oñΓ by (2.11) is a

M-dependent percolation process withPp ({η(w) = 1}) = p2.

Proof. Recall the representation for the sites inΓ̃ given by equation2.7. Let ψ

be the mapping from̃Γ onto itself defined byψ(w) =
(

nj(w)−1, h(w)
)

. In words,

if w belongs to the strip̃Γj thenψ(w) is the site lying in thecorner of the strip

Γ̃j−1 that shares the same height withw. Note that, sinceΓ isM-directed then the

(graph) distance betweenw andψ(w) in Γ̃ is at mostM . The projection ofψ(w)

intoPl′(ψ(w)) is the same as the projection ofw intoPl′′(w), thus

ω′′(w) = ωl′′(w)
(

πl′′(w) (w)
)

= ωl′(ψ(w))
(

πl′(ψ(w)) (ψ(w))
)

= ω′(ψ(w)).

Plugging the last equation into (2.11) we have that

η(w) = ω′(w)ω′(ψ(w)). (2.12)

By equation (2.12) theη(w) is determined by the value ofω′ in w itself and in

ψ(w). Sinceω′ has been shown to be a Bernoulli percolation process inΓ̃ we get

thatη is aM-dependent percolation process inΓ. Furthermore, we have that

Pp ({η(w) = 1}) = Pp2 × Pp3 ({ω′(w)ω′′(w) = 1})
= Ppl′(w)

× Ppl′′(w)

({

ωl′(w)
(

πl′(w)(w)
)

ωl′′(w)
(

πl′′(w)(w)
)

= 1
})

= Ppl′(w)

({

ωl′(w)
(

πl′(w)(w)
)

= 1
})

×
Ppl′′(w)

({

ωl′′(w)
(

πl′′(w)(w)
)

= 1
})

= pl′(w)pl′′(w) = p2p3 = p2.
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Remark2.8.

• If we do not requirep2 to be equal top3 then the marginals ofω′ are still mu-

tually independent Bernoulli random variables, however they can have mean

equal top2 or to p3 depending on which strip̃Γj they lie in. Furthermoreη

is still aM-dependent percolation process withPp ({η(w) = 1}) = p2p3.

• The fundamental assumption required in order for the proof of Proposition

2.7 to work is thatΓ isM-directed. The condition (2.5) not essential at all

and was only introduced in order to enable us to introduce theprocesses

in (2.8). In caseΓ does not satisfy this constraint then we would need to

interchange the roles ofl′ and l′′ in the definition of these processes and

Proposition2.7would still hold.

2.2.3 Proof of Theorem1.2

We are now in the position to prove the existence of percolation if the parameters

are taken to be high enough. This will complete the proof of Theorem1.2.

We can assign a partial order to the set{0, 1}Zd

by definingη ≤ η′ if η(v) ≤
η′(v) for all v ∈ Z

d. A random variableX defined on{0, 1}Z is said to be in-

creasing ifX(η) ≤ X(η′) wheneverη ≤ η′. An eventA ⊂ {0, 1}Zd

is said to be

increasing if1A is increasing. Instances of increasing events are{0 ↔ ∂Bd(n)}
and{0 ↔ ∞}. If µ andµ′ are two Borel measures on{0, 1}Zd

we say thatµ′

dominates stochasticallyµ if µ′(A) ≥ µ(A) for all increasing eventA.

We will use the following result on dependent percolation processes onZd

due to Liggett, Schonmann and Stacey: If the process satisfythat, conditioned

on what happens outside a given neighborhood of each site, the probability of

having that site open is large enough then this process dominates stochastically

a Bernoulli percolation process with positive density. Furthermore the density of

the dominated Bernoulli percolation can be made arbitrarily close to one provided

that the conditional probability referred above is made sufficiently close to one

(see [LSS97, Theorem 0.0] for the precise statement). Note that this result apply

in particular to the class ofM-dependent percolation processes.

Theorem 2.9. Suppose thatp1 > [p′c(Z
2)]

1/3. Then exists somep0 ∈ (0, 1) such

that if pj > p0 for j = 2, 3 thenPp ({0↔∞}) > 0.
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Proof. We denoteP = Pp1 × Pp2 × Pp3 andE the expectation with respect toP.

LetA1 be the event that there is an infinite2-directed path starting from the origin

in P1 and satisfying condition (2.5). By Proposition2.5 we have thatP(A1) =

Pp1(A1) > 0. On the event that such paths exist letΓ be the lowest path among

them and let̃Γ be its lift. Then

Pp ({0↔∞}) = P (ω ∈ {0↔∞})
= E (P (ω ∈ {0↔∞} | F1))

≥ E

(

P

(

ω ∈
{

0↔∞ in Γ̃
}

,A1

∣

∣

∣
F1

))

= E

(

1A1P

(

ω ∈
{

0↔∞ in Γ̃
}
∣

∣

∣
F1

))

(2.13)

However, for almost allω1 ∈ A1,

P

(

ω ∈
{

0↔∞ in Γ̃
}
∣

∣

∣
F1

)

(ω1) = Pp2 × Pp3

(

η ∈ {0↔∞ in Γ̃(ω1)}
)

,

(2.14)

where, for eachω1 the random fieldη = η(ω1) is defined iñΓ = Γ̃(ω1) by (2.11).

Since, for eachω1 ∈ A1, Γ(ω1) is a 2-directed path, by Proposition2.7, we

have that the processη is a2-dependent percolation process inΓ̃ with

Pp2 × Pp3 ({η(w) = 1}) = p2p3 → 1

asp2 andp3 approach1 simultaneously. Letp > pc(Z
2) and denote byµ the

measure corresponding to Bernoulli percolation onΓ̃(ω1) with densityp. Recall

that by the representationw = (k(w), h(w)) for w ∈ Γ̃ (see equation2.7) for

eachω1 ∈ A1 the graph̃Γ(ω1) is isomorphic toZ2
+ = {(x, y) ∈ Z

2; x ≥ 0}. In

addition, by the fact thatpc(Z2) = pc(Z
2
+ (see [Har60] and [Fis61]) we have that

µ describes a supercritical site percolation process. By Theorem 0.0 in [LSS97]

one can find ap0 large enough such that ifp2 andp3 are both greater thanp0 then

the distribution of the processη dominatesµ. It follows that

Pp2 × Pp3

(

η ∈ {0↔∞ in Γ̃(ω1)}
)

≥ µ
(

{0↔∞ in Γ̃(ω1)}
)

> 0.

Plugging this inequality into equation (2.14) and then substituting in equation

(2.13) yields thatPp ({0↔∞}) > 0.



22 CHAPTER 2. PHASE TRANSITION

The last result gives:

Proof of Theorem1.2. The second statement in Theorem1.2is given by the Corol-

lary 2.4. Settingp∗ = max{[p′c(Z2)]1/3, p0} and using Theorem2.9we see that if

all componentspi are greater thanp∗ thenPp(ω ∈ {0 ↔ ∞}) > 0. This proves

the first statement in Theorem1.2.

2.2.4 Upper bound forpc

Using the formula forη it is possible to show that the parameterp0 in the state-

ment Theorem2.9 can be chosen to be equal to[pc(Z2)]
1/3. This gives an upper

bound forpc. We outline the argument that leads to this conclusion usingthe same

notation as in the previous proof.

We fix p1 > [p′c(Z
2)]

1/3 andp2 = p3 = p wherep will be chosen afterwards.

Fix ω1 ∈ A1 and letΓ̃ = Γ̃(ω1) be the lift of the lowest infinite2-directed open

path starting at the origin ofP1 and use the representationw = (k(w), h(w))

for w ∈ Γ̃. We construct a partition of̃Γ into blocks of three sites̃Γ(3) =

{R(j, h); j ≥ 0, h ∈ Z}, whereR(j, h) = {w ∈ Γ̃; h(w) = h, 3j ≤ k(w) <

3(j + 1)}. In order to viewΓ̃(3) as a subgraph we will add an edge between two

blocksR(j, h) andR(j′, h′) if |j′ − j|+ |h′ − h| = 1. For a fixedω ∈ Ω a block

R is said to be good ifω′(w) = 1 for all w ∈ R. Recall the definition ofω′ in

(2.8). From Proposition2.6, if p2 = p3 = p then this process is a Bernoulli perco-

lation process iñΓ. Define the processX = {X(R(j, h)); j ≥ 0, h ∈ Z} where

X(R(j, h)) = 1{R(j,h) is good}. ThenX represents the process of good blocks in

Γ̃(3) and is described by a Bernoulli percolation measure with density p3. Thus,

settingp > [pc(Z
2)]

1/3, the probability of finding an infinite path of good blocks

in Γ(3) starting from the blockR(0, 0) is strictly positive. Recall that the process

η, given by equation (2.11) is obtained by multiplyingω′(ψ(w)) andω′(w). Since

the graph distance betweenψ(w) andw in Γ̃ is at most2, and each good block

R(j, h) is composed of three neighboringω′-open sites we have that: to each path

of good blocks starting atR(0, 0) that corresponds at least one path ofη-open sites



2.2. THE EXISTENCE OF THE SUPERCRITICAL PHASE 23

starting at the sitew0 = (k(w0), h(w0)) := (2, 0). Then,

Pp2 × Pp3

(

η ∈
{

0↔∞ in Γ̃(ω1)
})

≥ (2.15)
[

Pp2 × Pp3

(

η ∈
{

0↔ w0 in Γ̃(ω1)
})]

× (2.16)
[

Pp2 × Pp3

(

η ∈
{

w0 ↔∞ in Γ̃(ω1)
})]

> 0 (2.17)

where the first inequality comes from the Harris-FKG inequality and the second

one comes from the fact that both events in its left hand site have positive proba-

bility. Note that this is the same conclusion obtained in equation (2.14).

By the results of Harris [Har60] an Fisher [Fis61], if p ≥ pc(Z
2) then the con-

figurations of Bernoulli site percolation inZd have, almost surely, the following

property: There exists a nested sequence of open semi-circuits in the semi-space

{(x, y); x ≥ 0, y ∈ Z} connecting{(y, 0); y > 0} to {(y, 0); y < 0}.
Translating this result to the processX(R(j, h)) we see that there exists (al-

most surely) a sequence of nested open semi-circuits linking the set{R(0, y); y >
0} to {R(0, y); y < 0} in Γ̃(3). To each such sequence there corresponds a nested

sequence of semi-circuits ofη-open sites iñΓ connecting{w ∈ Γ̃; k(w) =

2, h(w) > 0} to {w ∈ Γ̃; k(w) = 2, h(w) < 0}. Since any infinite cluster

in Γ̃ would have to intersect an infinite number ofη-open circuits, the existence

of such a sequence of circuits assures the uniqueness of theη-cluster inΓ̃. In ad-

dition, the fact that all sites inπi(Γ̃) areω1-open, yields that the infiniteη-cluster

is contained in an infiniteω-cluster. In particular, the infinite open cluster in the

restriction of the processω to Γ̃ is also unique.

Remark2.10. The discussion in the last paragraph does not imply the uniqueness

for the infiniteω-cluster when it exists.

Proposition 2.11. If ω1 ∈ A1 andpi > (pc(Z
2))

1/3 for i = 1, 2, 3 then

Pp2 × Pp3

(

η ∈
{

0↔∞ in Γ̃(ω1)
})

> 0.

Moreover, in the event
{

η ∈ {0↔∞ in Γ̃(ω1)}
}

the infinite open cluster ofω

restricted toΓ̃(ω1) is unique. In particular, ifpi > [p′c(Z
2)]1/3 for all i = 1, 2, 3,

then

Pp ({0↔∞}) > 0.
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As a simple consequence of the last proposition and from Proposition2.3we

highlight the next simple bounds for the critical pointpc.

Corollary 2.12. For the coordinate percolation process given by (1.1) with p1 =

p2 = p3 the critical parameterpc satisfy:

pc(Z
2) ≤ pc ≤

[

p′c(Z
2)
]1/3

. (2.18)



Chapter 3

The radius of the open cluster at the

origin

In this chapter we prove equation (1.3) establishing thus the exponential decay for

the tail distribution of the cluster containing the origin for the coordinate percola-

tion process inZ3 when at least two parameters of the model are sub-critical. We

also prove equation (1.4) establishing that the rate of decay is at most polynomial

when at least two of the components ofp are super-critical. Those two results

give Theorem1.3.

3.1 Exponential decay

The proof of equation (1.3) is a consequence of Corollary2.2 and from Men-

shikov’s [Men86] and Aizenman and Barsky [AB87] results on the exponential

decay for Bernoulli percolation (see equation (1.5)). The idea is the following:

Suppose that the the event{ω ∈ {0 ↔ ∂B3(n)}} happens. Then, for at least

one indexi such thatωi is a sub-critical Bernoulli percolation inPi, the event

{0 ↔ ∂B2
i (n)} will also happen. Applying equation (1.5) yields the result. We

state that result as the following proposition:

Proposition 3.1 (First statement in Theorem1.3). Consider the coordinate per-

colation model inZ3. If at least two parameters are sub-critical then there is a

constantψ(p) such that

Pp

(

{0↔ ∂B3(n)}
)

≤ exp (−ψ(p)n) . (3.1)

25
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Proof. By Corollary2.2, if {0↔ ∂B3(n)} occurs, thenωj ∈
{

0↔ ∂B2
j (n)

}

for

at least two different indicesj ∈ {1, 2, 3}. Then, writingP for Pp1 × Pp2 × Pp3

we have:

Pp

(

{0↔ ∂B3(n)}
)

≤
∑

A⊂{1,2,3}
|A|=2

P
(

ωj ∈
{

0↔ ∂B2
j (n) for all j ∈ A

})

(3.2)

Any fixed subsetA ⊂ {1, 2, 3} with |A| = 2 must contain an indexj such that

ωj is a sub-critical Bernoulli site percolation process inPi. Fixe, for convenience,

p2 andp3 the sub-critical parameters ofp and defineα(p) = min{ψ(p2), ψ(p3)}
whereψ(p2) andψ(p3) are given by equation (1.5) applied to the percolation

process inP2 andP3 respectively. By equation (1.5) we have that:

P
(

ωj ∈
{

0↔ ∂B2
j (n) for all j ∈ A

})

≤ exp (−α(p)n) .

Plugging that into equation (3.2) yields:

Pp

(

{0↔ ∂B3(n)}
)

≤ 3 exp (−α(p)n) .

We can then choose suitably an0 < ψ(p) < α(p) for which equation (3.1) holds

for all n.

3.2 Polynomial decay

3.2.1 Crossing events in a block lattice

In this section we derive some results about crossing eventsin some rescaled lat-

tices isomorphic toZ2. Those rescaled lattices will be composed of blocks of sites

from Z
2 or Z3. If the configuration within those blocks satisfies some convenient

properties (to be defined latter) we will say that the block isgood. The existence

of crossings of good blocks in the rescaled lattices will be important in the next

sections where we will use them in order to assure the existence of some long

open paths in the originalZ3-lattice.

Let R(n,m) = {(x, y) ∈ Z
2; 0 ≤ x ≤ n − 1, 0 ≤ y ≤ m − 1} be

the rectangle having the origin ofZ2 as its bottom-left corner and horizontal and
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vertical sides containingn andm vertices respectively. A path of nearest-neighbor

sites traversing this rectangle from its left side to its right side will be called aleft-

to-right crossingor acrossing from left to rightin R(n,m). Similarly we define

abottom-to-top crossingor acrossing from bottom to topin R(n,m). For a given

ω ∈ Ω we say that a crossing is open if all of its sites areω-open. Define the

following crossing events

A(n,m) = {there is an open left-to-right crossing inR(n,m)}
B(n,m) = {there is an open bottom-to-top crossing inR(n,m)}.

(3.3)

For l, k ∈ Z we defineR(n,m; k, l) = R(n,m) + {(kn, lm)} and denote by

A(n,m; k, l) andB(n,m; k, l) the crossing events inR(n,m; k, l) that are ana-

loguous to the ones in (3.3). Moreover, in order to refer to the analogue of the

rectanglesR(n,m; k, l) that lie onPi and the analogue of the crossing events

in {0, 1}Pi we writeRi(n,m; k, l), Ai(n,m; k, l) andBi(n,m; k, l) respectively.

Whenn = m we may drop the indexm and write for instanceR(n; k, l) for

referring toR(n, n; k, l).

Let a ∗-path inZ
2 be a sequence{v0, v1, . . . , vr} of sites such that|vj −

vj−1|∞ = 1 for all j = 1, . . . , r (where| · |∞ stands for thel∞-distance inZ2).

Denote byA∗(n,m; k, l) the event that there exists a∗-path crossingR(n,m; k, l)

from left-to-right having all its sites closed. Similarly define the analogous events

B∗(n,m; k, l) for bottom-to-top crossings. It is well known in percolation theory

thatB(n,m; k, l) happens if and only ifA∗(n,m; k, l) does not happen.

If now Z
2
∗ stands for the graph with vertex setZ

2 and with an edge between

each pair of vertices lying atl∞-distance one from each other andpc(Z2
∗) the

critical density for Bernoulli percolation on this lattice, then we have thatpc(Z2)+

pc(Z
2
∗) = 1 (see [Rus81] for a proof). Thusp > pc(Z

2) implies that1−p < pc(Z
2
∗)

so by Menshikov’s and Aizenman and Barsky Theorem there is a constantψ =

ψ(p) > 0 such that for alln,

Pp ({there is a∗ -path of closed sites from0 to ∂B(n)}) ≤ e−ψ(p)n. (3.4)

For a real numbera let us define⌈a⌉ = min{n ∈ Z; n ≥ a} the least integer

greater thana and⌊a⌋ = max{n ∈ Z; n ≤ a} the greatest integer smaller than

a. Fix a constantc > 0. Note that the probability that there is a closed∗-path

connecting some fixed site in the left side ofR(⌈c logn⌉, n) to some other site
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lying in the right side of this rectangle is at most equal to the the probability that

the origin is connected to the boundary of a box of radius⌈c logn⌉ by a closed

∗-path. Then using equation (3.4) we have that:

Pp (B (⌈c log n⌉, n)) = 1− Pp (A∗ (⌈c logn⌉, n))
≥ 1− ne−ψ(p)c logn = 1− n1−cψ(p)

(3.5)

where the factorn appears since we haven choices for the starting points of a

crossing inR (⌈c logn⌉, n). Now if we fix c > ψ(p)−1 equation (3.5) yields,

lim
n→∞

Pp (B (⌈c logn⌉, n)) = 1. (3.6)

In particular, for any integerk > 0,

lim
n→∞

Pp (A (kn, n)) = lim
n→∞

Pp (B (n, kn)) = 1. (3.7)

Let Γ̃n(j, l, h) = {(x, y, z) ∈ Z
3; jn ≤ x ≤ (j + 1)n − 1, ln ≤ y ≤

(l+1)n− 1, hn ≤ z ≤ (h+1)n− 1}. Note that̃Γn(j, l, h) ⊂ Z
3 areblockswith

siden and satisfyπ1
(

Γ̃n(j, l, h)
)

= R1(n; j, l), π2
(

Γ̃n(j, l, h)
)

= R2(n; j, h)

andπ3
(

Γ̃n(j, l, h)
)

= R3(n; l, h). We defineΛn = {Γ̃n(j, l, h); j, l, h ∈ Z}
and introduce a graph structure toΛn by inserting an edge between two blocks

Γ̃n(j, l, h) andΓ̃n(j′, l′, h′) whenever|j − j′| + |l − l′| + |h− h′| = 1. Note that

when seen as a graph,Λn is isomorphic to theZ3-lattice.

A block Γ̃n(j, l, h) is said to begoodif the following event happens:

[A2(2n, n; j, h) ∩ B2(n, 2n; j, h)] ∩ [A3(2n, n; l, h) ∩ B3(n, 2n; l, h)] ,

By the Harris-FKG inequality and by equation (3.7) we have that

Pp2 × Pp3

(

Γ̃n(j, l, h) is good
)

≥

[Pp2 (A2(2n, n; j, h))]
2 × [Pp3 (A3(2n, n; l, h))]

2 −→ 1

asn gets large. So, choosingn large enough, we can assume that the probability

of a block to be good is high. More specifically we have:

Lemma 3.2. Let u ∈ [0, 1). Suppose thatp2, p3 > pc(Z
2). Then there is an

integern = n(p2, p3, u) such that

Pp2 × Pp3

(

Γ̃n(j, l, h) is good
)

≥ u. (3.8)
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Figure 3.1: The blockΓ̃n(3, 3, 3) is a good block. In the left picture we see the

definitions of the pathsξi(3, 3) andζi(3, 3) for i = 2, 3. In the right we represent

the setR̃n(c log k, k).

For c > 0 andk ∈ Z let

R̃n(c log k, k) =
{

Γ̃n (⌊j/2⌋, ⌈j/2⌉, h) ∈ Λn; 0 ≤ j ≤ ⌈c log k⌉, 0 ≤ h ≤ k
}

=
{

Γ̃n(j, l, h) ∈ Λn; 0 ≤ j ≤ ⌈c log k⌉, 0 ≤ h ≤ k, l = j or l = j + 1
}

.

If we regard the subsetΛn, R̃n(c log k, k) as a sub-graph ofΛn, then it is isomor-

phic to the rectangleR(2⌈c log k⌉, k) ⊂ Z
2 that have lenght2⌈c log k⌉ and height

k (see Figure3.1). Define further,

B̃n(c log k, k) =
{

∃ a top-to-bottom crossing of good boxes inR̃n(c log k, k)
}

Lemma 3.3.Letp2, p3 > pc(Z
2) andp1 6= 0. Then there aren = n(p2, p3) ∈ Z+,

c = c(p2, p3) > 0 andδ = δ(p2, p3) > 0 such that for allk ∈ Z,

Pp2 × Pp3

(

B̃n(c log k, k)
)

≥ δ. (3.9)

Proof. Takep such thatpi > p > pc(Z
2) for i = 2, 3. As an application of

equation (3.6) (with k playing the role ofn) we can choose constantsc = c(p) > 0

andδ = δ(p) > 0 such that

Pp (Bn (2⌈c log k⌉, k)) ≥ δ

for all integerk ≥ 0.
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LetX = {X(j, h)}(j,h)∈Z2 be the process on{0, 1}Z2
given by

X(j, h) = 1{Γ̃n(⌊ j

2
⌋,⌈ j

2
⌉,h) is good}

and denote byµ its law. The definition of a block to be good depends only on the

restriction of theω2 andω3 processes to the projections of this block and of its

neighboring blocks into the planesP2 andP3. Thus the we have that the process

X is a two-dependent percolation process and that

Pp2 × Pp3

(

B̃n(c log k, k)
)

= µ (Bn (2⌈c log k, ⌉k)) . (3.10)

Then, by [LSS97, Theorem 0.0] we have that there existsu ∈ (0, 1) such that, if

µ ({X(j, h) = 1}) > u, (3.11)

thenX dominates stochastically a Bernoulli site percolation with parameterp.

By Lemma3.2we can choosen large enough so that equation (3.11) holds. Then

using the fact thatBn (2⌈c log k⌉, k) is an increasing event and the stochastic dom-

ination, we have that:

µ (Bn (2⌈c log k⌉, k)) ≥ Pp (Bn (2⌈c log k⌉, k)) ≥ δ.

Plugging this last inequality into equation (3.10) finishes the proof.

3.2.2 Constructing paths from projections

For this section we will fixp2, p3 > pc(Z
2), c = c(p2, p3), andn = n(p2, p3)

as given by Lemma3.3.We will also drop the subscriptn that refer to the size

of the renormalized blocks inΓn, Γ̃n, Bn, B̃n, R̃n, Λn and others. Then, the

previous lemma assures that the probability of existence ofpaths of good blocks

in R̃(c log k, k) is bounded by below uniformly ask increases. In order easy the

notation, let us not distinguish betweeñR(c log k, k) ⊂ Λ and
⋃

j,l,h Γ̃(j, l, h) ⊂
Z
3 where the union is taken over

{(j, l, k); 0 ≤ j ≤ ⌈c log k⌉, 0 ≤ h ≤ k, l = j or l = j + 1} .

The point in considering crossings of good blocks inR̃(c log k, k) is that to each

such a crossing there corresponds a pathγ = {v0, v1, . . . , vr} of sites ofZ3 having

the following properties



3.2. POLYNOMIAL DECAY 31

• γ is a path contained iñR(c log k, k)

• v0 belongs toπ1(R̃(c log k, k)) and vr ∈ {(x, y, z) ∈ R̃(c log k, k); z =

(k − 1)n}.

• The projections ofγ intoP2 andP3 are respectivelyω2 andω3-open paths.

In order to prove the existence of such a pathγ we present, as a lemma, a proce-

dure that enables us to create paths inZ
3 having their projections lying in cross-

ings of rectangles ofP2 andP3 previously defined. Before that we introduce some

more notation.

For a sitev = (x, y, z) ∈ Z
3 we defineh(z) = z the value of its third co-

ordinate that we call theheight of v. For two sitesv = (x, 0, z) ∈ P2 and

w = (0, y, z) ∈ P3 with h(v) = h(w) = z we define

v × w = (x, 0, z)× (0, y, z) = (x, y, z) (3.12)

In words,v × w is the unique site havingv andw as its projections ontoP2 and

P3 respectively. Let

γ = {v0, v1, . . . , vm} ⊂ Z
3 (3.13)

be a path. We define itsvariationas being

h(γ) = h(vm)− h(v0). (3.14)

For any0 ≤ k ≤ m we denote

γ(k) = {v0, . . . , vk} (3.15)

the pathγ stopped at itsk-th step. Denoting for anyk ∈ Z

τk = τk(γ) = inf{j ≥ 0; h(vj) = k} (3.16)

we can define the path stopped at the first time it hits heightk by:

γ ∧ k = γ(τk). (3.17)

If the infimum in equation (3.16) is taken over an empty set we simply takeγ∧k =

γ. For a pathγ as in (3.13) we define itsreversalas being the path

γ = {vm, vm−1, . . . , v0}. (3.18)
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If we now takeγ as in (3.13) and another path

γ′ = {w0, . . . , wm′} (3.19)

havingvm = w0 we define theirconcatenationby:

γ ∗ γ′ = {v0, . . . , vm, w1, . . . , wm′}. (3.20)

Now, if γ and γ′ given by (3.13) and (3.19) intersect theirselves however not

necessarily in their endpoints we define theirjuxtapositionγ ◦ γ′ as being the

unique path described as follows: It starts atv0, goes alongγ until it first hits γ2
and then, from that point on, it goes alongγ2 until its final pointwm′ .

We say that two pathsγ andγ′ given as in (3.13) and (3.19) given arecompat-

ible if

γ ⊂ P2 andγ′ ⊂ P3 (3.21)

h(v0) = h(w0) andh(vm) = h(wm′) (3.22)

h(γ(k))h(γ) ≥ 0 for all 0 ≤ k ≤ m and

h(γ′(l))h(γ′) ≥ 0 for all 0 ≤ l ≤ m′
(3.23)

τh(γ) = m andτh(γ
′) = m′, whereh = h(γ) = h(γ′). (3.24)

Condition (3.22) states that bothγ andγ′ start and finish at the same height, and

it implies thath(γ) = h(γ′). Condition (3.23) requires that as one goes forward

along the paths, the variation does not change signs, meaning that the paths will

always lie above or beneath their initial height. Finally, condition(3.24) guarantees

thatγ andγ′ only hit the final height at their respective end pointsvm andwm′.

The point in defining the notion of compatible paths is that wheneverγ andγ′

are compatible it is possible to find a path inZ3 havingγ andγ′ as its projections

intoP2 andP3 respectively. This is the content of the following lemma:

Lemma 3.4. Let γ andγ′ given as in(3.13) and (3.19) be two compatible paths.

There is a pathγ×γ′ ⊂ Z
3 starting atv0×w0 and ending atvm×wm′ satisfying:

π2(γ
′ × γ) = γ andπ3(γ × γ′) = γ′. (3.25)

Remark3.5. Usually there can be more than one path connectingv0 × w0 and

vm × vm and satisfying (3.25). So whenever we writeγ × γ′ we are referring to

one of those paths arbitrarily selected.
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Proof of Lemma3.4: Let h = |h(γ)| = |h(γ′)|. We will use induction inh. We

also restrict ourselves to the caseh(v0) = h(w0) = 0 andh(vm) = h(wm′) = h >

0. The proof of any other case is similar.

We first considerh = 1. LetγH = {v0, . . . , vm−1} andγ′H = {w0, . . . , wm′−1}
the horizontal parts of the pathsγ andγ′ (note that they can be a single point if

n = 1 orm′ = 1). We can thus define:

γH × w0 = {v0 × w0, v1 × w0, . . . , vm−1 × w0} and (3.26)

vm−1 × γ′H = {vm−1 × w0, vm−1 × w1, . . . , vm−1 × wm′−1}. (3.27)

The paths above are well defined, sinceh(vj) = h(wi) = 0 for any vj andwj
appearing at the right hand side of those equations. Since the ending point of

γH × w0 is equal to the starting point ofvm−1 × γ′H we can define

γH × γ′H = (γh × w0) ∗ (vm−1 × γ′H). (3.28)

It is then straightforward to check thatπ2(γH×γ′H) = γH and thatπ3(γH×γ′H) =
γ′H and thatγH × γ′H starts atv0 × w0 and ends atvm−1 × wm′−1. If we now

let γV = {vm−1, vm} andγ′V = {wm′−1, wm′} be the vertical parts ofγ andγ′

respectively, and define

γV × γ′V = {vm−1 × wm′−1, vm × wm′} (3.29)

thenπ2(γV × γ′V ) = γV andπ3(γV × γ′V ) = γ′V . Finally let us set

γ × γ′ = (γH × γ′H) ∗ (γV × γ′V ) (3.30)

which is a path starting atv0×w0, ending atvm×wm′ and satisfying (3.25). This

finishes the proof forh = 1.

Now let us consider the caseh = h0+1 whereh0 ≥ 1 is fixed. Assuming that

the lemma holds for any pair of compatible paths having height no greater than

n0 ≥ 1 we are going to show that the lemma holds forγ andγ′ finishing thus the

proof.

We begin by splitting the pathsγ andγ′ into several up and down-excursions

having variationn0. For that lett0 = t′0 = 0 and define inductively for alln ≥ 1:

t2n−1 = inf{j > t2n−2; h(vj) = h0}
t2n = inf{j > t2n−1; h(vj) = 0},

(3.31)
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with the convention thatinf ∅ =∞. Let f be defined so that2f − 1 is the number

of finite elements in the sequencet0, t1, t2, . . .. Thenf represents the number of

excursions from height zero to heighth0. Similarly we definet′2n−1, t
′
2n andf ′,

the analogous indices for the pathγ′. We will assume thatf > 1 andf ′ > 1. The

other cases are simpler to deal with.

Then we have the following sequences:

t0 < t1 < · · · < t2f−1 andt′0 < t′1 < · · · < t′2f ′−1 (3.32)

and the paths:

γj = {vtj , . . . , vtj+1
} for j = 0, . . . , 2f − 2

γ′j = {wt′j , . . . , wt′j+1
} for j = 0, . . . , 2f ′ − 2.

(3.33)

Note that, ifj is even, thenγj andγ′j are paths with variation equal toh0 with

the starting point having height equal to zero and the endingpoint having height

equal toh0.

Let us also define the following paths:

η = (γ0 ∧ 0) and

ζ = (γ2f−2 ∧ 0).
(3.34)

We also define the pathsη′ andζ ′ as the analogues ofη andζ fo the pathγ′. In

words,η can be described as the set of sites that would be travessed when one

travels alongγ0 after visiting height zero for the last time. Note thatη connects a

site lying at height zero to a site lying at heighth0 without ever touching these two

heights in between. The pathsζ , η′ andζ ′ can be described in a similar fashion.

Having already defined the pathsγ0, . . . , γ2f−2 andγ′0, . . . , γ
′
2f ′−2 let us now

define:

γ2f−1 = ζ ∧ 1 and γ2f = γ \ (γ0 ∗ · · · ∗ γ2f−1)

γ′2f ′−1 = ζ ′ ∧ 1 and γ2f ′ = γ \ (γ′0 ∗ · · · ∗ γ2f ′−1).
(3.35)

Thus we can write

γ = γ0 ∗ γ1 ∗ · · · ∗ γ2f−2 ∗ γ2f−1 ∗ γ2f and

γ′ = γ′0 ∗ γ′1 ∗ · · · ∗ γ2f ′−2 ∗ γ2f ′−1 ∗ γ2f ′.
(3.36)
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Roughly speaking, this equation express the decompositionof γ (and similarly

for γ′) as follows: Go up alongγ until hitting heighth0. Then go down back to

height zero. Repeat it forf − 1 times and then go up again until hitting heighth0.

At that point the pathγ2f−2 has just been traversed from bottom to top. Now go

along its reversalγ2f−2 stopping at the step just after reaching height zero. This

corresponds toγ2f−1. Then followγ from this point on until hitting its last site

vm.

Note thatγ0 andγ′0 are two compatible paths of variatinh0 so, by the induction

hypothesis there is a path

γ0 × γ′0 (3.37)

starting atv0 × w0 and ending atvt1 × wt′1 and such thatπ2(γ0 × γ′0) = γ0 and

π3(γ0 × γ′0) = γ′0. Also, for each0 < j < 2f − 2 odd,γj andη′ are compatible

paths of heighth0. Similarly for each0 < j ≤ 2f − 2 even,γj and η′ also

constitute a pair of compatible paths. So, we can pick the pathsγj × η′ for j even

andγj × η′ for j odd. All those paths have their projections intoP2 equal toγj
and their projections intoP3 equal toη′ or η′. Also the ending point of each one

of them is the starting point of the following one. So we can define:

γ × η′ = (γ1 × η′) ∗ (γ2 × η′) ∗ . . . ∗ (γ2f−2 × η′) (3.38)

and it follows thatπ2(γ × η′) = γ andπ3(γ × η′) = η′.

Following an analogous procedure we can pick the pathsζ×γ′j for j even and

ζ × γ′j for j odd (1 ≤ j ≤ 2f ′ − 2) and then define:

ζ × γ′ = (ζ × γ′1) ∗ (ζ × γ′2) ∗ · · · ∗ (ζ × γ′2f ′−2). (3.39)

Note that this path starts atvt2f−2
× wt′1 and ends atvt2f−2

× wt′
2f ′−2

. Also they

satisfy thatπ2(ζ × γ′) = ζ or ζ andπ3(ζ × γ′) = γ′.

Noting also thatγ2f−1 andγ′2f ′−1 are compatible paths with variation equal to

h0 − 1 starting atvt2f−2
andw′

t2f ′−2
respectively and thatγ2f andγ′2f ′ are compat-

ible paths of variationh0, we can then pick

γ2f−1 × γ2f ′−1 andγ2f × γ′2f ′ (3.40)

and concatenate then in order to have a path starting atvt2f−2
×wt′

2f ′−2
and finishing

at vm × wm′ and having:

π2
(

(γ2f−1 × γ′2f ′−1) ∗ (γ2f × γ2f ′)
)

⊂ γ2f−1 ∪ γ2f and

π3
(

(γ2f−1 × γ′2f ′−1) ∗ (γ2f ∗ γ′2f ′)
)

⊂ γ′2f ′−1 ∪ γ′2f ′.
(3.41)
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Finally let us define:

γ × γ′ = (γ0× γ′0) ∗ (γ × η′) ∗ (ζ × γ′) ∗ (γ2f−1× γ′2f ′−1) ∗ (γ2f × γ2f ′). (3.42)

which is a path inZ3 starting atv0 × w0, ending atvm × wm′ and satisfying

(3.25).

WhenAi(2n, n; j, h)∩Bi(n, 2n; j, h) happens we denote byξi(j, h) a bottom-

to-topωi-open crossing inRi(n, 2n; j, h) and byζi(j, h) a left-to-rightωi-open

crossing inRi(2n, n; j, h) both being arbitrarily selected among the existing pos-

sible crossings (for instanceξi could be taken to be the left-most crossing andζi

the lowest one). We write(ξi(j, h))0 and(ζi(j, h))0 in order to refer to the starting

points of those paths. Now suppose thatΓ̃(j, l, h) andΓ̃(j′, l′, h′) are good blocks

that are neighbors in the graphΛ. We will use Lemma3.4 in order to construct

paths traversing the union of those blocks while connecting(ξ2(j, h))0×(ξ3(l, h))0
to (ξ2(j

′, h′))0 × (ξ3(l
′, h′))0 and, in addition, having its projections intoPi (for

i = 2, 3) always contained in the union of the pathsξi, ζi corresponding to the

events of those blocks to be good.

Lemma 3.6. Suppose that̃Γ(j, l, h) andΓ̃(j′, l′, h′) are good neighboring blocks

in the graphΛ. Then there is a pathγ = {v0, v1, . . . , vm} ⊂ Z
3 satisfying:

1. γ ⊂ Γ̃(j, l, h) ∪ Γ̃(j′, l′, h′);

2. v0 = (ξ2(j, h))0 × (ξ3(l, h))0 andvm = (ξ2(j
′, h′))0 × (ξ3(l

′, h′))0;

3. π2(γ) ⊂ ζ2(j, h) ∪ ξ2(j, h) ∪ ζ2(j′, h′) ∪ ξ2(j′, h′);

4. π3(γ) ⊂ ζ3(l, h) ∪ ξ3(l, h) ∪ ζ3(l′, h′) ∪ ξ3(l′, h′).

In particular by the items3 and4 we have that every site inγ is simultaneously

ω2 andω3-open.

Proof. SinceΓ̃(j, l, h) andΓ̃(j′, l′, h′) are neighboring boxes we have that|j′−j|+
|l− l′|+ |h−h′| = 1. Then split the proof into six cases (each one corresponding

one of the indices changing±1 units) and use Lemma3.4 in each of those cases.

We only prove the casesh′ − h = ±1 and j′ − j = ±1, the remaining cases

l′ − l = ±1 are analogous.
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1. h′ − h = 1 (the basic strategy is depicted in Figure3.2)

For convenience let us fixh = 0, j = j′ = 0 and l = l′ = 0. Since

ξ2(0, 0) andξ3(0, 0) are respectively bottom-to-top crossings ofR2(n, 2n)

andR3(n, 2n) they are compatible. By Lemma3.4 we can pick a path

ξ = ξ2(0, 0)× ξ3(0, 0) ⊂ Z
3 starting at(ξ2(0, 0))0 × (ξ3(0, 0))0 and having

πi(ξ) = ξi(0, 0) for i = 2, 3. In particularξ is contained iñΓ(0, 0, 0) ∪
Γ̃(0, 0, 1).

Now, for i = 2, 3 let βi(0, 1) = ξi(0, 0) ◦
←−−−→
ζi(0, 1) ◦ ξi(0, 1) be the path

in Pi defined the following way: First start at the final point ofξi(0, 0),

then go down along its reversalξi(0, 0) until hitting ζi(0, 1). After hitting

ζi(0, 1) go along this path in the appropriate sense in order to hit thepath

ξi(0, 1). Note that eitherζi(0, 1) or its reversal should be taken in order to hit

ξi(0, 1). Finally, after hittingξi(0, 1) take its reversalξi(0, 1) until getting to

its starting point(ξi(0, 1))0.

Remark3.7. The arrow is placed on the top ofζi(0, 1) in order to indicate

that one should goes along eitherζi(0, 1) or ζi(0, 1) depending on which one

of these paths will lead toξi(0, 1). We prefer not to give a formal definition

and trust that this description is enough for making the construction clear.

Note thatβ2(0, 1) andβ3(0, 1) are top-to-bottom crossings ofR2(n; 0, 1)

andR3(n; 0, 1) then they are compatible paths and by Lemma3.4 we can

pick a pathβ = β2(0, 1)×β3(0, 1) ⊂ Γ̃(0, 1) connecting the ending point of

ξ to the site(ξ2(0, 1))0× (ξ3(0, 1))0 and havingπi(β) ⊂ ξi(0, 0)∪ ζi(0, 1)∪
ξi(0, 1) for i = 2, 3.

Let us defineγ = ξ ∗ β. Then this path starts at(ξ2(0, 0))0 × (ξ3(0, 0))0
finishes at(ξ2(0, 1))0×(ξ3(0, 1))0. The properties1, 3 and4 in the statement

are satisfied since they hold for bothξ andβ.

2. h′ − h = −1. By the previous case if we interchange the roles ofh and

h′ we can pick a path satisfying the properties1, 3 and4, however starting

at (ξ2(j′, h′))0 × (ξ3(l
′, h′))0 and finishing at(ξ2(j, h))0 × (ξ3(l, h))0. The

reversal of this path satisfy all the required properties.

3. j′ − j = 1 (the basic strategy is depicted in Figure3.3)
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Figure 3.2: The pathsξ2(0, 0) andξ3(0, 0) are the blue ones connectinga to b

ande to f respectively. The pathβ2(1, 0) is the blue one starting atb, passing

through c and ending atd, andβ3(1, 0) is defined similarly. The pathγ =

(ξ2 × ξ3) ∗ (β2 × β3) is contained in the union of̃Γ(j, l, 0) ∪ Γ̃(j, l, 1).

In order to simplify the notation we fixj = 0. Letα2 = ξ2(0, 0) ◦ ζ2(0, 0) ◦
(ξ2(1, 0) ∧ n) ⊂ P2 be the following path: Start at(ξ2(0, 0))0 and go along

ξ2(0, 0) until it hits ζ2(0, 0). After hitting ζ2(0, 0) go along this path until

hitting ξ2(1, 0). Finally go alongξ2(1, 0) up to heightn. Note thatα2 is

bottom-to-top crossing of the rectangleR2(2n, n; 0, 0).

Define nowα3 = ξ3(0, 0) ∧ n. Thenα3 is the bottom-to-top crossing of the

rectangleR3(n; 0, 0) that starts at(ξ3(0, 0))0, goes alongξ3(0, 0) up to the

time it first hits heightn.

Sinceα2 andα3 are crossings of blocks with same hight they are compat-

ible. We can apply Lemma3.4 in order to pick a pathα = α2 × α3 that

starts at(ξ2(0, 0))0×(ξ3(0, 0))0, goes up to heightn and that has projections

π2(α) = α2 ⊂ ξ2(0, 0) ∪ ζ2(0, 0) ∪ ξ2(1, 0) andπ3(α) = α3 ⊂ ξ3(0, 0). In

particularα is contained iñΓ(0, 0, 0) ∪ Γ̃(1, 0, 0).

Let us now defineβ3 = ξ3(0, 0) ∧ n which is the path starting at the end-

ing point of ξ3(0, 0) ∧ n and going along its reversalξ3(0, 0) until it hits

(ξ3(0, 0))0. We also defineβ2 = ξ2(1, 0) ∧ n to be the top-to-bottom cross-

ing ofR2(n, n; 1, 0) that starts at the ending point ofξ2(0, 1) ∧ n and goes
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alongξ2(0, 1) all the way down to the site(ξ2(0, 1))0.

Note thatβ2 andβ3 are compatible and so, once more, Lemma3.4enables

us to select a pathβ = β2 × β3 connecting the ending point ofα to the site

(ξ2(1, 0))0 × (ξ3(1, 0))0 and havingπ2(β) = β2 ⊂ ξ2(1, 0) andπ3(β) =

β3 ⊂ ξ3(0, 0) ∪ ζ3(0, 0) ∪ ξ3(1, 0). In particularβ ⊂ Γ̃(0, 0, 0) ∪ Γ̃(1, 0, 0).

Then the concatenationγ = α ∗ β is a path satisfying the properties1 to 4

above.

4. j′ − j = −1
Interchange the roles ofj andj′, use the previous case and then reverse the

obtained path.

Figure 3.3: The pathα2 is the blue one starting ata, passing throughb and

c, and finishing atd. The pathα3 starts atf and goes up until hitting height

n, β3 is simply its reversal.β2 is the path connectingd to e. The pathγ =

(α2 × α3) ∗ (β2 × β3) is contained iñΓ(0, l, h) ∪ Γ̃(1, l, h).

Corollary 3.8. For each path of good blocks

γ̃ =
{

Γ̃(j0, l0, h0), . . . , Γ̃(jm, lm, hm)
}

⊂ Λ

there exists a path of sitesγ = {v0, . . . , vr} ⊂ Z
3 satisfying:
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1. γ is contained in
⋃m
i=0 Γ̃(ji, li, hi);

2. h(v0) = nh0 andh(vr) = nhm;

3. all sites inπ2(γ) andπ3(γ) areω2 andω3-open respectively.

Proof. We apply Lemma3.6 to each pair̃Γ(ji, li, hi) and Γ̃(ji+1, li+1, hi+1) that

are neighboring sites iñγ in order to find a sequence of pathsγi contained in

γi ⊂ Γ̃(ji, li, hi) ∪ Γ̃(j′i+1, l
′
i+1, h

′
i+1); starting at(ξ2(ji, hi))0 × (ξ3(li, hi))0 and

finishing at(ξ2(ji+1, hi+1))0 × (ξ3(li+1, hi+1))0 that have the projections intoP2

andP3 beingω2 andω3-open respectively. Since the ending point of each of the

γi is the starting point of each ofγi we can concatenate them all obtaining a path

γ = γ0 ∗ . . . ∗ γm having the desired properties.

Corollary 3.9. If B̃(c log k, k) occurs and all sites inπ1
(

R̃(c log k, k)
)

are ω1-

open then there is aω-open pathγ = {v0, vi, . . . , vr} ⊂ R̃(c log k, k) such that

h(v0) = 0 andh(vm) = kn.

Proof. Recall thatB̃(c log k, k) is the event that there is a path

γ̃ =
{

Γ̃(j0, l0, h0), . . . , Γ̃(jm, lm, hm)
}

⊂ Λ

crossingR(c log k, k) from bottom-to-top. In particular,h0 = 0 andhm = kn

By the previous corollary, there is a pathγ = {v0, . . . , vr} with h(v0) = 0 and

h(vr) = kn having both its projections intoP2 andP3 beingω2 andω3-open

respectively. In addition all sites inγ are contained iñR(c log k, k), and since all

sites inπ1
(

R̃(c log k, k)
)

areω1 open it guarantees that the projection ofγ into

P1 is also composed ofω1-open sites. It follows thatγ is ω-open finishing the

proof.

3.2.3 Proof of the polynomial decay rate

We are now in the position to proof that the tail probability for the radius of the

open cluster at the origin decays at most in a polynomial rateif at least two of the

components of the vectorp are chosen to be high. Recall that the constantsc, n

andδ are held fixed as in Lemma3.3. We remark that the termkn appearing in

inequality (3.43) is playing the role ofn in inequality (1.4). This change is due to
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the fact thatn has been previously fixed for denoting the side lenghs of the boxes

in the renormalized block lattice.

Theorem 3.10.Suppose thatp2, p3 > pc(Z
2) and thatp1 6= 1. Then there exists

constantsα = α(p) > 0 andα′ = α′(p) > 0 such that for all integerk ≥ 1,

Pp

({

0↔ ∂B3 (kn)
}

, |C| <∞
)

≥ α′(p)k−α(p). (3.43)

Proof. By the choices ofn, c andδ and by Lemma3.3we have that

Pp

(

B̃(c log k, k)
)

≥ δ

for all positive integersk ≥ 1. We define the following events:

C2 = {all sites(x, 0, 0) ∈ P2 such that0 ≤ y ≤ n⌈c log k⌉ areω2-open}

C3 = {all sites(0, y, 0) ∈ P3 such that0 ≤ x ≤ n⌈c log k⌉ areω3-open}

D1 =
{

all sites in π1
(

R̃(c log k, k)
)

areω1-open
}

E1 = {there is a∗-circuit of ω1-closed sites surrounding the origin inP1}

where, a∗-circuit is defined to be a∗-path that starts and finishes at the same site

without intersecting itself before it finishes.

The event that all sites ofP1 lying at l∞-distance1 from π1 (R(c log k, k)) are

ω1-closed is contained inE1. Furthermore it is independent ofD1. Thus we have

that

Pp1 (D1 ∩ E1) ≥ p1
2n2(c log k+1)(1− p1)4n(c log k+1) (3.44)

Now, ifD1×B̃(c log k, k) happens then by Corollary3.9there is aω-open path

starting at a (random) sitev0 in P1 and finishing at a sitevr in ∂B3 (kn). Then,

in order to have the origin connected to∂B3(kn) it is enough to guarantee that

it is connected tov0. This can be accomplished by simply requiring further that

C2×C3 occurs. In fact, ifD1×C2×C3 happens then all sites inπ1
(

R̃(c log k, k)
)

areω-open. Thus we have that:

D1 ×
(

B̃(c log k, k) ∩ (C2 × C3)
)

⊂
{

ω ∈
{

0↔ ∂B3 (kn)
}}

It is well known that for a site percolation process in the square lattice (and

hence onP1) the open cluster at the origin is finite if and only if there exists a



42 CHAPTER 3. THE RADIUS OF THE OPEN CLUSTER AT THE ORIGIN

closed∗-circuit surrounding the origin. So, by Lemma2.3 we have that, on the

eventE1 for Pp almost all configurations there is no percolation. Then:

Pp

({

0↔ ∂B3 (kn), |C| <∞
})

≥
Pp1 × Pp2 × Pp3

(

(D1 ∩ E1)×
(

B̃(c log k, k) ∩ (C2 × C3)
))

=

Pp1 (D1 ∩ E1)Pp2 × Pp3

((

B̃(c log k, k) ∩ (C2 × C3)
))

.

(3.45)

By the Harris-FKG inequality and by equation (3.43) we have that

Pp2 × Pp3

(

B̃(c log k, k) ∩ (C2 × C3)
)

≥

Pp2 × Pp3

(

B̃(c log k, k)
)

Pp2 (C2)Pp3 (C3) ≥

δ p
n(c log k+1)
2 p

n(c log k+2)
3 .

(3.46)

Now if we plug equations (3.46) and (3.44) into equation (3.45) we get:

Pp

({

0↔ ∂B3 (kn), |C| <∞
})

≥
δ p1

2n2(c log k+1)(1− p1)4n(c log k+1) p
n(c log k+1)
2 p

n(c log k+2)
3 =

α′(p)k−α(p),

where the constantsα′ andα depend onp.

We conclude this section providing a quick remark about the:

Proof of the second statement in Theorem1.3. All the work has been done. In

fact, from equation (3.43), we have that for allk ≥ 2 that

Pp

({

0↔ ∂B3 (k), |C| <∞
})

≥
Pp

({

0↔ ∂B3 (kn), |C| <∞
})

≥
α′(p)k−α(p)

which is equation (1.4) with k playing the role ofn.



Chapter 4

More about the supercritical phase

The existence of a supercritical phase was settled in Chapter 2. As a by-product,

in Corollary2.12, we have shown that if all the components ofp are larger than

[p′c(Z
2)]1/3 then there is percolation. Assume that we now decrease one ofthe

components ofp while we increase another one, sayp2 andp1 respectively. In-

tuitively, as we decreasep2 we create new closed columns thus removing all the

sites on those columns that were open before. On the other hand, increasingp1
we will sprinkle more open sites all overZ3. It turns out that, as long asp2 stays

larger thanpc(Z2), can be increasedp1 quickly enough in order to still guarantee

the existence of percolation. In fact, Theorem1.4yields more than that: As long

asp2 andp3 remain supercritical, it will always be possible to fixp1 large enough

so that there will still be percolation.

The aim of this section is to present the proof of Theorem1.4. We use two

lemmas that are based on Lemma3.4 and ideas similar to those of the proof of

Theorem2.9.

Recall thatR1(n, n; j, l) are squares of siden contained inP1 and consider the

setP(n)
1 = {R1(n, n; j, l); j ∈ Z, l ∈ Z} that can be seen as a graph by adding an

edge betweenR1(n, n; j, l) andR1(n, n; j
′, l′) if, and only if, |j′−j|+ |l′− l| = 1.

Let for the momentγn ⊂ P(n)
1 be a fixed2-directed path of rectangles and consider

γ̃n =
{

Γ̃n(j, l, h) ∈ Λn; π1(Γ̃n(j, l, h)) ∈ γn
}

.

The following lemma shows that we can choosen large enough so that the

probability of finding infinite paths of good boxes iñγn is positive. We use the

fact that ifn is large, then a block iñγn is good with high probability and that the

43
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event that a block iñγn is good does only depend on the state of blocks within

a fixed (graph)-distance of this block iñγn. Those ideas have been used before

in the proof of Theorem2.9, so the reader can skip the proof if he accepts the

statement as being true.

Lemma 4.1. Letp2, p3 > pc(Z
2). Then there isn = n(p2, p3) for which:

P2,3

({

∃ an infinite path of good blocks starting from̃Γn(0, 0, 0) in γ̃n
})

> 0,

(4.1)

whereP2,3 = Pp2 × Pp3.

Proof. Consider the set of indicesI = {(j, l) ∈ Z
2; R1(n, n; j, l) ∈ γn} andĨ =

{(j, l, h) ∈ Z
3; γ̃n(j, l, h) ∈ Γn}. ThenI can be regarded as a2-directed path in

Z
2 and Ĩ can regarded as its lift inZ3. Consider the process{X(j, l, k)}(j,l,k)∈I

whereX(j, l, K) = 1{Γ̃n(j,l,h) is good} and letµ denote its law on{0, 1}I . The

event
{

Γ̃n(j, l, h) is good
}

only depends on theω2 andω3 processes restricted to

the projectionsπ2
(

Γ̃n(j
′, l′, h′)

)

andπ3
(

Γ̃n(j
′, l′, h′)

)

of rectangles̃Γn(j′, l′, h′)

satisfying|j′−j|+ |l′− l|+ |h′−h| ≤ 1. Moreover, since the pathI is 2-directed,

it follows that there is a positive integerM large enough such that the projections

of each rectanglẽΓn(j, l, h) intoP2 andP3 overlap with at most the projection of

M other rectangles inΛn. Then it follows that the processX is aM-dependent

percolation process with

µ ({X(j, l, h) = 1 }) = Pp2 × Pp3

({

Γ̃n(j, l, h) is good
})

.

Applying once more [LSS97, Theorem 0.0] there is au ∈ (0, 1) such that

if µ ({X(j, l, h) = 1}) > u thenµ ({0↔∞}) > 0. By Lemma3.2 we can

chose a positive integern large enough (and depending onp2 and p3) so that

Pp2 × Pp3

({

Γ̃n(j, l, h) is good
})

> u. So for that choice ofn it follows that

P2,3

({

∃ an infinite path of good blocks starting from̃Γn(0, 0, 0) in γ̃n
})

=

µ ({0↔∞}) > 0.

From now on let us fixn as in the statement of the previous lemma. The

next lemma proves that the probability of finding an infiniteω-open path starting
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somewhere in the block̃Γn(0, 0, 0) is positive if we keepp2 andp3 fixed and setp1
to be large enough. Before stating this result and proving itwe give an idea of the

proof. First we choosep1 high enough in order to guarantee that the event that are

infinite 2-directed paths ofω1-open blocks inPn1 have positive probability under

Pp1. Then conditioning on the realization of this path, we consider the percolation

processes of good blocks on the lift of the resulting paths inΛn. This process will

be supercritical so the (conditional) probability of finding an infinite path of good

blocks inΛn is positive (almost surely). Finally we use Corollary3.8 in order to

relate such a path of good blocks to an infinite path ofω-open sites.

Lemma 4.2. Suppose thatp2, p3 > pc(Z
2). Then there isǫ = ǫ(p2, p3) > 0 such

that, if p1 > 1− ǫ, than:

Pp

({

∃ a infiniteω-open path starting at̃Γn(0, 0, 0)
})

> 0. (4.2)

Proof. Define the processX1 = {X1(j, l)}(j,l)∈Z2 where

X1(j, h) = 1{all sites inR1(n,n;j,l) areω1-open}

Due to the independence of the processω1 in each rectangle we have that the law

of X1 as a process is the same as the Bernoulli percolationP
pn

2
1

. Sincen has

been fixed before, we can choose anǫ > 0 so that wheneverp1 > 1 − ǫ then

pn
2

1 > [p′c(Z
2)]1/3. Fix such aǫ > 0 andp1 > 1− ǫ.

LetA1 = {∃ an infinite2-directed path of open rectangles inPn1 }. If follows

from Proposition2.5that

Pp1 ({A1}) = P
pn

2
1
({ ∃ an infinite2-directed path starting at0}) > 0. (4.3)

For eachω1 ∈ A1 letγn = γn(ω1) be the lowest2-directed path of open rectangles

in Pn1 and letγ̃n = γ̃n(ω1) ⊂ Λn be its lift.

Then writingP for Pp1 × Pp2 × Pp3, E for the expectation with respect toP,

P2,3 for Pp2 × Pp3 and
{

Γ̃n(0, 0, 0)↔∞
}

for the event

{

∃ a infiniteω-open path starting at̃Γn(0, 0, 0)
}

,
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we have that:

Pp

({

Γ̃n(0, 0, 0)↔∞
})

=

E

[

P

({

ω ∈
{

Γ̃n(0, 0, 0)↔∞
}}
∣

∣

∣
F1

)]

≥

E

[

1A1P

({

ω ∈
{

Γ̃n(0, 0, 0)↔∞ in γ̃n
}}
∣

∣

∣
F1

)

(ω1)
]

≥

E

[

1A1P2,3

({

∃ an infinite path of good blocks starting from̃Γn(0, 0, 0) in γ̃n
})]

,

where the last inequality follows from Corollary3.8. By Lemma4.1 the term

into the brackets in the right hand side is positive forω1 ∈ A1. This finishes the

proof.

Using the two previous lemmas we are now in the position to prove theorem

1.4:

Proof of Theorem1.4. We can without any loss of generality fixp2, p3 > pc(Z
2)

and takeǫ as given by the last lemma. Consider for eachi ∈ {1, 2, 3}, the

increasing eventBi =
{

πi

(

Γ̃n(0, 0, 0)
)

is ωi-open
}

. If B1 × B2 × B3 hap-

pens then all sites iñΓn(0, 0, 0) areω-open. Then{0 ↔ ∞} is contained in
{

ω ∈ {Γ̃n(0, 0, 0)↔∞}
}

∩B1×B2×B3. Using the Harris-FKG inequality and

the last lemma we have that:

Pp ({0↔∞}) ≥
Pp

({

Γ̃n(0, 0, 0)↔∞
})

∏

i=1,2,3

Ppi{Bi} > 0.

This finishes the proof.
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The number of infinite clusters

Define the random variableN := the number of infinite clusters. By standard er-

godicity argumentsN is constant almost surely. More than that we show that this

constant can only assume the values0, 1 or∞ almost surely. For that we use

a procedure similar to that of Newman and Schulman in [NS81a] and [NS81b].

However their methods do not apply directly to the measurePp due to fact that

this measure fails to satisfy the so-calledfinite energy condition, introduced in

those papers. Thus a non-trivial extension is needed. We usethe fact that for a

translation-invariant measure on{0, 1}Zd

all infinite clusters have a well defined

density (see [BK89]) and that the percolation processesωi satisfy the finite energy

condition. The question whetherN ∈ {0, 1} is still open. We conjecture that it

should be the case at least when the components ofp are high and conclude by

giving an informal argument of why this should be so.

5.1 Translation-invariance, ergodicity and density

LetΩ = {0, 1}Zd

, andF be the sigma-field generated by thecylinder subsetsof Ω.

For eachv ∈ Z
d, letTv : Zd → Z

d be the translation byv, i.e.,Tv(w) = w+ v for

eachw ∈ Z
d. We also letTv act in theconfigurationspaceω by defining for each

ω ∈ Ω, Tvω the configuration given by(Tvω)x = ωx−v. For a random variable

X defined onΩ we define(TvX) as the random variable satisfyingTvX(ω) =

X (T−vω). The random variableX is said to be invariant underTv if TvX =

X. An eventA ∈ F is called invariant underTv if 1A is invariant under this

47
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transformation, or equivalently ifT−1
v A = A.

A measureµ onF is invariant underTv if µ(T−1
v A) = µ(A) for eachA ∈ F .

An invariant measureµ defined on the Borel sigma-field of{0, 1}Zd

is said to be

ergodicwith respect toTv if all invariant eventsA have measure0 or 1. This

is equivalent to say that all invariant random variables inΩ areµ-almost surely

constant.

An invariant measureµ as above is said to bemixingfor the transformationTv
if for all pair of eventsA andB in F ,

lim
n→∞

µ(A∩ T−n
v B) = µ(A)µ(B). (5.1)

Intuitively the condition of being mixing for the transformationTv means that, as

we iterate this transformation, the initial conditions getmore and more irrelevant.

In a probabilistic point of view this means that the events{T nv (ω) ∈ B} and

{ω ∈ A} are asymptotically independent. It is an standard fact in ergodic theory

that every mixing transformation is ergodic. Moreover one usually checks that an

invariant measure is ergodic by verifying the mixing condition (5.1).

We say that a subsetA ⊂ Z
d have densityρ if for any sequence of rectangles

R1 ⊂ R2 ⊂ . . . with ∪i≥1Ri = Z
d the limit

lim
i→∞

|A ∩Ri|
|Ri|

exists and is equal toρ.

If we fix a configurationω ∈ Ω then it is clear that each one of its finite

components have zero density. It has been proved by Burton and Keane [BK89,

Theorem 1] that ifµ is a translation-invariant probability onF then all the open

clusters have a well defined density.

Let us fix nowµ a translation invariant measure that is ergodic with respect to

Tv. Suppose thatN ≥ 1, µ-almost surely. Then we can create a ranked density

vector, by inserting at each coordinate the value of the density of one of the infinite

clusters in a non-increasing way. More specifically define:

ρ =

{

(ρ1, . . . , ρN), if N <∞
(ρ1, ρ2, . . .), if N =∞, (5.2)

whereρi ≥ ρi+1 are the densities of the infinite clusters. Sinceρ is invariant under

Tv we have thatρ is almost surely constant.
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Remark5.1.

• If there is more than one cluster with the same density thenρwill not depend

on the order their density will appear.

Of course there can be infinite clusters having zero density.The next proposi-

tion says that those clusters cannot exist ifN <∞.

Proposition 5.2. Suppose thatµ is a translation-invariant ergodic probability

measure onΩ for which 0 < N < ∞ almost surely and letρ be the ranked

density vector given by (5.2). Then all entries ofρ are strictly positive constants,

µ-almost surely.

Proof. As mentioned before, by ergodicity, it follows that each entry of ρ is con-

stant. Suppose, in order to find a contradiction, that there is an indexk for which

ρk = 0. By the definition ofρ it follows thatρj = 0 for all k ≤ j ≤ N .

Let, for eachj ∈ {1, . . . , N}, Cj stand for the cluster corresponding to the

j-th entry ofρ. DefineC ′ = ∪Nj=kCj . ThenC ′ is a non-empty random infinite

subset ofZd having distribution invariant under lattice translations. In particular,

µ({0 ∈ C ′}) = µ({v ∈ C ′}) for all v ∈ Z
d.

Let R1 ⊂ R2 ⊂ · · · be any increasing sequence of rectangles such that

∪∞j=1Rj = Z
d. Then, since the densities indeed exist, we have that:

lim
n→∞

1

|Rn|
∑

v∈Rn

1{v∈C′} = (N − k + 1)ρk = 0.

Integrating the left-hand side with respect toµ, using the Bounded Convergence

Theorem and translation-invariance we have thatµ({0 ∈ C ′}) = 0, so that,

µ({C ′ = ∅}) = 1, a contradiction.

Corollary 5.3. Under the hypothesis of the last proposition, if the probability of

finding an infinite cluster of density zero is positive, then there exists infinitely

many of them almost surely.

5.2 The number of clusters is either0, 1, or∞
In this section we prove Theorem1.5. We start defining the notion of finite energy.

For a sitev ∈ Z
d, letΩ(v) = {0, 1}Zd\{v}. Denote byω(v) a configuration inΩ(v).
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We say that a probability measureP havefinite energyif for a sitev ∈ Z
d:

0 < P

(

{ω(v) = 1}
∣

∣

∣
ω|Zd\{v} = ω(v)

)

< 1, with probability one. (5.3)

In words, this condition means that, the conditional expectation of the random

variableω(v) given theσ-field generated by the configurations outside the sitev

is bounded away from0 and1. Note that the finite energy condition holds trivially

for the Bernoulli percolation processes (if the densityp is not equal to zero or

one). For the Ising model, verifying this condition is related to verifying that the

energy shift due to a single spin flip is finite. Intuitively, it means that if an event

have positive probability, then modifying the state of the site v will not change

the probability of this event to zero. Thus after performinglocal modifications in

the configurations of an event of positive probability we still obtain an event of

positive probability as we explain below.

A measurable transformationφ : Ω → Ω is said to belocal if there is a finite

setV ⊂ Z
d such thatφ(ω)(v) = ω(v) for all v ∈ Z

d\{V }. If P has finite

energy, then for any eventA havingP(A) > 0 and any local transformationφ,

P(φ(A)) > 0 (see [NS81a, Proposition 9]) for a proof). This fact is easy to verify

in the Bernoulli case.

For ergodic probability measures having finite energy the proof thatN ∈
{0, 1,∞} is based on this fact. The idea is the following: assume thatN is a

finite number strictly greater then one. Take a box large enough so that the prob-

ability of intersecting all the infinite clusters is positive. Then perform the local

modification that consists in opening all sites in that box. This transformation

connects all the clusters in a unique one. This implies that the probability of hav-

ing a unique cluster is also positive. However this is in contradiction to the fact

thatN is constant almost surely.

As stated above, more than that is known to hold for probability measures

having finite energy: it has been shown in [BK89] that there can be at most one

infinite component.

From now on we fixd = 3 and the measurePp with pi 6= 0, 1 for all i. For this

measure, it is not the case that anyTv is ergodic regardless of the chosen vectorv.

In fact if we takev = (1, 0, 0) then we have that the event{ω(kv) = 0 for all k ∈
Z} is invariant underTv, however it has probability equal to1− p1 /∈ {0, 1}.

On the other hand, whenv = (x, y, z) have at least two nonzero coordinates
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then it is the case thatTv is mixing. In order to see that, letA andB be two

cylinders inF and suppose thatA ⊂ Z
d andB ⊂ Z

d are finite sets of sites

such that the state of the sites inA andB determines the occurrence ofA andB
respectively. Then there exists an0 (depending onA andB) such thatπi(T nv B)∩
πi(A) = ∅ for all i = 1, 2, 3 and for alln > n0. So, for all such indicesn > n0,

we have that{ω(w); w ∈ A} and{ω(w); w ∈ B} are independent sets of random

variables, which implies the mixing condition. It is a standard fact that in order

to verify that a system(µ, Tz) satisfy the mixing condition it is enough to check

equation (5.1) for each pair of cylinder sets. This follows from the fact that any

set inF can beapproximatedby a cylinder in the sense that the measure of the

symmetric difference between them can be taken to be arbitrarily small (see, for

instance [Bil78] for a proof).

For the vectore = (1, 1, 1) we denote simplyT = Te. Sincee = (1, 1, 1)

has all its three components different from zero, we have that Pp is ergodic with

respect toT . In particular, it follows thatTN = N for all ω ∈ Ω, so thatN is a

random variable that is invariant with respect toT and thenN is constant almost

surely.

However for this measure it is not true that we can perform local modifications.

To see that, notice that on the event that all neighbors of theorigin are open the

origin itself is open with probability one. In particular flipping the state of the

origin to zero would yield an event of probability zero. Thisimplies that the

finite energy condition does not hold. Also the proof of Newman and Schulman

sketched above does not hold: If we want to have all the sites of a given box to be

open then we need to modify the state of vertices in all the columns intersecting

this box. We could do that in order to glue components together, however it could

be that case that other infinite components would appear elsewhere. This shows

that their proof do not apply directly. However instead of trying to preserve the

number of cluster we could try to modify the configurations preserving the density

of the clusters. This proof uses the same ideas as those in a work in preparation

by Hilário and Teixeira [HT].

Proof of Theorem1.5: Suppose that1 < N <∞ and letρ = (ρ1, . . . , ρN) be the

ranked density vector defined in (5.2) andC(1), . . . C(N) be the infinite clusters

corresponding to each of the entries ofρ.
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From proposition5.2 we have that all the entries ofρ are strictly positive.

Thus we can take a positiven0 such that for alln > n0 the probability thatB3(n)

intersects all the clustersC(1), . . . , C(N) is positive. So, fixingn > n0 and

denoting byA the event inΩ1 × Ω2 × Ω3 given by

A =
{

ω ∈ {B3(n) intersects all the clustersC(1), . . . , C(N)}
}

we have thatPp1 × Pp2 × Pp3(A) > 0.

Define the mappingφ : Ω1 × Ω2 × Ω3 → Ω1 × Ω2 × Ω3 by setting

φ(ω1, ω2, ω3) = (φ1(ω1), φ2(ω2), φ3(ω3)),

where,

φi(ωi)(v) =

{

1, if v ∈ B2
i (n)

ωi(v), if v /∈ B2
i (n).

On the event{(ω1, ω2, ω3) ∈ φ(A)} the vectorρ have an entry with value at

leastρ1 + . . .+ ρN > ρ1. This follows from the fact that the eventA is increasing

and the also from the fact that for any configuration in this set, if declaring all sites

in B2
i (n) = πi (B

3
i (n)) to beωi-open we will get a configuration in for which all

the boxB3
i will be ω-open. Then we will have all the clustersC(1), . . . C(n)

merged in a singleω-cluster. SincePp1 × Pp2 × Pp3(A) > 0 and this measure

satisfy the finite energy condition,Pp1 × Pp1 × Pp3(φ(A)) > 0. This implies that

the vectorρ have a component equal toρ1 + . . .+ ρN with positive probability. A

contradiction with the fact that its first component should be constant equal toρ1
almost surely.
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