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Abstract

The aim of this work is to construct the solution to a nonlinear systenof con-
servation laws arising in petroleum engineering for a model that dedies the
injection of a mixture of gas and oil, in any proportion, into a porous redium
lled with a similar mixture, at di erent temperatures. The model allows the
existence of uids in three thermodynamical con gurations, namig: a single
phase gas con guration, a single phase liquid con guration and a twphase
con guration. The solutions are constructed around two organiag structures.
The rst is a singular point, intrinsically associated to most bifurcatins in
the Riemann solutions for this class of models. The second is the irfitare
between the two-phase con guration and the single-phase liquidcguration
in state space; the change of thermodynamical con guration inbiduces a new
pattern in the Riemann solutions.



Resumo

O objetivo deste trabalho e construir solucees para um sistemde leis de
conservacao proveniente da engenharia de petoleo, para unodelo que de-
screve a injecao de uma mistura de gas eoleo, dados em quaisgproporcees,
em um meio poroso preenchido com outra mistura semelhante. Ele mpée
a existeéncia de uidos em trés diferentes con guracees tewdinamicas, a
saber: uma con guracao monofsica onde e somente gasima con guracao
monohsica onde ha somente lquido e uma con guracao bisica. As solucees
sao construdas em torno de duas estruturas de organizacaA primeirae
um ponto singular, intrinsecamente associadoa maioria das bifum#es nas
solucoees de Riemann, nesta classe de modelos. A segundae afete entre
a con guracao bibsica e a con guracao monofsica ondeahapenas apenas
lquido; a mudarca de con guracao termodindmica nesta inteface introduz
um novo tipo de padrao nas solucees de Riemann.
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Chapter 1
Introduction

The aim of this work is to construct the solution for a nonlinear systa of conservation
laws arising in petroleum engineering. Our interest is two-fold. Firsthis system models
proposed enhanced heavy oil recovery techniques. Second, ggemts a unique combina-
tion of mathematical structures that elegantly determine the soliions. We postpone the
discussion of the mathematical aspects of our work, and we foaus its application now.

Steam drive recovery of oil continues to be an economical way ofoducing heavy
oil and is used world wide. The main challenges are to improve sweep &ncy and to
improve recovery from the steam swept zone. Our interest fo@sson the latter issue.
In the late seventies, Dietz proposed to add small amounts of voiat oil to the steam.
His view was that the volatile oil co-injected with the steam would displze the dead oill
ahead of the steam condensation front leaving no oil behind in theestm swept zone.
The stability of the steam displacement would guarantee an even digtution of volatile
oil along the steam condensation front. Experiments investigatinthe mechanism are
described in Bruining et al. [5], [6]. Similar ideas were put forward indepéently by
Farouq Ali and Abad [18].

In this work, we pursue the analysis of the model in Bruining and Mahesin [4]. Their
approach was to simplify the model equations in such a way that thesgential elements
are retained while avoiding the complexities of solving the pressureuadion. The long
term objective is the full Riemann solution for this model. We will soonreer into the
details of Riemann solutions, for now it is su cient to know that our interest hinges in its
constructive nature. Once the Riemann solution is given, the full sef possible injection
scenarios can be analyzed in a comprehensive manner.

The problem proposed by Bruining and Marchesin is very di cult in a di erent way.
It adds thermodynamics and phase transitions to a problem alreadyell known for its
di culty, namely the immiscible three-phase ow problem in porous meda. We have no
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2 Introduction

hope of obtaining this solution right away: there is too much concuent dynamics going
on. Instead, in this work we set and solve the following subproblem:ohatile oil in the

form of gas is injected in a reservoir containing a mixture of the sanvelatile oil and dead
oil. This is not only a necessary step, because it introduces therma@mical behavior,
which has been systematically neglected in the literature of multi-pls@ ow theory until

very recent works of Bruining, among others.

We provide more details of the background for the theory of consation laws in the
next section, then proceed with multiphase ow theory. Is is remdable that one of the
fundamental pieces in the Riemann solution, discontinuous solutions shocks, were rst
understood during the century old struggle to understand gas w in a tube. The main
tool to settle the issue was Thermodynamics.

1.1 Foundations

An early reference to singular solutions is due to Stokes [47], in 1848 was the rst to
characterize the jump conditions that a discontinuous solution musatisfy to guarantee
conservation of a physical quantity when it ows. Stokes did this in he context of
conservation of mass and momentum, in rectilinear isothermal owf@n ideal gas. His
idea, however, was criticized: his discontinuous solutions failed tonserve mechanical
energy. Convinced that a physical solution must conserve mecheal energy, Stokes
abandoned his theory. The world had to wait the development of Theodynamics for
almost half a century, when the task of determining the jump condibns that express
energy conservation in the presence of discontinuities was undeéen by Rankine [40] and
Hugoniot [24], independently. Nowdays these jump conditions, whiany weak solution
of conservation laws must satisfy, bear their name.

A landmark in the theory of conservation laws was constructed by iBmann [42].
Riemann considered the one-dimensional ow of gas dictated by tliiler equations. He
solved the initial value problem that nowdays bears his name, in whichmanitial jump in
the state variables is generally resolved into an wave fan with a forreaand a backward
wave, either of which are allowed to be a (smooth) rarefaction wawe a (discontinuous)
shock wave. He rediscovered the jump conditions satis ed by distmuities in mass
and momentum (without any mention to energy) and emphasized thanly compressive
shocks should be physically admissible, on the grounds of stability.

The observation that physically admissible discontinuous solutions ratisatisfy other
restrictions besides the Rankine-Hugoniot jump conditions soon deme a major concern.
Both Stokes [47] and Hugoniot [24] were aware that heat condudtivwould smear shocks.
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This \vanishing viscosity" result was rst formalized by Duhem [17]. $Sibsequent work,
still in the context of polytropic gases, was done independently by dgleigh [41] and
Taylor [49], characterizing the structure of shocks.

The Second World War focused the attention of many top scientistsn the conservation
laws of gas dynamics. An important issue at time was the behavior afal gases, at high
temperatures and pressure, far beyond the limits of the polytrapgas model. The work of
Bethe [3] pointed out that the conditions used at the time to selecthysically admissible
shocks were not su ciently stringent: they may select unstable dotions, especially in the
case of strong shocks. At the same time the work of Weyl [53] emtied the aforementioned
work on shock structure, noticing that the existence of a partidar shock was related to
a repellor-saddle connection in an underlying system of ordinary drential equations.
The de nitive treatment of this problem was provided two years late by Gilbarg [21].
Concurrent work was done independently by Courant and Friedrigh[12] and Gefand
[20].

In the fties, the area of partial di erential equations experiened a change of trend:
the qualitative theory and well posedness of the Cauchy problem dsme a major topic.
The works of Hopf [23] and Cole [9] established the well posednessmebk solutions
in the large for the the Burgers equation. Later, the work of Lax [ became a new
landmark. He extended the work of Hopf, solving the Cauchy probte for the general
case of scalar conservation laws with convex ux. Convexity was ¢hkey point, allowing
one to select admissible shocks on the sole ground of compressibilith the Euler
equations in mind, Lax crafted the concept of genuine nonlinearitgnd showed that for
systems it generalizes convexity for scalar equations. Genuine hogarity together with
strict hyperbolicity are the main concepts needed to de ne what isawdays known as
the Lax conditions. Lax provided a general construction of shocnd rarefaction wave
curves as tools to solve Riemann problems, setting the direction ofodern research in
the Riemann solution, using gas dynamics as a prototype. All this wiorculminated in
the seminal contribution of Glimm [22], who was able to guarantee welbpedness in the
large for Cauchy solutions with \small" initial datum, using Riemann soltions as building
blocks. Glimm was able to show that, under certain hypotheses, albwe interactions in
the Cauchy problem for systems can be resolved in terms of Riemaswiutions. His work
hinged on the same hypotheses of genuine nonlinearity and strictggrbolicity, the very
hypotheses that are violated in our model.

These are the early foundations of the theory for hyperbolic comwation laws. Later
more general equations began to be considered, such as ow in @@ media. They
failed to fulll one or both of these hypotheses. The result was cloa: even existence
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and admissibility of solutions raise thorny issues. Wave fans began display unusual
structures and wave interactions became a major problem: theistence of resonance in
wave speeds led to new ampli cations both in the size as in the variatiaf solutions. As
a result, a fully encompassing theory is not available yet. Insteadne interested in those
phenomena nowdays should focus on specic systems arising froontthuum physics.
These systems have showed so far a common feature: they rensailvable, despite of the
oddities. The quest to discover the properties that distinguish sable from unsolvable
general models is still open.

1.2 Current theory of multiphase ow

The theory of multiphase ow in porous media, as an application of caervation laws
theory, has its roots in the work of Buckley and Leverett [8], in the antext of immis-
cible two-phase oil displacement by either gas or water. We will not déarate on the
implications of this work in the engineering community, but refer the @ader to the book
of Lake [27]. Immiscible three-phase ow models were proposed in therks of Stone
[48] and Corey et al. [11]. In three-phase ow systems of consetfga laws, both genuine
nonlinearity and strict hyperbolicity fail to such a degree that subleties of the theory still
require active work today. A comprehensive survey on mathemadictheory of Riemann
problems relevant for multi-phase ow in porous media can be found iklarchesin and
Plohr [36].

Genuine nonlinearity is related to monotonicity; its role is to generatseparate com-
pression and rarefaction waves. In the former gradients increas the solution while
in the latter gradients decrease. One of the e ects of lack of gane nonlinearity is the
existence of \middle ground" waves, for example contact waves igh are neither compres-
sion nor rarefaction waves. When genuine nonlinearity fails, the cgmession requirement
alone is typically insu cient to select physically admissible shocks. Modg with such
behavior were an early concern to the Russian school. The fact ththe \vanishing vis-
cosity" argument can be applied to general systems is due to &ahd [20]. Courant and
Friedrichs [12] also mention an analogous result in the context of gdgnamics with re-
actions. Unfortunately the viscous pro le criterion, used to seléghysically admissible
shocks, is too dicult to be used systematically. The work of Olenik [®] identied a
simple criterion (which bears her name today) equivalent to the visas pro le criterion
in the restricted scope of scalar equations; this set of ideas was/agced independently
in the Engineering community, giving rise to the \Fractional Flow Theoy", seee.g. Lake
[27]. In the West, Liu [33], [34] was able to extend the work of Olenik t®ystems and
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override some of the di culties imposed by loss of genuine nonlinearityrhe equivalence
of the Liu criterion and the viscous pro le criterion was established tar in certain cases,
see Conlon [10] and Majda and Pego [35].

Loss of strict hyperbolicity is a more serious problem and history hashown that
the current results tend to be restricted to the particular modelsn question. An early
sign of di culty is found in Isaacson et al. [25]. There the existence diransitional (or
undercompressive) waves was established: admissible shock wanethe sense of the
viscous pro le that fail to be admissible under any other criterion. Teir existence shows
that the Liu criterion may not always be adapted to non-stricly hypebolic systems of
conservation laws.

The work of Isaacson, Marchesin, Plohr, and Temple [26] presedit¢the Riemann
solution for immiscible three-phase ow, with equal viscosities. Thisgsticular case, full
of symmetries, is an insightful example of the complicated bifurcatiopattern a Riemann
solution may possesses. This symmetry was broken in the work of®guza [14], which let
one of the viscosities be slightly di erent from the others { openingte door to structural
stability of Riemann solutions resulting from changes in the ux fundon.

Structural stability for Riemann solutions with respect to their initial datum was
established in the beautiful and never-aging monograph by Furtad19] and extended to
non-degenerate, non-stricly hyperbolic systems in Schecter dt pi4], [45]. The use of
the viscous pro le criterion led to the profound observation that astable dynamics in
the underlying EDOs, used to select admissible (transitional or undempressive) shocks,
may lead to stable behavior in the PDEs. This work was pursued by Zlbrun and Howard
[54], [55] and others.

Closer to our work are thermal multiphase ow models in porous medial he typical
interest is the transport of hot uids undergoing mass transfer étween phases. The work
of Bruining et al. [7] brought the possibility of phase transitions to caservations laws
modeling multiphase ow. They solved the Riemann problem for watesteam injection
into a reservoir contaning water. This work was extended by Lambteet al. [30] who solved
the complete Riemann problem for the water-steam injection probte An important part
of the general theory for thermal multiphase ow was establisheth Lambert [28], [29]
and [31].

Our work intends to address gas injection into a porous medium lled i a mixture
of oil and dissolved gas. Our main objective is the solution of the Riemaproblem in the
neighborhood of two particular structures, namely a singular poires well as an interface
between di erent thermodynamical con gurations; the latter di er in the number or type
of phases present. As in the case of previous works in thermal nipitase ow, we allow
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the uids to be in di erent physical con gurations, in a way that will b e soon explained.
Those are the fundamental tools to construct the full Riemann &dtion in our case.
\Singular point” is a name usually given to points where strict hyperblicity fails in an

egregious manner, greatly complicating the Riemann solution. Umbilicopts [26] are a
known example of such points. Our case, however, is more similar twose found in the
works of de Souza and Marchesin [15], [16], with the remarkable di exee that in our

model they are not related to linear degeneracy.

This thesis is structured as follows. In Chapter 2 we give an overviesf the general
theory for systems of conservation laws arising in thermal multipls@ ow in porous
media. We state the Riemann problem in this class and present de nitig and facts
needed to properly describe the basic bifurcations in Riemann solute This chapter
is fundamental for understanding the material presented latefEven specialists in three-
phase ow theory should read it quickly to become aware of its subties. We warn the
non-specialist that this review is rather concise. Unfortunately, ost of this material is
too new to be found in books.

Following [4], in Chapter 3 we present the model that describes the égtion of a
mixture of gas and oil (in any proportions) into a porous medium lled wh another
such mixture. Here, the oil is composed of two miscible components: light alkane
(allowed to vaporize) and a dead alkane. This model allows the existenof uids in
three thermodynamical con gurations, namely: a single phase gasn guration, a two-
phase con guration and a single phase liquid con guration. The twghase con guration
is the most complex and interesting of the three: it contains the simgpr points and
is intrinsically associated to most bifurcations in the Riemann solutionsThe interface
between the two-phase region and the single-phase liquid region i taforementioned
interface that plays a signi cant role in the Riemann solutions.

In Chapter 4 we focus on the two-phase region. We set and proveetbasic results
needed in the chapters that follow. It includes basic wave structes, bifurcation results
and some remarkable properties of this class of problems. This ctepis crucial for
understanding the Riemann solutions.

In Chapter 5 we solve the Riemann problem in a neighborhood of the girar point
in the two-phase region. The structure responsible for \gas coadsation" appears here.
Particularly interesting is the discovery of a very strong degenerg: the Riemann solution
is given by a unique wave group in a full open set of Riemann data. Arnar interesting
result is a characterization of wave interactions induced by this singar point: changes
in one variable, namely the temperature, can greatly amplify the vation of the other
variable, namely the saturation.
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In Chapter 6 we state the basic results and de nitions needed to sleribe the Riemann
solutions in the two-phase region together with the single-phase liguregion. Our main
motivation originates from a curious observation: it is not possible tsolve the Riemann
problem for any pair of left and right states in the two-phase regiomising only waves
de ned within the two-phase region. Nevertheless, it is still possibl® nd all Riemann
solutions if one is allowed to use waves from other thermodynamicadrcgurations, in
addition to those de ned inside the two-phase region. A similar stateent holds for the
single phase liquid region.

We nalize this work in Chapter 7 describing this Riemann solution in a neigborhood
of the interface between the two-phase and the single-phase liquabions.



Chapter 2
Preliminaries

In this chapter we review the relevant theory for systems that natel multiphase ow in
porous media with mass interchange between phases. This theoryess than ten years
old and is far from complete.

2.1 General theory

We are interested in systems of conservation laws of the form:
@G(w) + @QuF(w) =0; (2.1)

where (w;u) 2 R are functions of one space variable and timé; G : 7! R"!
are smooth maps and is locally an-dimensional Euclidean space, called state space.
The variable u is commonly associated to apeedand has a special role since it does not
appear in the accumulation term.

As it is widely known, see Dafermos [13], systems of conservation ladesnot, gener-
ically, possess smooth solutions in the large. It is therefore ne@ygsto look for a weak
solution, i.e., a pair (w;u) 2 L (R R*; R) that satis es the integral relationship:

Z .12
[Gw(x; 1)@ (x;t) + u(x;t)F(w(x;t))@ (x;t)] dxdt =0; (2.2)
0 1
for any smooth real valued function with compact supportinR (0;+1 ), ignoring the
initial datum for convenience.
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2.1.1 Self-similar solutions

We focus on Equation (2.2). It is invariant under a uniform scaling ofaordinates ;t) 7!
(x; t ), for any positive ; hence we expect it to admitself-similar solutions. These are
de ned in the space-time half-plane and are constant along straighne rays emanating
from the origin.

If w(x;t);u(x;t) is abounded weak self-similar solution of equation (2.2), it admits
the representation (with a small abuse of notation):

w(x;t) = w % and u(x;t)=u % ; (2.3)

where now (v;u) is a pair of bounded measurable functions on the real line. In the we
variable = x=t, equation (2.2) can be rewritten as (see Dafermos [13], which we fafjo
Z 12
) [Gw( ) t@ (tt)+ u( )F(w()t@ (tt)lddt=0: (2.4)
We set Z .,
()= (tt)dt; (2.5)

0
and after a little computation we get (the dot on denotes the derivative of with respect
to ):
Z Z
t@ (tt)dt= () and t@ (tt)dt= () (): (2.6)

0 0

Substituting equations (2.6) in equation (2.4) we get:
Z .,
FluC)Fw())  Gw( NI _() Gw() ()gd =0: (2.7)

1

Since equation (2.7) is satis ed by any with compact support in the real line, it
states that the pair (w; u) must solve the ordinary di erential equation

di[u( JFW()  Gw( )+ Gw())=0; (2.8)

in the weak sense. The boundedness hypothesis on the weak sotuoves in particular
that the function

H()=u()Fw())  Gw()); (2.9)

is Lipschitz continuous.



10 Preliminaries

We rst look at the jump discontinuities of (w; u), i.e., points of discontinuity of (w; u)
for which the lateral limits exist. For a o at wich (w;u) has a jump discontinuity we
write the lateral limits as lim » ,w( )= w*, lim - ;w( )= w (and similarly for u) and
use the continuity ofH to obtain the Rankine-Hugoniot equation:

uUFw") uFw) o GWw") Gw) =0: (2.10)

When is a point of di erentiability of ( w;u) we can proceed using the chain rule in
equation (2.8). After taking the derivatives we write the o +1) (n + 1) matrix (here
the D stands for the derivative):

J(w;u; )= uDF(w) DG(w); F(w) : (2.11)

The functions DF; DG map the state space into the space of linear transformations
from R" to R"*1. Equation (2.8) can nally be rewritten as (the superscript’ denotes
matrix transposition):

I(wiu; ) w( )u() ' =0; (2.12)

which is a generalized eigenvector problem. The solutions of the gexliged eigenvalue
problem:
det J(w;u; ) =0; (2.13)

are called characteristic speedsof the system (2.1), which we will suppose to be real
numbers. Notice that if we rewrite an eigenvalue as  u€ and substitute into equation
(2.13) we get (for non-zerau):

det DF(w) ©€DG(w); F(w) =0: (2.14)

The Inverse Function Theorem guarantees that in a neighborhoaaf a point wq 2

i(Wo; u) = u&(wy); (2.15)

and choose smooth elds of right and left eigenvectors(w; u); Ti(w;u), fori =1;:::n:
J(w;u; )f(w;u)=0 and T(w;u)J(w;u; i)=0; (2.16)

where f(w; u) is a column vector andfj(w; u) is a row vector. In fact, equation (2.11)
together with (2.15) says a bit more about left eigenvectors sinceevean rewrite (2.16b)
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as:
Ti(w;u) uDF(w) u€(wo)DG(w); F(w) =0; (2.17)

where the quantity u factors out and we readily get:
T(w;u)  T(w): (2.18)
A similar computation shows that right eigenvectors are written:
f(w;u)  ri(w); ra(wW)urgs(w) (2.19)

In classical theory of conservation laws a fundamental obseriat is that in these
conditions we can solve Equation (2.12) by setting:

w( )iu() "= mw( )u(); (2.20)
for somei = 1;:::;dim(), if we can nd a parametrization for which:
= i(w( );u( )): (2.21)

A su cient condition to do this is to look at points in the state space wtere
ri(w;u) f(w;u)60; (2.22)

(where r stands for di erentiation) which after a suitable normalization of the right
eigenvector reads:
ri(w;u) f(w;u)=1: (2.23)

Now condition (2.21) can be easily ful lled: it su ces to combine Equatims (2.23)
and (2.20) to get

L wCOu =15 224

and (2.21) follows by choosingg = (W( o);u( o). These observations were rst made
precise by Lax in his seminal work [32] in the context of isentropic gadgnamics and here
we follow suit.

De nition 2.1  The system(2.1) is said to bestrictly hyperbolic at statesw 2  if
the generalized eigenvalue problem

det DF(w) ©DG(w); F(w) =0:
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hasn real distinct eigenvalues.

Remark 2.2 We stress out that the variablel plays no role in concerning hyperbolicity.
This should be expected since it is not an evolutionary quint

De nition 2.3  The statew 2 is said to be a point ofgenuine nonlinearity  for the
i family of the system(2.1) if

ri(w;u) f(w;u)60:

Remark 2.4 Genuine nonlinearity express monotonicity across a solot. Intuitively
its role is to generate compression and rarefaction waves.h&@ former renders slopes of
the solution steeper, while the latter renders the slopestbé solutions gentler.

2.2 The Riemann problem

We have so far deduced what would happen if we have a self-similar siolu of equation
(2.2). Of course, a very good candidate for self-similar solution is aogde with self-
similar initial datum. In one spatial dimension, this initial pro le must consist of distinct
constant states at left and right of a jump discontinuity at thex = 0.

De nition 2.5 The Riemann problem for equation(2.2) is the initial value problem with
self-similar initial data:

(
woy= e Tox<O
wg; if x> 0;
and

u(x;0)=u.; iIf x<G0

wherewg;w, 2 andu_ 2 R* are constants.

Remark 2.6 A crucial observation is that the Riemann problem for Equatn (2.2) is
not an initial value problem in the variableu. We can, indistinguishably, give its left
or right value but not both. We will came back to this issue latter, but refer the reader
to Lambert and Marchesin [29] for an early observation of thifact.

Following our discussion above we shall seek a solution of the Riemamalgem in the
form (2.3), where (v; u) satis es the ordinary di erential equation (2.8) in the parameter
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2 R, together with the boundary values:
IIilm w( )= w; IIiml w( )= wg; and 'Iim u( )= u.: (2.25)

Such solutions, called Riemann solutions, play a privileged role amongetkull set of
solutions for general Cauchy problems. The fundamental result this direction is due to
Glimm [22] who showed how one can use the Riemann solution to constrthe Cauchy
solution in the large (for a genuinely nonlinear system of conservatidaws) when the
initial data have small variation. The same question posed in the casé more general
systems remains open today. The Riemann solution is also very impamt as a tool to
validate numerical algorithms. Due to its constructive characterthe Riemann solution is
a very useful tool to validate complex numerical simulators.

A Riemann solution is a concatenation of constant states and elentary waves, i.e.,
centered rarefaction waves and centered shock waves (discmnbus solutions).

2.2.1 Shock waves

In the previous section it was shown that only certain discontinuousolutions can satisfy
the self-similarity hypothesis. These are called the centered shoshves.

De nition 2.7 A centered shock wave of speedconnecting the pairqw*;u*), (w ;u )
is a jump discontinuity that satis es the Rankine-HugonioEquation (2.10):.

u"F(w") u F(w) Gw") G(w ) =0:
Remark 2.8 Notice that the Rankine-Hugoniot Equatior(2.10) expresses that the vectors
F(w"); F(w ); and GWw") G(w ) ;

are linearly dependent. If we require the non-degeneracypayhesis that they are not
collinear then any pair(w*;w ) that solves equation(2.10) for a triple (u*;u ; ) will
actually solve it for a one parameter family of triples. Onca is given, the pair(u*; )
can be written as:

+

u"=u u and =u g (2.26)

whereu; and ; are reference values whean =1.

Typically, our interest is to x an initial state ( w ;u ) and ask which is the locus of
states " ;u") that satisfy the Rankine-Hugoniot equation. To this end we de nethe
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Hugoniot function, H,, : R* R! R"™  as:
H, (w";u"; )= u"F(w") F(w) Gw') G(w ) ; (2.27)

and by Remark 2.8 it is su cient to consider the caseu =1, sinceu® = u uj for any
u > 0. The Hugoniot locus of statew is the projection of the zero set:

(wh;u*; )2 R* RjH, (w";u"; )=0 ; (2.28)

into R* and we will write itas H(w ), recall that u =1 (nevertheless, there will be
a couple of occasions where we will writd (w ;u ) to select the exact Hugoniot locus
passing throughu ). Very often it will be convenient to use the projection into state
space , which we will still call Hugoniot locus. In fact, it can be shownthat both sets

are in correspondence.

Away from the base pointw , the Hugoniot locus is typically a smooth curve. If the
base point is a point of strict hyperbolicity the Hugoniot locus bifurctees into n branches
(where we recall thatn is the dimension of the state space ), see Dafermos [13] and
Lambert [28]. If strict hyperbolicity fails this may not hold.

When verifying wave admissibility, it is necessary to calculate both thehock speed
and the Darcy speedi™ explicitly. Using Equation (2.10) this can be done by any two of
the following equations:

8
% ut FIGT FIGd u F Gl F[Gd ;

_%

wherel jk n,j 6k G=(Gy; ;Gx; ;Gna) [G]=G;, G, andw™ is given.
According to the situation, it may be more useful to make the shockpeed an explicit
function of u or u*. To shorten the notation, we will write sometimesP = (w ;u ),

P* =(w";u") and de ne:

[GF  [GiIF¢ u FFYORFT (2.29)

J

[Gk]Fj [Gj]Fk u* Fj Fk+ Fk Fj+ ;

(P ;P*")  (w ;u;w";u): (2.30)

Wherever an Equation such as (2.30) is written it is implicit that the pais (w ;u ) and
(w*;u") satisfy the Rankine-Hugoniot relationship (2.10).
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Remark 2.9 Equation (2.29) shows explicitly that when calculating the shock speed the
Darcy speed can only be given at one side of the discontinuitlso, if we only need to
draw the Hugoniot locus in  we may ignoreu andu”.

2.2.2 Rarefaction waves

We now focus on smooth self-similar solutions.

De nition 2.10 A centered rarefaction curve of tha™ family emanating from (wo; Uo)
is the maximal subset in the image of the solution of the Ordiry Di erential Equation
(2.20y.

w()iu() T = mWw();u( )
(W( o);u( o)) = (Wwo;Uo);
such that the parametrization:
7 i(w( );u( ), 0;

is monotonically increasing.

In the previous Section we constructed this parametrization in thelassical case of
genuine non-linearity. A more general approach where genuine tioparity may fail in a
special co-dimension one manifold can be found in Azevedo et al.Xdijd more references
in book Dafermos [13].

Equation (2.19) allows us to computau explicitly in terms of w in a rarefaction as:

Z
u( )= upexp M+ (w(s))ds ; (2.31)

0

so that, as was seen for shocks, rarefactions can also be conafediescribed in terms of
a reference velocityug = 1.

2.2.3 Admissibility criteria

The most basic principle when constructing a Riemann solution is thahe wave speeds
increase from left to right so that all wave interaction are resolvedt the initial time,
a fact we will call the monotonicity principle. However, discontinuous solutions pose

10n reference [1], the sentence below Equation (10): [Upon replacing by x=t...] should read [Upon
replacing by (x=t)...]
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an extra di culty since they can give rise to multiple Riemann solutions. The problem
of admissibility ultimately imposes that the solution candidates satisfya more accurate
physical relation than the one described by rst order hyperbolicquations of conservation
laws themselves.

One early criterion is the Lax criterion. It was introduced to deal wih weak shocks
in genuinely nonlinear, strictly hyperbolic systems { particularly Eulerequations for gas
dynamics, from which much of the common nomenclature in use in mamatics today
was borrowed. The Lax criterion states that from the point of vievof the shock (traveling
with a certain speed), the characteristics ahead of it are slower Wéthe characteristics
behind it are faster. In our case, it states that there is an indek 1 i  n such that
the speed of a shock from poif® = (w ;u )topoint P* =(w*;u") (both in R™)
satis es:

(P )> (P ;;P")> (P"); (2.32)

as well as other inequalities. The Lax criterion was later extended aling one of the
inequalities in Equation (2.32) to be an equality.

Lax criterion lets us use the characteristic speeds to name someks We are led to
the very useful concept of wave family.

De nition 2.11  (Wave family). Let P ;P 2 R* be such that there exists an
elementary wavej.e., a centered rarefaction wave or a centered shock wave, joigithen.

Rarefaction: This elementary wave is said to be a rarefaction of thH& family if there
existsi, 1 i n such that De nition 2.10 is satis ed.

Shock: This elementary wave is said to be a shock of ti& family if De nition 2.7 is
satis ed together with the relation:

(P ) (PP (P)
where only one of the inequalities is allowed to become anadiy

Remark 2.12 We will often refer to a wave of thé" characteristic family as ani-wave.

Usually families are de ned by placing their characteristic speeds in ireasing order,
so that when constructing the Riemann solution that involve only Laxshocks, the mono-
tonicity principle is trivially satis ed. In our class of problems this is notpossible: the
relative order of the characteristic speeds may change whenwanders around in state
space . Nevertheless, the concept of fast and slow wave still mek sense and is still
needed to satisfy the monotonicity principle.
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In this work we will haven 2 so that we can follow the particular nomenclature:

De nition 2.13 Let P ;P* 2 R*, dim() = 2 , be a pair of points joined by a
centered shock wave of thid' family. Call the other family\k". It is a:

Slow Lax shock if:

k(P ) (P ;P"); and ((P") (P ;P™):

Fast Lax shock if:

k(P ) (P ;P"); and ((P") (P ;P™):

In each case only one of the inequalities is allowed to becoameequality.

This is still not su cient to ensure uniqueness in the Riemann solutionsometimes the
Lax criterion becomes so stringent that it disallows any solution, o#r times it becomes
insu cient. A way to extend the Lax criterion is to observe that Equation (2.1) is a rst
order approximation and often a better approximation to a model wuld look like:

@G(w)+ QuF(w)= @ (D@Qw); (2.33)

where the matrix D is typically positive de nite and is small. A traveling wave solution,
with speed , is a bounded solution w( );u( )), = x t, of System (2.33). When
we let go to zero we should recover an admissible shock for system (2.D)tlsat the
problem of nding if the shock between a pair of point® ;P* 2 R* is admissible
can be transformed into the problem of nding a traveling wave satiging:

8

% D£W=UF(W) Gw) uFw) G(Ww);

d
(2.34)

(w(l )u(l )=P and (wW(+1)u(+1))=P":

An admissible shock found in this way is said to posseswiacous pro le, see Gefand
[20], and the processes of nding the admissible shocks by looking faaveling wave
solutions of Equation (2.33) is called theviscous pro le criterion. One can see that
the original Lax slow and fast shocks lead to repellor to saddle anddste to attractor
solutions, when the hypotheses of the Lax criterion hold.

Unfortunately the viscous pro le criterion is very di cult to be applie d thoroughly.
In the scalar case Olenik [39] showed that the viscous pro le critéyn is equivalent to a
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simpler criterion, which bears her name. Later, Liu [34] extended ¢hOlenik criterion to
certain systems. To properly state the Liu criterion we recall thafor a pair P ;P* 2

R*, P™ 2 H(P ) the Hugoniot locus is typically a smooth curve. It is well known
that we can nd a neighborhood ofP such that the i!" branch of the Hugoniot locus
can be parametrized:

P =(w()uC ) 2HP ) 210 of; (2.35)
in away that (P ;P )is monotone decreasing.

De nition 2.14  (Liu criterion). Let P ;P* 2 R* be such thatP* 2 H(P ) and
the parametrization (2.35) satises P = P and P ° = P*. The centered shock wave
from P to P* satis es the Liu criterion if:

(P ;P*) (P ;P) 8 2[0 o (2.36)

Remark 2.15 By its very design, the Liu criterion makes sense only in theomtext of
shocks joining states in the same connected component of kheyoniot locus. In this work
this is always the case.

The Liu and the viscous pro le admissibility criteria are strongly interelated but not
quite equivalent and a comprehensive discussion can be found in Dafes [13]. However,
if we con ne ourselves to shocks of moderate strength in systembere any pair of points
satisfying (2.10) can be connected by a local branch of the Hugonlocus we may use
Liu's criterion. For certain cases, equivalence of the Liu and the visas pro le criteria is
discussed in Conlon [10]. See also the work of Majda and Pego [35]. Fovrg shocks
or general non strictly hyperbolic systems of conservation lawsatacase must be treated
individually. In our class, the Liu criterion turns out to be an excellentcompromise.

2.2.4 Wave groups and nomenclature

Throughout this section we will assume that there are exactly twoistinct families. We
introduce the notation (W';u') 1™ (w";u") to express the fact that (v'; u') is connected
to (w";u") (on the right) by an elementary wave of typew. The elementary wave types,
are denoted as follows:

RP: p rarefaction of thei-family;

SP: p shock of thei-family.
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In this work, \ p" will typically refer to fast (S', R') and slow (¢, R?) i-waves.
Concrete examples are the Buckley-Leverett or Evaporation falpwaves, to be de ned in
the two-phase region, see Chapter 4. However, there will be tim&bken both inequalities
in De nition 2.13 will become equalities: this shock will be called a doublesntact of the
i-family and the elementary wave will be denoted aS®. Elementary Riemann solutions
for which the i-characteristic eld satis es:

ri(w;u) f(w;u)=0; (2.37)

identically, are usually called genuine contact discontinuities of thefamily and will be
denoted asC,;.

Remark 2.16 Of course, the purpose of the nomenclature \fast and a slowegaction”
is to remind that the relative size of characteristic speedfiange.

Elementary waves can get away from each other creating constestates or move
together as a single entity.

De nition 2.17  (Wave group). A wave group is a self-similar solution of the Riemann
problem 2.5, with no embedded sectors of constant states.eTtumber, type and arrange-
ment of the elementary waves in the wave group determine thevev group type.

Since in our class of systems strict hyperbolicity typically does not kdy it is not
possible to associate to all wave groups a well de ned characteiistamily. However,
most wave groups can still be distinguished by their relative speedyrfexample as a fast
wave group or as a slow wave group.

De nition 2.18 (p-wave group). We de ne the succession of elementary waves:
(whu)yr 1 (whuh); (2.38)

to be a p-wave group if it is a wave group and all waves satidig same property p":
they are fast, slow or belong to thefamily.

De nition 2.19 Denote by(w;u) a p-wave group. We de ne, for = x=t:

Its initial state as:

(w'su) = lim (w();u():
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Its nal state as:
(whu') = lim (w();u()):

De nition 2.20 (Forward p-wave curve). We de ne the forward p-wave curve based on
whu 2 R*, denotedW!? w';u' , to be the projection into state space of the p-wave
group that has a xed initial state(w'; u').

De nition 2.21  (Backward p-wave curve).We de ne the backward p-wave curve based
on (w";u") 2 R*, denotedWP" (w";u"), to be the projection into state space of the
p-wave group that has a xed nal statgw";u").

Genuine constant states will be denoted by capital, bold, roman ledts, like M. In-
termediate states in wave groups, which do not appear as regiongdlie wave pro le, will
additionally possess a hat, like¥l .

2.3 Bifurcation manifolds

In the general situation there are sets in state space that play arfdamental role in the
construction of Riemann solutions. We will describe them brie y, justo motivate their
de nitions. More details can be found in Furtado [19]. Many of them aabe written as
the zero sets of certain functions so that it is commonplace to cabhém manifolds.

Remark 2.22 The boundary of the state space is a potential source of tréetbthe main
tool to characterize the bifurcation loci is the inverse fustion theorem, the usefulness of
which may diminish if we only have a lateral derivative de me We write:

[ @; (2.39)

where is the interior and @ is the boundary of the state space. When needed, the
boundary will be treated individually.

2.3.1 Coincidence locus

The coincidence locus is the set where strict hyperbolicity is lost. It,igypically, respon-
sible for bifurcations in the behavior of both shock and rarefactioourves.
We recall De nition 2.1 before writing:

De nition 2.23 The coincidence locus between two families is the set:

Gi=fw2 j&w)=8w) 1 ij nandiéjg:
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Remark 2.24 In this work there will be only one coincidence locus (whiclogsesses two
connected components in our case).

2.3.2 In ection locus

Points in the in ection locus are those where genuine nonlinearity is lbs Generically,
the eigenvalue does not vary monotonically along a correspondingegtal curve near an
in ection point. Thus rarefaction curves stop at this locus.

From De nition 2.3 and recalling Equations (2.15) and (2.19) we nd:

De nition 2.25  The in ection locus of the i!" family is the set:
( X )
li= w2 @S (W)rfw) + & w)r*t(w)=0

1 kn

Here we used¥, 1 k n+1, for the k™ component of thei®" family eigenvectors;.

2.3.3 Self-intersection and secondary bifurcation loci

The Hugoniot locus based inv 2 is generically a smooth curve, away fromw . If
we can nd a statew®™ 6 w , such that w* 2 H(w ) and the Hugoniot locus is not
a smooth curve in any neighborhood ofv* then the Jacobian of the Hugoniot function
(2.27) cannot have maximal rank at this point. We write its di erential:

dH, (w";u"; )= u'DF(w') DGWw") dw® + F(w")du"

(2.40)
Gw*) G(w ) d;

and, by recalling Equations (2.13) and (2.18), we can see thdH,, (w*;u"; ) will not
have maximal rank if the following identities hold:

= j(w";u") and (W) (GW') G(w ))=0; 1 i n (2.41)

Commonly, the Hugoniot locus fails to be a smooth curve at points wiee it self-
intersects, which is our case. Before de ning the self-interseatidocus we need some
preparation. First we will rewrite the Hugoniot function to make exficit its dependence
on the statew :

Hw ;w*;u*; )= u" F(w') F(w ) Gw") G(w ) : (2.42)
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We de ne the set:
= f(w ;w";u")2 R"jw =w'g; (2.43)
and write:
D= Rn : (2.44)

We want to de ne the self-intersection locus as the zero set of a eoth function; to
thisend we x afamily 1 i n and motivated by (2.41) we write:

Fi:D! R™; (w ;w";u") 70 H(w ;w*;u*; j(w*;u™)); T(w)[G] ; (2.45)
where G] = G(w*) G(w ).
De nition 2.26  The self-intersection locus of the" family is the set:
Ai= (w ;wu")2DjF p(w ;whut)=0

A related and very important locus is the one that encodes the chge in the topology
of the shock curves. It is called thesecondary bifurcation locussince in the three-phase
ow models where it was observed rst (see Isaacson et al. [26]), ippens to be exactly
the same as the set where the Hugoniot locus has a second selfrsgtetion (the primary
self-intersection always occur at the base state ). We call it the secondary bifurcation
of the i family as B;. In our class it satis es:

where the symbol( means proper inclusion and\; is the closure of the self-intersection
locus of thei" family.

Remark 2.27 We will see that in the particular case of the secondary bitation we need
to consider the boundary of , because otherwise, it would be empty.

2.3.4 Double contact locus

We de ne a two-sided (or double) contact discontinuity to be a solubn (w ;u ;w*;u")
of the Rankine-Hugoniot relation (2.10) such that a characteristispeed for v ;u ) co-
incides with the shock speed(w ;u ;w™;u"), as well as with the another characteristic
speed for ¢w*;u*). By Remark 2.8 we only need to consider the reference spaed= 1.
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De nition 2.28  The double contact locus between th#& and k™" families is the set:
Dixk = (W ;w";u")2Dj (whu*)2H(MWwW ) and [ = = . ;

where
F= (whut); = (w;u;whut) and

[

—
=
H

=

i

2.3.5 Extension locus

We can concatenate elementary waves together wherever th@sk speed equals a charac-
teristic speed of the base state. This is particularly useful and,taf xing the notation:

f= whut); = (wosuswtiut); and = (wosu ) (2.47)

leads to the de nition:

De nition 2.29  (Extension locus of a point.) We write the right extension locus of the
point (w ;u ) in the i™ family as:

n 0
E'(w ;u)= (w";u")2 R j(w';u")2H(w ;u ) and A

and the left extension locus of the poir(w ;u ) in the i family as:

n 0
Ew; ;u)= (w"u")2 R*j(w*";u")2H(w ;u ) and

Remark 2.30 Often the extension of a point consists of several points.

A natural \extension" of the previous de nition is:

De nition 2.31  (Extension locus of a curve.)Let be a curve in R*. lts right
extension locus in tha™ family is:

n 0
E'()= (w"u")2 R*j9(w :u)2 ;(w"';u")2H(w ;u ) and v

and its left extension locus in the™ family is:

n 0
E()= (w"u')2 R"jO9(w ;u)2 ;(w"u")2H(w ;u ) and oo
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2.4 On notation

Following Smoller [46] we will use four derivative notations along this wkr D, r , ®and
a superimposed dot (_). In what follows the respective functionseasmooth andU is an

open set.
If we have a functionF : U R" 1 R™ wheren;:m > 1 then we will write its

derivative (Jacobian) as:
w 7! DF(w)2 R™; n;m> 1

If we have a real valued functionf : U R"! R with n > 1 then we will write its

derivative (gradient) as:
w7lr f(w)2R";, n> 1

If we have a real valued function of thereal liné : U R! R then we will write its

derivative as:
7T )2 R:

Finally, if the derivative is with respect to \time" or if we have a paramdrization
(function) from the real line to someR™ with m> 1, x : U R! R™, then we will
write the derivative of this parametrization as:

7"x()2R™, m> 1



Chapter 3
Physical model

In this chapter we motivate the equations of our model following beally the work of
Bruining and Marchesin [4].

3.1 Flow of uids and qualitative behavior

We consider the injection of gaseous volatile oil into a cylindrical hoontal core with
constant porosity and absolute permeability. The core is originally lld with oil. The oil
consists of a mixture of dead oil and volatile oil.

Physical quantities are evaluated at a representative pressurerbughout the core; we
assume that pressure variations are negligible compared to the ya#ing pressure. Ther-
mal expansion of the liquid will be disregarded. All uids are considedeincompressible.
We assume Darcy's law for two-phase ow. The tube diameter is cadered su ciently
small so that gravity segregation does not occur and temperatiis homogeneous radially.

3.2 Thermodynamic fundamentals

Let us describe the phase behavior. We always assume that theréoisal thermodynamic
equilibrium. Our interest is con ned to situations where we have: (1Jwo phases, i.e.
oleic (or liquid) (o) and gaseousd) and (2) one phase, i.e. oleic or gaseous. There are
two components viz. volatile oil ) and dead oil d). We de ne dead oil as an oil with
zero vapor pressure, which can only exist in liquid form, and volatile ods an oil with
nonzero vapor pressure.

We use the following convention for subscripts: the rst subscripfo; g) refers to the
phase, the second subscriptv(d) refers to the component. With these conventions the

25
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concentration kg=n?] of (dead) volatile oil in the oleic phase is denoted asd;) ov. The
pure phase densities of liquid volatile oil and liquid dead oil are denoted¢ ay, and p
respectively. The pure phase densities of volatile oil vapor is dendtby gy .

Gibbs' phase rule
f=c p+2; (3.1)

dictates the number of degrees of freedorh ) for the thermodynamic variables given the
number of phasesf) and the number of componentsd). In the two phase zone we have
two phases p = 2) and two components € = 2), which givesf = 2, so we have the two

concentrations as functions of the temperature and the pressu As in this model the

pressure at which the displacement is conducted is xed, we haveathall concentrations

are functions of the temperature only.

In the single phase liquid zone we have one phase and two componewntdsich gives
three degrees of freedom: the temperature, the pressure é&) and the concentration of
dead oil in the liquid. By assumption, the single phase gas zone has onlye chemical
component: again the main variable is the temperature.

We disregard any heat of mixing between volatile oil and dead oil. Moresr we
disregard any volume contraction e ects resulting from mixing. Foideal uids we can
write

%+LD":1: (3.2)

The pure liquid densities v, p [kg=nT] are considered to be independent of temperature,
and the pure vapor density is considered to obey the ideal gas law, .,y = My P=RT,
where My denote the molar weight of volatile oil. P is (the xed) pressure and the gas
constant isR = 8:31[J=mol=K].

3.2.1 Two-phase behavior

Since the concentrations are functions of the temperature in theo-phase region we need
to equate this dependence. We will use a simple model derived fromstzaprinciples (in
opposition to a model which ts experimental data). From the engiaering point of view,
the model is su ciently accurate in the regimes for which we proposks use.

We assume that the volatile oil vapor pressuréd, is determined by the Clausius-
Clapeyron law together with Raoult's law (see Moore [37]), which stagethat the vapor
pressure of volatile oil is equal to its pure vapor pressure times theguilibrium mole
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fraction x$J of volatile oil in the liquid oleic phase. Therefore we obtain:

M TV
VY b Bl (3.3)

1
— f
P = P ep e L o

where T is the normal boiling temperature of volatile oil atP™", a reference pressure;

v T isthe evaporation heat of pure volatile oil at the normal boiling tempature T\
of volatile oil and My, is the molar weight of volatile oil. Furthermore we assume that the
total pressure is the volatile oil vapor pressure, i.e?™ = P,. All these thermodynamical
constants are given in Table A.1.

Finally we need to derive an equation that relates the oleic phase déies to the mole
fractions. From the de nition of the mole fraction (moles volatile oil / total moles):

ov=My

Xov = ;
ov=My + =Mp

(3.4)

where Mp is the molar weight of the dead oil. The light oil mole fraction and the deh
oil mole fraction, in the oil, must add to one:

Xov + Xod = 1; (3.5)

so combining equation (3.4) with the rst ideal mixing rule (3.2) we nd d&ter some
algebraic manipulations:

_ Xov D vMy . _ Xod b vMp . (3.6)
ov — ) od — . .
Xov DMy + Xog vMp Xov My + Xod vMp

The pure phase densities {,; p) and molar weights My ; Mp) are given in Table A.1.
Temperature dependent quantities such as the evaporation heatt volatile oil ( v T )
are given in Appendix A.l.

Remark 3.1 Equations (3.6) express that the set of molar fractions are mapped in a
one to one way onto the set of concentrations.e., X, 7! o, (X0 ), 2 fv;dgis a
di eomorphism. Since the concentrations (ov; oq) are the quantities that appear naturally
in the conservation laws, they are best suited to be used agaldes to solve the Riemann
problem. However, to represent the state space and draw pies it is more convenient to
use the molar concentrations X, ; Xoq) @s they always take values between 0 and 1.
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3.3 Darcy law for two-phase ow

When dealing with multi-phase ow in porous media itis commom place to @she concept
of saturation: the fraction of one of the uids in the pores averaged over a reggentative
elementary volume. We writesy for the gas saturation ands, for the oil saturation. The
rock is lled with a mixture of oil and gas, i.e.:

Sgt+ So=1: (3.7)

Following the Corey model [11], we take very particular gas and oil retee perme-
abilities (which we denote byk,qy and k, respectively), which are quadratic functions of

the saturations alone:

2.

Krg = Sg;

and ky, = s (3.8)

The capillary pressure between the phases is also a function of tleusations: it is
assumed (see Aziz [2]) that the gas-oil capillary pressupg P, = Pec.go(Sg) depends on
the gas saturation.

In the absence of gravity terms Darcy's law for multiphase ow reasl

o @X @x
(3.9
' 9 g @X Q@X’
where the viscosities , 2 f 0;ggare functions of the temperature and the composition,

see Appendix A.1, the porous rock permeability is given in Table A.1 and, 2fo;q
stands for mobilities. It is possible to express all phase velocitias in terms of the total
velocity u:

U= Ug+ U, (3.10)

and the capillary pressure:

@Ppgo.
@x’

@pgo.
¢} @X !

8

% Up = ufe+ 4f,
(3.11)

2

Ug = ufg  of
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where the fractional ow functionsf are de ned as:

f = ;  for 2fg;a; (3.12)
9

and, of course, 4fo = ofg.

Remark 3.2 The fractional ow function is smooth (in all variables), na-negative,
monotonically increasing function of the saturations withrange in the [0; 1] interval. Its
derivative vanishes for states at pure oil saturation or atyse gas saturation and has a
single, non-degenerate, global maximum.

The expression forpg.qo Will not be used (directly) in this work, but we remark that
after using the chain rule, we can write:

dpego.

Dygo = ofga,

(3.13)

where Dy, is non-negative (the subscript stands as a reminder of its functiahdepen-
dence). The nal form of equations (3.11) is:

8

% U, = ufy, D go%i;

3 (3.14)
@

~ ug = ufyg D go@i:

Notice the change of sign in equation (3.14a) relative to (3.11a), whics due to the use
of equation (3.7).

3.4 Balance equations

Systems of form (2.1) are a prototype for multiphase ow in porousnedia with mass
transfer between di erent phases. In this thesis we are only cosrmed with physical
mechanismsof mass transfer: evaporation and condensation, both \revelge" in nature
(in opposition to chemical mechanismdike combustion).

Our main interest is not the balance laws themselves but the consatwn laws which
we can derive from them when we allow the source terms to relax tawla their equilibria.
In the approach we follow we do not need the precise form of the soa terms: only its
qualitative behavior in the thermodynamical equilibrium.
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Typically, conservation laws arise as rst order approximations to mre complicate
dynamics. Very often they do not su ce to select gohysically meaningfulsolution, indeed.
The mathematical selection criterion is calle&ntropy condition and a very sensible one
is to consider a better approximation (of the complicated dynamics)which here is a
convection-di usion equation { and nally look for the solutions of the conservation laws
that can be realized as traveling waves of the convection-di usiorystem. This reasoning
is part of the motivation of our adoption of the Liu entropy criterion, see discussion in
Subsection 2.2.3. In what follows we will derive the convection-di usiomodel for the
sake of completeness, however they will not be used in the currewbrk.

3.4.1 Mass balance equations

The balance of mass of each component in each phase is given by ttlewing equations,
which express volatile oil mass balance in the gaseous phase, volatilenass balance in
the liquid phase and the dead oil mass conservation in the liquid phaserhember that
by assumption there is no dead oil in the vapor phase):

o Wt of ) T G o (3.15)

8

% @@ ovSo) + @C@)g ovlo) = + Qi ov;
@

% L

|
o

@
odso) + @)5 oduo)
The concentrations of dead and volatile oil in the liquid are related bygeation (3.2),
which states the ideal mixing rule. The gaseous phase is pure volatil&aae vapor, thus
the gas density is 4y in equation (3.15b). The source ternty .. is the volatile vapor
condensation rate: it denotes the mass transfer of volatile oil frothe gaseous to the

liquid phase. Of course the rock porosity is denoted By and is assumed constant.

Combining equations (3.11) with the system (3.15) we can write the mea balance
equations in terms of the total Darcy speed and the fractional w functions:
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8
E @ _ @ @s .
% @{ ovSo) * @)g ovf o) T Qoo t @x OVDQO@X ;
§ I @@{ 9V59)+ )g gVUfg) = G ov t @@X gngo%i ; (3.16)
. @ @ _ @ @s .
@{ odSo)+ @)S odeo) = @X OdDQO@X :

3.4.2 Energy balance equations

The conservation of energy in terms of enthalpy is given as:

@ : @ _ @ o |

@t Hi + " (SoHo + SgHg) + @X UoHo + UgHy = @X _);r ' (3.17)
where capitalH is used as a nhomenclature for enthalpies per unit volume,is the e ec-
tive coe cient of the heat conductivity term and T is temperature. Mixing e ects are

disregarded. The oleic and gaseous enthalpies are given as:
Ho= ohov + odhop; Hg= gvhgy: (3.18)

The enthalpiesh are all per unit mass and depend on temperature (see Appendix A.1)
The enthalpy of volatile oil in the gaseous phase gy, . Furthermore hy,, and hyp are the
enthalpies of liquid volatile oil and dead oil. Rock enthalpyd, is a function of temperature
only. Following Bruining and Marchesin [4] we make the simplifying assurtipn that the
heat capacities with respect to volume of volatile and dead oil are emuso that H, is
independent of composition. This simpli cation is very useful and mer than adequate
for our purposes. Plugging equation (3.14) into equation (3.17) wetywith |, = H,=":

@ @ @

' @t#?, +SoHo+ sHg + - u foHo+ fgHg = 22 27T
(3.19)
+ _CCD D H @4_ Q@
@x * C@x @x

3.4.3 The main state space and state variables

Systems (3.16) and (3.19) together describe the two-phase owatwo component mix-
ture in which only one of the components is allowed to exist in the gas. nGe we use
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equations (3.2) and (3.6) to write o, = ov(Xoq), We can de ne the main state space as:
= f(so;T; 0a)JO So 1, T>Togand0 Xxo 1g; (3.20)

and, here, we remind the reader of Remark 3.1.

Any solution of this model can be fully described by a quartet:
(So; T: odrU) 2 R™; (3.21)

which from now on will be called thestate variables Of course, the set R*™ will be
called the state space Since we have four unknowns and four equations we hope that the
problem is well determined and we may proceed.

On the right-hand side of Equations (3.15) we can see the sourcente the volatile
vapor condensation rate. In our class of problems the main featuof this type of source
term is to select anequilibrium set in state space and to force the solution to converge
towards this set, orrelax to this set. Relaxation is a very active topic of research (see the
1999 survey by Natalini [38]) and a crucial question is to measure tleeective time the
solution of balance laws needs to approach the equilibrium set.

This is a di cult topic that will not be pursued here, but motivates the following: it
is commonly accepted, for our class of models, that the e ective tenof relaxation is far
smaller than the e ective time of the displacement (the ratio of a chacteristic length
in the porous rock by the maximum speed of the displacement), so waél assume local
thermodynamical equilibrium. This makes the problem tractable andas far as we know,
it is a good approximation.

3.5 Con gurations in thermodynamical equilibrium

In this section we describe the con gurations in thermodynamicalgeilibrium that are
relevant to our work.

3.5.1 Single phase gaseous region (SPG)

In the SPG there is only light alkane gasg, = 0 and X4 = 0) thus the light alkane vapor
pressure must equal the total pressure. A simple observation isat these constraints



Con gurations in thermodynamical equilibrium 33

together with equation (3.3) give:

My v V. 1 1
1=exp = b T TV ; (3.22)

soT = Tyy Iis the minimum temperature where pure light alkane gas can exist in thao-
dynamical equilibrium.

We have one component and one phase so by Gibbs' phase rule, €qua3.1), there

is only one thermodynamical degree of freedom. We can write theat# space as:

SPG — f (So; T, Xod) J So = 0; T TbV and Xod = 0 g. (3-23)

The single phase gas state space is a one dimensional manifold in maatesspace
parametrized by the temperature. In these conditions the mode&quations (3.16) and
(3.19) reduce to:

1
o

(3.24)
@ @ . @ o .
Bt R, + Hy +—£qu) = o @t

8
g | @@tgv * @@>$u av)
3

where we recall Remark 3.2.

The natural parametrization of the single phase gas state spacg3) will be called
SPG and, with a small abuse of notation, write this as the set:

SPG=fTjT Twg, (3.25)

with the topology induced from the real line. Solutions of system (342 can be completely
determined in terms of the variables

(T;u)2 SPG R™: (3.26)

Remark 3.3 Lambert [28], [29] used the namérimary variables to represent the vari-
ables that parametrize the state space, in this case they #ne temperature. The other
state variables, the values of which were inferred from thgudibrium equations were called
trivial variables, in this case the oil saturation and the dead oil mole fractio The name
secondary variablewas reserved to the variabla.
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3.5.2 Single phase liquid region (SPL)

The single phase liquid region has two components in liquid forns,(= 1). Combining
equation (3.3) with equation (3.5) we can calculate, for each tempure, the maximum
amount of dead oil which can exists in a single phase liquid in thermodymécal equilib-
rium with light alkane and we call this quantity x;4(T). So, a single phase liquid can only
exist if:

Xed(T)  Xod: (3.27)

We can write the state space for the single phase liquid region as:

SPL — f (SO;T; od)j So = 1; T> TbV and ng(T) Xod 1 g, (3-28)

see Remark 3.1.

Gibbs' phase rule gives three degrees of freedom, see Sectiondhg, since the oleic
saturation is xed, the one phase liquid state space is a two dimens@manifold in the
main state space parametrized by the temperature and by the dgail concentration. In
these conditions the model equations (3.16) and (3.19) reduce to:

8
. @ @ _ .
% @tov+@>su ov) - 0,
.@@tod+ @%“ ) = 0: (3.29)
% . @ @, _ @ @, .
@'t Ho rguHe = 5 gt

see Remark 3.2 for the fractional ow functions properties.

Multiplying equation (3.29a) by 1= v, equation (3.29b) by E p, adding the results
and using the ideal mixture law (3.2) we gef@u = 0, so u is constant in space. Since
we are interested in conservation laws we ignore heat conductiow, that system (3.29)

simpli es further to: 8
% I @@t0d+ u@@)Xod = 0;
, @ @, _ .. (3.30)
% @t Ij?r"'Ho +U@)|('|o - O,
@Qu = O0:

The parametrization of the single phase liquid state space (3.28) wilelcalled SPL



Con gurations in thermodynamical equilibrium 35

and, with a small abuse of notation, we write the set:

SPL=f(T; o) j T Tovandxid(T) Xoa 10: (3.31)

Solutions of system (3.30) can be completely determined in terms diet variables:

(T; o;u)2 SPL R™: (3.32)

3.5.3 Two-phase region (TP)

In the two-phase region the two components can coexist in liquid for (consisting of
light and dead alkanes) and gas form (with only light alkane vapor), wit concentrations
derived by equation (3.3) as functions of the temperature (for gntemperature greater
than the boiling temperature of the light alkane). Of course this moal is unreliable for
very high temperatures.

As in the previous cases, we can combine equation (3.3) with equati@5) to calcu-
late, for each temperature, the amount of dead oil in thermodymaical equilibrium with
light alkane vapor and we call this quantity xcJ(T). To sum up, a two-phase mixture
exists if:

Xod = Xgd(T): (3.33)

We can write the state space for the single phase liquid region as:

 =f(So;T; oa(T))jO So 1; T >Tpy andXeq = Xcd(T) ; (3.34)

Gibbs' phase rule gives two degrees of freedom, and since the gues is xed (see
Section 3.2), we have the temperature as a free thermodynamiaitgree of freedom.
However in the two-phase region the oleic saturation must be an@hdegree of freedom
in the model so the two-phase state space is a two dimensional matdfin the main state
space parametrized by the temperature and by the oleic saturatio In these conditions
the model equations (3.16) and (3.19) reduces to:
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8
@ @ @, @
@t gvSg * ovSo) + @)I(J( 9Vfg+ owfo) = @XDQO OV@X+ gv@i ;
' g{ 0dSo) + @@)l(»‘( odf o) = @@X od gogi ;
(3.35)
@ @ @ @
g gt SeHotsiHg + U (foHot foHg) = =5 =°T
@ @s, . @s .
' @XDQO Ho > @x g, @x

System (3.35) is the prototype of convection-di usion equations @vneed to motivate
the entropy criterion in the two-phase regioni.e., admissible shock-waves of the two-phase
region are meant to bevery closeto asymptotic solutions of system (3.35).

Now we focus in the convective ow part and neglect the right-handides. Multiplying
equation (3.35a) by ¥ \, equation (3.35b) by E , adding the results and using the ideal
mixture law (3.2) we get the rst equation in:

% I @@t( gvSg t v So) + @@)l(J( gig+ vfo) = 0;
% o wa)* ouode) = O; (336)
= @@t B, + sHo+ sgHy + @@)? (foHo+ fgHy) = O:

Notice that we have removed the dependence op, in the rst equation.

We will call the parametrization of the two-phase state space (3.3%y TP and, with
a small abuse of notation, write the set:

TP =f(s5T)JjO so 1; T>Thg; (3.37)

Solutions of system (3.30) can be completely determined in terms biet variables

(So;T;W)2 TP R™: (3.38)
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3.5.4 On notation

For brevity we will typically use bold, roman, lower-case character® denote points in
some state space. For exemple, points in tHeP will be written as:

w2TP;

and similarly for the SPL. The reason for this is that both sets have dimension greater
than one. We will make only one exception: we will write all variables elpitly if one of
them needs to be identi ed. For example, if we need to identify a satation for a point
in TP we will write:

(S;T)2 TP

and say something abous,.
The SPG is one dimensional so we will just write the name of the physical varibgbit
parametrizes, namely the temperature:

T 2 SPG:



Chapter 4
Basic facts in the two-phase region

Riemann solutions in the two-phase regionT@ ) are fundamental. TheTP is a source
of genuine nonlinearity in our model, and is directly responsible for alf the bifurcations

in the solution. In this chapter we will focus in the elementary wavesna bifurcation

structure inside TP .

4.1 Characteristic speeds and eigenvectors

We will recall some basic facts. In section 3.5.3 we derived the systainconservation
laws: 8

% I @@t( ovSg+ vSo)+ @@)l(—l( owig+ vfo) = 0;
% S e U ade) = O; @1)
o R, + soHo+ sgHy + O (FoHo + fgHg) = O;

@ @xX

and introduced a natural parametrization of the two-phase sta&t space:
TP =1 (s;T)jO s 1, T>Tpg: (4.2)

A solution of the Riemann problem for system (4.1) is a convenient pametrization of
the real line ontoTP ~ R™, which we will write as 7! (so( ); T( );u( )), where = x=t.
In this chapter we will reserve the bold, lower-case, roman chatacs to denote arbitrary
points in the two-phase region. Quite often we will write4,; T) w 2 TP, for a given
point.

38
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System (4.1) can be written in compact form as:

@G(w) + @QuF (w)=0; (4.3)
where:
0 1
gng"' v So gig+ Vfo
G(se; T) =" %) 0dSo X and F(sy;T)= % odf o X: (4.4)
R, + soHo + SgH, foHo+ fgHg

As it was discussed in Chapter 2, smooth solutions of the consereat laws are related
to a generalized eigenvalue problem, which we call the characterisgequation of the
system. Recalling Section 2.1, the matrix of this equation is written as

J(w;u; )= uDF(w) DG(w); F(w) ; (4.5)

where the D denotes di erentiation relative tow.

Let (w( );u( )) be a smooth self-similar solution of (4.1) conveniently parametride
by and t a right eigenvector of matrix (4.5). They must satisfy together tb ordinary
di erential equation:

w( );u() = #(w();ul)); (4.6)

for all points in the domain of the parametrization and a suitable initialdatum. The
eigenvectort (w; u) solves the equation:

J(w;u; f(w;u)=0; (4.7)

forsome 1l i 2,sinceTP is atwo dimensional manifold { see equation (4.2). Further
details in the derivation of the model can be found in Chapter 3, padularly in Section
3.5.3 where we derive the system of conservation laws in two-phageilbrium, together
with its state space. A review of the basic theory of conservationvig can be found in
Chapter 2.

4.1.1 Calculations

In system (4.1) we de ne the temperature-dependent quantities
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to get from equations (4.4) and (4.5):

1
(u@ofo I ) U@(fo+ gv) I@T(So‘|' gV) fo+ gVv

J = (u@fo " ) u@(fo) "@r1(so) fo L (49

(U@ofo ' ) U@(f0+Hg) I@T(SOHO+H9) fo"'Hg

Gaussian elimination in (4.9) on the second and third elements of the st column
yields:

1
(u@ofo I ) U@(f o+ gv) I@T(So+ gV) f o+ gVv
J= 0 u(@fot+b) ' (auSo+ by) gV , (4.10)
0 U(azfo"' bz) I (azso"' b2+ H r) gVv + Hg

whereay; ay; by; b, are functions of the temperature given by:

8
% a = @ @r ;

b= O g (4.11)
5 Q = @ @ ;
' = @THg @r gVv-

The Buckley-Leverett characteristic speed appears very clearfisom (4.10) as:
u
b= —@fo: (4.12)

The (right) eigenvector associated to the Buckley-Leverett eigealue is also very easily
obtained as (a multiple of):
f,=(1;0,0)": (4.13)

It will became clear that the Buckley-Leverett waves, which will oftn be indicated by
the subscripthb, represent solely uid transport with no temperature changes. fis can be
readily seen for the rarefactions. To complete the description bfvaves let us focus on left
eigenvectors. Notice that the left eigenvector associated t@ spans the annihilator of the
second and third columns ofl, equation (4.9). Wherever strict hyperbolicity holds, the
annihilator is a one dimensional space arfg(w) is a scalar multiple of the cross product
of the second and third columns od, equation (4.9).
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Remark 4.1 Notice that the left b-eigenvector is independent of the [Rgrspeedu. This
is a typical property in this class of models, satis ed by aWwave families, see section 2.1.

The other eigenvalue is associated to temperature variations andss transfer between
the two phases, for example, evaporation. Due to this fact we weiits characteristic speed
as .. Regarding the latter eigenvalue we can state the very useful:

Proposition 4.2 As long as ¢(w) 6 ,(w) for a statew = (s,;T) in TP the left
e-eigenvector can be written as a function of the temperagualone: T, = To(T).

Proof. Since we are examining states where the system is strictly hyperboltbe rst
column of (4.9) does not vanish. We write the cross product of therst and the third
columns and cancel out the vanishing terms to obtain (the cross qutuct is indicated
by ):

Te=(3535 ) (qgviOHg):

This vector is clearly a function of temperature only and is orthogat to the rst
and the third columns ofJ. We proceed to show that this vector is non zero. Writing it
explicitly we get:

T = (Hg o Hg o)
= ( odHgi(Ho Hg) gv (v ov)Hg  od gv)
= ( odHgs v gv(ho hg);  od gv):
By equations (3.3) and (3.6) the dead oil concentration can only vah at T,y,, where
the gas and liquid alkane enthalpies cannot cancel out because ogithvery de nitions
(see Appendix A.1). The proof is complete.

We proceed to calculate thee-characteristic speed. To calculate the eigenvalug we
only need to compute the determinant of the 2 2 right lower block of equation (4.10).
This yields:

uAfo+ Bl.

e(w;u) = T AS.+ B, (4.14)
where: 8
2 A(T) = V(hg ho)@ od t od(@Ho gv@hg);
S Bi(T) = o gvhg; (4.15)
BZ(T) = od( th8+ Hro);

and the reader should keep in mind thaf stands for di erentiation.
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Remark 4.3 The quantities A, B, and B, are positive for anyT  T,y. This can be
readily seen forB, and B, since they are the product of densities by heat capacitieso Jee
that A is positive, rst notice that o4 is a strictly increasing function of the temperature
in TP so its derivative must be positive. The gas enthalpy is sthic greater than the
oil enthalpy at the boiling temperature due to the vaporizan latent heat (see A.4) so
that v(hg ho)@ oq is positive nearTyy. As the heat capacity of the oil is greater than
the heat capacity of the gas one can see that the tergy(@H, v @hy) is always
positive, at least for our speci c values of oil and vapor pameters. This is su cient
for our purposes. The reader may verify that these quantiiegemains positive for high
temperatures, by noticing that the rst term of (4.15a) isO(T !) while the second one is
O(1) so that a computation shows thaf(T) remains positive.

Remark 4.4 Notice that the eigenvalues have the form:(w;u) = u§(w), the reader
should recall Section 2.1.

To calculate the right e-eigenvector we rewrite (4.10) replacing by u€, as:
ulii(Be;w) ula(Cerw)  las(w)
J= 0 udis(®e;w) dip(w) g (4.16)

0 udz1(€e;w)  dao(w)

Notice that we have just changed the nomenclature. For exampléhe element in the rst
row and rst column in equation (4.10) is written in equation (4.16) as:

l11(Besw) = (@Qf, ' ©o): (4.17)
Returning to the calculation of the eigenvector we have:
|13: Vfo+ gig; (418)

which never vanishes. Using the notatiom,  (r{;r»;r3)", we can solve the rst equation

of the system®¢, = 0 as:

u
3 = G(|11r1+ |12r2); (419)
1

substituting rs into the second equation infr, = 0, see (4.16), we obtain:

M(W)rz = l11dior ; (4.20)
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where we have introduced the notation
M(W) = li3din  dialio; (4.21)
Now we can write down the eigenvector associated with.:

I
fe(WiU) = M lndipl U (M) (4.22)
13
This choice can only vanish at pointsv for which m(w) = 0 and l3;(w) = 0 simultane-
ously. Noticing that I;;(w) = 0 implies (@,f, be) =0, we are led to the following:

De nition 4.5  The singular set in theTP region is the set:
S=fw2TP jm(w)=0 and §(w)= &(w)g:

We will study a range of temperatures in whichS consists of the single point shown in
Figure 4.1. The singular point will play a crucial role in the Riemann solutio. Of course,
an eigenvector is de ned up to a multiplicative factor and we may askor example, if
the singular point is a removable zero of this formula fore. This is not the case and in
the Subsection 4.5.1 we will tackle this issue and, particularly, showdhthe singular set
corresponds to the place where the geometric multiplicity of the Jabian (4.5) changes.
In our case the eigenvectors form a vector eld. Figure 4.1 shows arbit of the ux
induced in TP by the smooth function on the right hand side of Equation (4.22).

4.2 Elementary wave curves

A Riemann solution is a concatenation of constant states and elent@ry waves, i.e.,
rarefaction waves and shock waves (discontinuous solutions). iEBkentary wave curves
are the projection of certain parametrizations of admissible elentany waves into state
space. In our case, rarefaction wave curves are determined Ine tintegral curves of the
vector elds given by the right eigenvectors given in (4.13) and (4.22Shock wave curves
are determined by the Hugoniot locus, see Equations (4.27), (2.28)

4.2.1 Rarefaction curves

A Rarefaction curve of thei!" family emanating from (wo; up) is the maximal subset in
the image of the solution of the Ordinary Di erential Equation:
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420

Mok
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Figure 4.1: A spiraling orbit of the ux induced in TP by the vector eld (4.22) near the
singular point S; in our case the eigenvectors form a vector eld. The singular poirg
lies on the coincidence curve.

w()iu() "= mw( () 423
(W(o)u( o) = (Wo;Uo);
such that the parametrization:
7t i(w( )su( ), 0; (4.24)

is monotonically increasing and the right eigenvector() is given by (4.13) or (4.22).
Since we can compute explicitly in terms of w, we will only show their projections into
the state spacelP . More information can be found in Chapter 2.

The Buckley-Leverett rarefaction curves are horizontal lines,sacan be seen from
Equation (4.13).

The e-rarefaction curves possess a more sophisticated behavior. iBetng from a
singular point, see De nition 4.5, there is no preferential directiond leave (or reach) it
with a rarefaction curve. We will return to this issue in Proposition 4.I. Singular points
that arise in this work are the zeros of the smooth function on theight hand side of
Equation (4.22). The image of this function is a vector eld. In our cae, generically the
singular points are attractors or repellors, accordingly to the onmgation given to rs(w; u).
In a su ciently small neighborhood of a singular point, the orbits of:

w( )u( ) "= Fe(w( );u( )); (4.25)
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must cross the in ection locusl ¢: it is not di cult to see that the rarefaction curves go
around the singular point. This is illustrated in Figure 4.2.

a0k

C \£
4301 \
420 ‘\\

4101
400+

390+

3801 /’ /

-

0 01 02 03 04 05 06 07 0.8 09 1
s

Figure 4.2. Somee-rarefaction curves inTP . Left: rarefaction curves begin at the
in ection curve C | ¢, below the singular pointS, and end at the same in ection curve,
above the singular point. Right: e-rarefaction curves far away from the singular point.

4.2.2 Shock curves

A shock wave of speed connecting the pairs w*;u*), (w ;u ) is a jump discontinuity
that satis es the Rankine-Hugoniot Equation (2.10), which we reps:

u"F(w") u F(w) Gw") G(w ) =0: (4.26)

Typically, our interest is to x an initial state ( w ;u ) and ask which is the locus of
states (w*; u™) that satisfy Equation (4.26). To this end we de ne the Hugoniot function,
H, : R* R! R" as:

Hy (Wh;u™; )= u"F(w") F(w) Gw") G(w ) ; (4.27)

and by Remark 2.8 it is su cient to consider the casau =1, sinceu* = u uj for any
u > 0. The Hugoniot locus, or shock curve, of state& is the projection of the zero set:

(wh;u™; )2 R* RjH, (w";u"; )=0 ; (4.28)

into R* and we will write itas H(w ), recall that u =1 (nevertheless, there will be
a couple of occasions where we will writd (w ;u ) to select the exact Hugoniot locus
passing throughu ). Very often it will be convenient to use the projection into state
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space , which we will still call Hugoniot locus. In fact, it can be shownthat both sets
are in correspondence.

Away from the base pointw , the Hugoniot locus is typically a smooth curve. Locally,
if the base point is a point of strict hyperbolicity the Hugoniot locus bifircates into 2
branches (the dimension of the state spadeP ). If strict hyperbolicity fails this may not
hold, e.g, at the umbilic point in [26].

Now we will give a global description for theTP branches of the Hugoniot locus. To
this end, we rewrite the Rankine-Hugoniot equation (4.26) in matrixdrm:

Fw*); F(w );[G] u"; u; =0; (4.29)
where G] = (G(w*) G(w )) and point out that if Equation (4.29) holds then:
Hw )= w"2TP det F(w"); F(w );[G] =0 : (4.30)

Proposition 4.6  (Buckley Leverett branch of the Hugoniot locus) The locusH(w )
always contains an isothermal branch iiiP . In this branch, the following equalities hold:

= (4.31)

Proof. Choose v ;u ), (w";u"), with w = (sy;T), suchthat T = T = T. From
Equation (4.4) we have:

0 1 0o 1 0 1
qVv
Gl=@ X(s5 s,) and F =@ Xf,+@ 0 XK;  (4.32)
Hg
where = (T), = (T), = (T)andf, = fu(s,;T). From Equation (4.32) we can

readily see that Equation (4.30) is satis ed.

Clearly, Equations (4.31) and (4.32) satis es Equation (4.29). To sethat this solution
is unique foru xed, notice that the matrix F(w*);F(w );[G] has a dimension one
kernel (see the proof of Proposition 4.2).

Remark 4.7 Of course, admissible shocks in this branch are b-shocks.

Proposition 4.6 motivates calling this isothermal branch byH,, where the subscript
stands for Buckley Leverett. We therefore have for a state = (s,;T ):

How )= w'=(s;;T")2TP T* T =0 : (4.33)
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Motivated by Proposition 4.6 we write the function:

8
det F(w");, F(w ); [G] .\ .
E T . when T"6 T ;
he(w ;W+): (4.34)
-E lim det F(w?); F(w )i [C] ;. otherwise
THUT T T

It is a simple but long computation to show that the limit in Equation (4.34) is well
de ned and he a smooth function. We de ne:

He(w )= w'2TP hg(w ;w")=0 ; (4.35)
which we call the evaporation branch of the Hugoniot locus with bastate w .
Remark 4.8 Admissible shock waves in the . branches are e-shocks.

S
Remark 4.9 Of course:H(w )= Hp(w ) He(w ).

Figure 4.3: Somee-branches inTP . The black dot identi es the base state. Horizontal
saturation b-branches are omitted.

In our case, away from the singular points the topology of the-branch changes, but
it is always a smooth curve. Beginning from a singular point, see De nitn 4.5, we have
that if wo 2 Sthen He(wg) = fwog. In the neighborhood of a singular point thee branch
of the Hugoniot locus is di eomorphic to a circle, resembling an oval. Arpof of this fact
could be given through Morse Lemma, however, we will not do this: waell just rely on
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numerical evidence. Away from the singular points thél. is a closed unbounded curve.
We will return to this change of topology issue in Section 4.5.3. Someabrches are shown
in Figure 4.3.

To conclude this section we recall that when verifying wave admissibijjtit is necessary
to calculate both the shock speed and the Darcy speed explicitly. Since the e-branch
does not have simple formulas, as those in Equation (4.31), we needdll back to the full
set of Equations (4.26). The calculation can be done by any two ofdalthree equations:

8
% u* Fk+ [Gi] FJ-+[G|<] u F[Gj] Fj [Gi] ;

_§

where 1 j;k 3,j 6 k, [Gk]= G, G, andw™ is given. According to the situation,
it could be more useful to make the shock speed an explicit functiof® or u*.

Gl [GIFy

u F RS OFCF (4.36)

4.3 Triple Shock Rule and properties of the Darcy
speed

The Triple Shock Rule is among the simplest and most useful results iygerbolic con-
servation laws. It allows one to characterize shocks that di er in th state space but give
rise to the same physical pro le. In our particular problem, it will be avery useful tool
to characterize the bifurcations in the Riemann solution.

Theorem 4.10 (Triple Shock Rule). Let three pointsP? = (w?;u?), P? = (wP; uP) and
P¢=(w°¢ u® be such that any pair of them satisfy the Rankine-Hugoniotlagion (4.26).
Denote the corresponding shock speeds hy= (A;B), .= (B;C)and 3= (C;A).

If G = G(w?), G*= G(wP") and G° = G(w°) are linearly independent then:

Proof. After writing the Rankine-Hugoniot relation (4.26) for pointsP2 = (w?; u?), PP =
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(wP; uP) and P¢ = (w¢; u):

% LG G& = uPFb ueFe:
, G GP = Uu°F°¢ Uu°FY
:
3(G* G = UuPF? U°F¢
by adding the equations above we nd:
(s 9G*+( 1 2G°+( 2 3)G°=0; (4.37)

and the Theorem is proved.

A small peculiarity emerges in this class of problems: we need to deathathe Darcy
speedu. In Theorem 4.10, using equation (4.36a) and assuming that the daninators
are nonzero we see that the Darcy speed is given by two di erent expressions:

FelGf Gl FRIGE  Gil,
FIIGS Gfl FeGy Gil'

Cc —

(4.38)

and
o FRIGf Gl FMG; GRIFAIGP Gfl FRIGR Gfl

= ; 4.39
FAIGY Gjb] FIGk GP] F;J[Gjb GP] Fjb[GE Gi] ( )

u

for a xed pair of indices 1 | 6 k 3. To make the computations clearer, for a pair of
statesw*, w we introduce the rescaled speed:

FIGT G 1 F G Gl

U(W ;W+): et + 1+ ,
Fy [Gj Gj] F, Gk Gl

1 j6k 3 (4.40)

which makes sense wherever the denominator is nonzero and is sfmon the limit w* !

w ,U(w ;w")! 1 (see the characterization of the Hugoniot locus in a neighborhood
where strict hyperbolicity holds, [28]). Proposition 4.6 yields that ifw = (s,;T ),
w' =(sf;T") satisfyT =T" thenU(w ;w*)=1for s, 6 s;. Equations (4.38) and
(4.39) express the property for the Darcy speed summarized as:

Uw?w® = UwwP?) U(WwPw®): (4.41)

For w xed, an important property of the rescaled speed (4.40) is that iis only a
function of the temperatureT*. To see this, let us write the Rankine-Hugoniot Equation
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(4.26) for system (4.1):

% s+ gv Fy ut( Tfg + gv)"' ukF, = 0;
s, F, u- fo+uF, = 0; (4.42)
%
' Tsg + Hy + HS  F u'( "fg +Hy)+u F; = 0;
where we used the nomenclature de ned in Equations (4.4) and (4.8p our case = 4

never vanishes: see Equations (3.3), (3.5), (3.6) and recall the migon of the two-
phase state space (4.2). Thus, we can recast Equations (4.42h§ig4.42c) without the
dependence irs},

g "F, R+ T gv ut "’ ;V+u "F, *F, =0;

S (4.43)

' "F, "Fy + T(Hg+HS) u” "Hy+u "F, *F, =0:
Eliminating in Equations (4.43) we obtainu* as a function ofu ,w and T*. If we
ask that for any w* 2 H (w ) the Hugoniot matrix (4.29) has a one dimensional kernel,
then the value u® obtained from Equation (4.43), with the choiceu = 1, must agree

with U(w ;w™) given in Equation (4.40). We have proved:

Proposition 4.11 Let (s;;T") = w* 2 H(w ) be such that the rows of the matrix in
the Rankine-Hugoniot relation (4.29) for w , w™ are not collinear. Then the rescaled
speedU (w ;w™) is a function ofw and T™.

Despite Proposition 4.11, Equation (4.40) is very useful in applicatign since it is
simpler than the formula obtained from Equations (4.43). A similar radt holds for the
shock speeds.

Proposition 4.12 Assume thatw® = (sB;TP), w® = (s¢; T°) satisfy wP,w® 2 H (w?)
and TP = T¢= T. We x the notation u® = U(w? wP) and u® = U(w?;w°®) for Darcy
speeds andP? = (w?;u?), PP = (wPuP) and P° = (w¢ u®) for points. If the conditions
of Proposition 4.11 and Theorem 4.10 are satis ed then:

1. U(w?wb) = U(w?;w°),

2. w&ut 2 H(wP),
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3. (A;B)= (B;C)= (C;A).

Proof. The equality in (1) follows from Proposition 4.11. Proposition 4.6 togéer with
(1) implies (2). By (1) and (2) the points P2, P and P¢ satisfy the hypotheses of the
Triple Shock Rules 4.10, which yields (3).

4.4 The Bethe-Wendro Theorem

In our case, away from the singular points, the Hugoniot branchemre smooth curves
and can be parametrized by a single variable. Let a superimposed dtgnote di eren-
tiation with respect to this variable. Fix a branchH;(w ), i 2 f b; g, and consider the
parametrization:

7P =(w( hu()2Hiw ); 210 o); (4.44)

such thatP% = (w ;1). The shock speed betweeR® and P , given by Equation (4.36b),
will be writtenas ()= (P%P ).

Theorem 4.13 (Bethe-Wendro ). Consider the Hugoniot locus through a state . As-
sume that forw( ) 2H (w ):

i(w()) Gw()) G(w ) 60:

Then the following are equivalent: (a) ( ) =0, (b) i(w( );u( ))= (), for a family
i 2fb;e. Inthis case, j(w( );u( ) ( ) and _( ) vanish to the same order and the
locus is tangent to an integral curve of th&" -family.

A proof of this theorem, adapted to our class of problems, can beuhd in Lambert
[28]. A stronger version for classical systems can be found in Fudta[19]. Roughly, the
Bethe-Wendro Theorem relates the monotonicity of the shock sged along the Hugoniot
locus with the admissibility of shock waves, see the Liu criterion 2.14. dveover, by giving
a geometric characterization of admissibility it is fundamental tool irthe construction of
the Riemann solution.

4.5 Bifurcation manifolds in TP

These are sets in state space that play a fundamental role in thenstruction of Riemann
solutions. More details can be found in Section 2.3 and in the monoghapy Furtado
[19].
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45.1 Coincidence locus

Among the loci that are relevant for the behavior of the solution, he coincidence locus
is perhaps the one that is most easily de ned. As is widely known evensingle, iso-
lated point of coincidence of characteristic speeds can greatly qolinate the solution, see
Isaacson, Marchesin, Plohr, and Temple [26].

In this work the coincidence locus is the set of points where strict pgrbolicity fails,
see De nition 2.1.

De nition 4.14  The coincidence locus inTP is the set:
C=fw2TP | §(w)= §w)g:
The coincidence locus is well behaved in our class of problems. It is tineion of

two smooth curves in theTP region. It also has an elegant graphical interpretation, see
Figure 4.4.

\J

Figure 4.4: Fix someT  T,y. Notice that €(;T) can be visualized as a secant to the
graph off,( ; T) from the point ( B,=A; B;=A). Since §(s,; T) is the slope of the line
tangent to the graph off,(s,; T) forany 0 s, 1, as can be seen by equation (4.12),
it is not di cult to see that the slope of this secant must equal the tangent of f, at two
points: rst at a minimum and latter at a maximum of €.

Fix T  Tyv. Notice that from equation (4.14), &( ; T) can be visualized as the slope
of a secant to the graph off,( ; T) from the point ( B,=A; B;=A). Since §(s,;T) is
the slope of the line tangent to the graph of,(s,; T) forany 0 s, 1, as can be seen

by equation (4.12), it is not di cult to see that the slope of this secah must equal the
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tangent of f , at two points: the rst one at a minimum and the second one at a maxiomm
of €.
This reasoning can easily be made precise. First notice that:

Proposition 4.15 Fix T Tyy. If s is maximizer for §( ; T) then §(s ;T)> €(s ; T).

Proof. The Buckley-Leverett speed is smooth, non-negative, it vanishés states at pure
oil saturation or at pure gas saturation and it has a single global marum (which is
therefore a critical point), see Section 3.3 and, particularly, Remia3.2. Sincef,(0;T) =
0,fo(1;T) =1 and fo(;T) is quadratic near O then its slope must be greater than 1 at
its maximum, i.e., §(s;T) > 1.

Assume that we have§,(s ;T)  €(s ;T). The line throught (s ;f (s ; T)) with slope
&(s ;T)is:

s7! §(s;T)s+ fo(s:T) G(s:T)s;

and the pair ( B,=A; B;=A) in the hatched region in Figure 4.5 must satisfy :

B

g5+ f(55T) &(siT)s

SinceA > 0, this gives:
Bi &(s:T)Bo+A §(s;T)s fo(s;T) Bu

SinceB; > B ;, see Remark 4.3, we have a contradiction. The proof is complete.

/

Figure 4.5: Bold curve: begin with the Buckley-Leverett ux function and it is drawn at
left of its in ection s a straight line with slope @ fo(s ; T).
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This simple observation yields at once:

Proposition 4.16 The coincidence is the union of two disconnected smooth cesvin
the TP region.

Proof. Let us deneg:w 7! gw) = §(w) €(w), see Equations (4.12) and (4.14).
The coincidence locus is clearly the zero set @f The derivative of g with respect to the
oil saturation s, in w = (s,; T) is:

QW) &w),

@ow)= @5W) i

Proposition 4.15 says that for anyw = (s,; T ), T > Ty on the coincidence locus we
have:

@9w )= @ %(w )60;

soC is locally a curve parametrized by the temperature ifP .

Now we will count the number of connected components that formhé coincidence
locus. FixT Tov. Since § = @f, vanishes at pure oil saturation and pure gas
saturation (see Remark 3.2) anck,; is positive (see Remark 4.3), we have tha§,(0; T)
€0;T)< 0and §(1;T) €(1;T) < 0 and by Proposition 4.15 there is & between 0
and 1 where§(s ;T) &(s;T)> 0sothatf(;T) has at least two roots, say $:;S,).

One can see that it has at most two roots by noticing that&( ;T) is monotone
increasing at 61;s). Clearly s; must be minimum ands, a maximum of &( ; T).

Besides the identi cation of points in state space for which the algesic multiplicity
of the Jacobian (4.5) is greater than one, it is also very important t&know when the
geometric multiplicity of J is greater than one. Points in state space which are isolated
coincidence points and for which the characteristic matrix of the syem vanishes are
called umbilic points. A great deal is already known about them: they are the primary
source of di culty in the study of three-phase ow and a constantheadache for anyone
interested in understanding the properties of solutions of consation laws. Proposition
4.16 says that such umbilic points do not occur in this model but singul@oints do occur.

De nition 4.5 says that the singular points are the intersection of tk zero sets of two
smooth maps. We point out that it asserts change in the geometric uttiplicity of the
Jacobian (4.5).

Proposition 4.17 The singular setS is exactly the subset of the coincidence locus where
the geometric multiplicity equals the algebraic multipliy.
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Proof. In fact, let w be a point on the coincidence. As long as the quantity (4.21) satis es
m(w) 6 0 we have that +, k +,; while the algebraic multiplicity is two, the geometric
multiplicity is only one. If we put m(w) = 0 we are saying that the second and third
columns ofJ are indeed linearly dependent. Since the rst column vanishes undsuch
conditions and the third column never vanishes] has a two dimensional kernel.

Remark 4.18 Recall that we have a generalized eigenvalue problem: tladard Jordan
normal form is not available for it.

This is the closest the Jacobian of this system can become to a multiplethe identity
matrix. Of course, such loci cannot be isolated as points on the coidence locus but the
singular points are discrete. Notice that the zero set oh is a smooth one dimensional
manifold, transverse to the coincidence locus, see Figure 4.6.

This let us state:

Proposition 4.19 The singular setSis di_sl_crete inTP : if wg 2 Sthen there is an open
neighborhoodW of wy in TP such thatW  S= wy.

Figure 4.6: Singular point as the intersection of the coincidence loc(solid) and the zero
set of m (dashed).

45.2 In ection locus

Points on the in ection locus are those where genuine nonlinearity isdp see the discus-
sion in Chapter 2. Generically, the characteristic speed does notryanonotonically along
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a corresponding integral curve near an in ection point. Thus rafaction curves stop at
this locus.
We recall De nition 2.25 and Equation (4.13) to write theb in ection locus as:

n 0
lpb= W2TP @°8(w)=0 (4.45)

Remark 4.20 Notice that from Equation (4.12) and Remark 3.2 we can readily see that
the b in ection locus is a smooth curve.

We now focus on thee-in ection locus. De nition 2.25 gives:

n 0}
le= W2TP @8, (W)riw)+ @Ce(w)ri(w)+ €,(w)rdw)=0 : (4.46)

where t(w;u) = (ri(w);r2(w);ur3(w))". Using Equations (4.14), (4.21), (4.22) and
(4.17) we can rewrite the in ection locus (4.46) as:

n o)
le= wW2TP € € =0 or Gw)=0 ; (4.47)

where:
m

G= ——+
The reader should recall Equation (4.21) and the nomenclature (46 relative to Equation
(4.10). We de ne the exceptional locus:

d 12 l—(m + |12): (448)
13

E= G Y(0): (4.49)

Proposition 4.21 The exceptional locus is a smooth curve that satis es:

n 0
E= (So;T)2TP €, (s,;T)= €,(0;T) : (4.50)

The proof of equality (4.50) is long and will be omitted. However, sincEquation
(4.50) is estabilished, it is very easy to see thdt is a smooth curve: one just need to
explore the properties of the critical points of@, €.(s,; T) as in the proof of Proposition
4.16. Figure 4.4 provides a good illustration of what is happening.

Remark 4.22 Later we will show that the curvéE is a genuine e-contact: the e-integral
curve emanating from any of its points coincides with the admch of the shock curve
emanating from the same point. This behavior is an example thie result established in
Temple [50].
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Remark 4.23 For convenience we will list, in advance, the main properseof the curve
E: it is a genuine contact, a secondary bifurcation and bothgit and left extension of
the boundary linef(s,; T) 2 TP j s, = 0g. Despite the proper use of the letter reserved
to denote extensions, the reader should keep in mind the @Bsas being exceptional. A
part of its in uence on Riemann solutions will be clari ed in Chapter 6.

45.3 The self-intersection set

These are pointsw 6 w*, w* 2 H(w ), where the Hugoniot locus self-intersects.
Following the discusion on Section 2.3.3 such behavior can only occurpaints where the

Jacobian CH,, (w*;u*; ) does not have maximal rank. In this situation the following
identities must hold:

= ;(w";u") and f(W')(GWw') G(w )=0; 1 i n; (4.51)

for the family i. We will write the notation used throughout this section. We de ne he
diagonal:
= f(w ;w";u")2 R"jw =w'g; (4.52)

and write:
D= Rn : (4.53)

We want to de ne the self-intersection locus as the zero set of a egth function; to
thisend we x afamily 1 i n and motivated by (4.51) we write:

Fi:D! R% (w swhu™) 70 H(w sw'u®s (w*;u”); T(w)IG] 5 (4.54)

where [G] = G(w*) G(w ) and function H is given in equation (2.42). Finally we can
write the self-intersection set of theé™ family as:

Ai= (w ;wu")2DjFg(w ;whu’)=0 (4.55)

Since our interest is thelocus it is su cient to only consider the reference value for the
Darcy speedu =1, see Remark 2.8. However, some results of this Section will beaibed
later, in a context where the admissibility of waves will be important. Br this reason, we
will make explicit the dependence on the Darcy spead in a few Lemmas. Most of the
time we will work with points of type P =(w ;u ), P" =(w*;u")in TP R". We
will often write:

(P sP")= (w ;u ;w";u"); (4.56)
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with the implicit assumption that (w*;u*) 2H (w ;u ).
We only need to consider the self-intersection locuse. In what follows it will be
shown that the projection ofA¢ into TP is an open map. The rst step is:

Lemma 4.24 Let (W ,u )6(W+ : u+) be pOintS at the same temperature. |f(P ; P+) —
«(W*:u*) holds then (P ;P*)= (w ;u).

Proof. Herew = ('s,; T) and we put (P ;P™). Notice that the isothermal shocks
are the Buckley-Leverett shocks such thati™ = u = u. These shocks have speed:

ufgy f,
'Sy S,
The eigenvalue is written as:
uA(Mf, + Bay(T).

(W)= R Tyss + BaT)

These equalities can be read as:

u(f fo)=" (s so); andu[A(T)fg + By(T)] =" [A(T)s; + B2(T)]:  (4.57)

Multiplying (4.57a) by A(T) and adding with (4.57b) we get:
U[A(T)f, + Ba(T)I=" [A(T)s, + Ba(T)I:

Since A(T)s, + B,(T)] never vanishes the result follows.

Remark 4.25 Of course the lemma remains true switching the role of the nuisiand the
plus superscripts.

Next we show that, among other things, the previous lemma is not gaous.

Lemma 4.26 There is a pairw , w* in TP such that
&w )= &w") and T(w")(G* G )=0:

Proof. First we choose some states(; T), T > Tyy su ciently near the coincidence locus,
in a sense that will be cleala posteriori. Let's say it is at left of the leftmost coincidence.
Since the point & ; T) on the coincidence locus is a global minimum for

A(T)f o+ Ba(T),
A(T)So + BZ(T) ’

ee(so; T)=
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as a function ofs,, we can choose su ciently near s so that the level set that take
the value &(s, ; T) has (at least) two points, sayfs, ;s; g. We have so far:

A(M)fs + By(T) A(Mf, By(T) _
A(T)s; + Bo(T) A(T)s, Ba(T)

€(so;T)= &(s;y;T) = (sh;T:s.:T)=u ;

0!

where the last equality comes from the isothermal branch of the Iganiot locus.
To nish the proof notice that:

Te(so: TG G )

(BCv g+ 12 wa+ 12 (Ho Hg)(ss s,)
(e +15 +12 )(ss  So)
= O’

by the very de nition of Te.
Corollary 4.27 (Of the proof) No point on the coincidence locus can lie ike.

Proof. Fix a T > Tpy. If (So; T) is a point on the coincidence locus then it must be a
global maximum or a global minimum of ¢(;T).

Remark 4.28 Corollary 4.27 says thatA cannot contain points where strictly hyperbol-
icity fails.

We now have the basic tools needed to characterize the Hugoniotf-$etersection
locus. We will restrict our attention to self-intersections due to @ssing: the two di erent
branches of the Hugoniot locus intersect. In our particular proble, one can use the
regularity of the two branches of the Hugoniot locus to show thathis is the sole source
of self-intersection, if the two base points belong to th&P . Of course, such behavior is
not general.

Theorem 4.29 Assume that the Hugoniot locus inTP only ceases to be a curve at
intersections of the b-branch, Equatior{4.33), with the e-branch, Equation(4.35). Then
A is a two dimensional manifold.

Proof. The map F ), Equation (4.54), is smooth and we havé . = F(e)l(O), which is not
empty because of Lemma 4.26. We now examine the Jacobiarf-gfy. The di erential of

Hw ;w";u"; o(w';u"))
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is written (recall: (W™ ;u*) = u* &(w™")):

dH = DF(w ) oW ;u")DG(w ) dw + €, (w")[G] F(w") du’

(4.58)
+ @-Hdw":
It is straightforward to deal with the term @+ H:
@-H= DFW") ow";u")DGWw") +[G] u*r €(w*)T; (4.59)

and clearly satis esTe(W* )@+ H = 0 by the de nitions of T, and A.. This shows that the
columns of @+ H are in the orthogonal space td(w*), which has dimension two. Next
we will show that all columns of DH are spanned by a basis of the orthogonal space to
Te(W™).

Sincew®, w lie on an isotherm, using Proposition 4.6, we see th&(w*)[G]
F(w") = F(w ). Plugging this into (4.58) we see that the rst 4 3 block DF
evaluated at a point in A reads (set (W™ ;uh)):

0 1
@QFi(w ) @Gi(w ) @Fi(w ) c@Gi(w ) Fy(w)
@Fxw ) @Gyw ) @Fi(w ) c@Gxw ) Fa(w )
; (4.60)
@Fsw ) @Gzw ) @Fi(w) c@Gs(w ) Fzw)

Te(w")@,G(w ) T(w")@G(w ) 0

and then by Lemma 4.24 the upper 3 3 matrix has rank at most two. From corollary
4.27 the algebraic multiplicity of the eigenvalue is one and so the rank stuequal two.

Proposition 4.2 implies that the column space of B¢ is spanned by the column space
of (4.60) and that the rank of DF ) is three, so that by the Rank Theorem (see Rudin
[43]), we have thatA. is a smooth manifold of dimension dinl)) 3 =2.

Corollary 4.30 The projection:
A TP, (wowhut) = wh (4.61)

iS an open mapping.
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Proof. Since the matrix (@ F(); @- F(¢), given in Equation (4.60), is injective,Ag is
locally the graph of a smooth function de ned inTP .

Remark 4.31 Notice that by Lemma 4.24 and Propositions 4.6 and 4.2, thellsmter-
section locusA. is invariant under interchange ofw andw?®, in our case.

Let us write the projection of the self-intersection locug\ . into state space as:
Oec = (Ae): (4.62)
By Corollary 4.30, O is an open set. Its boundary is:
[ [ [ [
@.=C fs,=0g E fs,=0g fsp=19 E fsy=19g; (4.63)

whereE (fs, = 0g) is the left extension of the boundary linef(s,; T) 2 TP j s, = 0g
and E (fs, = 19) is the left extension of the boundary linef (so; T) 2 TP j s, =19, see
Subsection 2.3.5. Recall that by Corollary 4.27 the intersection &f, with the coincidence
locusCis empty. The open selO, is shown as the gray regions in Figure 4.7.

Figure 4.7: The gray regions are the projection of the self-intexd®n set A into TP .
Both the rightmost part of the coincidence locus and the extensiok (fs, = 1g) are
drawn out of scale.

We will characterize the extension of the lines, = 0, which is special.

Proposition 4.32 Letw =(0;T ), T > Ty Both the exceptional locus, Equation
(4.49), and the boundary linef (sy; T) 2 TP | s, = 0g are contained inH(w ). The shock
speed betweew and anyw® 2 E[f (s,;T) 2 TP j s, = 0g is both left-characteristic
and right-characteristic with respect to the e-speed.
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Proof. Let w* = (s;T"). First assume thats; 6 0. Writing the Rankine-Hugoniot
relation (4.26) for Equation (4.1b) we have:

o0So = U ofo (4.64)

sinces, = 0. Using that o4(T") > 0O, see Equations (3.3), (3.5) and (3.6), we substitute
Equation (4.64) into the Rankine-Hugoniot relation for Equations (4la) and (4.1c) to
obtain, after a computation:

8
2 gv v = U gv U gvs
S (4.65)
' HY H, +Hy H; = u'Hy uH{
Eliminating u in Equation (4.65) we obtain:
— u+ QVHJ gVHg — ((OT+)U+) (4 66)
= T - e ] ] H *
gVHg gVHg + agVv (Hr+ Hr)

where the last equality arises from Equations (3.18), (4.14) and (&)1 Using equations
(4.64) and (4.66), the same argument used in the proof of Lemma 4 .elds:

= o(w";u"); (4.67)

and using Proposition 4.21 we obtaiw® 2 E. Eliminating u® in Equation (4.65) we
write, similarly:
= e(w ;u); (4.68)

so that the shock is left-characteristic and right-characteristigvith respect to the e-speed.
If s; =0, Equation (4.65) still holds while Equation (4.64) vanishes identicallyleading
to the following result:

Corollary 4.33 The exceptional locus is a e-branch of the Hugoniot locus wafhilies on
an e-integral curve, thus it is a genuine contact, see Temp&0].

Proof. The preceding proposition together with the symmetry of the Ranke-Hugoniot
equation (4.26) implies that ifw 2 E thenE H (w ). Since the exceptional locus is
contained in the setl ¢, Equation (4.46), the result follows.

Remark 4.34 The exceptional locus is an example of an unbounded Hugor@diranch.
See discussion in Subsection 4.2.2.
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45.4 Double contact locus

We de ne a two-sided (or double) contact discontinuity to be a solubn (w ;u ;w*;u")

of the Rankine-Hugoniot relation (4.26) such that a characteristispeed for v ;u ) co-
incides with the shock speed(w ;u ;w*;u"), as well as with the another characteristic
speed for v ;u*), see discussion in Chapter 2. As a consequence of Theorem 4.29 an
Lemma 4.24 we have thaDe D . A . The Dy D .y is a regular smooth curve. Its
projection into state space is shown in Figure 4.8.

\J

Figure 4.8: Projection onTP of Dy (solid) and of the coincidence locus (dashed).



Chapter 5
Riemann problem | in TP

Here we solve the Riemann problem in a neighborhood of the singulariqan the two-
phase region.

We point out that the material in this Chapter depends on de nitionsand results
of Chapter 4. Familiarity with the basic concepts of Riemann solutionss assumed,
see Section 2.2. The Triple Shock Rule 4.10 and the Bethe-Wendro &brem 4.13 are
fundamental tools that the reader must bear in mind.

5.1 Bifurcations in the Riemann solution

As discussed on Chapter 2, the Riemann solution can be construttey concatenating
constant regions and fundamental waves: shocks and rarefaos. The projection of these
elementary waves into state space are su cient to construct theolution, as the Darcy
speedu can be computed from its \initial" value and these projections. Takig advantage
of this fact we will illustrate in gures the projection of the Riemann slutions in state
space only.

Riemann solutions bifurcate when an elementary wave ceases to lgmésible. The
construction of the Riemann solution must proceed with another axissible elementary
wave, respecting the monotonicity principle. We recall our choice ¢ffe Liu criterion to
select admissible shocks, see Subsection 2.2.3. First, we will accdbet bifurcations in
backward Riemann solutions that appears when the' is allowed to change but thewR
is xed.

De nition 5.1  (Backward L-region). Fix a pair w-, wR in state space. The backward
L-region L corresponding to the selected paiw", wR is the maximal subset of state
space such thatv" 2 L and the Riemann solutions for any initial dataw 2 L

64
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u >0, (
w; if x< O
w(x; 0) = ’ '
(x.0) wR: if x> 0
and

ux;0)=u; if x<0

are constructed through wave fans consisting of the sameegtyyf concatenations of constant
states of and the same fundamental wave types and familiesrathe solution for the pair
wh, wR,

Remark 5.2 Typically there is a nite number of backwardL -regions for a givenwR.
We will follow the usual nomenclature and number them.

When the right state wR wanders in state space, the solutions may change topology,
i.e., the backwardL -region diagram changes qualitatively. When such a change happens
the Riemann solution bifurcates. Bifurcations often happens whewR crosses certain
codimension one manifolds in state space.

De nition 5.3  (Backward R-region). Fix a wR in state space. The backwarR -Region
is the maximal subset of state spac&k such that for anyw 2 R the subdivision of
state space into backwart -regionsL is topologically the same as the subdvision in .

Remark 5.4 We will use the lexicographic order of the plane to state theative position
of objects. For examplew?! = (s}; T!) andw? = (s%; T?): statew? is abovew? if T2 > T 1.
Accordingly, statew? is at the right of w! if s2 > s,

The backward R-regions forR and L in a neighborhood of the singular pointS =
(s5;T3) is as follows, see Figure 5.1. Theegion A is bounded by the horizontal straight
line that begins at S and lies on the right side of the coincidence cur/&. It extends
clockwise down to the portion of the double contact locuB, below the singular pointS.
Still in the clockwise sense, theegion A° lies between the double contact locuBy, and
the coincidence locu€ below the singular pointS. The region B lies aboveregion A, at
the right of the coincidence locu< and above the horizontal straight line that begins at
S. The region C lies at the left of the coincidence locus.

In this chapter we will use theR -construction to describe the Riemann solution. The
fundamental step will be to exhibit the appropriateL -regions when the right statewR
varies in the backwardR -region diagram. Of course, all regions lie above the isotherm
T = Ty since they are inTP .
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Region B

Region C

Region A

\

\ Region A’

Figure 5.1. BackwardR -regions in a neighborhood of the singular poirt.

Given the physical variables ¢M;uM) 2 TP R* we will use the notationM =
(wM; uM) for brevity. To improve legibility we prefer to display in gures only the super-
scripts of the states. For example, we will writeR in place ofwR.

5.2 Region A

Here the right statewR lies in Region A, in Figure 5.1. In the discussion that follows we
will present, see Figure 5.2, the subdivision of a neighborhood of temgular point into
backward L -regions forwR.

In a su ciently small neighborhood of anywR state in Region A,e waves are slow and
b waves are fast, see discussion in Subsection 4.5.1 and Propositioi® 4this behavior
can change out of regiorA, accounting for bifurcations in the solution). Generically, a
fast wave is needed to reactvR. In a su ciently small neighborhood within this region
the backward fast-wave curve that reaches® must represent (fast)b waves, which lie on
an isotherm. Therefore slow waves must reach the isotheffn= TR in the construction of
the Riemann solution, see Proposition 4.6. A slow wave that reachégetisothermT = TR
at the right of wR must be followed by a fast-shock, since thav" and wR states lie on
the left side of theb in ection. Of course, if the slow wave reaches the isotherifi = TR
at the left of wR it must be followed by a fastb-rarefaction. We have exhausted slow
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Figure 5.2: BackwardL -regions forwR in region A.

waves; now we will focus on fast (characteristic) waves reachingd line.

The e-branch of the Hugoniot locus based on any point of this neighborbd of the
singular point S is a smooth, compact curve, with an oval shape, see Subsection2. At
a statew'’ at the left of the coincidence locu€ the e-waves are fast. For the time being
we will focus onw' states abovewR and below the singular pointS. Along the e-branch
of the Hugoniot locus, Liu admissible shocks decrease temperatufigne oval must have
two points with horizontal tangents. Each shock reaching such pas with horizontal
tangents is a candidate to be characteristic withb speed at the point of tangency due to
the Bethe-Wendro Theorem 4.13. In fact, thee-shocks are the main tool to \decrease
the temperature” near the singular point.

Notice that the b double contactDy crosses the isothernT = TR at one point, see
Figure 4.8, which we will callw®. We write w® for the state on the coincidence locus
with the same temperature asw®. We denote by E, (QD) the left extension locus of
the rarefaction segment between point&? and wP, i.e., by construction from any point
in B, (QD) there is a shock reaching the segmer®D, wich is characteristic with the
b-speed at this segment. The connected branch of the locEs(QD) we are interested
in is a curve, bounded by pointsv® and wP’ 2 E, (D). Fast right characteristic shocks
connect states at temperatures lying betweefi® and TP’ in this branch to the segment
QD. This construction is su cient to guarantee the monotonicity principle if the wave
preceding this fast right characteristic shock is a rarefaction. ke@ver, we need another
bifurcation curve to guarantee that this fast right characterisic shock and a preceding
b-shock satisfy the monotonicity principle. To this end we will de ne a aw left extension
according to the conditions we will need.

De nition 5.5  (Double left extension locus.)Let be a curve inTP ~ R* and denote
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by E () its left extension locus with respect to thg" family. The double left extension
locus of curve with respect to thei™ family is:

n
E ()= P =(w"u")2TP R' 9P°2 andP'2E, (P);
0}
P"' 2 H|(Pl) and (Pl,P+) — (Po,Pl) — i(Po)

The b-shocks joining states on the right side of locu, (QD) to the locus E (QD)
satisfy the monotonicity principle if their base state is on the left sidef E, (QD)2. We
still need to de ne the right extension locus of the segment betweev® and generic states
w®, which lie at the right of wR and satisfy T¢ = TR, The extension:

E (DG); (5.1)

has the property that from any of its points ane-shock emanates that reaches the segment
DG and is left characteristic with respect tob-waves,i.e. characteristic at E; (DG).

Remark 5.6 Notice that we have de ned Region A such that any fast e-shabkt reaches
the isothermT = TR can be followed by a fast b-rarefaction. The crucial fact ifdt the

wR state is at the right of the intersection of the isotherrit = TR with the double contact
locus Dy,

5.2.1 Riemann solutions with increasing temperatures

Here we will describe the Riemann solutions in the backwatdregions below the isotherm
T = TR, see Figure (5.2b). The relevant part of the backward slow wave e WS R
from R contains a slowb-rarefaction followed by a slowe-rarefaction:

RE!' RS for T TR (5.2)

The wave curveW® R and the coincidence locus are some of the bifurcation loci for
the L-regions in this Riemann solution, see Figure (5.2a).

Riemann solution for L,

The w' state lies below the isotherml = TR on the right side of both the coincidence
locusC and the wave curveW?® R , Equation (5.2). InL, the e-waves are slow and the
b-waves are fast, see Subsection 4.5.1. which means that a slow feanteon emanating
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from wb will reach the isothermT = TR in the constant state M at the right of wR.
Thus, the admissible fast waves arb-shocks, and the solution is:

f

MID R: (5.3)

L1 Re
Remark 5.7 This Riemann solution is just the Lax construction. Most ofitnes we will
suppress the description of the constant state for this typé construction.

Riemann solution for L,

The L-regionL, is bounded by the wave curvaV?®(R) and by the coincidence locu€,
see Figure 5.2a. In the transition fromL; to L, we crossed the coincidence locus so that,
now, in a neighborhood of statav" the b-waves are slow. The forward slow wave curve
W3 (L) emanating fromL contains a slowb-rarefaction followed by a slowe-rarefaction,
ie.:

Rp! RS (5.4)

The wave curveW? (L) crosses the coincidence locus at an intermediate stefie; and
reaches the isotherniT = TR at a (constant) state M ,. The solution is written as:

R: (5.5)

Riemann solution for L,

The L-regionL 4 lies at the left of the wave curvéN* R , Equation (5.2), bounded by the
isotherm T = TP and by the coincidence locu€. Slow e-waves that reach the isotherm
T = TR (in the constant stateM ) must be followed by ab-rarefaction wave. The solution
is:

R: (5.6)

Riemann solution for L,

Now w' is at the left of the coincidence locus and above the wave curv¢® R . The

b-waves are slow. The forward slow wave curve emanating fram W3 (L) is given in

Equation (5.4). It crosses the coincidence locus at a intermediat@ate M, and reaches
the isotherm T = TR at a constant stateM ,. The Riemann solution is:

> R: (5.7)



70 Riemann problem | inTP

5.2.2 Riemann solutions with decreasing temperature

Now we focus on the backward. -regions above the isothernT = TR. In comparison to
the previous subsection, the bifurcation structure will be compli¢gad by the presence of
the singular point.

The relevant part of W* R , backward slow wave curve fronR, contains a slow
b-rarefaction followed by a left-characteristice-shock:

R! S5 for T TR (5.8)

Wave curveW* R originates the rst remarkable bifurcation boundary for the back
ward L-regions. At its left side, the fast waves reaching relevaR are b-rarefactions while
at its right side the fast waves areb-shocks. As previously discussed at the beginning of
this section, e-shocks are the temperature decreasing waves and must be usediemann
solutions; the admissibility of these shocks will dictate other relevamifurcations in the
backward L -regions.

We mention for later use the portion ofWw' R , the backward fast wave curve from
R, that contains a right-characteristic faste-shock, followed by a fasb-rarefaction:

stt Rl (5.9)

Remark 5.8 A particularly interesting elementary wave is the e shock,heh is respon-
sible for decrease the temperature in the backwardregionsL,{ L,,. Physically it is a
classical condensation shock, a fundamental wave in the mRenn solutions arising from
oil recovery by gas injection.

Riemann solution for Lg

Here thew" state lies above the isothernT = TR, on the right side ofH(WR)[E , (DG),

see Figure 5.2 and the discussion preceding Equation (5.1). In thigi@n the e waves are
slow. The Riemann solution is just the Lax construction, the constd state M lies in the
isotherm T = TR:

R: (5.10)

Riemann solution for L

The L-regionL 4 is bounded by thee branch of the Hugoniot locus emanating fromvR,
by the extensionE; (DR), by the double extensiorg, (QD)? and by the isothermT = TR.
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Again, the e-waves are slow. This is the last case in the Region A to bene t from éhLax
construction, again the constant stateM lies in the isothermT = T":

f

% M1 R: (5.11)

L!

Riemann solution for L,

This backwardL -region contains the coincidence locuSso that the relative order between
families is not xed: on the left side of the coincidence locus, thewaves are slow, while
on its right side the e-waves are slow.

The boundary of this region consists of two branches in the logj (QD) and E, (QD)?,
such that:

E, (QD)\E, (QD)*= fQ;D%; (5.12)

see Figure 5.2a. The waves emanating from statesy® 2 L , do not reach the segment
QD, so they cannot be used as a rst wave in the Riemann solution. This # because
such a shock must be followed by b wave, along which temperature is xed. However,
inside regionL, we have that the b-shocks are slow.

Proposition 5.9 The b-shock waves frorw- 2 L ;, reaching curveg, (QD) are slow.

Proof. Fixaw" =(s};T-)inw" 2L, and denote byw = (s,; T") the pointin E, (QD)
that intersects the isothermT = T- and byw the point in E, (QD)? that intersects the
same isotherm. By Proposition 4.6, the Darcy speadis constant in theH branch, so it
plays no role in wave admissibility here. We can thus make= 1, see Remark 2.8.

The standard Buckley-Leverett theory implies that the speed ofie b-shock based on
w is an increasing function ins,, up to the right-characteristic extension ofw , E; (w ).
By choosingR close enough to the singular point, we can make the whole regibn lie
at the left of the b in ection. We have:

(wh;w ) < (W ;w ): (5.13)

Notice that the fast e-shock fromw to the segmentQD has speed because of the
de nition of the double extension, see De nition 5.5, and:

(whw )< < €w); (5.14)

because it is ane-shock.
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Now we proceed to show that:
(wh;w ) < € (wh): (5.15)

If wt is at the left of the coincidence locus the-shocks are fast, so that Equation (5.15)
is trivially satis ed. Since we already discarded the existence oflacharacteristic shock,
Equation (5.15) must hold until w" reaches the self-intersection dfi(w ). Using an

argument to the one in the proof of Lemma 4.26, one can see thatetlself-intersection
must lie at the right of E (w ) and, in particular, of w'.

Remark 5.10 The proof in Proposition 5.9 implies that the shocks fror, (QD)? to the
segmentQD have the property that all characteristics impinges in thensck, i.e., they are
over-compressive.

The Riemann solution is now clear: after the sloWw-shock there is a constant state
M, 2 E, (QD), followed by the fast waves inW' wR . We denote byM, 2 fT = TRg
the intermediate state between the fast waves. The solution is widn:

S f f
Lr® Myt i, R: (5.16)

Notice that we cannot use the slovb-rarefaction: it would not satisfy the monotonicity
principle with the triple-shock that follows the b-rarefaction.

Remark 5.11 The proof of Proposition 5.9 says that the region where a sldwshock
exists extends td_; . However, the type of construction shown fdr, does not apply: this
b-shock is faster than the right-characteristic e-shock iwh reaches the segmer@D.

Riemann solution for Lg

In the transition from L, to Lg we crossed the extensiok, (QD). This backward L -
region is bounded above by the isotherrii = TP and below by the isothermT = T so
that the Riemann solution must use a fase-shock. Beginning with a slowb-rarefaction
we reach a constant state that we denote byl ; 2 E, (QD). We denote the intermediate
state between the fast waves i’ wR by V] ». Thus the solution reads.

f
L S g, R (5.17)
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Riemann solution for L,

In this backward L-region, we are on the left side of the right extension of the isothar
T = TR, Equation (5.1), and above the backward slow wave curve emanagiffrom R,
see Equation (5.8) and the adjacent discussion. THewaves are slow. The Riemann
solution encompasses a slol+rarefaction, joined to a slow left-characteristice-shock at
the intermediate state®; 2 E, (DG). This slow shock reaches the isothermi = TR at
the constant stateM ,, at the right of state wR (in the segment fromwR to w®), and is
followed by a fastb-shock.

f

* R: (5.18)

RS SS S
L1 My ™ M,

Riemann solution for L,

In the transition from Ly to L,, we crossed the backward slow wave curve emanating
from R, Equation (5.8). Now the forward slow wave curve emanating froin reaches the
isotherm T = TR at the left of wR, and thus must be followed by a fasb-rarefaction.
We write the intermediate state asf; 2 E, (DG), and the constant state asM ,. The
solution is written:

f
Rb

RS s
L R ¥ My R: (5.19)

5.3 Region A °

Here the right state wR lies in RegionA% The subdivision of a neighborhood of the
singular point in the backward L-regions ofwR, shown in Figure 5.3, is essentially the
same as that of region A, see previous section. We will just highlighte di erence.

In this region we set thewR state at the left of the intersection of the isotherm
T = TR with the b double contact locus. We again, denote this intersection byP. The
intersection of the isothermT = TR with the coincidence locus will be denoted bw® as
in the previous section. As can be expected, see Remark 5.6, we mgéy can concatenate
a fast b-wave after a temperature decreasing fagtshock.

When state wR reacheswP, the e branch (H(wR)) of the Hugoniot locus based on
wR intersects the extensiorE, (QD) in wP’. After letting state wR get at the right of
wP, the fast e-shocks emanating from points irg, (RD) can no longer be used in the
Riemann solution: these shocks can only be followed by fdsshocks which would violate
the monotonicity principle. Therefore we can only use fast right-@racteristic e-shocks to
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Figure 5.3: BackwardL -regions forwR in region A%

reach the segmenQR. To this end both loci: E, (RD) and E, (QR)?, see De nition 5.5.
are useful as in Region A. For temperatures higher than the temgeure of state E, (R)
we need to use thee-branch of the Hugoniot locusH ¢(wR) emanating fromwR. Since it
is an oval, it must end with a left-characteristicb-shock at a state ing; (R). From E; (R)
to higher temperatures, we use the left-characteristio-shocks, as was done in Region A.

The temperature increasing Riemann solutions in regionhs, through L, are the same
as in Region A.

5.3.1 Riemann solutions with decreasing temperature

Here, the Riemann solutions for left states in regionks;Lg; ;Lgy are the same as
those forwR in Region A. In regionsLg, L, Ly the boundaries of the backward. -
regions di er from the case wherwR lies in Region A. In the following we will describe
these di erences and give the Riemann solutions fov" states in regions. ;, and L ;.

Riemann solution for Lg

Th backward L-regionL ¢ is bounded on the left side by locuf, (QR)? and on the right
side by locusH¢(wR). These loci intersects atg, (R)?.

Riemann solution for L,

The backward L -regionL , is bounded on its left side by locus, (QR) and on its right
side by locusE, (QR)?. It lies below the isotherm that containsg, (R).
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Riemann solution for  Lg

The backwardL -regionL g is bounded on its right side by locusg, (QR). It is below the
isotherm that contains g, (R).

Riemann solution for L,

RegionL ;4 contains the coincidence locus so that in states at the right of themcidence
locus thee-waves are slow and in states at the left of the coincidence locus thavaves
are slow.

It can be shown that (with the help of the Triple Shock Rule the samergument given
in Proposition 5.9 works) theb-shocks are slow. The Riemann solution is made with a
slow b-shock to He(wR), where we write the constant state asvl 2 H¢(wR). A fast
e-shock follows. The Riemann solution is:

Ss st

LI M!I% R: (5.20)

Riemann solution for L,

RegionL ;, is at the left of the e-branch of the Hugoniot locus emanating fromwR. In

this backward L -region the b-waves are slow. The Riemann solution encompasses a slow
b-rarefaction until the constant state M in He(wR). It is followed by the fast e-shock.
The Riemann solution is:

R: (5.21)

5.4 Region B

Here the right state wR lies in Region B. In the discussion that follows we will present
the subdivision of a neighborhood of the singular point in the backwarl -regions ofwR,
shown in Figure 5.4.

As in the case of the preceding regions, in a su ciently small neighbbood of anywR
state in Region B,e waves are slow andb waves are fast (this behavior can change out of
region B, accounting for bifurcations in the solution). Generically, dast wave is needed
to reachwR. In a su ciently small neighborhood of this region the backward faswave
curve that reacheswR must represent (fast)b waves, which lie on an isotherm. Therefore
slow waves must reach the isotherfi = TR in order to construct the Riemann solution,
see Proposition 4.6. A slow wave that reaches the isotheffn= TR at the right of wR
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Lg Ly Lio

Figure 5.4: BackwardL -regions forwR in region B.

must be followed by a fastb-shock. Of course, if the slow wave reaches the isotherm
T = TR at the left of wR it must be followed by a fastb-rarefaction. We have exhausted
slow waves; now we will focus on fast waves reaching this line.

Along an e-rarefaction temperature increases. On the left side of the coidence they
are fast and on the right side of the coincidence they are slow. Aniow e-rarefaction
that reaches the isothermT = TR can be followed by a fasb elementary wave.

Since thee-rarefactions are fast on the left side of the coincidence locus yheust be
chosen so that satis es the monotonicity principle with respect tohe b-rarefaction that
follows. To this end we name the poinw® which is the point of the coincidence locus
with temperature T = TR. The fast e-rarefaction wave that reachesv© is the sole one
that satisfy the monotonicity requirement. We callw® the point where this rarefaction
begins and denote this rarefaction curve aso.

To summarize we have that the fast backward wave curve that reaeswR has a
fast e-rarefaction that remains entirely on the left side of the coinciderclocusC, begins
at state wP and ends at statew®. This rarefaction is followed by a fastb-rarefaction
beginning inw®. To further reference we write the relevant part of wave curvtV’ R
as:

RLI R{: (5.22)

At the left of W' R the slow waves ardo-rarefactions. On the right side ow' R,
the slow waves aré-shocks. These shocks cease to be slow when their base statsese®
the left extension E, ( po) of the e-rarefaction po. For states on the right side of
E. ( po), the b-shocks become fast, thus they cannot be used in this Riemann swino.

For states above the isothermilT = TR, the temperature decreasing waves are the
e-shocks. In order to satisfy the monotonicity principle we only allowhe slowe-shocks
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based at the right extension of the lind@dG with respect to the b family, which we denote
as:
E, (OG): (5.23)

5.4.1 Riemann solutions with decreasing temperatures

Here we will give the Riemann solutions for the backwart-regions above the isotherm
T = TR. The segment of the slow backward wave curn&/'®s R from R:

RSl S (5.24)

and the right extensionE; (OG) are the bifurcation loci for the backwardL -regions in
this Riemann solution, see Figure 5.4.

Riemann solution for L,

In the regionL; the e family is slow and its admissible elementary waves are the shocks.
Since we are on the right side of the slow backward wave curVé® R , a slow wave
emanating fromw" will reach the isothermT = TR at the right of wR, in a constant
state which we call byM . The admissible fast waves are thub-shocks. The solution is:

f

% M1® R: (5.25)

L!

Riemann solution for L,

In the transition from L, to L, we crossed the extensiof, (RG) so that, now, in a
neighborhood of statev" the b-waves are slow. A slovb-rarefaction emanating fromw"

crosses the extensiol, (RG) at an intermediate stateM ; is followed by a left character-
istic e-shock. This shock reaches the isother = TR on the constant stateM , and is
followed by a fastb-shock. The solution is:

Sf

LT f1 % Myl R: (5.26)

Riemann solution for Lg,

Here the slow waves are the-shocks. Now the statew' is on the left side of the wave
curve W* R |, see Equation (5.24). We calM the point where the slow shock wave
emanating fromw' reaches the isothernT = TR. It must be followed by ab-rarefaction
wave. The solution is:
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R: (5.27)

Riemann solution for L,

Again, we are at the left of the extensiorng; (PO). Slow waves are theb-shocks and
b-rarefactions. The forward slow wave curv&/s (L) emanating fromw!":

RE! R (5.28)

crosses the extensiof, (P O) at a intermediate state M1 ; and reaches the isothernT =
TR at a constant stateM 5.

L™ fp > Myt R: (5.29)

5.4.2 Riemann solutions with increasing temperatures

Now we focus on the backward. -regions below the isothermil = TR. In comparison
to the previous cases in Region B, the bifurcation structure will beomplicated by the
presence of the singular point.

The backward slow wave curvéVs R emanating fromwR:

RE! RS (5.30)

is the rst remarkable bifurcation in this backward L-regions. At its left side, the fast
waves reachingR are theb-rarefactions while at its right side the fast waves arb-shocks.
As was previously discussed, in the beginning of this section, tematire increases along
e-waves.

We record for later useWs (O), the backward slow wave curve emanating frorw©:

RS RS

e

(5.31)

Riemann solution for  Lg

In this region the slow waves are-waves. The Riemann solution is just the Lax construc-
tion, where the constant stateM lies on the isothermT = TR. The Riemann solution is
written as:

M! ™ R: (5.32)



Region B 79

Riemann solution for Ly

In this region we are on the left side of the coincidence locus. A sldArarefaction wave
emanating fromL reaches the coincidence locus in an intermediate steﬁbl. It is followed
by a slow e-rarefaction which reaches the isothernrT = TR in the constant state M ».
This wave is followed by a fasb-shock:

f
RS s s

Lt fgt T Myl P R (5.33)

Riemann solution for L,

Again, the slow waves aree-shocks ore-rarefactions. This is the last case in the Region
B to bene ts from the Lax construction, where the constant stie lies on the isotherm
T = TR. The solution is:

Ry

LI™ M!™® R: (5.34)

Riemann solution for Lg

In the transition from L, to Lg we crossed the coincidence locus. This backwareregion
is bounded above by wave curviév/® (O), Equation (5.31), and below by the wave curve
Ws wR | Equation (5.24). Beginning with a slowb-rarefaction we reach an intermediate
state in the coincidence locus, which we denote If§f ;. This wave is followed by a slow
e-rarefaction that reaches the isothernmT = TR at the constant stateM,. This wave is
followed by ab-rarefaction.

R: (5.35)

Riemann solution for Lg

In this region the statew' is on the left side of the wave curv&Vs (P O) that reachesw®.
The slowe-rarefaction emanating from thew" state reaches the extensiok, (P O) at an
intermediate state, which we callfh 1. Lemma 4.24 shows that theéb-shock emanating
from M ; reaches the faste-rarefaction curve po (see Figure 5.4) at the intermediate
state M . This b-shock is a double contact shock, thus it it can be followed by the tas
e-rarefaction emanating fromM . This rarefaction reaches the isothernT = TR in @,
from where a fastb-rarefaction reacheR. The Riemann solution reads:

s d f f
LIt ™ R o™ R: (5.36)
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Remark 5.12 In this L-region the Riemann solution is given by a single wave group,
without embedded constant states. This is a direct conseqce of the fact that slow e-
rarefaction generically can be concatenated to fast e-réaetion through b double contact
(that joins a slow to a fast wave), near the coincidence locs See Lemma 4.24 and
Theorem 4.29. This type of behavior was theoretically pretid for double sonic transi-
tional wavesin Schecter et al. [44]. To the authors' knowledge, this isehrst practical
example.

Riemann solution for L,

In the transition from L4 to L,, we crossed the coincidence locus. The slow waves in the
previous region are preceded by a slokvrarefaction fromw' to 1, on the coincidence
locus. The solution is:

s s d f f
L™ ot ™ > R B R: (5.37)
Riemann solution for L,

In this region we are on the right side of thav" R . The slow wave is ab-shock, which
reaches the fast backward wave curve emanating fron® at a constant stateM ; 2 po.
The solution is:

S

f f
Lr® MR 8™ R: (5.38)

Riemann solution for L,

Now we are on the left side oV" R . The slowb-rarefaction emanating fromw" reaches
the fast backward wave curve emanating frowR at a constant stateM ;. The Riemann
solution is:

f
L™ MR &1 R (5.39)

5.5 Region C

The last case occurs for state&R in Region C. In the discussion that follows we will
present the subdivision of a neighborhood of the singular point intoalskward L -regions
of wR see Figure 5.5.
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Figure 5.5: BackwardL -regions forw® in region C.

In a small neighborhood of theR state the fast waves are the elementary waves. The
backward fast wave curve with decreasing temperature is the Hugiot locus of R. Away
from R, this curve intersects the isothermil = TR at the state O. The right extension
E (OG) intersects the locusH(wR) at point w=, sincewR, w°® and wS form a triple
shock, see Proposition 4.12. As in the case for Region B, the rami@ns that reach points
wR and w©® will play a fundamental role in the Riemann solution. The last relevant lous
is E, ( pr), the left extension of the rarefaction orbit pg.

5.5.1 Riemann solutions

Region C exhibits most of the bifurcation mechanisms appearing in th@eviously de-
scribed backwardL -regions.

Riemann solution for region L,

This L-region lies above the isothernT = TR and on the left side of the Hugoniot locus
He(wR). In the rst four regions the classical Lax construction holds. Tie Riemann
solution is:
s f
LT M1S R: (5.40)
In this L-region we haveM 2 T = TR, however we recall the reader that we will

suppress the description of constant states given by the Lax airuction in the spirit of
Remark 5.7 .



82 Riemann problem | inTP

Riemann solution for region L,

This region lies above the isothernlT = TR and inside thee branch H¢(wR) of the
Hugoniot locus based onR. The Riemann solution is:

R: (5.41)

Riemann solution for region L,
This region lies below the isothernm = TR and on the left side of the rarefaction curve
pr. The Riemann solution is:

L MR R: (5.42)

Riemann solution for region L,

This region lies below the isothernT = TR and between the rarefaction curve pg and
its extensionE, ( pr). The solution is:

f

S5 Re

LI > MIRe R: (5.43)

Riemann solution for Lg

This L-region lies below the isothernT = TR and is bounded by the coincidence locus,
the extensionE, ( pr) and the rarefaction curve that emanates fronw®.

In this region the solution is similar to the case oLy in region B, in the sense that
the b double contact joins a slowe-rarefaction with a fast e-rarefaction. The solution is:

f

s d
LtRE ™ ™ R; (5.44)

Whereml 2 Ee( pR) and M2 2 pRr.

Riemann solution for L

This region is bounded by the isothermd® and T? and by the coincidence locus. In
the transition from L to L, the w' states crossed the coincidence locus. The Riemann
solution is ab-rarefaction which ends at¥ o 2 C, is followed by the a construction similar
to the previous one:

S s d f
LT g™ > f ™ R (5.45)
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Riemann solution for L,

This region lies below the isotherniT = TR, on the right side of the rarefaction curve
emanating fromw®, on the right side of the coincidence locus, The Riemann solution is
a slowe-rarefaction that ends at the constant stateM with f T = TRg, followed by a fast
b-shock:

Sh

L! M! R: (5.46)

Riemann solution for Lg

This region lies on the left side of the coincidence loc@ below the isothermT = TQ.
Again, the solution is a slowb-rarefaction followed by a construction of the same type of
the preceding Riemann solution:

RS s S|

LI Wl ™ M R (5.47)

where $1 0 2C.

Riemann solution for L,

This region lies above the isothernT = TR, as well as and on the right side of the branch
of the Hugoniot locus based omR, H(WR). The solution is a slowe-shock ending at the
constant stateM 2 f T = TRg, followed by a fastb-shock:

f

% M1® R: (5.48)

L!



Chapter 6
Intermezzo

In this chapter we state the basic results and de nitions needed tdescribe the Riemann
solutions in the two-phase region together with the single-phase liguregion, which will be
given in the following chapter. Also, in this chapter we elaborate on ghmechanisms that
provide the transition from the Riemann solutions given in Chapter 5d the Riemann
solutions given in Chapter 7. It will build on de nitions and results of all previous
chapters.

Our motivation originates from the observation that it is not possibleto solve the
Riemann problem for any pair of left and right states in the two-phas region using only
waves de ned within the two-phase region. Nevertheless, it is stillgssible to nd all Rie-
mann solutions if one is allowed to use waves from other thermodynial con gurations,
in addition to those de ned inside the two-phase region. A similar stament holds for
the single phase liquid region.

6.1 Riemann solutions in TP

As was seen in Chapter 5, the Riemann solution possesses a very liflwrcation structure
in a neighborhood of the singular point. Nevertheless, there arehetr structures in the
two-phase region with great impact on the Riemann solutions.

As discussed on Chapter 2, the Riemann solution can be construttey concatenating
constant regions and fundamental waves: shocks and rarefaas. As was done in Chapter
5 we take advantage from the fact that the projection of elemeaty waves into state space
IS su cient to construct the solutions. We will illustrate in gures only these projections.

Riemann solutions bifurcate when an elementary wave ceases to loengsible: the
construction of the Riemann solution must proceed with another axissible elementary
wave. First, we will account the bifurcations in forward Riemann solions that appears

84
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when thewR is allowed to change but then" is xed.

De nition 6.1  (Forward R-region). Fix a pair w-, wR in state space. The forwardR -
region: R* corresponding to the selected paiw", wR is the maximal subset of state space
such thatw®R 2 R* and the Riemann solutions for any initial dataw 2R*, u > 0,

(

wh: if x< O

;0) =
w(x0) w; if x>0

and
ux;0)=u; iIf x<O0;

are constructed through a wave fan consisting of the same catenations of constant
states and the same fundamental wave types and families asgblution for the pairw",
wR,

Remark 6.2 Typically there is a nite number of forwardR -regions for a giverw'. We
will follow the usual nomenclature and number them.

When the left state w- wanders in state space, the solutions may change topology,
i.e., the forward R-region diagram changes qualitatively. When such a change happens
the Riemann solution bifurcates. Bifurcations often happens whew' crosses certain
codimension one manifolds in state space.

De nition 6.3  (Forward L-region). Fix a w' in state space. The forward.-Region is
the maximal subset of state spack:* such that for anyw 2 L * the subdivision of state
space into forwardR -regions R " is topologically the same as the subdvision in".

Remark 6.4 The reader should pay attention to the di erences betweenettiR-construc-
tion stated in De nitions 5.1, 5.3 and the L-construction stated in De nitions 6.1, 6.3.

Remark 6.5 Again we will use the lexicographic order of the plane to stathe relative
position of objects. For examplew?! = (s}; T!) and w? = (s2; T?): state w? is abovew?
if T2>T 1 Accordingly, statew? is at the right ofw! if s2 > sl

6.1.1 Inuence of the exceptional locus in Riemann solution S

The exceptional locusE is a genuine contact of thee family, see Propositions 4.21 and
4.32. In a suitable neighborhood of the exceptional locus elementavave curves must
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Figure 6.1: Elementary waves near the exceptional locls Left: rarefaction curves.
Right: shock curves, with the base state represented by a boldtdo

be close to it. This is becaus& coincides with both ane integral curve and with the e
Hugoniot branch ofw foranyw 2E.

This is illustrated in Figure 6.1.

Since this neighborhood can be made disjoint from the coincidence s the two
families are transversal in such neighborhoodb, is the fast family and Lax construction
holds: the Riemann solution is given by a slove family wave, followed by a fastb
wave. Sinceb waves lie along isotherms, see Proposition 4.6, Riemann solutions along
isotherms can be obtained by standard (Buckley-Leverett) fréional ow theory. The
bifurcations added in the Riemann solutions by théb in ection, Equation (4.45), can
also be described by fractional ow theory. In our particular casethese bifurcations
complicate the description of Riemann solutions without adding any ssntial novelty.

Remark 6.6 We will disregard the bifurcations in Riemann solutions titacomes from

the b in ection and focus on the organizing structures thatharacterize our particular

case: the singular point and the boundary between the singlase liquid region and the
two phase region.

Let us return to the Riemann solution near the exceptional locug. On its left side,
along an e-rarefaction wave the temperature increases. The Riemann sabn in this
neighborhood of the exceptional locus is given by the cades and L for wR in Regions
A and B, see Sections 5.2, 5.4. In our case, the Riemann solution giverChapter 5 can
be extended down to the exceptional locus without change.

Remark 6.7 In fact, by propositions 4.21 and 4.32 the boundary linfes, = 0g must also
be a contact discontinuity, with the same properties as the&aeptional locusk. Both loci
exerts the same type of in uence in the Riemann solutions.
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In the particular case that bothw';wR 2 E the solution is a genuine contact discon-
tinuity with speed = ¢(wh;u) = o(WR;u).

For wt states on the right side of the exceptional locus, along amrarefaction wave
temperature decreases. For one such pair of states = (s5; T-) and wR = (sR; TR)ina
neighborhood of the exceptional locus the Riemann solution is judié Lax construction,
written as:

Ry :forTR>T! andsk >st.

0 (o] ;
LS M1> R: (6.1)
R; :forTR>T! andsk <s}.
s f
L% M1 R: (6.2)
R; :forTR<T! andsk <st.
s f
LiRE MI™ R: (6.3)
R; :forTR<T! andsk >st.
s f
Life M1 ™ R: (6.4)

This construction can be extended. Let us write by the rarefaction curve that
intersects the right-hand side branch of the coincidence locus ineboundary of theTP ,
fT = Tpvg. For any w' state in the region between the exceptional locus and the two
families are genuinely nonlinear and System (4.1) is strictly hyperbolicThe preceding
Lax construction holds for anywR state in state space on the left side of thb in ection.
For wR states on the right side of theb in ection the b waves change according to the
fractional ow theory.

6.1.2 Riemann solutions near the pure oil boundary

We will focus onw! states on the right side of the exceptional locug& between the
b in ection locus, Equation (4.45), and the extension of the boundgrfs, = 1g. The
subdivision of state space into forwardR -regions is shown in Figure 6.2.

Of course, the Lax construction near suchv' states dier from Equations (6.1) {
(6.4) in the admissibility of b waves: to reachwR states on the right side ofv" saturation
increases with é-shock while to reactwR states on the left side ofv" saturation decreases
with a b-rarefaction.
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Figure 6.2: Subdivision of state space near the boundairg, = 19 into forward R -regions.

StateswR abovew! are reached through a slove-shock, followed by ab fast wave.

This construction holds for high temperatures. The wave respabte for reaching states
wR below but nearbyw" is the e-rarefaction.

The rarefaction curve emanating fromw' crosses the extension of the boundary:

Ear = E (fso=10); (6.5)

at point wP and ends at pointw® when it intersects the coincidence locu, which is also
an in ection for the e-rarefaction. We will denote by pq the portion of the rarefaction
curve emanating fromw' between pointsw® and w?, with which we can de ne the
extensionE, ( pg). This extension determines the locus in which fadt-shocks emanating
from po become slow, by Lemma 4.24. We denote by® the intersection point of the

isotherm f T = TP g with the boundary fs, = 1g. The segment of the fast forward wave
curve W! w© emanating fromw?© is an e-rarefaction followed by ab-rarefaction, which

we write for later use:

RLI R{: (6.6)
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Riemann solution for R}

The region R lies on the right side ofH¢(w"), the e branch of the Hugoniot locus
emanating fromw', abovef T = Ttg. The Riemann solution is the Lax construction:

f

% MI>® R: (6.7)

L!

whereM 2 Hg(wh)\f T = TRg. In what follows we will omit the de nition of constant
states given by the Lax construction.

Riemann solution for R}

The regionR} lies on the left side ofH(w"), the e branch of the Hugoniot locus ema-
nating from w', abovefT = Tlg. The solution is:

f

ML R: (6.8)

S
Ly 5

Riemann solution for R}
The regionR3 lies on the left side of thee-rarefaction emanating fromw" and between
the isothermsfT = Ttgand f T = T?g. The solution is:

L! R: (6.9)

Riemann solution for R}

The region R lies on the right side of thee-rarefaction emanating fromw!. It is
bounded by the aforementioned rarefaction, by the extensids, ( pq), by the boundary
f(Se;T)2 TP js,=1; T® T Thtgand by the isothermT = TL. This is the last
region to bene t from the Lax construction:

R: (6.10)

Riemann solution for RZ

The regionR: is bounded by extensiork, ( pg), by the coincidence locu€ and by pq,
a segment of the rarefaction emanating from"-. The construction of extensiorg, ( pg),
Lemma 4.24 and Corollary 4.30 allow us to continue the Riemann solutiontime preceding
R-region with a faste-rarefaction, characteristic with theb-shock. The solution is:
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RS

f
L g™ g R R (6.11)

where §1 12 poand ] 2 2E. ( po)-

Riemann solution for Rg

In the transition from the forward R-regionR; to the forward R-regionRg we crossed
the coincidence locu€. Furthermore, this region is bounded by the isotherm&T = TOg
and fT = TPg. The Riemann solution is a concatenation of the same type of Riemann
solution found forw" in region R{ with a b fast wave. The solution is:

f

s f f
LR ™ ™ ™ R (6.12)

where M1 3 2C.

Further Riemann solutions

The subdivision into forward R-regions illustrated in Figure 6.2 suggests that it is not
possible to extend the construction of Riemann solutions fovR states below wave curve
W! w® using only waves de ned withinTP .

This key observation leads us to consider the use of waves fromertthermodynamical
con gurations (the single phase liquid region in our case), in additionotthose de ned
inside the two-phase region, in order to obtain the complete Riemarsolution.

6.2 Elementary waves in the SPL

In Subsection 3.5.2 we derived the system of conservation laws:

8
. @ @ _ QN
% @tov"' @)QU o) = 0;
% I @@tod+ @@>£U od) = 0; (6'13)
. @ @ _ 0
ot R+ H, + @iuHo = 0;

and introduced the natural parametrization of the single phase ligd state space:

SPL=Ff(T; oa)jT Tovandxgd(T) Xoa 10 (6.14)
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System (6.13) can be written in compact form as:

@G(w) + QuF(w)=0; (6.15)
where: 0 1 0 1
\Y \Y
G(T; o) =@ oa K and F(T; o) = @ oo X: (6.16)
R, + H, Ho

Multiplying equation (6.13a) by 1=y, equation (6.13b) by ¥ p, adding the results
and using the ideal mixture law (3.2) we get@u = 0, so u is constant in space. The
system (6.13) simpli es further to:

8
. @ @ _ .
% @t0d+ U@XOd - O,

. @ @, _ 4. (6.17)
% @tlhr+Ho+u@)l(—|o 0;

I
o

@u
We get immediately the (compositional) characteristic speed and itsgenvector:

u
c v

and #=(0;1)"; (6.18)

and by the a ne linear dependence of the enthalpies on the tempexare, see Table A.1
and Equations (3.18), (A.1), (A.2) and (A.3), the (thermal) eigenpa is:

_u @H, _ U yGCy

= = = = and #=(1:0)": 6.19
‘ I @Ho+ @Hr I VCOV+CI’ ‘ ( ) ( )

In the SPL the Riemann solution is trivial. It is a genuine thermal contactC, followed
by a genuine compositional contacC, since ;{ < ..

Since the light and the dead oils can only be in liquid form if the amount ofehd
oil in the mixture satisfy xcJ(T)  Xoq, See Equation 6.14, it is clear that if we x a
wh = (Th; x5,) state we can only construct Riemann solutions fully contained within
SPL for wR = (TR;xR) states that satisfy:

TR T jT satisfyxiy=xS(T) : (6.20)

This is completely analogous to the situation in the previous subseatio
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6.3 Shock waves between regions

In this section we consider discontinuous waves between the singfage liquid region and
the two phase region. Familiarity with Sections 3.2.1 and 3.5 is assumed.

We de ne the extended accumulation function:

(
Grp; forw 2 TP;
G = P W (6.21)
Ggp. ; forw 2 SPL;

where Grp is given by Equation (4.4a) andGsp, is given by Equation (6.16a); and the

extended ux function:

Frp; forw 2 TP
F = B (6.22)
FspL; forw 2 SPL;

whereF+p is given by Equation (4.4b) andFsp. is given by Equation (6.16b). Since the
single phase liquid region and the two-phase region share the samerxary:

n 0
TP\ sPL = (SO;T; od) (50:1; T TbV; od = od(T) ) (6-23)

see Equations (3.28), (3.34), (3.3) and (3.5), the extended ux draccumulation functions
(6.21), (6.22) are continuous up to the boundary (6.23). The intptay between the two-
phase and the single phase liquid situations is illustrated in Figure 6.3.

The Rankine Hugoniot condition, Equation (2.10), is written as:
uF (w") uF (w) GWw") G(w) =0; (6.24)

werew ;w* are allowed to be either inTP or in SPL.

Both the extended accumulation and the extended ux are smootin a neighbor-
hood of any point in the interior of TP . For any base state of the Hugoniot locus
betweenL -regions orR-regions that lie in the interior of TP we can provide a smooth
parametrization of the shock curve. Thus, the Bethe-Wendro Teorem 4.13 holds in
such neighborhoods. If this parametrization crosses the bounglade ned in Equation
(6.23), the Bethe-Wendro Theorem may not hold.
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Qrp
Qspr,
\ >
(50 = 1,T = Thy, 2ou = 0>/v
TP N SPL
,k /N
/
/
TP y
/
/
/
yd
e
-~ SPL

Figure 6.3: Relative positions of the two-phase and single phase liquitygical con gu-
rations together with their parameterizations.

6.3.1 Shock waves from TP to SPL

Here we consider the case wherve liesin TP andw* = (T*;x_,) is allowed to vary in
SPL. We rewrite Equation 6.24 explicitly as:

8
% v G; u v+uF, = 0;
é W Gy u* 4+u F, = 0; (6.25)

Ho +H G; Uu'H;+uF,

I
o

whereG , F are given by Equation (4.4) and the subscripts 2 f 1;2; 3g denote their
components.

The Hugoniot locus inside theSPL for aw' state insideTP is generically a hyperbola.
It degenerates wherw' 2 fs,=1gorw' 2 E, (s, = 1), as can be seen in Figure 6.4 and
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in the proposition that follows.

A
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\wi L /
H wl \ 1 1
b(w) \ }‘ |= HTPﬁSPL(WL)W
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Figure 6.4: Change in theTP ! SPL branch of the Hugoniot locus wherw: 2 TP
crosses the extension of the boundaiy, (s, = 1).

Proposition 6.8 (Characterization of shock curve§P ! SPL). The shock curve inside

SPL for a left state in TP is a hyperbola. Its asymptotes are parallel to the axis of the

parametrization of the single phase liquid state spadd;; X.q). This locus bifurcates for
w 2fs, =1gandw 2E,(fs, =10).

Proof. The explicit Equations for enthalpiesH, and H, are given in equations (3.18),
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(A.1), (A.2) and (A.3). Using these equations and deningf = T T, we rewrite
Equation (6.25) as:

(6.27)

(G,F,  F,Gy) vCiFsy
= v(G3F, F3G,):

8
% v G u y+uF, = 0;
oo G2 U g+tuF, =0
g h [
(+CH)® G, u B +ufF;, = 0;
where = ycy. The pairs (F*; [,) for which the matrix in Equation (6.3.1) has a
non-trivial kernel satisfy:
A B +B 4+ CPF +D=0; (6.26)
where: 8
E = CFy;
G Fs  Fy Gg;

OO0 wm>»
|

Under the change of variables ;= Y + Z, " =Y Z, Equation (6.26) becomes:

2

B+C 2 C
+AD BC =0: (6.28)

which is generically a hyperbola (sincA > 0) with asymptotes parallel to the axis T; oq).
A computations shows thatAD BC in (6.28) vanishes fow 2 f s, = 1g, thus making
the Hugoniot locus de ned in (6.26) bifurcate. The bifurcation in theHugoniot locus
(6.26) forw 2 E, (fs, = 19) follows by the Triple Shock Rule 4.10, Proposition 4.6 and
continuity of the extended accumulations and uxes.
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6.3.2 Shock waves from SPL to TP

Here we consider the case wheve lies in SPL andw™ = (s{;T") is allowed to vary in
TP . We rewrite Equation 6.24 explicitly as:

s G, ut Yfl+uF, = 0;

8
% TSot qv Gy uT(fg+ )+uF = 0;
% (6.29)

s+ Hy+HS Gy uT(Tfg+Hj)+uF; = O

Notice that G and F are given by Equation (6.16). The subscripts 2 f 1; 2; 3g denote
their components. An illustration of this locus is given in Figure 6.3.2.

A A
TP E (so=1); C; SPL
\ \
\ \ /
HsprLoTp(Wh) ! ! /
1 |
1 1
T\ o /
| |
I T
| | /
I | /
e s
— P
/ / v
A N — .

Figure 6.5: TP extension of the Hugoniot locus for anv' state in SPL.

The remarkable similarity between Equations (6.29) and (4.42) yieldfié propositions:

Proposition 6.9 Let (s;;T") = w* 2 TP, w 2 SPL andw® 2 H(w ) be such
that the rows of the matrix in the Rankine-Hugoniot relation(6.29) for w , w* are not

parallel. Then the rescaled speed (w ;w™), de ned in Equation 4.40, is a function of
w andT".

Proposition 6.10 Assume thatw® = (s2;TP), w® = (s&; T°) satisfy wPw® 2 H (w?),
w22 SPL and TP= T¢= T. We x the notation u® = U(w?;wP) and u¢= U(w? w°)
for Darcy speeds andP? = (w?;u?), PP = (wP uP) and P¢ = (w¢ u®) for points. If the
conditions of Proposition 6.9 and Theorem 4.10 are satis ethen:
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1. U(w3wP) = U(w?3;we),
2. wSu® 2H(wb,
3. (A;B)= (B;C)= (C;A).

The proofs are similar to those of Proposition 4.11 and Proposition £%nd will be
omitted.



Chapter 7

Riemann Problem |l between TP
and SPL

In this chapter we give two representative sets of Riemann solutisfiorw!: and wR states
chosen near the boundary betwee8PL , the single phase liquid region andP , the two
phase liquid region. Indeed, we solved the Riemann problem for all eas

7.1 Riemann solutions for L in SPL

The L = (Th;xk,) state lies inSPL, see Figure 7.1. We write the isothermfi(T; o4) j T =
Ttgas t.. The slow forward wave curveNi wb emanating fromw"' is written as:

Ci! Sy ! R§! S (7.1)

shown in Figure 7.1 as the concatenation of segments,, HspL1 1p (W-), o and
E, (QG). The wave curveW! wt is necessary to solve the Riemann problem feorR
states the temperature of which satisfy the relationship:

TR T jT satisfyxsy= xS(T ) ; (7.2)

see Subsections 3.5.2 and 6.2.

We write the state between theSS,, , ;p and R2 waves asw®. Let us denote as
wP the intersection of the wave curvéV! w' with the boundary s, = 1, as w® the
intersection of W w' with the coincidence locus similarly, let w® be the intersection

98
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Figure 7.1: ForwardR -regions forL in SPL.
of the wave curveW! w' with the extension of the boundary:
Ear = E (fso=10): (7.3)

The double extensiorg, (QO)?, see De nition 5.5, will delimit the set of admissibleb
fast shocks that reach the right side of the coincidence locus.

The R-regions induced by fast waves reachin@P are bounded by the right exten-

sionsE; ( t.) and E; ( t.). We record for later use the fast forward wave curviv! (P)
emanating from pointw®:

RLI Ry (7.4)

Riemann solution for R}

Near w' state in SPL the Riemann solution is:
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R; (7.5)

whereM 2 1.

Riemann solution for R}

In the region R the wR states lie inTP . This region is bounded by the right extensions
E ( o) and Ef ( 1), and by the boundary of theTP region. The Riemann solution is:

f

L1 M ST Ry (7.6)

whereM 2 1.

Riemann solution for R}

The regionR3 is bounded by the coincidence locus, by the right extensid# ( 1) and
by the wave curvew! (P). The Riemann solution is given by:

st f
LIS M U™ 1,1 R; (7.7)
where the constant stateM ; lies on 1, and the intermediate stateﬁ'lz lies on the
intersection of extensionE; ( ) with the slow branch of the Hugoniot locus fromSPL
to TP emanating fromM ;.

Riemann solution for R}

In the transition from region R to regionR; the wR state crossed the coincidence locus.
The fast waves in the preceding region are succeeded by-garefaction. The Riemann
solution is:

f

f f
LS My %™ ™ g g™ R (7.8)
where the statef 3 lies on the coincidence locu8. The location ofM ; and ] 2 IS similar
to the one given inR-regionR3.
Riemann solution for RZ

The regionR; lies below the regiorR}, on the right side of extensiong; ( t.). Notice
that the region R; is adjacent to the regionR; . The waves in regionR; are succeeded
by a fast b-rarefaction. The Riemann solution is given by:
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f f
L1 S My 1= ™ g R; (7.9)

where M , lies onE; ( To).

Riemann solution for Rg

The regionR§ is bounded by the wave curve®/$ w' and wi! (P) and by the coincidence
locus. The solution is:

RE

L1 i Re R (7.10)

whereM ; 2W$ wh |

Riemann solution for R7

In the transition from region R§ to region R the wR state crossed the coincidence locus.
The waves in regionR are succeeded by a fadt-rarefaction. The Riemann solution is:

f

s f
L R g™ R (7.11)

where §1 » lies on the coincidence locu€.

Riemann solution for Rjg

The regionRj is bounded by the wave curvaV$ wR | by the e branch of the Hugoniot
locus emanating fromw® and by the boundaryfs, = 1g. The Riemann solution in this
region is given as:

L1 ™ M S R (7.12)

whereM ; lies onHgp, 1 1p (W').

Riemann solution for Rj§
The regionR§ is bounded by the branchH ((w®), the segment of rarefaction go and by
the double extensiong, (QO)2. The solution is:

LR g v, S R (7.13)

where 1 coincides with statew® in Figure 7.1 andM , lies on the segment of rarefaction

GQ-



102 Riemann Problem |l betweenTP and SPL

Riemann solution for R7,
The regionR ], lies on the right side of the extensiof, ( oc), above the double extension
E, (QO)?, on the left side of the boundaryf s, = 1g. The solution is:
s s s f
L1 ™ g S M ™ R; (7.14)

where $1 1 coincides with statew® in Figure 7.1, M, lies on the segment of rarefaction
co and M 3 lies on the extensiorng, ( qc).

Riemann solution for R7;
The region R, lies on the left side of extensiorE, ( qc), above the isothermT = TQ,
The solution is:
SS , S S Rf
TR VYA IV VNN ¥ (7.15)

where $1 1 coincides with statew® in Figure 7.1, M, lies on the segment of rarefaction
co and M 3 lies on the extensiorg, ( oc)-

Riemann solution for R,

The region R%, lies between the isothermiT = TP and the isotherm TS’ in SPL. The
region R7, is adjacent to the regionRg, see Figure 6.3. The waves in regioRg are
followed by a compositional contact discontinuity. The Riemann solun is given by:

st

LIS ™ My 1% R: (7.16)

whereM , lies on the boundaryf(s,;T) 2 TP js,=1; TP T Teog.

Riemann solution for R7;

The region R}, is bounded by the isothermT = T© and by the isothermT = TS’ in
SPL. RegionR7; is adjacent to regionRg. The waves in regionRg are followed by a
compositional contact discontinuity. The Riemann solution is:
s s f
LI ™ f ™ Ml Mgl ® R, (7.17)

whereM ; lies on the boundaryf(so;T) 2 TP js,=1; T T TOg.
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Riemann solution for R7,

The regionR 7, is bounded by the isothermT = T© and by the isothermT = TZ. State
wZ 2 E is such that the shock speed from it to statevZ’ 2 fs, = 1g\f T = TZg has the
same characteristic speed as the compositional speed, de ned igu&tion (6.18). Region
R1, is adjacent to the regionRj,. The Riemann solution is:

s S S f
L!SSPL!TP ml!Rb m2! Se Mg!Sb M4! Ce R; (718)

whereM 4 lies on the boundaryf (s,; T) 2 TP js,=1; T® T TZ?qg.

Riemann solution for R

The regionR I; lies above the isothernT = TZ in SPL and is adjacent to the regiorR ],
in physical space. The Riemann solution is given by:

s s s f
L !SSPL! ™ ml! R MZ! Se M 3 !STP! SPL R: (719)
where 1 coincides with statew® in Figure 7.1, M, lies on the segment of rarefaction
co and M 3 lies on the extensiorng, ( qc).

7.2 Riemann solutions for L in TP

In this section we will complete the Riemann solution given in Subsectidhl.2, repeating
the details for readability. We will focus onw' states on the right side of the exceptional
locusE between theb in ection locus, Equation (4.45), and the extension of the boundar
fs, = 1g. The subdivision of state space into forward -regions is shown in Figure 7.2.

StateswR abovew!' are reached through a slove-shock, followed by a fast-wave.
This construction holds for high temperatures. The wave respabte for reaching states
wR below but nearbyw' is the e-rarefaction.

The rarefaction curve emanating fromw' crosses the extension of the boundary:

Ear = E (fSo =10); (7.20)

at point w” and ends at pointw? when it intersects the coincidence locus, which is also
an in ection for the e-rarefaction. We will denote by pq the portion of the rarefaction
curve emanating fromw' between pointsw® and w?, with which we can de ne the
extensionE, ( pg). This extension determines the locus in which fadt-shocks emanating
from po become slow, by Lemma 4.24. We denote by® the intersection point of the
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Figure 7.2: ForwardR -regions forL in TP , between the Buckley-Leverett in ection locus
and the extension of the boundang, (@P ).

isotherm f T = TP g with the boundary fs, = 1g. The segment of the fast forward wave
curve W! w© emanating fromw?© is ane-rarefaction followed by ab-rarefaction, which
we write for later use:

RLI R{: (7.21)
Inside SPL, the left extension locus of the rarefaction curve g is denoted a€, ( o).

This extension will be used to construct Riemann solutions far® = (TR; xR)) states (in
SPL) such that TR~ T©,

The fast branch of the Hugoniot locus fromSPL to TP together with the right

extensions ofE, ( o) inside TP, i.e., B (E ( o)) and E (E; ( o)) will be used to
construct Riemann solutions fowR = (sR; TR) states (in TP ) such that TR~ T©, lling
the gap left in Subsection 6.1.2.
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Riemann solution for R}

The region R lies on the right side ofH¢(w"), the e branch of the Hugoniot locus
emanating fromw', abovef T = Ttg. The Riemann solution is the Lax construction:

f

% M1® R; (7.22)

L!

whereM 2 Hg(wh)\f T = TRg. In what follows we will omit the de nition of constant
states given by the Lax construction.

Riemann solution for R}

The regionR} lies on the left side ofH(w"), the e branch of the Hugoniot locus ema-
nating from w', abovefT = Tlg. The solution is:

f

ML R: (7.23)

S
Ly 5

Riemann solution for R}
The regionR3 lies on the left side of thee-rarefaction emanating fromw" and between
the isothermsfT = Ttgand f T = T?g. The solution is:

L! R: (7.24)

Riemann solution for R}

The region R lies on the right side of thee-rarefaction emanating fromw!. It is
bounded by the aforementioned rarefaction, by the extensids, ( pq), by the boundary
f(Se;T)2 TP js,=1; T® T Thtgand by the isothermT = TL. This is the last
region to bene t from the Lax construction:

R: (7.25)

Riemann solution for RZ

The regionR; is bounded by extensiork, ( pg), by the coincidence locu€ and by pq,
a segment of the rarefaction emanating from"-. The construction of extensiorg, ( pg),
Lemma 4.24 and Corollary 4.30 allow us to continue the Riemann solutiontime preceding
R-region with a faste-rarefaction, characteristic with theb-shock. The solution is:
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RS

f
L g™ g R R (7.26)

where §1 12 poand ] 2 2E. ( po)-

Riemann solution for Rg

In the transition from the forward R-regionR; to the forward R-regionRg we crossed
the coincidence locu€. Furthermore, this region is bounded by the isothermT = T@g
and fT = TPg. The Riemann solution is a concatenation of the same type of Riemann
solution found forw" in region R{ with a b fast wave. The solution is:

s f f f
LR ™ fp ™t ™ R (7.27)

where M1 3 2C.

Riemann solution for R7

The regionR3 lies insideSPL, below the isothermT = T©. The Riemann solution is:
R P N VIV - ¥ (7.28)

WhereWIlZ LP anszzEe( LP)-

Riemann solution for R

The regionR 3 lies in TP ; it is adjacent to regionR7 . It is bounded by the two extensions
E' (E, ( q)) and E! (E, ( 10)). The Riemann solution is:

Sf

L1 Re ml !S'?'P! SPL M2 I SPL | TP R; (729)

WhereWIlZ LP anszzEe( LP)-

Riemann solution for Rjg

The region R is bounded by the coincidence locu€, the rarefaction o0 emanating
from w® and by the extensionE; (E, ( Lo)). The Riemann solution is a concatenation of
the same type of solution for regiorRg with a fast e-rarefaction:

s s f
L1 Re ml !STP! SPL M, !SSPL! P ngl RE R: (730)
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where M 5 lies on the intersection of the fast branch of the Hugoniot locus fno SPL to
TP emanating fromM , with extension E; (E, ( o))

Riemann solution for R7,
In the transition from region Ry to region R, the coincidence locus was crossed. The
Riemann solution is:
RS ss sf Rf R
L1 e mllTP!SPL MZ!SPL!TP m?’! e m4! b R: (731)

where 1 , lies on the coincidence locus.

Riemann solution for R7;

The region R7; is adjacent to regionRg in TP . It lies on the right side of extension
E; (E, ( L0)), below isothermT = T°% The solution is:

RS

s f f
L1e ml !STP! SPL M, !SSPL! L mgl Rp R: (732)

where ¥ 5 lies onE; (E ( 9))-

Riemann solution for R,

The regionR7, lies in the SPL, it is adjacent to regionsR; and R7. It is bounded by
the isothermsT = T° and T = TZ. The Riemann solution is:

f

LR M > My & R (7.33)

whereM, 2f (sg;T)2 TP js,=1; T® T Ttg.

Riemann solution for R,

The regionR 1, is adjacent to regionR; and lies belowH sp | 1p (wh), the fast branch of
the Hugoniot locus fromTP to SPL emanating fromw', and above the isotherniT = TZ.
The shock speed between the paw?; w2’ equals the compositional characteristic speed
in SPL, de ned in Equation (6.18). The Riemann solution is:

s f
LR m S R (7.34)

whereM lies at the e-rarefaction emanating fromw".
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Riemann solution for R7,

The regionR 7, is adjacent to regionR; and lies aboveHp | sp. (W') the fast branch of
the Hugoniot locus fromTP to SPL emanating fromw!'. The solution is:

sg s

LI M 1T s R, (7.35)

whereM lies at Hg(wh).
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Appendix A

Physical quantities

A.1 Physical quantities, symbols and values

In this appendix we describe the quantities used in the computatiomd empirical expres-

sions for the various functions parameter values and units. For meenience we express
the heat capacity of the rockC, in terms of energy per unit volume ofporous medium

per unit temperature, i.e., the factor 1 is already included in the rock density. All

other densities and concentrations are expressed in terms of m@&r unit volume of the

phase. All enthalpies per unit mass are with respect to the enthalgieat the reference

temperature of the components in their standard form. All heatapacities are at constant

pressure. All enthalpies in their standard form are zero at the refence temperature.

Table A.1. Summary of physical input parameters and variables
Physical quantity Symbol | Value Unit
Absolute porous rock permeability | k 1.0 1012 [m?]
Volatile, dead oil molar weights My; Mp | 0:100210:4 [kg/mole]
Total pressure ptot 1.0135 1C° [Pa]
Injection saturation of gaseous phases{_;‘j input [m3/m 3]
Reservoir, injection temperature Treft . T | 350, 440 K]
Boiling point of volatile, dead oil T, T¢ 37157,1 K]
Volatile, dead oil heat capacities Covs CoD 2121,cov v= D [J/kg/K]
Log of volatile oil viscosity ov 11145+ % [Pa s]
Log of dead oil viscosity od 1380 + 328 [Pa s]
Universal gas constant R 8:31 [J/mole/K]
Pure volatile, dead oil densities Vs, D 683, 800 [kg/m3]
Rock porosity 0:38 [m3/m 3]
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A.1l.1 Temperature dependent variables.

We use references Tortike and Farouq Ali [51] and Weast [52] to @it all the temperature
dependent properties below.
The rock enthalpy C, can be expressed as

H=C T T ;
C,=(1 ') 3274 10f=2:03 10° J=m3=K: (A.1)

A conventional choice for the reference temperature & = 298:15K: The volatile oll
enthalpy hyy [J=kg] and the dead oil enthalpyh,p [J=kg] as a function of temperature are
approximated by

hov(T)=Cv T T ; (A.2)

hoD (T) =Cp I T : (A3)

where ¢,y and ¢,p can be found in Table A.1. The enthalpies are chosen so that the
enthalpy of oil per unit volume is independent of composition. Therefe the heat capacity
of the oleic phase per unit volume can also be de ned independently aifmposition.
The volatile oil vapor enthalpy hgy [J=kg] as a function of temperature is approximated
by
hgw(T)=cgv T T + (T): (A.4)

The enthalpieshyy (T) ; hop (T) vanish at the reference temperaturd = 298:15K .
For the evaporation heat  (T)[J=kg] we use Trouton's rule [52]:

v(T)=88:0 T/=My (cv GCu) T T/ : (A.5)

The viscosities of liquid volatile oil ,, and liquid dead oil ,4 can be found from Table
A.1l. For simplicity, the viscosity of the oil mixture is approximated by:

d .
mix — - ovt == od- (A-G)
\Y D

We assume that that the viscosity of the gas is independent of comgition

T 0:6

=1:8264 10° —
9 300

(A.7)



