
 
 

 
 

Regularization by Noise in Ordinary  
and Partial Differential Equations 

 
 
 
 

 

  





 

Publicações Matemáticas 
 

 

 

31o Colóquio Brasileiro de Matemática 

 

 
 
 
 

Regularization by Noise in Ordinary  
and Partial Differential Equations 

 
 

Christian Olivera  
UNICAMP 

 
 
 
 
 
 
 
 
 
 



Copyright  2017 by Christian Olivera 

Direitos reservados, 2017 pela Associação Instituto 

Nacional de Matemática Pura e Aplicada - IMPA 

Estrada Dona Castorina, 110 

22460-320 Rio de Janeiro, RJ 

 

Impresso no Brasil / Printed in Brazil 

 

Capa: Noni Geiger / Sérgio R. Vaz 

 

31
o
 Colóquio Brasileiro de Matemática 

 

 Álgebra e Geometria no Cálculo de Estrutura Molecular - C. Lavor, N. 

Maculan,  M. Souza e R. Alves  

 Continuity of the Lyapunov Exponents of Linear Cocycles - Pedro Duarte   e 

Silvius Klein  

 Estimativas de Área, Raio e Curvatura para H-superfícies em Variedades 

Riemannianas de Dimensão Três - William H. Meeks III  e Álvaro K. Ramos   

 Introdução aos Escoamentos Compressíveis - José da Rocha Miranda Pontes, 

Norberto Mangiavacchi  e Gustavo Rabello dos Anjos  

 Introdução Matemática à Dinâmica de Fluídos Geofísicos - Breno Raphaldini,  

Carlos F.M. Raupp e Pedro Leite da Silva Dias  

 Limit Cycles, Abelian Integral and Hilbert’s Sixteenth Problem - Marco Uribe 

e Hossein Movasati   

 Regularization by Noise in Ordinary and Partial Differential Equations - 

Christian Olivera  

 Topological Methods in the Quest for Periodic Orbits -  Joa Weber   

 Uma Breve Introdução à Matemática da Mecânica Quântica -  Artur O. Lopes  

  
 

Distribuição: 

       IMPA 

       Estrada Dona Castorina, 110 

       22460-320 Rio de Janeiro, RJ 

       e-mail: ddic@impa.br 

       http://www.impa.br 

 

ISBN: 978-85-244-0438-2 

 

 



i
i

“livrocoloquio5x” — 2017/5/16 — 12:40 — page 1 — #1 i
i

i
i

i
i

0.1. PREFACE. 1

0.1 Preface.

I propose this mini-course with the purpose of encouraging young
Brazilian researchers to study stochastic partial differential equations
(SPDEs). Despite being a subject of great international relevance,
in Brazil is not yet well explored by the analysis and probability
communities.

In this mini-course I will present one of the aspects of great in-
terest by the stochastic analysis community, the effect of noise in
deterministic dynamical systems. I will examine some aspects regar-
ding the effects of noise on ordinary differential equations (ODEs)
and partial differential equations (PDEs). This research field is ex-
tremely interesting and incredibly wide, with works in many different
directions. I will focus only on the fundamental issue of wellposed-
ness.

From a more theoretical point of view, the noise may help stabilize
some PDEs, in the sense that a stochastic partial differential equation
(SPDE) can be well posed under more general hypotheses than its
deterministic counterpart. This is phenomenon known as regulariza-
tion by noise. Besides the theoretical importance the fundamental
motivation is to study the equations of fluid dynamics under random
perturbations. I recommend the works of R. Mikulevicius, B. Ro-
zovskii (see [72] and [73]) and several works of F. Flandoli (see for
example [22], [45] and [46]).

I would like to express my gratitude to Professor Pedro Catougno
for introducing me in SPDEs some years ago. I would lite to thank
the colleagues with whom I work on regularization by noise : P.
Catuogno, E. Fedrizzi. F. Flandoli, M. Maurelli, D. Mollinedo, W.
Neves and C. Tudor.

I would like to thank to CNPq( grant 460713/2014-0) and FA-
PESP (grants 2015/04723-2 and 2015/07278-0) by the financial sup-
port.

I dedicate this book to my wife Isabella.
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Chapter 1

A crash in stochastic
analysis .

In this chapter we give an elementary summary on the theory of sto-
chastic calculus : Martingale, Brownian motion, Itô and Stratonovich
Integral, Itô formula. For further study we recommend the excellent
monographs: Kunita in [63], Mao in [71], Protter in [88], Karatzas
and Shreve in [57].

1.0.1 Probability Space.

We note
(
Ω,F , {Ft : t ∈ [0, T ]},P

)
a probability space where the

filtration is a family Ft of increasing sub-σ-algebras of F , that is,
Fs ⊂ Ft ⊂ F if 0 ≤ s ≤ t <∞. The filtration is said to be continuous
if Ft = ∩s>tFs. When the probability space is complete, the filtration
is said to verifies the usual conditions if it is right continuous and F0

contains all P-null sets.
A stochastic process with state in the metric space is a collection

of random variables Xt, t ∈ T defined on some probability space.
The set T is called its parametric set. In the later case the usual
example is T = [0, T ].

For every fixed ω, the mapping

t→ Xt(ω)

5
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6 CHAPTER 1. A CRASH IN STOCHASTIC ANALYSIS .

defined on the parameter set T is called a realization, trajectory,
sample path or sample function of the process.

1.0.2 Continuous Time Martingales.

A real continuous time process M = {Mt} is called martingale with
respect to the filtration Ft if

• For each t ≥ 0, Mt is Ft-measurable .

• For each t ≥ 0, E|Mt| <∞.

• For each s ≤ t, E[Mt

∣∣Fs] = Ms.

We have the following version of Doob maximal inequality.

Proposition 1.0.1. Let {Mt, 0 ≤ t ≤ T} be a martingale with con-
tinuous trajectories. Then, for all p ≥ 1 and λ > 0 we have

P
(

sup
0≤t≤T

|Mt| > λ
)
≤ 1

λp
E|MT |p.

1.0.3 Brownian motion.

Now we fast forward to 1827 where Robert Brown, a British botanist,
is observing a suspended pollen grain in water. While looking at this
pollen grain underneath a microscope, he notices that it undergoes
a type of random walk. This random motion is now referred to a
Brownian motion.

The mathematical definition of the Brownian motion is the follo-
wing

Definition 1.0.2. A stochastic {Bt, t ≥ 0} is called a Brownian mo-
tion if it verifies the next conditions

• B0 = 0.

• For all 0 ≤ t1 < t2... < tn the increments, Btn −Btn−1
,...

,Bt2 −Bt1 , are independent random variables.

• if 0 ≤ s < t, the increments Bt−Bs has the normal distribution
N(0.t− s).



i
i

“livrocoloquio5x” — 2017/5/16 — 12:40 — page 7 — #7 i
i

i
i

i
i

7

• The process {Bt} has continuous trajectories.

We observe that

E[Bt] = 0,

E[BtBs] = E[(Bt −Bs)Bs +Bss ]

= E[(Bt −Bs)]E[Bs] + E[Bss ] = 0 + s = s

if s ≤ t.
The d-dimensional process

Bt = (B1
t , B

2
t , ..., B

d
t )

is called d-dimensional Brownian motion if B1
t , B

2
t , ..., B

d
t are in-

dependent standard Brownian motions.

1.0.4 Itô Integral.

In this section we define the stochastic integral respect to the stan-
dard Brownian motions. Since for almost all ω ∈ Ω, the Brownian
trajectory Bt(ω) is nowhere differentiable, the integral can not be
defined in the ordinary way. The integral was introduced by Itô in
1949 and it is know as Itô integral.

We denoted L2 the space of stochastic processes Xt such that

• Xt is Ft-adapted,

• E
∫ T

0
|xt|2 dt <∞.

The idea to define the stochastic integral for a class of simple
process. Then we can extend the integral for process in L2.

A real stochastic process Xt is called simple (or step) if there
exists a partition 0 = t0 < t1 < .. < tk = T such that

Xt =

k−1∑
i=0

ξi1(ti,ti+1].
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8 CHAPTER 1. A CRASH IN STOCHASTIC ANALYSIS .

Now, we give the definition of the stochastic integral for simple
processes. We define∫ T

0

XtdBt =

k−1∑
i=0

ξi(Bti+1
−Bti)

and call it the stochastic integral of Xt with respect to the Brow-
nian motions. The integral has the following properties

•
∫ T

0
c1Xt + c2Yt dBt = c1

∫ T
0
XtdBt + c2

∫ T
0
YtdBt ,

• E|
∫ T

0
Xt dBt|2ds = E

∫ T
0
|Xt|2 dt <∞.

In order to extend integral for processes in L2 we present the
following proposition.

Proposition 1.0.3. For any Xt ∈ L2 there exists a sequence Xn
t of

simple process such that

lim
n→∞

E
∫ T

0

|Xn
t −Xt|2 dt = 0.

Now, we extend the Itô integral for L2-process as∫ T

0

XtdBt = lim
n→∞

∫ T

0

Xn
t dBt.

We observe that

E|
∫ T

0

Xn
t dBt −

∫ T

0

Xm
t dBt|2 = E|

∫ T

0

Xn
t −Xm

t dBt|2

= E|
∫ T

0

|Xn
t −Xm

t |2dt.

Thus
∫ T

0
Xn
t dBt is a Cauchy sequence in L2(Ω). Using the same

arguments it easy to see that the integral does not dependent of the
approximate sequence.

Now, we consider a stochastic process in the space L2. Then, for
any t ∈ [0, T ] we define the indefinite Itô integral as
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∫ t

0

XtdBt :=

∫ T

0

1[0,t](s)XsdBs.

The Itô integral has the nice properties.

• Mt =
∫ t

0
XsdBs is a Martingale with respect to the filtration

Ft,

• E|
∫ t

0
XsdBs|2ds = E

∫ t
0
|Xs|2 ds <∞ ( Itô Isometry ),

•
∫ t

0
c1Xs + c2YsdBs = c1

∫ T
0
XsdBs + c2

∫ T
0
YsdBs ,

• E(
∫ t

0
XsdBs) = 0.

We observe that when Xt has continuous path we have∫ T

0

XtdBt = lim
|P |→0

k−1∑
i=0

Xti(Bti+1 −Bti).

where P is any partition with |P | → 0. The the Itô integral is the
Rieman sums evaluated in ti.

1.0.5 Covariation and Stratonovich Integral.

We consider another type of stochastic integral, the Stratonovich sto-
chastic integral. This stochastic integral was introduced by Fisk, and
independently by Stratonovich in 1966. The mathematical theory can
be found in [63] and [88]. Both, the Itô and Stratonovich integrals,
are defined in a mathematically correct way. In applications one has
to make a decision about which stochastic integral is appropriate.

We consider a continuous adapted Xt. The Stratonovich stochas-
tic is defined as∫ T

0

Xt◦dBs = lim
|P |→0

k−1∑
i=0

(
Xti +Xtti+1

2
)(Bti+1

−Bti).

where P is any partition with |P | → 0.
Now, we consider Xt, Yt continuous adapted processes. The cova-

riation is defined as
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10 CHAPTER 1. A CRASH IN STOCHASTIC ANALYSIS .

[X,Y ] = lim
|P |→0

k−1∑
i=0

(Xti+1 −Xti)(Yti+1 − Yti)

where P is any partition with |P | → 0.

The connection between Itô and Stranovich is

∫ T

0

Xt◦dBs =

∫ T

0

XtdBs +
1

2
[X,B]. (1.1)

We observe that if Yt has bounded variation then

[X,Y ] = lim
|P |→0

k−1∑
i=0

(Xti+1
−Xti)(Yti+1

− Yti)

= lim
|P |→0

sup
|P |
|(Xti+1

−Xti)|
k−1∑
i=0

|Yti+1
− Yti |

≤ C lim
|P |→0

sup
|P |
|(Xti+1

−Xti)| = 0.

Finally, we recall if Bt = Xt = Yt then

lim
|P |→0

E|
k−1∑
i=0

(Bti+1
−Bti)2 − t|2

= t2 − 2t lim
|P |→0

k−1∑
i=0

E(Bti+1
−Bti)2

+ lim
|P |→0

|
k−1∑
i=0

E(Bti+1
−Bti)2|2 = 0,

from this we conclude that [Bt, Bt] = t.
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1.0.6 Itô Formula

Itô formula is for stochastic calculus what the Newton-Leibnitz for-
mula is for classical calculus. It also provides a practical method for
computation of stochastic integrals.

Assume that Xt can be expressed in the form

Xt = X0 +

∫ t

0

us ds+

∫ t

0

vs dBs

where v ∈ L2 and
∫ T

0
|us|ds <∞.

Theorem 1.0.4. (d=1) Let F : R+ × R→ R and F ∈ C1,2. Then

F (Xt) = F (X0) +

∫ t

0

∂sF (s,Xs)ds

+

∫ t

0

∂xF (s,Xs)usds+

∫ t

0

∂xF (s,Xs) vs◦dBs,

writing in Itô way is

F (Xt) = F (X0) +

∫ t

0

∂sF (s,Xs)ds+

∫ t

0

∂xF (s,Xs)usds

+

∫ t

0

∂xF (s,Xs)vsdBs +
1

2

∫ t

0

∂2
xF (s,Xs)v

2
sds.

Now, we present the multidimensional Itô formula. We assume

Xt = X0 +

∫ t

0

us ds+

∫ t

0

vs dBs

that is,

Xi
t = Xi

0 +

∫ t

0

uis ds+

m∑
j=0

∫ t

0

vi,ms dBjs

where vi ∈ L2 and
∫ T

0
|ui,js |ds <∞.
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12 CHAPTER 1. A CRASH IN STOCHASTIC ANALYSIS .

Theorem 1.0.5. Let F : R+ × Rd → R and F ∈ C1,2.
Then

F (Xt) = F (X0) +

∫ t

0

∂sF (s,Xs)ds

+

∫ t

0

∇F (s,Xs)usds+

∫ t

0

∇F (s,Xs) vs◦dBs,

writing in Itô way is

F (Xt) = F (X0) +

∫ t

0

∂sF (s,Xs)ds+

∫ t

0

∇F (s,Xs)usds

+

∫ t

0

∇F (s,Xs)vsdBs +
1

2

∑
i,k

∫ t

0

ai,j∂
2
i,jF (s,Xs)ds.

where ai,j =
∑m
k=0 v

i,kvk,j.

We also present the Itô formula for the product of two semimar-
tingales

Theorem 1.0.6. We assume that

Xt = X0 +

∫ t

0

us ds+

∫ t

0

vs ◦dBs

and

Yt = y0 +

∫ t

0

ws ds+

∫ t

0

zs ◦dBs.

Then

XtYt = X0Y0 +

∫ t

0

Ysus ds+

∫ t

0

Ysvs ◦dBs

+

∫ t

0

Xsws ds+

∫ t

0

Xszs ◦dBs.

Finally, we present Itô-Wentzell-Kunita formula .
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Theorem 1.0.7. We assume that

Xt(x) = X0(x) +

∫ t

0

us(x) ds+

∫ t

0

vs(x) ◦dBs

and

Yt = Y0 +

∫ t

0

ws ds+

∫ t

0

zs ◦dBs

Also we assume that Xt(.) ∈ C3(Rd) and , ws(.), zs(.) ∈ C2(Rd).
Then

Xt(Yt) = X0(Y0) +

∫ t

0

us(Ys) ds+

∫ t

0

vs(Ys) ◦dBs

+

∫ t

0

(∇Xs)(Ys) ws ds+

∫ t

0

(∇Xs)(Ys) zs ◦dBs.

1.0.7 Girsanov Transformation.

We suppose that vt is a Fs-adapted process and that∫ t

0

|v2
t |ds <∞.

We denote

E(

∫ t

0

v(s) dBs) = e−
∫ t
0
v(s) dBs− 1

2

∫ t
0
|v2s |ds,

and

dQ = E(

∫ t

0

v(s) dBs)dP.

Proposition 1.0.8. The process
∫ t

0
v(s) ds+Bt is a Brownian mo-

tion under the measure Q.
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14 CHAPTER 1. A CRASH IN STOCHASTIC ANALYSIS .

1.0.8 Continuity of Stochastic Processes.

The Kolmogorov continuity theorem is a theorem that guarantees
that a stochastic process that verifies certain constraints on the mo-
ments of its increments be continuous.

We present the following version.

Theorem 1.0.9. Suppose that X = {X(t), t ∈ Rd} is a stochastic
process with values in the Banach Space (E, ‖.‖) such that the follo-
wing estimation holds

E
(
‖X(t)−X(s)‖λ

)
≤ C|t− s|α

for λ > 0, α > d and t, s ∈ Rd. Then there exists a constant
C0 = Cd,α,λ(ω) such that

‖X(t)−X(s)‖ ≤ C0(ω)|t− s|β

with β < α−d
λ .
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Chapter 2

SDEs

We will concerned with the stochastic differential equation (SDE)

dXt(x) = b(t,Xt(x))dt+ σ(t,Xt(x))dBt, Xs = x ∈ Rd. (2.1)

This is the short way of writing

Xt(x) = x+

∫ t

s

b(r,Xs,r(x))dr +

∫ t

s

σ(r,Xr(x))dBr. (2.2)

with t ∈ [0, T ], x ∈ Rd and where (Bt)t∈[0,T ] is a d-dimensional
Brownian motion on a probability space (Ω,F , P ) endowed with the
filtration (Ft)t∈[0,T ].

2.1 Strong Solutions.

2.1.1 Existence and Uniqueness.

We will say that (2.1) or (2.2) has strong solution if there exists
continuous adapted process Xs,t such that verifies (2.2). We say that
we have pathwise uniqueness if given two solutions Xs,t and Ys,t, then
P(Xt = Yt ∀ s, t 0 ≤ s < t).

We shall show existence and uniqueness when the coefficients b
and σ are globally Lipschitz continuous.

15
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16 CHAPTER 2. SDES

Theorem 2.1.1. Assume that b and σ are Lipschitz continuous.
Then there exists pathwise solution of the SDE (2.1).

Proof. We will utilize the iterative scheme. We define a sequence of
adapted continuous processes by induction :

X0
t = x,

Xn
t = x+

∫ t

s

b(r,Xn−1
r )dr +

∫ t

s

σ(r,Xn−1
r )dBr (2.3)

Then we have

E sup
s≤u≤t

|Xn+1
u −Xn

u |p

≤
∫ t

s

E|b(r,Xn−1
r )− b(r,Xn−1

r )dr

+ E sup
s≤u≤t

[

∫ u

s

σ(r,Xn
r )− σ(r,Xn−1

r )dBr]

By Doob and Burkholder inequality we have

E sup
s≤u≤t

|Xn+1
u −Xn

u |p

≤ Lp(t− s)
p
q

∫ t

s

E|Xn
r −Xn−1

r |pdr

+ Lp(t− s)
p
2−1

∫ u

s

E|Xn
r −Xn−1

r |pdr

Thus

E sup
s≤u≤t

|Xn+1
u −Xn

u |p

≤ C
∫ t

s

E|Xn
r −Xn−1

r |pdr.

We denoted
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2.1. STRONG SOLUTIONS. 17

mn
t := E sup

s≤u≤t
|Xn+1

u −Xn
u |p.

Therefore we get

mn
t ≤

∫ t

s

mn−1
r dr.

By iteration we obtain

mn
t ≤

∫ t

s

≤ Cn

n!
Tnm0

t .

Then deduce that

∞∑
n=0

E sup
s≤u≤t

|Xn+1
u −Xn

u |p <∞.

Therefore we conclude that Xn
t converge uniformly in [s, t] and in

Lp to Xt. Passing to the limit in equation (2.3) we obtain that Xt is
the strong solution of the SDE (2.1).

Theorem 2.1.2. Assume that b and σ are Lipschitz continuous.
Then pathwise uniqueness for the SDE (2.1) hold.

Proof. Suppose that Xs,t and Ys,t are two solution. Then for all
0 ≤ s < t ≤ T we have

Xs,t − Ys,t =

∫ t

s

b(r,Xr)− b(r, Yr)dr +

∫ t

s

σ(r,Xr)− σ(r, Yr)dBr.

Thus

E|Xs,t − Ys,t|2 ≤ 2E|
∫ t

s

b(r,Xr)− b(r, Yr)dr|2dr

+ E|
∫ t

s

σ(r,Xr)− σ(r, Yr)dBr|2dr.

By Cauchy-Schwarts and Itô isometry we obtain
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18 CHAPTER 2. SDES

E|Xs,t − Ys,t|2 ≤ CT
∫ t

s

E|Xs,t − Ys,r|2dr.

From Gronwalls Lemma we conclude that Yt = Xt .Then for all
rational numbers we have Yt = Xt for almost all ω. By the continuity
we conclude that Yt = Xt for all t ∈ [s, T ] and for allmost all ω.

2.1.2 Flow Properties.

We recall the relevant definition from H. Kunita [63]

Definition 2.1.3. A stochastic flow of diffeomorphisms ( resp. the
Cm,α), associated to equation (2.1) is a map (s, t, x, ω)→ φs,t(x)(ω)
defined for 0 ≤ s ≤ t, x ∈ Rd ω ∈ Ω with values in Rd such that

• given any s ≥ 0, x ∈ Rd the process Xs,x
t = φs,t(x) is continu-

ous Fs,t measurable solution of the equation (2.1),

• P-a.s, for 0 ≤ s ≤ t the function, φs,t is a diffeomorphisms
and the functions φs,t, φ

−1
s,t , D

mφs,t, D
mφ−1

s,t , are continuous in
(s, t, x) (resp. the Cm,α class in x uniformly in 0 ≤ s ≤ t ≤ T ),

• P-a.s, φs,t = φu,t(φs,u) for all 0 ≤ s ≤ u ≤ t, x ∈ Rd and
φs,s = x

We present the following relevant theorem on stochastic flows wit-
hout proof. Unfortunately the rigorous proof contains a lot technical
difficulties and is very long to see in a short course.

Theorem 2.1.4. if b, σ ∈ L∞([0, T ], Cm,αb (Rd)). Then the map x :→
Xt(x) is a stochastic flow of Cm,α

′
-diffeomorphisms with α′ < α.

2.2 Weak Solutions.

Definition 2.2.1. A weak solution of the SDE (2.1) is a triple(
Xt, Bt,

(
Ω,F , {Ft : t ∈ [0, T ]},P

))
where

1. .
(
Ω,F , {Ft : t ∈ [0, T ]},P

)
is a filtered probability space,
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2.2. WEAK SOLUTIONS. 19

2. Xt is a Ft continuous adapted process and Bt is a standard
Brownian motion,

3. Xt verifies (2.2).

Obviously, every strong solution is also a weak solution and a
weak solution is a strong solution on the stochastic basis and relative
to the Brownian motion which is part of the solution.

2.2.1 Weak Solutions via Girzanov Transforma-
tion.

Proposition 2.2.2. We consider the SDE

dXt(x) = b(t,Xt(x))dt+ dBt, X(0) = x ∈ Rd. (2.4)

We assume that b is measurable function and satisfies

‖b(t, x)‖ ≤ C(1 + |x|)

for some positive constant C. Then the equation (2.4) has a weak
solution.

Proof. We consider Wt a multidimensional Brownian motion. We set
Xt = x+Wt. Then by Girsanov theorem

Xt − x−
∫ t

0

b(s,Xs) ds

is a Brownian motion under the measure

dQ = E(

∫ t

0

v(s) dBs)P.

Thus we have that

Xt = x+

∫ t

0

b(s,Xs) ds+Bt.
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20 CHAPTER 2. SDES

2.2.2 Existence.

Proposition 2.2.3. We consider the SDE

dXt(x) = b(t,Xt(x))dt+ σ(t,Xt)dBt, X(0) = x ∈ Rd. (2.5)

We assume b, σ are continuous and satisfy

‖σ(t, x)‖, ‖b(t, x) | ≤ C(1 + |x|)

for some positive constant C. Then there exists a weak solution
of the SDE (2.5).

Proof. See [54]

Finally we enunciate the Yamada-Watanabe theorem.

Proposition 2.2.4. Weak existence and pathewise uniqueness imply
pathewise existence.
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Chapter 3

SDE with Singular
Drift.

SDEs with singular coefficients and driven by Brownian motion (more
general noise) have been an important area of study in stochastic
analysis and other related branches of mathematics. In this chapter
we study in detail the case when the drift term is Hölder continuous
and when the drift satisfies some globally integrability.

3.1 SDE with Hölder Drift.

In this section we follow the seminar paper by Flandoli, Gubinelli
and Priola in [40]. We consider the SDE

dXt(x) = b(t,Xt(x))dt+ dBt, Xs = x ∈ Rd. (3.1)

Let T > 0 be be fixed. For any α ∈ (0, 1), we denoted by
L∞([0, T ], Cαb (Rd)) the space bounded Borel functions f : [0, T ] ×
Rd → R such that

‖f‖α,T := sup
t∈[0,T ]

sup
x 6=y,|x−y|≤1

|f(t, x)− f(t, y)|
|x− y|θ

<∞ .

21
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22 CHAPTER 3. SDE WITH SINGULAR DRIFT.

Moreover, for any n ≥ 1 f ∈ L∞([0, T ], Cn+α
b (Rd)) if all spatial

derivatives belong to L∞([0, T ], Cαb (Rd)).

3.1.1 PDE Estimation.

We consider the following parabolic systems

∂tψλ +
1

2
∆ψλ + bDψλ − λψλ = f, (t, x) ∈ [0, T ]× Rd, (3.2)

where f : [0, T ]× Rd → Rd.

We present the following Schauder estimates for the solution of
(3.2).

Theorem 3.1.1. We consider f, b ∈ L∞([0,∞), Cαb (Rd)). The there
exists a unique solution ψλ of the PDE (3.2) in the space
L∞([0,∞), C2+α

b (Rd)). Moreover there exists a constant C > 0 such
that

sup
t≥0
‖ψλ‖C2+α

b
≤ C sup

t≥0
‖f‖α.

Proof. We refer to the reader to [43] and [60].

We also enunciate the next result.

Lemma 3.1.2. We assume the assumptions of the theorem 3.1.1.
Then the unique solution of the PDE (3.2) satisfies

sup
(t,x)∈[0,T ]×Rd

|Dψλ| → 0 as λ→∞.

3.1.2 Stochastic Flows.

Theorem 3.1.3. We assume that b ∈ L∞([0,∞), Cαb (Rd)). Then

a) There exists a unique solution of the SDE (3.1).

b) There exists a stochastic flow φs,t of diffeomorphisms associated

to equation (3.1). The flow is the class C1+α′ with α′ < α.
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3.1. SDE WITH HÖLDER DRIFT. 23

c) Let bn ∈ L∞([0,∞), Cαb (Rd)) be a sequence of the vector field
and φn be the corresponding stochastic flow. If bn → b in
L∞([0,∞), Cαb (Rd)), the for any p ≥ 1 we have

lim
n→∞

sup
x∈Rd

sup
s∈[0,T ]

E[ sup
r∈[ s,T ]

|φnr − φr|p], (3.3)

sup
x∈Rd

sup
s∈[0,T ]

E[ sup
r∈[ s,T ]

|φnr |p] <∞, (3.4)

lim
n→∞

sup
x∈Rd

sup
s∈[0,T ]

E[ sup
r∈[ s,T ]

|Dφnr −Dφ|p]. (3.5)

Proof. Step 1: Zvonkin transformation . We consider the parabolic
systems

∂tψλ −
1

2
∆ψλ + bDψλ − λψλ = −b, (t, x) ∈ [0, T ]× Rd. (3.6)

By theorem 3.1.1 there exists a unique solution ψλ. We define

ϕλ = x+ ψλ.

We claim that (for λ large )

• ϕλ has bounded first and second spatial derivative uniformly in
time and D2φλ ∈ Cα(Rd).

• For all t ≥ 0, ϕλ : Rd → Rd is a diffeomorphisms of class C2,α′

with α′ < α.

• The inverse ϕ−1
λ has bounded first and second spatial derivative

uniformly in time.

The first item we follow from theorem 3.1.1. Since the Dϕλ is not
singular for λ large and lim|x|→∞ ϕ(x) =∞ then the second point we
follow from the classical Hadamard theorem.

Now, we observe that

Dϕ−1
λ = [Dϕλ(ϕ−1

λ )]−1
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24 CHAPTER 3. SDE WITH SINGULAR DRIFT.

and

[Dϕλ(ϕ−1
λ )]−1 =

1

det(Dϕλ(ϕ−1
λ ))

Cof((Dϕ)(ϕ−1
λ ))T

where Cof denoted the matrix of cofactors of Dϕ. From this we
have the last item.

Step 2 : a) and b). We define

b̃(t, x) = −λψλ(ϕ−1(t, x)),

σ̃(t, x) = −Dϕλ(ϕ−1(t, x))

and consider that following SDE

Yt(x) = x+

∫ t

s

b̃(r, Yr(x))dr +

∫ t

s

σ̃(r, Yr(x))dBr (3.7)

We note that Xt solves equation (3.1) if only if Yt = φ(Xt) solves
equation (3.7). We observe that b̃, σ̃ ∈ L∞([0, T ], C1+α

b (Rd)) then
there a unique solution of the equation (3.7). Moreover, there exists
a stochastic flow φs,t of diffeomorphism associated to equation (3.1)

and the flow is the class C1+α′ with α′ < α. This proves a) and b).

Step 3: c). We shall show only (3.3). Let ψn the solution in
L∞([0,∞), C2+α

b (Rd)) of the PDE (3.2) associated to bn. Then ψ−ψn
satisfies

∂t(ψ−ψn)−1

2
∆(ψ−ψn)+bD(ψ−ψn)−λ(ψ−ψn) = b−bn+bnD(ψ−ψn).

By theorem 3.1.1 we have

‖ψ − ψn‖L∞([0,∞),C2+α
b (Rd)) ≤ C‖b

n − b‖L∞([0,T ],Cαb (Rd)).

We set

ϕn = x+ ψn.
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3.1. SDE WITH HÖLDER DRIFT. 25

Thus we have that φ̃n = ϕn(φn) verifies

φ̃nt(x) = y +

∫ t

s

b̃n(r, φ̃nr(x))dr +

∫ t

s

σ̃n(r, φ̃nr(x))dBr. (3.8)

Then by classical arguments , see theorem II.3,1 in [63], we have

lim
n→∞

sup
x∈Rd

sup
s∈[0,T ]

E
[

sup
r∈[s,T ]

|φ̃nr − φ̃r|p
]

= 0.

We observe

‖ϕn,−1(φ̃nt)− ϕ−1(φ̃t)‖∞

≤ ‖ϕn,−1(φ̃nt)− ϕ−1(φ̃nt )‖∞

+ ‖ϕ−1(φ̃nt)− ϕ−1(φ̃t)‖∞

≤ C‖bn − b‖L∞([0,T ],Cαb (Rd)) + ‖Dϕ−1‖∞ ‖φ̃nt − φ̃t‖,

thus we conclude (3.3).

3.1.3 One Exmaple.

We consider the ODE

Xt =

∫ t

0

min(1, |Xs|α)ds

with 0 ≤ t ≤ 1. Then Xt = 0 is a solution and

Xt =


0 if 0 ≤ t ≤ 1

2
,

( t− 1
2

β

)β
if

1

2
≤ t ≤ 1

with β = 1
1−α is also a solution. However the equation with noise is

well-posedness.
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3.2 SDE with Integrable Drift.

In this section we follow Zhang in [97] and [98], see also Fedrizzi and
Flandoli in [35]. We consider the SDE

dXt(x) = b(t,Xt(x))dt+ σ(t,Xt)dBt, Xs = x ∈ Rd, (3.9)

with 0 ≤ S ≤ s ≤ t ≤ T .
We assumed that

b ∈ Lq
(
[S, T ];Lp(Rd)

)
,

for p, q ∈ [2,∞) ,
d

p
+

2

q
< 1 .

(3.10)

This condition (with local integrability) was first considered by Kry-
lov and Röckner in [59], where they proved the existence and unique-
ness of strong solutions for the SDE (3.1) with σ constant .

It is interesting to remark that condition (3.10) (more precisely
with also equality) is known as the Ladyzhenskaya-Prodi-Serrin con-
dition in the fluid dynamics literature.

The hypothesis on σ are :

There exist constants K ≥ 1 and α ∈ (0, 1) such that for all
(t, x) ∈ [S, T ]× Rd

K−1|y| ≤ |σt(t, x)y| ≤ K|y|, (3.11)

and for all s ∈ [S, T ] and x, y ∈ Rd we have

‖σ(t, x)− σ(t, y)‖ ≤ K|x− y|α. (3.12)

We will have to use the spaces Lqp(S, T ) = Lq((S, T ), Lp(Rd)),
Hq
α,p = Lq((S, T ),Wα,p(Rd)),Hβ,q

p = W β,q((S, T ), Lp(Rd)) and

H̃q
α,p = Hp

α,p ∩H1,q
p . We denote Hα

p := (Id−∆)−
α
2 Lp.

We recall that by Sobolev embedding

‖f‖Cδb (Rd) ≤ ‖f‖Hβ
p
if β − δ > p

d
.
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3.2.1 SDE without Drift.

We consider the following SDE

dXt(x) = σ(t,Xt)dBt, Xs = x ∈ Rd. (3.13)

PDE Estimation.

We consider the PDE

∂tψ + Lσψ + f = 0, ψ(T ) = 0, (3.14)

where

Lσ =
1

2
σi,kσk,j∂i∂jψ

Theorem 3.2.1. Let 1 < p < ∞. We assume conditions (3.11)
and (3.12). Then for any f ∈ Lpp(S, T ) there exist a unique solution

ψ ∈ H̃q
2,p to equation (3.14) with

‖ψ‖H̃q2,p ≤ C‖f‖Lpp(S,T ),

where C = C(d, α,K, p). Moreover, if f ∈ Lpp(S, T ) ∩ Lqp(S, T )

then for any β ∈ [0, 2) and λ > 1 with 2
q + d

p < 2− β + d
λ we have

‖ψ(t)‖Hβλ ≤ C(T − t)
2−β
2 −

d
2p−

1
q+ d

2λ ‖f‖Lqp(S,T ),

where C = C(d, α,K, p, q, λ, β).

Proof. See theorem 3.1 in [97].

Krylov Type Estimate.

We need the following Krylov type estimate.

Lemma 3.2.2. Assume that σ verifies conditions (3.11) and (3.12),
f satisfies (3.10) and Xs,t is solution of the SDE (3.13). Then for
any δ ∈ (0, 1− d

2p −
1
q ) there exists a constant C such that

E
( ∫ t

s

f(r,XS,r)dr
∣∣Fs) ≤ C(t− s)δ‖f‖Lqp(S,T ).
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Proof. Let p′ = 2d. Since Lp
′

p′ ∩Lqp is dense in Lqp, it sufficient to show
the inequality for

f ∈ Lp
′

p′ ∩ L
q
p.

We consider the unique solution of the PDE

∂rψ + Lσψ + f = 0, u(t, x) = 0.

By theorem 3.2.1

‖ψ‖
H̃p
′

2,p′
≤ C‖f‖

Lp
′
p′ (S,t)

,

and

sup
s,t
‖ψ‖∞ ≤ C(t− s)δ‖f‖Lqp(S,t). (3.15)

Let ρn the standard moollifiers. We set

ψn(r, x) = (ψ ∗ ρn)(r, x).

and
fn(r, x) := −[∂tψn + Lσψn]

Then we obtain

‖fn − f‖Lp′
p′ (s,t)

≤ ‖∂t(ψn − ψ)‖
Lp
′
p′ (s,t)

+K‖∇2(ψn − ψ)‖
Lp
′
p′ (s,t)

≤ ‖(f ∗ ρn − f)‖
Lp
′
p′ (s,t)

+ 2K‖∇2(ψn − ψ)‖
Lp
′
p′ (s,t)

which converge to zero as n→∞.
By the Krylov classical estimation we have

lim
n→∞

E
( ∫ t

s

|fn(r,XS,r)− f(r,XS,r)|
)
≤ C lim

n→∞
‖fn − f‖Lp′

p′ (s,t)
= 0

(3.16)
Applying the Itô to ψn(r, x) we get
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ψn(t,XS,t) = ψn(s,XS,s)−
∫ t

s

fn(r,XS,r) dr+

∫ t

s

∂ifn(r,XS,r) dB
i
r.

We observe that

E
( ∫ t

s

∂ifn(r,XS,r) dB
i
r

∣∣Fs) = 0

Hence

E
( ∫ t

s

f(r,XS,r)dr
∣∣Fs)

≤ E
(
ψn(s,XS,s)− ψn(t,XS,t)

∣∣Fs)
2 sup
s,t
‖ψ‖∞ ≤ C(t− s)δ‖f‖Lqp(S,t).

where used (3.15).

Khasminskii Type Estimate.

We need the following Khasminskii type estimate, see lemma 1.1 in
[85].

Lemma 3.2.3. Let X,Y, Z be three real-valued measurable Ft-adapted
process, and f, g be two Rd-valued measurable Ft-adapted process,.
Suppose that there exist c0 > 0 and δ ∈ (0, 1) such that for any
S ≤ s ≤ t ≤ T

E
( ∫ t

s

|Zr|+ |gr|2dr
∣∣Fs) ≤ c0(t− s)δ

and that

X(t) = X(S) +

∫ t

S

Y (r)dr +

∫ t

S

f(r)dBr

+

∫ t

S

X(r)Z(r)dr +

∫ t

S

X(r)g(r)dBr.



i
i

“livrocoloquio5x” — 2017/5/16 — 12:40 — page 30 — #30 i
i

i
i

i
i

30 CHAPTER 3. SDE WITH SINGULAR DRIFT.

Then, for any p > 0 and λ1, λ2, λ3 > 1 we have

E
(

sup
t∈[T,S]

X+(t)p
)

≤ C
(
‖(X+)(S)p‖λ1 + ‖(

∫ T

S

Y (r)+dr)p‖λ2 + ‖(
∫ T

S

|f(r)|2dr)
p
2 ‖λ3

)
,

where C = C(c0, δ, p, λi).

Maximal Function.

Let f be a locally integrable function on Rd. The Hardy-Littlewood
maximal function is defined by

Mf(x) = sup
0<r<∞

{
1

|Br|

∫
Br
f(x+ y) dy

}
,

where Br =
{
x ∈ Rd : |x| < r

}
. The following results can be found

in [93].

Lemma 3.2.4. For all f ∈W1,1(Rd) there exists a constant Cd > 0
and a Lebesgue zero set E ⊂ Rd such that

|f(x)−f(y)| ≤ Cd |x−y|
(
M|∇f |(x)+M|∇f |(y)

)
for any x, y ∈ Rd\E.

Moreover, for all p > 1 there exists a constant Cd,p > 0 such that for
all f ∈ Lp(Rd)

‖Mf‖Lp ≤ Cd,p ‖f‖Lp .

Sobolev Regularity of Random Fields.

We follow Fedrizzi and Flandoli in [34].
Let X : Ω × Rd → Rd be random field. When we use below this

name we always assume it is jointly measurable.

Lemma 3.2.5. Assume that X(ω, .) ∈ Lploc and and there exists a
sequence {Xn}n of the random fields such that
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1. . Xn → X in distribution in probability, namely

lim
n→∞

∫
Rd
Xn(x)f(x) dx→

∫
Rd
X(x)f(x) dx.

2. . For any R > 0 there exists a constant CR

E
∫
BR

|∇Xn|pdx ≤ C.

Then X ∈W p
loc(Rd).

Existence and Uniqueness.

Theorem 3.2.6. (Zhang [97] ) We assume that σ verifies condition
(3.11) and (3.12), and that ∇σ satisfies condition (3.10). Then

a) There exists a unique strong solution of the SDE (3.13) which
has jointly continuous version with respect to t, x.

b) Assume that σ′ also verifies the hypothesis of the theorem. Let
Xσ
s,t(x) and Xσ′

s,t(x) be the solutions to (3.13) associated with σ
and σ′ respectively. Then

sup
x∈Rd

E
(

sup
t∈[s,T ]

||Xσ
s,t(x)−Xσ′

s,t(x)‖2
)
≤ C (t−s)δ‖σ−σ′‖2Lqp(S,T )

(3.17)

where δ ∈ (0, 1) only depend on p, q, d.

c) For each t ≥ s and almost all ω, x → Xs,t(x) is weakly diffe-
rentiable. That is, Xt ∈W p

loc(Rd).

Proof. a). Under the assumptions the uniqueness we follow from
(3.17). Since σ is bounded and uniformly continuous in x with respect
to t, the existence of the weak solution is classical. Then the existence
of a strong solution follows by the Yamada-Watanabe theorem.

b) Without loss of generality, we assume that s = S and write
Xσ
t := Xσ

S,t. We set dt = Xσ
t −Xσ′

t then
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dt =

∫ t

S

σ(r,Xσ
r )− σ′(r,Xσ′

r )dBr.

By Itô formula, we have

|dt|2 =

∫ t

S

|σ(r,Xσ
r )−σ′(r,Xσ′

r )|2dr+2

∫ t

S

drσ(r,Xσ
r )−σ′(r,Xσ′

r )dBr

=

∫ t

S

Y (r)dr +

∫ t

S

f(r)dBr +

∫ t

S

|dr|2Zrdr
∫ t

S

|dr|2grdBr

where

Y (r) = ‖σ(r,Xσ
r )− σ′(r,Xσ′

r )‖2 − 2‖σ(r,Xσ
r )− σ(r,Xσ′

r )‖2,

f(r) = 2dr(σ(r,Xσ′

r )− σ′(r,Xσ′

r )),

Z(r) =
2|σ(r,Xσ

r )− σ(r,Xσ′

r )|2

|dr|2
,

g(r) =
2d(r)(σ(r,Xσ

r )− σ(r,Xσ′

r ))

|dr|2
.

Here we used the convection 0
0 = 0, if |d(r)| = 0 then Z = g = 0.

Now, by lemma 3.2.4 and 3.2.2 we have

E
( ∫ t

s

|Z(r)|+ |g(r)|2 dr
∣∣Fs)

≤ CE
( ∫ t

s

M|∇σ|2(Xσ
r ) + M|∇σ|2(Xσ′

r )dr
∣∣Fs)

≤ C(t− s)δ‖M|∇σ|2‖
L
q/2

p/2
(S,T )

≤ C(t− s)δ‖|∇σ|2‖
L
q/2

p/2
(S,T )
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= C(t− s)δ‖∇σ‖2Lqp(S,T ),

where δ ∈ (0, 1− d
p −

2
q ), and that for any λ ∈ (1, 1/( 2

q + d
q )),

E
( ∫ T

S

‖σ(r,Xσ′

r )−σ′(r,Xσ′

r )‖2λdr
)
≤ C (T−S)δ ‖|σ−σ′|2λ‖

L
q
2λ
p
2λ

(S,T )

= C (T − S)δ ‖σ − σ′‖2λLpp(S,T ). (3.18)

Then, by lemma (3.2.3) with λ1 = p, λ2 = λ and λ3 = 2λ
λ+1 and

by Hölder inequality , we obtain

E
(

sup
t∈[S,T ]

|dt|2
)
≤ C ‖

( ∫ T

S

|dr|2|σ(r,Xσ′

S,r)− σ′(r,Xσ′

S,r)|2dr
) 1

2 ‖Lλ3 (Ω)

+ C ‖
∫ T

S

|σ(r,Xσ′

S,r)− σ′(r,Xσ′

S,r)|2dr‖Lλ2 (Ω)

≤ C ‖ sup
t∈[S,T ]

|dt|‖L2(Ω) ‖
∫ T

S

|σ(r,Xσ′

S,r)− σ′(r,Xσ′

S,r)|2dr‖
1
2

Lλ(Ω)

+ C ‖
∫ T

S

|σ(r,Xσ′

S,r)− σ′(r,Xσ′

S,r)|2dr‖Lλ(Ω)

≤ 1

2
‖ sup
t∈[S,T ]

|dt|‖2L2(Ω) + C ‖
∫ T

S

|σ(r,Xσ′

S,r)− σ′(r,Xσ′

S,r)|2dr‖Lλ(Ω)

which, together with (3.18), yields (3.17).
c). We assume also that σ(t, .) ∈ C∞b (Rd) and s = S, then

DXt = 1 +

∫ t

S

∇σ(r,Xr)DXrdBr.

We set

Z(r) =
‖∇σ(r,Xr)Dr‖2

|Dr|2
,
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and

g(r) =
< DXr,∇σ(r,XS,r)DXr >

|DXr|2
.

By Itô formula we obtain

|DXt|2 = |DXS,S |2 +

∫ t

S

|DXr|2Z(r)dr +

∫ t

S

|DXr|2g(r)dr.

Now , we observe for any δ ∈ (0, 1− d
p −

2
q )

E
( ∫ t

s

|Zr|+ |gr|2dr
∣∣Fs) ≤ E

( ∫ t

s

|∇σ(r,XS,r)|dr
∣∣Fs)

≤ C‖∇σ‖2Lqq(S,T )(t− s)
δ

where we used the Krylov estimation. Then by Khasminskii esti-
mation we get

sup
x∈Rd

E
[

sup
t∈[S,T ]

|∇XS,t|p
]
≤ C,

where the constant C = (K,α, , p, q, d, ‖∇σ‖Lqq(S,T )). This implies
that Xs,t is weakly differentiable by lemma 3.2.5.

3.2.2 Main Result.

PDE Estimation.

We need the following theorem.

Theorem 3.2.7. Assume that σt satisfies conditions (3.11) and (3.12).
Suppose also that one of the following conditions holds :

1. b and f satisfy (3.10), σt in independent of x.

2. ∇σ and b satisfy (3.10) for some q = p > d+ 2.
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3.2. SDE WITH INTEGRABLE DRIFT. 35

Then there exist a unique solution ψ ∈ H̃2,q
p (S, T ) to

∂tψ + Lσψ + b∇ψ + f = 0, ψ(T ) = 0, (3.19)

satisfying

‖ψ‖Lqp(S,T ) + ‖∇2ψ‖Lqp(S,T ) ≤ Ce
C‖b‖Lqp(S,T ) ‖f‖Lqp(S,T ) (3.20)

and for all t ∈ [S, T ],

‖∇ψ(t)‖
C
δ
2 (Rd)

≤ C(T −S)
δ
3 e
C (T−S)

qδ
3 ‖b‖Lqp(S,T ) ‖f‖Lqp(S,T ), (3.21)

where δ := 1
2 −

d
2p −

1
q and C = C(K,α, p, q, d, δ).

Result.

We consider the transformation

ϕ = x+ ψ.

Lemma 3.2.8. We assume hypothesis of the theorem (3.2.7). There
exists an interval |s0 − t0| < ε such that

a) ϕ a s C1-diffeomorphism.

b) ‖∇ϕ‖∞ + ‖∇ϕ−1‖∞ ≤ C where C is a universal constant.

c) ‖∇2ϕ‖Lqp(S,T )+‖∇ψ‖C δ
2
≤ C where C depends on K,α, p, q, d, δ.

d) . Xs0,t solves SDE (3.9) on [s0, t0] if only if Ys0,t = ϕ(Xs0,t)
solves the following SDE

dYt(x) = Dϕ(ϕ−1(Yt))dBt, Ys0 = x ∈ Rd. (3.22)

Proof. a). By (3.21) we can take |t0 − s0| < ε such that

sup
[s0,t0]

‖∇ψ‖
C
δ
2
≤ 1

2
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In particular,

1

2
|x− y| ≤ |ψ(t, x)− ψ(t, x)| ≤ 1

2
|x− y|.

Then

1

2
|x− y| ≤ |ϕ(t, x)− ϕ(t, x)| ≤ 3

2
|x− y|.

From this we conclude that φ is a C1-diffomorphism.

b) We follow of the definition of φ and (3.21).

c) We follow from (3.19) and (3.21).

d) We follow from generalized Ito formula, see [61]

Theorem 3.2.9. We assume hypothesis of the theorem (3.2.7). Then

a) For any (t, x) ∈ [S, T ] × Rd, there is a unique strong solution
denoted by Xs,t to the SDE (3.9), which has jointly continuous
version with respect to t and x.

b) For each t ≥ s and almost all ω, x → Xs,t(x, ω) is weakly
differentiable.

Proof. We observe that the diffusion coefficient in equation (3.22)
satisfies the hypothesis of the theorem 3.2.6 in the interval [s0, to].
Then by lemma (3.2.8) there exists a unique solution of the SDE (3.9)
in [s0, to] which is weakly differentiable. Finally doing a partition on
the interval [S, T ] and by uniqueness we conclude the theorem.

3.3 Other results.

• The first result on SDE with irregular drift was obtained by
Zvonkin in [99], who showed the existence of a unique strong
solution of one-dimensional Brownian motion, when the drift
coefficient b is merely bounded and measurable. Later, the
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result was generalized by Veretennikov [95] to the multidimen-
sional case. See also Gyongya and Krylov [50] and Gyongy and
Martinez [51].

• In [74] Mohammed, Nilssen, and Proske showed existence and
uniqueness of stochastic homeomorphism flows associated to
equation (3.1 ) when the drift b belong to L∞([0, T ]×Rd). The
proofs are based on Malliavin calculus.

• In [43] Flandoli, Gubinelli and Priola extend the results showed
in section 3.1 when the drift is unbounded and Hölder continu-
ous.

• In [86] and [87] Priola, based on the same approach of [40], pro-
ved existence, uniqueness and flow properties for the equation

dXt(x) = b(t,Xt(x))dt+ Lαt , Xs = x ∈ Rd, (3.23)

where Lαt is α-stable Lévy process and b is bounded and Holder
continuous. See also the recent work by Xie [96].

• In [5] Banos, Nilssen and Proske considered the equation

dXt(x) = b(t,Xt(x))dt+BHt , Xs = x ∈ Rd, (3.24)

where BHt is the fractional Brownian motion with H < 1
2 and b

is bounded and globally integrable. They proved existence and
uniqueness of the solution.

• For some results on regularization by noise in infinity dimension
see Da Prato and Flandoli in [23], Da Prato, Flandoli and Priola
in [24], Da Prato, Flandoli, Priola and Röckner in [25].
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Chapter 4

Stochastic
continuity-transport
equation.

The transport/continuity equation is one of the most fundamental
and at the same time most elementary partial differential equation
with applications in a wide range of problems from physics, engineer-
ing, biology or social science. In this chapter, we present some recent
results on the effect of the noise in this equation.

4.1 Deterministic transport-continuity
equation.

4.1.1 Regular Case.

We consider the systems of ODEs

d

dt
Xt(x) = b(t,Xt(x)), X0 = x ∈ Rd. (4.1)

where the vector field b : [0, T ]× Rd → Rd.

38
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4.1. DETERMINISTIC TRANSPORT-CONTINUITYEQUATION.39

We assume that b is regular, Liptschitz with respect to the spa-
tial variable uniformly respect with the time variable. In this classical
situation there is strong connection with transport/ continuity equa-
tion. We consider the deterministic transport equation

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0, u(0, x) = u0(x). , (4.2)

Then the quantity u(t,Xt) is a constant respect the time : indeed

d

dt
u(t,Xt) = −b(t,Xt)∇u(t,Xt) +∇u(t,Xt)b(t,Xt) = 0.

Then the unique solution for any initial condition is given by

u(t, x) = u0(X−1
t ).

4.1.2 Weak solutions.

Recently research activity has been devoted to study continuity-
transport equations with rough coefficients, showing a well-posedness
result. A complete theory of distributional solutions, including exis-
tence, uniqueness and stability properties, is provided in the seminal
works of DiPerna and Lions [31] and Ambrossio [2]. We introduce
the notion of weak formulation.

Definition 4.1.1. Assume that b,divb ∈ L1([0, T ] × Rd) A weak
solution of the PDE (4.2) is a class functions u ∈ L∞([0, T ], L∞ ∩
L∞(Rd)) if for any ϕ ∈ C∞0 (Rd) and for all t ∈ [0, T ], we have

∫
Rd
u(t, x)ϕ(x)dx =

∫
Rd
u0(x)ϕ(x) dx

+

∫ t

0

∫
Rd
u(s, x) b(s, x)∇ϕ(x)dxds

+

∫ t

0

∫
Rd
u(s, x) divb(s, x)ϕ(x)dxds.

(4.3)
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40CHAPTER 4. STOCHASTIC CONTINUITY-TRANSPORTEQUATION.

The existence of the solution is trivial since the the transport
equation is linear PDE. Therefore is sufficient to regularize the vec-
tor field and the initial data, then passing to the limit we obtain a
solution.

We explain the procedure to get uniqueness.
Let us fix an even convolution mollifier ρε. We define

uε = (u ∗ ρε)(t, x), then we have that uε satisfies

∂tu
ε + b∇uε = Rε(b, u)

where Rε(b, u) is the commutator

Rε(b, u) = b∇uε − (b∇u) ∗ ρε.

Thus, for all ε > 0, we have

∂tβ(uε) + b∇β(uε) = β′(uε)Rε(b, u).

In order to pass to the limit we need strong convergence of the
commutator, see [31].

Lemma 4.1.2. We assume that b ∈ L1([0, T ],W 1,1
loc ) and

u ∈ L∞([0, T ]× Rd). Then

Rε(b, u)→ 0 in L1
loc([0, T ]× Rd).

Now, passing to the limit we have

∂tβ(u(t, x)) + b(t, x) · ∇β(u(t, x)) = 0, (4.4)

and this is definition of renormalized solution. Roughly speaking,
renormalized solutions are distributional solutions to which the chain
rule applies in the sense that, for every suitable β, β(u) solves the
equation (4.4).

Now, we are ready to give uniqueness results.

Theorem 4.1.3. (Di perna-Lions [31] ) We assume that
b ∈ L1([0, T ],W 1,1

loc ), divb ∈ L1([0, T ], L∞(Rd)) and
b

(1+|x|) ∈ L
1([0, T ], L∞(Rd)). Then there exists a unique L∞- weak

solutions of the Cauchy problem (4.2).
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Proof. Since the transport equation is linear it is enough to show that
a weak solution u with initial condition u0 = 0 vanishes identically.
Consider a non-negative smooth cut-off function η supported on the
ball of radius 2 and such that η = 1 on the ball of radius 1. For each
R > 0 introduce the rescaled functions ηR(·) = η( 1

R ·). We take β
such that min(|u|2, |u|) ≤ β(u) ≤ |u| and as test function ηR(·) in
(4.4), then

∫
Rd
β(u(t, x))ηR(x)dx =

∫ t

0

∫
Rd
β(u(s, x)) b(s, x)∇ηR(x)dxds

+

∫ t

0

∫
Rd
β(u(s, x)) divb(s, x)ηR(x)dxds

We observe that

|b(s, x)|
R

1R≤|x|≤2R ≤
|b(s, x)|
1 + |x|

1|x|≥R.

Hence

∫
Rd
β(u(t, x))ηR(x)dx ≤

∫ t

0

∫
|x|≥R

β(u(s, x))
|b(s, x)|
1 + |x|

dxds

+

∫ t

0

c(t)

∫
Rd
β(u(s, x)) ηR(x)dxds.

Passing to the limit as R→∞ we get∫
Rd
β(u(t, x))dx ≤

∫ t

0

c(t)

∫
Rd
β(u(t, x)) dxds.

By Gronnwal lemma we conclude u = 0.

Remark 4.1.4. We observe that the existence and uniqueness result
can be extended easily for the equation

∂tu(t, x) + b(t, x) · ∇u(t, x) + c(t, x)u(t, x) = 0, u(0, x) = u0(x),
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42CHAPTER 4. STOCHASTIC CONTINUITY-TRANSPORTEQUATION.

when c = divb we get the following continuity equation

∂tu(t, x) + div(b(t, x)u(t, x)) = 0, u(0, x) = u0(x).

4.1.3 More results.

• Afters some intermediate results ( [18] and [19] ) the theory has
been generalized by L. Ambrosio [2] supported again on com-
mutators, but with a different measure-theoretic framework, to
the case of only BV regularity for b instead of W 1,1.

• In the case of two-dimensional vector-field, we refer to the work
of F. Bouchut and L. Desvillettes [10] that treated the case of
divergence free vector-field with continuous coefficient, and to
[52] in which this result is extended to vector-field with L2

loc

coefficients with a condition of regularity on the direction of
the vector-field.

• For d > 2 ( d = 2 in the nonautonomous case) there are ex-
amples of non uniqueness for nearly BV fields, see [1], [20] and
[29].

• We would also like to mention the generalizations to transport-
diffusion equations and the associated stochastic differential
equations by C. Le Bris and P.L. Lions [65, 66] and A. Figalli
[38].

• For some recent developments see [3], [11] and [92].

4.2 Stochastic Case.

4.2.1 Regular Case.

The method of stochastic characteristic for fisrt order stochastic par-
tial differential equation was introduced by Bismuit [9], Funaki [48],
Kunita [64] and Rozovskii [90]. Here, we present the linear case.
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We consider the linear transport-continuity equation
∂tu(t, x) + (b(t, x) +

dBt
dt

)∇u(t, x) + c(t, x)u(t, x) = 0 ,

u|t=0 = u0 .

(4.5)

Here, (t, x) ∈ [0, T ] × Rd, ω ∈ Ω is an element of the probability
space (Ω,P,F), b : R+ × Rd → Rd is a given vector field and Bt =
(B1

t , ..., B
d
t ) is a standard Brownian motion in Rd. The stochastic

integration is to be understood in the Stratonovich sense. When
c = 0 is the transport equation and when c = divb is the continuity
equation.

The equation (4.5) is interpreted in the strong sense, as the follo-
wing stochastic integral equation

u(t, x) = u0(x)

−
∫ t

0

b(s, x)∇u(s, x) ds−
d∑
i=0

∫ t

0

∂xiu(s, x)◦dBis−
∫ t

0

c(s, x) u(s, x) ds

for t ∈ [0, T ] and x ∈ Rd.
For m ∈ N and 0 < α < 1, let us assume the following hypothesis

on b:

b ∈ L1((0, T );Cm,αb (Rd)) (4.6)

where Cm,α(Rd) denotes the class of functions of class Cm on Rd such
that the last derivative is Hölder continuous of order α.

We consider the SDE

Xs,t(x) = x+

∫ t

s

b(r,Xs,r(x)) dr +Bt −Bs, (4.7)

It is well known that under conditions (4.6), Xs,t(x) is a stochastic
flow of Cm-diffeomorphism (see for example [63] and [62]). Moreo-
ver, the inverse Ys,t(x) := X−1

s,t (x) satisfies the following backward
stochastic differential equation
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Ys,t(y) = y −
∫ t

s

b(r, Yr,t(y)) dr − (Bt −Bs), (4.8)

for 0 ≤ s ≤ t.

Lemma 4.2.1. Assume (4.6) for m ≥ 3 and let u0 ∈ Cm,δ(Rd).
Then the Cauchy problem (4.5) has a unique solution u(t, .) for 0 ≤
t ≤ T such that it is a Cm-semimartingale which can be represented
as

u(t, x) = u0(X−1
t (x)) e−

∫ t
0
c(s,X−1

t−s)ds, t ∈ [0, T ], x ∈ Rd.

Proof. We refer to [16] and [62].

4.2.2 Continuity equation with Hölder Drift.

The regularization effect of the noise on transport-continuity equa-
tion has been intensively studied in recent years. A first result in
this direction was given by Flandoli, Gubinelli and Priola in [40] for
the stochastic transport equation, they obtained wellposedness for an
Hölder continuous drift term, with some integrability conditions on
the divergence.

Here, we consider the stochastic continuity equation, c = divb.
We give the definition of solution.

Definition 4.2.2. A stochastic process u ∈ L∞([0, T ] × Ω × Rd) is
called a weak L∞−solution of the Cauchy problem (4.5), when for any
ϕ ∈ C∞c (Rd), the real value process

∫
u(t, x)ϕ(x)dx has a continuous

modification which is a Ft-semimartingale, and for all t ∈ [0, T ], we
have P-almost sure
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∫
Rd
u(t, x)ϕ(x)dx =

∫
Rd
u0(x)ϕ(x) dx

+

∫ t

0

∫
Rd
u(s, x) bi(s, x)∂iϕ(x) dxds

+

∫ t

0

∫
Rd
u(s, x) ∂iϕ(x) dx ◦dBis.

(4.9)

Remark 4.2.3. We shall write equation (4.9) in Itô formulation.
From relation (1.1) we have∫ t

0

∫
Rd
u(s, x) ∂iϕ(x) dx ◦dBis.

=

∫ t

0

∫
Rd
u(s, x) ∂iϕ(x) dx dBis +

1

2
[

∫
Rd
u(s, x) ∂iϕ(x) dx,Bis].

Taking as test function ∂jϕ in (4.9) we have

∫
Rd
u(t, x)∂jϕ(x)dx =

∫
Rd
u0(x)ϕ(x) dx

+

∫ t

0

∫
Rd
u(s, x) bi(s, x)∂i∂jϕ(x) dxds

+

∫ t

0

∫
Rd
u(s, x) ∂i∂jϕ(x) dx ◦dBis.

We observe that only the term with stochastic integral contributes
with the covariation. Thus

[

∫
Rd
u(t, x)∂jϕ(x)dx,Bis] = δi,j

∫ t

0

∫
Rd
u(s, x) ∂i,jϕ(x) dxds.

Then the Itô formulation is∫
Rd
u(t, x)ϕ(x)dx =

∫
Rd
u0(x)ϕ(x) dx
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+

∫ t

0

∫
Rd
u(s, x) b(s, x, ω)∂iϕ(x) dxds+

∫ t

0

∫
Rd
u(s, x) ∂iϕ(x) dx dBs

+
1

2

∫ t

0

∫
Rd
u(s, x) ∆ϕ(x) dx ds.

This existence proof we follow from Catuogno and Olivera in [12].

Lemma 4.2.4. We assume that b ∈ L1([0, T ] × Rd) and divb ∈
L1([0, T ], L∞(Rd)).Then there exists a weak L∞−solution u of the
Cauchy problem (4.5).

Proof. 1. First, let us consider the following auxiliary Cauchy pro-
blem for the continuity equation, that is to say∂tv(t, x) + div

(
v(t, x) b(t, x+Bt)

)
= 0,

v(0, x) = u0(x).

(4.10)

According to a minor modification of the arguments in DiPerna, Lions
[31], see Proposition II.1 (taking only test functions defined on Rd),
it follows that, there exists a function v ∈ L∞(UT × Ω), which is a
solution of the auxiliary problem (4.10) in the sense that, it satisfies
for each test function ϕ ∈ C∞c (Rd)

∫
Rd
v(t, x)ϕ(x)dx =

∫
Rd
u0(x)ϕ(x) dx

+

∫ t

0

∫
Rd
v(s, x) b(s, x+Bs) · ∇ϕ(x) dxds.

(4.11)

One observes that, the process
∫
v(t, x)ϕ(x)dx is adapted, since it is

the weak limit in L2([0, T ]×Ω) of adapted processes, see [84] Chapter
III for details.

2. Now, let us define for each y ∈ Rd,

F (y) :=

∫
Rd
v(t, x)ϕ(x+ y) dx.
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Then, applying the Itô-Wentzell-Kunita Formula, see Theorem 8.3 of
[63], to F (Bt), it follows from (4.11)∫
Rd
v(t, x)ϕ(x+Bt) dx =

∫
Rd
u0(x)ϕ(x) dx

+

∫ t

0

∫
Rd
b(s, x+Bs) · ∇ϕ(x+Bs)v(s, x) dxds

+

∫ t

0

∫
Rd
v(s, x) ∂iϕ(x+Bs)dx ◦ dBis,

(4.12)
where we have used that

∂

∂yi
ϕ(x+ y) =

∂

∂xi
ϕ(x+ y).

3. Finally, defining u(t, x) := v(t, x−Bt) we obtain from equation
(4.12) that, u(t, x) is a weak L∞−solution of the stochastic Cauchy
problem (4.5).

The uniqueness result is established using the properties of sto-
chastic flow for the SDE with Hölder drift. We compose the solution
u with the stochastic flow to show uniqueness. Thus, avoiding the
commutator and the problems there in.

Theorem 4.2.5. Assume condition that b ∈ L∞([0, T ], Cαb (Rd)).
Then If u, v ∈ L∞([0, T ] × Rd × Ω) are two weak L∞−solutions for
the Cauchy problem (4.5), with the same initial data u0 ∈ L∞(Rd),
then u=v almost everywhere in [0, T ]× Rd × Ω.

Proof. It is sufficient by linearity to prove that, any weak L∞−solution
u with initial condition u0(x) = 0 vanishes identically. Let φε, φδ be
standard symmetric mollifiers. Then, for each t ∈ [0, T ], uε(t, ·) =
u(t, ·) ∗ φε verifies∫

Rd
u(t, z)φε(y − z)dz =

∫ t

0

∫
Rd
u(s, z) bi(s, z)∂ziφε(y − z) dzds

+

∫ t

0

∫
Rd
u(s, z) ∂ziφε(y − z) dz ◦dBis.

(4.13)
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We recall that, for each ε > 0 the equation for uε is strong in the
analytic sense.

Now, let us denote by bδ the standard mollification of b by φδ,
and denote Xδ

t the associated flow given by the SDE (4.7), with bδ

instead of b. We also consider Y δt , which satisfies the backward SDE
(4.8). Then, for each ϕ ∈ C∞c (Rd), it follows for each t ∈ [0, T ] that

∫
Rd

(u ∗ φε)(Xδ
t )JXδ

t ϕ(x) dx =

∫
Rd

(u ∗ φε)(y) ϕ(Y δt ) dy, (4.14)

where JXδ
t is the Jacobian map of Xδ

t .On the other hand, since uε
is strong in analytic sense, applying Itô’s formula to the product of
two semimartingales (u ∗ φε)(y) ϕ(Y δt ), we get

∫
Rd

(u ∗ φε)(y) ϕ(Y δt ) dy = −
∫ t

0

∫
Rd
uε(s, y) bδ(s, y) · ∇ϕ(Y δs ) dyds

−
∫ t

0

∫
Rd
uε(s, y) ∂iϕ(Y δs )dy ◦ dBis

+

∫ t

0

∫
Rd
ϕ(Y δs )

∫
Rd
u(s, z) b(s, z) · ∇φε(y − z) dzdyds

+

∫ t

0

∫
Rd
ϕ(Y δs )

∫
Rd
u(s, z) ∂iφε(y − z) dzdy ◦ dBis.

(4.15)
By integration by parts, we bring all the derivatives on ϕ(Y δ), we
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have∫
Rd

(u ∗ φε)(Xδ
t )JXδ

t ϕ(x) dx

= −
∫ t

0

∫
Rd
uε(s, y) bδ(s, y) · ∇ϕ(Y δs ) dyds

−
∫ t

0

∫
Rd
uε(s, y) ∂iϕ(Y δs )dy ◦ dBis

+

∫ t

0

∫
Rd

∫
Rd
u(s, z)φε(y − z) b(s, z) · ∇ϕ(Y δs ) dzdyds

+

∫ t

0

∫
Rd

∫
Rd
u(s, z)φε(y − z) ∂iϕ(Y δs ) dzdy ◦ dBis,

where we have used that, φε is symmetric.
Now for δ > 0 fixed, we pass to the limit as ε goes to 0+ to obtain

from the above equation∫
Rd
u(Xδ

t )JXδ
t ϕ(x) dx = −

∫ t

0

∫
Rd
u(s, y) bδ(s, y) · ∇ϕ(Y δs ) dyds

+

∫ t

0

∫
Rd
u(s, y) b(s, z) · ∇ϕ(Y δs ) dyds.

(4.16)
Then, we pass to the limit in (4.16) as δ goes to 0+, to obtain

that, for each ϕ ∈ C∞c (Rd), and t ∈ [0, T ]

lim
δ→0

∫
Rd
u(Xδ

t )JXδ
t ϕ(x)dx = 0. (4.17)

From theorem 3.1.3 we have

0 =

∫
Rd
u(t, x)JXtϕ(Xt) dx =

∫
Rd
u(Xt)ϕ(x) dx (4.18)

for each ϕ ∈ C∞c (Rd), and t ∈ [0, T ].
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Finally, let K be any compact set in Rd. Then, we get∫
K

E|u(t, x)| dx =

∫
K

E|u(t,Xt(Yt))| dx

= E
∫
Yt(K)

JXt|u(t,Xt)| dx = 0

where we have used (4.18) and the regularity of the stochastic flow.
Then, we conclude our theorem.

4.2.3 Continuity equation with unbounded drift

In this section we follow Mollinedo and Olivera in [75]. The main
issue of to prove existence and uniqueness of L2-weak solutions for
one-dimensional stochastic continuity equation (4.5) with unbounded
measurable drift without assumptions on the divergence.

We assume the following hypothesis:

Hypothesis 4.2.6. The vector field b satisfies

|b(x)| ≤ k(1 + |x|) , (4.19)

and the initial condition holds

u0 ∈ L2(R, w dx) (4.20)

where w is the weight defined by w(x) = e2k2x
2

with
k2 = 2(k + 99Tk2).

We denote µ = (1 + |x|)2.

Definition 4.2.7. A stochastic process u ∈ L2(Ω× [0, T ]×R, µdx) is
called a L2- weak solution of the Cauchy problem (4.5) when: For any
ϕ ∈ C∞0 (R), the real valued process

∫
u(t, x)ϕ(x)dx has a continuous

modification which is an Ft-semimartingale, and for all t ∈ [0, T ], we
have P-almost surely∫

R
u(t, x)ϕ(x)dx =

∫
R
u0(x)ϕ(x) dx+

∫ t

0

∫
R
u(s, x) b(x)∂xϕ(x) dxds

+

∫ t

0

∫
R
u(s, x) ∂xϕ(x) dx ◦dBs .

(4.21)
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Now, we denote by bε the standard mollification of b, and let Xε
t

be the associated flow given by the SDE (4.7) replacing b by bε. Simi-
larly, we consider Y εt , which satisfies the backward SDE (4.8). We also
recall the important results in [79] : let Xε

t be the corresponding sto-
chastic flows, then for all p ≥ 1 there are constants C1 = C1(k, p, T )
and C2(k, p, T ) such that

E[|∂xXε
t (x)|p] ≤ C1t

− 1
2 eC2x

2

, (4.22)

the same results is valid for the backward flow Y εt since it is solution
of the same SDE driven by the drifts −bε.

We shall here prove existence of solutions under hypothesis 4.2.6.

Lemma 4.2.8. Assume that hypothesis 4.2.6 holds. Then there exists
L2-weak solution of the Cauchy problem (4.5).

Proof. Step 1: Regularization.
Let {ρε}ε be a family of standard symmetric mollifiers and η a

nonnegative smooth cut-off function supported on the ball of radius
2 and such that η = 1 on the ball of radius 1. Now, for every ε > 0,
we introduce the rescaled functions ηε(·) = η(ε·). Thus, we define
the family of regularized coefficients given by

bε(x) = ηε(x)(b ∗ ρε(x))

and
uε0(x) = ηε(x)

(
u0 ∗ ρε(x)

)
.

Clearly we observe that, for every ε > 0, any element bε, uε0 are
smooth (in space) and have compactly supported with bounded de-
rivatives of all orders. We consider the regularized version of the
stochastic continuity equation :

du
ε(t, x) +∇uε(t, x) ·

(
bε(x)dt+ ◦dBt

)
+ divbε(x)uε(t, x)dt = 0 ,

uε
∣∣
t=0

= uε0
(4.23)

Following the classical theory of H. Kunita [62, Theorem 6.1.9] we
obtain that
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uε(t, x) = uε0(Y εt (x))JY εt (x).

Step 2: Boundedness. Making the change of variables y = yεt (x)
we have that ∫

R
E[|uε(t, x)|2] (1 + |x|)2dx

=

∫
Ω

∫
R
|uε0(y)|2|Xε

t (y)|−1 (1 + |Xε
t (y)|)2 dyP(dω).

We claim that there are constants k1 = k1(k, T ) and
k2 = 2(k + 99Tk2) such that

E
[∣∣∣∣ ddxXε

t (x)

∣∣∣∣−2]
= E

[
exp

{
− 2

∫ t

0

divbε(Xε
s (x))ds

}]
≤ k1t

−3/8ek2x
2

.

(4.24)

We postpone the proof for the lemma below.

Now, we also observe that

E
[
|Xε

t (x)|4
]
≤ C(|x|4 + T 4). (4.25)

Then we obtain

E
[∣∣∣∣ ddxXε

t (x)

∣∣∣∣−1

(1 + |Xε
t (x)|)2

]

≤ C
(
E
∣∣∣∣ ddxXε

t (x)

∣∣∣∣−2

+E
∣∣∣∣(1+|Xε

t (x)|)4

∣∣∣∣) ≤ C(k1t
−3/8ek2x

2

+T 4+x4).
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Thus we deduce∫
R
E[|uε(t, x)|2](1 + |x|)2 dx (4.26)

≤
∫
R
|uε0(y)|2E

[∣∣∣∣dXε
s (y)

dy

∣∣∣∣−1

(1 + |Xε
t (y)|)2

]
dy

≤ C
∫
R
|uε0(y)|2

(
k1t
−3/8ek2x

2

+ T 4 + y4
)
dy

≤ Ck1t
−3/8

∫
R
|uε0(y)|2ek2y

2

dy + C

∫
R
|uε0(y)|2ek2y

2

dy. (4.27)

We observe that∫
R
|uε0(y)|2ek2y

2

dy ≤
∫
R

[
ek2y

2

(∫
R
ρε(y − x)|u0(x)|2dx

)]
dy

=

∫
R

[
|u0(x)|2

(∫
B(x,ε)

ρε(y − x)ek2y
2

dy

)]
dx

=

∫
R

[
|u0(x)|2

(∫
B(0,ε)

ρε(u)ek2(x+u)2du

)]
dx

≤
∫
R

[
|u0(x)|2e2k2x

2

(∫
B(0,ε)

ρε(u)e2k2u
2

du

)]
dx

≤ C‖u0‖2L2(R,wdx). (4.28)

From (4.26) and (4.28) we conclude that

‖uε‖2L2(Ω×[0,T ]×R,µdx) ≤ C(k, T )‖u0‖2L2(R,wdx) .

Therefore, the sequence {uε}ε>0 is bounded in L2(Ω×[0, T ]×R, µdx).
Then there exists a convergent subsequence, which we denote also by
uε, such that converge weakly in L2(Ω × [0, T ] × R, µdx) to some
process u ∈ L2(Ω× [0, T ]× R, µdx) .

Step 3: Passing to the Limit. Now, if uε is a solution of (4.23), it
is also a weak solution, that is, for any test function ϕ ∈ C∞0 (R), uε
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satisfies (written in the Itô form):∫
R
uε(t, x)ϕ(x)dx =

∫
R
uε0(x)ϕ(x) dx+

∫ t

0

∫
R
uε(s, x) bε(x)∂xϕ(x) dxds

+

∫ t

0

∫
R
uε(s, x) ∂xϕ(x) dx dBs +

1

2

∫ t

0

∫
R
uε(s, x) ∂2

xϕ(x) dx ds .

Thus, for prove existence of the SCE (4.5) is enough to pass to the
limit in the above equation along the convergent subsequence found.
This is made through of the same arguments of [40, theorem 15].

Lemma 4.2.9. Assume b ∈ C∞c (R) and that satisfies the hypothesis
4.2.6. Then for T > 0 there are constants k1 = k1(k, T ) and k2 =
k2(k, T ) such that

E
[∣∣∣∣ ddxXt(x)

∣∣∣∣−2]
≤ k1t

−3/8ek2x
2

, (4.29)

where k1 =
√
c1 4
√
c2e

35Tk2 and k2 = 2(k + 99Tk2) (c1 and c2 are
defined below in the proof).

Proof. We consider the SDE associated to the vector field b :

dXt = b(Xt) dt+ dBt , X0 = x .

We denote

E
(∫ t

0

b(Xu)dBu

)
= exp

{∫ t

0

b(Xu)dBu −
1

2

∫ t

0

b2(Xu)du

}
,

and

dQ(ω) = E
(∫ t

0

b(Xu)dBu

)
dP(ω).

Using the Girsanov’s theorem we obtain that

E
[∣∣∣∣dXt

dx
(x)

∣∣∣∣−2]
= EQ

[∣∣∣∣dXt

dx
(x)

∣∣∣∣−2]
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= E
[

exp

{
− 2

∫ t

0

b′(x+Bs)ds

}
E
(∫ t

0

b(x+Bs)dBs

)]
.

Now, we proceed as in the proof of the Lemma 3.6 of [79]. Let
b1 = −b, then we have

E
[∣∣∣∣dXt

dx
(x)

∣∣∣∣−2]
= E

[
exp

{
2

∫ t

0

b′1(x+Bs)ds

}
E
(∫ t

0

b(x+Bs)dBs

)]
.

Applying the Itô formula to b̃(z) =
∫ z
∞ b1(y)dy we deduce

b̃(x+Bt) = b̃(x) +

∫ t

0

b1(x+Bs)dBs +
1

2

∫ t

0

b′1(x+Bs)ds .

By Hölder inequality we have

E
[∣∣∣∣dXt

dx
(x)

∣∣∣∣−2]
(4.30)

≤ ‖ exp{4(b̃(x+Bt)− b̃(x))}‖L2(Ω) (4.31)

‖ exp

{
− 4

∫ t

0

b1(x+Bs)dBs

}
× E

(∫ t

0

b(x+Bs)dBs

)
‖L2(Ω) .

(4.32)

For the first term, we obtain

|b̃(x+Bt)− b̃(x)| = |
∫ 1

0

b1(x+ θ(Bt))dθ| |Bt|

≤
∫ 1

0

(k + k|x+ θBt|)dθ|Bt|

≤ k|Bt|+ k|x||Bt|+
k

2
(Bt)

2

≤ k

2
x2 + k|Bt|+ k(Bt)

2.
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Then we get

E[exp{8(b̃(x+Bt)− b̃(x))}] ≤ E[exp{8(
k

2
x2 + k|Bt|+ k(Bt)

2)}]

= e4kx2

E[exp{8(k|Bt|+ k(Bt)
2)}]

= e4kx2 1√
2πt

∫
R

exp{8k(|z|+ z2)− z2

2t
} dz.

Hence

‖ exp{4(b̃(x+Bt)− b̃(x))}‖L2(Ω) ≤ e2kx2

t−1/4√c1, (4.33)

where

c1 =
1√
2π

∫
R

exp{8k(|z|+ z2)− z2

2T
}dz.

For the second term of (4.30) we have

E
[

exp

{
− 8

∫ t

0

b1(x+Bs)dBs

}
E
(∫ t

0

b(x+Bs)dBs

)2]
E
[

exp

{
− 8

∫ t

0

b1(x+Bs)dBs

}
exp

{
2

∫ t

0

b(x+Bs)dBs −
∫ t

0

b2(x+Bs)ds

}]
= E

[
exp

{
− 10

∫ t

0

b1(x+Bs)dBs −
∫ t

0

b21(x+Bs)ds

}]
≤ ‖ exp

{
− 10

∫ t

0

b1(x+Bs)dBs − α
∫ t

0

b21(x+Bs)ds

}
‖L2(Ω)×

× ‖ exp

{
(α− 1)

∫ t

0

b21(x+Bs)ds

}
‖L2(Ω). (4.34)

Now, we choose α = 100 because 1
2 (−20b1(x+Bs))

2 = 2αb21(x+Bs).

Then the process exp{−20
∫ t

0
b1(x+Bs)dBs−200

∫ t
0
b21(x+Bs)ds} =

E
(∫ t

0
(−20b1(x + Bs)dBs)

)
is a martingale with expectation equal

to one. Thus
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‖ exp

{
− 10

∫ t

0

b1(x+Bs)dBs − 100

∫ t

0

b21(x+Bs)ds

}
‖L2(Ω) = 1.

From (4.19) we deduce that the second term of (4.34) is bounded
by

E
[

exp

{
2(α− 1)

∫ t

0

b21(x+Bs)ds

}]
= E

[
exp

{
198

∫ t

0

b21(x+Bs)ds

}]
≤ E

[
exp

{
198

∫ t

0

k2(1 + |x+Bs|)2ds

}]
≤ E

[
exp

{
198tk2(1 +B∗t )2

}]
,

where B∗t = sup
s≤t
|x+Bs|. We set

Ys = exp{99tk2(1 + |x+Bs|)2}.

Then, by Doob’s Maximal inequality we have

E
[

exp

{
198tk2(1 +B∗t )2

}]
= E

[
sup
s≤t

Y 2
s

]
≤ 4 E[Y 2

t ] = E[exp{198tk2(1 + |x+Bt|)2}]

≤ 4 E[exp{396tk2(1 + (x+Bt)
2)}]

≤ 4 E[exp{396tk2(1 + 2(x2 +B2
t ))}]

= 4e396tk2e792tk2x2

E[exp{792k2tB2
t }]

= 4e396tk2e792tk2x2 1√
2πt

∫
R

exp{792tk2z2 − z2

2t
}dz.

Substituting in (4.34) we have

E
[

exp

{
− 8

∫ t

0

b1(x+Bs)dBs

}
E
(∫ t

0

b(x+Bs)dBs

)2]

≤ e198Tk2e396Tk2x2

t−1/4√c2 , (4.35)
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where

c2 =
4√
2π

∫
R

exp{792Tk2z2 − z2

2T
}dz.

Thus , replacing (4.33) and (4.35) in (4.30) we conclude

E
[∣∣∣∣dXt

dx
(x)

∣∣∣∣−2]
≤ e2kx2

t−1/4√c1e99Tk2e198Tk2x2

t−1/8 4
√
c2

=
√
c1 4
√
c2e

99Tk2t−3/8e2(k+99Tk2)x2

= k1t
−3/8ek2x

2

,

where k1 =
√
c1 4
√
c2e

99Tk2 and k2 = 2(k + 99Tk2). This proves
(5.27).

Uniqueness.

Theorem 4.2.10. Under the conditions of hypothesis 4.2.6, unique-
ness holds for L2- weak solutions of the Cauchy problem (4.5) in the
following sense: if u, v are L2- weak solutions with the same initial
data u0 ∈ L2(R, w dx), then u = v almost everywhere in Ω×[0, T ]×R.

Proof. Step 0: Set of solutions. Remark that the set of L2- weak
solutions is a linear subspace of L2(Ω× [0, T ]×R, µdx), because the
stochastic continuity equation is linear, and the regularity conditions
is a linear constraint. Therefore, it is enough to show that a L2- weak
solution u with initial condition u0 = 0 vanishes identically.

Step 1: Primitive of the solution. We define V (t, x) =
∫ x
−∞ u(t, y) dy.

We consider a nonnegative smooth cut-off function η supported on
the ball of radius 2 and such that η = 1 on the ball of radius 1. For
any R > 0, we introduce the rescaled functions ηR(·) = η( .R ). Let be
ϕ ∈ C∞0 (R), we observe that∫

R
V (t, x)ϕ(x)ηR(x)dx = −

∫
R
u(t, x)θ(x)ηR(x)dx

−
∫
R
V (t, x)θ(x)∂xηR(x)dx ,
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where θ(x) =
∫ x
−∞ ϕ(y) dy. By definition of the solution u, taking as

test function θ(x)ηR(x) we have that V (t, x) satisfies

∫
R
V (t, x) ηR(x)ϕ(x)dx = −

∫ t

0

∫
R
∂xV (s, x) b(x)ηR(x)ϕ(x) dxds

−
∫ t

0

∫
R
∂xV (s, x) ηR(x)ϕ(x) dx ◦dBs (4.36)

−
∫ t

0

∫
R
∂xV (s, x) b(x)∂xηR(x)θ(x) dxds

−
∫ t

0

∫
R
∂xV (s, x) ∂xηR(x)θ(x) dx ◦dBs −

∫
R
V (t, x)θ(x)∂xηR(x)dx.

(4.37)

Taking the limit as R→∞ we get

∫
R
V (t, x)ϕ(x)dx =

−
∫ t

0

∫
R
∂xV (s, x) b(x)ϕ(x) dxds−

∫ t

0

∫
R
∂xV (s, x) ϕ(x) dx ◦dBs.

(4.38)

Step 2: Smoothing. Let {ρε(x)}ε be a family of standard symme-
tric mollifiers. For any ε > 0 and x ∈ Rd we use ρε(x − ·) as test
function, then have∫

R
V (t, y)ρε(x− y) dy = −

∫ t

0

∫
R

(
b(y)∂yV (s, y)

)
ρε(x− y) dyds

−
∫ t

0

∫
R
∂yV (s, y) ρε(x− y) dy ◦ dBs

We set Vε(t, x) = (V ∗ρε)(x), bε(x) = (b∗ρε)(x) and (bV )ε(t, x) =
(b.V ∗ ρε)(x). We deduce

Vε(t, x) +

∫ t

0

bε(x)∂xVε(s, x) ds+

∫ t

0

∂xVε(s, x) ◦ dBs
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=

∫ t

0

(
Rε(V, b)

)
(x, s) ds,

where we denote Rε(V, b) = bε ∂xVε − (b∂xV )ε.

Step 3: Method of Characteristic. Applying the Itô-Wentzell-
Kunita formula to Vε(t,X

ε
t ) , see Theorem 8.3 of [63], we have

Vε(t,X
ε
t ) =

∫ t

0

(
Rε(V, b)

)
(Xε

s , s)ds.

Then, considering that Xε
t = Xε

0,t and Y εt = Y ε0,t = (Xε
0,t)
−1 we

have that

Vε(t, x) =

∫ t

0

(
Rε(V, b)

)
(Xε

0,s(Y
ε
0,t), s)ds =

∫ t

0

(
Rε(V, b)

)
(Y εt−s, s)ds.

Multiplying by the test functions ϕ and integrating in R we get

∫
Vε(t, x) ϕ(x)dx =

∫ t

0

∫ (
Rε(V, b)

)
(Y εt−s, s) ϕ(x) dx ds. (4.39)

We observe that∫ t

0

∫ (
Rε(V, b)

)
(Y εt−s, s) ϕ(x) dx ds

=

∫ t

0

∫ (
Rε(V, b)

)
(x, s) JXε

t−sϕ(Xε
t−s) dx ds.

Step 4: Convergence of the commutator. Now, we observe that
Rε(V, b) converge to zero in L2([0, T ]× R). In fact,

(b ∂xV )ε → b ∂xV in L2([0, T ]× R),

and by the dominated convergence theorem we obtain

bε∂xVε → b ∂xV in L2([0, T ]× R).
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Step 5: Conclusion. From step 3 we obtain∫
Vε(t, x) ϕ(x)dx =

∫ t

0

∫ (
Rε(V, b)

)
(x, s) JXε

t−sϕ(Xε
t−s) dx ds. (4.40)

Using Hölder’s inequality we have

E
∣∣∣∣ ∫ t

0

∫ (
Rε(V, b)

)
(x, s) JXε

t−sϕ(Xε
t−s) dx ds

∣∣∣∣
≤
(
E
∫ t

0

∫
|
(
Rε(V, b)

)
(x, s)|2 dx ds

) 1
2

×
(
E
∫ t

0

∫
|JXε

t−sϕ(Xε
t−s)|2 dx ds

) 1
2

.

From step 4 result(
E
∫ t

0

∫
|
(
Rε(V, b)

)
(x, s)|2 dx ds

) 1
2

→ 0.

From formula (4.22) we obtain

(
E
∫ t

0

∫
|JXε

s,tϕ(Xε
t−s)|2 dx ds

) 1
2

≤ C
( ∫

R
|ϕ(x)|2 dx

) 1
2

.

Passing to the limit in equation (4.40) we conclude that V = 0.
Then we deduce that u = 0.

Example 4.2.11. We have that

b(x) =
√
|x|

is not the DiPerna- Lions class because divb = sig(x)

2
√
|x|

is not boun-

ded. However, satisfies our condition because is the linear growth.
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4.2.4 More results.

• Fedrizzi and Flandoli in [34] showed a well-posedness result
for stochastic transport equation under only some integrabi-
lity conditions on the drift in the class of W p,r

loc -solutions , with
no assumption on the divergence. There, it is only assumed
that

b ∈ Lq
(
[0, T ];Lp(Rd)

)
,

for p, q ∈ [2,∞) ,
d

p
+

2

q
< 1 .

(4.41)

Beck, Flandoli, Gubinelli and Maurelli [7] proved, using a techni-
que based on the regularizing effect observed on expected va-
lues of moments of the solution, well-posedness result of the
transport-continuity equation considering Lp-solutions. They
also obtained well-posedness for the limit cases of p, q =∞ and
when the inequality in (4.41) becomes an equality. Also Neves
and Olivera worked with this condition in [77] and [78].

• Mohammed, Nilssen, and Proske in [74] proved uniqueness for
stochastic transport equation assuming only that the drift is
bounded. However, they assumed that the solution is diffe-
rentiable in the sense of Malliavin and the initial condition is
smooth.

• Fedrizzi, Neves and Olivera in [36] introduced the notion of
quasiregular solution for the stochastic transport equation and
they showed existence and uniqueness when the drift b ∈ L2

loc

and the divergence is bounded.

• Attanasio and Flandoli in [4] showed existence and uniqueness
for stochastic transport equation when the vector field b ∈ BV
without assumption on the divergence.

• Mollindedo and Olivera in [76] proved well-posedness result for
stochastic continuity equation when the drift is unbounded and
it is Hölder continuous.
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4.2.5 Persistence of Regularity.

As pointed out by Colombini, Luo and Rauch in [20], there exists
an important example of b ∈ L∞ ∩W 1,p, (∀p < ∞), such that the
propagation of the continuity in the deterministic transport equation
is missing. That is to say, even if the uniqueness is established in
this case, the persistence condition is not, one may start with a con-
tinuous initial data, but the deterministic solution of the transport
equation is not continuous. However, in the stochastic case we have
the persistence property.

We recall from Fedrizzi and Flandoli [34] that a certain Sobolev
regularity is maintained under the Ladyzhenskaya-Prodi-Serrin con-
dition, that is,

u0 ∈
⋂
r≥1

W 1,r(Rd)⇒ u(t, .) ∈
⋂
r≥1

W 1,r
loc (Rd).

From Mollinedo and Olivera [76] we have that if u0 ∈ W 1,2p(Rd)
then u(t, .) ∈W 1,2p(Rd, e−x2

) when the drift is unbounded and Hölder
continuous.
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Chapter 5

Other PDEs

In this chapter, we present other results on regularization by noise in
partial differential equations : including advection equation, Burgers
equation and hyperbolic systems of conservation law.

5.1 Advection equation.

This section we follow Flandoli and Olivera in [42]. Consider the
linear stochastic vector advection equation in the unknown random
field B : Ω× [0, T ]× Rd → Rd

dB + (v · ∇B −B · ∇v) dt+

∞∑
k=1

(σk · ∇B −B · ∇σk) ◦ dW k
t = 0

(5.1)
where v : [0, T ] × Rd → Rd and σk : Rd → Rd, k ∈ N, are given
divergence free vector fields and

(
W k
·
)
k∈N is a family of indepen-

dent real-valued Brownian motions on the filtered probability space
(Ω,F ,Ft, P ). The general structure of the noise assumed here is in-
spired by the theory of diffusion of passive scalars and vector fields in
turbulent fluids, see for exaple [33] and is also motivated by the re-
cent proposal for a variational principle approach to fluid mechanics,
see [55]. This problema was considered in [44] under an Hölder con-
dition on v and a partial result is given in [47] for v having suitable

64
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5.1. ADVECTION EQUATION. 65

integrability. But in both cases the noise was the standard Brownian
motion in Rd, without a space structure.

We aim at studying existence and uniqueness, under low regula-
rity assumption on v.

5.1.1 Preliminaries.

Itô Formulation

It is convenient to introduce the notation of the Lie bracket between
vector fields

[A,B] = A · ∇B −B · ∇A

which is also equal to the Lie derivative LAB and also, for divergence
free fields, to curl (A ∧B). In Stratonovich form equation (5.1) then
reads

dB + [v,B] dt+

∞∑
k=1

[σk, B] ◦ dW k
t = 0.

Its Itô formulation is

dB + [v,B] dt+

∞∑
k=1

[σk, B] dW k
t =

1

2

∞∑
k=1

[σk, [σk, B]] dt. (5.2)

Let us show that (5.1) leads to (5.2). Recall that Stratonovich
integral differs from Itô integral by 1/2 mutual variation: X ◦ dW =
XdW + 1

2d 〈X,W 〉; where, in the case of interest to us when X is
vector valued and W is real valued, by 〈X,W 〉 we mean the vector
of components 〈Xα,W 〉. Then

[σk, B] ◦ dW k
t = [σk, B] dW k

t + d
〈
[σk, B] ,W k

〉
t
.

Then

d
〈
[σk, B] ,W k

〉
t

= (σk · ∇) d
〈
B,W k

〉
t
− d

〈
B,W k

〉
t
· ∇σk.

From the equation for dB and the property that the mutual variations
between W k and BV functions or stochastic integrals with respect to
W j for j 6= k are zero (and d

〈
W k,W k

〉
t

= dt) obtain
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d
〈
B,W k

〉
t

= d

〈∫ ·
0

[σk, Bs] dW
k
s ,W

k

〉
t

= [σk, Bt] dt.

Therefore we obtain (5.2).
We have introduced the second order differential operator, acting

on smooth vector fields B, defined as

LB (x) :=
1

2

∞∑
k=1

[σk, [σk, B]] (x) . (5.3)

Stochastic Exponentials

Let (Ω,F ,Ft, P ) be the filtered probability space introduced above,
with the sequence

{
W k
t

}
k∈N of independent Brownian motions. Let

Gt be the associated filtration:

Gt = σ
{
Bks ; s ∈ [0, t] , k ∈ N

}
.

Let Gt be the completed filtration. For some T > 0, let

H = L2
(
Ω,GT , P

)
F = ∪n∈NL2 (0, T ;Rn)

D = {ef (T ) ; f ∈ F}

where, for n ∈ N, f ∈ L2 (0, T ;Rn), with components f1, ..., fn, we
set

ef (t) = exp

(
n∑
k=1

∫ t

0

fk (s) dW k
s −

1

2

n∑
k=1

∫ t

0

|fk (s)|2 ds

)

for t ∈ [0, T ]. From Itô formula

def (t) =

n∑
k=1

fk (t) ef (t) dW k
t .

The following result is known, see the argument in [81]:

Lemma 5.1.1. D is dense in H.
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Structure and Assumptions on the Noise

Let (σk)k∈N be a sequence of twice differentiable divergence free vec-
tor fields:

σk ∈ C2
(
Rd,Rd

)
, div σk = 0 (5.4)

such that
∞∑
k=1

|σk (x)|2 <∞ (5.5)

for every x ∈ Rd. The matrix-valued function Q (x, y) ∈ Rd×d, x, y ∈
Rd, given by

Qαβ (x, y) :=

∞∑
k=1

σαk (x)σβk (y)

is well defined, (we write Qαβ (x, y), α, β = 1, ..., d for its compo-
nents and similarly for σαk (x)). Our main assumptions on the noise
are: Q (x, y) is twice continuously differentiable in (x, y), bounded
with bounded first and second derivatives, that we summarize in the
notation

Q ∈ C2
b (5.6)

and

Q (x, x) ≥ νIdRd (5.7)

for some ν > 0, uniformly in x ∈ Rd.

Definition of Solution.

We present now the setting and a suitable definition of quasiregular
weak solutions to equation (5.1) , adapted to treat the problem of
well-posedness. We assume that the vector field v satisfies

v ∈ L∞
(
[0, T ], Lp(Rd;Rd)

)
for some p such that p > d, p ≥ 2

(5.8)

div v(t, x) = 0 . (5.9)

Moreover, the initial condition is taken to be

B0 ∈ L4(Rd) ∩ L∞(Rd) , divB0 = 0. (5.10)
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The next definition tells us in which sense a stochastic process is
a quasiregular weak solution of (5.1). We formally use the identity∫

[A,B] · C dx =

∫
((A · ∇)B − (B · ∇)A) · C dx

= −
∫
B · (A · ∇)C −A · (B · ∇)C dx

which holds true for sufficiently smooth and integrable fields such
that divA = divB = 0. Moreover, we use the adjoint operator
L∗, defined in Proposition 5.1.3 below, which maps test functions
ϕ ∈ C∞c (Rd,Rd) into bounded continuous compact support vector
fields L∗ϕ (x).

Definition 5.1.2. A stochastic process B : [0, T ] × Rd → Rd, B ∈
L2
(
Ω× [0, T ], L2

loc(Rd
)
) is called a quasiregular weak solution of the

Cauchy problem (5.1) when:
i) divB (ω, t) = 0, in the sense of distributions, for a.e.

(ω, t) ∈ Ω× [0, T ]
ii) for any ϕ ∈ C∞c (Rd,Rd), the real valued process∫

B(t, x) · ϕ(x)dx has a continuous modification which is an Ft-
semimartingale,

iii) for any φ ∈ C∞c (Rd,Rd) and for all t ∈ [0, T ], we have P-
almost surely∫

B (t, x) · φ (x) dx

−
∫ t

0

∫
(B (s, x) · (v (s, x) · ∇)φ (x)− v (s, x) · (B (s, x) · ∇)φ (x)) dxdt

−
∞∑
k=1

∫ t

0

∫
B (s, x) · (σk (x) · ∇)φ (x) dx dW k

s

−
∞∑
k=1

∫ t

0

∫
σk (x) · (B (s, x) · ∇)φ (x) dx dW k

s

=

∫
B0 (x) · φ (x) dx+

1

2

∫ t

0

∫
L∗φ (x) ·B (s, x) dxdt (5.11)

iv) (Regularity in Mean) For all n ∈ N and each function f ∈
L2 (0, T ;Rn), with components f1, ..., fn, the deterministic function
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V (t, x) := E[B (t, x) ef (t)] is a measurable bounded function, which
belongs to L2([0, T ];H1(Rd))∩C([0, T ];L2(Rd)) and satisfies the pa-
rabolic equation

∂tV + [v − h, V ] = LV (5.12)

in the weak sense, where h (t, x) :=
∑n
k=1 fk (t)σk (x).

We have called quasiregular this class of weak solutions because
of the regularity of the expected values V (t, x) := E[B (t, x) ef (t)].
Equation (5.1) has an hyperbolic nature, it cannot regularize the
initial condition; but in the average there is a regularization, on which
we insist in the definition.

Let us see the formal motivation for equation (5.12). We apply
formally Itô formula to the product of a solution with the stochastic
exponential, in equation (5.2). We get

d (Bef ) + [v,B] ef dt+

∞∑
k=1

ef [σk, B] dW k
t

=
1

2

∞∑
k=1

ef [σk, [σk, B]] dt+

n∑
k=1

fkBefdW
k
t +

n∑
k=1

fkef [σk, B] dt.

Taking expectation we obtain

∂tV + [v, V ] =
1

2

∑
k

[σk, [σk, V ]] +

n∑
k=1

fk [σk, V ]

=
1

2

∑
k

[σk, [σk, V ]] +

[
n∑
k=1

fkσk, V

]
.

The Differential Operator L

A key role is played by the differential operator L defined by (5.3). We
state here its property of uniform ellipticity, based on the assumptions
on Q.

Proposition 5.1.3. Assume Q to be twice continuously differentia-
ble, bounded with bounded first and second derivatives, and

Q (x, x) ≥ νIdRd
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for some ν > 0, uniformly in x ∈ Rd. Then L is well defined, uni-
formly elliptic. In particular, there exists C > 0 such that

−
∫
Rd
LB (x) ·B (x) dx ≥ ν

2

∫
Rd
|DB (x)|2 dx− C

∫
Rd
|B (x)|2 dx

for all B ∈W 1,2
(
Rd,Rd

)
. Moreover it has the form

(LB)
α

(x) =

d∑
i,j=1

aij (x) ∂i∂jB
α (x)

+

d∑
i,β=1

bαβi (x) ∂iB
β (x) +

d∑
β=1

cαβ (x)Bβ (x)

where aij is twice continuously differentiable, bounded with bounded

first and second derivatives, bαβi is continuously differentiable, boun-
ded with bounded first derivatives and cαβ is bounded continuous. The
formal adjoint operator L∗ given by

L∗φ (x) =

d∑
i,j=1

∂i∂j (aij (x)φα (x))

−
d∑

i,β=1

∂i

(
bαβi (x)φβ (x)

)
+

d∑
β=1

cαβ (x)φβ (x)

maps vector fields φ that are twice continuously differentiable, boun-
ded with bounded first and second derivatives, into vector fields L∗φ
hat are bounded continuous.

We prepare the proof by the explicit computation of [σk, [σk, B]].
We have

[σk, [σk, B]] =

(σk · ∇) [σk, B]− ([σk, B] · ∇)σk

= (σk · ∇) (σk · ∇)Bt − (σk · ∇) (Bt · ∇)σk

− ((σk · ∇)Bt · ∇)σk + ((Bt · ∇)σk · ∇)σk.
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All terms can be expressed by means ofQ, after the following remarks.
The function Q (x, y) is defined on Rd × Rd with values in matrices
Rd×d. When we differentiate Qαβ (x, y) with respect to the first set

of components, we write
(
∂

(1)
i Qαβ

)
(x, y):

(
∂

(1)
i Qαβ

)
(x, y) = lim

ε→0

Qαβ (x+ εei, y)−Qαβ (x, y)

ε

while when we differentiate Qαβ (x, y) with respect to the second set

of components, we write
(
∂

(2)
i Qαβ

)
(x, y). We have

(
∂

(1)
i Qαβ

)
(x, y) = ∂xi

(
Qαβ (x, y)

)
=

∞∑
k=1

(∂iσ
α
k ) (x)σβk (y)

(
∂

(2)
i Qαβ

)
(x, y) = ∂yi

(
Qαβ (x, y)

)
=

∞∑
k=1

σαk (x)
(
∂iσ

β
k

)
(y) .

Hence, when we evaluate at y = x,

∞∑
k=1

(∂iσ
α
k ) (x)σβk (x) =

(
∂

(1)
i Qαβ

)
(x, x)

∞∑
k=1

σαk (x)
(
∂iσ

β
k

)
(x) =

(
∂

(2)
i Qαβ

)
(x, x) .

Similarly,

(
∂

(1)
j ∂

(1)
i Qαβ

)
(x, y) = ∂xj∂xi

(
Qαβ (x, y)

)
=

∞∑
k=1

(∂j∂iσ
α
k ) (x)σβk (y)

whence, at y = x,

∞∑
k=1

(∂j∂iσ
α
k ) (x)σβk (x) =

(
∂

(1)
j ∂

(1)
i Qαβ

)
(x, x)

and so on for the other second derivatives. Let us denote by

[σk, [σk, B]]
(α)

the α-component of the vector [σk, [σk, B]].



i
i

“livrocoloquio5x” — 2017/5/16 — 12:40 — page 72 — #72 i
i

i
i

i
i

72 CHAPTER 5. OTHER PDES

Lemma 5.1.4. ∑
k

[σk, [σk, B]]
(α)

(x)

=

d∑
i,j=1

Qij (x, x) ∂i∂jB
α (x)

+

d∑
i=1

d∑
γ=1

∂(2)
γ Qγi (x, x) ∂iB

α (x)−
d∑

i,β=1

2
(
∂

(2)
β Qiα

)
(x, x) ∂iB

β (x)

+

d∑
β,γ=1

∂
(1)
β ∂(2)

γ Qγα (x, x)Bβ (x)−
d∑

γ,β=1

(
∂(2)
γ ∂

(2)
β Qγα

)
(x, x)Bβ (x) .

Therefore the operator L has coefficients given by

aij (x) =
1

2
Qij (x, x)

bαβi (x) =
1

2

d∑
γ=1

∂(2)
γ Qγi (x, x) δαβ −

(
∂

(2)
β Qiα

)
(x, x)

cαβ (x) =
1

2

d∑
γ=1

∂
(1)
β ∂(2)

γ Qγα (x, x)− 1

2

d∑
γ=1

(
∂(2)
γ ∂

(2)
β Qγα

)
(x, x) .
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Proof.∑
k

(σk · ∇) (σk · ∇)Bit∑
k

(σk · ∇) (Bt · ∇)σik −
∑
k

((σk · ∇)Bt · ∇)σik

+
∑
k

((Bt · ∇)σk · ∇)σik

=
∑
k

∑
αβ

σαk ∂α

(
σβk∂βB

i
t

)
−
∑
k

∑
αβ

σαk ∂α

(
Bβt ∂βσ

i
k

)
− σαk ∂αB

β
t ∂βσ

i
k +Bαt ∂ασ

β
k∂βσ

i
k

=
∑
k

∑
αβ

(
σαk σ

β
k∂α∂βB

i
t + σαk ∂ασ

β
k∂βB

i
t − σαkB

β
t ∂α∂βσ

i
k

)
+
∑
k

∑
αβ

(
−σαk ∂αB

β
t ∂βσ

i
k − σαk ∂αB

β
t ∂βσ

i
k +Bαt ∂ασ

β
k∂βσ

i
k

)
=
∑
αβ

Qαβ (x, x) ∂α∂βB
i
t

+
(
∂(2)
α Qαβ

)
(x, x) ∂βB

i
t −

(
∂(2)
α ∂

(2)
β Qαi

)
(x, x)Bβt

+
∑
αβ

(
−2∂

(2)
β Qαi∂αB

β
t + ∂(1)

α ∂
(2)
β QβiBαt

)
.

The result of the lemma is just a rewriting of this expression.

Now, we do the proof of the Proposition 5.1.3.

Proof of Proposition 5.1.3. Let us set

R0 :=
∑
αβ

((
∂(2)
α Qαβ

)
(x, x) ∂βB

i
t −

(
∂(2)
α ∂

(2)
β Qαi

)
(x, x)Bβt

)
B

+
∑
αβ

((
−2∂

(2)
β Qαi∂αB

β
t + ∂(1)

α ∂
(2)
β QβiBαt

))
B
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Then we have

−
∫
Rd
LB (x) ·B (x) dx = −

∑
i

∫
Rd

∑
αβ

Qαβ (x, x) ∂α∂βB
i (x)Bi (x) dx+R0

=
∑
i

∫
Rd

∑
αβ

Qαβ (x, x) ∂βB
i (x) ∂αB

i (x) dx

+
∑
i

∫
Rd

∑
αβ

∂αQ
αβ (x, x) ∂βB

i (x)Bi (x) dx+R0

≥ ν
∑
i

∫
Rd

∣∣∇Bi (x)
∣∣2 dx

−
∑
iαβ

∫
Rd

∣∣∂αQαβ (x, x)
∣∣ ∣∣∂βBi (x)

∣∣ ∣∣Bi (x)
∣∣ dx− |R0|

= ν

∫
Rd
|DB (x)|2 dx−R1 − |R0|

with R1 defined by the identity. The estimates on |R0| are similar to
the estimate on R1, so we limit ourselves to this one. We have

R1 ≤ C1

∑
iαβ

∫
Rd

∣∣∂βBi (x)
∣∣ ∣∣Bi (x)

∣∣ dx
because we have assumed that Q has bounded derivatives,

≤ C2

∫
Rd
|DB (x)| |B (x)| dx ≤ ν

4

∫
Rd
|DB (x)|2 dx+C3

∫
Rd
|B (x)|2 dx.

Here we have denoted by Ci > 0 some constants, possibly depending
on ν and other factors, but not on B. In the analogous estimates for
|R0|,

|R0| ≤
ν

4

∫
Rd
|DB (x)|2 dx+ C4

∫
Rd
|B (x)|2 dx

we use the assumption that the second derivatives of Q are bounded.
We conclude that

−
∫
Rd
LB (x)·B (x) dx ≥ ν

2

∫
Rd
|DB (x)|2 dx−(C3 + C4)

∫
Rd
|B (x)|2 dx.
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Interpolation Inequality.

Lemma 5.1.5. If f, h ∈W 1,2
(
Rd
)

and g ∈ Lp
(
Rd
)

for some p > d,
then∫

Rd
f (x) g (x) ∂ih (x) dx ≤ C ‖g‖Lp(Rd) ‖f‖W 1,2(Rd) ‖h‖W 1,2(Rd)

where C > 0 is a constant independent of f, g, h and for every ε > 0
there is a constant Cε > 0 such that∫

Rd
f (x) g (x) ∂ih (x) dx

≤ ε ‖h‖2W 1,2(Rd) + ε ‖f‖2W 1,2(Rd) + Cε ‖g‖
2p
p−d
Lp(Rd)

‖f‖2L2(Rd) .

Proof. See [42]

5.1.2 Existence and Uniqueness.

Theorem 5.1.6. Under assumptions (5.4), (5.5), (5.8), (5.9), (5.10),
(5.6), (5.7), a quasiregular weak solution of the Cauchy problem (5.1)
exists.

Proof. See [42]

Theorem 5.1.7. Under the assumptions of the previous theorem,
let Bi, i = 1, 2, be two quasi-regular weak solutions of equation (5.1)
with the same initial condition B0. Assume that

∫
Bi(t, x)ϕ(x)dx

is Gt-adapted, for both i = 1, 2, for every ϕ ∈ C∞c
(
R3,R3

)
. Then

B1 = B2.

Proof. Step 0. Set of solutions. Remark that the set of quasiregular
weak solutions is a linear subspace of L2

(
Ω× [0, T ]× R3

)
, because

the stochastic advection equation is linear, and the regularity condi-
tions is a linear constraint. Therefore, it is enough to show that a
quasiregular weak solution B with initial condition B0 = 0 vanishes
identically.

Step 1. V = 0. Let V (t, x) = E [B (t, x) ef (t)], with f ∈
L2([0, T ],Rn) ∩ L∞([0, T ],Rn). If we prove that V = 0, for arbitrary
f , by Lemma 5.1.1 we deduce B = 0. The function V satisfies

∂tV + [v + h, V ] = LV
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with initial condition V0 = 0, where h (t, x) :=
∑n
k=1 fk (t)σk (x).

It is thus sufficient to prove that a solution V (in weak sense) of
class L2([0, T ];H1(R3))∩C([0, T ];L2(R3)) of this equation, such that
V0 = 0, is identically equal to zero. Let us see that this is a classical
result of the variational theory of evolution equations.

Let V ⊂ H ⊂ V ′ be the Gelfand triple defined by

H = L2
σ

(
R3,R3

)
V = H1

σ

(
R3,R3

)

where the subscript σ denotes the fact that we take these vector fields
with divergence equal to zero. The norm |.|H and scalar product
〈., .〉H are the usual ones, and the norm ‖.‖V in V is defined by

‖f‖2V =

3∑
i=1

∫
R3

∣∣∇f i (x)
∣∣2 dx+

∫
R3

|f (x)|2 dx.

Let a : [0, T ] × V × V → R be the bilinear form defined on smooth
fields f, g as

a (t, f, g) = −
∫
R3

Lf (x) · g (x) dx+

∫
R3

[v + h, f ] (x) · g (x) dx

and extended to V×V by one integration by parts of the second order
term in L; moreover, since v is not differentiable, we have to interpret
also one term in

∫
R3 [v + h, f ] (x) · g (x) dx by integration by parts.
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More precisely,

a (t, f, g) =

3∑
i,j,α=1

∫
R3

aij (x) ∂jf
α (x) ∂ig

α (x) dx

+

3∑
i,j,α=1

∫
R3

gα (x) ∂jf
α (x) ∂iaij (x) dx

−
3∑

i,α,β=1

∫
R3

bαβi (x) ∂if
β (x) gα (x) dx−

3∑
α,β=1

∫
R3

cαβ (x) fβ (x) gα (x) dx

+

3∑
α,β=1

∫
R3

(vα (t, x) + hα (t, x)) ∂αf
β (x) gβ (x) dx

+

3∑
α,β=1

∫
R3

(
vβ (t, x) + hβ (t, x)

)
∂α
(
fα (x) gβ (x)

)
dx

where we recall that ∂iaij is bounded continuous. Then the weak
form of equation ∂tV + [v + h, V ] = LV , with V0 = 0, is equivalent
to

〈V (t) , φ〉H +

∫ t

0

a (s, V (s) , φ) ds = 0. (5.13)

for all φ ∈ V. Uniqueness for equations (5.12) and (5.13) are equi-
valent, in the class V ∈ L2 (0, T ;V) ∩ C ([0, T ] ;H). It is known, see
[67], that uniqueness (and existence) in this class holds when a is
measurable in the three variables, continuous and coercive in the last
two variables, namely

|a (t, f, g)| ≤ C ‖f‖V ‖g‖V (5.14)

a (t, f, f) ≥ ν ‖f‖2V − λ |f |
2
H (5.15)

for some constants C, λ ≥ 0, ν > 0, for a.e. t and all f, g ∈ V. Let
us prove these two properties. It is sufficient to check them on the
subset of smooth compact support divergence free fields f, g.
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Let us prove (5.14). The first four terms in the explicit expres-
sion for a (t, f, g) can be bounded above by C ‖f‖V ‖g‖V because

aij , ∂iaij , b
αβ
i , cαβ are bounded. The difficult terms are the last two.

Again, since h is bounded, the terms

3∑
α,β=1

∫
R3

hα (t, x) ∂αf
β (x) gβ (x) dx

+

3∑
α,β=1

∫
R3

hβ (t, x) ∂α
(
fα (x) gβ (x)

)
dx

can be bounded above by C ‖f‖V ‖g‖V . It remains to bound

3∑
α,β=1

∫
R3

vα (t, x) ∂αf
β (x) gβ (x) dx

+

3∑
α,β=1

∫
R3

vβ (t, x) ∂α
(
fα (x) gβ (x)

)
dx.

But here we use repeatedly the first claim of Lemma 5.1.5 and bound
also these terms with C ‖f‖V ‖g‖V . We have proved (5.14).

Finally, let us show property (5.15). From Proposition 5.1.3, the
part of a (t, f, f) related to −

∫
R3 Lf (x) · f (x) dx is bounded below

by

ν

∫
R3

|∇f (x)|2 dx− C
∫
R3

|f (x)|2 dx.

The remaining terms, namely

3∑
α,β=1

∫
R3

(vα (t, x) + hα (t, x)) ∂αf
β (x) fβ (x) dx (5.16)

+

3∑
α,β=1

∫
R3

(
vβ (t, x) + hβ (t, x)

)
∂α
(
fα (x) fβ (x)

)
dx (5.17)

are bounded above in absolute value by

ν

2

∫
R3

|∇f (x)|2 dx+ C

∫
R3

|f (x)|2 dx
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because of Lemma 5.1.5, with a suitable choice of ε > 0. This implies
a (t, f, f) ≥ ν

2 ‖f‖
2
V − C |f |

2
H.

Step 2. Conclusion. Until now we have proved that, for every f ∈
L2([0, T ],Rn) ∩ L∞([0, T ],Rn), the function (t, x) 7→ E[B(t, x)ef (t)]
is the zero element of the space L2 (0, T ;V) ∩ C ([0, T ] ;H). We have
to deduce that B = 0.

Being (t, x) 7→ E[B(t, x)ef (t)] the zero element of C ([0, T ] ;H),
we know that for every t ∈ [0, T ] we have∫

R3

E[B(t, x)ef (t)]g(x) dx = 0

for all g ∈ C∞c (R3,R3); and this holds true for all ef ∈ D. By
linearity of the integral and the expected value we also have that∫

R3

E [B(t, x)Y ] g(x) dx = 0 (5.18)

for every random variable Y which can be written as a linear combi-
nation of a finite number of ef (t) and by density also the restriction
f ∈ L∞([0, T ],Rn) can be removed. Since by Lemma 5.1.1 the
span generated by ef (t) is dense in L2(Ω,Gt), (5.18) holds for any
Y ∈ L2(Ω,Gt). Namely, we have

E
[∫

R3

B(t, x)g(x)dxY

]
= 0

for every Y ∈ L2(Ω,Gt). Since, by assumption,
∫
R3 B(t, x)g(x)dx is

Gt-measurable, we deduce∫
R3

B(t, x)g(x)dx = 0.

This holds true for every g ∈ C∞c (R3,R3), hence B(t, ·) = 0.

5.2 Hyperbolic Systems of Conservation
Law

A large number of problems in physics and engineering are modeled
by systems of conservation laws
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∂tu(t, x) + div(F (u(t, x))) = 0 , (5.19)

here u is called the conserved quantity, while F is the flux. Examples
for hyperbolic systems of conservation laws include the shallow wa-
ter equations of oceanography, the Euler equations of gas dynamics,
the magnetohydrodynamics (MHD) equations of plasma physics, the
equations of nonlinear elastodynamics and the Einstein equations of
general relativity. When the initial data is smooth, it is well known
that the solution can develop shocks within finite time. Therefore,
global solutions can only be constructed within a space of disconti-
nuous functions. Moreover, when discontinuities are present, weak
solutions may not be unique. A central issue is to regain unique-
ness by imposing appropriate selection criteria. The well-posedness
theorems within the class of entropy solutions, for the scalar case,
were established by Kruzkov(see [58]). For general n × n systems,
the powerful techniques of functional analysis cannot be used. The
well-posedness general system of conservation laws has been establis-
hed only for initial data with sufficiently small total variation, see for
instance [8], [28] and [91].

We also recall that in 1995 was introduced by Lions, Perthame and
Tadmor [68] the notion of called kinetic solution for scalar conserva-
tion law. It relies on a new equation, the so-called kinetic formulation,
that is derived from the conservation law at hand and that (unlike
the original problem) possesses a very important feature - linearity.
The two notions of solution, i.e. entropy and kinetic, are equivalent
whenever both of them exist, nevertheless, kinetic solutions are more
general as they are well defined even in situations when neither the
original conservation law or the corresponding entropy inequalities
can be understood in the sense of distributions.

5.2.1 Stochastic Conservation law.

Recently the effect of stochastic forcing on nonlinear conservation
laws driven by space-time white noise has been largely studied, see for
instance [13, 30, 37, 53]. For other hand, in [69] and [70] the authors
introduced the theory of pathwise solutions to study the stochastic
conservation law driven by is continuous noise. We present the recent
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result of Guess and Maurelli in [49] on regularization by noise in scalar
conservation law. We consider the stochastic conservation law

∂tu(t, x) + (b(x, u(t, x)) +
B

dt
)∇u = 0 , (5.20)

Definition of Solution.

We star defining of an entropy solution.

Definition 5.2.1. A (stochastic) kinetic measure es a map m : Ω :→
M
(
[0, T ]×Rd×Rd

)
weakly measurable, satisfying the following pro-

perties :

• m ∈ L∞
(
Ω,M

(
[0, T ]× Rd × Rd

))
,

• m is non-negative and support on [0, T ] × Rd × [−R,−R] for
some R > 0.

• For any test functions ϕ ∈ C∞0 ([0, T ] × Rd × R), the process
(t, ω)→

∫
[0,T ]×Rd×R ϕ dm is an adapted process.

Definition 5.2.2. Let b ∈ L1
loc(Rd+1) and divb ∈ L1

loc(Rd+1) and
let u0 ∈ L1 ∩ L∞(Rd), An entropy solution to equation (5.20) is a
measurable function u : Ω× [0, T ]×Rd× → R such that χ(t, ω, x, ξ) =
χ(u(t, x, ω), ξ) = 1ξ<u(t,x) − 1ξ<0 satisfies the following properties

1. χ ∈ L∞([0, T ]×Ω, L1(Rd×R)) and is supported in [0, T ]×Ω×
[−R,R] for some R,

2. is weakly progressively measurable L∞(Rd ×R) valued process.

3. there exists a bounded kinetic measure m such that for any test
function ϕ ∈ C∞0 ([0, T ]× Rd × R) it, holds,

< χt, ϕt >=< χ0, ϕ0 > +

∫ t

0

< χ, ∂tϕ+ div(ϕb) > dr

+

∫ t

0

< χ,∇ϕ > dBr +

∫ t

0

< χ,∆ϕ > dr −
∫

[0,t]×Rd×R
∂ξϕdm

with χ0 = 1u0<ξ − 1ξ<0.
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The function is called kinetic solution.
We observe that Stratonovich formulation is

< χt, ϕt >=< χ0, ϕ0 > +

∫ t

0

< χ, ∂tϕ+ div(ϕb) > dr

+

∫ t

0

< χ,∇ϕ > ◦dBr +

∫
[0,t]×Rd×R

∂ξϕdm

Main result

The main result in that paper is the following theorem.

Theorem 5.2.3. We suppose that b ∈ L∞loc(R, L∞(Rd))∩L1
loc(R,W 1

loc(Rd))
and divb ∈ Lp(Rd, L∞loc(R)) for some p > d. Then for any initial con-
dition u1

0, u
2
0 ∈ L1 ∩ L∞(Rd) the two corresponding entropy solution

u1 and u2 satisfy

E
∫
|u1 − u2| dx ≤ C

∫
|u1

0 − u2
0|dx

for any t ∈ [0, T ].

Proof. See [49].

Example 5.2.4. We consider the case

b(x, u) = 2sig(x)min(R,
√
|x|)u.

for R > 0 and the initial condition u0 = 1[0,t]. There are several
entropy solutions of (5.19), including

u1(t, x) =


1 if 0 ≤ x ≤ (

t

2
+ 1)2

0 otherwise .

u2(t, x) =


1 if − (

t

2
)2 ≤ x ≤ (

t

2
+ 1)2

0 otherwise .

We observe that b satisfies the conditions of the theorem 5.2.3.
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5.2.2 (2x 2) hyperbolic systems of conservation
law

In this subsection we follow Olivera in [82]. We consider the following
systems of conservation law

∂tv(t, x) +Div
(
f(v)

)
= 0

∂tv(t, x) +Div(vu) = 0 .

(5.21)

We point that in the L1 ∩ L∞ setting this systems ill-posedness
since the classical DiPerna-Lions-Ambrossio theory of uniqueness of
distributional solutions for transport/ continuity equation does not
apply when the drift has L1 ∩ L2 regularity.

We study the influence of the noise in the hyperbolic systems
(5.21). More precisely, we consider following stochastic systems of
conservation law

∂tv(t, x) +Div
(
F (v(t, x)

)
= 0 ,

∂tu(t, x) +Div
(
(u+

dBt
dt

) · u(t, x)
)

= 0 ,

v|t=0 = v0, ut=0 = u0 .

(5.22)

We show the existence and uniqueness of entropy-admissible so-
lutions for the stochastic systems of conservation law (5.22)

Hypothesis

We assume the following conditions

Hypothesis 5.2.5. The flux F satisfies

F ∈ C1 (5.23)

and the initial condition holds

v0 ∈ L∞(R) ∩ L1(R), u0 ∈ L2(R) ∩ L1(R). (5.24)
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Definition of the Solution.

Definition 5.2.6. Let η ∈ C1(R) be a convex function. If there exist
q ∈ CR suct that for all v

η′(v)F ′(v) = q′(v)

then η, q is called an entropy-entropy flux pair of the conservation law

∂tv(t, x) +Div
(
f(v)

)
= 0, v(t, 0) = v0(x).

Definition 5.2.7. The stochastic process v ∈ L∞([0, T ]× R)
∩L∞([0, T ], L1(R)) and u ∈ L∞([0, T ], L2(Ω×R))∩L1([0, T ]×Ω×R)
are called a entropy weak solution of the stochastic hyperbolic systems
(4.5) when:

• v is entropy solution of the conservation law

∂tv(t, x) +Div
(
F (v)

)
= 0, v(t, 0) = v0(x).

That is, if for every entropy flux pair η, q we have

∂tη(v) +Div(q(v)) ≤ 0

in the sense of distribution.

• For any ϕ ∈ C∞0 (R), the real valued process
∫
u(t, x)ϕ(x)dx has

a continuous modification which is an Ft-semimartingale, and
for all t ∈ [0, T ], we have P-almost surely∫

R
u(t, x)ϕ(x)dx =

∫
R
u0(x)ϕ(x) dx

+

∫ t

0

∫
R
u(s, x) v(t, x)∂xϕ(x) dxds

+

∫ t

0

∫
R
u(s, x) ∂xϕ(x) dx ◦dBs .

(5.25)
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Existence and Uniqueness

Lemma 5.2.8. Assume that hypothesis 5.2.5 holds. Then there exists
entropy-weak solution of the hyperbolic systems (5.22).

Proof. Step 1: Conservation law . According to the classical theory
of conservation law, see for instance [28], we have that there exist a
uniqueness entropy solution of the conservation law

∂tv(t, x) +Div
(
F (v)

)
= 0, v(t, 0) = v0(x).

If the the initial condition v0 ∈ L1(R) ∩ L∞(R) then the solution
v ∈ L∞([0, T ]× R) ∩ L∞([0, T ], L1(R)).

Step 2: Primitive of v. It easy to see that for any test function
ϕ ∈ C∞0 (R) we have

∫
R
v(t, x)ϕ(x)dx =

∫
R
v0(x)ϕ(x) dx+

∫ t

0

∫
R
F (v(s, x))∂xϕ(x) dxds.

Let {ρε}ε be a family of standard symmetric mollifiers. Then we
get ∫

R
v(t, y)ρε(x− y)dy =

∫
R
v0(y)ρε(x− y)dy

+

∫ t

0

∫
R
F (v(s, y))∂yρε(x− y)dyds.

Integrating we have∫ z

0

vε(t, x)dx =

∫ z

0

vε0(x)dz +

∫ t

0

(F (v) ∗ ρε)(z)ds.

We denoted v̄ε(t, x) :=
∫ z

0
vε(t, x)dx.

Step 3: Regularization. We define the family of regularized coef-
ficients given by

vε(t, .) = (v(t, x) ∗x ρε)(t, .).
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Clearly we observe that, for every ε > 0, any element vε, uε0 are
smooth (in space) and with bounded derivatives of all orders. We
consider the solution of

du
ε(t, x) +∇uε(t, x) ·

(
vε(t, x)dt+ ◦dBt

)
+ divbε(x)uε(t, x)dt = 0 ,

uε
∣∣
t=0

= uε0.

(5.26)
Following the classical theory of H. Kunita [62, Theorem 6.1.9] we
get

uε(t, x) = uε0(X−1,ε
t (t, x))JX−1,ε

t (t, x),

is the unique solution to the regularized equation (5.26), where

dXt = vε(t,Xt) dt+ dBt , X0 = x .

Step 4: Itô Formula . Applying the Itô formula to v̄ε(t,X
ε
t ) we

obtain

v̄ε(t,X
ε
t ) =

∫ Xεt

0

uε0(x)dx+

∫ t

0

(F (v) ∗ ρε)(s,Xε
s)ds+

∫ t

0

v2
ε(s,Xε

s)ds

+

∫ t

0

vε(s,X
ε
s)dBs +

1

2

∫ t

0

(∂xvε
)
(s,Xε

s)ds.

Step 5: Boundeness. Now, we have

‖v̄ε(t,Xε
t )‖L∞(Ω×[0,T ]×R) ≤ ‖v‖L∞([0,T ],L1(R)),

‖
∫ Xεt

0

vε0(x)dx‖L∞(Ω×[0,T ]×R) ≤ ‖v0‖L1(R),

‖
∫ t

0

(F (v) ∗ ρε)(s,Xε
s)ds‖L∞(Ω×[0,T ]×R) ≤ C‖F (v)‖L∞ ,
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‖
∫ t

0

v2
ε(s,Xε

s)ds‖L∞(Ω×[0,T ]×R)C ≤ ‖v‖L2([0,T ],L∞(R)),

Step 6 : Estimation on the Jacobain.
We denote

E
(∫ t

0

vε(s,Xs)dBs

)
= exp

{∫ t

0

vε(s,X
ε
s)dBs −

1

2

∫ t

0

v2
ε (s,Xε

s)ds

}
,

We note that ∂xXt verifies

∂xXt = exp

{∫ t

0

(∂xvε)(s,Xs) ds

}
.

From steps 4-5 we deduce

E|∂xXt|−1 ≤ CE
(∫ t

0

vε(s,Xs)dBs

)
.

We observe that the processes E
(∫ t

0
vε(s,Xs)dBs

)
, is martingale

with expectation equal to one. Hence,

E|∂xXt|−1 ≤ C.

Step 7: Passing to the limit .
Making the change of variables y = X−1,ε

t (x) we deduce

∫
R
E[|uε(t, x)|2] dx =

∫
R
|uε0(y)|2E|JXε

t |−1dy.

From last step we have∫
R
E[|uε(t, x)|2] dx ≤ C. (5.27)

Therefore, the sequence {uε}ε>0 is bounded in L∞([0, T ], L2(Ω×
R)) ∩ L1([0, T ] × Ω × R). Then there exists a convergent subse-
quence, which we denote also by uε, such that converge weakly in
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L∞([0, T ], L2(Ω × R)) to some process u ∈ L∞([0, T ], L2(Ω × R)) ∩
L1([0, T ]× Ω× R).

Now, if uε is a solution of (5.26), it is also a weak solution, that
is, for any test function ϕ ∈ C∞0 (R), uε satisfies :∫

R
uε(t, x)ϕ(x)dx =

∫
R
uε0(x)ϕ(x) dx

+

∫ t

0

∫
R
uε(s, x) vε(s, x)∂xϕ(x) dxds

+

∫ t

0

∫
R
uε(s, x) ∂xϕ(x) dx dBs +

1

2

∫ t

0

∫
R
uε(s, x) ∂2

xϕ(x) dx ds .

Thus, for prove existence of (5.22) is enough to pass to the limit in
the above equation along the convergent subsequence found. This is
made through of the same arguments of [40, theorem 15].

Theorem 5.2.9. Under the conditions of hypothesis 5.2.5, unique-
ness holds for entropy -weak solutions of the hyperbolic problem (5.22).

Proof. See [82].

One Example.

Consider the transport (or transportation) equations in which the
continuity equation is adjoined with the inviscid Burgers equation

∂tv(t, x) +Div
(1

2
v2(t, x)

)
= 0 ,

∂tu(t, x) +Div
(
(v(t, x)u(t, x)

)
= 0 ,

v|t=0 = v0, ut=0 = u0 ,

(5.28)

This transport equations model the dynamics of particles that
adhere to one another upon collision and has been studied as a simple
cosmological model for describing the nonlinear formation of large-
scale structures in the universe. We point that in [56] and [94] the
authors proved existence of weak solutions via δ− shock for Riemann
initial condition.
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5.3 More results

• On the the effect of noise in Schrodinger equation we refer to
the works of A. de Bouard and Debussche in [17], Debussche
and Tsutsumi in [27].

• On regularization by noise in Schrodinger equation and Korteweg-
de Vries (KdV) see Chuk and Gubinelli in [14] and [15].

• On the effect on noise in Euler equation and related equations
see Falndoli, Gubinelli and Priola in [41], Barbatoa, Bessaihb
and Ferrario in [6], D. Crisan, F. Flandoli and D. Holm in [22].

• Results for the 1-dimensional Vlasov-Poisson equation see De-
larue, Flandoli, Vincenzi in [32].

• Regularization in non-local conservation law see Olivera in [83].
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