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Preface

The purpose of this book is to present a gentler introduction to
our method of studying continuity properties of Lyapunov exponents
of linear cocycles. To that extent, we chose to illustrate this method
in the simplest setting that is still both relevant in dynamical systems
and applicable to mathematical physics problems.

In ergodic theory, a linear cocycle is a skew-product map acting
on a vector bundle, which preserves the linear bundle structure and
induces a measure preserving dynamical system on the base. The
vector bundle is usually assumed to be trivial; the base dynamics
is an ergodic measure preserving transformation on some probability
space, while the fiber action is induced by a matrix-valued measurable
function on the base. Lyapunov exponents quantify the average expo-
nential growth of the iterates of the cocycle along invariant subspaces
of the fibers, which are called Oseledets subspaces.

An important class of examples of linear cocycles are the ones
associated to a discrete, one-dimensional, ergodic Schrödinger opera-
tor. Such an operator is the discretized version of a quantum Hamil-
tonian. Its potential is given by a time-series, that is, it is obtained
by sampling an observable (called the potential function) along the
orbit of an ergodic transformation.

The study of the continuity properties of the Lyapunov exponents
as the input data (e.g. the fiber dynamics) is perturbed constitutes
an active research topic in dynamical systems, both in Brazil and
elsewhere.

A general research area in dynamical systems is the study of sta-
tistical properties like large deviations, for an observable sampled

1
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2 PREFACE

along the iterates of the system. This theory is well developed for
rather general classes of base dynamical systems. However, when it
comes to the dynamics induced by a linear cocycle on the projective
space, this topic is much less understood. In fact, even when the base
dynamics is a Bernoulli shift, this problem is not completely solved.

Both the continuity properties of the Lyapunov exponents and the
statistical properties of the iterates of a linear cocycle are important
tools in the study of the spectra of discrete Schrödinger operators in
mathematical physics.

In our recent research monograph [16], we established a connec-
tion between these two research topics in dynamical systems. To wit,
we proved that if a linear cocycle satisfies certain large deviation type
(LDT) estimates, which are uniform in the data, then necessarily the
corresponding Lyapunov exponents (LE) vary continuously with the
data. Furthermore, this result is quantitative, in the sense that it
provides a modulus of continuity which depends on the strength of
the large deviations. We referred to this general result as the abstract
continuity theorem (ACT). We then showed that such LDT estimates
hold for certain types of linear cocycles over Markov shifts and over
toral translations, thus ensuring the applicability of the general con-
tinuity result to these models.

The setting of the abstract continuity theorem (ACT) chosen for
this book consists of SL2(R)-valued linear cocycles (i.e. linear cocy-
cles with values in the group of two by two real matrices of determi-
nant one).

The proof of the ACT consists of an inductive procedure that es-
tablishes continuity of relevant quantities for finite, larger and larger
number of iterates of the system. This leads to continuity of the
limit quantities, the Lyapunov exponents. The inductive procedure
is based upon a deterministic result on the composition of a long
chain of linear maps, called the Avalanche Principle (AP).

Furthermore, we establish uniform LDT estimates for SL2(R)-
valued linear cocycles over a Bernoulli shift and over a one dimen-
sional torus translation. The ACT is then applicable to these models.

In this setting, the formulation of the statements is significantly
simplified and many arguments become less technical, while retaining
most features present in the general setup.
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PREFACE 3

While all results described in this book are consequences of their
more general counterparts obtained elsewhere, in several instances,
the formulation or proof presented here are new. For example: the
formulation of the ACT in Section 3.2, the proof of the Hölder conti-
nuity of the Oseledets splitting in Section 3.4, the formulation of the
LDT for quasi-periodic cocycles in Section 5.1, the proof of Sorets-
Spencer theorem in Section 5.6, appear in print for the first time in
this form.

One of the objectives of this book is to popularize these types of
problems with the hope that the theory grows to become applicable to
other types of systems, besides random and quasi-periodic cocycles.

The target audience we had in mind while writing this book was
postgraduate students, as well as researchers with interests in this
subject, but not necessarily experts in it. As such, we tried to make
the presentation self contained modulo graduate textbooks on various
topics.

The reader should be familiar with basic notions in ergodic the-
ory, probabilities, Fourier analysis and functional analysis, usually
provided by standard postgraduate courses on these subjects.

Two reference textbooks to keep handy are M. Viana and K.
Oliveira [61] on ergodic theory and M. Viana [60] on Lyapunov expo-
nents. They cover most of what one needs to know for the first three
chapters of this book. Familiarity with Markov chains is helpful in
understanding the approach used in the fourth chapter, and for that,
D. Levin and Y. Peres [42, Chapter 1] suffices. Finally, the last chap-
ter requires a nontrivial amount of complex and harmonic analysis
tools, for which we recommend T. Gamelin [23] and C. Muscalu and
W. Schlag [45, Chapters 1-3]. More precise references are provided
within each chapter.

The book is organized as follows.
In Chapter 1 we review basic notions in ergodic theory and we

introduce linear cocycles and Lyapunov exponents. We end the chap-
ter with a discussion of some parallels between ergodic theorems and
limit theorems in probabilities. These types of analogies will prove
important all throughout this book.

In Chapter 2 we formulate the avalanche principle, describe the
needed geometrical considerations and present its proof.
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4 PREFACE

In Chapter 3 we describe our version of large deviations estimates
then formulate and prove the abstract continuity theorem for the
Lyapunov exponent and the Oseledets splitting.

In Chapter 4 we derive a uniform large deviation estimate for
linear cocycles over the Bernoulli shift. The ACT is then applicable
and it implies the continuity of the Lyapunov exponent for this model.
We also present an adaptation of the original argument of Le Page
for the continuity of the LE, without large deviations.

In Chapter 5 we derive a uniform large deviation estimate for
linear cocycles over the one dimensional torus translation, assum-
ing that the translation frequency satisfies some generic arithmetic
assumptions and that the cocycles depend analytically on the base
point. The ACT is then also applicable to this model.

In both Chapter 4 and Chapter 5 we describe the applicability of
these results to Schrödinger cocycles.

All chapters end with bibliographical notes summarizing relevant
related results.

Furthermore, all chapters contain exercises, which have two func-
tions. The statements formulated in each exercise are needed in the
arguments. Moreover, they are meant to help the reader practise her
growing familiarity with the subject matter.

These notes, as well as the the idea of offering an advanced course
in the 31st Colóquio Brasileiro de Matemática, grew out of our res-
pective seminar presentations in Lisbon and Rio de Janeiro, during
the last few months.

The first author would like to thank his colleagues in Lisbon, João
Lopes Dias, José Pedro Gaivão and Telmo Peixe, for attending talks
on this subject and for their suggestions.

The second author would like to thank students and postdocs at
IMPA and PUC-Rio, including Jamerson Douglas Bezerra, Catalina
Freijo, Xiaochuan Liu, Karina Marin, Mauricio Poletti, Adriana Sán-
chez and Elhadji Yaya Tall. His interaction with them lead to a sim-
pler formulation of the ACT and provided the motivation for taking
on the task of finding a less technical approach to our method.

The first author was partially supported by National Funding
from FCT-Fundação para a Ciência e a Tecnologia, under the project:
UID/ MAT/04561/2013.
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Part of this work was performed while the second author was
a CNPq senior postdoctoral fellow at IMPA, under the CNPq grant
110960/2016-5. He is grateful to the host institution and to the grant
awarding institution for their support.

Special thanks are due to Teresa and Jaqueline for their help and
patience during the writing of this book.
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Chapter 1

Linear Cocycles

1.1 The definition and examples of ergodic
systems

Given a probability space (X,F, µ), a measure preserving transfor-
mation is an F-measurable map T : X → X such that

µ(T−1(A)) = µ(A), for all A ∈ F.

A measure preserving dynamical system (MPDS) is any triple (X,µ, T )
where (X,µ) is a probability space (the σ-field F is implicit to X)
and T : X → X is a measure preserving transformation.

We refer to elements of X as phases. The sequence of iterates
{Tnx}n≥0 is called the orbit of the phase x.

Definition 1.1. We say that the MPDS (X,µ, T ) is ergodic if there is
no T -invariant measurable set A = T−1(A) such that 0 < µ(A) < 1.

Definition 1.2. We say that the MPDS (X,µ, T ) is mixing when for
all A,B ∈ F,

lim
n→+∞

µ(A ∩ T−n(B)) = µ(A)µ(B) .

Mixing MPDS are always ergodic, but the converse is not true in
general.

7



i
i

“notes” — 2017/5/29 — 19:08 — page 8 — #10 i
i

i
i

i
i

8 [CAP. 1: LINEAR COCYCLES

Let T = R/Z be the one dimensional torus. When convenient, we
identify the torus T = R/Z (an additive group) with the unit circle
S1 ⊂ C (a multiplicative group) via the map x + Z 7→ e(x) := e2πix,
but we maintain the additive notation, e.g. we write x + y (mod 1)
instead of e(x)e(y).

For d ≥ 1, let Td = (R/Z)d be the d-dimensional torus. The
normalized Haar measure denoted by |·| on the σ-field F of Borel sets
determines a probability space (Td,F, |·|).

We mention below a few classes of MPDS on the torus.

Example 1.1 (toral translations). Given ω ∈ Rd, the translation
map T : Td → Td, Tx := x+ω (mod 1), preserves the Haar measure.
This MPDS is ergodic if and only if the components of ω are rationally
independent. Toral translations are never mixing.

Example 1.2 (toral endomorphisms). Given a matrixM ∈ GL(d,Z),
the endomorphism T : Td → Td, Tx := M x (mod 1), preserves the
Haar measure. The endomorphism T is ergodic if and only if the
spectrum of M does not contain any root of unity. Ergodic toral
automorphisms are always mixing.

The composition of a toral endomorphisms with a translation is
called an affine endomorphism. This provides another class of MPDS
on the torus. See [62] for the characterization of the ergodic properties
of affine endomorphisms.

Let Σ be a compact metric space and consider the space of se-
quences X = ΣZ. The (two-sided) shift is the homeomorphism
T : X → X defined by Tx := {xn+1}n∈Z for x = {xn}n∈Z. Denote
by Prob(Σ) the space of Borel probability measures on Σ.

Example 1.3 (Bernoulli shifts). Given µ ∈ Prob(Σ), the shift map
T : X → X preserves the product probability measure µZ. The
MPDS (X,µZ, T ) is called a Bernoulli shift. Bernoulli shifts are er-
godic and mixing.

A stochastic matrix is any square matrix P = (pij) ∈ Matm(R)
such that pij ≥ 0 for all i, j = 1, . . . ,m and

∑m
i=1 pij = 1 for all

j = 1, . . . ,m. A stochastic matrix P is called primitive if there exists

n ≥ 1 for which the power matrix Pn = (p
(n)
ij ) has all entries strictly

positive, i.e. p
(n)
ij > 0 for i, j = 1, . . . ,m.
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[SEC. 1.2: THE ADDITIVE AND SUBADDITIVE ERGODIC THEOREMS 9

A vector q = (q1, . . . , qm) with non-negative entries qj ≥ 0 such
that

∑m
j=1 qj = 1 is called a probability vector.

A probability vector q is said to be P -stationary if P q = q, i.e.
qi =

∑m
j=1 pij qj for all i = 1, . . . ,m.

Example 1.4 (Markov shifts of finite type). Given a pair (P, q)
consisting of a stochastic matrix P ∈ Matm(R) and a P -stationary
probability vector q, consider the space of sequences X = ΣZ over
the finite alphabet Σ = {1, . . . ,m} and the Σ-valued random process

ξn{xj}j∈Z := xn

defined over X.
Then there is a unique probability measure PP,q over the Borel

σ-algebra of X such that

(a) PP,q[ ξ0 = i ] = qi for i = 1, . . . ,m,

(b) PP,q[ ξn = i | ξn−1 = j ] = pij for all i, j = 1, . . . ,m,.

The (two-sided) shift T : X → X preserves the measure PP,q and
the MPDS (X,PP,q, T ) is called a Markov shift of finite type.

The support of the measure PP,q is the following subspace of
admissible sequences

X(P ) := { {xj}j∈Z ∈ X : pxjxj−1 > 0 for all j ∈ Z}

known as a subshift of finite type.
The system (X,PP,q, T ) is mixing if and only if P is primitive.

1.2 The additive and subadditive ergodic
theorems

Given a probability space (X,µ), we denote by L1(X,µ) the space of
measurable functions ϕ : X → R that are absolutely integrable:

Eµ(|ϕ|) :=

∫
X

|ϕ| dµ < +∞ .

These functions will be called observables.
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10 [CAP. 1: LINEAR COCYCLES

A simplified version of the Birkhoff (additive) ergodic theorem
(BET) reads as follows.

Theorem 1.1. Given an ergodic MPDS (X,µ, T ), for any observable
ϕ and for µ almost every point x ∈ X,

lim
n→+∞

1

n

n−1∑
j=0

ϕ(T jx) =

∫
X

ϕdµ .

In other words, the additive ergodic theorem says that given an
observable ϕ, if we denote by

Snϕ(x) :=

n−1∑
j=0

ϕ(T jx)

the corresponding Birkhoff sums, then a typical Birkhoff average
1
nSnϕ(x) converges to the space average of ϕ.

The subadditive ergodic theorem of Kingman generalizes Birkhoff’s
ergodic theorem. We formulate it below in a slightly simplified way.

Theorem 1.2. Let (X,µ, T ) be an ergodic MPDS. Given a sequence
of measurable functions fn : X → R such that f1 ∈ L1(X,µ) and

fn+m ≤ fn + fm ◦ Tn for all n,m ≥ 0 ,

the sequence {
∫
fn dµ}n≥0 is subadditive, i.e.,∫

X

fn+m dµ ≤
∫
X

fn dµ+

∫
X

fm dµ for all n,m ≥ 0 ,

and for µ-a.e. x ∈ X, we have

lim
n→∞

1

n
fn(x) = lim

n→∞

1

n

∫
X

fn dµ = inf
n≥1

1

n

∫
X

fn dµ <∞ .

The proofs of these fundamental theorems in ergodic theory can
be found in most monographs on the subject (see for instance [61]).
We would also like to mention the simple proofs of Y. Katznelson
and B. Weiss [33] that use a stopping time argument which was later
employed in other settings (e.g. [19, 32] and [16, Section 3.2]) as well.
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1.3 Linear cocycles and the Lyapunov
exponent

Let (X,µ, T ) be an MPDS which throughout this book is assumed to
be ergodic. A linear cocycle over (X,µ, T ) is a skew-product map

FA : X × R2 → X × R2

given by
X × R2 3 (x, v) 7→ (Tx,A(x)v) ∈ X × R2 ,

where
A : X → SL2(R)

is a measurable function.

Hence T is the base dynamics while A defines the fiber action.
Since the base dynamics will be fixed, we may identify the cocycle
with its fiber action A.

The forward iterates FnA of a linear cocycle FA are given by
FnA(x, v) = (Tnx,A(n)(x)v), where

A(n)(x) := A(Tn−1x) . . . A(Tx)A(x) (n ∈ N) .

Exercise 1.5. Show that if g ∈ SL2(R), then ‖g‖ ≥ 1 and ‖g−1‖ =
‖g‖. Recall that ‖·‖ refers to the operator norm of a matrix.

A cocycle A is said to be µ-integrable if∫
X

log‖A(x)‖ dµ(x) < +∞ .

Note that since the matrix A(x) ∈ SL2(R), its norm is ≥ 1.
Because norms behave sub-multiplicatively with matrix products,

the sequence of functions

fn(x) := log‖A(n)(x)‖

is subadditive.
Thus Kingman’s ergodic theorem is applicable and we have the

following.



i
i

“notes” — 2017/5/29 — 19:08 — page 12 — #14 i
i

i
i

i
i

12 [CAP. 1: LINEAR COCYCLES

Definition 1.3. Given a µ-integrable cocycle A, the µ-a.e. limit

L(A) := lim
n→∞

1

n
log‖A(n)(x)‖

exists and it is called the (maximal) Lyapunov exponent (LE) of A.
Moreover,

L(A) = lim
n→∞

∫
X

1

n
log‖A(n)(x)‖dµ(x) = inf

n≥1

∫
X

1

n
log‖A(n)(x)‖dµ(x).

From the point of view of the base dynamics, two important
classes of linear cocycles are the quasi-periodic and the random co-
cycles, which we define below.

Example 1.6. A quasi-periodic cocycle is any cocycle A : Td →
SL2(R) over an ergodic torus translation T : Td → Td.

If Tx := x+ω (mod 1) then ω ∈ Rd is called the frequency vector
of the cocycle.

Example 1.7. Let Σ be a compact metric space and let µ be a
probability measure on Σ. Let (X,µZ, T ) be the Bernoulli shift, where
X = ΣZ is the space of sequences in Σ.

A function Ã : X → SL2(R) is called a random Bernoulli cocycle
if Ã depends only on the first coordinate x0, that is, if

Ã{xn}n∈Z = A(x0)

for some measurable function A : Σ→ R.

From the point of view of the fiber action, an important example
of a linear cocycle is the Schrödinger cocycle, which appears in the
study of the discrete, ergodic operators in mathematical physics. We
briefly introduce these concepts (see [13] for more on this subject).

Example 1.8. Consider an invertible MPDS (X,µ, T ) and a bounded
observable ϕ : X → R. Let x ∈ X be any phase. At every site n on
the integer lattice Z we define the potential

vn(x) := ϕ(Tnx) .
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The discrete Schrödinger operator with potential n 7→ vn(x) is
the operator H(x) defined on l2(Z) as follows.

If ψ = {ψn}n∈Z ∈ l2(Z), then[
H(x)ψ

]
n

:= −(ψn+1 + ψn−1) + vn(x)ψn for all n ∈ Z .

Consider the Schrödinger (i.e. eigenvalue) equation

H(x)ψ = E ψ ,

for some energy (i.e eigenvalue) E ∈ R and state (i.e. eigenvector)
ψ = {ψn}n∈Z.

Define the associated Schrödinger cocycle as the cocycle (T, AE),
where

AE(x) :=

[
ϕ(x)− E −1

1 0

]
∈ SL2(R) .

Note that the Schrödinger equation above is a second order finite
difference equation. An easy calculation shows that its formal solu-
tions are given by[

ψn+1

ψn

]
= A

(n+1)
E (x) ·

[
ψ0

ψ−1

]
,

where for all n ∈ N, A
(n)
E (x) is the n-th iterate of AE(x).

We will return to this example in each of the next chapters, show-
ing how the results obtained are applicable to Schrödinger cocycles.

1.4 Some probabilistic considerations

Consider a scalar random process, i.e. a sequence ξ0, ξ1, . . . , ξn−1, . . .
of random variables with values in R, and denote by

Sn :=

n−1∑
j=0

ξj

the corresponding additive (sum) process.
The strong law of large numbers says that if the random variables

defining the process are independent, identically distributed (i.i.d.)
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14 [CAP. 1: LINEAR COCYCLES

and absolutely integrable, then the average process converges almost
surely:

1

n
Sn → E(ξ0) =

∫
x dµ(x) as n→∞ ,

where µ ∈ Prob(R) is their common probability distribution.
Given an MPDS (X,µ, T ), any observable ϕ : X → R determines

a sequence of real valued random variables

ξn := ϕ ◦ Tn . (1.1)

These random variables are identically distributed and absolutely
integrable, but in general they are not independent.

Let us note that any i.i.d. sequence {ξn}n of random variables can
be realized as the type of process given in (1.1), with (X,µ, T ) being
a Bernoulli shift and ϕ being an observable on the space of sequences
X that depends only on the zeroth coordinate of the sequence.

Birkhoff’s ergodic theorem says that even in the absence of in-
dependence, a very weak form thereof, the ergodicity of the system,
ensures the convergence of the time averages in (1.1) to the space
average. Thus Birkhoff’s ergodic theorem can be seen as the genera-
lization and the analogue in dynamical systems of the strong law of
large numbers from probabilities.

Let us now consider a sequence M0,M1, . . . , Mn−1, . . . of i.i.d.
random variables with values in SL2(R). Denote by

Π(n) := Mn−1 · . . . ·M1 ·M0

the corresponding multiplicative (product) process.
The Furstenberg-Kesten theorem,1 the analogue of the strong law

of large numbers for multiplicative processes, says that the following
geometric average of the process converges almost surely:

1

n
log ‖Π(n)‖ → L(µ) as n→∞,

where µ ∈ Prob(SL2(R)) is the common probability distribution of
the random variables. The a.s. limit L(µ) is called the (maximal)
Lyapunov exponent of the process.

1The setting of Furstenberg-Kesten’s theorem is actually a bit more general:
instead of i.i.d., the sequence of random matrices is assumed metrically transitive
and stationary (see [20]).
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Furthermore, any absolutely integrable linear cocycle over an er-
godic MPDS (X,µ, T ), i.e. any matrix-valued observable A : X →
SL2(R), determines the sequence of random matrices Mn := A ◦ Tn.
Note that the corresponding multiplicative process is exactly A(n)(x),
the n-th iterate of the cocycle A. Moreover, the sequence {Mn} is
metrically transitive and stationary, but in general not independent.
An independent multiplicative process can be realized as a random
Bernoulli cocycle.

The Furstenberg-Kesten theorem, or the more general Kingman’s
ergodic theorem, are applicable and ensure the existence of the max-
imal Lyapunov exponent of this multiplicative process (or equiva-
lently, of the linear cocycle).

These analogies with limit theorems in probabilities will be ex-
panded and will prove important in the next chapters of this book.

1.5 The multiplicative ergodic theorem

Let Gr1(R2) denote the Grassmannian of 1-dimensional linear sub-
spaces (lines) ` ⊂ R2. In the context of SL2(R)-valued cocycles, the
Oseledets Multiplicative Ergodic Theorem (MET) for invertible er-
godic transformations can be formulated as follows (see [60, Theorem
3.20] for the proof).

Theorem 1.3. Let (X,µ, T ) be an invertible, ergodic MPDS.
Let FA : X × R2 → X × R2, FA(x, v) = (Tx,A(x) v), where

A : X → SL2(R) is a µ-integrable linear cocycle with L(A) > 0.
There exists a measurable decomposition R2 = E+(x) ⊕ E−(x),

with E± : X → Gr1(R2) measurable, such that for µ-almost every
x ∈ X,

(a) A(x) E±(x) = E±(Tx) ,

(b) lim
n→±∞

1

n
log‖A(n)(x) v‖ = L(A), for all v 6= 0 in E+(x),

(c) lim
n→±∞

1

n
log‖A(n)(x) v‖ = −L(A), for all v 6= 0 in E−(x),

(d) lim
n→±∞

1

n
log
∣∣sin](E+(Tnx), E−(Tnx))

∣∣ = 0.
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16 [CAP. 1: LINEAR COCYCLES

Definition 1.4. By the MET there exists a full measure T -invariant
set of points such that statements (a)-(d) in the MET hold. The
elements of this set are called Oseledets regular points.

1.6 Bibliographical notes

All the background in Ergodic Theory reviewed here (Birkhoff, Kig-
man and Oseledets theorems) can be found in the book of K. Oliveira
and M. Viana [61]. The book of M. Viana [60] gives the reader a broad
perspective on the on the specific topic of Lyapunov exponents.
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Chapter 2

The Avalanche
Principle

2.1 Introduction and statement

Given two sequences of positive real numbers Mn and Nn with geo-
metric growth and a positive real number ε > 0, we will say that Mn

and Nn are ε-asymptotic, and write Mn
ε� Nn, if for all n ≥ 0,

e−nε ≤ Mn

Nn
≤ enε.

Let GLd(R) denote the general linear group of real d×d matrices.
Given g0, g1, . . . , gn ∈ GLd(R), the relation

‖gn−1 · · · g1 g0‖
ε� ‖gn−1‖ · · · ‖g1‖ ‖g0‖

can only hold if some highly non typical alignment between the ma-
trices gi occurs. In fact, typically one has

‖gn−1 · · · g1 g0‖ � e−na ‖gn−1‖ · · · ‖g1‖ ‖g0‖

for some not so small a > 0. This motivates the following definition.

17
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18 [CAP. 2: THE AVALANCHE PRINCIPLE

Definition 2.1. Given matrices g0, g1, . . . , gn−1 ∈ GLd(R), their ex-
pansion rift is the ratio

ρ(g0, g1, . . . , gn−1) :=
‖gn−1 · · · g1 g0‖
‖gn−1‖ · · · ‖g1‖ ‖g0‖

∈ (0, 1].

The Avalanche Principle roughly says that under some general
assumptions the expansion rift of a product of matrices behaves mul-
tiplicatively, in the sense that

ρ(g0, g1, . . . , gn−1)
δ� ρ(g0, g1) · · · ρ(gn−2, gn−1)

for some small positive number δ.

Before formulating it we need to recall some basic concepts and
fix their notations.

Given g ∈ GLd(R) let

s1(g) ≥ s2(g) ≥ . . . ≥ sd(g) > 0

denote the sorted singular values of g. By definition these are the
eigenvalues of the positive definite matrix (g∗g)1/2. The first singular
value s1(g) is the usual operator norm

s1(g) = max
x∈Rd\{0}

‖gx‖
‖x‖

=: ‖g‖.

The last singular value of g is the least expansion factor of g, regarded
as a linear transformation, and it can be characterized by

sd(g) = min
x∈Rd\{0}

‖gx‖
‖x‖

= ‖g−1‖−1.

From the definition of the singular values it follows that

∣∣det g
∣∣ =

d∏
j=1

sj(g).
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Definition 2.2. The gap (or the singular gap) of g ∈ GLd(R) is the
ratio between its first and second singular values,

gr(g) :=
s1(g)

s2(g)
.

Remark 2.1. If g is a matrix in SL2(R), i.e., if det(g) = 1, then
gr(g) = ‖g‖2.

Let P(Rd) denote the projective space, consisting of all lines through
the origin in the Euclidean space Rd. Points in P(Rd) are equivalence
classes x̂ of non-zero vectors x ∈ Rd. We consider the projective
distance δ : P(Rd)× P(Rd)→ [0, 1]

δ(x̂, ŷ) :=
‖x ∧ y‖
‖x‖ ‖y‖

= sin (∠(x, y)) .

For readers not familiar with exterior products, we note that

‖x ∧ y‖ = ‖x‖ ‖y‖ sin (∠(x, y))

is nothing but the area of the parallelogram spanned by the vectors
x and y.

We will denote by g∗ the transpose of a matrix g. The eigenvectors
of g∗g are called singular vectors of g. Each singular vector of g is
hence associated with a singular value of g (eigenvalue of (g∗g)1/2).

Definition 2.3. Given g ∈ GLd(R) such that gr(g) > 1, the most
expanding direction of g is the singular direction v̂(g) ∈ P(Rd) asso-
ciated with the first singular value s1(g) of g. Let v(g) be any of the
two unit vector representatives of the projective point v̂(g). Finally,
we set v̂∗(g) := v̂(g∗) and v∗(g) := v(g∗) .

Any matrix g ∈ GLd(R) maps the most expanding direction of
g to the most expanding direction of g∗, multiplying vectors by the
factor s1(g) = ‖g‖. In other words

g v(g) = ±s1(g) v∗(g).
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20 [CAP. 2: THE AVALANCHE PRINCIPLE

The matrix g also induces a projective map ĝ : P(Rd) → P(Rd),
ĝ(x̂) := ĝx, for which one has

ĝ v̂(g) = v̂∗(g) and ĝ∗ v̂∗(g) = v̂(g). (2.1)

We can now state the Avalanche Principle. See [16, Theorem 2.1]

Theorem 2.1. There are universal constants ci > 0, i = 0, 1, 2, 3,
such that given 0 < κ ≤ c0ε2 and g0, g1, . . . , gn ∈ GLd(R), if

(G) gr(gj) ≥ κ−1 for j = 0, 1, . . . , n− 1,

(A)
‖gj gj−1‖
‖gj‖ ‖gj−1‖ ≥ ε for j = 1, . . . , n− 1,

then, writing gn := gn−1 . . . g1 g0,

(1) max { δ(v̂(gn), v̂(g0)), δ(v̂∗(gn), v̂∗(gn−1)) } ≤ c2 κ ε−1

(2) ρ(g0, g1, . . . , gn−1)
c3κ/ε

2

� ρ(g0, g1) . . . ρ(gn−2, gn−1).

Condition (G) will be referred to as the gap assumption because
it imposes a lower bound on the gaps of the matrices gj . Hypothesis
(A) will be referred to as the angle assumption, a terminology to be
explained later (see Remark 2.2).

Conclusion (1) of the AP says that the most expanding direction
of the product matrix gn is nearly aligned with the corresponding
most expanding direction of the first matrix g0. In other words

δ( v̂(gn), v̂(g0) ) . κ ε−1 (2.2)

It also states a similar alignment between the images of most expand-
ing directions of gn and gn−1.

Conclusion (2) of the AP is equivalent to

‖gn−1 . . . g1 g0‖ ‖gn−2‖ . . . ‖g1‖
‖g1 g0‖ . . . ‖gn−2 gn−1‖

c3κ/ε
2

� 1

which taking logarithms reads as

∣∣ log‖gn−1 . . . g1 g0‖+

n−2∑
j=1

log‖gj‖ −
n−1∑
j=1

log‖gj gj−1‖
∣∣ ≤ c3 κ

ε2
n.
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Finally, dividing by n one gets

1

n
log‖gn‖ = − 1

n

n−2∑
j=1

log‖gj‖+
1

n

n−1∑
j=1

log‖gj gj−1‖+ O(
κ

ε2
) (2.3)

In Chapter 3, formula (2.3) plays a key role in the inductive proof
of the continuity of the LE and the Oseledets decomposition.

2.2 Staging the proof

The projective distance δ : P(Rd)×P(Rd)→ [0, 1] determines a com-
plementary angle function α : P(Rd)× P(Rd)→ [0, 1] defined by

α(x̂, ŷ) :=

∣∣x · y∣∣
‖x‖ ‖y‖

= cos (∠(x, y)) .

The complementarity of the functions δ and α is expressed by (see
2.1)

α(x̂, ŷ)2 + δ(x̂, ŷ)2 = 1.

The following exotic operation will be used to express an upper
bound on the expansion rift of two matrices. Consider the algebraic
operation

a⊕ b := a+ b− a b

on the set [0, 1]. The transformation Φ : ([0, 1],⊕) → ([0, 1], ·),
Φ(x) := 1− x, is a semigroup isomorphism.

Proposition 2.1. For any a, b, c ∈ [0, 1],

(1) 0⊕ a = a,

(2) 1⊕ a = 1,

(3) a⊕ b = (1− b) a+ b = (1− a) b+ a,

(4) a⊕ b < 1 ⇔ a < 1 and b < 1,

(5) a ≤ b ⇒ a⊕ c ≤ b⊕ c,
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22 [CAP. 2: THE AVALANCHE PRINCIPLE

Figure 2.1: Angles α and δ

(6) b > 0 ⇒ (ab−1 ⊕ c) b ≤ a⊕ c,

(7) a c+ b
√

1− a2
√

1− c2 ≤
√
a2 ⊕ b2.

Proof. Items (1)-(5) are left as exercises. Item (6) holds because

(ab−1⊕ c) b = (ab−1 + c− cab−1) b = a+ c b− ca ≤ a+ c− ca = a⊕ c.

For the last item consider the linear function f : R2 → R, f(x, y) :=
a x+ b

√
1− a2 y and the circle quarter Γ = {(c,

√
1− c2) : c ∈ [0, 1]}.

The Lagrange multiplier method shows that max(x,y)∈Γ f(x, y) =√
a2 ⊕ b2, the extreme being attained at the point (c,

√
1− c2) with

c = a/
√
a⊕ b. This proves (7).

Lemma 2.2. Given g ∈ GLd(R) with gr(g) > 1, x̂ ∈ P(Rd) and a
unit vector x ∈ x̂, writing α = α(x̂, v̂(g)) we have

(a) α ≤ ‖gx‖‖g‖ ≤
√
α2 ⊕ gr(g)−2,

(b) δ(ĝ x̂, v̂∗(g)) ≤ α−1gr(g)−1 δ(x̂, v̂(g)),



i
i

“notes” — 2017/5/29 — 19:08 — page 23 — #25 i
i

i
i

i
i

[SEC. 2.2: STAGING THE PROOF 23

(c) The map ĝ : P(Rd)→ P(Rd) has Lipschitz constant . r+
√

1−r2
gr(g) (1−r2)

over the disk {x̂ ∈ P(Rd) : δ(x̂, v̂(g)) ≤ r}.

Proof. Let us denote σ = gr(g). Choose the unit vector v = v(g)
so that ∠(v, x) is non obtuse. Then x = α v + u with u ⊥ v and
‖u‖ =

√
1− α2. Letting v∗ = v∗(g), we have gx = α ‖g‖ v∗+ gu with

gu ⊥ v∗ and ‖gu‖ ≤
√

1− α2 s2(g) =
√

1− α2 ‖g‖/σ.
We define the number 0 ≤ κ ≤ σ−1 so that ‖gu‖ =

√
1− α2 κ ‖g‖.

Hence

α2 ‖g‖2 ≤ α2 ‖g‖2 + ‖gu‖2 = ‖gx‖2 ,

and also

‖gx‖2 = α2 ‖g‖2 + ‖gu‖2 = ‖g‖2
(
α2 + (1− α2)κ2

)
= ‖g‖2

(
α2 ⊕ κ2

)
≤ ‖g‖2

(
α2 ⊕ σ−2

)
,

which proves (a).
Using (a), item (b) follows from

δ(ĝ x̂, v̂∗(g)) =
‖g v ∧ gx‖
‖gv‖ ‖gx‖

=
‖g v ∧ gx‖
‖g‖ ‖gx‖

=
‖v∗ ∧ gx‖
‖gx‖

=
‖gu‖
‖gx‖

≤
√

1− α2 ‖g‖
σ ‖gx‖

≤ δ(x̂, v̂(g))

ασ
.

With the notation introduced in Exercise 2.1, we have the follow-
ing formula for the derivative of the projective map ĝ : P(Rd)→ P(Rd)
(see Exercicise 2.2),

(Dĝ)x̂ v =
g v −

(
g x
‖g x‖ · g v

)
g x
‖g x‖

‖g x‖
=

1

‖g x‖
π⊥gx/‖gx‖(g v).

To prove (c), take unit vectors v = v(g) and v∗ = v∗(g) such that
g v = ‖g‖ v∗. Because v is the most expanding direction of g we have

‖π⊥v∗ ◦ g‖ = ‖g ◦ π⊥v ‖ ≤ s2(g) = σ−1‖g‖.

Given x̂ such that δ(x̂, v̂(g)) ≤ r, and a unit vector x ∈ x̂, by (a)

‖g‖
‖gx‖

≤ 1

α(x̂, v̂(g))
≤ 1√

1− r2
. (2.4)
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Using (b) we get

δ(ĝx̂, v̂∗(g)) ≤ δ(x̂, v̂(g))

α(x̂, v̂(g)) gr(g)
≤ r

σ
√

1− r2
.

Hence

(Dĝ)x v =
1

‖gx‖
π⊥v∗(g v) +

1

‖gx‖

(
π⊥gx/‖gx‖ − π

⊥
v∗

)
(g v) .

Thus, by (2.4) and Exercise 2.1 we have

‖(Dĝ)x‖ ≤
‖g‖

σ ‖gx‖
+
δ(ĝx̂, v̂∗(g)) ‖g‖

‖gx‖

≤ 1

σ
√

1− r2
+

r

σ (1− r2)
=
r +
√

1− r2

σ (1− r2)
.

Let d(û, v̂) denote the Riemannian distance (arclength) on P(Rd).
Since d(û, v̂) = arcsin(δ(û, v̂)), the δ-ball B(v̂, r) := {x̂ : δ(x̂, v̂(g)) ≤
r} = {x̂ : d(x̂, v̂(g)) ≤ arcsin r} is a convex Riemannian disk. By
the Mean Value Theorem, the map ĝ|B(v̂,r) has Lipschitz constant

≤ r+
√

1−r2
σ (1−r2) with respect to the Riemannian distance d. Since δ ≤

d ≤ π
2 δ, the map ĝ|B(v̂,r) has also Lipschitz constant ≤ π

2
r+
√

1−r2
σ (1−r2)

with respect to δ.

Exercise 2.1. Given a unit vector v ∈ Rd, ‖v‖ = 1, denote by
πv, π

⊥
v : Rd → Rd the orthogonal projections πv(x) := (v · x) v, re-

spectively π⊥v (x) := x − (v · x) v. Prove that for all unit vectors
u, v ∈ Rd,

‖π⊥v − π⊥u ‖ = ‖πv − πu‖ = δ(û, v̂).

Hint: Let ρ(x) := ‖πu(x) − πv(x)‖ = ‖(x · u)u − (x · v) v‖. Prove
that max‖x‖=1 ρ(x) = δ(û, v̂) and this maximum is attained along the
plane spanned by u and v.

Exercise 2.2. Given g ∈ GLd(R) and x̂ ∈ P(Rd), x ∈ x̂ a non-zero
representative and v ∈ x⊥ = Tx̂P(Rd), prove that

(Dĝ)x̂ v =
1

‖g x‖
π⊥gx/‖gx‖(g v).
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Next corollary is a reformulation of items (b) and (c) of Lemma 2.2,
which is more suitable for application.

Corollary 2.3. Given g ∈ GLd(R) such that gr(g) ≥ κ−1, define

Σε := {x̂ ∈ P(Rd) : α(x̂, v̂(g)) ≥ ε } = B
(
v̂(g),

√
1− ε2

)
.

Given a point x̂ ∈ Σε,

(a) δ(ĝ x̂, ĝ v̂(g)) ≤ κ
ε δ(x̂, v̂(g)),

(b) The map ĝ|Σε : Σε → P(Rd) has Lipschitz constant . κ
ε2 .

Definition 2.4. Given g, g′ ∈ GLd(R) with gr(g) > 1 and gr(g′) > 1
we define their lower angle as

α(g, g′) := α(v̂∗(g), v̂(g′)).

The upper angle between g and g′ is

β(g, g′) :=
√

gr(g)−2 ⊕ α(g, g′)2 ⊕ gr(g′)−2.

Figure 2.2: The (lower) angle between two matrices

Lemma 2.4. Given g, g′ ∈ GLd(R) if gr(g) > 1 and gr(g′) > 1 then

α(g, g′) ≤ ‖g′ g‖
‖g′‖ ‖g‖

≤ β(g, g′).
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Proof. Let α := α(g, g′) = α(v̂∗(g), v̂(g′)) and take unit vectors v =
v(g), v∗ = v∗(g) and v′ = v(g′) such that v∗ · v′ = α > 0 and
g v = ‖g‖ v∗.

Since ĝ v̂(g) = v̂∗(g), w = g v
‖g v‖ is a unit representative of ŵ =

v̂∗(g). Hence, applying Lemma 2.2 (a) to g′ and ŵ, we get

α(g, g′) ‖g′‖ = α(ŵ, v̂(g′)) ‖g′‖ ≤ ‖ g
′gv

‖gv‖
‖ ≤ ‖g

′g‖
‖g‖

,

which proves the first inequality.

For the second inequality, consider a unit vector w ∈ Rd, repre-
sentative of a projective point ŵ ∈ P(Rd), such that a := w · v =
α(ŵ, v̂(g)) ≥ 0. Then w = a v +

√
1− a2 u, where u is a unit vector

orthogonal to v. It follows that g w = a ‖g‖ v∗ +
√

1− a2 g u with
g u ⊥ v∗, and ‖g u‖ = κ ‖g‖ for some 0 ≤ κ ≤ gr(g)−1. Therefore

‖g w‖2

‖g‖2
= a2 + (1− a2)κ2 = a2 ⊕ κ2 .

and

g w

‖g w‖
=

a√
a2 ⊕ κ2

v∗ +

√
1− a2

√
a2 ⊕ κ2

g u

‖g‖
.

The vector v′ can be written as v′ = α v∗ + w′ with w′ ⊥ v∗ and
‖w′‖ =

√
1− α2. Set now b := α(ĝŵ, v̂(g′)). Then

b =
∣∣ g w
‖g w‖

· v′
∣∣ ≤ αa√

a2 ⊕ κ2
+

√
1− a2

√
a2 ⊕ κ2

∣∣g u · v′∣∣
‖g‖

≤ αa√
a2 ⊕ κ2

+
κ
√

1− a2

√
a2 ⊕ κ2

∣∣ g u
‖g u‖

· w′
∣∣

≤ αa√
a2 ⊕ κ2

+
κ
√

1− a2

√
a2 ⊕ κ2

‖w′‖

=
αa√
a2 ⊕ κ2

+
κ
√

1− a2
√

1− α2

√
a2 ⊕ κ2

≤
√
α2 ⊕ κ2

√
a2 ⊕ κ2

.

We use (7) of Proposition 2.1 on the last inequality. Finally, by
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Lemma 2.2 (a) applied to g′ and the unit vector gw/‖gw‖,

‖g′ g w‖ ≤ ‖g′‖
√
b2 ⊕ gr(g′)−2 ‖g w‖

≤ ‖g′‖ ‖g‖
√
b2 ⊕ gr(g′)−2

√
a2 ⊕ κ2

≤ ‖g′‖ ‖g‖
√
κ2 ⊕ α2 ⊕ gr(g′)−2 ≤ β(g, g′) ‖g′‖ ‖g‖ ,

where on the two last inequalities use items (6) and (5) of Proposi-
tion 2.1.

Remark 2.2. Assumption (A) of the AP is essentially equivalent to

α(gj−1, gj) ≥ ε, for all j = 1, . . . , n− 1,

and it will be referred to as the angle assumption of the AP. In fact,
the above condition is slightly stronger than (A), which in turn im-
plies that

α(gj−1, gj) ≥
ε√

1 + 2 κ2

ε2

, for all j = 1, . . . , n− 1,

Given matrices g0, g1, . . . , gn−1 ∈ GLd(R), for 1 ≤ j ≤ n we write

gj := gj−1 . . . g1 g0.

Lemma 2.5. If gr(gj) > 1 and gr(gj) > 1, for 1 ≤ j ≤ n , then

n−1∏
j=1

α(gj , gj) ≤
‖gn−1 . . . g1 g0‖

‖gn−1‖ . . . ‖g1‖ ‖g0‖
≤
n−1∏
j=1

β(gj , gj).

Proof. By definition gn = gn−1 . . . g1g0, and by convention g0 = I.

Hence ‖gn−1 . . . g1g0‖ =
∏n−1
i=0

‖gi+1‖
‖gi‖ . This implies that

‖gn−1 . . . g1g0‖
‖gn−1‖ . . . ‖g1‖

=

(
n−1∏
i=0

1

‖gi‖

) (
n−1∏
i=0

‖gi+1‖
‖gi‖

)

=

n−1∏
i=0

‖gi gi‖
‖gi‖ ‖gi‖

.

It is now enough to apply Lemma 2.4 to each factor.
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2.3 The proof of the avalanche principle

Let us now prove the AP. By the previous lemma

n−1∏
j=1

α(gj , gj)

β(gj−1, gj)
≤ ρ(g0, . . . , gn−1)∏n−1

j=1 ρ(gj−1, gj)
≤
n−1∏
j=1

β(gj , gj)

α(gj−1, gj)
(2.5)

The strategy for conclusion (2) is to prove that the factors

α(gj , gj)

β(gj−1, gj)
and

β(gj−1, gj)

α(gj , gj)

are all very close to 1, with logarithms of order κ ε−2. From conclusion
(1) of the AP, apllied to the sequence of matrices g0, g1, . . . , gj ,

max
{
δ
(
v∗(gj), v∗(gj−1)

)
, δ
(
v(gj), v(g0)

) }
≤ κ ε−1, (2.6)

for all j = 1, . . . , n. Before proving (1) let us finish the proof of (2).
From (2.6) we get

∣∣log
α(gj , gj)

α(gj−1, gj)

∣∣ ≤ ∣∣α(gj , gj)− α(gj−1, gj)
∣∣

min{α(gj , gj), α(gj−1, gj)}

.
δ(v∗(gj), v∗(gj−1))

ε
.

κ

ε2
.

From the definition of the upper angle β we also have

∣∣log
β(gj , gj)

α(gj , gj)

∣∣ ≤ log

√
1 + 2

κ2

ε2
≤ κ2

ε2
� κ

ε2
.

These relations imply the existence of a universal positive constant
c3 such that

∣∣log
α(gj , gj)

β(gj−1, gj)

∣∣ ≤ ∣∣log
α(gj , gj)

α(gj−1, gj)

∣∣+
∣∣log

α(gj−1, gj)

β(gj−1, gj)

∣∣
.

κ

ε2
+
κ2

ε2
≤ c3

κ

ε2
.
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and ∣∣log
β(gj−1, gj)

α(gj , gj)

∣∣ ≤ ∣∣log
β(gj−1, gj)

α(gj−1, gj)

∣∣+
∣∣log

α(gj−1, gj)

α(gj , gj)

∣∣
.
κ2

ε2
+
κ

ε2
≤ c3

κ

ε2
.

Hence, from (2.5) we infer that

e−c3 κ ε
−2 n ≤ ρ(g0, g1, . . . , gn−1)∏n−1

j=1 ρ(gj−1, gj)
≤ ec3 κ ε

−2 n

which proves conclusion (2) of the AP.

To finish, we prove (1), addressing first the inequality

δ (v(gn), v(g0)) ≤ κ ε−1. (2.7)

Consider the circular sequence of projective maps defined by the ma-
trices

g0, g1, . . . , gn−1, g
∗
n−1, . . . , g

∗
1 , g
∗
0 .

Writing v̂i := v̂(gi) and v̂∗i := v̂∗(gi), we look at the sequence

v̂0
ĝ07→ v̂∗0, v̂1

ĝ17→ v̂∗1, · · · , v̂n−1
ĝn−17→ v̂∗n−1,

v̂∗n−1

ĝ∗n−17→ v̂n−1, · · · , v̂∗1
ĝ∗17→ v̂1, v̂

∗
0

ĝ∗07→ v̂0

as a closed pseudo-orbit for the given circular sequence of maps. To
simplify the notation we will write

gn = g∗n−1, . . . , g2n−2 = g∗1 , g2n−1 = g∗0 ,

v̂n = v̂∗n−1, v̂
∗
n = v̂n−1, . . . , v̂2n−1 = v̂∗0, v̂

∗
2n−1 = v̂0.

We use a shadowing argument (see Figure 2.3) to prove the exis-
tence of a contracting fixed point ṽ ∈ P(Rd), which is κ ε−1-near v0,
of the projective map

̂(gn)∗gn = ĝ2n−1 · · · ĝnĝn−1 · · · ĝ1ĝ0.



i
i

“notes” — 2017/5/29 — 19:08 — page 30 — #32 i
i

i
i

i
i

30 [CAP. 2: THE AVALANCHE PRINCIPLE

Figure 2.3: Shadowing property for contracting projective maps

Since v̂(gn) is the unique contracting fixed point of this map, we must
have ṽ = v̂(gn) and (2.7) follows.

For each i = 0, 1, . . . , 2n− 1 and j = 0, 1, . . . , 2n− i, set

v̂ji := ĝi+j−1 . . . ĝi+1 ĝi v̂i, (2.8)

so that, for each 0 ≤ i ≤ 2n− 1, the sequence of points

vi = v̂0
i 7→ v̂∗i = v̂1

i 7→ v̂2
i 7→ v̂3

i 7→ · · · 7→ v̂2n−i
i

is a true orbit of the given chain of projective maps. By remark 2.2,
instead of (A) we can assume that our sequence of matrices satis-
fies α(gj−1, gj) ≥ ε for all j = 0, 1, . . . , n − 1. This implies that
α(v̂∗i−1, v̂i) ≥ ε, or equivalently δ(v̂i, v̂

∗
i−1) ≤

√
1− ε2, for all i =

0, 1, . . . , 2n− 1. By (a) of Corollary 2.3 we have

δ(v̂1
i , v̂

2
i−1) = δ(ĝiv̂i, ĝiv̂

∗
i−1) ≤ κ ε−1 for all i = 0, 1, . . . , 2n− 1.

Applying item (b) of the same corollary inductively we get (see Fig-
ure 2.4)

δ(v̂j+1
i , v̂j+2

i−1 ) = δ((ĝi+j . . . ĝi) v̂i, (ĝi+j . . . ĝi−1) v̂∗i−1) ≤ (κ ε−1) (κ ε−2)j

for all j = 0, 1, . . . , 2n − i − 1. The details of the inductive veri-
fication of applicability of Corollary 2.3 are left to the reader (see



i
i

“notes” — 2017/5/29 — 19:08 — page 31 — #33 i
i

i
i

i
i

[SEC. 2.3: THE PROOF OF THE AVALANCHE PRINCIPLE 31

Exercise 2.3). Hence

δ(ĝ2nv̂0, v̂0) = δ(v̂2n
0 , v̂1

2n−1) ≤
2n−1∑
i=1

δ(v̂2n−i
i , ˆ̂v2n−i+1

i−1 )

≤ κ ε−1
2n−1∑
i=1

(κ ε−2)2n−i−1 ≤ κ ε−1

1− κ ε−2
. κ ε−1.

v̂0
ĝ0−→ v̂∗0

ĝ1−→ v̂2
0

ĝ2−→ v̂3
0

ĝ3−→ v̂4
0

κ ε−1 κ2 ε−3 κ3 ε−5

v̂1
ĝ1−→ v̂∗1

ĝ2−→ v̂2
1

ĝ3−→ v̂3
1

κ ε−1 κ2 ε−3

v̂2
ĝ2−→ v̂∗2

ĝ3−→ v̂2
2

κ ε−1

v̂3
ĝ3−→ v̂∗3

Figure 2.4: Orbits of the chain of projective maps ĝ0, . . . , ĝn−1

This proves that ĝ2n maps the ball B of radius
√

1− ε2 around v̂0

into itself with contracting Lipschitz factor Lip(ĝ2n|B) ≤ (κ ε−2)2n �
1. Thus, the (unique) fixed point ṽ of the map ĝ2n in the ball B is
κ ε−1 near to v̂0. As explained above, this proves that

δ(v̂(gn), v̂(g0)) . κ ε−1.

The second inequality in (1) reduces to (2.7) if the argument is
applied to the sequence of transpose matrices g∗n−1, . . . , g

∗
1 , g
∗
0 .

Exercise 2.3. Consider the projective points v̂ji defined in (2.8) and
prove that for all i = 0, 1, . . . , 2n− 1 and j = 0, 1, . . . , 2n− i− 1,

δ(v̂j+1
i , v̂j+2

i−1 ) ≤ (κ ε−1) (κ ε−2)j .
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Exercise 2.4. Given g ∈ GLd(R) and û, v̂ ∈ P(Rd), prove that if
ĝ û = v̂ then ĝ∗ (v̂⊥) = û⊥.

The following chain of exercises leads to an inequality (Exer-
cise 2.9) which is needed in Chapter 3. The relative distance between
g, g′ ∈ GLd(R) is defined by

drel(g, g
′) :=

‖g − g′‖
max{‖g‖, ‖g′‖}

.

Notice that this relative distance is not a metric.

Exercise 2.5. For all p, q ∈ Rd \ {0},

‖ p

‖p‖
− q

‖q‖
‖ ≤ max

{
‖p‖−1, ‖q‖−1

}
‖p− q‖ .

Exercise 2.6. For all g1, g2 ∈ GLd(R) and any unit vector p ∈ Rd,

δ( ĝ1p̂, ĝ2p̂ ) ≤ max{‖g1 p‖−1, ‖g2 p‖−1} ‖g1 − g2‖ .

Exercise 2.7. Let (X, d) be a complete metric space, T1 : X → X
a Lipschitz contraction with Lip(T1) < κ < 1, x∗1 = T1(x∗1) a fixed
point, and T2 : X → X any other map with a fixed point x∗2 = T2(x∗2).
Prove that

d(x∗1, x
∗
2) ≤ 1

1− κ
d(T1, T2) ,

where d(T1, T2) := supx∈X d(T1(x), T2(x)).

Consider now the set of normalized positive definite matrices

P := {g ∈ GLd(R) : ‖g‖ = 1, g∗ = g > 0}

and the projection P : GLd(R)→ P, P (g) := g∗ g/‖g‖2.

Exercise 2.8. Show that for all g, h ∈ GLd(R),

1. v̂(g) = v̂(P (g)),

2. drel(P (g), P (h)) ≤ 4 drel(g, h).
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Exercise 2.9. Given g1, g2 ∈ GLd(R), if gr(g1) ≥ 10, gr(g2) ≥ 10
and drel(g1, g2) ≤ 1

80 then

δ ( v̂(g1), v̂(g2) ) ≤ 12 drel(g1, g2) .

Hint: By Exercise 2.8 it is enough to show that given h1, h2 ∈ P, if
gr(h1) ≥ 100, gr(h2) ≥ 100 and drel(h1, h2) ≤ 1

20 then

δ ( v̂(h1), v̂(h2) ) ≤ 3 drel(h1, h2) .

Let p̂0 = v̂(h1), take δ = 1
5 , consider the ball B = Bδ(p̂0) w.r.t. the

metric δ, and establish the following facts:

1. ĥ1(B) ⊆ B (use item (b) of Lemma 2.2 (b))

2. ‖h1p‖ ≥ 1
2 for any unit vector p with p̂ ∈ B,

3. ‖h2p‖ ≥ 1
2 for any unit vector p with p̂ ∈ B,

4. δ(ĥ1 p̂, ĥ2 p̂) ≤ 2 ‖h1 − h2‖ for all p̂ ∈ B (use Exercise 2.6),

5. The projective map ĥ1 has Lipschitz constant ≤ 1
50 on B (use

item (c) of Lemma 2.2),

6. ĥ2(B) ⊆ B (use the two previous items),

7. δ(v̂(h1), v̂(h2)) ≤ 3 ‖h1−h2‖ = 3 drel(h1, h2) (use Exercise 2.7).

2.4 Bibliographical notes

The AP was introduced by M. Goldstein and W. Schlag [25, Propo-
sition 2.2] as a technique to obtain Hölder continuity of the LE for
quasi-periodic Schrödinger cocycles. In its original version, the AP
applies to chains of unimodular matrices in SL2(C), and the length of
the chain is assumed to be less than some lower bound on the norms
of the matrices. Note that for unimodular matrices, the gap ratio and
the norm are two equivalent measurements. Still in this unimodular
setting, for matrices in SL2(R), J. Bourgain and S. Jitomirskaya [11,
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Lemma 5] relaxed the constraint on the length of the chain of matri-
ces, and later J. Bourgain [10, Lemma 2.6] removed it, at the cost of
slightly weakening the conclusion of the AP.

Later, W. Schlag [53, lemma 1] generalized the AP to invertible
matrices in GLd(C). Moreover, an earlier draft of [2] that C. Sadel has
shared with the authors contained his version of the AP for GLd(C)
matrices. Both of these higher dimensional APs assume some bound
on the length of the chains of matrices.

The version of the AP in these notes does not require this assump-
tion and was established by the authors in [14, Theorem 3.1]. As a
by-product of its more geometric approach conclusion (1) of Theo-
rem 2.3 was added to the AP. This provides a quantitative control on
the most expanding directions of the matrix product. In [16] a more
general AP is described, one which holds for (possibly non-invertible)
matrices in Matd(R).
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Chapter 3

The Abstract
Continuity Theorem

3.1 Large deviations type estimates

The ergodic theorems formulated in the previous chapter imply con-
vergence in measure of the corresponding quantities. The main as-
sumption of the continuity results in this chapter is that the averages
corresponding to the fiber dynamics satisfy a precise, quantitative
convergence in measure estimate. In order to describe these large
deviations type (LDT) estimates, let us return to the analogy with
limit theorems from classical probabilities.

Consider a sequence ξ0, ξ1, . . . , ξn−1, . . . of random variables with
values in R, and let Sn := ξ0 + ξ1 + . . . + ξn−1. If the process is
independent, identically distributed and if its first moment is finite,
then the average 1

nSn converges almost surely to the mean E(ξ0). In
particular it also converges in measure:

P
[ ∣∣ 1
n
Sn − E(ξ0)

∣∣ > ε

]
→ 0 as n→∞ .

The event
∣∣ 1
n Sn − E(ξ0)

∣∣ > ε is called a tail event. The asymp-
totic behavior of tail events forms the subject of the theory of large

35
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deviations (see [49]). A classical result in this theory is the following
theorem due to Cramér.

Theorem 3.1. Let {ξn} be an i.i.d. random process with mean
µ = E(ξ0). If the process has finite exponential moments, i.e. if
the moment generating function M(t) := E[etX0 ] < ∞ for all t > 0,
then

lim
n→∞

1

n
logP

[ ∣∣ 1
n
Sn − µ

∣∣ > ε

]
= −I(ε)

where I(ε) := supt>0(t ε− logM(t) + t µ) is called the rate function.

In other words, if n is large enough, the probability of the tail
event is exponentially small:

P
[ ∣∣ 1
n
Sn − E(ξ0)

∣∣ > ε

]
� e−I(ε)n ,

for some rate function I(ε).

An analogue of Cramér’s large deviations principle for multiplica-
tive processes holds as well, and it was obtained by E. Le Page [38].
The result in [38] holds assuming certain conditions (strong irre-
ducibility and contraction) on the support of the probability distribu-
tion of the process. We note that while these assumptions are generic,
they do exclude interesting examples. Removing these assumptions
has lately become the subject of intense work by several authors.

In classical probabilities, the theory of large deviations is part
of a larger subject, that of concentration inequalities, which provide
bounds on the deviation of a random variable from a constant, gene-
rally its expected value. Hoeffding’s inequality, which we formulate
below, is a standard example of a concentration inequality (see [58]).

Theorem 3.2. Let ξ0, ξ1, . . . , ξn−1 be an independent1 random pro-
cess with values in R and let Sn := ξ0 + ξ1 + . . .+ ξn−1 be its sum. If
the process is almost surely bounded, i.e. if for some finite constant
C,
∣∣ξi∣∣ ≤ C a.s. for all i = 0, . . . n− 1, then

P
[ ∣∣∣ 1
n
Sn − E

( 1

n
Sn
)∣∣∣∣ > ε

]
< 2 e−

1
2C2 ε

2n . (3.1)

1The process need not be identically distributed and it need not be infinite.
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Note that compared to Cramér’s large deviations principle, Hoeff-
ding’s inequality only provides an upper bound for the tail event
(when the given random process is infinite). However, it has the
advantage of being a finite scale rather than an asymptotic result.
Moreover, it is a quantitative estimate that depends explicitly and
uniformly on the data. More precisely, note that if we perturb the
process slightly in the L∞-norm, the a.s. bound C will not change
much, so the bound (3.1) on the probability of deviation from the
mean will not change much either.

There are analogues of such concentration inequalities for certain
classes of base dynamical systems (see [12]). In this book we are con-
cerned with such estimates for the fiber dynamics of linear cocycles.

Consider an MPDS (X,µ, T ) and let A : X → SL2(R) be a µ-
integrable linear cocycle over it. For every n ∈ N, denote by

A(n)(x) := A(Tn−1x) . . . A(Tx)A(x) ,

its n-th iterate and consider the geometric average

u
(n)
A (x) :=

1

n
log‖A(n)(x)‖ .

We denote the mean of this average by

L(n)(A) :=

∫
X

u
(n)
A (x)dµ(x) =

∫
X

1

n
log‖A(n)(x)‖dµ(x) ,

and refer to it as a finite scale Lyapunov exponent of A. That is
because as n→∞, the finite scale Lyapunov exponent L(n)(A) con-
verges to L(A), the (infinite scale) Lyapunov exponent of A.

We are now ready to introduce our concept of concentration ine-
quality or large deviation type (LDT) estimate for a linear cocycle.

Definition 3.1. A cocycle A : X → SL2(R) satisfies an LDT esti-
mate if there is a constant c > 0 and for every small enough ε > 0
there is n = n(ε) ∈ N such that for all n ≥ n,

µ
{
x ∈ X :

∣∣∣∣ 1n log‖A(n)(x)‖ − L(n)(A)

∣∣∣∣ > ε
}
< e−cε

2n . (3.2)

Note that since L(n)(A) → L(A), we may substitute in (3.2) the
Lyapunov exponent L(A) for the finite scale quantity L(n)(A).
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3.2 The formulation of the abstract
continuity theorem

In this chapter we establish a criterion for the continuity of the Lyapu-
nov exponent and of the Oseledets splitting seen as functions of the
cocycle (i.e. of the fiber dynamics). We refer to this continuity crite-
rion as the abstract continuity theorem (ACT). This result is quan-
titative, in the sense that it provides a modulus of continuity.

Given an MPDS (X,µ, T ), let (C, d) be a metric space of linear
cocycles A : X → SL2(R) over this base dynamics.

The main assumption required by the method employed here is
the availability of a uniform LDT estimate for each cocycle in this
metric space. We say that a cocycle A ∈ C satisfies a uniform LDT if
the constants2 c and n in Definition 3.1 above are stable under small
perturbations of A. We formulate this more precisely below.

Definition 3.2. A cocycle A ∈ C satisfies a uniform LDT if there
are constants δ > 0, c > 0 and for every small enough ε > 0 there is
n = n(ε) ∈ N such that

µ

{
x ∈ X :

∣∣∣∣ 1n log‖B(n)(x)‖ − L(n)(B)

∣∣∣∣ > ε

}
< e−cε

2n (3.3)

for all cocycles B ∈ C with d(B,A) < δ and for all n ≥ n.

Remark 3.1. Note that at this point, it is not clear that we get an
equivalent definition of the uniform LDT by substituting in (3.3) the
limiting quantity L(B) for the finite scale quantity L(n)(B). That
is because while L(n)(B) → L(B), the convergence is not a-priori
known to be uniform in B. However, in the course of proving the
abstract continuity theorem, we will also derive this uniform conver-
gence. Thus a-posteriori, (3.3) will be equivalent with

µ

{
x ∈ X :

∣∣∣∣ 1n log‖B(n)(x)‖ − L(B)

∣∣∣∣ > ε

}
< e−cε

2n

for all B in the vicinity of A and all scales n ≥ n (see Remark 3.2).

2We will refer to the constants c and n as the LDT parameters of A. They
depend on A, and in general they may blow up as A is perturbed.
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Let us denote by C? the set of cocycles A ∈ C with L(A) > 0. For
any cocycle A ∈ C?, we denote the subspaces (lines) of its Oseledets
splitting in the MET 1.3 by E±A (x). Thus for almost every x ∈ X we
have the (T,A)-invariant splitting R2 = E+

A (x)⊕ E−A (x).
Because of our identification between a line in R2 and a point in

the projective space P(R2), the components of the Oseledets decom-
position are functions E±A : X → P(R2).

Let L1(X,P(R2)) be the space of all Borel measurable functions
E : X → P(R2). On this space we consider the distance

d(E1, E2) :=

∫
X

δ(E1(x), E2(x)) dµ(x) ,

where the quantity under the integral sign refers to the distance be-
tween points in the projective space P(R2).

We may now formulate the ACT.

Theorem 3.3. Let (X,µ, T ) be an MPDS and let (C, d) be a metric
space of SL2(R)-valued cocycles over it. We assume the following:

(i) ‖A‖ ∈ L∞(X,µ) for all A ∈ C.

(ii) d(A,B) ≥ ‖A−B‖L∞ for all A,B ∈ C.

(iii) Every cocycle A ∈ C? satisfies the uniform LDT (3.3).

Then the following statements hold.

1a. The Lyapunov exponent L : C → R is a continuous function.
In particular, C? is an open set in (C, d).

1b. On C?, the Lyapunov exponent is a locally Hölder continuous
function.

2a. The Oseledets splitting components E± : C? → L1(X,P(R2)),
A 7→ E±A , are locally Hölder continuous functions.

2b. In particular, for any A ∈ C?, there are constants K < ∞ and
α > 0 such that if B1, B2 are in a small neighborhood of A,
then

µ
{
x ∈ X : δ(E±B1

(x), E±B2
(x)) > d(B1, B2)α

}
< K d(B1, B2)α .
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In the next two chapters, under appropriate assumptions, we will
establish the uniform LDT for random Bernoulli cocycles and respec-
tively for quasi-periodic cocycles. Thus the ACT will be applicable
to linear cocycles over these types of base dynamics, proving the
continuity of the corresponding Lyapunov exponent and Oseledets
splitting components.

Regarding the structure of the fiber dynamics, the ACT is appli-
cable to the Schrödinger cocycles defined in Example 1.8. Indeed, let
(X,µ, T ) be an MPDS and let ϕ : X → R be a bounded observable.

For every E ∈ R, consider the Schrödinger cocycle

AE(x) :=

[
ϕ(x)− E −1

1 0

]
,

and let the one parameter family C := {AE : E ∈ R} be the corres-
ponding space of cocycles, endowed with the distance:

d(AE1 , AE2) :=
∣∣E1 − E2

∣∣ = ‖AE1 −AE2‖∞ .

Since the only quantity that varies is the parameter E, denote
the Lyapunov exponent L(AE) =: L(E) and the Oseledets splitting
components E±AE =: E±E . With this setup we have the following.

Corollary 3.1. Assume that for all parameters E we have L(E) > 0
and the cocycle AE satisfies the uniform LDT (3.3) with parame-
ters given by some absolute constants. Then the Lyapunov exponent
L(E) and the Oseledets splitting components E±E are Hölder conti-
nuous functions of E.

In the next two chapters we will apply this result to random and
respectively to quasi-periodic cocycles. Furthermore, for each model
we will describe a criterion for the positivity of the Lyapunov expo-
nent.

The proof of the ACT for the Lyapunov exponent uses an induc-
tive procedure in the number of iterates of the cocycle.3

3The continuity of the components of the Oseledets splitting will be esta-
blished in a more direct manner. However, the argument requires as an input the
continuity and other related properties of the LE.
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1. In Proposition 3.2 we show that given any n ∈ N, the finite scale
Lyapunov exponent L(n)(A) is a Lipschitz continuous function
of the cocycle.

This is easy to see, as L(n)(A) is obtained by performing a
finite number of operations and then an integration. However,
the Lipschitz constant depends on the number n of iterations,
hence this argument cannot be taken to the limit.

2. In Proposition 3.3 we establish the main technical ingredient of
the proof, the inductive step procedure, which can be described
as follows.

If the finite scale LE L(n)(A), at a scale n = n0, does not vary
much as the cocycle A is slightly perturbed, then the same will
hold, save for a small, explicit error, at a larger scale n = n1.

The argument is based on the avalanche principle, whose appli-
cability is ensured by the LDT estimates. Moreover, because of
the exponential decay in the LDT estimates, the scale n1 can
be taken exponentially large in n0.

3. The inductive step procedure will imply Proposition 3.4, which
establishes a uniform (in cocycle) rate of convergence of the
finite scale Lyapunov exponent L(n) to the (infinite scale) Lya-
punov exponent L.

4. This uniform rate of convergence will ensure that some of the
regularity of the finite scale LE at an initial scale will be carried
over to the limit, thus establishing the theorem.

Let us comment further on this last step, in order to help the
reader anticipate the direction of the argument.

If a sequence of continuous functions on a metric space converges
uniformly, then the limit is itself a continuous function. The content
of the following exercise is a quantitative statement in the same sprit,
establishing a modulus of continuity for the limit function.

Exercise 3.1. Let (M,d) and (N, d) be two metric spaces, let V ⊂M
be a subset (say a ball) and let fn : M → N , n ≥ 1, be a sequence of
functions. Assume the following:
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(i) The sequence {fn}n convergence uniformly on V to a function
f at an exponential rate, i.e. for some c > 0 we have

d(fn(a), f(a)) ≤ e−c n for all a ∈ V and for all n ≥ 1 .

(ii) There is C > 0 such that for all a, b ∈ V and for all n ≥ 1,

if d(a, b) < e−C n then d(fn(a), fn(b)) ≤ e−c n .

Then for all x, y ∈ V we have

d(f(x), f(y)) ≤ 3 ec d(x, y)
c
C ,

that is, f is Hölder continuous on V with Hölder exponent α = c
C .

It is clear that the statement of this exercise can be tweaked (or
it will be clear, after solving the exercise) to derive some modulus of
continuity for the limit function if the rate of convergence was slower.

3.3 Continuity of the Lyapunov exponent

We are in the setting and under the assumptions of the abstract con-
tinuity theorem 3.3. Various context-universal constants (i.e. cons-
tants depending only on the given data) will appear throughout this
section. In order to ease the presentation and not have to keep track
of all such constants, given a, b ∈ R we will write a . b if a ≤ C b for
some context-universal constant 0 < C < ∞. Moreover, for n ∈ N
and x ∈ R, the notation n � x means |n− x| ≤ 1.

Exercise 3.2. For any A ∈ C show that the following bounds hold
for a.e. x ∈ X and for all n ∈ N:

0 ≤ log‖A(n)(x)‖ ≤ n log‖A‖L∞ .

Conclude that if B ∈ C with d(B,A) ≤ 1, then for a.e. x ∈ X and
for all n ∈ N:

0 ≤ 1

n
log ‖B(n)(x)‖ ≤ C ,

where C = C(A) := log (1 + ‖A‖L∞).
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Proposition 3.2 (finite scale continuity). Let A ∈ C. There is a
constant C = C(A) < ∞ such that for all cocycles B1, B2 ∈ C with
d(Bi, A) ≤ 1, i = 1, 2, for all iterates n ≥ 1 and for a.e. phase x ∈ X,∣∣∣∣ 1n log‖B(n)

1 (x)‖ − 1

n
log‖B(n)

2 (x)‖
∣∣∣∣ ≤ eC n d(B1, B2) . (3.4)

In particular, ∣∣∣L(n)(B1)− L(n)(B2)
∣∣∣ ≤ eC n d(B1, B2) . (3.5)

Proof. Let B ∈ C be any cocycle with d(B,A) ≤ 1. By Exercise 3.2,
1 ≤ ‖B(n)(x)‖ ≤ eC n for all n ∈ N and for a.e. x ∈ X.

Applying the mean value theorem to the function log and using
the above inequalities, for a.e. x ∈ X we have:∣∣∣∣ 1n log‖B(n)

1 (x)‖ − 1

n
log‖B(n)

2 (x)‖
∣∣∣∣

≤ 1

n

1

min {‖B(n)
1 (x)‖, ‖B(n)

2 (x)‖}

∣∣∣‖B(n)
1 (x)‖ − ‖B(n)

2 (x)‖
∣∣∣

≤ 1

n
‖B(n)

1 (x)−B(n)
2 (x)‖

≤ 1

n

n−1∑
i=0

eC(n−1) ‖B1(T i(x)−B2(T i(x))‖

≤ 1

n
eC n

n−1∑
i=0

‖B1 −B2‖L∞ ≤ eC n d(B1, B2) .

This proves (3.4). Integrating in x proves (3.5).

The above proposition shows that the finite scale LE functions
L(n) : C → R are continuous (in fact, Lipschitz continuous, but with
Lipschitz constant depending exponentially on n). Since, as a conse-
quence of Kingman’s subadditive ergodic theorem (see Definition 1.3),
for all A ∈ C, L(A) = inf

n≥1
L(n)(A), we may conclude, according to

the exercise below, that L is an upper semi-continuous function.
This is a general fact about the Lyapunov exponent. However,

its lower semi-continuity (and hence continuity) requires further as-
sumptions on the space of cocycles.
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Exercise 3.3. Let (M,d) be a metric space and let fn : M → R,
n ≥ 1 be a sequence of upper semi-continuous functions. Consider
f(a) := inf

n≥1
fn(a) the pointwise infimum of these functions.

Prove that f is upper semi-continuous. Find examples showing
that f need not be continuous.

Exercise 3.4. Let (M,d) be a metric space, let f be an upper semi-
continuous function on it and let a ∈M . Prove that if f(a) = 0 and
f ≥ 0 in a neighborhood of a, then f is continuous at a.

Exercise 3.5. Let A ∈ C be a cocycle and let n0 < n1 be two
integers. If n1 = n ·n0 + q, where 0 ≤ q < n0, then for a.e. x ∈ X we
have ∣∣∣∣ 1

n1
log‖A(n1)(x)‖ − 1

nn0
log‖A(nn0)(x)‖

∣∣∣∣ ≤ C q

n1
≤ Cn0

n1
,

where C = C(A) is the constant in Exercise 3.2.

Proposition 3.3 (inductive step procedure). Let A ∈ C? and let c, n
denote its (uniform) LDT parameters.

Fix ε := L(A)
100 > 0 and denote c1 := c

2 ε
2.

There are constants C = C(A) <∞, δ = δ(A) > 0, n0 = n0(A) ∈
N, such that for any n0 ≥ n0, if the inequalities

(a) L(n0)(B)− L(2n0)(B) < η0 (3.6)

(b)
∣∣L(n0)(B)− L(n0)(A)

∣∣ < θ0 (3.7)

hold for a cocycle B ∈ C with d(B,A) < δ, and if the positive numbers
η0, θ0 satisfy

θ0 + 2η0 < L(A)− 6ε , (3.8)

then for an integer n1 such that

n1 � ec1 n0 , (3.9)

we have:∣∣ L(n1)(B) + L(n0)(B)− 2L(2n0)(B)
∣∣ < C

n0

n1
. (3.10)
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Furthermore,

(a++) L(n1)(B)− L(2n1)(B) < η1 (3.11)

(b++)
∣∣L(n1)(B)− L(n1)(A)

∣∣ < θ1 , (3.12)

where

θ1 = θ0 + 4η0 + C
n0

n1
, (3.13)

η1 = C
n0

n1
. (3.14)

Proof. By Exercise 3.2, there is a finite constant C = C(A) such that
if B ∈ C with d(B,A) ≤ 1, then∣∣∣∣∣∣∣∣ 1n log ‖B(n)‖

∣∣∣∣∣∣∣∣
L∞
≤ C . (3.15)

In particular, L(n)(B) ≤ C and L(B) ≤ C.
Let δ be the size of the ball around A ∈ C where the uniform LDT

with parameters c, n holds. Fix B ∈ C with d(B,A) < δ.
The integer n0 is chosen large enough to ensure that various esti-

mates are applicable at scales n ≥ n0. That is:

n0 ≥ n, so that the uniform LDT for A applies if n ≥ n0;∣∣L(n)(A) − L(A)
∣∣ < ε for n ≥ n0, which is ensured by the fact

that L(n)(A)→ L(A) as n→∞;

Various concrete asymptotic inequalities, like n2 � ec/2 ε
2n,

hold for n ≥ n0.

Note tat n0 depends only on A (since ε was fixed).
Fix the scales n0 and n1 such that n0 ≥ n0 and n1 � ec1 n0 .
We may assume that n1 = nn0 for some n ∈ N. Otherwise, by

Exercise 3.5, our estimates will accrue an extra error of order n0

n1
,

which is compatible with the conclusions of this proposition.
The goal is to use the Avalanche Principle, more precisely (2.3), to

relate the block of length n1 (i.e. the product of n1 matrices) B(n1)(x)
to blocks of length n0 for sufficiently many phases x; averaging in x
will then establish (3.10), from which everything else follows.



i
i

“notes” — 2017/5/29 — 19:08 — page 46 — #48 i
i

i
i

i
i

46 [CAP. 3: THE ABSTRACT CONTINUITY THEOREM

Let us then define, for every 0 ≤ i ≤ n− 1,

gi = gi(x) := B(n0)(T i n0 x) .

Then clearly
g(n) = B(n1)(x)

and for all 1 ≤ i ≤ n− 1,

gi gi−1 = B(n0)(Tn0 T (i−1)n0 x)B(n0)(T (i−1)n0 x)

= B(2n0)(T (i−1)n0x).

The fiber LDT applied to the cocycle B at scales n0 and 2n0 will
ensure that the geometric conditions in the AP are satisfied except
for a small set of phases. Indeed, for all scales m ≥ n0, if x is outside
a set Bm of measure < e−c ε

2m, then

− ε < 1

m
log‖B(m)(x)‖ − L(m)(B) < ε . (3.16)

The gap condition will follow by using the left hand side of (3.16)
at scale n0, the assumption (3.7), and the positivity of L(A).

If x /∈ Bn0 , then

1

n0
log‖B(n0)(x)‖ > L(n0)(B)− ε

> L(n0)(A)− θ0 − ε
≥ L(A)− θ0 − ε.

We conclude that for x /∈ Bn0
, where µ(Bn0

) < e−c ε
2n0 ,

gr(B(n0)(x)) = ‖B(n0)(x)‖2 > e2n0 (L(A)−θ0−ε) =:
1

κap
. (3.17)

Next we address the validity of the angles condition.
Applying the left hand side of (3.16) at scale 2n0, we have that

for x /∈ B2n0 ,

1

2n0
log‖B(2n0)(x)‖ > L(2n0)(B)− ε .
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Applying the right hand side of of (3.16) at scale n0, we have that
for x /∈ Bn0

∪ T−n0Bn0
,

1

n0
log‖B(n0)(x)‖ < L(n0)(B) + ε

1

n0
log‖B(n0)(Tn0x)‖ < L(n0)(B) + ε.

Combining the last three estimates, for x /∈ B2n0
∪Bn0

∪T−n0Bn0
=:

B̃n0
, where µ(B̃n0

) < 3e−c ε
2n0 , we have that:

‖B(2n0)(x)‖
‖B(n0)(Tn0x)‖ ‖B(n0)(x)‖

>
e2n0(L(2n0)−ε)

e2n0(L(n0)+ε)
= e2n0(L(2n0)−L(n0)−2ε).

Using the inductive assumption (3.6) we conclude:

‖B(2n0)(x)‖
‖B(n0)(Tn0x)‖ ‖B(n0)(x)‖

> e−2n0(η0+2ε) =: εap . (3.18)

Note that (3.8) implies
κap
ε2ap

= e−n0 (L(A)−θ0−2η0−5ε) < e−ε n0 ,

hence κap � ε2ap.

Let B̄n0 :=
⋃n−1
i=0 T−i n0 B̃n0 . Note that

µ(B̄n0) < 3n e−c ε
2n0 = 3

n1

n0
e−c ε

2n0 < ec/2 ε
2n0 e−c ε

2n0

= e−c/2 ε
2n0 = e−c1 n0 .

Moreover, note that when x /∈ B̄n0
, the geometric conditions (3.17)

and (3.18) hold for the phases x, Tn0x, . . . , T (n−1)n0x. That is, the
blocks of length n0 defined earlier satisfy:

gr(gi) >
1

κap
for all 0 ≤ i ≤ n− 1 ,

‖gi gi−1‖
‖gi‖ ‖gi−1‖

> εap for all 1 ≤ i ≤ n− 1 .

Therefore, we can apply the estimate (2.3) in the avalanche prin-
ciple and obtain:∣∣ log‖g(n)‖+

n−2∑
i=1

log‖gi‖ −
n−1∑
i=1

log‖gi gi−1‖
∣∣ . n · κap

ε2ap
.
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Rewriting this in terms of matrix blocks we have that for x /∈ B̄n0 ,
where µ(B̄n0

) < e−c1 n0 ,

∣∣∣log‖B(n1)(x)‖+

n−2∑
i=1

log‖B(n0)(T in0 x)‖

−
n−1∑
i=1

log ‖B(2n0)(T (i−1)n0 x)‖
∣∣∣ . n e−ε n0 . (3.19)

Divide both sides of (3.19) by n1 = nn0 to get that for all x /∈ B̄n0

we have∣∣∣ 1

n1
log‖B(n1)(x)‖+

1

n

n−2∑
i=1

1

n0
log‖B(n0)(T in0 x)‖

− 2

n

n−1∑
i=1

1

2n0
log ‖B(2n0)(T (i−1)n0 x)‖

∣∣∣ . e−ε n0 .

Denote by f(x) the function on the left hand side of the estimate
above; then

∣∣f(x)
∣∣ . e−ε n0 for x /∈ B̄n0

and using (3.15), for a.e.

x ∈ X we have
∣∣f(x)

∣∣ . C. Moreover,∫
X

f(x)µ(dx) = L(n1)(B) +
n− 2

n
L(n0)(B)− 2(n− 1)

n
L(2n0)(B) ,

hence∣∣∣∣L(n1)(B) +
n− 2

n
L(n0)(B)− 2(n− 1)

n
L(2n0)(B)

∣∣∣∣ ≤ ∫
X

∣∣f(x)
∣∣µ(dx)

=

∫
B̄{
n0

∣∣f(x)
∣∣µ(dx) +

∫
B̄n0

∣∣f(x)
∣∣µ(dx) . e−ε n0 + C µ(B̄n0)

. e−ε n0 + C e−c1 n0 . C e−c1 n0 < C
n0

n1
.

Therefore,∣∣∣∣L(n1)(B) +
n− 2

n
L(n0)(B)− 2(n− 1)

n
L(2n0)(B)

∣∣∣∣ < C
n0

n1
.
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The term on the left hand side of the above inequality can be
written in the form∣∣ L(n1)(B) + L(n0)(B)− 2L(2n0)(B)− 2

n
[L(n0)(B)− L(2n0)(B)]

∣∣ ,
hence we conclude:∣∣ L(n1)(B) + L(n0)(B)− 2L(2n0)(B)

∣∣
< C

n0

n1
+

2

n
[L(n0)(B)− L(2n0)(B)] . C

n0

n1
. (3.20)

Clearly the same argument leading to (3.20) will hold for 2n1

instead of n1, which via the triangle inequality proves (3.11), that is,
the conclusion (a++).

We can rewrite (3.20) in the form∣∣ L(n1)(B)− L(n0)(B) + 2[L(n0)(B)− L(2n0)(B)]
∣∣ < C

n0

n1
. (3.21)

Using (3.21) for B and A we get:∣∣L(n1)(B)− L(n1)(A)
∣∣

<
∣∣ L(n1)(B)− L(n0)(B) + 2[L(n0)(B)− L(2n0)(B)]

∣∣
+
∣∣ L(n1)(A)− L(n0)(A) + 2[L(n0)(A)− L(2n0)(A)]

∣∣
+
∣∣L(n0)(B)− L(n0)(A)

∣∣
+ 2
∣∣L(n0)(B)− L(2n0)(B)

∣∣+ 2
∣∣L(n0)(A)− L(2n0)(A)

∣∣
< θ0 + 4η0 + C

n0

n1
,

which establishes (3.12), that is, the conclusion (b++) of the propo-
sition.

Proposition 3.4 (rate of convergence). Let A ∈ C?. There are
constants δ1 > 0, n1 ∈ N, c2 > 0, K < ∞, all depending only on A,
such that the following hold.∣∣L(B)− L(n)(B)

∣∣ < K
log n

n
, (3.22)∣∣L(B) + L(n)(B)− 2L(2n)(B)

∣∣ < e−c2 n , (3.23)

for all n ≥ n1 and for all B ∈ C with d(B,A) < δ1.
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Proof. We will apply repeatedly the inductive step procedure in Propo-
sition 3.3. The constants ε, c1, C, δ, n0 appearing in this proof are the
once introduced there.

First we use the finite scale continuity in Proposition 3.2 to cre-
ate a neighborhood of A and a large enough interval of scales N0,
such that if n0 ∈ N0 and if B is in that neighborhood, then the
assumptions (3.6), (3.7) in Proposition 3.3 hold.

Indeed, let n−0 � n0, n+
0 � en0 and define

N0 := [n−0 , n
+
0 ] .

Let δ1 := min{δ, e−3n+
0 }.

By Proposition 3.2, if B ∈ C with d(B,A) ≤ 1, then for all n ≥ 1,∣∣∣L(n)(B)− L(n)(A)
∣∣∣ ≤ eC n d(B,A) .

Let B ∈ C with d(B,A) < δ1 and let n0 ∈ N0. Then n0 ≤ n+
0 and

we have∣∣∣L(2n0)(B)− L(2n0)(A)
∣∣∣ < eC 2n0 δ1 ≤ eC 2n+

0 e−3C n+
0 = e−C n

+
0 < ε ,

since n0 is assumed large enough.
Similarly we have∣∣∣L(n0)(B)− L(n0)(A)

∣∣∣ < e−2C n+
0 < ε =: θ0 .

Since also∣∣∣L(2n0)(A)− L(n0)(A)
∣∣∣ ≤ ∣∣∣L(2n0)(A)− L(A)

∣∣∣+
∣∣∣L(A)− L(n0)(A)

∣∣∣ < 2ε ,

from the last three inequalities we conclude that∣∣∣L(n0)(B)− L(2n0)(B)
∣∣∣ ≤ ε+ 2ε+ ε = 4ε =: η0 .

Moreover,

θ0 + 2η0 = ε+ 8ε = 9ε < L(A)− 6ε .
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We conclude that the assumptions (3.6), (3.7), (3.8) in Propo-
sition 3.3 hold at any scale n0 ∈ N0 and for any cocycle B with
d(B,A) < δ1.

Let n−1 � ec1 n
−
0 , n+

1 � ec1 n
+
0 and define

N1 := [n−1 , n
+
1 ] .

If n1 ∈ N1, then clearly there is n0 ∈ N0 such that n1 � ec1 n0

(hence n0 . log n1).
We may then apply Proposition 3.3 with the pair of scales n0, n1

and obtain the following:∣∣ L(n1)(B) + L(n0)(B)− 2L(2n0)(B)
∣∣ < C

n0

n1
< K

log n1

n1
,

for some constant K = K(A) <∞.
Furthermore,

L(n1)(B)− L(2n1)(B) < η1∣∣L(n1)(B)− L(n1)(A)
∣∣ < θ1 ,

where

θ1 = θ0 + 4η0 + C
n0

n1
< 17ε+K

log n1

n1
,

η1 = C
n0

n1
< K

log n1

n1
.

Moreover,

θ1 + 2η1 ≤ 17ε+K
log n1

n1
+ 2K

log n1

n1
= 17ε+ 3K

log n1

n1
< 20ε

< L(A)− 6ε .

This shows that the assumptions of Proposition 3.3 are again sat-
isfied for all scales n1 ∈ N1 and for all cocycles B with d(B,A) < δ1,
so we can continue the process.

Let n−2 � ec1 n
−
1 , n+

2 � ec1 n
+
1 and define

N2 := [n−2 , n
+
2 ] .
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Note that the intervals of scales N1 and N2 overlap.
If n2 ∈ N2, then clearly there is n1 ∈ N1 such that n2 � ec1 n1

(hence n1 . log n2).
We may then apply Proposition 3.3 with the pair of scales n1, n2

and obtain the following:∣∣ L(n2)(B) + L(n1)(B)− 2L(2n1)(B)
∣∣ < C

n1

n2
< K

log n2

n2
.

Furthermore,

L(n2)(B)− L(2n2)(B) < η2∣∣L(n2)(B)− L(n2)(A)
∣∣ < θ2 ,

where

θ2 = θ1 + 4η1 + C
n1

n2
< 17ε+ 5K

log n1

n1
+K

log n2

n2
,

η2 = C
n1

n2
< K

log n2

n2
.

It is now becoming clear that we can continue this argument in-
ductively. That is because at each step k, the error ηk in the esti-
mate (3.6) is very small, ηk ≤ K lognk

nk
when k ≥ 1, while the error θk

in the estimate (3.7), starting with k ≥ 2, only increases by a term
of order lognk

nk
. However, the series

∑
k≥1

lognk
nk

is summable, and its

sum is of order logn1

n1
< ε. The error θk is then of order ε for all k,

thus the assumption (3.8) is always satisfied.

Therefore we obtain a sequence of overlapping intervals of scales
{Nk}k≥1. Their union covers all natural numbers n ≥ n−1 .

Define the threshold n1 := n−1 and let n ≥ n1. Then there is
k ≥ 0 such that n ∈ Nk+1, so there is also nk ∈ Nk such that

n = nk+1 � ec1 nk .

The conclusions of Proposition 3.3 hold with the pair of scales
nk, nk+1. Let us first use (3.11) and conclude that

L(nk+1)(B)− L(2nk+1)(B) < ηk+1 < K
log nk+1

nk+1
.
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This shows that for all n ≥ n1, we have

L(n)(B)− L(2n)(B) < K
log n

n
,

from which we can easily conclude (see the Exercise 3.6 below) that∣∣L(n)(B)− L(B)
∣∣ . K

log n

n
,

establishing (3.22).
We now use the conclusion (3.10) of Proposition 3.3 and conclude

that∣∣ L(nk+1)(B) + L(nk)(B)− 2L(2nk)(B)
∣∣ < K

log nk+1

nk+1

≤ K c1 nk e
−c1 nk < e−

c1
2 nk .

On the other hand, applying (3.22) with n = nk+1 we have∣∣L(nk+1)(B)− L(B)
∣∣ . K

log nk+1

nk+1
< e−

c1
2 nk .

The last two inequalities then imply∣∣ L(B) + L(nk)(B)− 2L(2nk)(B)
∣∣ < 2e−

c1
2 nk < e−

c1
3 nk .

This establishes (3.23) for every n ≥ n1 as well.

Exercise 3.6. Let {xn}n≥1 be a sequence of real numbers that con-
verges to x and assume that for all n,

|xn − x2n| ≤ K
log n

n
.

Prove that

|xn − x| . K
log n

n
.

Proof of Theorem 3.3 parts 1a. and 1b. Let A ∈ C with L(A) > 0.
We wish to prove that in a small neighborhood of A, the function L
is Hölder continuous. For that, recall Exercise 3.1 and the discussion
preceding it.
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The finite scale LE functions L(n) → L as n→∞. However, the
rate of convergence given by (3.22) is too slow. Instead, we use the
sequence of functions

fn := −L(n) + 2L(2n) : C → R .

Clearly fn(B)→ −L(B)+2L(B) = L(B) as n→∞, for allB ∈ C.
Moreover, in a small neighborhood of A, by (3.23) in Proposition 3.4,
this rate of convergence is exponential: for all n ≥ n1 we have∣∣L(B)− fn(B)

∣∣ =
∣∣∣L(B) + L(n)(B)− 2L(2n)(B)

∣∣∣ ≤ e−c2 n .
By the finite scale continuity in Proposition 3.2, if B1, B2 ∈ C are

such that d(B1, B2) < e−2(C+c2)n, then for m = n and m = 2n,∣∣L(m)(B1)−L(m)(B2)
∣∣ ≤ eCmd(B1, B2) < eC 2n e−2(C+c2)n = e−2c2 n.

Thus d(fn(B1), fn(B2)) < 3e−2c2 n < e−c2 n.
From Exercise 3.1 we conclude that L is Hölder continuous (with

exponent α = c2
2(C+c2) ) in a neighborhood of A, thus establishing part

1.b of Theorem 3.3.
Continuity at cocycles with zero Lyapunov exponents is immedi-

ate, due to upper semicontinuity (see Exercise 3.4), and this proves
part 1a.

Remark 3.2. Let A ∈ C?. The estimate (3.22) in Proposition 3.4
shows that there is a neighborhood V of A in C and a threshold
n1 ∈ N, such that the finite scale Lyapunov exponents L(n), n ≥ n1

converge uniformly to L on V. Combined with the continuity of the
LE, this implies the following.

For every small ε > 0, there is n(ε) such that for all n ≥ n(ε) and
for all B ∈ V we have∣∣L(B)− L(A)

∣∣ ≤ ε and
∣∣L(n)(B)− L(A)

∣∣ ≤ ε .
Therefore, a-posteriori the uniform LDT can be formulated in

the following stronger way. There is a neighborhood V of A and a
constant c > 0 such that for all small ε > 0, there is n(ε) such that

µ
{
x ∈ X :

∣∣∣∣ 1n log‖B(n)(x)‖ − L(A)

∣∣∣∣ > ε
}
< e−cε

2n

for all B ∈ V and n ≥ n(ε).
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3.4 Continuity of the Oseledets splitting

We begin by introducing some concepts needed in the argument.
Given a cocycle FA : X × R2 → X × R2, FA(x, v) = (Tx,A(x)v),

determined by a function A : X → SL2(R), its inverse is the map
F−1
A : X × R2 → X × R2, F−1

A (x, v) = (T−1x,A(T−1x)−1 v). The
iterates of the inverse cocycle A−1 : X → SL2(R) satisfy for all n ∈ N
and x ∈ X,

(A−1)(n)(x) = A(n)(T−nx)−1 =: A(−n)(x) .

Similarly the adjoint of FA is the map FA∗ : X × R2 → X × R2,
defined by FA∗(x, v) = (T−1x,A(T−1x)∗ v). The iterates of the
adjoint cocycle A∗ : X → SL2(R) satisfy for all n ∈ N and x ∈ X,

(A∗)(n)(x) = A(n)(T−nx)∗ .

Given g ∈ GL2(R), let v+(g) = v(g) be a most expanding unit
vector of g and denote by v−(g) a least expanding unit vector of g.
Then {v+(g), v−(g)} is a singular vector basis of g. As before let
v̂±(g) be the projective point determined by v±(g).

Any projective point p̂ ∈ P determines a unique line ` ∈ Gr1(R2),
and this correspondence is one-to-one and onto. From now on, we
make the identification Gr1(R2) ≡ P(R2).

We will write E±A (x) instead of E±(x) to emphasize the dependence
on A of the Oseledets decomposition of the cocycle A.

Remark 3.3. It follows from the proof of [60, Theorem 3.20] that if
L(A) > 0 then for µ-almost every x ∈ X,

E±A (x) = lim
n→+∞

v̂−(A(∓n)(x)).

Exercise 3.7. Given g ∈ GL2(R) prove that v̂±(g−1) = v̂∓(g∗).

Exercise 3.8. Prove that if L(A) > 0 then for µ-a.e. x ∈ X,

E+
A∗(x) = lim

n→+∞
v̂+(A(n)(x)).

Hint: Use Remark 3.3 and Exercise 3.7.
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In [16], assuming L(A) > 0, we define the sequence of partial

functions v(n)(A) : X → P(R2),

v(n)(A)(x) :=

{
v̂(A(n)(x)) if gr(A(n)(x)) > 1
undefined otherwise.

By Proposition 4.4 in [16], this sequence converges µ-almost every-

where to a (total) measurable function v(∞)(A) : X → P(R2),

v(∞)(A)(x) := lim
n→+∞

v(n)(A)(x).

This limit also exists by Exercise 3.8.

Exercise 3.9. Prove that if a cocycle A is µ-integrable then its ad-
joint A∗ is also µ-integrable. Moreover, show that A and its adjoint
A∗ have the same Lyapunov exponent L(A) = L(A∗).

Exercise 3.10. Consider a cocycle A such that L(A) > 0. Prove that

E±A = (E∓A∗)⊥. In particular, E+
A = v(∞)(A∗) and E−A = (v(∞)(A))⊥.

Let A ∈ C?, so that A satisfies the uniform LDT estimates (3.3).
Given ε > 0 write L = L(A) and define the set

Ωn,ε(A) :=

{
x ∈ X :

∣∣ 1

m
log‖A(m)(x)‖ − L

∣∣ ≤ ε, ∀m ≥ n} .
Exercise 3.11. Show that limn→+∞ µ(Ωn,ε(A)) = 1 for all ε > 0.

Exercise 3.12. Given A ∈ C?, show that

µ(X \ Ωn,ε(B)) . e−n c ε
2

for all ε > 0, n ∈ N and any cocycle B ∈ C close enough to A.

The proof of the next proposition uses the argument in [60, Lemma
3.16]). Due to the assumed availability of the LDT estimate, the ar-
gument becomes quantitative.

Proposition 3.5 (rate of convergence). Let A ∈ C?. There are
constants δ > 0, ε > 0, n0 ∈ N and C <∞, all depending only on A,
such that

d
(
v(n)(B), v(∞)(B)

)
< C e−n c ε

2

for all n ≥ n0 and for all B ∈ C with d(B,A) < δ.
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Proof. Take 0 < γ < L(A). By the continuity of the LE we can
assume that δ is small enough so that

inf{L(B) : B ∈ C and d(B,A) < δ} > γ.

Next choose ε > 0 so that for all B ∈ C with d(B,A) < δ

L(B)− ε� γ � c ε2

where c > 0 is the LDT parameter in (3.3)

Let vm = vm(x) be a unit vector in v(m)(A)(x) = v̂+(A(m)(x))
and, similarly, let um = um(x) be a unit vector in v̂−(A(m)(x)). Then
{vm(x), um(x)} is a singular vector basis of A(m)(x).

Consider now the following cocycle over the same base transfor-
mation T :

Ã(x) := A(x)−∗ = (A(x)−1)∗ = (A(x)∗)−1.

By Exercise 3.7 we have

ûm(x) = v̂+(Ã(m)(x)) and v̂m(x) = v̂−(Ã(m)(x)).

Let αm(x) := ](v̂m(x), v̂m+1(x)), so that sinαm = δ(v̂m, v̂m+1).
Then

vm(x) = (sinαm)um+1(x) + (cosαm) vm+1(x)

which implies that

‖Ã(m+1)(x)vm(x)‖ ≥
∣∣sinαm∣∣ ‖Ã(m+1)(x)um+1(x)‖

=
∣∣sinαm∣∣ ‖Ã(m+1)(x)‖ .

Since Ã(m)(x) ∈ SL2(R), ‖Ã(m)(x) vm(x)‖ = ‖Ã(m)(x)‖−1 and

δ(v̂m(x), v̂m+1(x)) =
∣∣sinαm∣∣ ≤ ‖Ã(m+1)(x) vm(x)‖

‖Ã(m+1)(x)‖

≤ ‖Ã(Tmx)‖ ‖Ã(m)(x) vm(x)‖
‖Ã(m+1)(x)‖

=
‖Ã(Tmx)‖

‖Ã(m+1)(x)‖ ‖Ã(m)(x)‖
.
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Because A is an SL2-cocycle, ‖A‖∞ = ‖Ã‖∞ and Ωn,ε(A) =

Ωn,ε(Ã). Hence, for all m ≥ n and x ∈ Ωn,ε(A)

1

m
log δ(v̂m(x), v̂m+1(x)) ≤ log‖Ã‖∞

m
− m+ 1

m
(L− ε)− (L− ε)

≤ log‖A‖∞
m

− 2 γ < −γ

the last inequality holds provided n > log‖A‖∞/γ.
Thus for all m ≥ n,

δ(v̂m(x), v̂m+1(x)) ≤ e−mγ ,

which implies that for all x ∈ Ωm,ε(A),

δ
(
v(m)(A)(x), v(∞)(A)(x)

)
< C e−mγ � e−n c ε

2

with C = (1− e−γ)
−1

.

Since µ(X \ Ωn,ε(A)) . e−n c ε
2

the conclusion follows by taking
the average in x.

Since all bounds are uniform in a δ-neighborhood of A, the same
convergence rate holds for all B ∈ C? with d(B,A) < δ.

Proposition 3.6 (finite scale continuity). Given ε > 0, there is a
constant C1 = C1(A, ε) < ∞, such that for any B1, B2 ∈ C with
d(Bi, A) < δ, i = 1, 2, if n ≥ n(ε) and d(B1, B2) < e−C1 n, then for

x outside a set of measure . e−n c ε
2

δ
(
v(n)(B1)(x), v(n)(B2)(x)

)
< e−n c ε

2

. (3.24)

Moreover,

d
(
v(n)(B1), v(n)(B2)

)
. e−n c ε

2

. (3.25)

Proof. Take 0 < γ < L(A). By the continuity of the LE we can
assume that δ is small enough so that

inf{L(B) : B ∈ C and d(B,A) < δ} > γ.



i
i

“notes” — 2017/5/29 — 19:08 — page 59 — #61 i
i

i
i

i
i

[SEC. 3.4: CONTINUITY OF THE OSELEDETS SPLITTING 59

Next choose ε > 0 sufficiently small so that

L(B)− ε > γ.

For each n ≥ n(ε) define the deviation set

Bn(B) := {x ∈ X :
1

n
log‖B(n)(x)‖ < L(B)− ε}

which has exponentially small measure µ(Bn(B)) < e−ncε
2

.
Given two cocycles B1, B2 ∈ C with d(Bi, A) < δ (i = 1, 2) and

an integer n ≥ n(ε) take x /∈ Bn(B1)∪Bn(B2) and set gi := B
(n)
i (x).

Firstly note that

gr(gi) = ‖B(n)
i (x)‖2 ≥ e2n (L(Bi)−ε) > e2nγ � 1,

so in particular v(n)(Bi)(x) = v(B
(n)
i (x)) are well defined.

Since for every x, ‖Bi(x)‖ < C0 = C(A) <∞, we have

‖gi‖ = ‖B(n)
i (x)‖ < eC0 n.

Moreover, assuming d(B1, B2) < e−C1 n, with C1 to be chosen later,

‖g1 − g2‖ = ‖B(n)
1 (x)−B(n)

2 (x)‖ ≤ n eC0 (n−1) d(B1, B2)

< e−(C1−2C0)n.

If we choose C1 > 2C0 − γ + c ε2, then

drel(g1, g2) =
‖g1 − g2‖

max{‖g1‖, ‖g2‖}
≤ e−(C1−2C0+γ)n < e−n c ε

2

� 1 .

Then Exercise 2.9 applies, and we conclude:

δ(v(g1), v(g2)) ≤ 12 drel(g1, g2) . e−n c ε
2

.

This proves (3.24), while (3.25) follows by integration in x.

Proof of Theorem 3.3 parts 2a. and 2b. The following functions are
defined on C? and take values in L1(X,P(R2)).

fn(A) := v(n)(A) and f(A) := v(∞)(A)

gn(A) := v(n)(A∗) and g(A) := v(∞)(A∗)

hn(A) := v(n)(A)⊥ and f(A) := v(∞)(A)⊥ ,
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where if E ∈ L1(X,P(R2)), then the notation E⊥ refers to

X 3 x 7→ E⊥(x) := (E(x))
⊥ ∈ P(R2) .

Propositions 3.6 and 3.5 ensure that assumptions (i) and (ii) of
Exercise 3.1 are satisfied for the sequence fn, hence the limit f is
Hölder continuous.

The same argument applied instead to the cocycle A∗ shows that
g is Hölder continuous.

Since ⊥ : P(R2)→ P(R2) is an isometry, the Hölder continuity of
h follows from that of f .

Thus we proved item 2a.

Item 2b follows from item 2a by applying Chebyshev’s inequality.
Indeed, if E± : C? → L1(X,P(R2)), A 7→ E±A , are locally Hölder con-
tinuous functions with Hölder exponent α, then

d(E±B1
, E±B2

) . d(B1, B2)α .

Let f± : X → R be the measurable functions

f±(x) := δ(E±B1
(x), E±B2

(x)) .

Thus

‖f±‖L1 =

∫
X

f±(x) dµ(x) =

∫
X

δ(E±B1
(x), E±B2

(x)) dµ(x)

= d(E±B1
, E±B2

) . d(B1, B2)α .

Applying Chebyshev’s inequality to f± we have

µ
{
x ∈ X : f±(x) ≥ d(B1, B2)

α
2

}
≤ ‖f±‖L1

d(B1, B2)
α
2
. d(B1, B2)

α
2 .

Thus

µ
{
x ∈ X : δ(E±B1

(x), E±B2
(x)) ≥ d(B1, B2)

α
2

}
. d(B1, B2)

α
2 ,

which completes the proof.
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3.5 Bibliographical notes

This type of abstract continuity result for the Lyapunov exponents
was not available prior to our monograph [16]. However, our method
has its origin in M. Goldstein and W. Schlag [25], where the first
version of the avalanche principle appeared and the use of large de-
viations was employed in establishing Hölder continuity for quasi-
periodic Schrödinger cocycles. Furthermore, W. Schlag [53] hints at
the modularity of this type of argument, an observation that moti-
vated us to pursue this type of approach further.

Continuity of the Oseledets decomposition for GL2(C)-valued ran-
dom i.i.d. cocycles was obtained by C. Bocker-Neto and M. Viana in
[6]. Their result is not quantitative but it requires no generic assump-
tions (such as irreducibility) on the space of cocycles. Other related
results were recently obtained in [3, 4]. A different type of continuity
property, namely stability of the Lyapunov exponents and of the Os-
eledets decomposition under random perturbations of a fixed cocycle,
was studied in [40, 47].
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Chapter 4

Random Cocycles

4.1 Introduction and statement

Given a compact metric space (Σ, d) consider the space of sequences
ΩΣ = ΣZ endowed with the product topology. The homeomorphism
T : ΩΣ → ΩΣ, T{ωi}i∈Z := {ωi+1}i∈Z, is called the full shift map.

Let Prob(Σ) be the space of Borel probability measures on Σ. For
a given measure µ ∈ Prob(Σ) consider the product probability mea-
sure Pµ = µZ on ΩΣ. Then (ΩΣ,Pµ, T ) is an ergodic transformation,
referred to as a full Bernoulli shift.

Let L∞(Σ,SL2(R)) be the space of bounded Borel-measurable
functions A : Σ → SL2(R). Given A ∈ L∞(Σ,SL2(R)) and µ ∈
Prob(Σ) they determine a measurable function Ã : ΩΣ → SL2(R),
Ã{ωn}n∈Z := A(ω0), and hence a linear cocycle F(A,µ) : ΩΣ × R2 →
ΩΣ×R2 over the Bernoulli shift (ΩΣ,Pµ, T ). We refer to the cocycle
F(A,µ) as a random cocycle, and identify the pair (A,µ) with the map
F(A,µ). The n-th iterate Fn(A,µ) = F(An,µn) is the random cocycle

determined by the pair (An, µn) where µn := µ× · · · ×µ ∈ Prob(Σn)
and where An : Σn → GL2(R) is the function

An(x0, x1, . . . , xn−1) := A(xn−1) · · ·A(x1)A(x0).

The Lyapunov exponent of the random cocycle (A,µ) is simply de-
noted by L(A), assuming the underlying measure µ is fixed.

63
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A measure ν ∈ Prob(P(R2)) is called stationary w.r.t. (A,µ) if

ν =

∫
Σ

Â(x)∗ν dµ(x).

Furstenberg’s formula [22] states that for any random cocycle
(A,µ) with A ∈ L∞(Σ,SL2(R)) there exists at least one stationary
measure ν ∈ Prob(P(R2)) such that

L(A) =

∫
Σ

∫
P(R2)

log‖A(x) p‖ dν(p̂) dµ(x). (4.1)

In this formula p stands for a unit representative of p̂ ∈ P(R2).
Given a cocycle (A,µ) and a line ` ⊂ R2 invariant under all ma-

trices A(x) with x ∈ Σ, the pair (A|`, µ) represents the linear cocycle
obtained restricting F(A,µ) : ΩΣ×R2 → ΩΣ×R2 to the 1-dimensional

sub-bundle ΩΣ×`. Because the process Ln := log‖Ã(n)|`‖ is additive,
by Birkhoff’s ergodic theorem the Lyapunov exponent of (A|`, µ) is

L(A|`) =

∫
Σ

log‖A(x)|`‖ dµ(x).

Definition 4.1 (Définition 2.7 in [7]). A cocycle (A,µ) is called
quasi-irreducible if there is no invariant line ` ⊂ R2 which is invariant
under all matrices of the cocycle, i.e., such that A(x)` = ` for µ-a.e.
x ∈ Σ, and where L(A|`) < L(A).

As we will see (Propositions 4.2 and 4.6) , if a cocycle (A,µ)
is quasi-irreducible then it admits a unique stationary measure ν ∈
Prob(P(R2)). In this case L(A) is uniquely determined by ν through
Furstenberg’s formula (4.1).

The next theorem states that random quasi-irreducible cocycles
with positive Lyapunov exponent satisfy a uniform LDT.

Theorem 4.1. Given µ ∈ Prob(Σ) and A ∈ L∞(Σ,SL2(R)) assume

(1) (A,µ) is quasi-irreducible,

(2) L(A) > 0.
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There exist constants δ = δ(A,µ) > 0, C = C(A,µ) < ∞, κ =
κ(A,µ) > 0 and ε0 = ε0(A) > 0 such that for all ‖A−B‖∞ < δ with
B ∈ L∞(Σ,SL2(R)), for all 0 < ε < ε0 and n ∈ N we have

Pµ
[ ∣∣ 1
n

log‖B(n)‖ − L(B)
∣∣ > ε

]
≤ C e−κ ε

2 n.

Denote by L1(Ω,P(R2)) the space of all measurable functions
E : Ω→ P(R2) endowed with the following L1 metric

dµ(E , E ′) := Eµ[ δ(E , E ′) ] =

∫
Ω

δ(E(x), E ′(x)) dPµ(x).

Given a cocycle A ∈ L∞(Σ,SL2(R)) with L(A) > 0, its Oseledets
decomposition determines the two sections E±A ∈ L1(Ω,P(R2)) intro-
duced in Chapter 1. The first part of the following theorem is due to
E. Le Page [39]1.

Theorem 4.2. Given µ ∈ Prob(Σ) and A ∈ L∞(Σ,SL2(R)) assume

(1) (A,µ) is quasi-irreducible,

(2) L(A) > 0.

Then there exists a neighborhood V of A in L∞(Σ,SL2(R)) such that
the function L : V→ R, B 7→ L(B) is Hölder continuous.

Moreover, the Oseledets sections V 3 B 7→ E±B ∈ L1(Ω,P(R2)) are
also Hölder continuous w.r.t. the metric dµ.

4.2 Continuity of the Lyapunov exponent

In this section we provide a direct proof E. Le Page’s theorem, the first
half of Theorem 4.2. Like the second part, this is also a consequence
of the ACT (Theorem 3.3) and Theorem 4.1. The proof presented
here was adapted from [5].

1The theorem in [39] is formulated in a slightly more particular setting, for
one parameter families of cocycles.
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Throughout this chapter we set P := P(R2). Recall the projective
distance δ : P× P→ [0,+∞) introduced in Chapter 2 and given by

δ(p̂, q̂) :=
‖p ∧ q‖
‖p‖ ‖q‖

,

where p and q are representative vectors of the projective points p̂
and q̂ respectively.

Let L∞(P) be the space of bounded Borel measurable functions
φ : P→ C. Given φ ∈ L∞(P) and 0 < α ≤ 1, define

‖φ‖∞ := sup
p̂∈P

∣∣φ(p̂)
∣∣,

vα(φ) := sup
p̂ 6=q̂

∣∣φ(p̂)− φ(q̂)
∣∣

δ(p̂, q̂)α
,

‖φ‖α := vα(φ) + ‖φ‖∞.

Then
Hα(P) := {φ ∈ L∞(P) : ‖φ‖α <∞}

is the space of α-Hölder continuous functions on P. The value vα(φ)
will be referred to as the Hölder constant of φ. By convention we set
H0(P) to be the space of continuous functions on P.

Exercise 4.1. Show that for all ϕ ∈ H0(P) and p̂ ∈ P,

‖ϕ− ϕ(p̂)‖∞ ≤ v0(ϕ) ≤ ‖ϕ‖∞.

Exercise 4.2. Set 1 to be the constant function 1 and prove that
(Hα(P), ‖·‖α) is a Banach algebra with unity 1.

Exercise 4.3. Show that {(Hα(P), vα)}α∈[0,1] is a family of semi-
normed spaces such that for all 0 ≤ α < β ≤ 1, 0 ≤ t ≤ 1 and
ϕ ∈ Hα(P),

1. Hα(P) ⊂ Hβ(P) (monotonicity),

2. vα(ϕ) ≤ vβ(ϕ) (monotonicity),

3. v(1−t)α+tβ(ϕ) ≤ vα(ϕ)1−tvβ(ϕ)t (convexity).
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Given a cocycle (A,µ) ∈ L∞(Σ,SL2(R)) × Prob(Σ) we define its
Markov operator QA = QA,µ : L∞(P)→ L∞(P) by

QA,µ(φ)(p̂) :=

∫
Σ

φ(Â(x) p̂) dµ(x),

where Â(x) : P→ P stands for the projective action of A(x).
Define also the quantity

κα(A,µ) := sup
p̂ 6=q̂

∫
Σ

(
δ(Â(x) p̂, Â(x) q̂)

δ(p̂, q̂)

)α
dµ(x)

measuring the average Hölder constant of p̂ 7→ Â(x)(p̂). Next propo-
sition clarifies the importance of this measurement.

Proposition 4.1. For all φ ∈ Hα(P),

vα(QA,µ(φ)) ≤ κα(A,µ) vα(φ).

Proof. Given φ ∈ Hα(P), and p̂, q̂ ∈ P,

∣∣QA(φ)(p̂)−QA(φ)(q̂)
∣∣ ≤ ∫

P

∣∣φ(Â(x) p̂)− φ(Â(x) q̂)
∣∣ dµ(x)

≤ vα(ϕ)

∫
P
δ(Â(x) p̂, Â(x) q̂)α dµ(x)

≤ vα(ϕ)κα(A,µ) δ(p̂, q̂)α

which proves the proposition.

Exercise 4.4. Prove that for all n ∈ N,

(QA,µ)n = QAn,µn .

Exercise 4.5. Show the sequence κα(An, µn) is sub-multiplicative,
i.e., for all n,m ∈ N,

κα(An+m, µn+m) ≤ κα(An, µn)κα(Am, µm).
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Definition 4.2 (See Definition II.1 in [29]). A bounded linear op-
erator Q : B → B on a Banach space B is called quasi-compact and
simple if its spectrum admits a decomposition in disjoint closed sets
spec(Q) = Σ0 ∪ {λ0} such that λ0 ∈ C is a simple eigenvalue of Q
and |λ| < λ0 for all λ ∈ Σ0.

Proposition 4.2. Let (A,µ) ∈ L∞(Σ,SL2(R))×Prob(Σ) be a cocycle
such that for some 0 < α ≤ 1 and n ≥ 1

κα(An, µn)
1
n ≤ σ < 1.

Then the operator Q = QA,µ : Hα(P)→ Hα(P) is quasi-compact and
simple. More precisely there exists a (unique) stationary measure
ν ∈ Prob(P) w.r.t. (A,µ) such that defining the subspace

Nα(ν) :=

{
ϕ ∈ Hα(P) :

∫
P
ϕdν = 0

}
the operator Q has the following properties

1. spec(Q : Hα(P)→ Hα(P)) ⊂ {1} ∪ Dσ(0),

2. Hα(P) = C1⊕Nα(ν) is a Q-invariant decomposition,

3. Q fixes every function in C1 and acts as a contraction with
spectral radius ≤ σ on Nα(ν).

Proof. The semi-norm vα induces a norm on the quotient Hα(P)/C1.
By Proposition 4.1, Qn acts on Hα(P)/C1 as a σn-contraction. Hence
Q also acts on Hα(P)/C1 as a contraction with spectral radius ≤ σ.
Since Q also fixes the constant functions in C1, it is a quasi-compact
operator with simple eigenvalue 1 (associated to eigen-space C1) and
inner spectral radius ≤ σ. Thus spec(Q) ⊂ {1} ∪ Dσ(0).

By spectral theory [51, Chap. XI] there exists a Q-invariant de-
composition Hα(P) = R1⊕Nα such thatQ acts as a contraction with
spectral radius ≤ σ on Nα. Thus we can define a linear functional
Λ: Hα(P) → C setting Λ(c1 + ψ) := c for ψ ∈ Nα. This functional
has several properties:

Λ(1) = 1.
Λ is positive, i.e., ϕ ≥ 0 implies Λ(ϕ) ≥ 0. Given ϕ = c1 + ψ ≥ 0
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with ψ ∈ Nα, we have 0 ≤ Qn(c1+ψ) = c+Qn(ψ) for all n ≥ 0. Since
ψ ∈ Nα we have limn→+∞Qn(ψ) = 0 which implies Λ(ϕ) = c ≥ 0.

Λ is continuous w.r.t. the norm ‖·‖∞. Indeed given any real func-
tion ϕ ∈ Hα(P) using

−‖ϕ‖∞1 ≤ ϕ ≤ ‖ϕ‖∞1

by positivity of Q it follows that∣∣Λ(ϕ)
∣∣ ≤ Λ(1) ‖ϕ‖∞ = ‖ϕ‖∞.

This implies that Λ is also continuous over complex functions.
Λ extends to positive linear functional Λ̃ : C(P) → C because by

Stone-Weierstrass theorem the sub-algebra Hα(P) is dense in C(P).
Finally by Riesz Theorem there exists a Borel probability ν ∈

Prob(P) such that Λ̃(ϕ) =
∫
P ϕdν for all ϕ ∈ C(P).

Since by definitionNα is the kernel of Λ, one hasNα = Nα(ν).

Next we verify that the hypothesis of Proposition 4.2 is satisfied
under the assumptions of Theorem 4.1.

Lemma 4.3. Let (A,µ) be a quasi-irreducible SL2(R)-cocycle such
that L(A) > 0. Then

lim
n→+∞

1

n
Eµ
[

log‖Ã(n) p‖
]

= L(A)

with uniform convergence in p̂ ∈ P, where p ∈ p̂ is a unit vector.

Proof. Let F ⊂ Ω be a T -invariant Borel set with full probability,
Pµ(F ) = 1, consisting of Oseledets regular points. For any ω ∈ F
we have the Oseledets decomposition R2 = E+(ω)⊕E−(ω) which is
invariant under the cocycle action, i.e., Ã(ω)E±(ω) = E±(Tω), for
all ω ∈ F . Moreover, given ω ∈ F and a unit vector p ∈ R2, either
p ∈ E−(ω), or else

lim
n→+∞

1

n
log‖Ã(n)(ω) p‖ = L(A). (4.2)

Consider now the linear subspace

S :=
{
p ∈ R2 : p ∈ E−(ω), Pµ-almost surely

}
.
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Since Â(ω0)E−(ω) = E−(Tω) for all ω ∈ F , it follows easily that
A(x)S = S for all x ∈ Σ. On the other hand, since L(A|S) ≤
−L(A) < 0, we must have dimS ≤ 1. If dimS = 1 then the cocycle
(A,µ) is not quasi-irreducible. Therefore S = {0}, because (A,µ) is
quasi-irreducible, which in turn implies that (4.2) holds for all p ∈ R2

Pµ-almost surely. Because the functions 1
n log‖Ã(n)p‖ are uniformly

bounded by log‖A‖∞ <∞, by the Dominated Convergence Theorem,
1
n Eµ

[
log‖Ã(n) p‖

]
converges pointwise to L(A).

Assume now that this convergence is not uniform, in order to get
a contradiction. This assumption implies the existence of a sequence
of unit vectors pn ∈ R2 and a positive number δ > 0 such that for all
large n,

1

n
Eµ
[

log‖Ã(n) pn‖
]
≤ L(A)− δ.

By compactness of the unit circle we can assume that pn converges to

a unit vector p ∈ R2. We claim that 1
n Eµ

[
log‖Ã(n) pn‖

]
converges

to L(A), which contradicts the previous bound. Notice that

‖Ã(n) pn‖
‖Ã(n)‖

≥
∣∣pn · v(n)(Ã)

∣∣→ ∣∣p · v(∞)(Ã)
∣∣.

On the other hand, since p · v(∞)(Ã) = 0 is equivalent to p ∈
v(∞)(Ã)⊥ = E−(Ã), the fact S = {0} implies that Pµ-almost surely

lim inf
n→+∞

‖Ã(n) pn‖
‖Ã(n)‖

> 0.

Therefore 1
n log ‖Ã

(n) pn‖
‖Ã(n)‖ converges to zero Pµ-almost surely, and us-

ing again the Dominated Convergence Theorem

lim
n→∞

1

n
Eµ
[

log‖Ã(n) pn‖
]

= lim
n→∞

1

n
Eµ
[

log‖Ã(n)‖
]

+
1

n
Eµ

[
log
‖Ã(n) pn‖
‖Ã(n)‖

]
= L(A) + 0 = L(A)

which establishes the claim and finishes the proof.
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Exercise 4.6. Given g ∈ SL2(R) and a unit vector p ∈ R2, prove
that the projective map ĝ : P→ P has derivative

(ĝ)′(p̂) = ‖gp‖−2.

Hint: Use Exercise 2.2. Given unit vectors p, v ∈ R2 with v ⊥ p
notice that, because g ∈ SL2(R), one has

1 = ‖v ∧ p‖ = ‖(gv) ∧ (gp)‖ = ‖gp‖ ‖Dπ⊥gp/‖gp‖(gv)‖.

Proposition 4.4. Given α > 0 and unit vectors x, y ∈ R2,[
δ(Â(x̂), Â(ŷ))

δ(x̂, ŷ)

]α
≤ 1

2

{
1

‖Ax‖2α
+

1

‖Ay‖2α

}
.

Proof. Given unit vectors x, y ∈ R2, we have ‖Ax ∧ Ay‖ = ‖x ∧ y‖
because A ∈ SL2(R). Thus[

δ(Â(x̂), Â(ŷ))

δ(x̂, ŷ)

]α
=

[
‖Ax ∧Ay‖
‖Ax‖‖Ay‖

1

‖x ∧ y‖

]α
=

1

‖Ax‖α
1

‖Ay‖α
≤ 1

2

{
1

‖Ax‖2α
+

1

‖Ay‖2α

}
where we have used that

√
a b ≤ 1

2 {a+ b} with a = ‖Ax‖−2α and
b = ‖Ay‖−2α.

Proposition 4.5. Given a cocycle (A,µ) ∈ L∞(Σ,SL2(R))×Prob(Σ),

κα(A,µ) = sup
x̂∈P(Rd)

Eµ
[
‖Ax‖−2α

]
for all α > 0

where x is a unit representative of x̂ ∈ P.

Proof. For the first inequality (≤) just average the one in Proposi-
tion 4.4 and then take sup. The converse inequality (≥) follows from
Exercise 4.6 and the Mean Value Theorem.

Next proposition says that the Markov operator QA,µ of a quasi-
irreducible cocycle with positive Lyapunov exponent acts contrac-
tively on the semi-normed space (Hα(P), vα), for some small α and
some large enough iterate. Moreover, this behavior is uniform in a
neighborhood of A. It follows by Proposition 4.2 that the Markov
operator QA,µ : Hα(P)→ Hα(P) is quasi-compact and simple.
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Proposition 4.6. Let (A,µ) ∈ L∞(Σ,SL2(R))×Prob(Σ) be a quasi-
irreducible cocycle with L(A) > 0. There are numbers δ > 0, 0 < α <
1, 0 < κ < 1 and n ∈ N such that for all B ∈ L∞(Σ,SL2(R)) with
‖B −A‖∞ < δ one has κα(Bn, µn) ≤ κ.

Proof. We have

lim
n→+∞

1

n
Eµn [ log‖An p‖−2 ] = lim

n→+∞

1

n

∫
Ω

log‖Ã(n) p‖−2 dPµ

= −2 lim
n→+∞

1

n

∫
Ω

log‖Ã(n)p‖ dPµ

= −2L(A) < 0.

Since 1
n

∫
Ω

log‖Ã(n)p‖ dPµ converges uniformly in p̂ to L(A), for some
n large enough we have for all unit vectors p ∈ R2

Eµn [ log‖An p‖−2 ] ≤ −1.

To finish the proof, using the following inequality

ex ≤ 1 + x+
x2

2
e

∣∣x∣∣
we get for all unit vectors p ∈ R2,

Eµn
[
‖An p‖−2α

]
= Eµn

[
eα log‖An p‖−2

]
≤ Eµn

[
1 + α log(‖An p‖−2) +

α2

2
‖An‖2 log2(‖An p‖−2)

]
≤ 1− α+K

α2

2

for some positive constant K = K(A,n). Thus, taking α small

κα(An, µn) ≤ κ := 1− α+K
α2

2
< 1.

By Proposition 4.5, the measurement κα(A,µ) depends continu-
ously on A ∈ L∞(Σ,SL2(R)). Therefore the above bound κ can be
made uniform, i.e., valid for all cocycles in a neighborhood of A.
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Definition 4.3. Given A,B ∈ L∞(Σ,SL2(R)) and µ ∈ Prob(Σ),
define

∆α(A,B) := sup
p̂∈P

Eµ
[
d(Â(p̂), B̂(p̂))α

]
.

Exercise 4.7. Show that ∆α is a metric on the space L∞(Σ,SL2(R))
such that

∆α(A,B) ≤ (‖A−B‖∞)α.

By propositions 4.2 and 4.6, any quasi-irreducible cocycle (A,µ)
with L(A) > 0 has a unique stationary measure νA ∈ Prob(P). Next
proposition says that νA depends continuously on A.

Proposition 4.7. Let A,B ∈ L∞(Σ,SL2(R)) and µ ∈ Prob(Σ).
Assume that κ := κα(A,µ) < 1 for some 0 < α ≤ 1. Then for all
n ∈ N and ϕ ∈ Hα(P),

‖QnA,µ(ϕ)−QnB,µ(ϕ)‖∞ ≤
∆α(A,B)

1− κ
vα(ϕ).

Moreover, if also κα(B,µ) < 1 then for all ϕ ∈ Hα(P),

∣∣∫
P
ϕdνA −

∫
P
ϕdνB

∣∣ ≤ ∆α(A,B)

1− κ
vα(ϕ).

Proof. First notice that

‖QA,µ(ϕ)−QB,µ(ϕ)‖∞ ≤ sup
p̂∈P

∫
Σ

∣∣ϕ(Â(x) p̂)− ϕ(B̂(x) p̂))
∣∣ dµ(x)

≤ vα(ϕ) sup
p̂∈P

∫
Σ

δ(Â(x) p̂, B̂(x) p̂)α dµ(x)

= ∆α(A,B) vα(ϕ).

From this inequality and the relation

QnA,µ −QnB,µ =

n−1∑
i=0

QiB,µ ◦ (QA,µ −QB,µ) ◦ Qn−i−1
A,µ
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we get

‖QnA,µ(ϕ)−QnB,µ(ϕ)‖∞ ≤
n−1∑
i=0

‖QiB,µ(QA,µ −QB,µ)(Qn−i−1
A,µ (ϕ))‖∞

≤
n−1∑
i=0

‖(QA,µ −QB,µ)(Qn−i−1
A,µ (ϕ))‖∞

≤
n−1∑
i=0

∆α(A,B) vα(Qn−i−1
A,µ (ϕ)))

≤ ∆α(A,B) vα(ϕ)

n−1∑
i=0

κn−i−1

≤ ∆α(A,B)

1− κ
vα(ϕ).

This proves the first inequality of the proposition. Finally, since
limn→+∞QnA,µ(ϕ) =

(∫
P ϕdνA

)
1 and limn→+∞QnB,µ(ϕ) =

(∫
P ϕdνB

)
1,

one has∣∣∫
P
ϕdνA −

∫
P
ϕdνB

∣∣ ≤ sup
n
‖QnA,µ(ϕ)−QnB,µ(ϕ)‖∞ ≤

∆α(A,B)

1− κ
vα(ϕ)

which proves the second inequality.

We end this section with a proof of E. Le Page’s theorem. This
theorem also follows from Theorems 3.3 and 4.1.

Theorem 4.3 (E. Le Page). Let (A,µ) ∈ L∞(Σ,SL2(R))×Prob(Σ)
be quasi-irreducible with L(A,µ) > 0. Then there are positive cons-
tants α > 0, C <∞ and δ > 0 such that for all B1, B2 ∈ L∞(Σ,SL2(R))
if ‖Bj −A‖∞ < δ, j = 1, 2, then∣∣L(B1)− L(B2)

∣∣ ≤ C (‖B1 −B2‖∞)α.

Proof. Given A ∈ SL2(R) let ϕA : P→ R be the function

ϕA(p̂) := log‖Ap‖
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where p ∈ R2 stands for a unit representative of p̂. The function
SL2(R) 3 A 7→ ϕA ∈ H1(P) is locally Lipschitz. Given R > 0 there
is a constant C = CR <∞ such that

‖ϕA − ϕB‖∞ ≤ CR ‖A−B‖

for all A,B ∈ SL2(R) such that max{‖A‖, ‖B‖} ≤ R.
Let (A,µ) be a quasi-irreducible cocycle with L(A) > 0. By

Proposition 4.6 there exist n ∈ N, 0 < α < 1 and 0 < κ < 1 such that
κα(Bn, µn) ≤ κ for all cocycles B near A. Since the map A 7→ An is
locally Lipschitz we can without loss of generality suppose n = 1.

Then, by Furstenberg’s formula (4.1)∣∣L(B1)− L(B2)
∣∣ ≤ Eµ

[ ∣∣∫ ϕB1 dνB1 − ∫ ϕB2 dνB2

∣∣ ]
≤ Eµ

[ ∣∣∫ ϕB1 dνB1 − ∫ ϕB1 dνB2

∣∣ ]
+ Eµ

[ ∣∣∫ ϕB1 dνB2 − ∫ ϕB2 dνB2

∣∣ ]
≤ ∆α(B1, B2)

1− κ
vα(ϕB1

) + Eµ
[
∫
∣∣ϕB1

− ϕB2

∣∣ dνB2

]
≤ v1(ϕB1

)

1− κ
‖B1 −B2‖α∞ + CR ‖B1 −B2‖∞

where R is a uniform bound on the norms of the matrices Bj(x)
with j = 1, 2. This proves that L is locally Hölder continuous in a
neighborhood of the cocycle A.

4.3 Large deviations for sum processes

Let (Ω,F,P) be a probability space, and {ξn : Ω→ R}n≥0 a random
stationary process, with µ = E(ξn) for all n ∈ N.

Definition 4.4. The sum process Sn = ξ0 + ξ1 + · · · + ξn−1 is said
to satisfy an LDT estimate if there exist constants c > 0 and C <∞
such that for all small enough ε > 0 and n ≥ 1,

P
[ ∣∣ 1
n
Sn − µ

∣∣ > ε

]
≤ C e−c ε

2n.
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The following result is a particular version of the more general
and more precise large deviation principle of H. Cramér formulated
in Theorem 3.1.

Proposition 4.8. Let {ξn}n≥0 be a random i.i.d. process consisting
of bounded random variables. Then its sum process Sn = ξ0 + ξ1 +
· · ·+ ξn−1 satisfies an LDT estimate.

Its proof makes use of some basic ingredients, namely Chebyshev’s
inequality, cumulant generating functions and Legendre’s transform.

Exercise 4.8 (Chebyshev’s inequality). Show that for any random
variable ξ : Ω→ R and any positive real numbers λ and t

P
[ ∣∣ξ − E[ξ]

∣∣ ≥ λ ] ≤ e−λ t E[ et
∣∣ξ−E[ξ]

∣∣
].

Let ξ : Ω → R be a bounded random variable on a probability
space (Ω,F,P). The function cξ : R→ R,

cξ(t) := logE[ et ξ ]

is called the second characteristic function of ξ, also known as the
cumulant generating function of ξ (see [43]).

Proposition 4.9. Let ξ : Ω→ R be a bounded random variable. Then

(1) cξ is an analytic convex function,

(2) cξ(0) = 0,

(3) (cξ)
′(0) = E(ξ),

(4) cξ(t) ≥ tE(ξ), for all t ∈ R,

Proof. For the first part of (1) notice that the boundedness of ξ
implies that the parametric integral E(ez ξ) and its formal deriva-
tive E(ez ξ ξ) are well-defined continuous functions on complex plane.
Hence E(ez ξ) is an entire analytic function. Since cξ(0) = logE(1) =
log 1 = 0, (2) follows. Property (3) holds because

(cξ)
′(0) = E(ξ 1)/E(1) = E(ξ).
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The convexity of cξ follows by Hölder inequality, with conjugate ex-
ponents p = 1/s and q = 1/(1− s), where 0 < s < 1. In fact, for all
t1, t2 ∈ R,

cξ(s t1 + (1− s) t2) = logE[
(
et1 ξ

)s (
et2 ξ

)1−s
]

≤ log
(
E[et1 ξ]

)s (E[et2 ξ]
)1−s

= s cξ(t1) + (1− s) cξ(t2) .

Finally the convexity, together with (2) and (3), implies (4).

Exercise 4.9. Let ξ : Ω → R be a bounded non-constant random
variable. Prove that

(cξ)
′′(t) = EPt [ ξ

2 ]− EPt [ ξ ]2 =: VarPt(ξ)

where Pt := et ξ P/E[et ξ]. Using Jensen’s inequality, conclude that cξ
is strictly convex.

The Legendre transform is an involutive non-linear operator acting
on smooth strictly convex functions. Let C denote the space of smooth
strictly convex functions c : I → R, defined on some open interval
I ⊂ R and such that c′′(t) > 0 for all t ∈ I.

Definition 4.5. Given c ∈ C, its Legendre transform is the function
ĉ = L(c) defined by

ĉ(ε) := sup
t∈I

ε t− c(t) ,

over the interval Î = (ε̂1, ε̂2) with ε̂1 := inft∈I c
′(t), ε̂2 := supt∈I c

′(t).

The Legendre transform is involutive in the sense that if c ∈ C

then L(c) ∈ C and L2(c) = c. (see [1, Section 14C, Chapter 3]).

Exercise 4.10. Let c ∈ C be a strictly convex function with domain
I such that 0 ∈ int(I) and c(0) = c′(0) = 0. Prove that its Legendre
transform ĉ has domain Î such that 0 ∈ int(Î) and ĉ(0) = (ĉ)′(0) = 0.

Exercise 4.11. Prove that the Legendre transform of the function

c(t) := h t2

2 , defined for t ∈] − t0, t0[ with t0, h > 0, is the function

ĉ(ε) := ε2

2h , defined for ε ∈]− ε0, ε0[ where ε0 = h t0.
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Proof of Proposition 4.8. Let µ = 1
n E(Sn) = E(ξm) for all n,m ∈ N.

By Chebyshev’s inequality (Exercise 4.8) we have that for all t ∈ R

P[
1

n
Sn − µ > ε ] ≤ e−t n εE[ et(Sn−nµ) ].

Let c(t) be the cumulant generating function of ξ0 − µ. By Proposi-
tion 4.9 and Exercise 4.9, c(t) is a strictly convex function such that
c(0) = c′(0) = 0. On the other hand, because the process {ξn}n≥0 is
i.i.d. the sum Sn has cumulant generating function cSn(t) = n c(t).
Hence for all ε > 0 and t > 0

P[
1

n
Sn − µ > ε ] ≤ e−t n ε en c(t) = e−n (ε t−c(t)).

For each ε > 0, in order to minimize the right-hand-side upper-bound
we choose τ(ε) := argmaxt ε t− c(t). The upper-bound associated to
this choice is then expressed in therms of the Legendre transform ĉ(ε)
of c(t), i.e., for all n ∈ N

P[
1

n
Sn − µ > ε ] ≤ e−n ĉ(ε).

By Exercise 4.10, ĉ(ε) is a strictly convex function such that ĉ(0) =
(ĉ)′(0) = 0. In particular 0 < ĉ(ε) < κε2 for some κ > 0 and all
ε > 0. A similar bound on lower deviations (below average) is driven
applying the same method to the symmetric process. This proves
that Sn satisfies a LDT estimate.

Next exercise isolates the assumption on the cumulant generating
function of a sum process that allows for the same conclusion as in
Proposition 4.8. To understand the assumption think of {ξn}n≥0 as
a normalized process with zero average, so that cSn(t) is a convex
function with cSn(0) = c′Sn(0) = 0.

Exercise 4.12. Let Sn = ξ0+ξ1+· · ·+ξn−1 be the sum of a bounded
process {ξn}n≥0. Assume there exists a strictly convex function c ∈ C

with domain I = (−t0, t0), c(0) = c′(0) = 0 and d > 0 such that for
all 0 < t < t0 and n ∈ N

cSn(t) = logE[ et Sn ] ≤ d+ n c(t). (4.3)
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Prove that for all ε ∈ Î (the domain of ĉ) and all n ∈ N,

P
[

1

n
Sn > ε

]
≤ ed e−n ĉ(ε),

where ĉ(ε) denotes the Legendre transform of c(t). Moreover, if
c′′(t) ≤ h for t ∈ (−t0, t0) then for all 0 ≤ ε < h t0 and all n ∈ N

P
[

1

n
Sn > ε

]
≤ ed e−n ε2

2h .

We explain now a spectral approach due to S. V. Nagaev to derive
an upper-bound on cumulant generating functions of sum processes
associated to certain Markov processes. This will lead to a LDT
estimate.

Let X be a compact metric space and F be its Borel σ-field. As
before, Prob(X) will denote the space of Borel probability measures
onX. We denote by L∞(X) the Banach space of bounded measurable
functions ξ : X → C, endowed with the usual sup-norm ‖·‖∞.

Definition 4.6. A Markov kernel is a function K : X → Prob(X),
x 7→ Kx, such that for any Borel set E ∈ F, the function x 7→ Kx(E)
is F-measurable. A Markov kernel K determines the following linear
operator QK : L∞(X)→ L∞(X),

(QKφ)(x) :=

∫
X

φ(y) dKx(y).

We refer to K as the kernel of QK and to QK as the Markov operator
of K.

Exercise 4.13. Given a random cocycle (A,µ) withA ∈ L∞(Σ,SL2(R))
and µ ∈ Prob(Σ), prove that QA,µ is the Markov operator with kernel

Kp̂ :=

∫
Σ

δÂ(x) p̂ dµ(x).

The iterates of a Markov kernel K are defined recursively setting
K1 := K and for n ≥ 2, E ∈ F,

Kn
x (E) :=

∫
X

Kn−1
y (E) dKx(y).
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Exercise 4.14. Given a Markov kernel K, prove that for all n ∈ N,
Kn is the kernel of the power operator (QK)n, i.e., (QK)n = QKn .

Definition 4.7. Given a Markov kernel K on (X,F), a measure
µ ∈ Prob(X) is said to be K-stationary when for all E ∈ F,

µ(E) =

∫
Kx(E) dµ(x).

We call Markov system to any pair (K,µ) where K is a Markov
kernel K on (X,F) and µ ∈ Prob(X) is a K-stationary probability
measure.

The topological product space XN is compact and metrizable. Its
Borel σ-field F is generated by the cylinders, i.e., sets of the form

C(E0, . . . , Em) := {(xj)j≥0 ∈ XN : xj ∈ Ej for 0 ≤ j ≤ m}

with E0, . . . , Em ∈ F. Given θ ∈ Prob(X), the following expression
determines a pre-measure over the cylinder semi-algebra on XN

Pθ[C(E0, . . . , Em)] := Em
· · ·
∫
E0

dθ(x0 )

m∏
j=1

dKxj−1
(xj ).

By Carathéodory’s extension theorem this pre-measure extends to a
unique probability measure Pθ on (XN,F). This construction, due
to A. Kolmogorov, is such that the process en : XN → X defined by
en{xj}j≥0 := xn, satisfies for all E ∈ F,

1. Pθ[ e0 ∈ E ] = θ(E),

2. Pθ[ en ∈ E | en−1 = x ] = Kx(E) for all x ∈ X and n ≥ 1.

By construction {en}n≥0 is a Markov process with initial distribution
θ and transition kernel K on the probability space (XN,F ,Pθ). Any
Markov process can in fact be realized in this way.

Exercise 4.15. If µ ∈ Prob(X) is K-stationary prove that {en}n≥0

is a stationary process on (XN,F ,Pµ).
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Given a Markov system (K,µ) we will refer to the probability
measure Pµ on (XN,F) as the Kolmogorov extension of (K,µ). We
call sum process of an observable ξ ∈ L∞(X) the sum of the station-
ary process {ξn := ξ ◦ en}n≥0

Sn(ξ)(x) := ξ0(x) + ξ1(x) + · · ·+ ξn−1(x)

= ξ(x0) + ξ(x1) + · · ·+ ξ(xn−1),

where x = {xn}n≥0 ∈ XN, on (XN,F ,Pµ). We aim to establish an
LDT estimate for Sn(ξ), at least for some subclass of observables
ξ ∈ L∞(X).

The spectral method we are about to explain analyzes a one pa-
rameter family of operators Qt that matches the Markov operator
QK for t = 0.

Definition 4.8. A Markov kernel K on (X,F) and a measurable
observable ξ ∈ L∞(X) determine the following family of so called
Laplace-Markov operators QK,ξ,t : L∞(X)→ L∞(X),

(QK,ξ,tφ)(x) :=

∫
X

φ(y) et ξ(y) dKx(y),

where t is a real or complex parameter.

Since L∞(X) is a Banach algebra, the multiplication operator
Metξ : L∞(X) → L∞(X), φ 7→ φ etξ, is bounded. Moreover, the de-
pendence of these operators on t is analytic. Hence, because QK,ξ,t =
QK ◦Metξ , the Laplace-Markov family is also analytic on t.

In the sequel, the probability Pθ and the associated expected value
Eθ for a Dirac mass θ = δx with x ∈ X, will be denoted by Px and Ex,
respectively. Notice that (QK,ξ,tφ)(x) = Ex[φ etξ ] and in particular
(QK,ξ,t1)(x) = Ex[ etξ ]. This relation extends inductively.

Exercise 4.16. Prove that for all n ≥ 1,

(Qnt 1)(x) = Ex
[
et Sn(ξ)

]
where Qt = QK,ξ,t.
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To get large deviations through Nagaev’s method we make a
strong assumption on the Markov system (K,µ), namely that for
some Banach sub-algebra B ⊂ L∞(X) with 1 ∈ B, QK : B→ B is a
quasi-compact and simple operator.

Let (B, ‖·‖B) be a complex Banach algebra and also a lattice, in
the sense that f, |f | ∈ B for all f ∈ B. Assume also 1 ∈ B, B ⊂
L∞(X) and the inclusion B ↪→ L∞(X) is continuous: ‖f‖∞ ≤ ‖f‖B
for all f ∈ B.

Definition 4.9. We say that a Markov system (K,µ) acts simply and
quasi-compactly on B if there are constants C < ∞ and 0 < σ < 1
such that for all f ∈ B and all n ≥ 0,

‖QKf − (∫ f dµ) 1‖B ≤ C σn ‖f‖B.

Let L(B) be the Banach algebra of bounded linear operators on
B and denote by |||T |||B the operator norm of T ∈ L(B).

Theorem 4.4. Let (K,µ) be a Markov system which acts simply and
quasi-compactly on a Banach sub-algebra B ⊂ L∞(X) satisfying the
above assumptions. Then given ξ ∈ B there are constants κ, ε0 > 0
and C ′ <∞ such that for all x ∈ X, 0 < ε < ε0 and n ∈ N

Px
[ ∣∣ 1
n
Sn(ξ)−

∫
X

ξ dµ
∣∣ > ε

]
≤ C ′ e−nκ ε

2

.

The constants C ′, κ and ε0 depend on |||Q0|||B, ‖ξ‖B and on the con-
stants C and σ in Definition 4.9 controlling the action of Q0 on B.

Proof. Given ξ ∈ B, the Laplace-Markov family Qt := QK,ξ,t ex-
tends to an entire function Q : C→ L(B). The reason for this is the
factorization Qt = Q0 ◦Metξ . Because B is a Banach algebra,

C 3 t 7→ etξ :=

∞∑
n=0

tn ξn

n!
∈ B

is an analytic function, while f 7→ Mf is an isometric embedding of
B into L(B) as a Banach sub-algebra.

By hypothesis there are constants C0 < ∞ and 0 < σ0 < 1 such
that for all f ∈ B and n ∈ N,

‖Qn0f − (∫ f dµ) 1‖B ≤ C0 σ
n
0 ‖f‖B.
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It follows from this inequality that spec(Q0) ⊂ {1} ∪ Dσ0(0) and 1
is a simple eigenvalue of Q0. There is a Q0-invariant decomposition
B = E0 ⊕ H0 with E0 = C1 and H0 := {f ∈ B : ∫ f dµ = 0}.
Moreover P0 : B → B, P0f := (∫ f dµ) 1, is the spectral projection
associated with the eigenvalue 1.

Exercise 4.17. From the two measurements |||Q0|||B and ‖ξ‖B find
constants M,C1 <∞ such that for all f ∈ B and |t| ≤ 1,

‖Qtf‖B ≤M ‖f‖B and ‖Qtf −Q0f‖B ≤ C1 |t| ‖f‖B.

Using the bounds from Exercise 4.17, the spectral decomposition
B = E0 ⊕H0 persists for small t. More precisely, fixing σ ∈ (σ0, 1),
say σ := 1+σ0

2 , there are constants t0 > 0 and C2 < ∞, there are
subspaces Et, Ht ⊂ B and there are analytic functions Dt0(0) 3 t 7→
λ(t) ∈ C and Dt0(0) 3 t 7→ Pt ∈ L(B) such that for all |t| < t0

1. B = Et ⊕Ht is a Qt-invariant decomposition,

2. dim(Et) = 1,

3. Pt is the projection onto Et parallel to Ht,

4. Pt ◦ Qt = Qt ◦ Pt = λ(t)Pt,

5. Qtf = λ(t) f for all f ∈ Et,

6. λ(0) = 1 and
∣∣λ(t)

∣∣ > (1 + σ)/2,

7. ‖Qnt f − λ(t)n Ptf‖B ≤ C2 σ
n ‖f‖B for all f ∈ B and n ∈ N,

8. spec(Qt|Ht) ⊂ Dσ(0),

9. ‖Ptf‖B ≤ C2 ‖f‖B for all f ∈ B,

10. ‖Ptf − P0f‖B ≤ C2 |t| ‖f‖B for all f ∈ B.

These properties describe the continuous dependence of the spec-
tral decomposition of the Laplace-Markov operator Qt on the param-
eter t. Their proof uses Spectral Theory (see for instance [51, Chapter
XI]). More precisely, they can be proven with a Taylor development
of the Cauchy integral formula for the spectral projection Pt. See [16,
Proposition 5.12].
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Exercise 4.18. Track the dependence of t0 and C2 on the constants
C0, σ0, |||Q0|||B and ‖ξ‖B.

Exercise 4.19. Prove that R 3 t 7→ λ(t) is a real analytic function
with strictly positive values. Hint: Qt is a positive operator.

Exercise 4.20. Prove that c(t) := log λ(t) is a real analytic function
such that c(0) = 0 and c′(0) = Eµ(ξ). Hint: By the Implicit Function
Theorem there exists an analytic function Dt0(0) 3 t 7→ ft ∈ B such
that Qt ft = λ(t) ft and ∫ ft dµ = 1 for all t. Differentiating this
relation prove that λ′(0) = ∫ Q′01 dµ = Eµ(ξ).

Exercise 4.21. Derive an absolute upper bound h for the second
derivative of c(t) := log λ(t) on some compact interval contained in
(−t0, t0), e.g., c′′(t) ≤ h for all |t| ≤ t0

2 . Show explicitly the depen-
dence of h on the constants M and t0. Hint: The function λ(t) is
analytic on Dt0(0). Use Cauchy’s integral formula for c′′(t).

We can normalize the process ξn, adding up some constant term,
so that it has zero average. There is no loss of generality in assuming
that Eµ(ξ) = 0. By exercises 4.20 and 4.21, c(0) = c′(0) = 0, and

c(t) ≤ h t2

2 for all |t| < t0
2 .

Using properties 7. and 10. above we have for all |t| < t0∣∣Ex[ et Sn(ξ) ]− λ(t)n
∣∣ =

∣∣(Qnt 1)(x)− λ(t)n
∣∣ ≤ ‖Qnt 1− λ(t)n 1‖B

≤ ‖Qnt 1− λ(t)n Pt1‖B + λ(t)n‖Pt1− 1‖B
≤ C2 σ

n + λ(t)n‖Pt1− P01‖B
≤ C2 σ

n + λ(t)n C2 ‖1‖B |t|.

Hence there exists d > 0 such that for all |t| < t0
2 and n ∈ N,

Ex[ et Sn(ξ) ] ≤ en c(t) (1 + C2 ‖1‖B |t|) + C2 σ
n

≤ ed+n c(t) ≤ ed+n h t2

2 .

Applying Exercise 4.12, it follows that for all 0 ≤ ε < h t0
2 and n ∈ N,

Px[
1

n
Sn(ξ) > ε ] ≤ ed e−n ε2

2h .
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Combining this with the analogous inequality for −ξ we get

Px[
1

n
|Sn(ξ)| > ε ] ≤ 2 ed e−n

ε2

2h .

This shows that Sn(ξ) satisfies an LDT estimate. Moreover, all con-
stants h, t0, ε0 = h t0

2 and d depend only on the specified measure-
ments C0, σ0, |||Q0|||B and ‖ξ‖B.

Remark 4.1. The constant C ′ = 2 ed in the previous proof can be
kept small provided n is large enough.

4.4 Large deviations for random cocycles

Given a measure preserving dynamical system T : Ω→ Ω and a mea-
surable cocycleA : Ω→ SL2(R), the process Ln(A)(ω) := log‖A(n)(ω)‖
is sub-additive in the sense that for all n,m ∈ N,

Ln+m(A) ≤ Ln(A) ◦ Tm + Lm(A).

A related additive process over the skew-product map F̂ : Ω × P →
Ω× P, F̂ (ω, p̂) := (Tω, Â(ω) p̂), can be defined as follows

Sn(A)(ω, p̂) := log‖A(n)(ω) p‖,

where p is a unit representative of p̂. The observable ξA : Ω× P→ R

ξA(ω, p̂) := log‖A(ω)p‖,

‘watches’ the one-step fiber expansion along the direction p̂, while
Sn(A) is precisely the sum process associated with ξA.

Exercise 4.22. Prove that Sn(A) =
∑n−1
j=0 ξA ◦ F̂ j for all n ∈ N.

The additive process Sn(A) is essential to reduce Theorem 4.1
(on LDT estimates for random cocycles) to Theorem 4.4 (with LDT
estimates for additive processes).
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Consider the space L∞(Σ× Σ× P) of bounded measurable func-
tions φ : Σ × P → C. Given a function φ ∈ L∞(Σ × Σ × P) and
0 < α ≤ 1, define

‖φ‖∞ := sup
x,y∈Σ, p̂∈P

∣∣φ(x, y, p̂)
∣∣,

vα(φ) := sup
x,y∈Σ
p̂ 6=q̂

∣∣φ(x, y, p̂)− φ(x, y, q̂)
∣∣

δ(p̂, q̂)α
,

‖φ‖α := vα(φ) + ‖φ‖∞
and set

Hα(Σ× Σ× P) := {φ ∈ L∞(Σ× Σ× P) : ‖φ‖α <∞}.

Exercise 4.23. Prove that (Hα(Σ×Σ×P), ‖·‖α) is a Banach algebra
with unity.

Given a cocycle (A,µ) ∈ L∞(Σ,SL2(R))×Prob(Σ) we define the
Markov operator QA = QA,µ : L∞(Σ×Σ× P)→ L∞(Σ×Σ× P) by

QA(φ)(x, y, p̂) :=

∫
Σ

φ(y, z, Â(y) p̂) dµ(z).

Exercise 4.24. Show that the Markov operator QA is determined
by the following kernel on the compact metric space Σ× Σ× P

KA
(x,y,p̂) =

∫
Σ

δ(y,z,Â(y) p̂) dµ(z).

Let L∞(Σ × P), resp. Hα(Σ × P), be the subspace of functions
φ ∈ L∞(Σ×Σ× P), resp. φ ∈ Hα(Σ×Σ× P), which do not depend
on the first variable.

Exercise 4.25. Prove that QA maps L∞(Σ×Σ×P) into L∞(Σ×P)
and hence induces an operator QA : L∞(Σ× P)→ L∞(Σ× P).

Exercise 4.26. Prove by induction in n ∈ N that for any function
φ ∈ L∞(Σ× P)

(QnAφ)(x0, p̂) =

∫
Σn
φ
(
xn, Â(xn−1) · · · Â(x1) Â(x0) p̂

)
dµn(x1, · · · , xn)

=

∫
Σn
φ
(
xn, Ân−1 Â(x0) p̂

)
dµn(x1, · · · , xn)



i
i

“notes” — 2017/5/29 — 19:08 — page 87 — #89 i
i

i
i

i
i

[SEC. 4.4: LARGE DEVIATIONS FOR RANDOM COCYCLES 87

where An−1 = An−1(x1, . . . , xn−1)

Exercise 4.27. Prove that for all A ∈ SL2(R) and p̂, q̂ ∈ P,

1

‖A‖2
≤ δ(Â p̂, Â q̂)

δ(p̂, q̂)
≤ ‖A‖2.

Exercise 4.28. Prove that for all φ ∈ L∞(Σ× P) and n ∈ N

vα(QnAφ) ≤ ‖A‖2α∞ κα(An−1, µn−1) vα(φ).

Conclude that QA acts simply and quasi-compactly on Hα(Σ × P),
with stationary measure µ × νA. Prove also that µ × µ × νA is the
unique stationary measure of KA on Σ × Σ × P. Hint: Use the
exercises 4.26 and 4.27 to prove the above inequality.

Next consider the observable ξA ∈ L∞(Σ× Σ× P)

ξA(x, y, p̂) := log‖A(x)p‖,

Exercise 4.29. Consider the set Ω ⊂ (Σ×Σ×P)N of (KA-admissible)
sequences ω = {ωn}n∈N such that for some pair of sequences {xn} ⊂
Σ and {p̂n} ⊂ P one has ωn = (xn, xn+1, p̂n) and p̂n+1 = Â(xn) p̂n
for all n ∈ N.

Show that Ω has full measure w.r.t. the Kolmogorov extension
Pµ×µ×νA of (KA, µ× µ× νA).

For a KA-admissible sequence ω

Sn(ξA)(ω) =

n−1∑
j=0

ξA(xj , xj−1, p̂j)

=

n−1∑
j=0

log‖A(xj)
A(xj−1) · · ·A(x1)A(x0)p0

‖A(xj−1) · · ·A(x1)A(x0)p0‖
‖

= log‖A(xn−1) · · ·A(x1)A(x0)p0‖.
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Proof of Theorem 4.1. Let (A,µ) ∈ L∞(Σ,SL2(R)) × Prob(Σ) be a
quasi-irreducible random cocyle such that L(A) > 0 and let νA ∈
Prob(P) be its stationary probability measure. By Exercise 4.28, the
Markov operator QA acts simply and quasi-compactly on the Banach
sub-algebra Hα(Σ×P). Hence by Theorem 4.4 applied to the Markov
system (KA, µ × µ × νA) there are constants ε0, C, h > 0 such that
for all 0 < ε < ε0, (x, p̂) ∈ Σ× P and n ∈ N,

Px
[ ∣∣ 1
n

log‖A(n) p‖ − L(A)
∣∣ ≥ ε ] ≤ C e− ε2

2h n .

Averaging in x ∈ Σ w.r.t. µ, for all p̂ ∈ P we get that

Pµ
[ ∣∣ 1
n

log‖A(n) p‖ − L(A)
∣∣ ≥ ε ] ≤ C e− ε2

2h n .

Choose the canonical basis {e1, e2} of R2 and consider the following
norm ‖·‖′ on the space of matrices Mat2(R), ‖M‖′ := maxj=1,2‖M ej‖.
Since this norm is equivalent to the operator norm, we have for all
p̂ ∈ P and n ∈ N,

‖A(n) p‖ ≤ ‖A(n)‖ . ‖A(n)‖′ = max
j=1,2

‖A(n) ej‖ .

Thus a simple comparison of the deviation sets gives

Pµ
[ ∣∣ 1
n

log‖A(n)‖ − L(A)
∣∣ ≥ ε ] . e−

ε2

2h n

for all 0 < ε < ε0 and n ∈ N.
To finish the proof, let us explain why this LDT estimate is uni-

form in a neighborhood of A. By Proposition 4.6 there are constants
0 < α < 1, 0 < κ < 1 and n ∈ N such that κα(Bn, µn) ≤ κn

for every cocycle B in some neighborhood V of A. Hence, for every
B ∈ V, the Markov operator QB acts simply and quasi-compactly on
Hα(Σ×Σ×P). This behavior is described in Definition 4.9. The re-
spective constants are σ = κ and C = κα(B,µ)n, where n is the con-
stant fixed above. Simple calculations show that ‖ξB‖α ≤ ‖B‖2∞ and
|||QB |||Hα

≤ max{1, κα(B,µ)}. Therefore, since these upper-bound
measurements depend continuously on B, the LDT parameters from
Theorem 4.4 can be kept constant in the neighborhood V.
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Proof of Theorem 4.2. This theorem follows as an application of the
ACT (Theorem 3.3). Assumptions (i) and (ii) of the ACT are auto-
matically satisfied while hypothesis (iii) of the ACT holds by The-
orem 4.1. The conclusions of Theorem 4.2 follow then by Theo-
rem 3.3.

4.5 Consequence for Schrödinger cocycles

The goal of this section is to discuss the applicability of Theorem 4.1
on LDT estimates and of Theorem 4.2 on the continuity of the LE and
of the Oseledets splitting to random Bernoulli Schrödinger cocycles.

Let µ ∈ Prob(R) be a probability measure with compact support,
set Σ := supp(µ) and consider the function A : R× Σ→ SL2(R)

AE(x) = A(E, x) :=

[
x− E −1

1 0

]
.

For each E ∈ R, the pair (µ,AE) determines a random cocycle which
is also a Schrödinger cocycle as defined in Example 1.8.

Proposition 4.10. If supp(µ) contains more than one point then
the Schrödinger cocycle (A,µ) satisfies L(A) > 0.

Proof. See [13, Theorem 4.3], or else Exercise 4.30 below.

The proof of this fact uses on the following classical theorem of
H. Furstenberg [22].

Theorem 4.5. Given µ ∈ Prob(Σ) and A ∈ L∞(Σ,SL2(R)) assume:

(a) The subgroup generated by the set of matrices {A(x) : x ∈ Σ} is
not compact.

(b) There is no finite subset L ⊂ P(R2), L 6= ∅, such that for all
x ∈ Σ, A(x)L = L.

Then L(A) > 0.

Proof. We refer the reader to the book [60, Theorem 6.11] for the
proof of this statement.
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Exercise 4.30. Given the family of SL2(R) matricesMx :=

[
x −1
1 0

]
show that:

(a) MaM
−1
b =

[
1 a− b
0 1

]
for any a, b ∈ R.

(b) M−1
a Mb =

[
1 0

a− b 1

]
for any a, b ∈ R.

(c) If #supp(µ) > 1 then the subgroup generated by {AE(x) : x ∈
supp(µ)} is not compact.

(d) There is no finite subset ∅ 6= L ⊂ P(R2) such that M̂a M̂
−1
b L =

L and M̂−1
a M̂b L = L for some pair of real numbers a 6= b.

(e) L(AE , µ) > 0, for all E ∈ R.

Proposition 4.11. If supp(µ) contains more than one point then
the Lyapunov exponent L(E) := L(AE) and the Oseledets splitting
components E±E := E±AE are Hölder continuous functions of E.

Proof. Follows from Proposition 4.10, Theorem 4.1 and Corollary 3.1,
or, alternatively, from Proposition 4.10 and Theorem 4.2.

4.6 Bibliographical notes

The study of random cocycles goes back to the seminal work of H.
Furstenberg [22] where the positivity criterion in Theorem 4.5 was
established for GLd(R)-cocycles. Since then, the scope of Fursten-
berg’s theory has been greatly extended, namely with similar criteria
for the simplicity of the LE [50, 27].

Regarding the continuity of the LE of random linear cocycles, the
first result was established by H. Furstenberg and Y. Kifer [21] for
generic (irreducible and contracting) GLd(R)-cocycles. For random
cocycles generated by finitely many matrices, Y. Peres [48] proved
the analyticity of the top LE as a function of the probability vector.
The regularity of the top LE with respect to the matrices is much
more subtle. On one hand a theorem of Ruelle [52] shows that this
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dependence on the matrices is analytic for uniformly hyperbolic co-
cycles, but on the other hand an example of a random Schrödinger
cocycle due to B. Halperin (see Simon-Taylor [54]) shows that this
modulus of continuity is in general not better than Hölder. In [39] E.
Le Page proved the Hölder continuity of the top LE (the analogue of
Theorem 4.3) for irreducible GLd(R)-cocycles with a gap between the
first two LE. The full continuity, without any generic assumption, for
general GL2(R)-cocycles was established by C. Bocker-Neto and M.
Viana in [6]. The analogue of this result for random GLd(R)-cocycles
has been announced by A. Avila, A. Eskin and M. Viana (see [60,
Note 10.7]. An extension of [6] to a particular type of cocycles over
Markov systems (particular in the sense that the cocycle still de-
pends on one coordinate, as in the Bernoulli case) was obtained by
E. Malheiro and M. Viana in [44]. For the interested reader, a gen-
eral one-stop reference for continuity results for random cocycles is
M. Viana’s monograph [60].

We provide now a few notes on large deviation and other limit
theorems for Markov processes in general and for random cocycles in
particular. In [46] S. V. Nagaev proved a central limit theorem for
stationary Markov chains. In his approach Nagaev uses the spectral
properties of a quasi-compact Markov operator acting on some space
of bounded measurable functions. Nagaev’s approach was used by
V. Tutubalin [59] to establish the first central limit theorem in the
context of random cocycles. This method was used by E. Le Page to
obtain more general central limit theorems, as well as a large devia-
tion principle [38]. Later P. Bougerol extended Le Page’s approach,
proving similar results for Markov type random cocycles [8]. The
book of P. Bougerol and J. Lacroix [9], on random i.i.d. products of
matrices, is an excellent introduction on the subject in [38, 8]. More
recentely, the book of H. Hennion and L. Hervé [29] describes a pow-
erful abstract setting where the method of Nagaev can be applied to
derive limit theorems.

These notes are based in our manuscript [16] where we established
uniform LDT estimates and continuity of the LE for strongly mixing
Markov cocycles. We remark that the known large deviation princi-
ples, in the context of random cocycles (see [7, 9, 29]), did not provide
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the required uniformity in the LDT estimates. The presentation here
is significantly shortened because of our simpler setting: we consider
bounded measurable random (Bernoulli) SL2(R)-cocycles. The proof
of E Le Page’s theorem (Theorem 4.3) is taken from [5].
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Chapter 5

Quasi-periodic Cocycles

5.1 Introduction and statement

Let T be the one dimensional torus, regarded as the additive group
R/Z, with the interval [0, 1) chosen as a model for this quotient
space. Moreover, any function f : T → C may be identified with
its 1-periodic lifting f ] : R→ C.

Through these identifications we endow T with a probability Borel
measure denoted by |·|, namely the Lebesgue measure from R re-
stricted to [0, 1). Furthermore, given a function f on T, concepts
such as continuity or differentiability correspond to the continuity or
differentiability of the periodic lifting f ] on R.

We will stop distinguishing between x + Z ∈ R/Z and x ∈ R, or
between f on T and f ] on R, and instead let x or f respectively refer
to either, depending on the context.

Let L1(T) be the space of all measurable functions f : T→ C that
are absolutely integrable with respect to the measure |·|, that is,∫

T
|f(t)| dt <∞ .

We will call any f ∈ L1(T) an observable.
Occasionally we use the notation 〈f〉 :=

∫
T f for the integral of

an observable f , and refer to this number also as the mean of f .

93
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Let ω ∈ R \ Q be a number which we call frequency, and define
the transformation T = Tω : T→ T,

Tx := x+ ω mod Z

to be the translation by ω.
Then (T, |·| , T ) is an ergodic MPDS, called the torus translation.

The results in this chapter require an arithmetic assumption1 on
the frequency. That is, we will assume that ω is not merely irrational,
but it is not well approximated by rationals with small denominators.

Definition 5.1. We say that a frequency ω ∈ T satisfies a Diophan-
tine condition if

‖kω‖ := dist(kω,Z) ≥ γ∣∣k∣∣ (log
∣∣k∣∣)2

(5.1)

for some γ > 0 and for all k ∈ Z \ {0}.

It can be shown that the set of frequencies satisfying this condition
has measure 1 − O(γ), hence almost every frequency ω ∈ T will
satisfy (5.1) for some γ > 0.

The estimates derived in this chapter (e.g. the LDT) will not
depend on the frequency ω per se, but on the constant γ. Since ω
will be fixed throughout, we will not emphasize that dependence on
γ and in fact for simplicity drop it from notations.

All throughout this chapter, if x ∈ R, we will use the notation

e(x) := e2π i x ∈ S ,

where S is the unit circle regarded as a subset (and multiplicative
subgroup) of C, the complex plane. This defines a 1-periodic surjec-
tive function e : R → S ⊂ C, with the property that e(x) = e(y) if
and only if x− y ∈ Z.

Hence e induces an isomorphism T 3 x + Z 7→ e(x) ∈ S. This
map is also continuous, measure preserving and it conjugates the
torus translation Tω with the circle rotation (by angle 2πω).

1This type of assumption is sufficient for our purposes. It is known at this
point, but just as a folklore result, that some type of arithmetic assumption is
necessary for the kind of results obtained in this chapter.
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Therefore, when convenient, via x 7→ e(x), we will identify T with
S as metric spaces, probability spaces and MPDS (relative to the
translation and respectively rotation).

Furthermore, any function f : T→ C is identified, when need be,
with the function f [ : S → C, f [(e(x)) = f(x), and again, we will
stop distinguishing in notations f from f [.

Let L2(T) be the space of all square integrable functions on T.
Endowed with the inner product

〈f, g〉 =

∫
T
f g ,

L2(T) is a Hilbert space. The (multiplicative) characters en : T→ C,
en(x) := e(nx) = e2π i n x, form an orthonormal basis. The coeffi-

cients f̂(n) of a function f ∈ L2(T) relative to this basis are called
the Fourier coefficients of f , so

f̂(n) :=

∫
T
f(t) en(t) dt =

∫
T
f(t) e(−nt) dt .

Thus any f ∈ L2(T) may be expanded into the Fourier series

f(x) =
∑
n∈Z f̂(n) en(x), where the convergence of the infinite sum

and the equality are understood in the L2 sense.

Through the identification T ≡ S ⊂ C, an observable on T may
be afforded additional analytic properties.

For example, we say that a function f = f(x) on T has a holo-
morphic extension to a domain Ω, where T ⊂ Ω ⊂ C, if there is
holomorphic function from Ω to C, whose values on T are those of
f(z). By the interior uniqueness theorem for holomorphic functions,
if such a function exists, it is unique, and we denote it by f = f(z).

Any real analytic function on T (i.e. a function f : T → R that
expands as a power series locally near any point) has a holomorphic
extension to a complex domain Ω ⊃ T. Any such domain contains
an annulus of a certain width around T.

Let ρ > 0 and let

A = Aρ := {z ∈ C : 1− ρ < |z| < 1 + ρ}

be the annulus of width ρ around the torus T. This domain (hence
its width) will be fixed once and for all.
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Definition 5.2. We define Cωρ (T,R) to be the set of all real analytic
functions f : T→ R that have a holomorphic extension to the annulus
Aρ, extension which is continuous up to the boundary of the annulus.

Endowed with the norm

‖f‖ρ := sup
z∈Aρ

|f(z)| ,

the set Cωρ (T,R) is a Banach space.

Exercise 5.1. Show that (Cωρ (T,R), ‖·‖ρ) is indeed a Banach space.

We are finally ready to introduce the space of analytic quasi-
periodic cocycles.

Definition 5.3. We define Cωρ (T,SL(2,R)) to be the set of all func-
tions A : T→ SL2(R) that have a holomorphic extension to Aρ, which
is continuous up to the boundary.

By holomorphicity of a matrix valued function, we simply under-
stand the holomorphicity of each of its entries.

That is, A = (aij) ∈ Cωρ (T,SL(2,R)) means aij ∈ Cωρ (T,R) for
all 1 ≤ i, j ≤ 2.

We define on Cωρ (T,SL(2,R)) the distance:

d(A,B) = ‖A−B‖r := sup
z∈Aρ
‖A(z)−B(z)‖ .

With this distance, Cωρ (T,SL(2,R)) is a complete metric space.
It is in fact a closed subspace of the Banach space of functions

A : T→ Mat2(R) having a holomorphic extension to Aρ.

Exercise 5.2. Verify the assertions formulated above about the me-
tric on Cωρ (T,SL(2,R)).

We fix a frequency ω, consider the translation by ω on the torus
T and regard the matrix valued functions A ∈ Cωρ (T,SL(2,R)) as
linear cocycles over this translation. Thus the space of analytic quasi-
periodic cocycles is identified with Cωρ (T,SL(2,R)).

We may now formulate the main results of this chapter.
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Theorem 5.1. Let A ∈ Cωρ (T,SL(2,R)) be a quasi-periodic cocycle,
let ω ∈ T be a frequency satisfying the Diophantine condition (5.1)
and let C <∞ be a constant such that log‖A‖r < C.

For every small ε > 0 there is n = n(ε, C) ∈ N such that for all
n ≥ n,∣∣∣ {x ∈ T :

∣∣ 1
n

log‖A(n)(x)‖ − L(n)(A)
∣∣ > ε

} ∣∣∣ < e−c ε
2 n , (5.2)

where c = O
(

1
C

)
.

Remark 5.1. We note that since the LDT parameters n and c only
depend on the uniform constant C, (5.2) is a uniform LDT estimate.

We also note the fact that unlike in the random case, the positivity
of the Lyapunov exponent is not needed in order to obtain an LDT
estimate for such quasi-periodic cocycles.

Theorem 5.2. Assume that ω ∈ T satisfies the Diophantine condi-
tion (5.1). Then the Lyapunov exponent

L : Cωρ (T,SL(2,R))→ R

is a continuous function.
Furthermore, if A ∈ Cωρ (T,SL(2,R)) with L(A) > 0, then there is

a neighborhood V of A in Cωρ (T,SL(2,R)) such that:

1. The Lyapunov exponent L is Hölder continuous on V.

2. The components E± : V→ L1(T,P(R2)), A 7→ E±A of the Osele-
dets splitting are Hölder continuous.

5.2 Staging the proof

For any observable f : T→ R and integer n ∈ N, let

Snf(x) := f(x) + f(Tx) + . . .+ f(Tn−1x)

be its n-th Birkhoff sum.
For any cocycle A ∈ Cωρ (T,SL(2,R)) and integer n ∈ N consider

the function on the torus T,

u
(n)
A (x) :=

1

n
log‖A(n)(x)‖ .
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Since A(x) has the holomorphic extension A(z) to A , the iterates
A(n)(x) also extend holomorphically to A . Therefore, each function

u
(n)
A (x) has the subharmonic extension to A :

u
(n)
A (z) =

1

n
log‖A(n)(z)‖ .

It is easy to see that the functions u
(n)
A (z) are uniformly bounded

in z, n and even A. The subharmonicity and the uniform boundedness
of these functions play a crucial rôle in the derivation of the LDT
estimates. Let us explain this point.

The functions u
(n)
A (x) are almost invariant under the base trans-

formation T in the sense that∣∣u(n)
A (x)− u(n)

A (Tx)
∣∣ ≤ C

n
,

for some constant C = C(A) <∞ and for all n ∈ N.
This almost invariance property implies, via the triangle inequality,

that for all j ∈ N, ∣∣u(n)
A (x)− u(n)

A (T jx)
∣∣ ≤ Cj

n
.

Thus if R is an integer with R = O(n), for all x ∈ T we have

∣∣u(n)
A (x)− 1

R
SRu

(n)
A (x)

∣∣ ≤ CR

n
= O(1) . (5.3)

By Birkhoff’s ergodic theorem, as R→∞, the averages 1
RSRf(x)

of an observable f ∈ L1(T) converge pointwise almost everywhere to
the mean

∫
T f , so

1

R
SRu

(n)
A (x)→

∫
T
u

(n)
A = L(n)(A) as R→∞ for a.e. x ∈ T .

Our goal is to establish an LDT estimate for the cocycle A, that
is, an estimate of the form∣∣∣{x ∈ T :

∣∣u(n)
A (x)−

∫
T
u

(n)
A

∣∣ > ε}
∣∣∣ < ι(ε, n) ,
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where ι(ε, n) decays rapidly (e.g. exponentially) as n→∞.
Because of the almost invariance (5.3), this task then reduces to

proving a quantitative version of the Birkhoff ergodic theorem, one
that only depends on some measurement on the observable and not
on the observable per se.

More precisely, we need a statement of the form∣∣{x ∈ T :
∣∣ 1

R
SRu(x)−

∫
T
u
∣∣ > ε}

∣∣ < ι(ε, n) , (5.4)

which should apply with the same rate function ι to all observables

u = u
(n)
A , corresponding to the iterates A(n), n ∈ N of the cocycle A.

In fact, in order to derive a uniform LDT, (5.4) should apply, with

the same rate ι to observables u = u
(n)
B , corresponding to the iterates

B(n) of all cocycles B in a small neighborhood of A.

The functions u
(n)
B (x) := 1

n log‖B(n)(x)‖ have bounded subhar-
monic extensions to A , and it is not hard to see that the bound is
uniform in B and n.

Thus it is sufficient to establish a quantitative Birkhoff ergodic
theorem (qBET) like (5.4) for any observable u with a subharmonic
extension to A that is bounded by a constant C, where the rate
function ι depends only on this bound C.2

The derivation of this qBET, which we obtain in Theorem 5.6,3

is the core of this chapter, and it is achieved by using various con-
cepts and results in harmonic analysis, potential theory and analytic
number theory. We give a hint of what is to come.

Expand the observable u into a Fourier series. Since the mean of
a function is its zeroth Fourier coefficient, subtracting the mean we
have that

u(x)−
∫
T
u =

∑
k 6=0

û(k) e(kx) ,

so taking the Birkhoff averages, we have

1

R
SRu(x)−

∫
T
u =

∑
k 6=0

û(k)
1

R
SR e(kx) .

2The rate ι will also depend on the frequency ω (more precisely, on its arith-
metic properties). However, ω is fixed.

3In fact, instead of the usual Birkhoff averages, we will consider higher order
averages.
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Therefore, in order to estimate the sum of the Fourier modes
above, we need the following two ingredients.

1. A rate of decay of the Fourier coefficients of u. This will be
established in Theorem 5.5 using harmonic analysis and poten-
tial theory tools, chief amongst them, the Riesz representation
theorem. We will review most of the concepts needed. How-
ever, at the first perusal of this chapter, the reader may just
accept the validity of the decay (5.10) and move on with the
rest of the argument.

2. An estimate on the Birkhoff averages 1
RSR ek(x) of the charac-

ters ek(x) = e(kx). This is precisely where the arithmetic con-
dition on the frequency ω is used.

5.3 Uniform measurements on
subharmonic functions

As already mentioned, subharmonic functions play a crucial rôle in
the derivation of the LDT estimates for quasi-periodic cocycles. We
will derive some measurements on a subharmonic function that de-
pend only on its uniform bound and on its domain.

We begin with a review of some notions in potential theory, more
specifically: the Green’s function and the harmonic measure of a
domain, subharmonic functions and their basic properties. Standard
reference books on this topic are [28, 41] and [24]. For an easier dive
into this subject consider [23].

All throughout this section, Ω ⊂ C will be a bounded domain
with analytic boundary.4

We denote by g(z, ζ) = g(z, ζ; Ω) the Green’s function for Ω with
pole at ζ. Let us recall the basic properties of the Green’s function
that are needed here (see [23, Chapter XV.6]).

For every ζ ∈ Ω, the function z 7→ g(z, ζ) is harmonic on Ω \ {ζ},
and

H(z, ζ) := g(z, ζ) + log |z − ζ|
4We say that a domain has analytic boundary if its boundary consists of a

finite number of disjoint, simple, closed analytic curves. For instance, any disk,
and also any annulus, has analytic boundary.
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is harmonic at ζ, hence everywhere on Ω, as a function of z.
Moreover, H(z, ζ) is smooth on Ω× Ω.
Furthermore, the Green’s function g(z, ζ) is smooth on the set

{(z, ζ) ∈ Ω× Ω: z 6= ζ}, and g(z, ζ) = g(ζ, z).
Finally, g(z, ζ) > 0 on Ω× Ω and g(z, ζ)→ 0 as z → ∂Ω.
We note that for every ζ ∈ Ω, z 7→ H(z, ζ) is in fact the (Perron)

solution to the Dirichlet problem on Ω with the continuous function
∂Ω 3 z 7→ log |z − ζ| as boundary value.

Given a domain Ω as above and z ∈ Ω, the harmonic measure
at z with respect to Ω is a Borel probability measure νz = νz,Ω on
∂Ω such that for every Borel set E ⊂ ∂Ω, the function z 7→ νz(E) is
harmonic on Ω and if f is continuous on ∂Ω, then

Hf (z) :=

∫
∂Ω

f(ζ)dνz(ζ) (5.5)

is the solution to the Dirichlet problem on Ω with boundary value f .
In probabilistic terms, νz(E) represents the probability that a

Brownian motion which started inside the domain Ω at z, exits Ω
through the subset E ⊂ ∂Ω.

We also note that the harmonic measure and the Green’s function
of a domain Ω are related by the formula

νz = − 1

2π

∂gz
∂n

ds ,

where ∂gz
∂n is the exterior normal derivative of gz(ζ) = g(z, ζ).

This formula is a direct consequence of (5.5) and of Green’s third
identity (which can be found in [23]).

We now review the notion of subharmonic function.

Definition 5.4. A function u : Ω→ [−∞,∞) is called subharmonic
in the domain Ω ⊂ C if for every z ∈ Ω, u is upper semicontinuous 5

at z and it satisfies the sub-mean value property:

u(z) ≤
∫ 1

0

u(z + re(θ))dθ ,

for some r0(z) > 0 and for all r ≤ r0(z).

5All of our subharmonic functions will be finite, i.e. u : Ω → R, nonnegative
and continuous rather than just upper semicontinuos.
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Basic examples of subharmonic functions are log |z − z0| or more
generally, log |f(z)| for some analytic function f(z) or

∫
log |z − ζ| dµ(ζ)

for some positive measure with compact support in C.
The maximum of a finite collection of subharmonic functions is

subharmonic, while the supremum of a collection (not necessarily
finite) of subharmonic functions is subharmonic provided it is upper
semicontinuous. In particular this implies that if A : Ω → SL2(R) is
a matrix valued analytic function, then

u(z) := log‖A(z)‖ = sup
‖v‖,‖w‖≤1

log
∣∣〈A(z) v, w〉

∣∣
is subharmonic in Ω.

Note that on every compact set K ⊂ Ω, the function u(z) defined
above has the bounds

0 ≤ u(z) ≤ log sup
K
‖A(z)‖ .

A fundamental result in the theory of subharmonic functions is
the Riesz representation theorem, which we formulate below.

Theorem 5.3. Let u : Ω → R be a subharmonic function. There is
a unique Borel measure µ on Ω called the Riesz measure of u, such
that for every compactly contained subdomain Ω′ b Ω,

u(z) =

∫
Ω′

log |z − ζ| dµ(ζ) + h(z) ,

where h(z) is a harmonic function on Ω′.

We conclude this summary with a general version of the Poisson-
Jensen formula, see [28, Theorem 3.14].

Theorem 5.4. Let u : Ω → R be a subharmonic function and let
Ω0 b Ω. For every z ∈ Ω0 we have

u(z) =

∫
∂Ω0

u(ζ)dνz(ζ)−
∫

Ω0

g(z, ζ)dµ(ζ) ,

where dνz is the harmonic measure at z w.r.t. Ω0, g(z, ζ) is the
Green’s function of Ω0 and µ is the Riesz measure of u in Ω.
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The goal of this section is to prove that if u(z) is bounded, then
the total mass of its Riesz measure (which we call the Riesz mass of
u) and the L∞ norm of the harmonic function h are bounded by a
constant that depends only on the bound on u and on the domain Ω.

Proposition 5.1. Let u : Ω→ R be a subharmonic function. Assume
that

|u(z)| ≤ C for all z ∈ Ω .

Consider the Riesz representation of u on the subdomain Ω′ b Ω

u(z) =

∫
Ω′

log |z − ζ| dµ(ζ) + h(z) .

Let Ω′′ b Ω′ be another subdomain.
There is a constant C(Ω,Ω′,Ω′′) <∞ such that

µ(Ω′) + ‖h‖L∞(Ω′′) ≤ C(Ω,Ω′,Ω′′)C .

Proof. We will adapt the proof of [26, Lemma 2.2].
Consider another domain Ω0 such that Ω′ b Ω0 b Ω. Let g(z, ζ)

be the Green’s function for Ω0 and let νz be the harmonic measure at
z w.r..t. Ω0. By the Poisson-Jensen formula in Theorem 5.4 above,
for all z ∈ Ω0 we have

u(z) =

∫
∂Ω0

u(ζ)dνz(ζ)−
∫

Ω0

g(z, ζ)dµ(ζ) . (5.6)

Since g(z, ζ) > 0 on Ω0 × Ω0, and Ω′ is compactly contained in
Ω0,

inf
(z,ζ)∈Ω′×Ω′

g(z, ζ) =: c1 > 0 .

Note that c1 is a constant that only depends on the domains Ω0

and Ω′, hence on Ω and Ω′.
From (5.6), for all z ∈ Ω′, we then get

c1 µ(Ω′) ≤
∫

Ω′
g(z, ζ)dµ(ζ) ≤

∫
Ω0

g(z, ζ)dµ(ζ)

=

∫
∂Ω0

u(ζ)dνz(ζ)− u(z) ≤ C + C = 2C.
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Hence

µ(Ω′) ≤ 2

c1
C =: C1 C ,

which establishes the desired bound on the Riesz mass of u.
We note that in fact, for some constant C2(Ω,Ω′) < ∞, we also

have (and this will be needed below) that

µ(Ω0) ≤ C2 C .

To see this, consider a domain Ω1 such that Ω0 b Ω1 b Ω and
repeat the same argument shown above by considering the Green’s
function and the harmonic measure corresponding to the (larger) do-
main Ω1 instead (in other words, Ω1 will play the rôle of Ω0 and Ω0

that of Ω′).

Deriving the bound on the harmonic part of the Riesz represen-
tation theorem requires more work, as we first have to identify more
precisely this function.

Recall that H(z, ζ) := g(z, ζ) + log |z − ζ| is harmonic in z on
Ω0 ⊃ Ω′, for all ζ ∈ Ω0 ⊃ Ω′. In particular, the function

Ω′ 3 z 7→
∫

Ω′
H(z, ζ)dµ(ζ)

is also harmonic.
Recall also that g(z, ζ) is harmonic in z on Ω0 \ {ζ}, hence if

ζ ∈ Ω0\Ω′, then g(z, ζ) is harmonic in z on the domain Ω′ ⊂ Ω0\{ζ}.
In particular, the function

Ω′ 3 z 7→
∫

Ω0\Ω′
g(z, ζ)dµ(ζ)

is also harmonic.
Let us write∫

Ω0

g(z, ζ)dµ(ζ) =

∫
Ω′
g(z, ζ)dµ(ζ) +

∫
Ω0\Ω′

g(z, ζ)dµ(ζ)∫
Ω′
g(z, ζ)dµ(ζ) =

∫
Ω′
H(z, ζ)dµ(ζ)−

∫
Ω′

log |z − ζ| dµ(ζ) .
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Using the last two formulas, we can now rewrite (5.6) as

u(z) =

∫
Ω′

log |z − ζ| dµ(ζ)

+

∫
∂Ω0

u(ζ)dνz(ζ)−
∫

Ω′
H(z, ζ)dµ(ζ)−

∫
Ω0\Ω′

g(z, ζ)dµ(ζ) .

Then the harmonic part h(z) of the Riesz representation of u(z)
can be described as the sum of the following harmonic functions:

h(z) =

∫
∂Ω0

u(ζ)dνz(ζ)−
∫

Ω′
H(z, ζ)dµ(ζ)−

∫
Ω0\Ω′

g(z, ζ)dµ(ζ) .

It is now easy to bound h on a slightly smaller subdomain Ω′′ b Ω′.
For the first integral we use the fact that u(z) is bounded and the

harmonic measure is a probability measure:∣∣∣∣∫
∂Ω0

u(ζ)dνz(ζ)

∣∣∣∣ ≤ ∫
∂Ω0

|u(ζ)| dνz(ζ) ≤ C .

For the second integral we use the fact H(z, ζ) is smooth on Ω0×
Ω0 and Ω′′ × Ω′ is compactly contained in Ω0 × Ω0, so

sup
(z,ζ)∈Ω′′×Ω′

|H(z, ζ)| =: C3 <∞ ,

where C3 depends on Ω0,Ω
′,Ω′′, hence on Ω,Ω′,Ω′′.

Then∣∣∣∣∫
Ω′
H(z, ζ)dµ(ζ)

∣∣∣∣ ≤ ∫
Ω′

∣∣H(z, ζ)
∣∣dµ(ζ) ≤ C3 µ(Ω′) ≤ C3 C1 C .

Finally, the third integral is the one that requires the restriction
z ∈ Ω′′. Indeed, since g(z, ζ) is smooth on {(z, ζ) ∈ Ω0 × Ω0 : z 6= ζ}
and it extends continuously to the set {(z, ζ) ∈ Ω0 × Ω0 : z 6= ζ}
which contains Ω′′ × (Ω0 \ Ω′), it follows that

sup
(z,ζ)∈Ω′′×(Ω0\Ω′)

|g(z, ζ)| =: C4 <∞ ,

where C4 depends on Ω,Ω′,Ω′′.
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Then∣∣∣∣∣
∫

Ω0\Ω′
g(z, ζ)dµ(ζ)

∣∣∣∣∣ ≤
∫

Ω0\Ω′
|g(z, ζ)| dµ(ζ) ≤ C4 µ(Ω0) ≤ C4 C2 C .

Putting it all together, we have that for all z ∈ Ω′′.

|h(z)| ≤ (1 + C3 C1 + C4 C2)C ,

which completes the proof.

Our subharmonic functions are defined on an annulus A = Aρ,
whose width ρ was fixed once and for all. We may apply the above
with the subdomains A ′′ b A ′ b A chosen as the annuli of width ρ

3
and ρ

2 respectively. Thus in particular we have.

Corollary 5.2. Let u : A → R be a bounded subharmonic function,
and let

u(z) =

∫
A ′

log |z − ζ| dµ(ζ) + h(z)

be its Riesz representation on the smaller annulus A ′. Assume that

sup
z∈A
|u(z)| ≤ C .

Then

µ(A ′) + ‖h‖L∞(A ′′) . C . (5.7)

We call the estimate in Corollary 5.2 above a uniform measure-
ment on the bounded subharmonic function u(z), since it does not
depend on the function u per se, but only on its bound C. It is
precisely this measurement that will determine the parameters in the
qBET for the observable u(x).
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5.4 Decay of the Fourier coefficients

If f ∈ C1(T), using integration by parts, for every integer k 6= 0 we
have that

f̂ ′(k) =

∫ 1

0

f ′(x)e(−kx)dx

= f(x)e(−kx)
∣∣∣1
0
−
∫ 1

0

f(x)(−2πik)e(−kx)dx

= 2πik

∫ 1

0

f(x) e(−kx)dx = 2πik f̂(k) ,

hence ∣∣f̂(k)
∣∣ =

∣∣f̂ ′(k)
∣∣

2π

1

|k|
≤ ‖f

′‖∞
2π

1

|k|
.

Thus the Fourier coefficients of a continously differentiable func-
tion decay like 1

|k| .

Weaker types of regularity still imply some rate of decay of the
Fourier coefficients. For instance (see [45, Section 1.4.4]), if f is α-
Hölder, then ∣∣f̂(k)

∣∣ = O
( 1∣∣k∣∣α

)
as |k| → ∞ .

For a function f with no such regularity properties besides mere
continuity, all we can say about the decay of its Fourier coefficients
is that f̂(k)→ 0 as |k| → ∞ (this is the Riemann-Lebesgue lemma).

The remarkable fact about functions u : T → R that have a sub-
harmonic extension to A , is that while they generally have no regu-
larity properties besides (semi-)continuity, their Fourier coefficients
still decay like those of a continuously differentiable function, and
this is what we set out to prove in this section.

We begin with a summary of the harmonic analysis concepts
needed later in this section (see [45, Chapters 2 and 3]) for more
details.

Let u be a harmonic function in the neighborhood of the closed
unit disk D.
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By the Poisson integral formula we have the representation:

u(z) =

∫
T
u(e(t))

1− |z|2

|z − e(t)|2
dt for all z ∈ D .

Writing z = r e(x) with 0 ≤ r < 1, this formula becomes

u(re(x)) =

∫
T
u(t)

1− r2

1− 2r cos(2π(x− t)) + r2
dt .

We define the Poisson kernel as the family of functions Pr : T→
R, with 0 ≤ r < 1 and

Pr(x) :=
1− r2

1− 2r cos(2πx) + r2
.

Thus the values of u in D can be obtained from the values of u on
the boundary T of D via the convolution6 with the Poisson kernel:

u(re(x)) = (f ∗ Pr)(x) ,

where f(x) = u(e(x)).
Conversely, given a continuous function f : T → R, the function

uf : D→ R,
uf (re(x)) := (f ∗ Pr)(x)

is harmonic in D and its boundary value is f , since u(z) → f uni-
formly as z → T radially.7

Hence the convolution with the Poisson kernel solves the Diri-
chlet problem for the Laplace equation, i.e. the problem of finding
a harmonic function on the unit disk D with prescribed boundary
condition.

The results of the following exercise are called the Cauchy esti-
mates for harmonic functions. They are the analogues of the Cauchy
estimates for holomorphic functions, which are derived via Cauchy’s
integral formula.

6Recall that the convolution of two functions f, g : T→ R is the function f ∗ g
on T defined by f ∗ g (x) :=

∫
T f(x− t) g(t) dt.

7More precisely, if for 0 ≤ r < 1 we define Fr(x) := u(re(x)), then Fr → f
uniformly as r → 1.
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Exercise 5.3. Use the Poisson integral formula to show that if u is
a harmonic function in a neighborhood of D, then∣∣∇u(0)

∣∣ ≤ C1M ,

where C1 is an absolute constant and M := supz∈T |u(z)|.
Derive from this that if u is harmonic in the neighborhood of some

closed disk D(a, ρ), and if |u(z)| ≤M on its boundary, then∣∣∇u(a)
∣∣ ≤ C1

1

ρ
M .

We consider again the Dirichlet problem, but this time assuming
less (than continuous) regularity for the boundary function.

Let f ∈ L2(T). Since the Poisson kernel {Pr}0<r<1 is an approxi-
mate identity, the convolution of f with the kernel converges in the
L2-norm to f :

Pr ∗ f → f in L2(T) as r → 1 . (5.8)

Let us also note that Pr > 0, and that, again because the Poisson
kernel is an approximate identity,∫

T

Pr(x)dx = 1 .

Moreover, for z = r e(x) ∈ D, we put

P (z) = P (re(x)) := Pr(x)

Then P is a harmonic function in D since it is easy to see that

P (z) = <
(

1 + z

1− z

)
.

Then if we define, as before, for z = r e(x) ∈ D,

uf (z) = uf (re(x)) := (Pr ∗ f)(x) ,

then uf is a harmonic function in D and by (5.8), its L2 boundary
value is f , in the sense that u(z)→ f in L2 as z → T radially.
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Thus the convolution with the Poisson kernel also solves the Diri-
chlet problem with L2 boundary condition.

Let u : D → R be a harmonic function. The harmonic conjugate
of u is the unique harmonic function ũ : D → R such that u + iũ is
holomorphic in D and ũ(0) = 0.

The harmonic conjugate of P is of course the function

Q(z) := =
(

1 + z

1− z

)
,

which defines the conjugate Poisson kernel

Qr(x) = Q(re(x)) :=
2r sin(2πx)

1− 2r cos(2πx) + r2
.

Hence if f ∈ L2(T), then the harmonic conjugate of its harmonic
extension8 uf is

ũf (re(x)) = (Qr ∗ f)(x) .

It turns out (see [45, Corollary 3.14]) that ũf (re(x)) converges as
r → 1 for a.e. x ∈ T, and that it also converges in the L2 norm.
The limit, denoted by H(f), is called the Hilbert transform (or the
conjugate function) of f .

Therefore, we obtain an operator H : L2(T)→ L2(T),

H(f)(x) = lim
r→1

(Qr ∗ f)(x) .

H(f) represents the boundary value of the harmonic conjugate of
the harmonic extension of f to the unit disk.

Exercise 5.4. Prove that if 0 ≤ r < 1 then H(Pr) = Qr.

The Hilbert transform is a bounded linear operator.9 It is re-
lated to the Fourier transform via the following identity on Fourier

8understood in the L2 sense described above.
9This is a result of Marcel Riesz, the brother of Frigyes Riesz (who is respon-

sible for the representation theorem for subharmonic functions described earlier).
M. Riesz was the doctoral student of L. Fejér, whose kernel we will use in the
next section; one of his doctoral students in Stockholm was H. Cramér, who is
responssible for the large deviations principle formulated before—one big, happy,
mathematical family.
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coefficients:

Ĥ(f)(k) = −i sgn(k)f̂(k) for all k ∈ Z, k 6= 0 .

Thus we conclude that if f ∈ L2(T), then for all k ∈ Z with k 6= 0,∣∣Ĥ(f)(k)
∣∣ =

∣∣f̂(k)
∣∣ . (5.9)

The following exercises contain the remaining properties of the
Hilbert transform needed in the proof of Theorem 5.5 below.

Exercise 5.5. Show that for every f ∈ L2(T),

H(H(f)) = −f + uf (0) = −f +

∫
T
f .

Exercise 5.6. Show that the function log |e(x)− 1| ∈ L2(T).
You may also show that for every analytic function f : T→ R, if

f 6≡ 0, then log |f | ∈ Lp(T), for all 1 ≤ p <∞.

Consider the saw-tooth function s : R→ R,

s(x) :=

{
{x} − 1

2 if x /∈ Z
0 if x ∈ Z

where {x} is the fractional part of x. Note that s(x) is 1-periodic.

Exercise 5.7. Prove that

log |e(x)− 1| = −πH(s)(x) .

To solve this exercise, you may follow the following steps.

1. Set out to actually compute H(log |e(x)− 1|) instead, and then
use Exercise 5.5.

2. Note that log |1− z| is the harmonic extension to D of log |e(x)− 1|,
and that Log(1 − z) is holomorphic on D, where Log refers to
the principal branch of the logarithm.

3. Show that if x ∈ [0, 1], then Arg(1− e(x)) = π s(x), where Arg
refers to the principal argument.
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Exercise 5.8. Compute the Fourier coefficients of the saw-tooth
function and conclude that for all k ∈ Z, k 6= 0,

ŝ(k) = O
(1

k

)
.

Lemma 5.3. Let u1(x) := log |e(x)− 1|. Then

∣∣û1(k)
∣∣ . 1

|k|
for all k 6= 0 .

Proof. We simply combine the exercises above to get: u1 = −πH(s),
so ∣∣û1(k)

∣∣ = π
∣∣Ĥ(s)(k)

∣∣ = π
∣∣ŝ(k)

∣∣ . 1

|k|
.

Theorem 5.5. Let u(x) be a function on T with a bounded sub-
harmonic extension to A . Assume that

sup
z∈A
|u(z)| ≤ C .

Then the Fourier coefficients of u have the decay

∣∣û(k)
∣∣ . C

1

|k|
for all k 6= 0 . (5.10)

Proof. We use the Riesz representation theorem for subharmonic
functions and Corollary 5.2 regarding the uniform measurements on
its components. Let A ′′ b A ′ b A and consider

u(z) =

∫
A ′

log |z − ζ| dµ(ζ) + h(z)

the Riesz representation of u on the annulus A ′.
Since |u(z)| ≤ C for all z ∈ A ,

µ(A ′) + ‖h‖L∞(A ′′) . C . (5.11)
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We first bound the Fourier coefficients of the harmonic function
h. By the observation at the beginning of this section, and since
harmonic functions are smooth,

∣∣ĥ(k)
∣∣ ≤ ‖h′‖L∞(T)

2π

1

|k|
.

However, h is harmonic on the annulus A ′ of width ρ
2 for some

ρ > 0, and for every x ∈ T, the closed disk D(x, ρ4 ) ⊂ A ′′. Then by
Exercise 5.3, for every x ∈ T we have that

|h′(x)| ≤ C1
1

ρ/4
sup

z∈D(x, ρ4 )

|h(z)| . ‖h‖L∞(A ′′) . C .

We can then conclude that∣∣ĥ(k)
∣∣ . C

1

|k|
.

We now consider the logarithmic potential

v(z) :=

∫
A ′

log |z − ζ| dµ(ζ) .

The goal is to show that for every ζ ∈ C, the Fourier coefficients
of the function uζ(e(x)) := log |e(x)− ζ| are of order 1

k , and then the
result will follow by integration in ζ. We achieve this in several steps,
depending on where ζ lies in the complex plane.

When ζ = 1, Lemma 5.3 proves the estimate.

When ζ = e(x0) ∈ T,

uζ(e(x)) = log |e(x)− e(x0)| = log |e(x− x0)− 1| = u1(x− x0) .

Using the change of variables x− x0 = t, we conclude that

ûζ(k) = e(−x0) û1(k) ,

so we conclude that ∣∣ûζ(k)
∣∣ . 1

|k|
.
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Now let ζ = r, where 0 ≤ r < 1.
Using integration by parts, we have

∣∣ûζ(k)
∣∣ =

∣∣∫ 1

0

log |e(x)− r| e(−kx) dx
∣∣

=
1

|k|
∣∣∫ 1

0

d

dx

[
log |e(x)− r|

]
e(−kx) dx

∣∣ =
1

|k|
∣∣f̂(k)

∣∣ ,
where f(x) := d

dx

[
log |e(x)− r|

]
.

An easy calculation shows that

f(x) =
d

dx

[
log |e(x)− r|

]
=

1

2

d

dx
log |e(x)− r|2

=
1

2

2π 2r sin(2πx)

1− 2r cos(2πx) + r2
= πQr(x) = πH(Pr)(x) ,

where the last equality is due to Exercise 5.4.
Then ∣∣ûζ(k)

∣∣ = π
1

|k|
∣∣Ĥ(Pr)(k)

∣∣ = π
1

|k|
∣∣P̂r(k)

∣∣
≤ π 1

|k|
‖Pr‖L1(T) = π

1

|k|
.

When |ζ| < 1, so ζ = re(x0) with 0 < r < 1, we simply perform
a rotation by x0 and reduce the problem to the previous case. Indeed,

uζ(e(x)) = log |e(x)− re(x0)| = log |e(x− x0)− r| ,

so we conclude as before by making the change of variables x−x0 = t.

Finally, consider the case |ζ| > 1. This will be reduced to the
case |ζ| < 1 using the following exercise.

Exercise 5.9. Let ζ ∈ C with |ζ| > 1. Define ζ∗ := ζ−1, the complex

conjugate of its inverse, so that |ζ∗| = |ζ|−1
< 1.

Show that for all e(x) ∈ T,

log |e(x)− ζ| = log |e(x)− ζ∗|+ log |ζ| .
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The Fourier coefficients of a constant function are all zero (except
for the zeroth coefficient). Then from the exercise above,

ûζ(k) = ûζ∗(k) for all k 6= 0 ,

which completes the proof in this case as well, since |ζ∗| < 1.
We conclude that for all ζ ∈ C, ζ 6= 0,∣∣ûζ(k)

∣∣ . 1

|k|
,

where the underlying factor in . is an absolute constant.
We may now estimate the Fourier coefficients of

v(x) =

∫
A ′

log |e(x)− ζ| dµ(ζ) .

We have:

v̂(k) =

∫
T

(∫
A ′

log |e(x)− ζ| dµ(ζ)

)
e(−kx) dx

=

∫
A ′

(∫
T

log |e(x)− ζ| e(−kx) dx

)
dµ(ζ) =

∫
A ′
ûζ(k) dµ(ζ) .

Then for all k 6= 0,

|v̂(k)| ≤
∫

A ′
|ûζ(k)| dµ(ζ) .

1

|k|
µ(A ′) . C

1

|k|
,

which completes the proof.

5.5 The proof of the large deviation type
estimate

Let A ∈ Cωρ (T,SL(2,R)) be a quasi-periodic cocycle.

Recall that each function u
(n)
A (x), n ≥ 1 extends to a subharmonic

function u
(n)
A (z) on A , where

u
(n)
A (z) :=

1

n
log‖A(n)(z)‖ .

The next exercise shows that these subharmonic functions are
bounded. The bound is uniform in n and also uniform in the cocycle.
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Exercise 5.10. Show that for all n ≥ 1 and for all z ∈ A we have:

0 ≤ u(n)
A (z) ≤ log‖A(n)‖r .

Furthermore, conclude that this bound is also uniform in the cocy-
cle: there is C = C(A) <∞ such that for allB ∈ Cωρ (T,SL(2,R))with
‖B −A‖r ≤ 1,

0 ≤ u(n)
B (z) ≤ C .

Next we show that the functions u
(n)
A (x) are almost invariant un-

der the base transformation T in the following sense.

Proposition 5.4 (almost invariance). For all x ∈ T and for all n ≥ 1
we have ∣∣u(n)

A (x)− u(n)
A (Tx)

∣∣ ≤ 2 log‖A‖r
n

.

Proof. Fix x ∈ T and n ≥ 1. Then

1

n
log‖A(n)(x)‖ − 1

n
log‖A(n)(Tx)‖

=
1

n
log
‖A(Tnx)−1

[
A(Tnx)A(Tn−1x) . . . A(Tx)

]
A(x)‖

‖A(Tnx)A(Tn−1x) . . . A(Tx)‖

≤ 1

n
log
[
‖A(Tnx)−1‖ ‖A(x)‖

]
≤ 2 log‖A‖r

n
.

Similarly,

1

n
log‖A(n)(Tx)‖ − 1

n
log‖A(n)(x)‖

=
1

n
log
‖A(Tnx)

[
A(Tn−1x) . . . A(Tx)A(x)

]
A(x)−1‖

‖A(Tn−1x) . . . A(x)‖

≤ 1

n
log

[
‖A(Tnx)‖ ‖A(x)−1‖

]
≤ 2 log‖A‖r

n
.

The conclusion then follows.

As mentioned before, the main ingredient in the proof of the LDT
estimate for quasi-periodic cocycles is a sharp quantitative Birkhoff
ergodic theorem (qBET).
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It is this result that requires an arithmetic assumption on the
frequency. Recall that the frequency ω ∈ T satisfies a Diophantine
condition10 if

‖kω‖ ≥ γ∣∣k∣∣ (log
∣∣k∣∣)2

(5.12)

for some γ > 0 and for all k ∈ Z \ {0}.
We briefly present the arithmetic considerations needed in the

sequel. For full details on this topic, see S. Lang [37, Chapter 1].
Let ω ∈ T be an irrational frequency and consider its continued

fraction representation ω = [a0, a1, . . . , an, . . .]. For every n ≥ 1, let

pn
qn

= [a0, a1, . . . , an]

be its n-th principal convergent.
The denominators of the principal convergents form an increasing

sequence
0 < q1 < . . . < qn < qn+1 < . . . .

Moreover, by [37, Chapter 1, Theorem 5],

1

2qn+1
< ‖qnω‖ = |qnω − pn| <

1

qn+1
. (5.13)

We call a best approximation to ω any (reduced) fraction p
q such

that ‖qω‖ = |qω − p| and

‖jω‖ > ‖qω‖ for all 1 ≤ j < q .

It turns out that the best approximations to ω are precisely its
principal convergents. In fact, qn+1 is the smallest integer j > qn
such that ‖jω‖ < ‖qnω‖ (see [37, Chapter 1, Theorem 6]).

Therefore, if p
q is a best approximation to ω, then q = qn+1 for

some n ≥ 0, so for all 1 ≤ j < q = qn+1 we must have that ‖jω‖ ≥
‖qnω‖. Using (5.13), ‖qnω‖ > 1

2qn+1
= 1

2q .

Therefore, if p
q is a best approximation to ω, then

‖jω‖ > 1

2q
for all 1 ≤ j < q .

10A weaker arithmetic condition will suffice, see [64].
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As mentioned above, the denominators of the principal conver-
gents, hence those of the best approximations to ω, form an increas-
ing sequence. It turns out that if ω satisfies the Diophantine con-
dition (5.12), then the frequency of their occurrence can be better
specified.

Indeed, for any large enough integer R, let n + 1 be the first
integer j such that qj > R. Then qn ≤ R < qn+1, and using (5.13)
and (5.12),

qn+1 <
1

‖qnω‖
. qn (log qn)2 < R (logR)2 .

Thus R < qn+1 . R (logR)2.

We can summarize these considerations into the following lemma,
which will be needed later.

Lemma 5.5. Assume that the frequency ω satisfies the Diophantine
condition (5.12). Then for every large enough integer R there is a
best approximation p

q to ω such that

R < q . R (logR)2 .

Moreover, if 1 ≤ j < q then ‖jω‖ > 1
2q .

Let u : T→ R be an observable and for every R ∈ N, let

(SRu)(x) =

R−1∑
j=0

u(x+ jω)

be the corresponding Birkhoff sums.

It is expected that if the averages 1
R SRu (x) have nice convergence

properties, then averaging again might improve these convergence
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properties.11 Let us then consider the second order averages

1

R
SR

(
1

R
SRu

)
(x) =

1

R2

R−1∑
j1=0

R−1∑
j2=0

u(x+ (j1 + j2)ω)

=
1

R2

2(R−1)∑
j=0

cR(j)u(x+ jω) ,

where

cR(j) := #{(j1, j2) : j1 + j2 = j, 0 ≤ j1, j2 ≤ R− 1} .

Note that

1

R2

2(R−1)∑
j=0

cR(j) = 1.

We are now ready to formulate a qBET with second order avera-
ges. As we will see at the end of this section, the fact that we consider
second order rather than first order averages will be of no importance
for establishing the LDT estimate.

Theorem 5.6. Let u : T→ R and let ω ∈ T. Assume that ω satisfies
the Diophantine assumption (5.12) and that u(x) has a subharmonic
extension to the annulus A so that

|u(z)| ≤ C for all z ∈ A .

There is c = O
(

1
C

)
and for every ε > 0 there exists an integer

R0 = R0(ε, C) such that for all R ≥ R0 we have:

∣∣∣{x ∈ T :
∣∣ 1

R2

2(R−1)∑
j=0

cR(j)u(x+ jω)− 〈u〉
∣∣ > ε}

∣∣∣ < e−c εR . (5.14)

11This approach is inspired by the pointwise convergence of the partial sums of
a Fourier series: while the partial sums of the Fourier series of a continuous func-
tion may fail to converge uniformly, or even pointwise everywhere, their Cesàro
averages do converge uniformly by Fejér’s theorem (see [36, Theorem 2.3]).
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Remark 5.2. Second order averages are not strictly necessary for de-
riving such a qBET (see M. Goldstein and W. Schlag [25]). However,
the argument we present here via second order averages is technically
simpler. Furthermore, applying the same approach presented in the
proof below to the usual Birkhoff averages instead of the second order
averages, will lead to an estimate of the measure of the exceptional
set just shy of the exponential decay needed (see Exercise 5.11).

Proof. Expand u = u(x) into a Fourier series:

u(x) =
∑
k∈Z

û(k) e(kx) = 〈u〉+
∑
k 6=0

û(k) e(kx) .

The convergence of such a Fourier series (all throughout) should
be understood in the L2-norm.12

Then for j ∈ Z

u(x+ jω)− 〈u〉 =
∑
k 6=0

û(k) e(k(x+ jω)) =
∑
k 6=0

û(k) e(jkω) e(kx) .

It follows that

1

R2

2(R−1)∑
j=0

cR(j)u(x+ jω)− 〈u〉

=
∑
k 6=0

û(k)

 1

R2

2(R−1)∑
j=0

cR(j) e(jkω)

 e(kx) .

Consider the Fejér-type kernel of order 2:

FR(t) :=

 1

R

R−1∑
j=0

e(jt)

2

.

12The function u is bounded, so it belongs to L2(T). Thus the convergence of
its Fourier series in L2(T) is of course an elementary fact, and this is all we need
in the sequel. However, we note that in our setting, since u(x) is continuous on
T and its Fourier coefficients have the decay û(k) = O( 1

|k| ), the convergence is in

fact pointwise and uniform (see [36, Theorem 15.3]).
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It is easy to see that

FR(t) =
1

R2

2(R−1)∑
j=0

cR(j) e(jt) .

Therefore,

1

R2

2(R−1)∑
j=0

cR(j)u(x+ jω)− 〈u〉 =
∑
k 6=0

û(k)FR(kω) e(kx) . (5.15)

We will estimate the right hand side of (5.15).
For that, let us recall that since u(z) is subharmonic on A and it

is uniformly bounded by C, from Theorem 5.5 we get :

|û(k)| . C
1

|k|
. (5.16)

We will also have to estimate FR(kω). To this end, note that

|FR(t)| = 1

R2

∣∣∣∣1− e(Rt)1− e(t)

∣∣∣∣2 ≤ 1

R2 ‖t‖2
.

Since obviously |FR(t)| ≤ 1, the kernel satisfies the bound

|FR(t)| ≤ min{1, 1

R2 ‖t‖2
} ≤ 2

1 +R2 ‖t‖2
.

Since ω satisfies the Diophantine condition (5.12), by Lemma 5.5,
there is a best approximation p

q to ω so that

R < q . R (logR)2 . (5.17)

Moreover,

‖jω‖ > 1

2q
if 1 ≤ j < q . (5.18)

Split the right hand side of the sum in (5.15) as:∑
k 6=0

û(k) e(kx)FR(kω) =
∑

0<|k|<R1/2

+
∑

R1/2≤|k|<q

+
∑

|q|≤|k|<K

+
∑
|k|≥K
(5.19)
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where logK ∼ εR.
In fact, it will be clear later that we should choose K := e

1
C εR.

The first three sums in (5.19), denoted by S1(x), S2(x) and S3(x)
respectively, will be uniformly bounded in x by ε, while the forth
sum, denoted by S4(x) will be estimated in the L2-norm.

|S1(x)| ≤
∑

0<|k|<R1/2

|û(k)| |FR(kω)| . C
∑

0<|k|<R1/2

1

|k|
1

R2‖kω‖2
.

Using the Diophantine condition (5.12), we have that

‖kω‖ & 1

|k| (log |k|)2
so

1

|k| ‖kω‖2
. |k| (log |k|)4 .

Then for all x ∈ T,

|S1(x)| . C
1

R2

∑
0<|k|<R1/2

|k| (log |k|)4

. C
1

R2
R1/2 (logR)4R1/2 = C

(logR)4

R
< ε

provided R ≥ R0(ε, C).
To bound S2(x) and S3(x) we need the following estimate.
Let I ⊂ Z be an interval of size |I| < q. Then for all k, k′ ∈ I

with k 6= k′, since |k − k′| ≤ |I| < q, the inequality (5.18) implies

‖kω − k′ω‖ > 1

2q
.

Divide T into the 2q arcs Cj = [ j2q ,
j+1
2q ), 0 ≤ j ≤ 2q − 1, with

equal length
∣∣Cj∣∣ = 1

2q . By the previous observation each arc Cj
contains at most one point kω with k ∈ I. Moreover, if x ∈ Cj with
0 ≤ j ≤ q − 1 then ‖x‖ ≥ j

2q and similarly, if x ∈ C2q−j−1 with

0 ≤ j ≤ q − 1 then ‖x‖ ≥ j
2q . From this we derive:

∑
k∈I

|FR(kω)| ≤
∑
k∈I

2

1 +R2 ‖kω‖2
≤

q−1∑
j=0

4

1 +R2( j2q )2

≤
∫ q

0

4

1 + R2

4q2 x
2
dx .

q

R
.
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Thus for any interval I ⊂ Z of size < q,∑
k∈I

|FR(kω)| . q

R
. (5.20)

Using (5.20) and then (5.17), it follows that for all x ∈ T,

|S2(x)| ≤
∑

R1/2≤|k|<q

|û(k)| |FR(kω)| . C
∑

R1/2≤|k|<q

1

|k|
|FR(kω)|

≤ C 1

R1/2

∑
1≤|k|<q

|FR(kω)| . C
1

R1/2

q

R

< C
1

R1/2

R(logR)2

R
= C

(logR)2

R1/2
< ε ,

provided R ≥ R0(ε, C).
Similarly,

|S3(x)| ≤
∑

|q|≤|k|<K

|û(k)| |FR(kω)| . C
∑

|q|≤|k|<K

1

|k|
|FR(kω)|

= C
∑

1≤s<K/q

 ∑
sq≤|k|<(s+1)q

1

|k|
|FR(kω)|

 . C
∑

1≤s<K/q

1

sq

q

R

= C
1

R

∑
1≤s<K/q

1

s
≤ C 1

R
log

K

q
< C

1

R
logK = C

1

R

1

C
εR = ε .

We conclude that

|S1(x)|+ |S2(x)|+ |S3(x)| . ε. (5.21)

for all x ∈ T and for R ≥ R0(ε, C).

We now estimate S4(x) in the L2-norm. By Parseval’s identity,∫
T
|S4(x)|2 =

∫
T

∣∣∣ ∑
|k|≥K

û(k)FR(kω) e(kx)
∣∣∣2dx =

∑
|k|≥K

|û(k)|2
∣∣FR(kω)

∣∣2
≤

∑
|k|≥K

|û(k)|2 . C2
∑
|k|≥K

1

|k|2
≤ C2 1

K
= C2 e−

1
C εR.
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Using Chebyshev’ s inequality we get:∣∣∣{x ∈ T : |S4(x)| & ε}
∣∣∣ . C2 e−

1
C εR

ε2
=

(
C

ε

)2

e−
ε
C R < e−

ε
2C R,

provided R ≥ R0(ε, C).

From (5.15), (5.19) and (5.21) we have

{x ∈ T :
∣∣ 1

R2

2(R−1)∑
j=0

cR(j)u(x+jω)−〈u〉
∣∣ & ε} ⊂ {x ∈ T : |S4(x)| & ε}.

Combined with the previous estimate, this completes the proof.

Exercise 5.11. Under the assumptions of Theorem 5.6, prove that
for every ε > 0

∣∣∣{x ∈ T :
∣∣ 1

R

R−1∑
j=0

u(x+ jω)− 〈u〉
∣∣ > ε}

∣∣∣ < e−c εR/ logR ,

for all R ≥ R0(ε, C) and for some constant c of order 1
C .

We now have all the required ingredients to establish the LDT for
quasi-periodic cocycles.

Proof of Theorem 5.1. Let A ∈ Cωρ (T,SL(2,R)) be a quasi-periodic
cocycle, and let C <∞ be such that log‖A‖r < C.

We will combine the qBET in Theorem 5.6 above with the almost
invariance in Proposition 5.4.

Fix ε > 0 and let n be a large enough integer, n = εR0, where
R0 = R0(ε, C) is the threshold in Theorem 5.6.

Let n ≥ n and choose an integer R with R � ε
C n, so R ≥ R0.

Applying Theorem 5.6 to the subharmonic function u = u
(n)
A we

have: ∣∣∣ 1

R2

2(R−1)∑
j=0

cR(j)u
(n)
A (x+ jω)−

〈
u

(n)
A

〉 ∣∣∣ ≤ ε , (5.22)
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for all phases x outside of a set of measure < e−c εR, where c is of
order 1

C .
On the other hand, by almost invariance, we have that

∣∣u(n)
A (x)− u(n)

A (Tx)
∣∣ ≤ 2 log‖A‖r

n
<

2C

n
,

hence for 0 ≤ j ≤ 2(R− 1),

∣∣u(n)
A (x+ jω)− u(n)

A (x)
∣∣ < 2C j

n
<

4C R

n
≤ 4ε .

We then have, for all x ∈ T,

∣∣u(n)
A (x)− 1

R2

2(R−1)∑
j=0

cR(j)u
(n)
A (x+ jω)

∣∣ < 4ε . (5.23)

From (5.22) and (5.23) we conclude that∣∣u(n)
A (x)−

〈
u

(n)
A

〉∣∣ ≤ 5ε

for x outside of a set of measure

< e−c εR = e−c ε
ε
C n ≤ e−c

2 ε2 n .

This concludes the proof of the theorem.

Proof of Theorem 5.2. The ACT in Theorem 3 is clearly applicable.
That is because if A ∈ Cωρ (T,SL(2,R)), then in particular A is

continuous on T and hence bounded.
Moreover, for any A,B ∈ Cωρ (T,SL(2,R)),

d(A,B) = ‖A−B‖r = sup
z∈A
‖A(z)−B(z)‖

≥ sup
z∈T
‖A(z)−B(z)‖ = ‖A−B‖∞ .

Finally, every A ∈ Cωρ (T,SL(2,R)) satisfies a uniform LDT, as
shown above.
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5.6 Consequence for Schrödinger cocycles

The goal of this section is to discuss the applicability of Theorem 5.1
on LDT estimates and of Theorem 5.2 on the continuity of the LE
and of the Oseledets splitting to analytic quasi-periodic Schrödinger
cocycles.

An analytic quasi-periodic Schrödinger cocycle is a linear cocycle
over a torus translation, having the following structure:

Aλ,E(x) :=

[
λ v(x)− E −1

1 0

]
,

where λ ∈ R is a coupling constant and v ∈ Cωρ (T,R) is the potential
function. In this setting, λ and v are fixed, and the energy parameter
E ∈ R varies.

Clearly Theorem 5.1 applies, so AE satisfies an LDT estimate,
with the same parameters for all E in a given compact interval. More-
over, the Lyapunov exponent L(E) = L(Aλ,E) depends continuously
on E.

The remaining question is whether this dependence is Hölder con-
tinuous. According to Corollary 3.1 of the abstract continuity theo-
rem, this happens when L(E) > 0.

Unlike in the random case, the Lyapunov exponent of a quasi-
periodic Schrödinger cocycle is not always positive.

Having a large enough coupling constant λ is a sufficient condition
for the positivity of L(E) for all E ∈ R. This result, which we
formulate below, is due to E. Sorets and T. Spencer, see [55].

Theorem 5.7. Let ω ∈ R \ Q and let v : T → R be a non constant
real analytic function. There is a constant λ0 = λ0(v) <∞ such that
for all λ ∈ R with |λ| ≥ λ0, and for all E ∈ R, we have

L(Aλ,E) ≥ log |λ| − O(1) . (5.24)

In particular, by possibly increasing λ0, L(Aλ,E) is positive and
of order log |λ|.

We present a different proof of this theorem, one which also en-
sures the better, optimal bound (5.24), compared with the original re-
sult in [55]. The argument we use here is an adaptation/simplification
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of the argument we used in [15] to establish the positivity of the Lya-
punov exponents for more general types of quasi-periodic cocycles.

The following result, which we reproduce from [15], is the main
analytic tool used to establish lower bounds on Lyapunov exponents.
It is based on a convexity argument for means of subharmonic func-
tions.

Proposition 5.6. Let u(z) be a subharmonic function on a neigh-
borhood of the annulus Aρ = {z : 1 − ρ ≤ |z| ≤ 1 + ρ}. Assume
that:

u(z) ≤ S for all z : |z| = 1 + ρ , (5.25)

u(z) ≥ γ for all z : |z| = 1 + y0 , (5.26)

where 0 ≤ y0 < ρ.
Then ∫

T
u(x) dx ≥ 1

1− α
(γ − αS) , (5.27)

where

α =
log(1 + y0)

log(1 + ρ)
∼ y0

ρ
. (5.28)

Proof. The proof is a simple consequence of a general result on sub-
harmonic functions, used to derive Hardy’s convexity theorem (see
Theorem 1.6 and the Remark following it in [18]). This result says
that given a subharmonic function u(z) on an annulus, its mean along
concentric circles is log - convex. That is, if we define

m(r) :=

∫
|z|=r

u(z)
dz

2π

and if
log r = (1− α) log r1 + α log r2 (5.29)

for some 0 < α < 1, then

m(r) ≤ (1− α)m(r1) + αm(r2) . (5.30)

It can be shown, using say Green’s theorem, that if u(z) were
harmonic, then m(r) would be log - affine. Then the above result for
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subharmonic functions would follow using the principle of harmonic
majorant (see [18] for details).

We apply (5.30) with r = 1 + y0, r1 = 1, r2 = 1 + ρ, so for (5.29)
to hold, α will be chosen as in (5.28). Then the convexity property
(5.30) implies:

m(1 + y0) ≤ (1− α)m(1) + αm(1 + ρ) , (5.31)

where

m(1) =

∫
|z|=1

u(z)
dz

2π
=

∫
T
u(x)dx , (5.32)

m(1 + ρ) =

∫
|z|=1+ρ

u(z)
dz

2π
≤ S , (5.33)

m(1 + y0) =

∫
|z|=1+y0

u(z)
dz

2π
≥ γ , (5.34)

and (5.33) and (5.34) are due to (5.25) and (5.26) respectively.
The estimate (5.27) then follows from (5.31) - (5.34).

We will need the following exercise on products of hyperbolic ma-
trices.

Exercise 5.12. Let n ∈ N and for every index 0 ≤ j ≤ n−1 consider
the SL2(R) matrix

gj :=

[
aj −1
1 0

]
.

Assume that for all 0 ≤ j ≤ n− 1,

|aj | ≥ λ > 2 .

Consider the product of these matrices

g(n) := gn−1 . . . g1 g0 =

[
sn ∗
tn ∗

]
,

where ∗ stands for unspecified matrix entries.
Prove that

|tn| < sn and |sn| ≥ (λ− 1)n .

Conclude that ‖g(n)‖ ≥ (λ− 1)n.
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From the previous exercise, we can easily derive the conclusion of
Theorem 5.7 in the case when E is large enough relative to λ.13

Exercise 5.13. Assume that |λ| > 2 and that |E| ≥ |λ| (‖v‖∞ + 1).
Prove that

L(Aλ,E) ≥ log (|λ| − 1) .

A crucial ingredient in this approach of proving Theorem 5.7 is
the uniqueness theorem for holomorphic functions. That is, a holo-
morphic function has only a finite number of zeros in a compact set,
unless it is identically zero.

Use this fact to solve the following exercise.

Exercise 5.14. Let v ∈ Cωρ (T,R), let 0 < δ < ρ and let I ⊂ R be a
compact interval. Define

ε0(v) := inf
t∈I

sup
r∈[1,1+δ]

inf
x∈[0,1]

|v(re(x))− t| .

Prove that if v is non-constant then ε0(v) > 0.

Proof of Theorem 5.7. Since v is real analytic on T, it has a holomor-
phic extension to the annulus Aρ, for some ρ > 0.

Let I := [−C,C], where C = ‖v‖∞ + 1.
Fix 0 < δ < ρ and let ε0(v) be the constant from Exercise 5.14.

Since v is assumed non-constant, ε0(v) > 0.
Let λ0 >

4
ε0(v) and fix any coupling constant λ with |λ| ≥ λ0.

By Exercise 5.13, it is enough to consider E such that |E| ≤ C |λ|.
Fix such an energy E and let t := E

|λ| . Then t ∈ I, so

sup
r∈[1,1+δ]

inf
x∈[0,1]

|v(re(x))− t| ≥ ε0(v) .

It follows that there is r0 ∈ [1, 1 + δ] such that for all x ∈ [0, 1],

|v(r0 e(x))− t| ≥ ε0(v)

2
.

13However, this is not the interesting case of the theorem. The relevant energy
parameters E are in the vicinity of the spectrum of the corresponding Schrödinger
operator, which is contained in the interval [−C |λ| , C |λ|], where C = O(‖v‖∞).
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Put r0 = 1 + y0, where 0 ≤ y0 ≤ δ < ρ. Since t := E
|λ| , from the

previous estimate we get: for all z with |z| = 1 + y0,

|λ v(z)− E| ≥ |λ| ε0(v)

2
≥ |λ0|

ε0(v)

2
> 2 . (5.35)

The torus translation T , which we now regard as the rotation on
S, extends to the annulus Aρ, and it leaves all circles centered at 0
invariant. Thus (5.35) implies that for all j ∈ N,

∣∣λ v(T jz)− E
∣∣ ≥ |λ| ε0(v)

2
> 2 . (5.36)

Fix any n ∈ N and consider the matrices

gj = gj(z) :=

[
λ v(T jz)− E −1

1 0

]
, where 0 ≤ j ≤ n− 1 ,

whose product is clearly A
(n)
λ,E(z).

Estimate (5.36) shows that if |z| = 1 + y0, then these matrices
satisfy the assumptions in Exercise 5.12, and we conclude that

‖A(n)
λ,E(z)‖ ≥

(
|λ| ε0(v)

2
− 1

)n
.

Taking logarithms on both sides, we get that for all z : |z| = 1+y0,

1

n
log ‖A(n)

λ,E(z)‖ ≥ log

(
|λ| ε0(v)

2
− 1

)
= log |λ| − O(1) =: γ(λ) .

(5.37)
Moreover, since for all z ∈ Aρ, we clearly have the upper bound

‖gj(z)‖ ≤ |λ| ‖v‖r + |E| ≤ |λ| (‖v‖r + ‖v‖∞ + 1) =: C1 |λ| ,

we derive that
‖A(n)

λ,E(z)‖ ≤ (C1 |λ|)n .

Taking logarithms on both sides we conclude that for all z ∈ Aρ,

1

n
log ‖A(n)

λ,E(z)‖ ≤ log (C1 |λ|) = log |λ|+O(1) =: S(λ) . (5.38)
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The estimates (5.37) and (5.38) ensure that the hypothesis of the
Proposition 5.6 hold for the subharmonic function

u(z) =
1

n
log ‖A(n)

λ,E(z)‖ .

Thus we conclude that its mean on T has the lower bound∫
T

1

n
log ‖A(n)

λ,E(x)‖ =

∫
T
u(x)dx ≥ log |λ| − O(1) .

As this holds for all n ∈ N, taking the limit as n→∞ we conclude
that

L(Aλ,E) ≥ log |λ| − O(1) ,

which completes the proof of the theorem.

5.7 Bibliographical notes

Let us begin by noting that the results in this chapter have a coun-
terpart, albeit a slightly weaker one14, regarding higher dimensional
torus translations. In fact, it is in this higher dimensional setting
that this method of proving continuity of the LE via large deviations
proves its versatility, as all other available approaches are essentially
one dimensional.

In some sense, the strongest result on continuity of the Lyapunov
exponents for quasi-periodic cocycles in the one-dimensional torus
translation case is due to A. Ávila, S. Jitomirskaya and C. Sadel (see
[2]). The authors prove joint continuity in cocycle and frequency at
all points (A,ω) with ω irrational. The cocycles considered are ana-
lytic and Matm(C)-valued. A previous work of S. Jitomirskaya and
C. Marx [30] established a similar result for Mat2(C)-valued cocycles,
using a different approach. We note here that both approaches rely
crucially on the convexity of the Lyapunov exponent of the complex-
ified cocycle, as a function of the imaginary variable, by establishing
first continuity away from the torus. This method immediately breaks
down in the higher dimensional torus translation case.

14The available results provide a weak-Hölder modulus of continuity in the
higher dimensional setting.
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The approaches of [2] and [30] are independent of any arithmetic
constraints on the translation frequency ω and they do not use large
deviations. However, the results are not quantitative, in the sense
that the they do not provide any modulus of continuity of the Lya-
punov exponents. All available quantitative results, from the classic
result of M. Goldstein and W.Schlag (see [25]) to more recent results
such as [56, 57, 64, 14, 17], use some type of large deviations, whose
derivation depends upon imposing appropriate arithmetic conditions
on ω.

We note that in the (more particular) context of Schrödinger co-
cycles, joint continuity in the energy parameter and the frequency
translation was proven for the one dimensional torus translation case
by J. Bourgain and S. Jitomirskaya (see [11]) and for the higher di-
mensional torus translation case by J. Bourgain (see [10]). Both
papers used weaker versions of large deviation estimates, proven un-
der weak arithmetic (i.e. restricted Diophantine) conditions on ω,
although eventually the results were made independent of any such
restrictions.

Continuity properties of the Lyapunov exponents were also estab-
lished for certain non-analytic quasi-periodic models (see [34, 35, 63]).
Moreover, the reader may also consult the recent surveys [13], [31].
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à coefficients markoviens. Probab. Theory Related Fields,
78(2):193–221, 1988.

133



i
i

“notes” — 2017/5/29 — 19:08 — page 134 — #136 i
i

i
i

i
i

134 BIBLIOGRAPHY
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à coefficients markoviens. Probab. Theory Related Fields,
78(2):193–221, 1988.

[9] Philippe Bougerol and Jean Lacroix. Products of random ma-
trices with applications to Schrödinger operators, volume 8 of
Progress in Probability and Statistics. Birkhäuser Boston, Inc.,
Boston, MA, 1985.

[10] J. Bourgain. Positivity and continuity of the Lyapounov expo-
nent for shifts on Td with arbitrary frequency vector and real
analytic potential. J. Anal. Math., 96:313–355, 2005.

[11] J. Bourgain and S. Jitomirskaya. Continuity of the Lyapunov
exponent for quasiperiodic operators with analytic potential. J.
Statist. Phys., 108(5-6):1203–1218, 2002. Dedicated to David
Ruelle and Yasha Sinai on the occasion of their 65th birthdays.
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