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Preface

The purpose of this book is to present a gentler introduction to
our method of studying continuity properties of Lyapunov exponents
of linear cocycles. To that extent, we chose to illustrate this method
in the simplest setting that is still both relevant in dynamical systems
and applicable to mathematical physics problems.

In ergodic theory, a linear cocycle is a skew-product map acting
on a vector bundle, which preserves the linear bundle structure and
induces a measure preserving dynamical system on the base. The
vector bundle is usually assumed to be trivial; the base dynamics
is an ergodic measure preserving transformation on some probability
space, while the fiber action is induced by a matrix-valued measurable
function on the base. Lyapunov exponents quantify the average expo-
nential growth of the iterates of the cocycle along invariant subspaces
of the fibers, which are called Oseledets subspaces.

An important class of examples of linear cocycles are the ones
associated to a discrete, one-dimensional, ergodic Schrodinger opera-
tor. Such an operator is the discretized version of a quantum Hamil-
tonian. Its potential is given by a time-series, that is, it is obtained
by sampling an observable (called the potential function) along the
orbit of an ergodic transformation.

The study of the continuity properties of the Lyapunov exponents
as the input data (e.g. the fiber dynamics) is perturbed constitutes
an active research topic in dynamical systems, both in Brazil and
elsewhere.

A general research area in dynamical systems is the study of sta-
tistical properties like large deviations, for an observable sampled
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along the iterates of the system. This theory is well developed for
rather general classes of base dynamical systems. However, when it
comes to the dynamics induced by a linear cocycle on the projective
space, this topic is much less understood. In fact, even when the base
dynamics is a Bernoulli shift, this problem is not completely solved.

Both the continuity properties of the Lyapunov exponents and the
statistical properties of the iterates of a linear cocycle are important
tools in the study of the spectra of discrete Schrodinger operators in
mathematical physics.

In our recent research monograph [I6], we established a connec-
tion between these two research topics in dynamical systems. To wit,
we proved that if a linear cocycle satisfies certain large deviation type
(LDT) estimates, which are uniform in the data, then necessarily the
corresponding Lyapunov exponents (LE) vary continuously with the
data. Furthermore, this result is quantitative, in the sense that it
provides a modulus of continuity which depends on the strength of
the large deviations. We referred to this general result as the abstract
continuity theorem (ACT). We then showed that such LDT estimates
hold for certain types of linear cocycles over Markov shifts and over
toral translations, thus ensuring the applicability of the general con-
tinuity result to these models.

The setting of the abstract continuity theorem (ACT) chosen for
this book consists of SLa(R)-valued linear cocycles (i.e. linear cocy-
cles with values in the group of two by two real matrices of determi-
nant one).

The proof of the ACT consists of an inductive procedure that es-
tablishes continuity of relevant quantities for finite, larger and larger
number of iterates of the system. This leads to continuity of the
limit quantities, the Lyapunov exponents. The inductive procedure
is based upon a deterministic result on the composition of a long
chain of linear maps, called the Avalanche Principle (AP).

Furthermore, we establish uniform LDT estimates for SLy(R)-
valued linear cocycles over a Bernoulli shift and over a one dimen-
sional torus translation. The ACT is then applicable to these models.

In this setting, the formulation of the statements is significantly
simplified and many arguments become less technical, while retaining
most features present in the general setup.
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While all results described in this book are consequences of their
more general counterparts obtained elsewhere, in several instances,
the formulation or proof presented here are new. For example: the
formulation of the ACT in Section [3:2] the proof of the Holder conti-
nuity of the Oseledets splitting in Section [3.4] the formulation of the
LDT for quasi-periodic cocycles in Section the proof of Sorets-
Spencer theorem in Section [5.6] appear in print for the first time in
this form.

One of the objectives of this book is to popularize these types of
problems with the hope that the theory grows to become applicable to
other types of systems, besides random and quasi-periodic cocycles.

The target audience we had in mind while writing this book was
postgraduate students, as well as researchers with interests in this
subject, but not necessarily experts in it. As such, we tried to make
the presentation self contained modulo graduate textbooks on various
topics.

The reader should be familiar with basic notions in ergodic the-
ory, probabilities, Fourier analysis and functional analysis, usually
provided by standard postgraduate courses on these subjects.

Two reference textbooks to keep handy are M. Viana and K.
Oliveira [61] on ergodic theory and M. Viana [60] on Lyapunov expo-
nents. They cover most of what one needs to know for the first three
chapters of this book. Familiarity with Markov chains is helpful in
understanding the approach used in the fourth chapter, and for that,
D. Levin and Y. Peres [42, Chapter 1] suffices. Finally, the last chap-
ter requires a nontrivial amount of complex and harmonic analysis
tools, for which we recommend T. Gamelin [23] and C. Muscalu and
W. Schlag [45, Chapters 1-3]. More precise references are provided
within each chapter.

The book is organized as follows.

In Chapter [I] we review basic notions in ergodic theory and we
introduce linear cocycles and Lyapunov exponents. We end the chap-
ter with a discussion of some parallels between ergodic theorems and
limit theorems in probabilities. These types of analogies will prove
important all throughout this book.

In Chapter [2] we formulate the avalanche principle, describe the
needed geometrical considerations and present its proof.
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In Chapter [3|we describe our version of large deviations estimates
then formulate and prove the abstract continuity theorem for the
Lyapunov exponent and the Oseledets splitting.

In Chapter [4] we derive a uniform large deviation estimate for
linear cocycles over the Bernoulli shift. The ACT is then applicable
and it implies the continuity of the Lyapunov exponent for this model.
We also present an adaptation of the original argument of Le Page
for the continuity of the LE, without large deviations.

In Chapter [5| we derive a uniform large deviation estimate for
linear cocycles over the one dimensional torus translation, assum-
ing that the translation frequency satisfies some generic arithmetic
assumptions and that the cocycles depend analytically on the base
point. The ACT is then also applicable to this model.

In both Chapter ] and Chapter [5| we describe the applicability of
these results to Schrodinger cocycles.

All chapters end with bibliographical notes summarizing relevant
related results.

Furthermore, all chapters contain exercises, which have two func-
tions. The statements formulated in each exercise are needed in the
arguments. Moreover, they are meant to help the reader practise her
growing familiarity with the subject matter.

These notes, as well as the the idea of offering an advanced course
in the 31st Coléquio Brasileiro de Matematica, grew out of our res-
pective seminar presentations in Lisbon and Rio de Janeiro, during
the last few months.

The first author would like to thank his colleagues in Lisbon, Joao
Lopes Dias, José Pedro Gaivao and Telmo Peixe, for attending talks
on this subject and for their suggestions.

The second author would like to thank students and postdocs at
IMPA and PUC-Rio, including Jamerson Douglas Bezerra, Catalina
Freijo, Xiaochuan Liu, Karina Marin, Mauricio Poletti, Adriana San-
chez and Elhadji Yaya Tall. His interaction with them lead to a sim-
pler formulation of the ACT and provided the motivation for taking
on the task of finding a less technical approach to our method.

The first author was partially supported by National Funding
from FCT-Fundacao para a Ciéncia e a Tecnologia, under the project:
UID/ MAT/04561/2013.
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a CNPq senior postdoctoral fellow at IMPA, under the CNPq grant
110960/2016-5. He is grateful to the host institution and to the grant
awarding institution for their support.

Special thanks are due to Teresa and Jaqueline for their help and
patience during the writing of this book.






Chapter 1

Linear Cocycles

1.1 The definition and examples of ergodic
systems

Given a probability space (X,F, u), a measure preserving transfor-
mation is an F-measurable map T : X — X such that

(T A) = pu(A), forall Acd.

A measure preserving dynamical system (MPDS) is any triple (X, u, T')
where (X, ) is a probability space (the o-field F is implicit to X)
and T : X — X is a measure preserving transformation.

We refer to elements of X as phases. The sequence of iterates
{T"x}n>0 is called the orbit of the phase x.

Definition 1.1. We say that the MPDS (X, u, T) is ergodic if there is
no 7T-invariant measurable set A = T~1(A) such that 0 < u(A4) < 1.

Definition 1.2. We say that the MPDS (X, u, T') is mizing when for
all A, B €7,

lim p(ANT"(B)) = u(A) u(B)

n—-+oo

Mixing MPDS are always ergodic, but the converse is not true in
general.
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Let T = R/Z be the one dimensional torus. When convenient, we
identify the torus T = R/Z (an additive group) with the unit circle
S! C C (a multiplicative group) via the map x + Z — e(z) := €27,
but we maintain the additive notation, e.g. we write z +y (mod 1)
instead of e(z)e(y).

For d > 1, let T* = (R/Z)? be the d-dimensional torus. The
normalized Haar measure denoted by |-| on the o-field F of Borel sets
determines a probability space (T%,J, |-|).

We mention below a few classes of MPDS on the torus.

Example 1.1 (toral translations). Given w € R?, the translation
map T : T¢ — T¢, Tz := z+w (mod 1), preserves the Haar measure.
This MPDS is ergodic if and only if the components of w are rationally
independent. Toral translations are never mixing.

Example 1.2 (toral endomorphisms). Given a matrix M € GL(d,Z),
the endomorphism T : T* — T?, Tx := M x (mod 1), preserves the
Haar measure. The endomorphism T is ergodic if and only if the
spectrum of M does not contain any root of unity. Ergodic toral
automorphisms are always mixing.

The composition of a toral endomorphisms with a translation is
called an affine endomorphism. This provides another class of MPDS
on the torus. See [62] for the characterization of the ergodic properties
of affine endomorphisms.

Let ¥ be a compact metric space and consider the space of se-
quences X = Y% The (two-sided) shift is the homeomorphism
T: X — X defined by Tz := {241 }nez for £ = {2, }nez. Denote
by Prob(X) the space of Borel probability measures on X.

Example 1.3 (Bernoulli shifts). Given p € Prob(X), the shift map
T: X — X preserves the product probability measure p%. The
MPDS (X, u%,T) is called a Bernoulli shift. Bernoulli shifts are er-

godic and mixing.

A stochastic matriz is any square matrix P = (p;;) € Mat,,(R)
such that p;; > 0 for all 4,7 = 1,...,m and Z?;Pij = 1 for all
j=1,...,m. A stochastic matrix P is called primitive if there exists
(n)

n > 1 for which the power matrix P" = (p;;”) has all entries strictly

positive, i.e. pz(?) >0fori,j=1,...,m.
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A vector ¢ = (q1,...,¢m) with non-negative entries ¢; > 0 such
that Z;"Zl g; = 1 is called a probability vector.
A probability vector ¢ is said to be P-stationary if Pq = q, i.e.

qizzgnzlpijqj foralli=1,...,m.

Example 1.4 (Markov shifts of finite type). Given a pair (P,q)
consisting of a stochastic matrix P € Mat,,(R) and a P-stationary
probability vector ¢, consider the space of sequences X = %% over
the finite alphabet ¥ = {1,...,m} and the ¥-valued random process

fn{ﬂfj}jez =T

defined over X.
Then there is a unique probability measure Pp, over the Borel
o-algebra of X such that

(a) Ppyléo=i]=¢q fori=1,...,m,
(b) Ppyl&n =i|&n—1=7]=piy foralli,j=1,...,m,.

The (two-sided) shift T': X — X preserves the measure Pp, and
the MPDS (X,Pp,,T) is called a Markov shift of finite type.

The support of the measure Pp, is the following subspace of
admissible sequences

X(P):={{zj}jez € X: pz;u;_, >0 forall jecZ}

known as a subshift of finite type.
The system (X,Pp,,T) is mixing if and only if P is primitive.

1.2 The additive and subadditive ergodic
theorems

Given a probability space (X, i), we denote by L*(X, u1) the space of
measurable functions ¢ : X — R that are absolutely integrable:

E,(I]) = /X ol dpt < +oc.

These functions will be called observables.
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A simplified version of the Birkhoff (additive) ergodic theorem
(BET) reads as follows.

Theorem 1.1. Given an ergodic MPDS (X, u,T), for any observable
@ and for u almost every point x € X,

| (T7x du .
nﬂloonZ%ﬁ )= [ an

In other words, the additive ergodic theorem says that given an
observable ¢, if we denote by

Supla) = 3 ¢(Ti)
§=0

the corresponding Birkhoff sums, then a typical Birkhoff average
%Sncp(x) converges to the space average of .

The subadditive ergodic theorem of Kingman generalizes Birkhoff’s
ergodic theorem. We formulate it below in a slightly simplified way.

Theorem 1.2. Let (X, u,T) be an ergodic MPDS. Given a sequence
of measurable functions f,: X — R such that f; € L*(X,p) and

foom < fo+ fmoT™  forall n,m >0,

the sequence { [ fn du}tn>o is subadditive, i.e.,

/fn+mdu§/ fndu+/fmdu Jor all nym >0,
X X X

and for p-a.e. x € X, we have

1
lim — f,(z) = lim f/fnd,ufmff/fnd,u<oo

n—oo n n—oo n, n>1

The proofs of these fundamental theorems in ergodic theory can
be found in most monographs on the subject (see for instance [61]).
We would also like to mention the simple proofs of Y. Katznelson
and B. Weiss [33] that use a stopping time argument which was later
employed in other settings (e.g. [19, B2] and [16, Section 3.2]) as well.
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1.3 Linear cocycles and the Lyapunov
exponent

Let (X, u, T) be an MPDS which throughout this book is assumed to
be ergodic. A linear cocycle over (X, u,T) is a skew-product map

Fu: X xR? = X xR?
given by
X xR? 3 (z,v) = (Tz, A(z)v) € X x R?,
where
A: X — SLy(R)
is a measurable function.

Hence T is the base dynamics while A defines the fiber action.
Since the base dynamics will be fixed, we may identify the cocycle
with its fiber action A.

The forward iterates F} of a linear cocycle F4 are given by
Fi(z,v) = (T"x, A" (z)v), where

AW (z) = A(T" '2) ... A(Tz) A(z) (neN).

Exercise 1.5. Show that if g € SL2(R), then ||g|| > 1 and [|g7!| =
llgll. Recall that ||| refers to the operator norm of a matrix.

A cocycle A is said to be p-integrable if

[ togllA@) [ dute) < +oc.
X

Note that since the matrix A(x) € SLa(R), its norm is > 1.
Because norms behave sub-multiplicatively with matrix products,
the sequence of functions

fal) = log| A™ (z)]|

is subadditive.
Thus Kingman’s ergodic theorem is applicable and we have the
following.
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Definition 1.3. Given a p-integrable cocycle A, the p-a.e. limit

1
o L (n)
L(A) = tim L log] a0 ()
exists and it is called the (maximal) Lyapunov exponent (LE) of A.
Moreover,

. 1 n . 1 n
LA) = Jim [ 108l AP @) du(o) = i [ 1og] A @) d(o).

n—oo X

From the point of view of the base dynamics, two important
classes of linear cocycles are the quasi-periodic and the random co-
cycles, which we define below.

Example 1.6. A quasi-periodic cocycle is any cocycle A: T¢ —
SL2(R) over an ergodic torus translation 7 : T¢ — T¢9.

If T := z+w (mod 1) then w € R? is called the frequency vector
of the cocycle.

Example 1.7. Let ¥ be a compact metric space and let u be a
probability measure on . Let (X, u”%, T') be the Bernoulli shift, where
X = Y7 is the space of sequences in X.

A function A : X — SLy(R) is called a random Bernoulli cocycle
if A depends only on the first coordinate xg, that is, if

A{xn}nEZ - A(ZEO)

for some measurable function A: ¥ — R.

From the point of view of the fiber action, an important example
of a linear cocycle is the Schrodinger cocycle, which appears in the
study of the discrete, ergodic operators in mathematical physics. We
briefly introduce these concepts (see [13] for more on this subject).

Example 1.8. Consider an invertible MPDS (X, u, T') and a bounded
observable p: X — R. Let x € X be any phase. At every site n on
the integer lattice Z we define the potential

vp(z) = o(T"x) .
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The discrete Schrodinger operator with potential n — v, (z) is
the operator H(z) defined on [?(Z) as follows.

If ¢ = {Yn nez € 1*(Z), then
[H(l')?//]n = —(Vpa1 + Up—1) + (), forallneZ.
Consider the Schrodinger (i.e. eigenvalue) equation
H(w) = v,

for some energy (i.e eigenvalue) E € R and state (i.e. eigenvector)

Y= {wn}neﬂ
Define the associated Schrddinger cocycle as the cocycle (T, Ag),
where

Ap(z) == [ o) -8 -1 ] € SLy(R) .

Note that the Schrodinger equation above is a second order finite
difference equation. An easy calculation shows that its formal solu-
tions are given by

CIRaEN!
where for all n € N, Agl)(x) is the n-th iterate of Ag(x).

We will return to this example in each of the next chapters, show-
ing how the results obtained are applicable to Schrédinger cocycles.

1.4 Some probabilistic considerations

Consider a scalar random process, i.e. a sequence £y, &1,...,&n—1,---
of random variables with values in R, and denote by

n—1

Sn = éj

<.
Il
o

the corresponding additive (sum) process.
The strong law of large numbers says that if the random variables
defining the process are independent, identically distributed (i.i.d.)
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and absolutely integrable, then the average process converges almost
surely:

%S’n—ﬂE(EO) z/xd,u(ac) as n — 0o,

where p € Prob(R) is their common probability distribution.
Given an MPDS (X, u,T), any observable ¢: X — R determines
a sequence of real valued random variables

&ni=@oTm. (1.1)

These random variables are identically distributed and absolutely
integrable, but in general they are not independent.

Let us note that any i.i.d. sequence {&,}, of random variables can
be realized as the type of process given in 7 with (X, u, T') being
a Bernoulli shift and ¢ being an observable on the space of sequences
X that depends only on the zeroth coordinate of the sequence.

Birkhoff’s ergodic theorem says that even in the absence of in-
dependence, a very weak form thereof, the ergodicity of the system,
ensures the convergence of the time averages in to the space
average. Thus Birkhoff’s ergodic theorem can be seen as the genera-
lization and the analogue in dynamical systems of the strong law of
large numbers from probabilities.

Let us now consider a sequence My, My,..., M, _1, ... of i.i.d.
random variables with values in SLy(R). Denote by

H(n) S:Mn_l'...'Ml'Mo

the corresponding multiplicative (product) process.

The Furstenberg-Kesten theoremﬂ the analogue of the strong law
of large numbers for multiplicative processes, says that the following
geometric average of the process converges almost surely:

1
= log |[I™| = L(p) as n — oo,
n

where p € Prob(SLa(R)) is the common probability distribution of
the random variables. The a.s. limit L(p) is called the (maximal)
Lyapunov exponent of the process.

IThe setting of Furstenberg-Kesten’s theorem is actually a bit more general:
instead of i.i.d., the sequence of random matrices is assumed metrically transitive
and stationary (see [20]).



[SEC. 1.5: THE MULTIPLICATIVE ERGODIC THEOREM 15

Furthermore, any absolutely integrable linear cocycle over an er-
godic MPDS (X, u,T), i.e. any matrix-valued observable A: X —
SL2(R), determines the sequence of random matrices M,, :== Ao T™.
Note that the corresponding multiplicative process is exactly A (z),
the n-th iterate of the cocycle A. Moreover, the sequence {M,} is
metrically transitive and stationary, but in general not independent.
An independent multiplicative process can be realized as a random
Bernoulli cocycle.

The Furstenberg-Kesten theorem, or the more general Kingman’s
ergodic theorem, are applicable and ensure the existence of the max-
imal Lyapunov exponent of this multiplicative process (or equiva-
lently, of the linear cocycle).

These analogies with limit theorems in probabilities will be ex-
panded and will prove important in the next chapters of this book.

1.5 The multiplicative ergodic theorem

Let Gri(R?) denote the Grassmannian of 1-dimensional linear sub-
spaces (lines) ¢ C R2. In the context of SLy(IR)-valued cocycles, the
Oseledets Multiplicative Ergodic Theorem (MET) for invertible er-
godic transformations can be formulated as follows (see [60, Theorem
3.20] for the proof).

Theorem 1.3. Let (X, u,T) be an invertible, ergodic MPDS.
Let Fa: X x R?2 — X x R?, Fy(z,v) = (Tz,A(x)v), where
A: X — SLo(R) is a p-integrable linear cocycle with L(A) > 0.
There exists a measurable decomposition R? = E¥(z) & £~ (z),
with £¥: X — Gry(R?) measurable, such that for u-almost every
reX,

(a) A(x)EF(2) = E5(Tx)

(b) lim 1 log|| A™ (z) v|| = L(A), for allv # 0 in EF(x),
n—mIroo N

(¢) lim 1 log||A™ (z)v|| = —L(A), for allv# 0 in £ (z),

n—too n

(d) lim %log|sin4(5+(T"x),5_(T"m))|=0.

n—+oo
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Definition 1.4. By the MET there exists a full measure T-invariant
set of points such that statements (a)-(d) in the MET hold. The
elements of this set are called Oseledets regular points.

1.6 Bibliographical notes

All the background in Ergodic Theory reviewed here (Birkhoff, Kig-
man and Oseledets theorems) can be found in the book of K. Oliveira
and M. Viana [61]. The book of M. Viana [60] gives the reader a broad
perspective on the on the specific topic of Lyapunov exponents.



Chapter 2

The Avalanche
Principle

2.1 Introduction and statement

Given two sequences of positive real numbers M,, and N,, with geo-
metric growth and a positive real number € > 0, we will say that M,
and N,, are e-asymptotic, and write M, = N, if for all n > 0,

My,

—ne
e < —
=N,

< ens

Let GL4(R) denote the general linear group of real d x d matrices.
Given go, g1, - - -, gn € GLg(R), the relation

£
lgn—1 - g1 90ll < llgn—1ll --- llgrll llgoll

can only hold if some highly non typical alignment between the ma-
trices g; occurs. In fact, typically one has

lgn—1 -+~ g1 90l < e ™" lgn-all -~ llga]l llgoll

for some not so small a > 0. This motivates the following definition.

17
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Definition 2.1. Given matrices go, g1, .- ., gn—1 € GL4(R), their ex-
pansion rift is the ratio

1gn=1 -~ g190]l
90,91, -, Gn1) = < 0.1
P90, 915+, Gn—1) gn—1ll -~ [lg1]l lgoll @1

The Avalanche Principle roughly says that under some general
assumptions the expansion rift of a product of matrices behaves mul-
tiplicatively, in the sense that

)
p(90, 915+, gn—1) < p(g0,91) - P(Gn—2,Gn—1)

for some small positive number 4.

Before formulating it we need to recall some basic concepts and
fix their notations.
Given g € GL4(R) let

s1(g) > s2(9) > ... > salg) > 0

denote the sorted singular values of g. By definition these are the
eigenvalues of the positive definite matrix (¢g*g)/2. The first singular
value s1(g) is the usual operator norm

llgz|
S = ma. = .
l(g) IER‘Z\){(:O} ||IH ||g||

The last singular value of g is the least expansion factor of g, regarded
as a linear transformation, and it can be characterized by

gz 1y
salg) = min 192y

cck\{0} |zl

From the definition of the singular values it follows that

d
|det g| = H sj(9)-
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Definition 2.2. The gap (or the singular gap) of g € GL4(R) is the
ratio between its first and second singular values,

Remark 2.1. If g is a matrix in SLy(R), i.e., if det(g) = 1, then
gr(g) = llgll*-

Let P(R?) denote the projective space, consisting of all lines through
the origin in the Euclidean space RY. Points in P(R?) are equivalence
classes & of non-zero vectors x € R?. We consider the projective
distance 0: P(R?) x P(R?) — [0, 1]

_ =yl

o(z,y) :=
&9 = 2Tl

= sin (L(z,y)) .

For readers not familiar with exterior products, we note that

[z Ayl = llzl[ lyll sin (£(z,y))

is nothing but the area of the parallelogram spanned by the vectors
x and y.

We will denote by ¢g* the transpose of a matrix g. The eigenvectors
of g*g are called singular vectors of g. Each singular vector of g is
hence associated with a singular value of g (eigenvalue of (g*g)/?).

Definition 2.3. Given g € GL4(R) such that gr(g) > 1, the most
expanding direction of g is the singular direction 6(g) € P(R?) asso-
ciated with the first singular value s1(g) of g. Let v(g) be any of the
two unit vector representatives of the projective point 6(g). Finally,
we set 0*(g) := 8(g*) and v*(g) := v(g*) .

Any matrix g € GLg(R) maps the most expanding direction of
g to the most expanding direction of g*, multiplying vectors by the
factor s1(g) = ||g||- In other words

go(g) = £s1(9) v™(9)-
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The matrix ¢ also induces a projective map §: P(R?) — P(R?),
§(&) := gz, for which one has

§0(g) =0"(g) and g*0*(g) = 0(g). (2.1)

We can now state the Avalanche Principle. See [16, Theorem 2.1]

Theorem 2.1. There are universal constants ¢; > 0, i = 0,1,2,3,
such that given 0 < k < coe? and go, g1, .- -,9n € GLg(R), if

(G) gr(g;) >k~ for j=0,1,...,n—1,

llgi gi—1ll
(A) gy zefori=1,...,n—1,

then, writing g" := gn_1 ... 91 90,
(1) max {d(6(g"),0(g0)), 6(6*(9"),0"(gn-1)) } < come™

635/52

0@ p@magh'ﬂvgn*ﬂ = pQM7gﬂ ”'/Kgnfbgnfﬂ'

Condition (G) will be referred to as the gap assumption because
it imposes a lower bound on the gaps of the matrices g;. Hypothesis
(A) will be referred to as the angle assumption, a terminology to be
explained later (see Remark [2.2)).

Conclusion (1) of the AP says that the most expanding direction
of the product matrix g™ is nearly aligned with the corresponding
most expanding direction of the first matrix gg. In other words

5(6(g™), 0(go)) S ke (2.2)

It also states a similar alignment between the images of most expand-
ing directions of g™ and g,,—1.
Conclusion (2) of the AP is equivalent to

llgn—1--- 9190l lgn—2ll --- llgull C3'*@/8 1
llgi goll --- llgn—2 gn—1ll

which taking logarithms reads as

n—2 n—1

K
|10g||gn—1 9190l + ZIOgHQjH - Zlogllgj gj—1ll | < €3 5 M
j=1 j=1
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Finally, dividing by n one gets

1 . 1 n—2 1 n—1 K
= logllg"| = = Y logllg;ll + — > logllg; g1l + O(Z) (23)
j=1 j=1

In Chapter (3] formula (2.3) plays a key role in the inductive proof
of the continuity of the LE and the Oseledets decomposition.
2.2 Staging the proof

The projective distance §: P(R?) x P(RY) — [0, 1] determines a com-
plementary angle function a: P(R?) x P(R?) — [0, 1] defined by

o EXT
a(z,g) =
’ [l N1yl

— cos (L(x,y)).

The complementarity of the functions ¢ and « is expressed by (see

2.1)
oz, 9)* +(2,9)* = 1.

The following exotic operation will be used to express an upper
bound on the expansion rift of two matrices. Consider the algebraic
operation

a®b:=a+b—abd

on the set [0,1]. The transformation ® : ([0,1],®) — ([0,1],-),
®(z) := 1 — x, is a semigroup isomorphism.

Proposition 2.1. For any a,b,c € [0, 1],
(1) 0®a=a,
(2) 1®&a=1,
(3) adb=(1—-bla+b=(1—a)b+a,
(4) a®b<1l & a<landb<1,

(5) a<b = a®c<bdec,
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Figure 2.1: Angles « and §

(6) b>0 = (ab'®c)b<adec,

(7) ac+bv1—a%2V1—c2<Va2db2.
Proof. Ttems (1)-(5) are left as exercises. Item (6) holds because
(ab'@e)b=(ab ' +c—cab )b=a+cb—ca<atc—ca=adec.

For the last item consider the linear function f: R? — R, f(z,y) :
azx+b+v1—a?y and the circle quarter T' = {(c,v1 —¢?): c € [0,1]}.
The Lagrange multiplier method shows that max(, yyer f(z,¥)
Va? @ b2, the extreme being attained at the point (¢,v1 — ¢2) wi
¢ =a/va®b. This proves (7).

==

0o

Lemma 2.2. Given g € GLg(R) with gr(g) > 1, # € P(RY) and a
unit vector x € &, writing o = a(2,0(g)) we have
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(c) The map §: P(R?) — P(R?) has Lipschitz constant < g:(+g)7 V(llj’;)
over the disk {# € P(R?): 6(#,0(g)) < r}.
Proof. Let us denote o = gr(g). Choose the unit vector v = v(g)
so that Z(v,z) is non obtuse. Then z = av + w with v L v and
lu]| = V1 — a?. Letting v* = v*(g), we have gz = « ||g]| v* + gu with
gu L v* and [gul < V1 —a?s3(g) = V1—a?|gll/o.
We define the number 0 < x < 0~! so that ||gul| = V1 — a2k ||g]|.
Hence

o |lgll® < o llgll® + [lgull® = llg=|1* ,
and also
gzl = o [|g]|* + llgull® = llglI* (o® + (1 — ®)?)
=lgl? (@®* @ r*) <|g|* (*®07?),

which proves (a).
Using (a), item (b) follows from

A gu A gx gu A gx v* A gx
S60.6(q)) _ Jav Aozl _ lgv Aol _ " Age]
lgvllllgzll gl llg=]l gz
_ llgull - v1-a?llgll _ 6(2,0(g))
lgzll = ollgzll — ac

With the notation introduced in Exercise we have the follow-
ing formula for the derivative of the projective map §: P(RY) — P(R9)

(see Exercicise 2.2)),

R (7\52\ '9”> Toel 1
(Dg)s v
S0 = —

llg ] g |

Mg/ lgall (90)-

To prove (c), take unit vectors v = v(g) and v* = v*(g) such that
gv = ||g|]| v*. Because v is the most expanding direction of g we have

I o gll = llg oy | < s2(9) = o gl
Given 2 such that 6(#,0(g)) < r, and a unit vector z € Z, by (a)

ol 11
loxll = a@,5(9) = Vi-r

(2.4)
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Using (b) we get

Hence
(Dg)zv = LS, (gv) + e 1 (g0)
Pe 0= lgz|] To\g ¥ gz Tax/llgel — To ) (V) -

Thus, by (2.4) and Exercise we have

D3 gl 0(g#,0%(9)) llgll
1(Dg)ell <
o [lgx|| gl
V1= 2
< 1 n r :r—l— 1—7r '

oV1—r2 o(1-12) o(l—12)
Let d(@,?) denote the Riemannian distance (arclength) on P(R9).
Since d(u,9) = arcsin(d(u, 9)), the d-ball B(b,r) := {Z: 6(2,0(g)) <
r} = {&: d(2,0(g9)) < arcsinr} is a convex Riemannian disk. By
the Mean Value Theorem, the map ¢ B(s,r) has Lipschitz constant
< VI Gith respect to the Riemannian distance d. Since § <

= o (1-12)

d < 56, the map §|p(s,,) has also Lipschitz constant < § T;(i ;i:{;
with respect to 4.

Exercise 2.1. Given a unit vector v € R% |lv|| = 1, denote by
7o, ot RT — R? the orthogonal projections 7,(x) := (v - z)v, re-
spectively 7 (z) := z — (v - z)v. Prove that for all unit vectors
u,v € RY,

Iy =7 |l = llmo — mall = 6(a, ).

Hint: Let p(z) = ||mu(z) — mp(2)|| = ||[(z - uw) u — (x - v)v||. Prove

that max) ;=1 p(z) = §(4, 9) and this maximum is attained along the
plane spanned by » and v.

Exercise 2.2. Given g € GL4(R) and # € P(R?), x € & a non-zero
representative and v € ot = T;P(R?), prove that

N 1 n
(Dg)a v = o= Mo g (90)-
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Next corollary is a reformulation of items (b) and (c) of Lemmal[2.2]
which is more suitable for application.

Corollary 2.3. Given g € GL4(R) such that gr(g) > k=1, define
S = {2 € P(RY): a(2,6(g) >c} =B (6(g), Vie 52) .
Given a point & € 3.,

(a) 5(§#,90(g)) < £ 8(2,0(g)),
(b) The map §|s, : e — P(R?) has Lipschitz constant < 5.

Definition 2.4. Given g,¢" € GL4(R) with gr(g) > 1 and gr(g’) > 1
we define their lower angle as

a(g,9') = a(b7(g),0(g")).

The upper angle between g and ¢’ is

B(g,9") = Ver(g) 2 ® alg, ¢')* ® gr(g) >

Figure 2.2: The (lower) angle between two matrices

Lemma 2.4. Given g,g" € GL4(R) if gr(g) > 1 and gr(g') > 1 then

(0.9 < 199l

< .
< gt <P:9)
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Proof. Let a := a(g, g’) a(0*(g),0(g’)) and take unit vectors v =

0(g), v* = v*(g) and v = v(g¢’) such that v*- v = a > 0 and
gv=llglv*.
Since go(g) = v*(g9), w = o,y is a unit representative of w =

v*(g). Hence, applying Lemma (a) to g’ and w, we get

g'gv g9l
o(g)) 1lg'll < | | <

a(g,9") 19|l = a(w, lgoll" = gl

lgll
which proves the first inequality.

For the second inequality, consider a unit vector w € R?, repre-
sentative of a projective point @ € P(R?), such that a := w-v =
a(w,0(g)) > 0. Then w = av + V1 — a?u, where u is a unit vector
orthogonal to v. It follows that gw = a||g||v* + V1 — a? gu with
gu L v*, and ||gul| = k ||g|| for some 0 < k < gr(g)~!. Therefore

g wi®
gl

=a’>+(1-ad*)kK?=a® kK>

and

gw a \/1—a2 gu

lgwl ~ VaZere ' | Vo gl

The vector v’ can be written as v/ = av* + w’ with v’ L v* and

|w’|| = V1 —a2. Set now b := (g, 6(g")). Then

o] < aa VI—a? |gu-v|
Va2 @ k2 a2 @ k2 ||9||
aa kV1—a? ,
||
T Va2 o R Va2 o k2 HQUH

- ‘ngn

aa kvV1—a?
SNCT + Nexy [[w||
aa m\/l—aQ\/l—a2<\/aQEBf<;2

= + — .
‘/(12@/4/2 "GQ@I{Z ‘/112@&2

We use (7) of Proposition on the last inequality. Finally, by
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Lemma (a) applied to ¢’ and the unit vector gw/|gw|,

lg" g wll < lg'll v/b* ® gr(g") =2 llg wl|
< g/ lll9ll /b @ gr(g") 2 Va2 @ K2
< llg'lllgll V&> @ a2 @ gr(g") =% < B(g, 9) 19" 91l +

where on the two last inequalities use items (6) and (5) of Proposi-

tion 211 O

Remark 2.2. Assumption (A) of the AP is essentially equivalent to

a(gj-1,95) > €, forall j=1,...,n—1,

and it will be referred to as the angle assumption of the AP. In fact,
the above condition is slightly stronger than (A), which in turn im-
plies that

€
a(gj-1,95) > —F——, forall j=1,...,n—1,
V1+25
Given matrices go, g1, - - -, gn—1 € GL4(R), for 1 < j < n we write

9 = gj-1 .- 91 90-
Lemma 2.5. Ifgr(g;) > 1 and gr(¢’) > 1, for 1 <j <n , then

E lg gl
1-:---9491940 1

II e’ 9) < < 11 8% 9.

j=1 j=1

= llgnall - Hngllgo\

Proof. By definition ¢g" = g,,—1...g190, and by convention ¢ =1

Hence ||gn_1 L. 9190” = H;‘;Ol ”ﬁ;—;‘” . This 1mphes that

—1
lgn—1---g190ll _ h 1 H lg" ]
lgn—1ll - llgull = gl gl
_ H gig'll
llgall gl

gilllg"ll *

It is now enough to apply Lemma [2.4] to each factor. O
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2.3 The proof of the avalanche principle

Let us now prove the AP. By the previous lemma

H oy, 95) < P90 s Gn1) H Bg’,95) (2.5)

=1 9] 1»9]) HJ 1P(9] 179J j=1 gJ 1797)

The strategy for conclusion (2) is to prove that the factors

a(gjvgj) d 5(gjflvgj)
Bl 1.0 alddgy)

are all very close to 1, with logarithms of order x e~2. From conclusion
(1) of the AP, apllied to the sequence of matrices go, g1, -, 95,

max { § (v*(¢7),0"(gj-1)) , 0 (0(¢?), 0(90)) } <we™, (26

for all j = 1,...,n. Before proving (1) let us finish the proof of (2).
From ([2.6) we get

M¢&0‘<|Mfﬂﬂ—M%4ﬂM
a(gj-1,95)' ~ min{a(g, g;), a(gj-1,9;)}
2 0(0*(g?), 0% (gj—1)) _ K

~ ~

€ g2’

|log

From the definition of the upper angle 8 we also have

B(gjg K2 _ KK

These relations imply the existence of a universal positive constant
c3 such that

i g j _ _
log 2291) | MM, + [log A9i=1:93)
Plgi-1,9;) (951, 95) B(gj-1,95)
2
K K K
fg 572—’_572 < C3 672
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and
o Blgj- 1,gj | < [log B(gj-1,9;) hgg ’+| (gjf17gj)|
alg? g;) ' T " T algi-1,9 a(gd, g5)
2
K K K
<KL R
~e + 2 = %2
Hence, from (22.5) we infer that
e~ 03 ke %n < ,0(907.?17-”,971—1) < 6C3I€6_2’n
1721 p(gi-1,95)

which proves conclusion (2) of the AP.

To finish, we prove (1), addressing first the inequality

5 (0(g"™),0(g0)) < we™ 1. (2.7)

Consider the circular sequence of projective maps defined by the ma-
trices

90,91, - - - 7gn—1ag:_1a e agiagg'
Writing 0, := 0(g;) and v := v*(g;), we look at the sequence

A _f] A A g1 -~ A In—1 ~

0o = 05, 01— 0], R
. Gn—1 A P O M
of S 0, g, oo, DTS 0y, ) 7S D

as a closed pseudo-orbit for the given circular sequence of maps. To
simplify the notation we will write

* *
gn = gn 15+ -3 92n—2 = G1, 92n—1 = Yo,

0, =0 1,0 =0,_1, ..., 09,1 =0, 05, _; = 0.

We use a shadowing argument (see Figure [2.3) to prove the exis-
tence of a contracting fixed point & € P(R?), which is e~ '-near vy,
of the projective map

o —

(9™)*9™ = g2n—1"" Gndn—1--- G190
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b3

A0]
A2A1 A0

Figure 2.3: Shadowing property for contracting projective maps

Since t(g™ ) ib the unique contracting fixed point of this map, we must
have b = 0(g™) and . ) follows.

Foreachz-O,l,...,?n—landjz(),l,...,?n—i,set

0] = Givj—1 - Giv1 Gi Vi, (2.8)
so that, for each 0 < i < 2n — 1, the sequence of points

0, =00 5 0 = 0F > 02 15 05 1 s 7Y

is a true orbit of the given chain of projective maps. By remark
instead of (A) we can assume that our sequence of matrices satis-
fies a(gj_1,9;) > € for all j = 0,1,...,n — 1. This implies that
a(df_,,0;) > &, or equivalently §(b;,07 ;) < V1 —¢?, for all i =
0,1,...,2n — 1. By (a) of Corollarywe have

5(6F,07 1) = 8(gi0;, §i07_,) < me ! forall i =0,1,...,2n — 1.

Applying item (b) of the same corollary inductively we get (see Fig-

ure
S 0080) = 0((Gigy - - 91) 04y (Giej - - Gim1) 0] 1) < (e 1) (we™2)

for all j = 0,1,...,2n — ¢ — 1. The details of the inductive veri-
fication of applicability of Corollary are left to the reader (see
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Exercise . Hence

2n—1
A2ma AN cra2n Al ~2n—i A2n—it1
6(g7" 00, b9) = 6(b5", 03, 1) < Z 607" 07 )
i=1
2n—1 ,‘{8_1
< kel Z (n5_2)2”_’_1 <— < ke L.
‘ 1—ke™
i=1
b 2 by X 82 83 By
ket k2e 3 k3ed
b, 03 22 07 =2 o3
R
ket
03 = 03

Figure 2.4: Orbits of the chain of projective maps go, ..., gn-1

This proves that §2” maps the ball B of radius v/1 — 2 around tg
into itself with contracting Lipschitz factor Lip(§*"|5) < (ke 2)*" <
1. Thus, the (unique) fixed point  of the map §*" in the ball B is
ke~ near to by. As explained above, this proves that

5(6(g™),0(g0)) S ket

The second inequality in (1) reduces to (2.7)) if the argument is
applied to the sequence of transpose matrices g;;_;,..., 97,95

Exercise 2.3. Consider the projective points 6? defined in ([2.8)) and
prove that for all i =0,1,...,2n—1and j=0,1,...,2n —7¢ — 1,

8677, 6117) < (et (me7?).
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Exercise 2.4. Given g € GL4(R) and 4,9 € P(R?), prove that if

Gt =1 then g* (01) = at.

The following chain of exercises leads to an inequality (Exer-
cise which is needed in Chapter |3l The relative distance between
9,9 € GL4(R) is defined by

lg —d'll
dre1(9:9") == —— o -
re max{|\gll, [l¢'[l}
Notice that this relative distance is not a metric.
Exercise 2.5. For all p,q € R?\ {0},

||p 9

= — | <max {[lp| " llal "} llp -4l -
ol llell { J

Exercise 2.6. For all g1, g2 € GLg(R) and any unit vector p € R?,

5( g1, §op) < max{|lg1 pl ™", lg2pll ™'} llgr — g2l -

Exercise 2.7. Let (X,d) be a complete metric space, T7: X — X
a Lipschitz contraction with Lip(T1) < « < 1, 27 = Ti(z]) a fixed
point, and Ty : X — X any other map with a fixed point x5 = T (x3).
Prove that 1
d(zy, xz5) < ——d(Ty, T
(xlva) = 1_x ( 1y 2) )
where d(T4,T») := sup,c x d(T1(z), Ta(x)).
Consider now the set of normalized positive definite matrices
Pi:={g9 € GLiR): llgll =1, 9" =g >0}
and the projection P: GL4(R) — P, P(g) := g* g/||gl*.
Exercise 2.8. Show that for all g, h € GL4(R),
L. v(g) = o(P(9)),
2. drea(P(g), P(h)) < 4drer(g, h).
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Exercise 2.9. Given ¢1,¢92 € GLg(R), if gr(¢g1) > 10, gr(g2) > 10
and dye1(g1, 92) < o then

8(0(g1), 0(92)) < 12drei(g1, 92) -

Hint: By Exercise it is enough to show that given hq, ho € P, if
gI‘(hl) Z 100, gr(hg) Z 100 and drel(hl,hg) S % then

8 (0(h1), 0(h2)) < 3dyer(h1, ha) .

Let po = 0(hy), take 6 = %, consider the ball B = Bs(fy) w.r.t. the

metric §, and establish the following facts:

1. hi1(B) C B (use item (b) of Lemma (b))

[\

. |hapll = 4 for any unit vector p with p € B,
3. |[hep| = 3 for any unit vector p with p € B,
4. 8(hy p,hap) < 2||hy — hs| for all p € B (use Exercise [2.6)),

5. The projective map hy has Lipschitz constant < % on B (use

item (c) of Lemma [2.2),

6. hy(B) C B (use the two previous items),

. 8(6(h1),0(h2)) < 3||h1 — ha|| = 3drei(h1, he) (use Exercise[2.7).

EN

2.4 Bibliographical notes

The AP was introduced by M. Goldstein and W. Schlag [25, Propo-
sition 2.2] as a technique to obtain Holder continuity of the LE for
quasi-periodic Schréodinger cocycles. In its original version, the AP
applies to chains of unimodular matrices in SLo(C), and the length of
the chain is assumed to be less than some lower bound on the norms
of the matrices. Note that for unimodular matrices, the gap ratio and
the norm are two equivalent measurements. Still in this unimodular
setting, for matrices in SLo(R), J. Bourgain and S. Jitomirskaya [11,
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Lemma 5] relaxed the constraint on the length of the chain of matri-
ces, and later J. Bourgain [10, Lemma 2.6] removed it, at the cost of
slightly weakening the conclusion of the AP.

Later, W. Schlag [53] lemma 1] generalized the AP to invertible
matrices in GLg(C). Moreover, an earlier draft of [2] that C. Sadel has
shared with the authors contained his version of the AP for GL4(C)
matrices. Both of these higher dimensional APs assume some bound
on the length of the chains of matrices.

The version of the AP in these notes does not require this assump-
tion and was established by the authors in [I4, Theorem 3.1]. As a
by-product of its more geometric approach conclusion (1) of Theo-
rem was added to the AP. This provides a quantitative control on
the most expanding directions of the matrix product. In [16] a more
general AP is described, one which holds for (possibly non-invertible)
matrices in Matg(R).



Chapter 3

The Abstract
Continuity Theorem

3.1 Large deviations type estimates

The ergodic theorems formulated in the previous chapter imply con-
vergence in measure of the corresponding quantities. The main as-
sumption of the continuity results in this chapter is that the averages
corresponding to the fiber dynamics satisfy a precise, quantitative
convergence in measure estimate. In order to describe these large
deviations type (LDT) estimates, let us return to the analogy with
limit theorems from classical probabilities.

Consider a sequence &gy, &1,...,&4—1,... of random variables with
values in R, and let S, := § + & + ... + &,—1. If the process is
independent, identically distributed and if its first moment is finite,
then the average %Sn converges almost surely to the mean E(&;). In
particular it also converges in measure:

1
P |ESn_E(§O)|>6 —0 asn—o0.

The event |15, — E(fo)‘ > ¢ is called a tail event. The asymp-
totic behavior of tail events forms the subject of the theory of large

35
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deviations (see [49]). A classical result in this theory is the following
theorem due to Cramér.

Theorem 3.1. Let {{,} be an i.i.d. random process with mean
w = E(&). If the process has finite exponential moments, i.e. if
the moment generating function M(t) := E[e! %] < oo for all t > 0,
then

n—o00 N

1 1
lim — logP {|nsn —p| > 5] =—1I(e)
where I(e) 1= sup,~o(te —log M(t) +t p) is called the rate function.

In other words, if n is large enough, the probability of the tail
event is exponentially small:

P |15n—E(§0)\ >e| xe lEn,
n

for some rate function I(e).

An analogue of Cramér’s large deviations principle for multiplica-
tive processes holds as well, and it was obtained by E. Le Page [38].
The result in [38] holds assuming certain conditions (strong irre-
ducibility and contraction) on the support of the probability distribu-
tion of the process. We note that while these assumptions are generic,
they do exclude interesting examples. Removing these assumptions
has lately become the subject of intense work by several authors.

In classical probabilities, the theory of large deviations is part
of a larger subject, that of concentration inequalities, which provide
bounds on the deviation of a random variable from a constant, gene-
rally its expected value. Hoeffding’s inequality, which we formulate
below, is a standard example of a concentration inequality (see [58]).

Theorem 3.2. Let &,&1,...,&n—1 be an independenﬂ random pro-
cess with values in R and let S, ==& +& +...+&n—1 be its sum. If
the process is almost surely bounded, i.e. if for some finite constant
C, |§,| <C as. foralli=0,...n—1, then

1 1 —LE2TL
]P’“nSn—IE(nSn) >e} <2e 207", (3.1)

1The process need not be identically distributed and it need not be infinite.
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Note that compared to Cramér’s large deviations principle, Hoeff-
ding’s inequality only provides an upper bound for the tail event
(when the given random process is infinite). However, it has the
advantage of being a finite scale rather than an asymptotic result.
Moreover, it is a quantitative estimate that depends explicitly and
uniformly on the data. More precisely, note that if we perturb the
process slightly in the L*-norm, the a.s. bound C will not change
much, so the bound on the probability of deviation from the
mean will not change much either.

There are analogues of such concentration inequalities for certain
classes of base dynamical systems (see [12]). In this book we are con-
cerned with such estimates for the fiber dynamics of linear cocycles.

Consider an MPDS (X, p,T) and let A: X — SLy(R) be a pu-
integrable linear cocycle over it. For every n € N, denote by

AW (z) = AT '2) ... A(Tz) Az) ,

its n-th iterate and consider the geometric average
n 1 n
ul) (@) = = logl| 4™ (@)

We denote the mean of this average by

L) = [ W @) = [ 1 Tog A @)duta),

and refer to it as a finite scale Lyapunov exponent of A. That is
because as n — o0, the finite scale Lyapunov exponent L(")(A) con-
verges to L(A), the (infinite scale) Lyapunov exponent of A.

We are now ready to introduce our concept of concentration ine-
quality or large deviation type (LDT) estimate for a linear cocycle.

Definition 3.1. A cocycle A: X — SLy(R) satisfies an LDT esti-
mate if there is a constant ¢ > 0 and for every small enough € > 0
there is @ = 7i(e) € N such that for all n > 7,

1 2
,u{x eX: ’n log|[A™ (z)]| — L™ (A)‘ > e} <een. (3.2)

Note that since L") (A) — L(A), we may substitute in (3.2)) the
Lyapunov exponent L(A) for the finite scale quantity L™ (A).
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3.2 The formulation of the abstract
continuity theorem

In this chapter we establish a criterion for the continuity of the Lyapu-
nov exponent and of the Oseledets splitting seen as functions of the
cocycle (i.e. of the fiber dynamics). We refer to this continuity crite-
rion as the abstract continuity theorem (ACT). This result is quan-
titative, in the sense that it provides a modulus of continuity.

Given an MPDS (X, u,T), let (C,d) be a metric space of linear
cocycles A: X — SLa(R) over this base dynamics.

The main assumption required by the method employed here is
the availability of a uniform LDT estimate for each cocycle in this
metric space. We say that a cocycle A € C satisfies a uniform LDT if
the constant€?] ¢ and @ in Definition [3.1] above are stable under small
perturbations of A. We formulate this more precisely below.

Definition 3.2. A cocycle A € C satisfies a uniform LDT if there
are constants § > 0, ¢ > 0 and for every small enough € > 0 there is
7 = 7i(e) € N such that

1
7 {x € X: ’ log| B™ ()] — L(”)(B)‘ > e} < e (3.3)
n
for all cocycles B € C with d(B, A) < § and for all n > 7.

Remark 3.1. Note that at this point, it is not clear that we get an
equivalent definition of the uniform LDT by substituting in the
limiting quantity L(B) for the finite scale quantity L(™(B). That
is because while L(™(B) — L(B), the convergence is not a-priori
known to be uniform in B. However, in the course of proving the
abstract continuity theorem, we will also derive this uniform conver-
gence. Thus a-posteriori, (3.3) will be equivalent with

1
[ {ac €X: ‘nlogHB(")(ac)H - L(B)‘ > e} < e

for all B in the vicinity of A and all scales n > 7o (see Remark .

2We will refer to the constants ¢ and 7 as the LDT parameters of A. They
depend on A, and in general they may blow up as A is perturbed.
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Let us denote by C* the set of cocycles A € C with L(A) > 0. For
any cocycle A € C*, we denote the subspaces (lines) of its Oseledets
splitting in the MET [1.3| by £ (). Thus for almost every z € X we
have the (7', A)-invariant splitting R? = £1 (z) @ £ ().

Because of our identification between a line in R? and a point in
the projective space P(R?), the components of the Oseledets decom-
position are functions £3: X — P(R?).

Let L'(X,P(R?)) be the space of all Borel measurable functions
&: X — P(R?). On this space we consider the distance

d(E1, ) = /X 5(E1(2), Ea(x)) dp(z),

where the quantity under the integral sign refers to the distance be-
tween points in the projective space P(R?).
We may now formulate the ACT.

Theorem 3.3. Let (X, u,T) be an MPDS and let (C,d) be a metric
space of SLa(R)-valued cocycles over it. We assume the following:

(i) ||Al € L>=(X, ) for all A €C.
(i1) d(A,B) > ||A — B||p~ for all A,B €C.
(iti) Every cocycle A € C* satisfies the uniform LDT (3.3).
Then the following statements hold.

1a. The Lyapunov exponent L: C — R is a continuous function.
In particular, C* is an open set in (C,d).

1b. On C*, the Lyapunov exponent is a locally Holder continuous
function.

2a. The Oseledets splitting components £¥: C* — L'(X,P(R?)),
A Ef, are locally Hélder continuous functions.

2b. In particular, for any A € C*, there are constants K < oo and
a > 0 such that if By, By are in a small neighborhood of A,
then

p{z e X:0(5, (v), €5, () > d(By, B2)* } < K d(Bi1, B)" .
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In the next two chapters, under appropriate assumptions, we will
establish the uniform LDT for random Bernoulli cocycles and respec-
tively for quasi-periodic cocycles. Thus the ACT will be applicable
to linear cocycles over these types of base dynamics, proving the
continuity of the corresponding Lyapunov exponent and Oseledets
splitting components.

Regarding the structure of the fiber dynamics, the ACT is appli-
cable to the Schrédinger cocycles defined in Example Indeed, let
(X, 1, T) be an MPDS and let ¢: X — R be a bounded observable.

For every F € R, consider the Schrodinger cocycle

Ag(x) = plz) = B -1

and let the one parameter family C := {Ag: E € R} be the corres-
ponding space of cocycles, endowed with the distance:

d(Ap,, Ap,) = |E1 — B3| = ||Ap, — Ap, |l -

Since the only quantity that varies is the parameter F, denote
the Lyapunov exponent L(Ag) =: L(F) and the Oseledets splitting
components S}E =: S;Jt. With this setup we have the following.

Corollary 3.1. Assume that for all parameters E we have L(E) > 0
and the cocycle Ag satisfies the uniform LDT with parame-
ters given by some absolute constants. Then the Lyapunov exponent
L(E) and the Oseledets splitting components 5; are Hélder conti-
nuous functions of E.

In the next two chapters we will apply this result to random and
respectively to quasi-periodic cocycles. Furthermore, for each model
we will describe a criterion for the positivity of the Lyapunov expo-
nent.

The proof of the ACT for the Lyapunov exponent uses an induc-
tive procedure in the number of iterates of the cocycleﬂ

3The continuity of the components of the Oseledets splitting will be esta-
blished in a more direct manner. However, the argument requires as an input the
continuity and other related properties of the LE.
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1. In Proposition 3.2 we show that given any n € N, the finite scale
Lyapunov exponent L(")(A) is a Lipschitz continuous function
of the cocycle.

This is easy to see, as L") (A) is obtained by performing a
finite number of operations and then an integration. However,
the Lipschitz constant depends on the number n of iterations,
hence this argument cannot be taken to the limit.

2. In Proposition [3:3] we establish the main technical ingredient of
the proof, the inductive step procedure, which can be described
as follows.

If the finite scale LE L™ (A), at a scale n = ng, does not vary
much as the cocycle A is slightly perturbed, then the same will
hold, save for a small, explicit error, at a larger scale n = n;.

The argument is based on the avalanche principle, whose appli-
cability is ensured by the LDT estimates. Moreover, because of
the exponential decay in the LDT estimates, the scale ni can
be taken exponentially large in ng.

3. The inductive step procedure will imply Proposition [3.4] which
establishes a wuniform (in cocycle) rate of convergence of the
finite scale Lyapunov exponent L™ to the (infinite scale) Lya-
punov exponent L.

4. This uniform rate of convergence will ensure that some of the
regularity of the finite scale LE at an initial scale will be carried
over to the limit, thus establishing the theorem.

Let us comment further on this last step, in order to help the
reader anticipate the direction of the argument.

If a sequence of continuous functions on a metric space converges
uniformly, then the limit is itself a continuous function. The content
of the following exercise is a quantitative statement in the same sprit,
establishing a modulus of continuity for the limit function.

Exercise 3.1. Let (M, d) and (N, d) be two metric spaces, let V.C M
be a subset (say a ball) and let f,,: M — N, n > 1, be a sequence of
functions. Assume the following;:
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(i) The sequence {f,}, convergence uniformly on V to a function
f at an exponential rate, i.e. for some ¢ > 0 we have

d(fn(a), f(a)) <e ¢™ foralla €V and for allm > 1.

(ii) There is C' > 0 such that for all a,b € V and for all n > 1,

if d(a,b) <e 9" then d(fn(a), fn(b)) < e cm.

Then for all z,y € V we have

d(f(x), f(y)) < 3e“d(z,y) €,
that is, f is Holder continuous on V' with Hélder exponent o = &.
It is clear that the statement of this exercise can be tweaked (or
it will be clear, after solving the exercise) to derive some modulus of
continuity for the limit function if the rate of convergence was slower.

3.3 Continuity of the Lyapunov exponent

We are in the setting and under the assumptions of the abstract con-
tinuity theorem Various context-universal constants (i.e. cons-
tants depending only on the given data) will appear throughout this
section. In order to ease the presentation and not have to keep track
of all such constants, given a,b € R we will write a < b if a < Cb for
some context-universal constant 0 < C' < co. Moreover, for n € N
and z € R, the notation n < x means |n — x| < 1.

Exercise 3.2. For any A € C show that the following bounds hold
for a.e. x € X and for all n € N:

0 < log| A™ (x)|| < n log|| Al .

Conclude that if B € C with d(B, A) < 1, then for a.e. x € X and
for all n € N:

1
0< =~ log|B"(@)]| < C,

where C' = C(A) :=1log (1 + [|Al|L=).
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Proposition 3.2 (finite scale continuity). Let A € C. There is a
constant C = C(A) < oo such that for all cocycles By, By € C with
d(B;, A) <1,i=1,2, for all iteratesn > 1 and for a.e. phasex € X,

1 n 1 n n
ol B @)l - ol @l < < atB B (5
In particular,
‘L(")(Bl) - L(")(BQ)‘ < € d(By, By). (3.5)

Proof. Let B € C be any cocycle with d(B, A) < 1. By Exercise
1< ||BM™(x)|| < e for all n € N and for a.e. 2 € X.

Applying the mean value theorem to the function log and using
the above inequalities, for a.e. € X we have:

1 (n) 1 (n)
‘n OgH 1 (x)ll gH 2 (l‘)H

1 1

<= - S [IB" @) - 1B @)
n min {|| B ()|, | B ()1}
1 n n

< 1B (@) - By" ()]
1 n—1 ] ]

<5 2 ORI - BT @)
1 n—1

<- ecn ; | By — Ba||pe < e€™d(By,By).

This proves (3.4). Integrating in z proves (3.5)). O

The above proposition shows that the finite scale LE functions
L(™: C — R are continuous (in fact, Lipschitz continuous, but with
Lipschitz constant depending exponentially on n). Since, as a conse-
quence of Kingman’s subadditive ergodic theorem (see Deﬁnition,
for all A e C, L(A) = éI;fi LM (A), we may conclude, according to

the exercise below, that L is an upper semi-continuous function.

This is a general fact about the Lyapunov exponent. However,
its lower semi-continuity (and hence continuity) requires further as-
sumptions on the space of cocycles.
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Exercise 3.3. Let (M,d) be a metric space and let f,: M — R,
n > 1 be a sequence of upper semi-continuous functions. Consider
f(a):= 1r;f1 fn(a) the pointwise infimum of these functions.

n

Prove that f is upper semi-continuous. Find examples showing
that f need not be continuous.

Exercise 3.4. Let (M, d) be a metric space, let f be an upper semi-
continuous function on it and let a € M. Prove that if f(a) =0 and
f > 0 in a neighborhood of a, then f is continuous at a.

Exercise 3.5. Let A € C be a cocycle and let nyg < n; be two
integers. If ny = n-ng+q, where 0 < g < ng, then for a.e. z € X we
have

1 1
— log[ A" (2)| — —— log|| A" ™) (@)||| < ¢ L < 22,
ni nno 1 ni

where C' = C(A) is the constant in Exercise

Proposition 3.3 (inductive step procedure). Let A € C* and let ¢,

denote its (uniform) LDT parameters.

Fiz e := % > 0 and denote ¢1 := gez.

There are constants C = C(A) < 00, § = 0(A) >0, ng = ng(A4) €
N, such that for any ng > ng, if the inequalities

(a) L")(B) — LE™)(B) < n, (3.6)
(b) |LM)(B) = L") (A)] < 6o (3.7)

hold for a cocycle B € C with d(B, A) < §, and if the positive numbers

0,00 satisfy
6o + 219 < L(A) — b€, (38)

then for an integer ni such that
ny < e "o, (3.9)
we have:

| L0 (B) 4 L®0)(B) — 2LC™)(B) | < c%, (3.10)
1
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Furthermore,
(a++) LM)(B) - LC*™)(B) <y (3.11)
(b++) |L")(B) — L") (A)| < 0y, (3.12)
where
91:90—1—47]0—"-0%, (313)
1
m=0c"0, (3.14)
ni

Proof. By Exercise[3.2] there is a finite constant C = C(A) such that
if B € C with d(B, A) <1, then

<cC. (3.15)

1
H log | B
n [,oo

In particular, L™ (B) < C and L(B) < C.

Let § be the size of the ball around A € C where the uniform LDT
with parameters ¢, 7 holds. Fix B € C with d(B, A) <.

The integer ng is chosen large enough to ensure that various esti-
mates are applicable at scales n > ng. That is:

m 7y > 71, so that the uniform LDT for A applies if n > 7g;

L] |L(")(A) — L(A)| < € for n > g, which is ensured by the fact
that L™ (A) — L(A) as n — oc;

» Various concrete asymptotic inequalities, like n? < e¢/? 62”,
hold for n > ng.

Note tat 77g depends only on A (since € was fixed).

Fix the scales ng and nq such that ng > ng and n; < e ™o,

We may assume that ny = nng for some n € N. Otherwise, by
Exercise our estimates will accrue an extra error of order Z—(l’,
which is compatible with the conclusions of this proposition.

The goal is to use the Avalanche Principle, more precisely (2.3)), to
relate the block of length n; (i.e. the product of ny matrices) B (z)
to blocks of length ng for sufficiently many phases x; averaging in x
will then establish , from which everything else follows.
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Let us then define, for every 0 <i <n —1,
gi = gi(x) = B("O)(T""0 x).

Then clearly
g™ = B ()
and for all 1 <i<n—1,
9i gi—1 = B(n(’)(T"0 T(ifl)no x) B(no)(T(ifl) no x)
— B(QTL())(T(i—l)nOx).

The fiber LDT applied to the cocycle B at scales ng and 2ngy will
ensure that the geometric conditions in the AP are satisfied except
for a small set of phases. Indeed, for all scales m > 7y, if x is outside
a set B, of measure < e’“Zm, then

1
—e<— log|| B (z)|| — L™ (B) < e. (3.16)

The gap condition will follow by using the left hand side of (3.16)
at scale ng, the assumption (3.7)), and the positivity of L(A).
If « ¢ B,,, then

1

— log|| B (2)|| > L™)(B) — e

10
> L) (A) — 6y — €
> L(A) - 90 — €.

We conclude that for ¢ B, , where pu(B,,) < e—c€2n0’

1
gr(B™) (2)) = [ BT (@)[|2 > e2o HA=0-9 — —_ (3.17)

Hap

Next we address the validity of the angles condition.
Applying the left hand side of (3.16|) at scale 2ng, we have that
for z ¢ Bay,,

1
T log|| B®™) (z)|| > L?™0)(B) —e.
no
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Applying the right hand side of of (3.16) at scale ng, we have that
for x ¢ By, UT ™B,,,

1
- log||B(”°)(:v)|| < L("°)(B) +e€

1
o log|| BT (T z)|| < L") (B) + .

Combining the last three estimates, for z ¢ By, UB,,UT "B,
By, where p(Bp,) < 3¢~ we have that:

n, n (2no) _¢
| BEm) () N OB (Lm0 Lm0 )
[BEI ()] [BOI(@)] 2o+ ~
Using the inductive assumption (3.6)) we conclude:

|BEr) ()|
[Bro)(Troz)|| | B ()

> e 2mo(m+2e) — ¢ (3.18)

: : Yap g (L(A)—00—2n0—>5¢€) —eng
Note that (3.8) implies 2 =e <e ,

hence s, < €,
Let B, == U~y T B,,. Note that

_ce2 ny _..2 2 .2
,u(BnO)<3ne ce nO:S—e ce n0<ec/2e noe ce“ng
Nno

_ 676/2 2ng —c1 no

=€

Moreover, note that when x ¢ @no, the geometric conditions (3.17))
and (3.18) hold for the phases x, T"0x,...,T"~ "0z That is, the
blocks of length ng defined earlier satisfy:

gr(g;) > forall 0<i<n-—1,
Hap
gi gi—1l
il lgi- |l
Therefore, we can apply the estimate in the avalanche prin-
ciple and obtain:

>€qp forall 1<i<n-—1.

| log/lg™|| + Z log|lg: — Z logllgi gior|| | Sn- 222

62
=1 =1
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Rewriting this in terms of matrix blocks we have that for x ¢ B
where p(B,,,) < e "0,

n—2
[10g]| B () | + 3 logl| B (17 )]

—ZlogHB(Q"O)( =Omo ||| S e, (3.19)

Divide both sides of (3.19) by n1 = nng to get that for all z ¢ B,

we have

n—2

1 1 1 .
1 B("l) _ 1 B("o) o
[ log | B (@) + > 5 LalB T )|
2 e~ 1 4
_ = E — log HB(2no)(T(z—l)no x)”‘ 5 e—€no
n <~ 2ng

Denote by f(x) the function on the left hand side of the estimate
above; then |f(z)| < e " for x ¢ By, and using (3.15), for a.e.
z € X we have ’f(x)| < C. Moreover,

/ F(z) p(dz) = L (B) + n-2 Lo)(B) — MLQ”O)(B) ’
X

n n

hence

‘L(m)(B) T n—2 L(no)(B) . 2(71 )L(2n0) ‘ / |f ”u dx
n n

— [ 1@l + [ |@)]ulde) £ e+ CpBay)
BE B

no no

Se M0 4 e < Cemmo < 020
~ ~ "

Therefore,

n-2 ML(Q"U)(B) <o

L) (BY —
(B) - -

‘L("l)(B) +
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The term on the left hand side of the above inequality can be
written in the form

| L0 (B) 4+ L®0)(B) — 2LCm)(B) - % [LC)(B) — LE™)(B)] |,
hence we conclude:
| LOD(B) + L) (B) — 2LC™)(B) |
<y 2oy LB <™. (3.20)

nq n ny

Clearly the same argument leading to will hold for 2n4
instead of ni1, which via the triangle inequality proves , that is,
the conclusion (a++).

We can rewrite in the form

ng

| LU)(B) — L)(B) + 2[L(™)(B) — L") (B)] | < C’n—. (3.21)

Using for B and A we get:
| (B) — L") (4)]
<| L0(B) — L()(B) + 2[L(")(B) — LEZ")(B)] |
+| LO(A4) — LM (A) + 2[L"0) (A) — LE) (4)] |
+[L(0)(B) — L) (4)]
+2|L")(B) — LE")(B)| + 2| L") (A) — L) (4)]
< 0o+ 4no + C% ,
which establishes , that is, the conclusion (b++) of the propo-
sition. 0

Proposition 3.4 (rate of convergence). Let A € C*. There are
constants 61 > 0, 11 € N, ¢co > 0, K < o0, all depending only on A,
such that the following hold.

|L(B) — Lt (B)| < K 10% : (3.22)
|L(B) + L"™(B) — 2L"(B)| < e==", (3.23)

for all n > 71 and for all B € C with d(B,A) < §;.
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Proof. We will apply repeatedly the inductive step procedure in Propo-
sition[3.3] The constants €, ¢1, C, §, g appearing in this proof are the
once introduced there.

First we use the finite scale continuity in Proposition [3:2] to cre-
ate a neighborhood of A and a large enough interval of scales Ny,
such that if ng € Ny and if B is in that neighborhood, then the

assumptions (3.6)), (3.7) in Proposition hold.

Indeed, let n, =< ng, nS‘ = €0 and define
No := [ng, ng]-

Let 47 := min{J, 673"3}.
By Proposition if B € C with d(B,A) <1, then for all n > 1,

’L(")(B) - L(”)(A)‘ <O d(B, A).

Let B € C with d(B, A) < 61 and let ng € Ny. Then ng < no+ and
we have

‘L(Qno)(B) _ L(Qno)(A)‘ < eC2no 5 < 6C2n:{ 6736‘710+ _ 67Cﬂ0+ <e,

since 7p is assumed large enough.
Similarly we have

‘L("O)(B) - L(”U)(A)‘ <720 <=4,
Since also
‘L(Q"O)(A) _ L(”O)(A)‘ < ‘L(Q"O)(A) . L(A)‘ n ‘L(A) — Lm0 (A)] < 2,
from the last three inequalities we conclude that
‘L("")(B) - L(Q"O)(B)’ <e+2e+e=4de=:1.
Moreover,

0o + 219 = € + 8¢ = 9e < L(A) — 6¢.
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We conclude that the assumptions ({3.6]), , 3.8) in Propo-

sition hold at any scale ng € Ny and for any cocycle B with
d(B, A) < 4.
Let n] < e“ ™  nf x e "5 and define

Ny == [ny, nﬂ

If ny € Ny, then clearly there is ng € Ny such that n; =< e“1 ™0
(hence ng < logng).

We may then apply Proposition [3.3] with the pair of scales ng, n;
and obtain the following:

1
| LOW(B) + L) (B) — 2LC%)(B) | < €2 < | 2511
nq ny
for some constant K = K(A) < oo.
Furthermore,
L(B) — LE(B) < my
|L)(B) — L") (4)] < 6y,
where
1
0, =0+ dno + C 0 < 17¢ + K 2B
ni ni
1
7]1:C@<K Ognl.
ny ny
Moreover,
1 1 1
01+ 2 < 17 + K 281 4o 08 _ q7e 4 35 08T o
ny ny ny
< L(A) — 6e.

This shows that the assumptions of Proposition [3.3] are again sat-
isfied for all scales n; € Ny and for all cocycles B with d(B, A) < 41,
so we can continue the process.

Let ny, < e“™  ng < e "l and define

Ny := [ny, ng].
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Note that the intervals of scales N7 and Ny overlap.

If no € Ny, then clearly there is n; € N such that ny < et ™
(hence ny < logna).

We may then apply Proposition [3.3 with the pair of scales nq,no
and obtain the following:

1
’ L(nz)(B)+L(n1)(B)_2L(2n1)(B) } < CE <K Ogm.
N9 UP)
Furthermore,
L(nz)(B) _ L(Z"Q)(B) <1

|L("2)(B) — L")(4)] < s,
where

log nq log no

+ K
ny %)

)

fo = 0, +4m + C L < 17¢ + 5K
n2

n logn
e = C i < K 7g 2 .
Up) U»)

It is now becoming clear that we can continue this argument in-
ductively. That is because at each step k, the error n; in the esti-
mate (3.6]) is very small, 7, < K bﬁ% when k > 1, while the error 6y
in the estimate (3.7)), starting with & > 2, only increases by a term
of order lofi%. However, the series 3+, 6% is summable, and its

sum is of order 105% < €. The error 6y, is then of order € for all &,
thus the assumption is always satisfied.

Therefore we obtain a sequence of overlapping intervals of scales
{Ni}k>1. Their union covers all natural numbers n > nj .

Define the threshold 77 := n] and let n > 7@7. Then there is
k > 0 such that n € Ny41, so there is also ng € Ny such that

n=npy < ek,

The conclusions of Proposition [3.3] hold with the pair of scales
Nk, Ng+1. Let us first use (3.11)) and conclude that

log g1

Low+1)(B) — LE+1)(B) < oy < K
Nk+1
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This shows that for all n > 777, we have

1
L™ (B) - LY (B) < K 28"

n

from which we can easily conclude (see the Exercise below) that

L (B) — L(B)| S K loi”

establishing (3.22)).
We now use the conclusion (3.10) of Proposition [3.3|and conclude
that

log ng 41

| L"+1)(B) + L") (B) — 20L*™)(B) | < K
Nkg4+1

_ _e
< Kepnge ™ <e 2k

On the other hand, applying (3.22)) with n = ni41 we have

LW (B) = L(B)| S KB < o
The last two inequalities then imply
| L(B) + L™)(B) —2LC")(B) | < 2¢~F " < e~ F 7,
This establishes for every n > n7 as well. O

Exercise 3.6. Let {z,,},>1 be a sequence of real numbers that con-
verges to x and assume that for all n,

logn
|z — xon| < K .
n
Prove that |
o — 2 < K 287 ogn
n

Proof of Theorem[3.3 parts 1a. and 1b. Let A € C with L(A) > 0.
We wish to prove that in a small neighborhood of A, the function L
is Holder continuous. For that, recall Exercise and the discussion
preceding it.
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The finite scale LE functions L™ — L as n — oco. However, the
rate of convergence given by (3.22)) is too slow. Instead, we use the
sequence of functions

fr ==L 420" . ¢ S R.

Clearly f,(B) - —L(B)+2L(B) = L(B) asn — oo, for all B € C.
Moreover, in a small neighborhood of A, by (3.23]) in Proposition
this rate of convergence is exponential: for all n > 77 we have

[L(B) = fa(B)| = |E(B) + LO)(B) = 2LCM (B)| < e

By the finite scale continuity in Proposition 3.2} if By, By € C are
such that d(By, By) < e=2(€+¢2)" then for m = n and m = 2n,

|LU™)(By)—~LU™)(By)| < €“™d(By, By) < €% e 2(CHealn — gm2ezm,

Thus d(f(B1), fn(Bz)) < 3e72¢2m < e=c2m,

From Exercise 3.1 we conclude that L is Hélder continuous (with
exponent o = ﬁi@)) in a neighborhood of A, thus establishing part
1.b of Theorem

Continuity at cocycles with zero Lyapunov exponents is immedi-
ate, due to upper semicontinuity (see Exercise , and this proves

part la. L]

Remark 3.2. Let A € C*. The estimate in Proposition
shows that there is a neighborhood V of A in C and a threshold
71 € N, such that the finite scale Lyapunov exponents L("), n > i
converge uniformly to L on V. Combined with the continuity of the
LE, this implies the following.

For every small € > 0, there is n(e) such that for all n > n(e) and
for all B € V we have

|L(B) = L(A)| < e and |LU"(B)—L(A)| <e.
Therefore, a-posteriori the uniform LDT can be formulated in
the following stronger way. There is a neighborhood V of A and a
constant ¢ > 0 such that for all small € > 0, there is 7i(€) such that
1
u{x €X: 'nlogHB(") (@) - L(A)’ > e} < emeen

for all B € V and n > 7i(e).
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3.4 Continuity of the Oseledets splitting

We begin by introducing some concepts needed in the argument.

Given a cocycle Fa: X x R? — X x R?, Fy(z,v) = (Tx, A(z)v),
determined by a function A: X — SLa(R), its inverse is the map
Fi': X xR? = X xR%, Fy'(z,v) = (T 2, A(T7'z)"v). The
iterates of the inverse cocycle A=1: X — SLy(R) satisfy for all n € N
and x € X,

(AHM(z) = AD(T2) ™t = AT (2)

Similarly the adjoint of F4 is the map Fa-: X x R? = X x R2,
defined by Fas(z,v) = (T 'ax, A(T"'z)*v). The iterates of the
adjoint cocycle A*: X — SLy(R) satisfy for all n € N and z € X,

(A*)(n)(x) _ A(n)(T_";p)* .

Given g € GL3(R), let v4(g) = v(g) be a most expanding unit
vector of g and denote by v_(g) a least expanding unit vector of g.
Then {v;(g),v_(g)} is a singular vector basis of g. As before let
04 (g) be the projective point determined by v (g).

Any projective point p € P determines a unique line £ € Gry (R?),
and this correspondence is one-to-one and onto. From now on, we
make the identification Gry(R?) = P(R?).

We will write £5 (z) instead of £+ (z) to emphasize the dependence
on A of the Oseledets decomposition of the cocycle A.

Remark 3.3. It follows from the proof of [60, Theorem 3.20] that if
L(A) > 0 then for p-almost every z € X,

EX(x)= lim o (AT (z)).

n—-+oo
Exercise 3.7. Given g € GLy(R) prove that 64 (g7!) = x(g*).

Exercise 3.8. Prove that if L(A) > 0 then for p-a.e. z € X,

Ef(x)= lim o, (A™(z)).

n—-+oo

Hint: Use Remark and Exercise 3.1
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In [16], assuming L(A) > 0, we define the sequence of partial
functions 8™ (A): X — P(R?),

) _f 8AM @) if gr(AM(2) > 1
o (A)( )_{ undefined otherwise.

By Proposition 4.4 in [I6], this sequence converges p-almost every-
where to a (total) measurable function 8> (A): X — P(R?),

5°(A)(z) == lim 8™ (A)(x).

n——+oo
This limit also exists by Exercise 3.8

Exercise 3.9. Prove that if a cocycle A is u-integrable then its ad-
joint A* is also p-integrable. Moreover, show that A and its adjoint
A* have the same Lyapunov exponent L(A) = L(A*).

Exercise 3.10. Consider a cocycle A such that L(A) > 0. Prove that
£+ = (EL)*. In particular, £F = 8> (A4*) and £ = (8 (4))*.

Let A € C*, so that A satisfies the uniform LDT estimates ((3.3).
Given € > 0 write L = L(A) and define the set

1
D.e(A) = {x € X: ’E log|| A ()| — Ll <€ Vm > n} .

Exercise 3.11. Show that lim,,_, o (2, (A)) =1 for all € > 0.
Exercise 3.12. Given A € C*, show that

X\ Que(B) S e
for all € > 0, n € N and any cocycle B € C close enough to A.

The proof of the next proposition uses the argument in [60, Lemma
3.16]). Due to the assumed availability of the LDT estimate, the ar-
gument becomes quantitative.

Proposition 3.5 (rate of convergence). Let A € C*. There are
constants § >0, € >0, ng € N and C < 00, all depending only on A,
such that

d (E(")(B),E(OO)(B)> < Qe e

for allm > fig and for all B € C with d(B, A) < 0.
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Proof. Take 0 < v < L(A). By the continuity of the LE we can
assume that ¢ is small enough so that

inf{L(B): B€C and d(B,A) <} > .
Next choose € > 0 so that for all B € C with d(B, A) < §
L(B) —e> > cé?

where ¢ > 0 is the LDT parameter in

Let vy, = vm(z) be a unit vector in 8™ (A)(z) = b4 (A (z))
and, similarly, let w,, = u,,(z) be a unit vector in 6_ (A (x)). Then
{vm(2), um ()} is a singular vector basis of A(™)(z).

Consider now the following cocycle over the same base transfor-
mation T

By Exercise [3.7] we have
tim () = 64 (A" (2)) and O, (2) = 6_ (A (2)).

Let am(z) := L(0m(x), Omi1(x)), so that sinay, = 0(Om, Omt1)-
Then

U () = (sin agy,) U1 (2) + (€OS Q) Vppp1 ()
which implies that

A (@) ()] 2 [sin ] | AT (@)t (2)]

= [sin o | || A (2)]].
Since A(™) (x) € SLa(R), ||g(m)(x) vm(z)]| = ||g(m)(x)|\_1 and

| A0 @) v ()]
| A @)]
AT A @ om@] _ JATT)
ER] | A0 )| [ A0 () |

(0 (@), Dng1 (x)) = [sin ayy | <
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Because A is an SLy-cocycle, ||Alloc = || Al and Q. (A) =

2, (A). Hence, for all m > n and z € Q,, (A)

1 X . log||Allee  m+1
— 1og (i (2), D41 (2)) - — (L= —(L—¢)
_ log] Al gy
m

the last inequality holds provided n > log|| A||so/7-
Thus for all m > n,

(0 (), omya(z)) < ™7,

which implies that for all z € Q,, (4),
5 (a“") (A)(x),6<°°)(A)(x)) <Ce™Y g e e

with C = (1 —e 7).
Since p(X \ Qp.(4)) < e="¢< the conclusion follows by taking
the average in x.

Since all bounds are uniform in a §-neighborhood of A, the same
convergence rate holds for all B € C* with d(B, A) < ¢. O

Proposition 3.6 (finite scale continuity). Given € > 0, there is a
constant C1, = C1(A,¢) < 0o, such that for any Bi, By € C with
d(B;, A) < 6,i=1,2, if n > n(e) and d(By, By) < e~“*", then for

x outside a set of measure < e~nee
5 (E(")(Bl)(x), a<">(32)(x)) <emee (3.24)
Moreover,
d (a(">(31)75<">(32)) < emee (3.25)

Proof. Take 0 < v < L(A). By the continuity of the LE we can
assume that § is small enough so that

inf{L(B): BeC and d(B,A) <d} > .
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Next choose € > 0 sufficiently small so that
L(B) —e>".

For each n > 7i(e) define the deviation set
1
Bn(B) ={reX: ~ log||B™ ()| < L(B) — €}

which has exponentially small measure u(B,(B)) < enee”,
Given two cocycles By, By € C with d(B;, A) < § (i = 1,2) and
an integer n > ni(e) take « ¢ B, (B1) U B, (B2) and set g; := Bi(n)(x).
Firstly note that

gr(g;) = [|IB™ (2)|2 > e2n (E(B)=) 5 207 5, 1

so in particular 8" (B;)(z) = B(B{" (x)) are well defined.

Since for every x, || Bi(x)|| < Co = C(A) < oo, we have
lgill = 1B ()] < e

—Cl n

Moreover, assuming d(By, Bs) < e , with C7 to be chosen later,

g1 — g2l = |1 B (2) — B (2)|| < neCe =D d(By, By)
< 67(017200) Tl.

If we choose C; > 2Cy — v + c€?, then

Hgl - 92” < e—(Cl—2C0+'y)n < e—nc52 < 1.