Stable constant mean curvature hypersurfaces in the real projective space

Authors
Luis J. Alías, Aldir Brasil Jr., Oscar Perdomo

Abstract
In this paper, we prove that the only compact two-sided hypersurfaces with constant mean curvature H which are weakly stable in \mathbb{RP}^{n+1} and have constant scalar curvature are (i) the twofold covering of a totally geodesic projective space; (ii) the geodesic spheres in \mathbb{RP}^{n+1}; and (iii) the quotient to \mathbb{RP}^{n+1} of the hypersurface $S^k(r) \times S^{n-k}((\sqrt{1-r^2}) \rightarrow S^{n+1}$ obtained as the product of two spheres of dimensions k and $n-k$, with $k = 1, \ldots, n-1$, and radii r and $\sqrt{1-r^2}$, respectively, with $\sqrt{k/(n+2)} \leq r \leq \sqrt{(k+2)/(n+2)}$.

References