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Chapter 1
Introduction

During the last decades intense research has been devoted to the study of dynamical
systems subjected to random perturbations. Considerable effort has been dedicated to
investigate exit times and exit locations from given domains and how they relate to the
respective deterministic dynamical system. The theory of large deviations provides the
usual mathematical framework for tackling these problems in case of Gaussian perturba-
tions, for details see M. Freidling & A. Wentzell [18] and W. Siegert [26]. We will study
the relation to the respective deterministic dynamical systems from a different point of
view.

We study the so-called cut-off phenomenon for a family of stochastic small pertur-
bations of a given dynamical system. We will focus on the semi-flow of a deterministic
differential equation which is perturbed by adding to the dynamics a Brownian forcing of
small variance. Under suitable hypotheses on the vector field we will prove that the one-
parameter family of perturbed stochastic differential equations presents a profile cut-off
in the sense of J. Barrera & B. Ycart [14].

The term “cut-oft” was introduced by D. Aldous and P. Diaconis in [6] to describe the
phenomenon of abrupt convergence of Markov chains introduced as models of shuffling
cards. Since the appearance of [6] many families of stochastic processes have been shown
to have similiar properties. For a good introduction to the different definitions of cut-off
and the evolution of the concept in discrete time, see J. Barrera & B. Ycart [14] and P.
Diaconis [19]. In [11], L. Saloff-Coste gives an extensive list of random walks for which
the phenomenon occurs.

How to describe the “cut-off” phenomenon? Before a certain “cut-off time” those
processes stay far from equilibrium in the sense that the distance in some sense between

the distribution at time ¢ and the equilibrium measure is far from 0; after that instant,



the distance decays exponentially fast to zero.

Consider a one-parameter family of stochastic processes in continuous time {z}c~q
indexed by € > 0, 2° := {xf};>0, each one converging to a asymptotic distribution p°
when ¢ goes to infinity. Let us denote by d(¢) the distance between the distribution at
time ¢ of the e-th processes and its asymptotic distribution, where the “distance” can be
taken to being the total variation, separation, Hellinger, relative entropy, Wasserstein, LP
distances, etc. Following J. Barrera & B. Ycart [14], the cut-off phenomenon for {z}.-¢
can be expressed at three increasingly sharp levels. Let us denoted by M the “maximum
of the distance”. In general, M could be infinite. In our case, we will focus on the total

variation distance so M = 1.

Definition 1.1 (Cut-off). The family {x}cso has a cut-off at {t}eso if te — +00 as
e —0 and

M if 0<ec<l,
lim d(ct.) =
e—0

0 if c>1

Definition 1.2 (Window Cut-off). The family {z}.~o has a window cut-off at {(te, we) }eso,
if te » 400 as € = 0, w. = o (t.) and

lim liminfd(t. + cw.) = M,

c——o0 €0

lim limsupd‘(t. +cw.) = 0.

c+00 0

Definition 1.3 (Profile Cut-off). The family {z¢}c~o has profile cut-off at {(te,we)}eso
with profile G, if t. — 400 as € = 0, w. = o(t,),

G(c) == ll_r%d (te + cw,)
exists for all c € R and

lim G(c) = M,

c——00

lim G(c) = 0.

c——+00

Sequences of stochastic processes for which an explicit profile can be determine are

scarce. Explicit profiles are usually out of reach, in particular for the total variation



distance; in many cases of interest only cut-off or window cut-off has been obtained so

far.



Chapter 2

Stochastic Perturbations:

One-Dimensional Case

On this chapter, let 25 € R\ {0} be fixed and let us consider the semi-flow {t}>¢

associated to the solution of the following deterministic differential equation

for t > 0. The hypothesis made in Theorem 2.1 on the potential V' guarantees existence
and uniqueness of solutions of (2.1), as well as all the other (stochastic or deterministic)
equations defined below.

Our main Theorem in the one-dimensional case is the following:

Theorem 2.1 (General Case). Let V : R — R be a one-dimensional potential that
satisfies the following:

i) V eCs.
i) V(0) = 0.
iti) V'(x) =0 if only if x = 0.
iv) There exists § > 0 such that V"(x) > ¢ for every x € R.

Let us consider the family of Markov processes indexed by € > 0, x° = {x§}s>0 which are

given by the the semi-flow of the following stochastic differential equation,

dr; = —V'(z)dt + \/edW,,

Ty, = o



fort >0, where xq is a deterministic point in R\ {0} and {W;}i>o is a standard Brownian
motion. This family presents profile cut-off in the sense of the Definition 1.3 with respect
to the total variation distance when € goes to zero. The profile function G : R — R s
given by

G(b) = [N (ce™® 1) = N(0,1)]| -, »

where ¢ 1s the non-zero constant given by

The cut-off time t. and window time w, are given by

1 1 "

te = V7 0) (In (1/e) + 1In (2V(0)))
1 gl

R (R

for some 0 < 7y < 1/a.

This Theorem will be proved at the end of this chapter.

2.1 The Linearized Case

Let us take u € R and o2 €]0, +00[. We denote by N (u, 0?) the Normal distribution with
mean p and variance o2. Given two probability measures p and v which are defined in
the same measurable space (€2, F), we denote the total variation distance between p and
v by ([ = vlqy = sup [u(A) — v(A)].
AeF

Definition 2.2. We say that V is a regular potential if V : R — R satisfies

a) V is C3.

b) V(0)=0.

c) V() =0iff x =0.

d) V"(0) > 0.

e) lim V(z)=4o0.
|z| =400

In order to prove Theorem 2.1 we will prove the analogous result for a “linear approx-
imation” of the vector field V.



Theorem 2.3 (The Lincarized Case). Let us consider the one-parameter family of Markov
processes indezed by € > 0, y© = {y; hi>0 which are given by the the solution of the following

linear stochastic differential equation,

dy; V" (o)yidt + /edW,

(2.2)
Y% = Yo

fort >0, where yy is a deterministic point in R\ {0}, {Wi >0 is a standard Brownian
motion and V is a reqular potential. This family presents profile cut-off in the sense of
the Definition 1.3 with respect to the total variation distance when € goes to zero. The

profile function G : R — R is given by
G(b) = |[N(ce™® 1) —NY(0, 1)||W,
where ¢ 1s the non-zero constant given by
where ® = {®;}i>¢ is the fundamental solution of the non-autonomous system

dq)t - —V”(wt)q)tdt

for every t > 0 with initial condition &y = 1. The cut-off time t. and window time w, are

given by
te = ! (In (Vo) + In (2V"(0)y5))
‘ 2V7(0) 077
We = !
e V”(O) ’
respectively.

Notice that choosing V'(z) = O‘T‘”z we see that the Ornstein-Uhlenbeck process presents
profile cut-off. In what follows, we call the solutions {y¢}.~o of (2.2) the “linear approxi-
mations”.

In order to prove Theorem 2.3, we will find the qualitative behavior of the semi-flow
¥ = {¢}s>0 at infinity.

The following lemma tells us the asymptotic behavior of the expectation and variance

of the “linear approximations”.



Lemma 2.4. Leu us assume the hypothesis of Theorem 2.3. Let us assume that there
exists a C* function V : R — R such that

a) V(0)=0.
b) V'(z) =0 iff z = 0.
¢) V"(0) > 0.

d) Jim V() = +oo.

Then it follows that

Z) tk—l—moc Q/}t =0
i) lim &, = 0.
t——+o0

In addition, let us assume that V is a C* function. Then it follows that

i) There exist constants ¢ # 0 and ¢ # 0 such that

. 7"
lim "¢, = ¢,
t—+o00

. " ~
lim V" Oty = ¢
t—+4o0

where ® = {®4}4>0 is the fundamental solution of the nonautonomous system
d®t == —V”<¢t)@tdt

for every t > 0 with initial condition &g = 1.

iv)

t
1\° 1
. 2 L _
A v / <q>3> = 2yioy
0

For the proof of this lemma, see Appendix C.

The following lemma characterizes the distribution of the “linear approximations”.



Lemma 2.5. Under the hypothesis of Theorem 2.3, we have

t

1
yi = Peyo + Ve ®; / @dWs (2.3)
0

for every t > 0, where ® = {®;}1>0 is the fundamental solution of the non-autonomous

system
d@t - —V//(¢t)®tdt

for every t > 0 with initial condition ®y = 1.
Proof. 1t follows from It6’s formula. For details check [13] and [20]. O

Using the decomposition (2.3) of the process y¢ into a deterministic part and a mean-
zero martingale with respect to the natural filtration of the Brownian motion and using

[to’s isometry for Wiener’s integral, we obtain

E[yﬂ = yO(I)t7
t
Vy] = ed? L 2d
Y| = €y ®. S.
0

By Lemma 2.5 we have that for each € > 0 and ¢ > 0 fixed, y; is a random variable

with Normal distribution with mean

v = Ely] = @0

and variance

t 1 9
i =viil=e? [ (5] as
0

Corollary 2.6. Let us assume the hypothesis of Theorem 2.3 and let € > 0 be fixed. Then
the random variable y; converges in distribution ast — oo to a Gaussian random variable
N€ with mean zero and variance m.

Proof. 1t follows from Lemma 2.4. O

Now we have all the tools in order to prove Theorem 2.3.

9



Proof of Theorem 2.3. For cach € > 0 and t > 0, we define

)

TV

d(t) = HN(VE,UE)—N(O’ 2V’€’(0)>

217(0)

De(t) = HN( Yo P, 1) —N(0,1)

TV

Using triangle’s inequality and Lemma A.1, for each ¢ > 0 and ¢ > 0 we obtain

d(t) < D(t)+ |N(0,2V"(0)0:° L) — N(0,1)]| 1 »
jd(t) = D) < [IN(0.2V"(0)@, L) = N (0, 1)y

t

2
where I, = f (i) ds. For each ¢ > 0 let us define

Dy
0

te == 2‘/”(0) (ln (1/6) + b())
and
1
V)

with by := In (2V"(0)y2). For every b € R, we define #.(b) = t. + bw.. Using Lemma A.4,

we obtain

lim |d*(2(b)) — D(tc(b))] = 0

e—0

for every b € R. Let us consider the function G : R — [0, 1] defined by
G(b) == ||N(ce™® 1) = N(0,1)]| 1
where ¢ # 0 is the constant of item 4ii) in Lemma 2.4. Observe that

DL (b)) = H/\/(eV”<O>fe<b>c1>gé(,,)e—b, 1) — N0, 1)H

TV

for every b € R. Therefore, by item iii) of Lemma 2.4 and by Lemma A.3, we have

lim D<(7, (b)) = G(b)

e—0

10



for every b € R. By Lemma A.2, we have blim G(b) = 0 and blim G(b) = 1. Conse-
——0c0

—+00

quently, the theorem is proved. O

Corollary 2.7 (The First Order Approximation). Let us consider the Markov processes
y = {yt}1>0 which is given by the solution of the following linear stochastic differential

equation,
dy: = —V"(br)y,dt + dW,
% = 0

for t > 0, where {Wi}i>0 is a standard Brownian motion and V' is a regular potential.
For every € > 0 fized, let us define z; = ¢y + /ey, for every t > 0. Then the family
2¢ = {zf }i>0 presents profile cut-off in the sense of Definition 1.3 with respect to the total

variation distance when € goes to zero. The profile function G : R — R is given by
G(b) = HN(Ee_b, ].) - N(O) ]-) ||TV7
where ¢ is the non-zero constant given by

. " ~
lim "' O, = &
t——+oo

and the cut-off time t. and window time w, are given by

t, = 2V’1’(O) (In (Ye) +In (2V"(0)))
and
" — 1
< V(0)
respectively.

The proof of Theorem 2.3 can be adapted in order to prove this corollary in a straight-

forward way, so we omit it.

Remark 2.8. The constants ¢ and ¢ obtained in Lemma 2.4 depend on the initial condition
of the semi-flow 1 = {1 }i>0. Theorem 2.3 and Corollary 2.7 remain true if we take as
window time w! = w.+0, for each € > 0, where {J. }e=o is any sequence of positive numbers

such that lim 6, = 0.
e—0

11



2.2 The Gradient Case

From now on and up to the end of this chapter we will use the following notations and

names.
Definition 2.9.

a) The stochastic Markov process ¢ := {x{},5 defined in Theorem 2.1 is called the It6
diffusion.

a) The semi-flow ¥ := {t1},5, defined by the differential equation (2.1) is called the

zeroth order approzimation of x€.

c) The stochastic Markov process 2 := {zf},5, defined in Corollary 2.7 is called the

first order approximation of x°.

The following lemma will give us the existence of a stationary probability measure for
the It6 diffusion 2 = {z{}, .

Lemma 2.10. Let V' be a reqular potential and for every ¢ > 0, let us consider the Ito

diffusion x¢ = {x§}i>0 which is given by the following stochastic differential equation,

dr; = —V'(z)dt + /edW,,

Ty, = To

fort >0, where xq is a deterministic point in R\ {0} and {W;}i>o is a standard Brownian

motion. Let us assume that

lim |V'(z)] = +oo.

|z| =400

Then for every € > 0 fized, when t — oo the probability distribution of x§ converges in

distribution to the probability u¢ given by

plde) = ———,
where M€ = fe_%v(z)dz.
R

Proof. For details see [23] and [26]. O

Now we will restrict our potential to the class of coercive regular potentials.

12



Definition 2.11 (Cocrcive Regular Potential). Let V' be a regular potential. We say that
V' is a coercive reqular potential if there exists 6 > 0 such that V" (x) > § for every z € R.

In the class of coercive regular potentials, we restrict ourselves to the class of potentials

with bounded second and third derivatives.

Definition 2.12 (Smooth Coercive Regular Potential). Let V' be a coercive regular po-

tential. We say that V' is a smooth coercive reqular potential if
Ky = ||V |leo := sup |V"(z)] < o0,
z€R
and
k3 = ||[V" e := sup |V"(x)] < 0.
z€eR

The following lemma tells us that the stationary probability measure of the Ito diffu-
sion {xf}i>0 is well approximated in total variation distance by the Normal distribution
with mean zero and variance ﬁ’(O)'

Lemma 2.13. Let V' be a coercive reqular potential, then

lim [~ Ay = 0.

where N is a normal distribution with mean zero and variance W'
C2v(a
Proof. Let 0 < n < V”(0) be fixed. By Lemma 2.10 the uf(dr) = QCL# is a well
defined probability measure on (R, B(R)). Then
V//(O)rz
. . 1 e—%V(z) e‘%T‘
I =Nl = 5 [ | - S| o
R
. 2y (p . _2ve? p—

Where]\/fe—ﬂ{ee()dxandNe—Ree > dr =, [y

13



By triangle’s inequality, we have

" 2
1 [|le=2v@  ~2V) |l rvies
6_ € < 1 - ! )
[ N”’]]‘V = 2/ Me Ne dm+2/ - . L
. R
— |M;]:[6N€| _|_ 2]1[6 6_%‘/(93) . e—%vu(QO)""Q dx
R
< %/ e‘%V(w)_e—gV’%zo)m? i
R

Recall that V' is coercive, that is, there exists 6 > 0 such that V" (x) > ¢ > 0 for every
x € R. Then, it follows that

limi / e_ev(’”)—e‘g‘/”(z?m2 dr = 0

for every 8 > 0. By the continuity of V" at zero, there exists J,, > 0 such that
V(@) = V"(0)| <n

for every |z| < 4.

Also, by Taylor’s Theorem with Lagrange remainder, we have that V" (z) = W@TM

for every |z| < §, where |{,| < |z|. Then,

5"7 577
1 //( )I2 1 n( 1)12 //( Ve
ﬁ/‘e_%v(@_e_%% x:m/ e fv £2 —e iv 20 dx
—n _5"7
by
]- 2 _gﬁ " "
< [ # P e) — V() do
eN¢
_6'”
5
- n 5 _2L2 ,'7 /V/I
S — xre € 2
eNe¢ 7(2)) 3/2
_— 5
n V//

x e__dx,

< P

where A := min{d, V”(0)} > 0. Consequently, first taking ¢ — 0 and then n — 0 we

14



obtain the result. O

The following proposition will give us a quantitative estimation of the distance between

the Ito diffusion and the zeroth order and first order approximations.

Proposition 2.14 (Zero Order & First Order Approximation). Let us assume that V is

a smooth coercive reqular potential. Let us denote By = sup |Ws| for every t > 0.
0<s<t

i) For everyt > 0, we have |x§ — y| < \/eBi(kot +1). We call this estimate the zeroth

order estimate.

ii) For every t > 0, it follows that |z§ — ¢y — \/eys| < eB?rgz(kat + 1)*t. We call this

estimate the first order estimate.

Proof. First we prove item 7). Let ¢ > 0 and t > 0 be fixed. It follows that

t

si-v = = [V - V@) ds - vaw,

0
t

= — / V(05 (26 — 1) ds + /€W,

0

t
= [V (O5)dr

t
= v [vregwie T as v,
0

where the second inequality follows from the Intermediate Value Theorem, ¢ is between
s and z¢ and the third inequality follows from the variation of parameters method.

Therefore, using Gronwall’s inequality we obtain |z§ — ¢y < \/eBi(kat + 1).

15



Now we prove item i7). Let € > 0 and ¢t > 0 be fixed. It follows that

t

.17: o wt - \/Eyt = _/ [V/(:CZ) - V/(ws) o V”(%)ﬁys] ds

_ / [V"(09) (5 — v,) = V" (o), ds

0
t

- / V() (2§ — s — Veys)ds —

0

(V(65) = V" (1hs)) (s — 1hs)ds,

o\N

where the second identity comes from the Intermediate Value Theorem and 65 is be-
t

tween s and z¢. Let us define e, := [ (V”(05) — V" (¢s)) (25 — v5)ds. Again using the

0
Intermediate Value Theorem and the zeroth order estimate already proved, we have

t

led] < / g (25 — ;)2 < eB2r(kat + 1)
0

for every t > 0. Consequently, using the variation of parameters method and Gronwall’s

inequality we obtain
|5E§ — Yy — \/Eytl < eBrs(kat + 1)%t.

O

This proposition will permit us to prove that two first order approximations with
random initial conditions that are “near” are close in total variation distance. This

statement is made rigorousin the following proposition.

Proposition 2.15 (Linear Coupling). Let us assume the same hypothesis of Corollary
2.7 and in addition let us assume that V is a smooth coercive reqular potential. Take
{0c == }esp, where 0 < v < 1. Let us denote by 2¢(X) := {z(X)}+>0 the first order

16



approzimation with initial random condition X. Then, for every b € R it follows that

lim
€—>

IR (‘rt}(b)> A (Zfﬁ(b))HTV =0

where for each € > 0, t. and w, are defined in Corollary 2.7 and for each b € R, €, > 0 s
small enough so that t.(b) := t. + bw, > 0 for every 0 < € < €.

Proof. By Ito’s formula we obtain

bde

€ € € 1
s (T50) = Pl Ve, / () " Wi = Wiw),
0

bde
€ € € 1
Zbse (zfe(b)> = (I)béezfe(b) + \/E(I)béE / @(S)d(er(b)+s - er(b))
0

for every 0 < € < €, where @ = {®;},5 is the fundamental solution of the non-

autonomous system
d@t = —V//(¢t)®tdt

for every ¢ > 0 with initial condition ®; = 1. Applying Lemma B.6 with X := ®s, ¢ )
bo.

Y = <I>b5€zt5€(b) and Z = /Dy, [ ﬁd(W&(bHs — Wge(b)), G =0(X,Y) and (Q,F,P)
0

the canonical probability space of the Brownian motion, we obtain

1

|

Y5 )~ %) H :

“bs. (“’Uw) P (zt;@)HW - \/ .

2me [ ((D%S))Q ds

0

Using Proposition 2.14, we obtain

€ € € € €
sz(5€ <x£€(b)> A (fo(b)) H']l‘\\/ = bde .
2r [ (L) ds
D(s)
0
~ 3 ~
ks (afe(b) + 1) E(D)E [Bt{ (b)].
Using the fact that for each € > 0, 6. = €7 for some 0 < v < 1, &g = 1, the Intermediate

17



Value Theorem for integrals, Lemma D.1 and Lemma D.3 we obtain the result. O

The following proposition will permit us to change the probability measure in a small
interval of time in order to compare the total variation distance of the It6 diffusion and

the first order approximation with a random initial condition.

Proposition 2.16 (Short Time Change of Measure). Let us assume the same hypothesis

of Proposition 2.15 and also let us follow the same notation. Then for each b € R

tim beae (xfe@) R (”er<b>> HW =0

Proof. We will use Cameron-Martin-Girsanov Theorem and Novikov’s Theorem. For the
precise statements of these theorems we use here, see [1] and [12]. Let € > 0, ¢ > 0 and

b € R be fixed. Let us define 7f := % and ¢ := (Vlwt)_V”(d’\t/)gwfv"(iﬂt)zté). Then, for

every € > 0 and ¢ > 0 it follows that

€ _ 2 2
(i < 2wl gl

(%)

< 4kiB? (Hth + 1) + 2K3

and

2
T < 2w )? + 2630

(1)*
< AR3B} (Kat® + 1) + 2k5——.
€

Let us define I¢(b) := [£c(b), fc(b) + bd|. Then, for every e > 0 it follows that

sup (1)
/ () < 4br2s. (@ (Ee(b)+b5€)2+1> sup B2 + 2625, Y
tel<(b)
1I(e)

18



and

sup (¢r)°
/ (I)” < 4bk3d. (/-62 (tc(b) + 656)2 + 1) sup B} + 26/@35:6 ©

KA teI<(b)

Using Lemma C.3, there exists a constant ¢ > 0 such that

/ (v)° < 4br3d </‘€2 ((b) + 555)2 + 1) sup B + 2bck30.

KA tel<(b)
and

/ (FE)Q < 4bk36, (Fu‘z (Ee(b) + 1)55)2 -+ 1) sup B? + 2bcks0,
teI<(b)
I(e)

for € > 0 small enough. Consequently, for any constant p > 0 it follows that

te(b)+bde
Edexp |p / (v9)? ds < +o00
i (b)

and

te(b)+bo.
E<exp [p / (T ds| p < +oo

te(b)

for ¢ > 0 small enough. From Novikov’s Theorem it follows that

(7. (b)+bde 7. (b)+b6.
d]P)tle(b)'Fbée ‘= exp / ~edW,, — 1 / (,)/6)2 ds
— o S b
APy, (b)+bs. e ’ 2 o °

\ le Le

(T (b)+bde Tc (b)+bo.
dP %E(b)-i-b&e . 1 2
O exp TedW, — = (T%)2ds &,
ey, F.(b) ? Fe(0)

\ € €

are well defined and they define true probability measures ]P’: (b)+b5. i € {1,2}. From now

19



on and up to the end of this proof we will use the notation P¥ := IP’% (

t

P := P; 4).45.- Under the probability measure P!, W' := W; — [ 7ids is a Brownian
te(b)

motion on the time interval ¢.(b) < t < £.(b) + bd.. Also, under the probability measure
t

P2, W2 :=W,— [ Tds is a Brownian motion on the time interval .(b) < t < £.(b) +bd..

b ss. b € {1,2} and

0!
Consequently,
te(D)+bde fe(b)+bSe )
expq [ wdW,—5 [ () ds
apPt T (b) 7e(b)
apz T (b)+-bo. T (b)+-bo.
exp? [ TdW,—1L1 [ (I%)*ds
te(b) te(b)
( T.(b)+boe 7o (b)+bse
€ € 1 € €
= €eXp / (79 - Fe) dWs - 5 / ((7¢)2 - (Fe)z) ds
L Le(b) te(b)
(7. (b)+bde 7. (b)+bd.
1
= ool [ emrganieg [o@-sas
L Le(b) te(b)

By Pinsker’s inequality and the mean-zero martingale property of the stochastic integral,
we have for every .(b) <t < £.(b) + b,

t}(b)+b5€
€ € € € € €\2
‘ Lps, (xfﬁ(b)) — b5, (xt;(b)) HW < Em / (I'y —75) " ds
te(b)
. te(b)+bde
dP . o2
= IE’IP d_]P) (Fs - r)/s) ds

te(b)

By Cauchy-Schwarz’s inequality and the mean-one Doléans exponential martingale prop-

20



erty, we have

- e (b)+bo i e (b)+boc e (b)+boc 2
Be | [ ontas| < (Belewd [ oGpiasp | [ meaptas
te(b) | te(b) te(D)
te (b)+bSe
< |Ep |exp{ 2 / () ds ¢ | x

\ L i)

T () +b5 1
Ep / (U5 — %) ds
te(b)
It follows for € > 0 small enough that
te(b)+boe
exp / (72)2 ds p < exp {4()/{356 (/{2 (t;(b) - 656)2 + 1) sup B? + 2bcm§5€} ,
~ te1<(b)
te(b)

where the last expression is IP-integrable for € > 0 small enough. Using the scaling property
of Brownian motion and the distribution of the maximum of the Brownian motion in a

compact interval, the last inequality implies that

T (b)+b0.
lim E 6)? = L
lim Ep | exp § p / (75)" ds 1
te(b)
for any constant p > 0. Also, it is true that

4

te(b)+bd. 4
(05 —75)7ds | < | bd. sup (T —75)°
£ sel<(b)
e 16 e . 8
S Ob4521 sup (‘:Us 4¢5) + sup |ZE5 ¢84 \/Eytl 7
sele(b) € sele(b) €

where C' = C(kg,k3) > 0 is a constant. Using the last inequality and Proposition 2.14,
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we obtain that

lim Ep (TC —~9)*ds = 0.

te(b)+bée
e—0
i

«(b)

Consequently,

O

Now we have all the tools in order to prove our result for the class of bounded coercive

regular potentials.

Theorem 2.17 (Smooth Coercive Regular Potentials). Assume the same hypothesis of
Proposition 2.15 and also let us follow the same notation. Let us consider the family

x¢ = {x{}is0 given by the the semi-flow of the following stochastic differential equation,

dov; = =V'(z)dt + /edW,,

Ty, = o

fort >0, where xq is a deterministic point in R\ {0} and {W;};>o is a standard Brownian
motion. This family presents profile cut-off in the sense of the Definition 1.3 with respect
to the total variation distance when € goes to zero. The profile function G : R — R is

given by
G(b) = HN(E‘B_b7 1) = N(O, U”’]I‘V’
where ¢ is the non-zero constant given by

lim " @, = &
t——4o0

and the cut-off time t. and window time w, are given by

1 "
te = 2V (0) (In (Ye) + In (2V"(0)))
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and

We = + €7,

V//(O)
where 0 < v < 1/4
Proof. Let € > 0 and t > 0 be fixed. We define
De(t) == o — 1y
and
d*(t) = |2 = N¥py

where pf and N are given by Lemma 2.10 and Lemma 2.13. For each b € R, take ¢, > 0
such that () := t. + b(w, + 6.) = 1°(b) + bd, > 0 for every 0 < € < ¢,. By Corollary 2.7
and Remark 2.8 we know that for each b € R

11_1}6(1 (t (b)) = G(b). (2.4)
By definition,
D€<£€(b)> = 37:%((,) — e v

IN

T EE Hw + || (w0) = s (450 HW +

Zfe(b) - N¢ v + N = 1y -

Using Proposition 2.15, Proposition 2.16, Lemma 2.10, the relation (2.4) and the item ) of

Lemma D.2, we have lim sup D¢(#(b)) < G(b). In order to obtain the converse inequality,
e—0
we observe that

0 = |-V,

2556 (Zfe(b)> - 2555 (%i(b)) HW + H'Zgée (%i(b)) - 33555 (xzi(b)) HW +

$§e(b) —p v + [l _N€||’JI‘V'

IN

Again using Proposition 2.15, Proposition 2.16, Lemma 2.10, the relation (2.4) and the
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item i) of Lemma D.2 we have liminf D¢(i¢(b)) > G(b). Consequently,

e—0

lim D*(£(b)) = G(b).

e—0
]

The following proposition will permit us to approximate a coercive regular potential

by a smooth coercive regular potential.

Proposition 2.18 (Removing Boundedness for V" and V™). Let us assume that V' is a
coercive reqular potential. For every M €]0, +o0[, there exists a smooth coercive reqular
potential Vi (x) which is an approximation of V' in the following way: Vi(z) = V(x) for
every |z| < v2M.

Proof. By hypothesis there exists 6 > 0 such that V”(z) > § for every x € R. Let
g € C* (R, [0,1]) be an increasing function such that g(u) = 0 for u < 1 and g(u) =1 if
u>1. Let M € [1,00[ be a fixed number. Let Ry : R — R be a function defined by

e = o ()5 (10 (22)) v

Since V € C*(R,R) and g € C* (R, [0,1]), we have Ry, € C' (R,R). We also have that

Ru(z) = V'"(2) for every |z| < V2M, Ry(x) = § for every |z| > 2M, Ry(z) > 6§ for

every ¢ € R, ||[Rullo < 00 and [[R)|lc < 00. Let us define Sy/(z) := [ Ra(y)dy for
0

every x € R and let us define Vi (z) = f Sy (y)dy. Then V) is a smooth §-coercive
0

regular potential such that Vi, (x) = V() for every |z| < v2M. O

The next proposition will tell us that the approximation of the coercive regular po-
tential by a smooth coercive regular potential also implies an approximation in the total
variation distance of the invariant measures associated to the potential V' and Vj; and the

total variation distance for the processes at the “cut-off time” associated to the potentials
V and V).

Proposition 2.19. Let V be a coercive reqular potential and for every M > 0 let Vi,
be the approzimation of V obtained from Proposition 2.18. Let x*M = {x?M}»o be the
Ito diffusion associated to the smooth coercive potential Vy; and let u©* be the invariant
probability measure associated to the stochastic process x™ defined in Lemma 2.10. Let

us denote by x¢ = {x{},. the It6 diffusion associated to the coercive potential V' and let
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us denote by uc the invariant probability measure associaled to the stochastic process x€
defined in Lemma 2.10.
It follows that

i) For every M >0

: M _
lim [} = My, =0

i1) Using the same notation as in Theorem 2.17, we have

e]\f

ie(b) Tt (b) HW =0

lim ||z
e—0

for every M > |xo| and every b € R.

Proof. Let us prove item ¢). Notice that V};(0) = V"(0). By triangle’s inequality and

Lemma A.1, we have

”Me - 'U’QM”’]I‘V < I = Ny + HNE - /f’MHW'

Taking € — 0 and using Lemma 2.13 we obtain

. M o
lim [| 2 = M|, =0

for every M > 0. Now let us prove item éi). Let € > 0 and M > |xy| > 0 be fixed. Let us
define 75" := inf {s > 0: |x§M | > M}. By the variational definition of total variation

distance in terms of couplings, see (4.12) of [7],

Let us define 0% := inf {s > 0: |25 — M| > M — |zo|}, where ™ := {¢M} is the

semi-flow associated to the autonomous differential equation

¢ e, M
Tie) teb)”TV < Py (1M < (D).

=~V (vM)

for every ¢t > 0 and ¥} := zg. Using the coercivity hypothesis of Vj; we see that the
semi-flow ¢ is decreasing in norm, and [p}M| < |xg| for every ¢t > 0. In particular,
oM < 7eM - Consequently. Py, (75 < t(b)) < Py (05 < t(D)).
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Therefore it is enough to prove that lir% P, (a‘“M > te(b)) = 1. For every s > 0, let
e—

us define &M : \/’bs Then oM = inf {s >0 [29M] > M_TL”:O'} We note that

’ ]\4—|1‘0|
P, (oM >t (b)) = P, oMl <= T
o (7" 2 10) (' RN )

Let us define ¢py := M — |zo| > 0. We have

2
P sup zEM > cu = P sup (z5M s M
0 <O<s<t (b) ‘ ‘ \/E 0 0<s<te(b) ( ’ ) €

Using It6’s formula and the coercivity of Vj,, we have

(z,f M) <t 1M

t
for every t > 0, where the process H?M =2 [ 2¢MdW; is a martingale. Then
0

E [(zZ’M)2] <t

for every t > 0. Using It6’s isometry, we obtain

E {(H?M)Q} < 2

for every ¢ > 0. Let us take €y, > 0 such that for every 0 < € < €p5, we have

%, — et.(b) > 0. Using Doob’s inequality, we have

2 2 _
P, ( sup (zE’M)z > C—M> P, ( sup ‘HE’M| s G = €AY de(b))

0<s<tc(b) € 0<s<tc(b) €

IN

A
—
Q
Y SV
|
o [
o+
/‘\
=
N —
\./
| —
7~ N
=
Sao
Sk
N———
)
| I |

Letting € — 0 we obtain the desired limit. O

Now we are ready to prove Theorem 2.1. To stress the fact that Theorem 2.1 is just
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a consequence of what we have proved up to here, let us state this as a Lemma:

Lemma 2.20 (From the Smooth Coercive Case to the General Case). Let Vi, be the
approximation of V' obtained in Proposition 2.18. Profile cut-off for {CL’;’M}QO implies

profile cut-off for {z{} >0 with the same cut-off time, cut-off window and profile function.

Proof. Recall the notation introduced in Proposition 2.15. Let € > 0 and ¢ > 0 be fixed.
Let us take M > max {|zo|, ||¢|l}. We define

and

By triangle’s inequality we have

E,M €

De’M(t) < ‘xt — Ty

v + D(t) + ||'uE - “€7M||W'

Recall that t, = 2V+(® (In (Y/e) +1In (2V"(0))) and w, = v%(o) + d. respectively. Let b € R

be fixed. Recall that t.(b) = t. + bw.. Take ¢ > 0 such that for every 0 < € < ¢, we have
t(b) > 0. Consequently,

e,M

DML < iy — o, DO + [l — 1

Therefore, using Proposition 2.19 and Lemma D.2 we have

limsup DM (t.(b)) < limsup D(t.(D)).

e—0 e—0

By Theorem 2.17, we know that lim D% (¢.(b)) = G(b). Therefore

e—0

G(b) < limsup D(t.(b)).

e—0

It also follows that

D) < |

5 = 2 g+ DM )+ [ = b
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Therefore, using Lemma D.2, Proposition 2.19 and Theorem 2.17 we have

liminf D(t.(b)) < G(b).

e—0

We conclude that
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Chapter 3

Stochastic Perturbations:

m-Dimensional Case

In this chapter we consider stochastic perturbations of a dynamical system evolving on
R™ with m > 2. The assumptions and notations we will made on the potential V are
the analogous ones made for the one-dimensional case. For the reader’s convenience, we
repeat them here. Let us consider the semi-flow {¢(t)}:>0 associated to the solution of

the following deterministic differential equation
dx(t) = —=VV(x(t))dt (3.1)

for t > 0 and let x(0) € R™\ {0} be a fixed initial condition. The hypothesis made in
Theorem 3.1 on the potential V' guarantees existence and uniqueness of solutions of (3.1),
as well as all the other (stochastic or deterministic) equations defined below. Our main

result for m-dimensional potentials is the following:

Theorem 3.1 (Gradient Case). Let V : R™ — [0, +oo[ be a m-dimensional potential
satisfying:

i) V€C?and V(0) = 0.
i) VV(x) =0 if and only if x = 0.

i11) There exist 0 < § < A such that

ollyl* < y"Hy(z)y < Ayl
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for every x,y € R™, where y* is the transposed vector of y and Hy is the Hessian

matriz of V.

Let us consider the family of processes x¢ = {x(t) }+>0 which are given by the the semi-flow

of the following stochastic differential equation,

dzc(t) = —=VV(2(t))dt + /edW (t),
z(0) = =

for t > 0, where xy is a deterministic vector in R™ \ {0} and {W(t) }+>0 is a standard
Brownian motion. This family presents profile cul-off in the sense of Definition 1.3 with
respect to the total variation distance when € goes to zero. Let iy be the smallest eigenvalue

of Hy(0). For Lebesgue-almost every xo, the profile function G, : R — [0, 1] is given by
G (b) = Hg(e_bv(:ro),fm) — Q(O,Im)HW,
where v(xy) € span(vy) is the unique non-zero vector in R™ such that

lim e (t) = o),

t——+o0

where vy is the eigenvector associated to the eigenvalue oy and the cut-off time t. and

window time w, are given by

1
t(:—l 16
3o (1)

and

respectively.
Remark 3.2. Since the potential V is coercive, we have a; > 6 > 0.

The assumptions made in Theorem 3.1 on the potential V' are the m-dimensional
counterpart of what we called smooth coercive potentials. At present time, we can not
extend Theorem 3.1 potentials satisfying only the coercive bound ¢ < y*Hy (x)y for any
xz,y € R™. The following Theorem explains to which kind of potentials we are able to

extend Theorem 3.1.
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Theorem 3.3. Let V : R™ — R be a potential satisfying i), i1) and the lower bound
0 < y*Hy(x)y for any z,y € R™ of Theorem 3.1. Let us suppose that there exists a
potential V satisfying i), ii) and iii) of Theorem 3.1 and such that there exists r > 0 such
that V() = V(z) for every ||z|| < r. Then, profile cut-off for {z™ (t)}1>0 implies profile
cut-off for {x¢(t) }+>0 with the same cut-off time, cut-off window and profile function, for

Lebesgue-almost every initial condition xo with ||xo|| < r.

The proof of this theorem is exactly the same of Lemma 2.20, so we omit it.

3.1 The Symmetric Ornstein-Uhlenbeck Case

For the reader convenience, we state and prove here a simple particular case of Theorem
3.1, namely when the potential V' is quadratic.

Let us take p € R™ and let ¥ € S,, be a symetric and positive definite square m-
dimensional matrix. We denote by G(u, ) the Gaussian distribution with mean p and

covariance matrix X.

Proposition 3.4 (Symmetric Ornstein-Uhlenbeck Process). Let us consider the one-
parameter family of processes x¢ = {x°(t) =0 which are given by the solution of the

following stochastic differential equation,

doc(t) = —az*(t)dt + /edW(t),
z9(0) = =(0)

for t > 0, where x(0) is a deterministic point in R™ \ {0}, « is a constant symmetric
matriz with eigenvalues 0 < oy < ... <y, and {W(t) }i>0 s an m-dimensional standard
Brownian motion. This family presents profile cut-off in the sense of the Definition 1.3

m
with respect to the total variation distance when € goes to zero. Let us write x(0) = > xpvg
k=1

where {vy, ..., v} is an ordered orthonormal basis of R™ that conjugates the matriz o

with the diagonal matriz diag(ay, . .., ay). The profile function G : R — R is given by

G(b) = Hg(ﬁe_bea%UT,Im) — Q(O,Im)HW,
where T :=min{i € {1,...,m} : x; # 0}, and where the cut-off time t. and window time
we are given by
1

te =

In (1/e)

20,
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and

Proof. Since our process is linear, it is Gaussian. We have that its mean vector and

covariance matrix are given by

pe(t) = E[2(t)] = e *'z(0),

t
() = V[z°(t)] = e/e—za(t—s)ds _ %a—l (Im _ e—zms) 7
0

respectively. Again, for each ¢ > 0 fixed, when t goes to infinity we obtain that z¢(t)
converges in distribution to a random variable z¢(4o00) which has Gaussian distribu-
tion with mean vector p° := 0 and variance matrix ¢ := %a‘l. For each t > 0,
we denote by G(u(t),X(t)) the law of the random variable z¢(¢) and by G(u¢, %) the
law of the random variable 2¢(+00). For every ¢ > 0 and ¢ > 0, we write d°(t) =
G (ue(t), 26(t)) — G(1S, X9) ||y - Using triangle’s inequality for the total variation distance

and Lemma B.1, for each € > 0 and ¢t > 0, we obtain

d(t)y = ||G (\/ge_atﬂc(O), ot (In — e_zat)) —G(0,7")

TV

< |G (\/ge_atx(()), ot (In — e‘zat)) -G <\/§e_at:r(0), ofl)
+ (|G <\/§€_atl’(0), a_1> —G(0,a7")
< [0, (In —e7")) = G(0.07") ||’]1‘V

Y

TV

+ g(\/gal/ze_a%(()),lm> -G(0,1,)

where in the last inequalities we use several times Lemma B.1. For each € > 0 and ¢ > 0,

D(t) = Hg<\/§a1/ze—afx(0>,fm> = G(0, 1)

let us define

TV
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Let us consider the function G : R — [0, 1] defined by
) = g (vVaeteatv, 1) ~ G0, 1) .
G(b) Q(\/_e cra2v ) G(o )W

where ¢, := (v;,2(0)) # 0 since z, # 0. It follows that that G(—oc0) = 1 and G(400) =0
by Lemma B.4 and Lemma B.2, respectively. For each € > 0 let us define t. := i In (1/e)
and w, := 1/a,. Note that for any € > 0 and b € R we have

2 1
De(te + bw,) = HQ’ <\/ga 20 a(t;+bw;)$(0)7[m> —G(0,1,)

TV

Using Lemma B.3, we obtain that

lim D(t. + bw.) = G(b).

e—0

Now we will prove that lin% |D<(t.(b)) — d*(t.(b))] = 0, where #.(b) = t. + bw.. Using
e—

triangle’s inequality for the total variation distance, we have

D) — @O < [9(0.07 (5= ) —G(0,07")

‘TV'

By the last inequality and Lemma B.5, we conclude that
lim (D¥(£,(b)) — d“((5))) = 0
for any b € R. Consequently, for any b € R
lim d*(t<(b)) = G(b),
which is what we wanted to prove. O

3.2 The Linearized Case

Recall the strategy of proof of the one-dimensional case, Theorem 2.1. As an important
intermediate step we prove profile cut-off for a family of processes satisfying a linear, non-
homogeneous stochastic differential equation, stated in Corollary 2.7. In what follows we
prove the m-dimensional version of this Corollary.

This result holds for a more general class of potentials that Theorem 3.1, which we
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define as follows.

Definition 3.5 (Regular Coercive Potential). We say that V' is a coercive reqular potential
if V. R™ — R satisfies

a) V(0)=0 and V € C*.
b) VV(x) =0 if and only if x = 0.

¢) There is 6 > 0 such that y*Hy(x)y > 0||yl|* for every z,y € R™, where Hy is the

Hessian matriz of V.
The following theorem tells us that the “linear approximations” have profile cut-off.

Theorem 3.6 (The Linearized Case). Let V' be a coercive regular potential. Let us

consider the family of processes y© = {y<(t) := ¥(t) + ey(t) }iso0, where {y(t)}i>o is
the solution of the following linear stochastic differential equation,

dy(t) = —Hy(¥(t))y(t)dt +dW (1),
y(0) = 0

for t > 0, where {W(t)}4>0 is a standard Brownian motion, Hy is the Hessian matrix
of V- and {1(t) }i>0 is the semi-flow associated to (3.1) with initial condition xo. Let oy
be the smallest eigenvalue of Hy(0) and let Vi be its eigenspace. Let v(xy) be the unique

vector in Vi such that

lim e*h(t) = v(x).

t——+o0

Assume that v(xg) # 0 and define the cut-off profile G, : R — [0, 1] as
Goal) = |G (V2o iy () 0(a0). 1) = G0, 1)

Then the family {y‘}e=o presents profile cut-off in the sense of [14] with respect to the
total variation distance when € goes to zero with profile function G, and cut-off time t.

and window time w,. given by

1
te=—1In(Ye
ooy (o)

34



and

We = —.
(@51

Remark 3.7. By item ii) of Lemma 3.8 below, v(xq) is well defined and nonzero for
Lebesque-almost every xq. In particular, Theorem 3.6 holds for Lebesgue-almost every
initial condition xo € R™\ {0}.

We can see that the Ornstein-Uhlenbeck case is covered by
V(z) = 2*diag(on, ..., an),

x € R™ and ap > 0 for every k € {1,...,m}. In order to prove Theorem 3.6 we need to
find the qualitative behavior of the semi-flow 1) = {1(t) };>¢ at infinity.

Lemma 3.8. Under the hypothesis of Theorem 3.6, we have

i) For any initial condition xqy, ¥(t) goes to zero as t goes to infinity. Moreover,
[9(@)|| < ||wolle™® for every t > 0.

i1) For Lebesgue-almost every xy,

lim e®(t) = v(zo) € R™\ {0},

t—+o00
where v(xg) € Vi and V} is the eigenspace associated to the eigenvalue o .
iii) Let us consider the following matriz differential equation,

dA“(t) = —Hy(0)A“(t) — A“(t)Hv (0) + €Ly,
A(0) = My,

where My is a square matriz of dimension m. We have

lim AS(t) =

t—o00

(Hy(0))

N ™

iv) Let us define the covariance matriz A¢(t) := €E [y(t) (y(t))*]. This matriz satisfies

the following matrix differential equation,

dA*(t) = —Hy(y(1))At) = AY(t) Hy (¢(1)) + elm,
A°(0): = 0.
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We have

. € . E -1
fim A%(t) = o (Hy(0)) .
For the proof, see Appendix C.
For each € > 0 and ¢ > 0 fixed, y(¢) is a Gaussian random variable so it is characterized

by its mean vector and covariance matrix. The mean vector is given by

Corollary 3.9. Let us assume the hypothesis of Theorem 3.6. Let € > 0 be fixed, then the

random variable y*(t) converges in distribution ast goes to infinity to a Gaussian random

variable y¢(+00) with mean zero vector and covariance matric g(HV(O))_l.

Proof. 1t follows by item i) and item iv) of Lemma 3.8. O
Now, we have all the tools in order to prove Theorem 3.6.

Proof. Let us call a := Hy(0). For cach € > 0 and ¢ > 0, we define

a0 = | w @) -0 5uvonT)|
= ||Q <\/§¢(t),n(t)) = G(0,a7")
where 7(t) := 2V [y(t)] and
D) = Hg<\/§a%wt»[m> =G0, 1n)|| -
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Using triangle’s inequality and Lemma B.1, for each ¢ > 0 and ¢ > 0, we obtain

d(t) < ||G (ﬁw(t),n@)) —Q<\Ew(t),a‘l)
([ W(t) ) G(0,a7M)| .
G <\/§a%¢(t), Im> —G(0, I,)

_|_

1 (0.0(1)) = G(0,07") ||y +

TV

Therefore,

d(t) = D) < |G (0,n(8)) = G(0,a )|,

Recall that 0 < a; < ... < «,, denote the eigenvalues of the matrix a. For each ¢ > 0
let us define ¢, := ﬁ In (1/e) and w, := /ay. For every b € R, we define £.(b) = t, + bw..

Using the last inequality and Lemma B.5, we obtain

lim [d“(tc(b)) — D(tc(b))] = 0

e—0

for every b € R. By item ii) of Lemma 3.8, for Lebesgue-almost every g, it follows that

lim e“)(t) = wv(w) € R™\ {0}.

t—+o00

Let us consider the function G, : R — [0, 1] defined by

Gy (b) == Hg(\/ﬁe—ba%v(m,fm) _ Q(O,Im)H

v

Observe that D6 = Hg(\/_aéw ) G(o,1 )HW for every b € R. Conse-

quently, we have

lim D(£(b)) = Gy (b)

e—0

for every b € R. It also follows that hm Gy (b) = 0 and hm Gmo (b) = 1 by the same
+
facts usied in the proof of the Ornstem-Uhlenbeck Case. Thls proves the theorem. O

Remark 3.10. In Theorem 3.6 we can take as a window time w. > 0 such that 111% w! =
e—

w > 0.
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3.3 The General Case

Let us fix some notations and names.

Definition 3.11.  a) We call the process ¢ := {2°(t)},5, defined in Theorem 5.1 an

m-dimensional 1t6’s diffusion.

a) We call the semi-flow ¢ := {1)(t)}5, defined by the differential equation (5.1) the

zeroth-order approximation of x°.
c) We call the process y° = {y(t) :== ¥(t) + Vey(t) },, defined in Theorem 3.6 the
first order approximation of x¢.
The following lemma tells us the existence of a stationary probability measure for the
It6’s diffusion 2€ = {x°(¢) },5-

Lemma 3.12. Let V a regqular coercive potential and for every e > 0 let us consider the

Ito’s diffusion x° = {z(t) }4>0 given by the following stochastic differential equation,

dec(t) = =VV(z(t))dt + /edW (),
z¢(0) = xz(0)

for t >0, where x(0) is a deterministic point in R™ \ {0} and {W(t)}i>o is a standard
Brownian motion in R™. Then, for every e > 0 fized, whent goes to infinity the probability

distribution of x¢(t) converges in distribution to the probability u¢ given by

_2V(I)d
e e T
€(d —
p(dz) e
where M€ = [ e~ V() dz.
R™
Proof. For the proof of this lemma and further considerations, see [23] and [26]. O

The following lemma tells us that the stationary probability measure of the It6’s pro-
cess {z{ }+>0 is well approximated in total variation distance by the Gaussian distribution

. . . -1
with mean zero and covariance matrix § (Hy(0)) .

Lemma 3.13. Let V be a coercive reqular potential. Then
lim 1~ Gl = 0.
where G¢ is a Gaussian distribution with mean zero and covariance matriz (Hy(0))™".
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V@) g, .

Proof. Let 0 < n < 1 be fixed. By Lemma 3.12, the measure p(dx) = “57 is a
well-defined probability measure. Then

1 2V () _zw
[0 =Gy = _/ N dz,
2 Me Ne
Rm™
z* T m 1
where M€ = [ V@ dr and N = [ e 25 gy = (me) 2 (det ((HV(O))_I))Q. By
R™ Bm
triangle’s inequality, we have
e L pleve o] q g |etve sy
I = Gl = 5/ Me — Ne dm+§/' N N |
R™ o
B |M;];€NE| + 2]1\[6 / ‘e_%v(ﬂﬁ) e IO gy
Rm

IN
|

X.

1 2 232 Hy ()
‘e V@) e 3 d

By coercivity, we have that there exist § > 0 such that V(z) > &||z|* for every z € R™.
Then

1 _2 _22"Hy ()
‘e V@) e dr = 0
{2eRm: 2] > B}

for every 8 > 0. By the second-order Taylor’s Theorem for scalar fields, we have that

there exists 0 < ¥ < 1 such that for every ||z|| < 9,

where ¢ = ¢(z) €]0,1[. By continuity, we can take 0 < §, < ¥ such that for every
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lz|| < v, we have ||Hy(cx) — Hy(0)|| < n. Then,

% / ‘e_gv(x) C e g <
{zeR™:||z]|<dn}
1 1§12
< — el ) | — 2*Hy(0)x|| d
< e |z*Hy (cx)x — «*Hy (0)z|| dz
{zeR™:||z||<dn}
1 2 2
< el l2de < C / eI 112 d
< JelPds <y a1
{aeRmJaf| <0, {aermilal<o,/T}
<Cy [ Mo
Rm

where C' > 0 is an explicit constant independent of € and 7. Consequently, first taking

€ — 0 and then n — 0 we obtain the result. O

The following proposition will give us the zeroth-order and first-order approximations

for Ito’s diffusion x¢.

Proposition 3.14 (Zeroth-Order and First-Order Approximation). Let V' be a coercive
reqular potential. Let us write B(t) :== sup |[W(s)|| fort > 0.
0<s<t

n—1

i) For every t > 0, we have E [[|z°(t) — ¢(t)||2"} < ¢, €"t", where ¢, == [] (m+ 2j)
=0
for every n € N.

i1) For every b € R, there exists € > 0 small enough such that for every 0 < € < €y,

E

€ _ 2
exp{5 |x€(te + bde) — W(te + bde)|| } < 400,

€
€

where 6. = €7, v > 0.

iii) For every b € R there exists ¢g > 0 small enough such that for every 0 < € < €,

E

> )
€

€ 2
exp {3 12 ot 1) — v 000 }] < JAulterbim

where 0. = €7,y > 0.
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iv) For every r > 0 there exist a constant c(r) > 0 and ¢y > 0 such that

P( sup ||xf<t>—w<t>||22r) < er)E (t + b

t§t€+bw6
for every 0 < € < €.

v) Assume that there exists K > 0 such that
IVV(z) = VV(y)l| < K|z —yl|

for every x,y € R™. Let b € R and let us call t* := t.+b (we + d), where lim0 0. =0,
€E—r
te and w. are defined in Theorem 3.6. Then, there exists g > 0 such that

E [l(t) — (1) —Vey(t)|?] < O}

for every 0 < e < ey, where C' = C(K,b) > 0 is a fired constant.
Proof.

i) Let € > 0 and t > 0 be fixed. We have

() — () = — / [V (a(s)) — YV (1(s))] ds + VW (8)

t

-

0

Vel ()

t

_ _/Ae(s) (2(s) — 9(s)) ds + VW (b),

0

/Hv(zb(S) +0(2(s) —4(5)))db | (2°(s) —¢(s)) ds +
0

1
where A%(s) := [ Hy (¢(s) + 0 (x(s) — 1(s)))df and where the second identity fol-
0

lows from the Intermediate Value Theorem for vectorial functions. Let us take
fi(x) = ||=||*. By Ito formula, it follows that

dlas(t) — @I = [~2 (@ (1) — b(6)" AXE) (°(t) — (1)) em] dt +
2V/E (2(1) — (1))" AW (1)
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for every t > 0. Using the coercivity hypothesis for V', we obtain
dl|z(t) —p()|)> < emdt + M, dW (1)

for every t > 0, where M (t) := 2+v/e (z(t) —4(t))" for every t > 0. Notice that
t

{N (t) :== [ M(s)dW(s) is a local martingale. Then there exists a sequence
0

>0
of increasing stopping times {7, }nen such that almost surely 7, T oo as n goes to

infinity and {N"(t) := N (min{7,,t})}:>0 is a martingale for every n € N fixed.
Therefore, taking expectation, using the fact that {N"(t)}+>0 is a local martingale

for every n € N fixed and the fact that V' is coercive, we obtain

E [||xe (min{7,,t}) — ¢ (min{7,,t}) ||2] < emmin{r,,t}
< edt
for every t > 0. Consequently, using Fatou’s Lemma, we obtain
E[lo(t) - w(t)?] < edt

for every ¢ > 0. Let us consider f,,1(z) = ||z[>™*Y. By It6 formula, it follows that

dllz*(t) = @) P" = [=2(n+ Dfla*(t) — O] (1) — (1)
AS(#) (a5(t) = (1)) dt
+ [e(m+2n)(n + 1)|Jz“(t) — »(8)]|*"] dt +
+ 2(n+ DVellat(®) = o @I (2°(8) = $(#)" dWV (1)

for every t > 0. Using the local martingale property of It6 integral, the coercivity

property of V', the induction hypothesis and the Fatou’s Lemma, it follows that
E [[lz5() =0 @)|*"V] < epe et
for every ¢t > 0. Consequently, for every n € N, it follows that
E [[l2(t) = o@)*"] < coet”

for every t > 0.

42



i1) Let b € R be fixed. By the Monotone Convergence Theorem, it follows that

5 ||$€(te+b5e)—¢<te+b5e)”2
E |e € E E

n=0

O™ ||z (te + bde) — ¥ (L. + bS.)||*"

enn!

where §. = €” for some v > 0. By item i), we have

e"n! n!

n=0 n=0

ZE[‘W“CE (t. + b6.) — ¢(te+bc5€)||2"] - iagcn(te+b5€)”_

Taking ¢y > 0 such that 2 (¢, + bo, )5 < 1for 0 < € < €y and using the ratio test for

convergence series, we have that Z 1527%5) < 400 for every 0 < € < €.
n=0
|2
iii) We will use the It6 formula for the function g.(x) = e’ FE . Let Ke = % = <. Then,
derel= v = _op erele"O=vOI (pe (1) — y(£))" A(t) (z°(t) — (1)) dt +

p (2R§enellz‘(t)—¢(t)ll2||xe(t) —P(t)|]? + Kemetelz v ||2> dt +
Dm/ewe = OO (@ (1) —(t))* AWV (1)

for every t > 0. Using the coercivity property, we obtain

derela OV — oy serela O~V ¢ (1) — () |2dt +
€ (25 erelP OO 2 (1) — (1)) + remerel* (O ”"’) dt +

2m/ereeIFO=COI (pe (1) — () dW (¢).
Taking €y > 0 such that 2¢” < ¢ for every 0 < € < €y, we obtain

dere = O=vOI < e serelle OO || 2¢(1) — ()| 2dt +
er e T O=vOI? gy 4
Om/ekice ™ IF OCOI” (2¢(1) — o (2))* dW (2).

For € > 0 small enough, by item 7) and 7i7) the stochastic integral is a true martingale
for t € [0,t. + bo]. Then,

JIE enenaf(t)—w(t)n?] < enomBE [emnxe(t)—w(t)uz] dt
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for every t € [0, t. + bd.]. Now using the Gronwall Inequality we obtain for ¢ > 0

[| 2 (te+b5e) — b (te+boe) ||
small enough that E |e’ c < eleltetbiom where §. = €7 for some
g ) €

v > 0.

iv) In the same way as in item i), using It6’s formula and coercivity hypothesis, we

have
l2°(t) = p@)|I* < edt + N(t)

for every t > 0. By item i), we have that {N(¢)};>0 is a true martingale. Therefore,
taking €g > 0 such that § <r — € (t + bw.) < 33"“ for every 0 < € < €y, we have

P( s o) -vol 2r) < 2 ( s 1Nz et

t<te+bwe t<tetbwe

_ E[INOP)
= 2

(r —e(te + bw))

t

16e [ B [[]a*(s) — ¢(s)]*] ds
< 0
< 3

8me (t, + bw,)’

)

72

where the second inequality follows from Doob’s inequality, the third inequality
follows from Itd’s isometry and the fourth inequality follows by item i) of this

proposition.
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v) Let € > 0 and t > 0 be fixed. It follows that

t

2 (0) = wlt) = Vat) = = [ [VV((s)) = TV() ~ Hulw(s) V()] ds

where Af(s) = fHV P(s) + 0 (25(s) — 1(s)))df for every s > 0 and the second

equality comes from the Intermediate Value Theorem. Let us define

t

e(t) ¢=/[(A€(S) — Hy (1(5))) (2 — ¥s)] ds.

0

It follows that

dllaf(t) — (1) = Vey@)IIF = 2 (2°(t) — (1) — Vey(t))" d (a°(t) — ¥(t) — Vey(t))
= —2[(a°(t) — w(t) = Vey(t))" Hy (v(1))

(2°(t) — (1) — ﬁy(t))} dt —

2 [(«°(t) — v (t) = Vey(t))" (A(t) — Hy (4(1)))

(2(t) — ¥(t))] dt

—20[[°(t) — 4b(t) — Vey(t)[|*dt +

2 [ll2*(t) — v (t) = Vey (I A“(t) — Hy ()]

[[°(8) — ¥ (@)[]] di

2 [ll2(t) — v (t) — Vey(O)I|A(t) — Hy ()]

(&) — ()] di

2[l(t) — w(@O)|*A“(t) — Hy (s (t)|dt +

2v/ellz(t) = v (@) Il[ly () I[A(E) — Hy (s ()|t

IN

IN

IN
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for every t > 0. In the same way as in item i), using [t6’s formula we obtain
E[||ly(t)]|?] < dt for every t > 0. Consequently, we obtain

dE [[lz°(t) — (1) — Vey®)|*] < 2E [[la“(t) — v ()P A°(t) — Hv (v ()] dt +
2VeR [[|2(t) — Ol ly (O A(E) — Hy ()] dt
< dyeret VE[|A(t) — Hy ($(t)]]

for every t > 0, where the second inequality follows using several times Cauchy-

Schwarz inequality and item ¢) of this proposition. Therefore,

t

E [[l2°(t) = v(t) = Vey()|I’] <4 026/8\/151[”146(8) — Hy (¢(s)|]*lds

0

. (3.2)
< vt [ VETAT) ~ H(@E)Flds
0
for every t > 0.
Let us estimate the last integral in the following way:
1 2

[A“(t) = Hy(v(@)|* = / [Hy ((8) + 6 (2(t) — ¥ (#))) — Hy (¢ (#)] db

0

< / [Hv((t) + 0 (2<(£) — 1 (t))) — Hy ((£)] do,

for every t > 0, where the last inequality follows from Jensen’s inequality. Let r» > 0

be fixed and let us define Q(r e) = {w €Q: sup z°@t) — @) > r}. By

0<t<te+bwe
item 7v) of this proposition we know that P (Q(r,€)) < c(r)e? (t. + bw.)?. Let us
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define t* := t. + bw,. Following (3.2), we have

E [[lo*(t") — (") = Vey()|*] <

1/Eet” / E / | Ey () + 6 (2<() — (1)) — Hy ()| do | dt <
0

0

wae) | [B | [ @)+ 0 0) - o) - He O] o) dr

for every t > 0, where the first inequality follows from the inequality from above
and the second inequality follows from the Cauchy-Schwarz inequality. By Tonelli’s

Theorem, we have

/ E / | Hy ((8) + 6 (25(6) — (1)) — By ()| d8 | dt =
0 0
E / / Ly (08) + 6 (2(t) — 6(0))) — Hy (0(0)||? dbdt

We can split the last integral into two parts. The first one is

t* 1 -

E ﬂmr,e)//llﬂv(tb(t)+9(x€(t)—¢(t)))—Hv(¢(t)||2d9dt <
0 0 ]

E |Tgpe [ CK2dt| <
o

CK*'P(Q(r,e)) <
CK%e(r)e? (t. + bw,)*

where €' = 2m > 0 is a constant. The first inequality comes from the fact that VV
is a Lipschitz function, which implies that all the eigenvalues of Hy are bounded by
K and using the fact that || A]]? is equal to the sum of the squares of its eigenvalues
for any symmetric matrix A. The second inequality comes from Tonelli’s Theorem

and the third inequality comes from the item iv) of this proposition. The second
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one 1is

E | Toen / / | Ey (8) + 6 (25(8) — 0(8))) — Hy (b()| dodt| <
E | Larceg / La(t) - wi)|Pat| <

/E () — p@OI] dt <

t*

? / cretdt <

0
L201€(t*)2,

where L := L (r,||to]|) is the Lipschitz constant of the function g(x,y) = Hy(x +
y) — Hy(z) on the compact set A := {(z,y) : ||lz]| < ||©(0)], ||yl < r}, the second
inequality follows from Tonelli’s Theorem, the third inequality follows from the item

i) of this proposition and the fourth inequality is an straightforward calculation.

Consequently,
E [[|lo(t) — (1) = Vey(t)|?] < 4y/eae(t’)? /2K 20,62 (7)1 + L2eye (1)
< 4y /ope(t >% x
(\/2K202n62n(t* 2n+1 + \/LQCle(t*)2>
< 4\/66%(15* 3 (K\/2CQ e2n=l(tx)2n-1 +L\/a)
<

Ket@)E (Ve TP+ 1),

where K := max {4Lw/ClCQ,4K \/2020%}. We can observe that there exists and
€0 > 0 such that /e2"=1(¢*)2»=1 < 1 for every 0 < € < €. Consequently

E [Jl“(t) = (") = Vey(t)IP] < 2Kex(r)?

for every 0 < € < €.
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U

The next proposition will allows us to prove that the total variation distance of two
first-order approximations with (random or deterministic) initial conditions that are close
enough is negligible. In order to do that, we will need to keep track of the initial condition
of the solution of various equations. Let X be a random variable in R™ and let T > 0.
Let {¢(t, X)}+>0 denote the solution of

dy(t,X) = =VV(i(t, X))dt,
$o) = X.

Let {y(t, X, T)}+>0 be the solution of the stochastic differential equation

dy(t, X, T) = —Hy (¥t X))y(t,X,T)dt +dW (t +T),
y(0,X,T) = 0

>0 as Y (t, X, T) = y(X) + Vey(t, X, T). In what follows, we

and define {y*(t, X, T)}>
(b) := tc + bw,, so we will omit it from the notation.

will always take T' = £,

Proposition 3.15 (Linear Coupling). Let us assume the same hypothesis of Theorem 3.6
and in addition let us assume that VV is Lipschitz. For € > 0, define 0. = €7, where
0<y< i. Then, for every b € R it follows that

ligéﬂye (b6e, 2°(8 (D)) — y* (b0e, y“ (£c(D)) || 7y = O,
where for each € > 0, t. and we are defined in Theorem 3.6 and where for each b € R,
t(b) == max{t. + bw,,0}.
Proof. By 1to’s formula, we obtain

bée

g (b6 (1(5)) = B(b6)a"(E.(b)) + v/eD(bs) / O (5)d(W(I(b) + 5) — W(EL(B)),

0

bde

Y (b, (1(D)) = ®(bO)y (Ee(b)) +\/5<I>(b5e)/<1>_1(8)d(W(fe(b) +5) = W(t(b))),

0

49



for every € small enough, where ® = {®(t)};>¢ is the fundamental solution of the non-

autonomous system

dd(t) = —Hy(p(t+1(b)))®(t)dt
for every t > 0, with initial condition ®; = I,,. Applying Lemma B.6 with X =
bé. R
(b )zc(t(b), Y = @)y (t(D)), Z = \/eP(bd.) [ ®~1(s)dW (s +1.(b)), G = 0 (X,Y)
0
and (£, F,P) the canonical probability space of the Brownian motion W, we have

~

C
V€d,

[ (b0e, 2(Ee(b))) =y (00, y* (2e(0))) |3y < E[[Ja“(t(0)) — y*(E@)|],

where C' > 0 is a constant. Now, using Proposition 3.14 item v), we obtain

[y (b6, 2(Ee(b))) — y° (b0e, y (Ee(D)) ||y < @é%(i(b))%

for € > 0 small enough, where the constant C' is the constant of item v) of Proposition
3.14. Using Lemma D.1, we obtain the result. O

Proposition 3.16 (Short Time Change of Measure). Let us assume the same hypothesis
of Theorem 3.6 and assume that V'V is Lipschitz. For each b € R we have

lim [|2° (b0, 2(£(0))) — y° (bde, 2 (2(0))) ||, = 0.

Proof. We will use the Cameron-Martin-Girsanov Theorem and Novikov’s Theorem. Let

€ >0,t>0and b € R be fixed. Let us define v5(¢) := YW and Ie(t) =

| . Ve
(vv(d’(t))_HV(w(t)\}%”(tHHV(w(t))y 1) Using the item #i) of Lemma 3.8 and the same facts

used in Proposition 2.16, for any p > 0, we have

Le(D)+bde

E{ pexp / ()12 ds| b < o0
fe(b)

and

te(b)+bde
E < pexp / IT(s)||* ds | § < +oo

te(b)
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for € > 0 small enough. From Novikov’s Theorem, it follows that

(7.(b)+bse T (b)+bd.
d]Pi(b b, . 1 N
O PO -5 [ eI ds g,
Te (b)+b6. ) )
\ te(d) te(b) )

) (7o (b)+bse 7o (b)+bde )
d]P)tg(b)-i—b(S _ . €r (12
P, = XP [(s)dW(s) — = IT(s)]|"ds p

7. (b)+bo. N )

[ () e(v) )

are well-defined Radon-Nikodym derivatives and they define true probability measures

P’ i € {1,2}. From now to the end of this proof we will use the notations P* :=

£e(b)+boe’
Pi (b)+b5.
W(t) - f

te(b)

probability measure P2, W?2(t) := W(t) —

Brownian motion. Consequently,

Z < {1,2} and I['D = I[—Dfe(b)‘i‘bée'

Under the probability measure P!, Wl(t) :=

7¢(s)ds, where t.(b) < t < t.(b) + bd, is a Brownian motion. Also, under the

< te(b) + bd, is a

t
[ T¢(s)ds, where t.(b) <t <
Le(b)

b)+b6. te(b)+bde )
exp f T(s)dW(s) —5 [ [T(s)[I"ds
dLPQ _ T.(b) Te(b)
dpPt 7. (b)+bd.

te(b)

Fe (b)+bde
exp{ I v (8)dW(s) — 3

J IIWE(S)HQdS}

te(b)

(T (b)+b5. Ee(b)+bdc
€ € ]' € €
— el [ @ rE@are -5 [ (- e ds
L () 7. (b)
(7 (b)+bs. Te(b)+bdc
= exp 4 / (T°(s) —~“(s)) dW?(s) + / IT<(s) = 7(s)|I” ds
L () 7. (b)

By Pinsker’s inequality and the mean-zero martingale property of the stochastic integral,

o1



we have for every .(b) <t < £.(b) + b,

P! o (25(£) ™" — B2 o (a%(1)) "o

< |[P'o (a9 —P?o
Te(D)+bo,
<
te(b)
te(b)+boe
_E dP?
R >
fe(b)

—1112
() H'JI‘V

Ep: / IT(s) — 2(s) |2 ds

/ IT<(s) — ~<(s)|2ds

By Cauchy-Schwarz’s inequality and the mean-one Doléans exponential martingale prop-

erty, we have

T (b)+bs. £ (b)+bé. £ (b)+bs. 2
d]Pl 2 2 2
Be | [ ITi-wlPas| < (B lewd [ lwlfasy | [rs—sltas
A0 \ 20) ()
i i (b)+bd.
< Ep [exp < 2 / vell? ds X
\ i te(b)
£e(b)+bdc 4
Ep 05 — ~¢l|* ds
\ te(b)

Let us define 1¢(b)

condition on the gradient VV', we have

te(b)+bde
exp { 2 17 (s)II” ds

te(b)

[£c(b), t(b) + bd.]. Then, by Jensen’s inequality and the Lipschitz

te(b)+bde
< 0 exp {2b4. ||7€(8)||2}d3
‘ 7.(b)
L (b)+bd, )
1 €
< — exp 2K65€M ds.
b, €
te(b)
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Therefore,

Le(D)+bde te(D)+bd.
Ep |exp [ 2 / 17 ()| ds < % / Ep exp{ZKM ()1 I’ }]
te(b) i.(b)
o (b)+bo.
< biée / exp {2Kbo.ms} ds

7.(b)
< exp {2Kb§em (fe(b) + bée)} ds,

where the first inequality comes from Tonelli’s Theorem, the second inequality comes from

the item v) of Proposition 3.14 and the third inequality is a straightforward calculation.

Consequently,
te(b)+b5e
i |exp [ h@Pdsp| = L
te(b)
Now, we will calculate
te(b)+bde 4
I e )

te(b)

Let us observe that

A L GO U RO RGO

IN

2(s) = 9 (s)l / 1y (6(s) + 0 (2(5) — () — Hy ((s)) |20

for every s > 0. Using the last inequality, several times Jensen inequality, several times
Cauchy-Schwartz inequality, the item i), item v) of Proposition 3.14; it suffices to prove
that

te(b)+bde 1

E- / / VHy (6(s) + 6 (5(s) — (s))) — Hy ((s)) |'dods| = o(")

te(b) O
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for some v > 0. The proof is analogous to the proof of item v) of Proposition 3.14.
]

Theorem 3.17. Let V : R™ — R be a smooth coercive reqular potential. Let us consider
the family of processes x° = {z*(t) }+>0 which are given by the the semi-flow of the following

stochastic differential equation,

dzc(t) = =VV(x(t))dt + /edW (t),
z(0) = =z

for t > 0, where xy is an initial condition in R™ \ {0} and {W(t)}i>0 is a standard
Brownian motion. Let ay be the smallest eigenvalue of Hy(0) and let V be its eigenspace.
For each xy € R™\ {0}, let v(zo) € Vi such that

lim e™)(t) = wv(xg).

t——+o0

Assume that v(xg) # 0 and let G, : R — [0, 1] be the profile function given by
Goy®) = |G(V2e Hy (02 0wo), I ) = G0, 1)

Then the family {z¢(t) }+>0 presents profile cut-off with profile function G,,, cut-off time
te and window time w,. given by

1
te=—In(1/e
ooy 2 (/)

and

1
We = —.
a;

Remark 3.18. By item ii1) of Lemma 3.8 above, v(zy) is well defined and nonzero for

Lebesque-almost every xy. In particular, Theorem 3.17 holds for Lebesgue-almost every
initial condition o € R™ \ {0}.

Proof of Theorem 3.17. Let € > 0 and t > 0 be fixed. We define

D(t) = [lz*(t) = gy
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and

d*(t) = lly*(t) = Gl »

where ¢ and G are given in Lemma 3.12 and Lemma 3.13. For cach b € R take ¢, > 0
such that #¢(b) := t. + b(w, + &.) = t(b) + bd, > 0 for every 0 < ¢ < ¢,. By Theorem 3.6
and Remark 3.10, we know that for each b € R

li_lgde (te(b)) = G(b). (3.3)
By definition
D) = [ () — 1y

IA
&

b0, 2 (b)) = y* (bde, 2% (E(0))) [y +

(

(

[y (b0, ¢ (£e(9))) =y (B6es y* (Ee(D))) |y +
[y (E(5)) = G|y + 116 = 1l -

Using Proposition 3.15, Proposition 3.16, Lemma 3.12, the relation (3.3) and the item i) of

Lemma D.2, we have lim sup D*(¢°(b)) < G(b). In order to obtain the converse inequality

we observe that “
d (b)) = ||y (E(b)) g€||1w
< [ly" (00, y° (e(0))) =y (b0, 2% (Ee(B)) ||y +
[ (b0e, 2 (£e(b))) — 2 (b0e, 2 (£e())) ||y +
||$ ( e(b)) & ||']I‘V + ”:u g€||’JI‘V'

Again, using Proposition 3.15, Proposition 3.16, Lemma 3.12, the relation (3.3) and the

item ¢i) of Lemma D.2 we have lim iglf De(#(b)) > G(b). Consequently, lir% De(t(b)) =
€— €—

G(b). O
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Appendix A

Properties of the Total Variation

Distance of Normal Distribution

Let us take u € R and 02 €]0, +00[. We denote by A/ (p1, 0?) the Normal distribution with

mean p and variance o?.

Lemma A.1. Let {y, i} C R and {0?,5%*} CJ0,+o0] be fized numbers.

i) For any constant ¢ # 0 we have
IV (e, 0®) =N (i, 6%) ||y = [N (1:0%) = N (71,6%) || -
i)
IV (1:0%) =N (7.6°) |2y = [V (=il 0%) = N(0,6%) |
Proof. This is done using the characterization of the total variation distance between

two probability measures which are absolutely continuous with respect to the Lebesgue

measure on (R, B (R)) and using the Change of Variable Theorem. O
Lemma A.2. Let i € R then

[1l/2
|l

2 5172
N (1) = N0, 1)y = —— / ey < L
V2T J V2r

Proof. Also, this is done using the characterization of the total variation distance between
two probability measures which are absolutely continuous with respect to the Lebesgue

measure on (R, B (R)) and an straightforward calculations. O
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Lemma A.3. Let {puc}eso0 C R be a sequence such thal li_r% e = € R. Then
i A7 (gt 1) = A0, ) = [ (12, 1) = N0, 1)

Proof. This is done using triangle inequality, the item éi) of Lemma A.1, Lemma A.2 and
the Lemma D.2. O

Lemma A.4. Let {o%}~o CJ0,+00[ be a sequence such that lim 0? = o* €]0, +o00[. Then

e—0

H’JI‘V = 0

fim [A(0.02) ~ A (0.0%)

Proof. This is done using the item ¢) of Lemma A.1, the characterization of the total
variation distance between two probability measures which are absolutely continuous with

respect to the Lebesgue measure on (R, B (R)) and an straightforward calculations. [

Lemma A.5 (Total Variation Bounded). Let (2, F,P) be a probability space and G C F
be a sub-sigma algebra of F. Let X,Y,Z : (Q,F) — (R, B(R)) be random variables such
that X andY are G measurables and X,Y,7Z € L* (2, F,P). Let us consider the following
random variables X* = X +7Z and Y* =Y +Z. Let us suppose that E[X* | G] has normal
distribution N'(X,0?), E[Y*| G| has normal distribution N'(Y,0%) and Z1G. Then,
X =¥l < ——E[X ~ V]
W= 2ro '
Proof. Using the the properties of conditional expectation, the item 7), item i) of Lemma

A.1 and Lemma A.2, we have

IX* =Y*|lpy = sup |E [Lxeer) — Lyeer)|

FeF

< supE[[E [Ix-er) — Lyer | G]|]
FeF

< supE[|P(N(X,0%) € F) =P (N(Y,0%) € F)|]
FeF

< supE { ! |X—Y|}

FeF

\V2ro
1

= ﬁEﬂX —Y]].

o7



Appendix B

Properties of the Total Variation

Distance of Gaussian Distribution

Let us take p € R™ and X € §,, be a symetric and positive definite square m-dimensional

matrix. We denoted by G (i, 3) the Gaussian distribution with vector mean p and covari-

ance matrix X.

Lemma B.1. Let {11, i} C R™ be two fived vectors and {%, X} C S,, be two fived matrices.

It follows

i) For any scalar ¢ £ 0 we have
ot ) ~6(emeS)]., = fowm-6(m 2],
i)
o2 =9(x 5|, = Jot-r=-a(05)],
i)
19 2) =G S) ey = [[G(zbndn) =9 (570 1)
iv)

o9, = [s(o5s5) g0 )

vV

58



v) Let = (p1,. .., i) and o = (fi, ..., i) Let us define p = (u,0) and i =
(i1,0). Then it follows that

||g(:u7 Im+1) - g(ﬁv Im-i-l)”’]l‘V = ”g(:u7 Im) - g(ﬁv Im)HTV :

Proof. The item 1), i), i) and v) are done using the characterization of the total
variation distance between two probability measures which are absolutely continuous with
respect to the Lebesgue measure on (]Rd, B (Rd) ), the Change of Variable Theorem and an
straightforward calculations. The item 7v) is done using the characterization of the total
variation distance between two probability measures which are absolutely continuous with

respect to the Lebesgue measure on (Rd, B (Rd)) and an straightforward calculations. [J

Lemma B.2. Let = (1, ..., ftm)* € R™ then

21 |,Un|
\ 27 '

Proof. This is done using the classical coupling technique. We can write

||g(ﬂv Im) - g(ov Im)”TV <

G In) = N(u1,1) @ @N (i, 1),
G0,I,) = N(071)®®N<071>J

N

TV
m—times

Then,

||g(:u7 ]m) - g(()? Im)”TV = ”N (:ulﬂ 1) - ®N(/Lm7 1) - N(07 1) - ®N(O’ I)HTV

IN

“N (:uk'v 1) - N(O? 1)||’]1‘V

ol

=1

IN

="l

m
k=1

Lemma B.3. Let {uc}eso C R™ be a sequence such that lir% fe = p € R™. Then,
€—r

lim (|G (s Lm) = G0, In) 1y = G (115 L) = GO, L)y -
Proof. This is done using triangle inequality, the item ii) of Lemma B.1, Lemma B.2 and
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the Lemma D.2. O

Lemma B.4. Let {pc}eso C R™ be a sequence such that lir% | tte|]| = +o00. Then,
e—

i (19 (pte, ) = G0, L)l = 1.

Proof. By definition

1 T — ) (T — pe rx
16 (e ) = GO Tullry = 5 [fonp {-EZ2TEZ R o [T
2 (2m) 2 2 2
Rm
Let us define f : R™ —]0,00[ by f(z) =exp {—%2%}. Then, we want to compute
1
1G (te: Im) = G (0, L) lyy = ——= / |f(x = pe) = f(z)] de.
2(2m)> O
By a classical analysis technique that
iy [ 17~ ) - f@)lde = [ |f)lds (B1)
Rm R™

when [ |f(x)|dx < 4o00. The last statement implies the result. Now, we will prove the
R'rn
relation (B.1). Let us define M := [ |f(z)|dx < +oc0. Let n > 0 be fixed. Then, there
R™

exist = r(n) > 0 large enough such that

M- / f@lde < 1

B(0,r)
Therefore,
M- [ -l < 1
B(pe,r)
Due to liné ||ite]| = o0, then there exists ¢y > 0 such that for every 0 < € < ¢y, we have
e—
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B(0,7) N B(pe, ) = 0. Consequently,

/If(w—ue)—f(w)!d:v > /If(af—ue)—f(fv)|dx+ / @ — ) — f(2)) do
R™ B(0,r)

B(I—‘e ,7")

> /(If($)|—|f(w—ue)|)d$+ / @ — )| — ()| da
B(0,r) B(pe,r)
> oM — 1.

Consequently, for every n > 0, we have

oM~ < [ 1fle = ) - f)]do < 201
Rm

Now, taking 7 — 0, we obtain the statement.

Ul
Lemma B.5. Let {3 }.~0 C S, be a sequence such that liIr(l) Ye=%X€S3S,,. Then
€E—
1 [G(0,20) ~ 60, D)y = 0.
Proof. By item iv) of Lemma B.1, for every € > 0, we have
16(0,%0) = G(0, %) gy, = [|G(0,575577) = G(0, L)
) He ) TV ) € yItm) ||y -
Consequently, it suffices to prove, when lir% Ye =1, € S,,. By definition, we have
e—
*2 e
1 exp{— ) } s
I60.5) -G 0.l = ——— [ e {50} o
w 2 (2m) 2 o (det(X,))2 2
Let us define the function f. : R™ — [0, 4o00[ by f.(x) = i [z
et us define the function f, : , ool by fo(z) = o) exp 51

For every x € R™, we have lil% fe(x) = 0. Also, for € > 0 small enough, it follows that
€E—

Jda) < Glexp{—czns(:n?}wxp{‘@}

for every x € R™, where C; > 0 and C5 > 0 are constants. Consequently, the results

follows from the Dominated Convergence Theorem. O
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Lemma B.6 (Total Variation Bounded). Let (€2, F,P) be a probability space and G C F
be a sub-sigma algebra of F. Let XY, Z : (Q,F) — (R,B(R)) be random variables such
that X andY are G measurables and X,Y,7Z € L' (Q, F,P). Let us consider the following
random variables X* = X + Z and Y* =Y + Z. Let us suppose that E[X*| G| has
Gaussian distribution G (X,X), E[Y*| G] has Gaussian distribution G (Y,X) and ZL1G.
Then,

X" =Yy < Cm)[ X2 [[E[|X = Y],

where C'(m) > 0 is a constant which only depends on m.

Proof. Using the the properties of conditional expectation, the item ), the item i), the

item i7i) of Lemma B.1 and Lemma B.2, we have

| X* = Y*|lpy = sup |]E []l(x*eF) - ﬂ(Y*EF)H
FeF

sup E [|E [ﬂ(x*ep) —Lyeen | g} ”
FeF

s R [|P (G(X,0%) € F) =P (G(Y,0") € F)]]

IN

IN

IA

sup E

| 3| (s o)
C(m)||S73[E[|X - Y],

where C'(m) > 0 is a constant. O
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Appendix C

Qualitative and Quantitative

Behavior

Lemma C.1. Let V : R — R be a C! function such that
a) V(0)=0.
b) V'(z) =0 iff = 0.
c¢) lim V(z)=+oo.
|z]—=+o00
Then V(z) > 0 if x # 0.
Proof. It can be shown that V'(z) < 0if z <0 and V'(z) > 0if 2 > 0. O

Lemma C.2. Leu us assume the hypothesis of Theorem 2.3. Suppose that there exists a

C? function V : R — R such that
a) V(0)=0.
b) V'(x) =0 iff = =0.
c) V"(0) > 0.
d) lim V(z) = +oo.

|z|—=+o00

Then its follows

Z) tkgloc wt =0
i) lim @, = 0.
t—-+oo
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iii) Let us assume that 'V is a C® function. Then there exist constants ¢ # 0 and ¢ # 0

i)

such that
lim eV"(O)tq)t = ¢,
t—+o00
. V' (0)t _ =
dm e =2

where ® = {®;}i>0 is the fundamental solution of the nonautonomous system
d(I)t == —V”<'¢t>q)tdt

for every t > 0 with initial condition &y = 1.

Let us assume that V is a C3 function, then

t
1\? 1
. 2 L _
A / <<I>s> = vy
0

Proof.

i)

i)

By our assumptioms V’(0) = 0, V”(0) > 0 and V'(x) # 0 if x # 0. Therefore, the
unique critical point zero is asymptotically stable, so there exists an open neigh-
boorhood Ny of zero such that for every vy € Ny. It follows that ¢, goes to zero as
t goes to infinity. Let us consider that 1y & Ny and K := V! ([0, V (¢g)]). Then
Yy € K for every t > 0. Also, K is a compact set because of lim V(x) = +oc.

|| =400
Because K is bounded, then there exist » > 0 such that K C B(0,r) where we
denote B(0,7) :=={z € R:|z| <r} and B(0,r) :={z € R: |z| < r} so we we can
choose N, small enough such that Ny, € B(0,r) € B(0,r). Let us call K := B(0,r)

then ¢y € K for every ¢t > 0. Let us define § :== inf (V7(z))* > 0. Let us suppose
€K\ Ny
that ¢y & Ny for every t > 0, then dV (¢y) = — (V'(¢y))* < —6 for every ¢ > 0.

Therefore, 0 <t < @ which is a contradiction. Consequently, there exists 7 > 0

such that ¥, € Ny and consequently, 1, goes to zero as t goes to infinity.

By our assumptions it follows that ®; = VI fop every t > 0, where ¢y = x¢ # 0.

V' (¢o)
So by item i) and continuity of V' we have lim ¢, = V2O — .
t—00 V' (%o)
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i7i) Let us define H(z) = (“//l,l((g)) - %) Tgaz0y + (%) 1.—0}, where 14 denotes the

indicator function of the set A C R. Let us define A : R — R by

h(x) := zexp ]H(z)dz

Since H is everywhere continuous, then it follows that h is well defined. Let us
define W, := h(1y) for every t > 0, then d¥, = —V"(0)W.dt for every ¢ > 0 and
Uy = h(tg). Therefore,

Pt

Yrexp (V"(0)t) = h(tp)exp —/H(z)dz (C.1)

for every t > 0. By Intermediate Value Theorem, for every ¢ > 0 there exists
& €] min{0, ¢; }, max{0, ¢, }[ such that V'(¢y) = V" (&)1:. Because of relation (C.1),

we see that
Pt
V() exp (V"(0)t) = V"(&)h(vo) exp —/H(z)dz (C.2)

for every t > 0. Consequently, by the relation (C.2) and item i), we have
Jm Vi) exp (VE(0)8) = V(0)h(¢).
—100

Because sgn(h(z)) = sgn(x) for every x # 0, then V" (0)h(z)g) # 0.

iv) By item i), we have
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for each ¢ > 0. By item #4i) and for cach 0 < € < ¢?, we have

. , (1Y ¢ te
htlilfllop(v (%))20/(‘//(%)> ds < <02—€> 2V"(0)’

%ﬁ%ﬂm%wj(v@gf“ z(glagwmy

Letting € — 0, we obtain

lim (V'(¢4))?

t—-+o0

o\“
/N
<
m@ —
N—
no
QL
V2)
Il
[\V]
<
I| =
—~
=

O

Lemma C.3. Using the same notation as in the proof of Theorem 2.17. It follows that

_ sup. [t
lim SO 4y €10, oo,

e—0 \/E
for every b € R.

Proof. By continuity we have

sup [ty
Fe(b) <<t (b) _ e

Ve e

for some t* € [t.(b),f.(b)]. Then, using the following relation and Lemma 2.4, it becomes

straightforward.

_V// (O)t*

K VO el e

N Ve

Lemma C.4. Under the hypothesis of Theorem 3.6, we have

i) For any initial condition 1(0), it follows that 1)(t) goes to zero ast goes to infinity.

Moreover, |[¢(t)]| < ||w(0)]|e=% for every t > 0.
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i1) Lebesgue almost surely for 1(0), it follows that

lim e™'(t) = v(1(0)) € R™\ {0},

t—+o00
where v(1(0)) € span{v1} and vy is the eigenvector associated to the eigenvalue a.
iii) Let us consider the following matriz differential equation,

dA“(t) = —Hy(0)A(t) — A“()Hv(0) + €lm,
A(0) € M(m),

where M(m) is an squared matriz of dimension m. It follows that

lim AS(t) =

t—o0

(Hy(0))

N

iv) Let A%(t) := eE[y(t) (y(t))"]. It satisfies the following matriz differential equation,

dA*(t) = —Hy(p(t)AY(t) = A Hy (1)) + elm,
AS0): = 0e M(m),

where M(m) is an squared matriz of dimension m. It follows that

lim AS(t) = <

Jim A“(f) = £ (Hy(0))
Proof.
i) It follows that
dlp)* = 2(¢(t) dy(t)
= —2(p®)"VV (¥ (1))
< —20[lu ()|

for every t > 0, where the last inequality follows from Lemma D.5. By the Gronwall
Inequality, we have ||¢()[|? < [|1(0)]*e=%* for every t > 0.

i1) Because all the eigenvalues of —Hy (0) are reals and they are bounded for above by
—§ < 0. By Hartman-Grobman Theorem there exist neighborhoods U, U of zero
such that h : U — U is an homeomorphism that conjugate the flows of {1()}1>0
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i)

iv)

with initial condition 1(0) € U and the linear flow {e=#v©!h(1)(0))} ;0. Moreover
h(x) = x + o(||z||) when ||z|| goes to zero. For details see [17] and [21]. Let
¥(0) € R™. There exist 7 > 0 such that ¢(t) € U for every t > 7. Therefore
h((r + 1) = e HvOtp (3 ) for every t > 0. There exists an orthonormal basis of

m

R™ for which the linear flow is written in the following way: Y e~ < (1), v; > v,
i=1

where 0 < 6 < a3 < ag < -+ < @y, are the eigenvalues of Hy (0) and vy, va, ..., vy

are the corresponding orthonormal eigenvectors. Then

Y(r+t) = bt (i et < (1), v > vi>
i=1

= Y et <(r), 0> v

i=1
+o <|| Ze_ait < (1), v; > vl||> .
i=1

Consequently, for Lebesgue almost every initial condition ¢(0) € R™ we have

lim e Wip(t) = M7 < )(1), v, > vy

t—00

The explicit solution is given by

t
Ae(t) _ e—HV(O)tAe(O)e—HV(O)t+€/€—2HV(O)st

0

for every t > 0. Now, an straightforward calculation gives the result. For details,
see [15].

By item ) of this Lemma and using the local Lipschitz condition of Hy at zero with

Lipschitz constant Ly > 0, for every n > 0, we can take 7, := %ln (W) such that

| Hy (4(t)) — Hy (0)]| < Lollt(8)[| < Loll(0)[|e ™ < Lon
for every t > 7,. Let us call 7 := 7,. Then,
dA(t+7) = —(Hy (W(t+7)) A1)+ A()Hy (P(t+ 7)) dt + €l

for every ¢t > 0 with initial condition A°(7). Let us consider the following matrix
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differential equation, Then,

dA“(t+71) = —(Hy (0) A%(t) + A(t)Hy (0)) dt + €y,
AY(1) = A1)

for every t > 0. Let us define I1(¢) := A“(t + 7) — A°(t + 7) for every t > 0. Then,

dll“(t) = —(Hy ((t +T))H€()+H€( JHy (P(t+ 7)) dt +
(Hy (0) — (w(t+7)))A€(f+T)dt+
A(L+7) (Hy(0) = Hy (¢(t +7))) di,

[I(r) = 0

for every t > 0. Therefore,

d|TrE@)))? = Zm (dIIg (1))

i,j=1

for every t > 0. For every 4,5 € {1,...,m}, we have

m m

AT, () = = HY ((t + 7)1 (1) ZH (OHE (h(t+ 7)) +
S [H#(0) - B (e + )] Ap e+ 1)+
SO At 7) [P (0) = B ((t+7)]

for every t > 0. Consequently, using the d-coercivity of V', we obtain

d@)|* < —4g|TE@)))* + 1(t) + J (1)
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for every t > 0, where

NE

1) = Y 20,0 Y [HF0) — B i+ 7)) Af,(t+7),

i,5=1 k=1
JO) = Y20 DD ALt ) [HE(0) — HY (e + 7))
ij=1 k=1

for every t > 0. Then, using the Lipschitz local condition, the Cauchy-Schwartz
inequality and the fact that |x| < 22 + 1 for every = € R, we have

IN

I < 2Lon (IO +m) (1A + 7)) +m) .
[T < 2Lon (TN + m) (1AL + 7)1 +m)

for every t > 0. By item 4i7) of this Lemma, we obtain that there exists C' > 0 such
that [|A%(t 4+ 7)||* < C for every t > 0. Consequently,

d|I(t)|* < (4Lokn — 49) |TI°(t)||* + 4Lowmr

39
4LgkK?

for every t > 0, where k := C +m. A priori we can take 0 < n < S0
@) < —d|[I(t)[|* + 4Lormn

for every t > 0. Now, using the Gronwall inequality, letting ¢ goes to infinity and

then let n goes to zero, we obtain
lim [|[TI(¢)||> = O.
t—o0

Using the last fact and the item 4i7) of this Lemma, we obtain the statement.
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Appendix D

Tools

Lemma D.1. lip% e (In (1/0))® = 0 for every a > 0 and 8 > 0.
€E—>

Proof. Tt follows using the L’Hopital Rule of Calculus several times. O

Lemma D.2. Let {a.}~0 C R and {b.}c~0 C R be sequences such that lincl) b. =b € R.
€E—
Then

i) limsup (a. + b.) = limsup a, + b.
e—0 e—0
i1) liminf (ac + b.) = liminf a. + b.
e—0 e—0
Proof. The proof follows from the definition of limsup and liminf. O
Lemma D.3. Let W = {W;}>¢ is a Brownian motion and let us consider B; :=

sup |Ws| for each t > 0. Then for each k € N, E [Bf] has growth of the form t

0<s<t
for some a > 0.

Proof. By the Donsker Theorem we can compute explicitly the distribution of B; for every

t > 0 fixed, and the result follows from an straightforward calculations. O

Definition D.4. Let V : R™ — R be a function. We say that V is d-coercive or d-strong

convex function if there exists 6 > 0 such that
0 2
Vite+ (1 -t)y) < tV(2) + (1 =)V(y) - 5t(1 — 1)}z —yll

for every x,y € R™.

The following Lemma provides a characterization of coercive functions.
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Lemma D.5 (Characterizations Coercivity Functions). Let V : R™ — R be a C*-

function. The following statements are equivalents:
i) V is §-coercive or §-strong convex function.

it) V(y) > V(z) + (VV(2)*(y — z) + 5lly — x||* for every x,y € R™. The constant 6

is called the convezity parameter of function V.
iii) (VV(z) = VV (@) (x—y) > 6|la — y||? for every z,y € R™.

i) y*Hy(x)y > 0||ly||* for every x,y € R™, where Hy represents the Hessian matriz

associated to the scalar function V.
Proof. For details see [27]. O

Lemma D.6 (Liptchitz Gradient Coercivity Functions). Let V : R™ — R be a d-coercive
C?-function such that the gradient VV is Lipschitz with Lipschitz constant A > 0. Then,
y*Hy(z)y < Ally|]? for every x,y € R™, where Hy represents the Hessian matriz associ-

ated to the scalar function V.
Proof. For details see [27]. O

Lemma D.7 (Jensen Inequality). Let (2, F, u) be a measure space such that u(2) = 1.

If g is a real-valued function that is p-integrable and if ¢ is a convexr function on the real

s@(/gdu> S/s@ogdu-
Q Q

Theorem D.8 (Pinsker Inequality). Let p and v be two probability measures define in
the measurable space (2, F). Then it follows that

line, then

= vllay < 2H (1] v),

where H (| v) is the Kullback information of u respecto to v and it is define as fol-

lows: if p < v then take the Radon-Nikodym derivative f = d—‘y‘ and define H (| v) ==

d
[ fIn(f)dv, in the case p & v let us define H (u| v) := +oo.
Q

Proof. For details check [3] or [9]. O

72



Bibliography

[10]

[11]

Avner Friedman, Stochastic differential equations and applications, Probability and
Mathematical Statistics, Volume 1, 1975.

Avner Friedman, Stochastic differential equations and applications, Probability and
Mathematical Statistics, Volume 2, 1976.

Cédric Villani, Optimal transport, old and new, Springer, 2006.

Daniel Stroock & S. Varadhan , Multidimensional Diffusion Processes (Classics in
Mathematics), Springer, 2005.

David Williams, Review: D. W. Stroock and S. R. S. Varadhan, Multidimensional
diffusion processes, Bulletin (New Series) of the American Mathematical Society,
Volume 2, Number 3, 1980, 496-503.

David Aldous & Persi Diaconis, Shuffling cards and stopping times, American Math-
ematical Monthly 93, No. 5, 1986, 333-348.

David Levine & Yuval Peres & Elizabeth Wilmer, Markov Chains and Mizing Times

Earl Coddington, An Introduction to Ordinary Differential Equations, Dover Books

on Mathematics.

Francois Bolley and Cédric. Villani, Weighted Csiszar-Kullback-Pinsker inequalities
and applications to transportation inequalities, Annales de la faculté des sciences de
Toulouse, Volume 14, Issue 3, 2005, 331-352.

Franck Jedrzejewski, Modéles aléatoires et physique probabiliste (French Edition),
Springer, 2009.

Laurent Saloff-Coste, Random walks on finite groups, Probability & Discrete Struc-
tures, Springer, 2004, 263-346.

73



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[23]

[24]

[25]

[26]

Hui-Hsiung Kuo, Introduction to Stochastic Integration, Springer, 2006.

Ioannis Karatzas & Steven Shreve Brownian Motion and Stochastic Calculus,
Springer, 2004.

Javiera Barrera & Bernard Ycart, Bounds for left and right window cutoffs, dedicated
to the memory of Beatrice Lachaud, 2013.

Jon Davis, Foundations of Deterministic and Stochastic Control, Birkhauser.

Jorge Sotomayor, Equacgoes diferenciais ordindrias, Textos Universitarios do IME-
USP, 2011.

Lawrence Perko, Differential Equations and Dynamical Systems , Springer, 2001.

Mark Freidlin & Alexander Wentzell, Random perturbations of dynamical systems,

Springer, 2012.

Persi Diaconis, The cut-off phenomenon in finite Markov chains, Proceedings of the
National Academy of Sciences, USA, Vol. 93, 1996, 1659-1664.

Peter Kloeden & Eckhard Platen, Numerical solution of stochastic differential equa-

tions, Springer, 2013.

Philip Hartman, On local homeomorphisms of euclidean spaces, Bulletin of Mexican
Mathematical Society, 5, 1960, 220-241.

Rafail Khasminskii, Stochastic Stability of Differential FEquations: 66 (Stochastic
Modelling and Applied Probability), Springer, Second Edition.

S. Jacquot, Asymptotic behavior of the second eigenvalue of Kolmogorov’s process (in
French), Journal of Multivariate Analysis 40 Issue 2, 1992, 335-347.

Tomasz Rolski & Zbigniew Palmowski, A technique for exponential change of measure
for Markov processes, Bernoulli, Volume 8, Number 6 Year 2002, 767-785.

Widder D. Vernon, The Laplace transform, Princeton University Press, 1946.

Wolfgang Siegert, Local Lyapunov exponents: sublimiting growth rates of linear ran-

dom differential equations, Springer, 2009.

Yurii Nesterov, Introduction lectures on convex optimization: a basic course, Kluwe
Academic Publishers, 2004.

74



