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Introduction

One of the most important recent endeavors in the field of Algebraic Geo—
metry is to describe the birational geometry of the moduli spaces associated
to curves.

Fixing the genus g, a topological invariant of curves, the moduli space
of curves has been constructed by Mumford in the 60’s; it is denoted M.
Even though Birational Geometry is concerned with general properties, a
compactification of M, is useful. A compactification of M, is the Deligne-
Mumford M, ([DM]), the compactification by adding stable curves to the
boundary.

In order to try to characterize the effective cone of Wg and to answer
other questions related to the birational geometry of M,, several effective
divisors were computed in Pic,,(M,) ® Q in terms of the so-called Harer
basis. The Brill-Noether divisors were computed by Harris and Mumford
[HMu] by the method of test curves. Also by the same method, Diaz
[D] and Cukierman [C] computed other divisors. Farkas computed several
divisors by the same method and together with Popa [FP] obtained in-
equalities between the first few coefficients of any effective divisor in M,
not contained in the boundary.

Recently, Cumino, Esteves and Gatto ([CEG1],[CEG2]) recomputed the
Diaz and Cukierman divisors with a new approach. Instead of using test
curves, the calculation was done over a general 1-parameter family of sta-
bles curves. They used the theory of limit linear series for curves of compact
type introduced by Eisenbud and Harris ([EH1]), but in a slightly more ge—
neral format, working for any nodal connected curves. This approach has
also been taken by Abreu [A] to compute a new effective divisor in M,, in
his thesis work under the guidance by Esteves.

For ¢ = 2n, the divisor Abreu computed is defined as the closure of
the locus of smooth curves C' having a pair of points (P, Q) such that @
has ramification weight at least 2 in the linear system H®(wc(—nP)) and
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iv INTRODUCTION

P has ramification weight at least 2 in the linear system H°(wc(—nQ)).
We can consider other classes of divisors which are similar to the divisor
which was calculated by Abreu. For instance, for nonnegative integers a, b
such that a + b = g, a general problem is the calculation of the class of the
divisor R,; which is defined as the closure of the locus of smooth curves
C' having a pair of points (P, Q) such that ) has ramification weight at
least 2 in the linear system HY(wc(—aP)) and P has ramification weight
at least 2 in the linear system H°(we(—0Q)). Notice that Abreu’s thesis
work addresses the case a = b. A natural variant of this kind of divisors is:
for each positive integer 1 < n < g — 2, consider the divisor S2WW,, which
is defined as the closure of the locus of smooth curves C' having a pair of
points (P, Q) such that () has ramification weight at least 3 in the linear
system H’(we(—nP)). Our work addresses the case n = 1.

Thus, this work addresses the problem of computing the class in the
Picard group of the functor Pic ,,(M,) of a certain effective divisor of M,.
This divisor, S?2W; in M,, is defined as the closure of the locus of smooth
curves C' having a pair of points (P, Q) with @) having ramification weight
at least 3 in the linear system H°(wq(—P)). Our approach is to combine
the methods by Cumino, Esteves and Gatto and the method of test curves.
For simplicity, we denote S2W := S2W/.

Writing the class of the divisor we want to compute as

STW = aX — aply — a1y — ... — aj,/20)/2)

and using the method of test curves, we obtain the coefficient a; in terms
of the coefficient a; for every ¢ > 1 and each odd integer ¢ > 5. We find
the following relations:

a; = (i(g —1)/(g — 1))y, for every 2 <i <[g/2].

Also, we compute the coefficient a by using the Thom—Porteous formula
and intersection theory. For each g, we get

a=9g¢° —51g* + 129¢° — 207¢> + 174¢ — 54.

In order to find a lower bound for each coefficient a;, we need to state the
following hypothesis:

Hypothesis (x).

If (X, A) is a general pointed smooth curve, then for every ramification
point P € X of the complete linear system H°(wx(—(gx — 1)A)) and for
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every i > 1, the complete linear system H®(wx((i + 1)A — P)) does not
have ramification points on X —{ A} having ramification weight at least 3.

Using the methods by Cumino, Esteves and Gatto, and using the hy-
pothesis (x), we find the following inequalities for each g:

—b; < a; for every 1 <i < [g/2],

where

b == 6it¢g> — 6itg + 12i* — 6i3¢® — 3i3¢* — 3i3g — 18:° + 3i%¢?
+ 3i2¢% 4+ 12i%g + 61> — 3ig° + 12ig* — 21ig® + 21ig* — 21ig + 6i.

We actually have equalities above for ¢ = 3 and ¢+ = 1, and for ¢ = 4
and 7 = 2.

The ’general family’ method, i.e. the method we use to obtain a lower
bound for each coefficient a;, with ¢ > 1, is coarsely described below. Let
7 : X — T be a general family of stable curves over a smooth projective
curve T'. We can assume that the singular curves in our family have only
one node. Furthermore, we can assume that these curves are not in the
divisor we want to compute. Now, let JV = A Xy X and blow up to solve
the singularities of Y. Let B be this blow up. Composing with the first
projection ) — X', we obtain a map p : B — X. We consider p as a family
of curves over X.

Let w be the relative dualizing sheaf of B/X and £ := w(—A), where A
is the strict transform of A in B. It may be necessary to modify £, B and
even X. Abusing notation, we can say that the changes must be suitable
enough that we get a family p of nodal curves over X’ such that h0(£’ )=
g—1 for every fiber F. Thus, p.L is locally free of rank g—1 and we can use
relative sheaves of jets to compute the ramification points of H O(C‘ r) as
the fiber F' varies. By considering the natural evaluation map u : p*p, L —
J 3_2(£) and substracting excess components of the degeneracy scheme W’
of u, we get a divisor W intersecting each fiber in finitely many points. If
W intersects each singular fiber with multiplicity at most 2 at each point,
then we have m,p.(c3(J;(Os(W)))) = [7]*(S2W), where [r] : T — M, is
the map which is induced by 7; otherwise, we may have excess points on
the singular fibers and we must calculate multiplicities at certain points
and substract them from c3(J%(Op(W))) to get [x]*(S2W). It turns out
that we can obtain a lower bound for the coefficient a;, for every ¢ > 1.
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In order to obtain the coefficient a; in terms of the coefficient a; for
every ¢ > 1 and every odd positive integer g > 5, we use the method of
test curves. We use [g/2] — 1 test curves, which are induced by families of
flag stable curves over P!, and we apply a result which is similar to [HMo],
Theorem 6.65, statement 2. To be able to apply the result, we use a general
result about flag curves.

Our work is organized as follows: In Chapter 1 we present some pre-
liminaries on ramification schemes, smoothings, limit linear systems and
linear series on general smooth curves. In Chapter 2 we review some facts
about the construction of Wg and about its associated Picard groups. In
Chapter 3 we present some needed results on linear systems on rational
and elliptic curves. In Chapter 4 we introduce the divisor S2W and com-
pute the coefficient of \ in the expression for S2W: we do a description
of the results and methods used in the following chapters, and we present
our main theorem (Theorem 4.1.1). Also, we present a few results which
can be useful to compute the coefficient of &y in the expression for S2W.
In Chapter 5 we present a general result on flag curves (Proposition 5.1.1)
and we apply this result by using the method of test curves to get relations
between the coefficients of 41, ..., d/9 in the expression for S2W. Finally,
in Chapter 6 we compute lower bounds for the coefficients of 01, ..., d[y/9-



Chapter 1

Limit linear systems and
ramification schemes

1.1 Ramification points

A nodal curve C' is a reduced, connected, projective scheme of dimension
1 over C whose only singularities are nodes. The dualizing sheaf w¢ is an
invertible sheaf over C. The arithmetic genus of C'is go = h%(C,wc).

Let C be a smooth curve, £ an invertible sheaf on C and V C H’(L) a
linear system of dimension r + 1, for an integer » > 0. For each P € C' and
each integer i > 0, let V(—iP) := V N H°(L(—iP)), the space of sections
of V' vanishing at P with multiplicity at least ¢. The orders of vanishing at
P of sections of £ in V' can be ordered in a increasing sequence ay, . . ., Q.
Define the ramafication weight of P,

wty(P) =Y (a; — i)
i=0
We say that P is a ramification point of V if wty(P) > 0; otherwise P
is said to be an ordinary point of V. If wty(P) = 1, we call P a simple

ramification point; and if wty (P) > 2 we call P a special ramification point.
r+1

On the other hand, V induces a section of L&t wg( 2 ), obtained by
considering locally Wronskian determinants of a sequence of r+1 functions.
The zero locus of this section is denoted by Ry and called the ramification
divisor of (V,£). Indeed, a local analysis shows that

Ry = ) _pecwtv(P)P
r+1)

The degree of Ry is the degree of the invertible sheaf £ wg( e,
1



2 1. LIMIT LINEAR SYSTEMS AND RAMIFICATION SCHEMES

deg(Ry) = (r+1)(deg(£) +r(g — 1)),

known as the Plicker formula.

1.2 Ramification schemes

Let m : X — T be a flat, projective morphism whose fibers are nodal curves
of genus g. We say that 7 is a family of curves. Suppose X is a nonsingular
scheme. Let £ be an invertible sheaf on X and V C 7w, L a locally free
subsheaf of rank r + 1, for an integer » > 0. Suppose for each t € T the
composition

Vi =V¢/(mpVy) — (mL)/(mp(m,. L)) — HO(DCt,L‘xt)

is injective. We call V a relative linear system.
There exist sheaves J.(£) for each integer ¢ > 0 satisfying the following
properties (see [E1], [LT])
(1) J2(L) = L.
(2) JL(L) is locally free of rank i + 1.
(3) There are natural evaluation maps e; : T*m.L — J2(L).
(4) For each ¢ > 1, there is an exact sequence of truncation

0—w? ®L—J (L) T L) —=0

where w; is the relative dualizing sheaf of w. The truncation maps r; are
compatible with the evaluation maps, i.e., e;_1 = r; o ¢; for every 7 > 1.
When 7 is a family of smooth curves, the sheaves J'(L) are called
relative sheaves of principal parts of order i of L.
Let W}, be the degeneracy locus of the natural evaluation map

™V = m'n L — J (L)

Notice that u, is a morphism between locally free sheaves of rank r + 1
over X. Locally, W}, is given by the zero locus of a Wronskian determi-
nant of a sequence of r + 1 functions. Furthermore, W}, has the prop-
erty that W, N X; is the ramification divisor Ry, of the linear system
Vv, C HO(DCt,L‘xt) for every smooth fiber X;,. Let X,, € X be the lo-
cus of nonsingular fibers of 7. The closure W), N X, in X is denoted by
Wy. We call Wy the ramification divisor of (V,L).
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In case V = 7w, L, we say that Wy is the ramification divisor of the
invertible sheaf C.

The formation of Wy, is functorial in the following sense: suppose there
are a morphism 1 : £' — £ which is an injective morphism between
invertible sheaves on X whose degeneracy divisor is D, a relative linear
system V' C 7, L' of rank r + 1, a morphism p : V' — 'V with degeneracy
scheme Y, and a commutative diagram

V—s 7, L

ul |0

V——ms7m L

By using the naturality of the evaluation maps, we obtain the following
commutative diagram of locally free sheaves of rank r + 1

Ty
m[ Mw
™V ——J' (L)

By using the truncation exact sequences, we obtain that the degeneracy di-
visor of JL(¢) : JL(L') — JL(L) is (r+1)D; therefore, taking determinants
in the commutative diagram, we obtain

™Y + W}, = (r +1)D + Wy, (1.2.1)

Now, we will define the k-th special ramification locus. The divisor Wy
is the zero locus of a section w : Oy — Ox(Wy). By using the natural
evaluation maps, this section induces derivatives w®) : Oy — JE(Ox(Wy)).
Let S*Wy be the zero scheme of w®). We say that S¥Wy is the k-th
special ramification locus. On X,s, the support of S¥Wy is the set of

points P having ramification weight at least k£ + 1 in the linear system
Vep) € HY(L|, ).

Xr(p)

1.3 Smoothings

Let C be a nodal curve. A smoothing of C' is a flat, projective morphism
p: C — X where 3 = SpecC|[t]], C is a regular scheme and C'is isomorphic
to the special fiber.
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Let p : C — X be a smoothing of a nodal curve C' of genus g. Let C, be
the generic fiber, £ an invertible sheaf on C and V C p,£ a relative linear
system of rank r + 1. Let V = HY(V) C H°(L). As p is flat and ¥ is
a regular, integral scheme of dimension 1, it follows that every associated
point of £ belongs to C,. Then the restriction I'(C,£) — T'(C,, £| ) is

injective. Indeed, suppose s € I'(C, L) satisfies s’ ¢. = 0; then we have
Supp(s)NC. = (. On the other hand, if s # 0, then we can write Supp(s) =
{z1}U...U{zy} as a union of irreducible components and we obtain that
the points x1, ..., x,, are associated points of £, hence these points belong
to C,. It follows that s = 0. Thus, H°(£) is a torsion-free C[[t]]-module and
hence free. Also, it follows that V' is a free C[[t]]-module. Notice that, since
cohomology commutes with flat base change, we have the isomorphism
HO(L) (1] C((t)) = HO(L‘C*). Let Vi =V Q¢ C((t)). Since V C p, L is
a relative linear system, we have an injective map V/tV « H°(L)/tH"(L),
that is, V =V, N H’(L).

Let D be a divisor on C with support in C. Let V(D), be the image
of V. under the natural isomorphism H°(L|,) = H°(L(D)|, ). Define
V(D) =V (D), N H(L(D)).

If D is an effective divisor on C, we define V(—D) = V N H°(L(-D)).
Also, if D C (' is a subcurve, define V’ 5 as the image of Vunder the
restriction map H°(L) — H(L| ).

Let (4, ..., C, be the irreducible components of C'. Since C'is connected,
for each © = 1,...,n there exists an invertible sheaf £; on C of the form
Li=L0Y ayC)=L®0c(>_ ay,C)
i=1 i=1

such that the restriction map
H(C, Li|,) = H(C;, Lil )

is injective. We say that £; has focus on C;. Let V; = V(> ", a;,C;) and
let V; be the image of V; under the restriction map

HY(C, Li) — H(C;, Lil )

The dimension of V; is r+1. We say that (V}, £; | o) is a limit linear system
on C;.
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Let R; be the ramification divisor of (V;, £;] o) and W the ramification
divisor of V. Then (see [E2], Theorem 7)

WﬂC:Zn:Ri—kZ > (r+1)(r—1i)P

1<j PeC;NC;

where l; ; = a;j — ai; + a;; — a; ;. We call W N C the limit ramification
divisor of (V, L), and [; ; is called the connecting number between £; and
L ; with respect to C; and Cj.

Now, we will present some facts about smoothings and general curves.
The following discussion can be found in [A].

Consider C = E U F, where E, F are subcurves without irreducible
components in common. We have that V(—E) = V N H(L(—E)) induces
a relative linear system V(—F) C p.(L(—F)) of rank r + 1. By using
the equation (1.2.1), we obtain Wy, = (r + 1)E + Wy _p) — p"Y, where
Y is the degeneracy divisor of V(—FE) — V. Let pu : V(—=FE) — V be
the inclusion map. We have that p is a homomorphism of free Cl[¢]]-
modules of rank r + 1 and p*Y =ords(det(p))C. Now, we will show that
ord;(det(p)) =dimccoker(p). Indeed, since tV C V(—FE), we have the
natural epimorphisms of C-vector spaces

V/tV — V/V(—E) and V(—E)/tV(—E) = V(—E) /tV.

Let m :=dimcV/V(—FE) and let gy, . .., g, be sections in V' such that their
images in V/V(—FE) give us a C-basis of V/V(=FE). AsV/tV — V/V(=F)
is an epimorphism, it follows that

dimcV (—E)/tV =dimcV/tV —dimeV/V(—E) =r+1—m

Let fi,..., frye1-m be sections in V(—F) such that their images give us a
C-basis of V(—F)/tV. Since the images of tgy, ..., tg, in tV/tV(—F) give
us a C-basis of tV/tV(—FE), we have that a C-basis of V(—F)/tV(—F)
is given by the images of fi,..., fri1-m,tg1, ..., tgm in V(—=E)/tV(—FE).
By Nakayama's lemma, f1,..., frx1-m,tq1,- -, tgm, span the C|[t]]-module
V(—FE), and since V(—F) is a free C[[t]]-module of rank r+ 1, we have that
fiy ooy for1—ms tg1, - - -, tgm give us a C[[t]]-basis of V(—F). Analogously, we
have that fi,..., fri1-m, 91, ., gm give us a C[[t]]-basis of V. Therefore,

U_Sil’lg the bases f17 S 7f7’+1—m7tgla SR :tgm and fl) S fr+1—m7gl7 <5 9m of
V(—FE) and V respectively, we get that ord;(det(u)) = m =dimccoker(pu).
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Therefore
v = (r+1)E+Wy_p — dimccoker()C
Now, let {P,..., P,} := EN F. Using the exact sequence

0= V]|(-Pi—...—P) = V|, = V|, =0,
where V|F —P—...—P,) = V| N HY( L‘F —P—...—P,), we get
dimeV|, (=P — ... = P, )+d1m@V =dimcV|, =dimcV/tV = r + 1.
Then
v=(r+1)E+Wy_p —dimc(V|,)(E+F)
=Wy_p + (r+1 —dmC (V| )E — dime(V|,)F (1.3.2)
=Wy +dimeV | (=Py — ... = P,)E — dimc(V| ) F

In addition, 1f D is an effective divisor of C such that D and E have no
common components, then V(— ‘ 2 C V’ p(=D-E).

For the convenience of the reader we include a collection of results we
will need, without their proofs.

Proposition 1.3.1. Let C be a nodal union of two smooth curves X and
Y, identifying the point A € X with the point B € Y. Letp : C — %
be a smoothing of C, L an invertible sheaf over C and V C p, L a relative
linear system of rank r + 1. Let W' be the degeneracy scheme and W the
ramification divisor of V. Suppose that for every v > 0 the following is
satisfied

dime (V] (—iA))+dime(V(—iY)|, (-B)) <r +1
dime(V |, (=iB))+dime(V(—iX) | (—A)) <r+1
Then
W' =W + Twy, (A)Y +Twy, (B)X
Proof. See [A], Lemma 5.2.2. O

Proposition 1.3.2. Let C' be a smooth curve, £ an invertible sheaf and
V C H°ZL) a linear system of dimension r + 1. Let V' = V(=P) C
H(L(=P)) for some point P € C such that V' # V. Suppose V and V'
do not have special ramification points on C —{P}. ThenV and V' do not
have ramification points in common on C — {P}.
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Proof. See [A], Lemma 5.2.5. O

Proposition 1.3.3. Let (C, A) be a general pointed smooth curve of genus
g. Then, for every 0 < a < g—1, the complete linear system H°(wc(—aA))
does not have special ramification points.

Proof. See [A], Proposition 5.3.3. O

Proposition 1.3.4. Let (C, A) be a general pointed smooth curve of genus
g > 1, and i a positive integer. Then the complete linear system H®(wc(iA))
has only simple ramification points distinct from A.

Proof. See [CEG2], Proposition 3.1. O

Proposition 1.3.5. Let 1y be a fized positive integer. Then for a general
curve C' of genus g and a general point R € C,

R (we((1+9)R—(a+1)P—(b+1)Q)) =0

for every P,Q € C, every i1 = 0,...,iy and every nonnegalive integers a
and b with a +b = g+ 1.

Proof. See [A], Proposition 5.3.4. O

Proposition 1.3.6. Let 1y be a fixed positive integer. Then for a general
curve C' of genus g and a general point R € C,

P (we((1+ )R- (a—1)P—(b—1)Q)) =2

for every P,Q € C'—{R}, every i =0,...,iy and every positive integers a
and b with a +b = g + 1.

Proof. See [A], Proposition 5.3.6. O



Chapter 2

The moduli space of stable curves
and intersection theory

2.1 Construction of ﬁg

Let g > 2 be an integer. Let M, denote the coarse moduli space of stable
curves. We will recall how ﬁg is constructed. Given a Deligne-Mumford
stable curve X, we have that w%" is very ample for each n > 3. Then,
we may view X as a closed subscheme of degree 2n(g — 1) of PV, where
N = (2n—1)(g—1)—1, as by Riemann-Roch h’(X,w§") = (2n—1)(g—1)
for each n > 2.

We have that wi" = Ox(1); we call such a stable curve n-canonically
embedded. Let H be the Hilbert scheme parametrizing subschemes of
PV with Hilbert polynomial 2n(g — 1)T +1 — ¢, and U C PV x H the
universal closed subscheme. There is a locally closed subscheme K C H
parametrizing n-canonically embedded stable curves of genus g. We can
get K as follows:

Let H' C H be the open subscheme parametrizing nodal curves. Let
Ur C PN x H' be the induced subfamily over H’. This family Uy, admits a
Picard algebraic space Picy,, /g over H'. Furthermore, the sheaves wg’;, JH

and Oy, (1) induce a map
H — PiCUH//H’ X g PiCMH//H’-

Then K is the preimage of the diagonal under this map.

We have that K is locally closed in H', because so is the diagonal in
Picy,,/m X wPicy,, /. Let V :=Ug C PV x K be the induced subscheme
and v : V — K the family induced by the second projection PV x K — K.

8
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We have that K is smooth (see [HMo], lemma 3.35).
The family v : V — K is versal. To see this, let 7 : C — S be a family
of genus g stable curves. The pushforward m,(w2™) is locally free of rank

N + 1. Thus, for each point s € S, there is an open neighborhood Uy of
s and an isomorphism (’)?}gN s (W) We have an induced map

U,
C, = 7 YU,) — PN x U,, and this map is an embedding for n > 3, as
the fibers of 7 are stable. This is a n canonical embedding, so we get a
map U, — K and by the universal property of the Hilbert scheme, we get
a Cartesian diagram

V)

C,—V
|

=

Us—K

Therefore, v is versal.

The group of automorphisms PGL(N) of P acts naturally on H. Then,
there is an induced action PGL(N) x K — K. Giescker [G] constructs M,
as a geometric GIT quotient of K under this action for any n sufficiently
large. The quotient map, ¢ : K — Wg, is also the map induced by the
family v : V — K.

2.2 The Picard group of Wg

Let M, be the coarse moduli space parametrizing stable curves. Let A'(M,)
be its Chow group of codimension—1 cycle classes and Pic(M,) its Picard
group. Since ﬁg has only finite quotient singularities, every codimension—1
subvariety Y of Wg is Q—Cartier, i.e. there is a Cartier divisor D of E

such that [D] = d[Y] for some integer d > 0. So we have an isomorphism
A'(M,) ® Q — Pic(M,) ® Q

Now, we will define the Picard group of the moduli functor Pic ,,(M,):

Definition 2.2.1. An element v € Picu,(M,)®Q is a collection of classes
Y € Pic(S) ® Q for each family of stable curves w: C — S, such that for
each Cartesian diagram

C'—C

A

SO
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we have Yo = f*(Vx)-
We have an isomorphism (see [HMo], Proposition 3.88)

Pic(M,) @ Q = Picsun(M,;) @ Q

It is easy to explain how the isomorphism works: Consider an element
I' € Pic(M,). For each family of stable curves m : C — S, we have an
induced map ¢ : S — M,. Now, define v, := ¢*(T).

Also, there is an isomorphism (see [HMu], p.50)
Picun(My) — Pic(1)PEHN),

where Pic(K)PELW) C Pic(K) is the invariant subgroup under the action

of PGL(N). The isomorphism carries an element v € Picy, (M) to v,.

2.3 Tautological and boundary classes

There is a natural element A € Picsyun(M,), which is called a tautological
class. Given a family 7w : C — S of stable curves, define A, :=det(m,(w,)),
where w, is the dualizing sheaf of 7.

To define the boundary classes, we need some terminology. Given a
connected nodal curve X, a node P € X is called a disconnecting node if
X — {P} is not connected. Otherwise, P is called a connecting node.

For each i = 0,...,[g/2], we define the subsets A} C K as follows: A
is the set of points s € K such that the fiber Vs has a connecting node,
and Al for ¢ > 1 is the set of points s € K such that the fiber Vs has
a disconnecting node P, and the closure in Vs of one of the connected
components of Vi — {P} has arithmetic genus i. The subsets A, C K
are closed subsets of K of codimension 1. We give them their reduced
induced scheme structures. Thus, they are Cartier divisors, because K is
smooth. The invertible sheaves associated to the Al are invariant under
the action of PGL(N). Let dy, ..., |4/ denote the corresponding elements

of Picsyn(M,). These elements are called boundary classes. We can also

view A and the J; as elements of Pic(M,) ® Q.
The group Picyy,(M,) is freely generated by A and the §; for g > 3 (see
[AC)). If g = 2, then &y and d; form a basis for Pic(M,) @ Q (see [M]), and

we have Mumford’s relation:

10X = dp + 201
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For our calculations, it is important the fact that a class y € Picp,(M,)2Q
is defined by its value v, € Pic(S) ® Q on 1-parameter families 7 : C — S,
where C is smooth. Moreover, it is enough to consider just a sufficiently
general family.

2.4 Intersection theory

All definitions and theorems of this section can be found in [F].

Let X be a scheme, and A; X the Chow group of its k—cycles modulo
rational equivalence. Let E be a vector bundle over X of rank r. For
i=0,1,..., the i — th Chern class ¢;(E) is a map

Ci(E)ﬁ_ . Ak;X — Ak;_ZX

defined for all £ by the following properties:
1. Co(E) =1.
2. 1If f: X' — X is a flat morphism, then

a(ffE)N ffa= [ (a(E)Na)

for all cycles o on X and all i.
3. (Whitney sum) For any exact sequence

0—+F —FE—FE —0

of vector bundles on X, we have

c(E) =Y a(E)e(E").

i+j=k

4. (Normalization) If E' is a line bundle, and D is a Cartier divisor on
X with Ox (D) = E, then

a(E)n[X]=[D].
5. (Projection formula) If f: X’ — X is a proper morphism, then
fla(fFE)Na) =¢(E)N fi(a)

for all cycles o on X’ and all i.
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6. (Vanishing) For all ¢ > r, we have that
¢i(E)=0.
Define the Chern polynomial ¢;(E) by
a(E) =1+c(E)t+...+c(E).

Factor ¢;(E) = []'_;(1 + ;t) in a formal way, i.e., the Chern classes of
E are the elementary symmetric functions of «q, ..., «,. The «; are called
Chern roots of E.

The Chern classes of the dual bundle EV are given by the formula

CZ'(E\/) = (—1)ZCZ(E)

For a line bundle L, we have the following formula for the top Chern
class of the tensor product £ ® L

r

¢(E®L)= Z cr(L)ic—i(E).

Keeping the same notation of Section 1.2, we have the following propo-
sition:

Proposition 2.4.1. ¢;(JH(£)) = (V) er(wr) + (i+1)e1(£L) for everyi > 0.

Proof. By using the truncation exact sequence

02w, ®@L— JHL) = JNL)=L =0
we obtain by the Whitney formula
c1(JHL)) = ci(wr @ L) +c1(L) = e1(wr) + 1 (L) + 1 (L) = er(wy) +2¢1(L)
More generally, by using the truncation exact sequence
0= wl®@L = J (L) = J L) =0

we obtain by the Whitney formula for every ¢ > 1

c1(J(£L)) = ar(wy @ £) + er(J7H L)) = der(wr) + ea(£) + er(J7H (L))

Therefore, by induction
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er(Ji(L)) = (1424 .. +i)er (we) + (i 4+ Der(£) = (5 er(wr) + (i +Des (£).

(]
The Chern character ch(F) of a vector bundle E of rank 7 is defined by

the formula .
=3 eaplan)
i=1

where exp(z) = e* =" a"/nl, and o, ..., «, are the Chern roots of E.
The first terms are

1 1
ch(E) = 'r‘"Cl(E)+§(Cl(E)2—202(E))"’6(Cl(E)3—361(E)CQ(E)"’BCQ,(E))"‘. -,
The Todd class td(F) of a vector bundle E of rank r is defined by the
formula .
= H Q(av),
i=1
where
B
_ k 1 k 22k
Qz) = 1_” — 14 x-l-z ,
where the B} are the Bernoulli numbers and aq, ..., qa, are the Chern roots
of E. The first terms are
1 1 1
td(E) = 14 5e1(B) + E((:1(15’)2 +a(E)) + yea(E)es(B) + ..

When X is non-singular, we write simply ¢;(E) in place of ¢;(E) N [X].
Furthermore, every coherent sheaf F on a non-singular X has a finite
resolution by locally free sheaves

O—F,—FE,1—... > —>FEy—F—0,

so we can extend the definition of Chern classes to coherent sheaves; in
fact, just use the Whitney sum to define

F) =ﬁct(Ez)( b
i=0

Given a proper morphism f : X — Y and a coherent sheaf E over X,
recall that the shriek of E by f, denoted by fi(F), is an element of the
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Grothendieck group of coherent sheaves on Y (for details and definitions,
see [F], p.281). In order to state the Grothendieck-Riemann-Roch Theo-
rem, we just need the following definition:

Definition 2.4.1. Let f : X — Y be a proper morphism and E a coherent
sheaf over X. Define

ch(f(E)) ==Y (=1)'ch(R' f.(E)).
i=0
Now, we state the Grothendieck-Riemann-Roch Theorem; this theorem
will be useful for us, as by using it, we will be able to compute the first
Chern class of the pushforward of an invertible sheaf, and this will be
important to compute classes of degeneracy loci of evaluation maps (see
Section 1.2).

Theorem 2.4.2. (Grothendieck-Riemann-Roch) Let f : X — Y be a
proper morphism between smooth connected schemes. Then

ch(fi(E)) = fi(ch(E) - td(Tx/y)),
for all coherent sheaf E over X, where Ty is the relative tangent sheaf.

If 7 : C — S is a family of stable curves, where both C and S are smooth,
then the Grothendieck-Riemann-Roch Theorem can be used to prove the
following formulas:

(1) tdl(TC/S) = —%Cl(wﬂ-).

(2) W*(tdg(Tc/S)) = )\77.

(3) mu(cr1(wr)?) = 12X — 6, where 0 = &y + ... + djy/9-

Finally, we will state the Thom-Porteous Formula, which we will use to-
gether with the Grothendieck-Riemann-Roch Theorem to compute classes
of degeneracy loci of evaluation maps.

Theorem 2.4.3. Let X be a smooth connected scheme, w : E — F a
morphism of vector bundles of ranks e and f, and k <min{e, f}. Define
Dy (u) as the locus where the map has rank < k. If Dy(u) has the expected
codimension (e — k)(f — k), then

[Di(w)] = AP (e(F — B)) N [X],

where Al(d)(c(F — F)) = det((c14j—i(F — FE))ij=1..4), and for each i,j,
iy j—i(F — E) is the coefficient of '~ in the formal series ¢,(F)/ci(E).
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In particular, if e= f and k = e — 1, then
Di(u) = c1(F) — c1(F)
and if k =0 and E = Ox then

[Dr(u)] = cp(F).

15



Chapter 3

Linear systems on rational and
elliptic curves

3.1 Rational curves

Proposition 3.1.1. Let Ry, ..., R, be distinct points on P!, and ay, ..., ay
positive integers. Define the linear system

V.= Ho(w]pl((al + 1)R1)) + ...+ HO(W[Pl((an + 1)Rn))
C Ho(w]pl((al + 1)R1 + ...+ (an + 1)Rn))

Then V is (a1 + ... + a,)-dimensional and has no ramification points on
P! —{Ry,...,R,}. Furthermore, for each i, the orders of vanishing at R;

of the sections in V are
0,...,a;,— La;, +1,...,a1+...+ay,
and wty(R;) = 3., a;.
Proof. Let £ :=wpi((a1 + 1)R1 + ...+ (a, + 1)R,,). Since for each i

Ui == H(wpi (@i + DR:) N H(wpi((a; + 1) R;))
JF#i
is contained in H(L(— 37, ;(a; +1)R;)) and H(L(—(a; +1)R;)), we get
Ui C H(L(—(a1 + )Ry — ... — (a, + D)R,)) = H(wp1) = 0

for every i, so the dimension of V is a; + ... + a,. On the other hand, all
complete linear systems on P! have no ramification points, so the statement

16
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of the proposition is true if n = 1. Suppose n > 2 and let us argue by
induction on n. For every 0 <m < a; + 1

V(—le) = Ho(wpl((al +1-— m)Rl)) D HO(WPl((CLQ + 1)R2)) D...
@ Hwp ((an + DRY))

Then dim¢V (—mRy) = a1 —m—+as+...+a, for every 0 < m < a; and
V(—alRl) = V(—(a1 + 1)Rl>
Now, consider the linear system

V' = H%wpi ((a2 + 1)R2)) @ ... & H(wpi ((a, + 1)R,,))
C Ho%wpi((az + )R + ... + (a, + 1)Ry))

Since by induction V' has no ramifications points on P! — {Ry, ..., R,},
and since dim¢V’ = as+...+a, and V'(—aRy) = V(—(a1 + 14+ a)Ry) for
every integer o > 0, it follows that V(—(a; +1+as+ ...+ a,)R1) = 0.
Thus, the orders of vanishing at R; of the sections in V' are

0,...,a1 — lL,ar+1,...,a14+ ...+ ay,

whence wty (Ry) = as + ... + a,. Analogously, for each i, the orders of
vanishing at R; of the sections in V are

0,...,a;, — La;,+1,...;a1+ ...+ ay,,
whence wty (R;) = >, ; a;. Then
wty(Ry) 4+ ... +wty(R,) = (n—1)(a1 + ... + ap).
On the other hand, since
deg(L)=a1+ ...+ a,+n—2and dimcV =a; + ...+ ay,
we have by Pliicker formula
deg(Ry) = (n—1)(a1 + ...+ ay).
Therefore, we have no other ramification points. O

Proposition 3.1.2. Let Ry, ..., R, be distinct points on P!, and aq, . .., ay
positive integers.
Let L :=wpi((aq +1)Ry + ...+ (a, + 1)R,,)). Define the linear system

V= H(wei((a1 + D)R1)) @ ... & H(wp ((an + 1)R,)) € H(L)
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Let Vi C H°(L) be a linear system of dimension ay+ ...+ a, — 1 contained
i Voand containing

HO(wpi (a1 — 1D)R1)) @ H(wpi (a2 + 1)R2)) & . .. & H(wpr ((an + 1) Ry))

Then either Vi has no ramification points on P* — {Ry, ..., R,} or Vi has
exactly one ramification point there and the ramification is stmple. Fur-
thermore,

wty, (Ry) = (Zj# a;j)+a+...+a, —2+ €, where e € {0,1},
and for each i # 1
wty, (R;) = (3_;4 aj) — 1 + €, where ¢; € {0, 1}.
Proof. If a; = 1, then by dimension considerations
Vi=Hwp((az +1)R)) @ ... 0 H(wp ((a, + 1)Ry)).
Then, it follows from Proposition 3.1.1 that
wty, (R;) = 2#1,2’ aj = (Zj;éi a;j) — 1+ €,
where ¢; = 0 for every ¢ # 1, and

wty,(R1) = 2(as + ... + a,)
= (Zaj)—l—a1+...+an—2+el,
j#1

where ¢, = 1.
Now, assume a; > 2. As the orders of vanishing at Ry of the sections in
V are

0,....,a1 —l,a1+1,...,a1+ ...+ an,

it follows that the orders of vanishing at R; of the sections in V; are of
the form {0,...,a1 — 1,a1 + 1,...,a1 + ... + a,} — {l}, for some integer
1€{0,...,a1 —1l,a1+1,...,a1 + ...+ a,}. Notice that

V(—2R1) — HO(W]}Dl((al - 1)R1)) D Ho(w]pl(<a2 + 1)R2)) h...
. ® H(wpi ((a, + 1)R,)) C Wy
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and since V4 C V., we have Vi(—2R;) = Vi NV (—-2R;) = V(—2R;). Then
dimcVi(—2R;) = ay + ...+ a, — 2 and hence [ < 1. Therefore
wtvl(Rl) = wtv(Rl) +a+...+a,—1—1
= (Zaj)+a1+...+an—2+el,
J#1
where ¢; =1 —1 € {0,1}.
To show the equalities wty, (R;) = (3_;,;a;) — 1 + €, where ¢; € {0,1}
and ¢ # 1, it is enough to consider the case ¢+ = 2. Notice that
V(—(az + 1)Ry) = H'(wpi (a1 + 1) R1)) @ H(wpi (a3 + 1)R3)) @ . ..
@ Hwpr ((a, + DR,))

Now, consider the linear system

V' = H(wpi((a1 + D) Ry)) @ H (wpi (a3 + 1)R3)) @ . ..
. ® H(wpi((an + 1)Ry))
C Hwp ((a; + )Ry + (a3 + 1)Rs... + (a, + 1)R,))
Since
V/(=2R;) = H(wpr((a1 — 1)Ry)) @ H'(wpi (a3 + 1)R3)) © ..
o ® HY(wpi((an + 1) Ry))
C H%wp ((a; — DRy + (a3 + 1)R3... + (a, + D)R,))

has no ramification points on P* —{ Ry, R,..., R,} and dimcV'(—2R;) =
a1 +as+ ... +a, — 2, we get V’(—2R1—(a1+a3+...+an—2)R2) =0
and hence V(—2R; — (a1 + ...+ a, —1)R2) = 0. As we saw in Proposition
3.1.1, we have dim¢V(—(a; + ... + a, — 1)Ry) = 2; then, by dimension
considerations

V=V(2R)®V(—(a1+...+a,—1)Ry)
Therefore V(—(a; + ...+ a, — 1)Re) € Vi and we get
dimeVi(—(a1+ ... +a, — 1)Ry) =1

On the other hand, as we saw in Proposition 3.1.1, the orders of vanishing
at Ry of the sections in V' are

0,...,a0—l,a0+1,...,a1+...+a,
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So the orders of vanishing at Ry of the sections in V; are of the form
{0,...,a0—Lao+1,...;a1 4+ ...+ a,} — {l},

for some integer [ € {0,...,a2—1,a9+1,...,a1+...+a,}. Since we have
dimeVi(—(a1 + ...+ a, — 1)Ry) = 1, it follows that [ > a1 + ... + a, — 1.
Thus

wty, (Re) = wty(Ry) +a1+ ... +a, — 1 —1
= +a3+...+a,+a1+...+a,—1—1
—ay+a3+...4+a,—1+a+...+a, —1
=a+a3+...+a, — 1+ e,

where €3 :=a; + ...+ a, — 1l € {0, 1}.
Now, we will prove the first statement of the proposition. Using the
equalities we have shown, we get

Zwtvl(Ri)z(a1—|—...—|—an—1)n—1—|—ZQ

On the other hand, by Pliicker formula deg(Ry,) = (a1+...+a,—1)n. Then
0<> ¢ <landV;has1—> ¢ ramification points on P! —{ Ry, ..., R,},
counted with their respective weights. This proves the first statement of
the proposition. O

Proposition 3.1.3. Let Ry, ..., R, be distinct points on P!, and a,, . .., ay
positive integers. Define the linear system

V= Hwp (a1 + 1) R1)) @& ... ® H(wp ((an + 1)Ry))
g Ho(wp1((a1 + ].)Rl + ...+ (an + ].)Rn))

Consider the linear system
Vi =V (=P) C Hwp (=P + (a1 + )Ry + ...+ (a, + 1)R,))

Then either Vi has no ramification points on P! — {Ry, ..., R,} or Vi has
evactly one ramification point there and the ramification is stmple. Fur-
thermore, for each i

wty, (Ri) = (32;2;a5) — 1+ €, where ¢; € {0, 1}.
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Proof. All complete linear systems on P! have no ramification points,
so the first statement of the proposition is true if n = 1. Suppose n > 2
and let us argue by induction on n. We have

V(—alRl) = V(—(al + 1)R1)
= H'wpi((az + D) Ry)) & ... & H(wpi ((an + 1) Ry))
Then

%(—alRl) = ‘/1(—(@1 + 1)R1)
= (H'(wp (a2 + 1)R)) @ ... ® H'(wpr ((an + 1) R)))(—P)
- HO(wP1(—P +(ag+ 1D)Ro+ ...+ (an + D)R,))

Now, consider the linear system
V' = (H%wpi((aa + 1)Ry)) @ ... ® H(wpi ((ay + 1)R,)))(=P)
C Hwp (=P + (ag + )Ry + ... + (a, + DR,))

We have dim¢V’ = ay + ... + a, — 1 (Proposition 3.1.1) and by induction
Ry is at most a simple ramification point of V’'. Therefore, the orders of
vanishing at Ry of the sections in V) are

0,....a1—1,as+1,...,01+...4a,—1or
0,....a1r—1l,an+1,...,01+...+a, —2,a1 + ...+ a,,

ie,{0,...,a1—1,aq+1,...;a1+...+a,} —{l}, where l = a1 +...+a,—1
orl=a;+ ...+ a,. Then

wty, (Ry) = wty(Ry) +a1+ ... +a, —1—1

=0 a)—1+a+...+a,—I
j#1

= (> aj)—1+e,

J#1
where ¢ = a1 + ...+ a, — [ € {0,1}. Analogously, we have for each i
wty,(R;) = (3_,4 aj) — 1 + €, where ¢; € {0, 1}.
Using the equalities we have shown, we get

2wty (Ri) = (a1 + ...+ an = 1)(n=1) =1+ ¢
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On the other hand, by Pliicker formula deg(Ry,) = (a1 + ...+ a, —1)(n —
1). Then 0 < > ¢ < 1 and Vj has 1 — ) ¢; ramification points on

—{Ry,..., Ry}, counted with their respective weights. This proves the
proposition. O

Proposition 3.1.4. Let Ry, ..., R, be distinct points on P' and 1y, ..., 1,
nonnegative integers.

Let £ be an invertible sheaf and L' = L(—lL1 Ry — ... — [, R,).

Let V C HY(L) be a linear system such that V. C H(L'). Let V' denote
the linear system V inside H°(L') and let r + 1 :=dimcV . Then, for each
1, we have that by + 1;, ..., b, + l; are the orders of vanishing at R; of the
sections wn V', where by, ..., b, are the orders of vanishing at R; of the
sections in V'. Hence, for each i

th(Ri) = th/(RZ') + ZL(T’ + 1)

Proof. To show the equalities wty(R;) = wty/(R;) + LidimcV, it is
enough to consider the case i = 1. Since L' = L(—;R; — ... — I, R,), we
have for each 8 > 0

HO(L'(=BR1)) = HY(L(=(l + B)R1 — laRy — ... — I, Ry)),
and since V C HY(L(—IyRy — ... — I, R,)), we have
HY(L'(=BR))NV = H(L(=(l1 + B)Ry — JQRQ —1,R,))NV
= H(L(—(l + B)R1)) N

Therefore HY(L'(=BR))NV' = HY(L(—(I1+B)Ry))NV. Thus, if by, . .., b,
are the orders of vanishing at R; of the sections in V', then by+11, ..., b+
are the orders of vanishing at R; of the sections in V. This proves the
statement of the proposition. O

3.2 Elliptic curves

Proposition 3.2.1. Let E be a smooth elliptic curve, A a point of E and
g an odd positive integer. Let L := Og((29 — 2)A). Consider the linear
system

V = H'(Op(gA)) C HO(C)
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Let Vi C HY(L) be a linear system of dimension g — 1 such that
HY(Op((g—2)4) CViCV

Then wty, (Q) < 2 for every Q € E — {A} and wty,(A) = (g — 1)? + ¢,
where € € {0, 1}.

Proof. Let Q € E — {A}. Notice that V(—gA) = H*(Og((g — 2)A)) is
contained in V. As we have

V(—gA)NV(=(g—3)Q) = H'(Or((g —2)A— (9 - 3)Q))

as subspaces of H(Og((29—2)A)), it follows that V(—gA)NV(—(g—3)Q)
has dimension 1. Then, by dimension considerations

V=V(-gA)+V(-(9 —3)Q)

Therefore V(—(g — 3)Q) € Vi and dimcVi(—(g — 3)Q) = 2. On the
other hand, the orders of vanishing at () of the sections in V' are of the
form 0,...,9 — 2,a4-1, where g — 1 < a,_; < g, and hence the orders of
vanishing at ) of the sections in V; are of the form {0, ...,9—2,a,-1} —{l},
where [ € {0,...,9 —2,a,-1}. As dimcVi(—(g — 3)Q) = 2, it follows that
[ > ¢g—3. Thus wty,(Q) = wty(Q) + g — 1 —1 < 2, if @ is an ordinary
point of V.

Now, assume @ is an ordinary point of V(—gA) = H°(Og((g — 2)A)).
Then, by dimension considerations

V=V(-gA)®V(-(9—-2)Q).

Therefore V(—(g—2)Q) € Vi and dim¢Vi(—(g—2)Q) = 1. It follows that
[ > g — 2 and hence wty, (Q) = wty(Q)+g—1—-1<2.

Now, we will prove that H°(Og(gA)) and H°(Og((g — 2)A)) do not
have ramification points in common on F — {A}, when g is an odd positive
integer. Suppose by contradiction that there exists () € E—{A} which is a
ramification point in common of both HY(Og(gA)) and HY(Og((g—2)A)).
Then h°(Op(9A — 9Q)) =1 and h°(Op((g —2)A — (¢ — 2)Q)) = 1. Thus
gA and g(@ are linearly equivalent divisors and the same property is true
for (9 —2)A and (g — 2)Q. Therefore, 24 and 2Q) are linearly equivalent
divisors. Now let ¢ = 2n + 1; since 2A and 2() are linearly equivalent
divisors, we have that 2nA and 2n(@) are linearly equivalent divisors. As
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(2n+1)A and (2n + 1)@ are linearly equivalent divisors, it follows that A
and () are linearly equivalent divisors and hence () = A, a contradiction.

Finally, we will compute wty, (A). Since the orders of vanishing at A of
the sections in V are g — 2,...,29 — 4,29 — 2, we have that the orders of
vanishing at A of the sections in V) are of the form

where l € {g—2,...,29—4,2g9—2}. Since V(—gA) C V; C V', we have that
Vi(—gA) = V(—gA). Then dim¢Vi(—gA) =g—2and g—2<1<g—1.
Therefore

wty, (A) =wty(A)+g—1—-1=(g—1)>+¢
where e =g —1—1€ {0,1}. O



Chapter 4

The divisor

4.1 Introduction

Our aim is to compute the class of the divisor S2W in Picy,,(M,), defined
as the closure of the locus of smooth curves C' with a pair of points (P, Q)
satisfying that () is a ramification point of the linear system H°(wo(—P))
with ramification weight at least 3.

Write the class of the divisor we want to compute as

S2W = a\ — a050 — CL151 — ... a[g/2]5[g/2]

First, we will compute the coefficient a. Let m# : X — T be a family
of smooth curves over a smooth curve 1. Consider the double product
Y =X xp X as a family of curves via the first projection p; : Y — X. Let
W be the ramification divisor of the invertible sheaf £ = w, (—A) with
respect to p;. Notice that hO(L‘yP) = h(wx,,(—P)) = g — 1 for every
P € X. Then p1,(L) is locally free of rank g — 1.

Now, we will compute .p1.([S?W]). By the Thom-Porteous Formula:

(W] = a(J572(£)) — alpipi(£))

By using the truncation exact sequences, we obtain (Proposition 2.4.1)

cr(J52(L)) = (5 ) erlwp,) + (g = Der(£)

We have to compute ¢1(p1.(£)). Notice that by Riemann-Roch we have
h'(Ll,,) = 1forevery P € X, as h°(L|, ) = g—1. Tt follows that R'p1.(£)
is invertible.

Consider the long exact sequence

0 = p1:(L) = pra(wy,) — pl*(wp1|A) —
25
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R'p1.(L) = R'priwy,) — R'prlwp,|,) — 0.

Since R!p1.(wp, ’ A) = 0, as the restriction of wy, ’  to each fiber is supported
at a point, we have a surjection R'pi(£) — Rlpi.(wy,). As R'pp.(L)
is an invertible sheaf and R'pi.(wp,) = Ox, it follows that Rlp.(L) =
R'p1.(wp,). Then we have an exact sequence

0 = p1(L) = prowp,) = Pre(wp |,) = 0
Via the Whitney formula, we have

Cl(pl*(L)) = Cl(pl*(wm» o Cl(pl*(wpl ’A))

From wy,, = pwx, we get prwp|,) = wr. On the other hand, since
pl*(wpl) = pl*(pé(ww)) = T W,

c1(pre(wy,)) = Ter (mewy) = Ter(det mwy) = T\,
Therefore
c1(pre(L)) = TN — K
where A := A\; and K, = c1(w;).
Let K,, = p;K; and K, = piK,. Then

W= (75 )+ - Da®) - piler - K

-1 % %
= (75 )+ o= 00y - ) =i A+ K

— (2) o+ K~ g - 18 = pin
By the Thom-Porteous Formula:
[SPW] = c3(J5, (Oy(W)))

Using the truncation exact sequence
0= wi? @ Oy(W) = J2 (Oy(W)) = J) (Oy(W)) = 0
and recalling that J) (Oy(W)) is locally free of rank 2, we get
es( 5, (Oy(W))) = o, (Oy (W) )er (wy,? @ Oy(W)),
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and using the truncation exact sequence
0 = wy, ® Oy(W) = J) (Oy(W)) = Oy(W) =0
we get ca(J,, (Oy(W))) = c1(Oy(W))er(wy, ® Oy(W)).

Therefore
[SPW] = es(J5, (Oy(W))) = [W](Ky, + [W])(2K,, + [W])
On the other hand, since O(—A)|, = N (identifying A with X), we have

O(— iA = (pswn iA wpliA and O(— ’A (Piws ’A sziA- Then
A2 —K, -A = —K,,-A. Using the projection formula and the following
formulas

(DK} =0, K3 =0 and (pj7*A)* =0

(2)p1*(Kp1 A) Ky A = =Ky - A =—K,, - A
(3)mu(K2) = 12\, m(Ky) = 29 — 2

(4)m* (o) = p1ap3() for every cycle a on X, we get:

.1 ([SPW]) = (9g° — 51g* + 129¢° — 207g* + 174g — 54)\
Therefore,
a=9g¢° — 51g* + 129¢% — 207¢> + 1749 — 54.

For g odd and g > 5, we will obtain the coefficient a; in terms of the
coefficient aq for every ¢ > 1, in Chapter 5, by using the method of test
curves. We will use [¢g/2] — 1 test curves, which are induced by families
of flag stable curves over P!. Of crucial importance in the use of the test
curves is Proposition 5.2.1, which is similar to [HMo], Thm 6.65, (2);
in fact, Proposition 5.2.1 implies that result. To be able to apply our
Proposition 5.2.1, we will use Proposition 5.1.1, which is a general result
about flag curves. We end up with (see Chapter 5 for more details)

a; = (i(g —1)/(g — 1))ay, for each 2 < i < [g/2].

In Chapter 6, we will obtain a lower bound for the coefficient a;, for
every ¢ > 1. To do it, we will consider a general family 7 : X — T of stable
curves over a smooth projective curve 7. Since the family is general, the
singular curves we have in our family have only one node, and these singular
curves are not in the support of the divisor we want to compute. We will
restrict ourselves to a neighborhood in 7' of some point ¢y, such that X,



28 4. THE DIVISOR

is a singular fiber and the other fibers are nonsingular. Assume that the
singular fiber is reducible.

First, we consider Y’ = X x7 X and blow up to solve the singularities of
Y. Let B’ be this blow up. Using the first projection of Y’ to X, we obtain
a map p; : B' — X. We consider p)| as a family of curves over X.

Let w be the relative dualizing sheaf of B'/X and £’ := w(—A), where
A is the strict transform of A in B’. It will be necessary to do some
modifications in order to obtain h°(£'|,) = g — 1 for every fiber F' of pj.

After the modifications, we get a family p; : B — X of nodal curves over X
such that h%(L ’ ») = g— 1 for every fiber F', where X is a suitable blow up

of X, Y := X xr X and B is a blow up of Y which solves its singularities.
Then, p1.L is locally free of rank g — 1 (Proposition 6.2.1). Now consider
the natural map u : pjp1.£ — J§ *(£) and substract excess components of
the degeneracy scheme W' of u. Then, we get a divisor W intersecting each
fiber in finitely many points (Propositions 6.3.1 and 6.4.2). If W intersects
each fiber away from the nodes, with multiplicity at most 2 at each point,
then we have 7. p1.(c3(J;, (Op(W)))) = [7]*(S2W), where [r] : T — M, is
the map which is induced by 7, and 7 : X — T is the morphism induced
by 7 : X — T. However, we have only proved that S?W has only finitely
many points in the singular fibers (see Proposition 6.4.3 and Hypothesis
(x) before that proposition). We must then compute their multiplicities
and substract them from c3(J2 (Op(W))) to get [7]*(S2W). It turns out
that we can obtain a lower bound for the coefficient a;, for every ¢ > 1. We
end up with

—b; < a; for every 1 <1 < [g/2],
where
bi == 6i'g® — 6itg 4+ 12i* — 6:°¢> — 3i3¢® — 3i%g — 18 + 3i%¢*
+ 3i2g% + 12i%g + 642 — 3ig® + 12ig* — 21ig> + 21ig* — 21ig + 6i.

Our main theorem is:

Theorem 4.1.1. Let S?2W C ﬁg be the effective divisor which is defined
as the closure of the locus of smooth curves C' with a pair of points (P, Q)
satisfying that Q is a ramification point of the linear system H®(wo(—P))

with ramification weight at least 3.
Write the class of S?W in Picpu,(M,) ® Q in the form
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S2W = a\ — agdy — a1y — ... — [g/210]g/2]
Then
a=9¢° — 51g* + 129¢° — 207> + 174g — 54, and
(1) If g is an odd integer such that g > 5, then

a; = (i(g — i)/(g — 1))ar for every 2 < i < [g/2].

(2) Assume the following hypothesis holds:

(x) If (X, A) is a general pointed smooth curve, then for every ramifica-
tion point P € X of the complete linear system H(wx(—(g9x — 1)A)) and
for every i > 1, the complete linear system H%(wx ((i +1)A — P)) does not
have ramification points on X — {A} having ramification weight at least 3.

Then, for every g, we have the following inequalities

—b; < a; for every 1 <i < [g/2],
where

b == 6i'g® — 6ilg + 121 — 6:3¢g> — 3i3¢* — 3i%g — 18:° + 3i%¢"
+ 3i%¢% 4+ 12i%g + 642 — 3ig° + 12ig* — 21ig> + 21ig? — 21ig + 6i.

We actually have equalities in Theorem 4.1.1, item (2), without using
the hypothesis (%), for ¢ = 3 and i = 1, and for ¢ = 4 and i = 2. (See
Propositions 6.4.4 and 6.4.5.)

4.2 The irreducible case

In this section, we just present a few results which can possibly be useful
to compute the coefficient of ¢y in the expression for S2W.

Proposition 4.2.1. Let X be a nodal curve which is the union of a smooth
curve C' of genus g—1 and a chain of rational smooth curves Ey, ..., E,_1.
Suppose C' intersects only 1 and E, 1. Let A€ CNEy and Be€ CNE, 4
be the unique points of intersection. Assume that (C, A, B) is a two-pointed
general smooth curve. Let p:C — ¥ be a smoothing of X. Fix an integer
1 <t <n-—1and a section I of p intersecting X at a point P € E;, where
P is not a node of X. Let £ := w,(—I") and let Wy be the limit ramification
divisor of L. Then
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multo(Wo) < 1, if Q € X is not a node.

Furthermore, if n = q(g — 1), where ¢ > 0 is an even integer, and i = n/2,
then Wy is reduced and contains no node of X.

Proof. We have
Llo=we(A+ B), L], = Op,(=1), L], = Op,3j # 1. (4.2.1)

Foreachl=1,...,.n—1, set

n—1
L= L(— Z ai Ey),
r=1

where

ar, = (n—r)ay,—1—max{i—r,0}—max{l —r,0}(g —2)—max{n—d—r,0},
i+1g—2)=najp1— (n—d), 1 <d<mn,a,>1

If i4+1(g —2) is a multiple of n, then a;,,_1 < g—1(asi < nand [l < n) and

a1 + ajpn—1 = g — 1, and hence a;; > 1. Analogously, if i + [(g — 2) is not

a multiple of n, then a;,1 < g and a;1 4+ a;,,-1 = g, and hence a;; > 1.
If i + (g — 2) is a multiple of n, then we have

£l’C = wc(—(au — 1)A — (alm_l — 1)3),
Ll‘El - OEz(g - 2)7
Li|g, = O, if j #1.

If i +1(g — 2) is not a multiple of n and n — d # [, then

Ll’ = wc(—(au — 1)A — (alm_l — 1)B),
C
’cl‘El — OEl(g - 2)7
L En g OEn—d<1)7
Li|, =O0g,, if j#1,n—d.

If i + (g — 2) is not a multiple of n and n — d = [, then
Li| o = wo(—(ar — 1)A = (a—1 — 1)B),
’Cl‘El — OEl(g - 1)7
LZ‘EJ- = Op,,if j #1L.
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Thus, £; has focus on E;. Let V; be the limit linear system of £ on Ej.
When i + [(g — 2) is a multiple of n or i + (g — 2) is not a multiple of
n and n — d # [, by dimension considerations, V; = H°(Og,(g — 2)) and
hence V; € H°(Opg,(g — 2)) has no ramification point on Fj. Now, assume
i+1(g—2) is not a multiple of n and n—d = [. Let Z := X — C and let A,
and B; be the nodes of X lying on E;. By considering the exact sequence

0— Ly(=C)|, = Li|y = Li], =0,

[x = Lile

we get
! Ll’X) < hO(OEz(g - 1)(_A - B))

+ hO(Wc(—(CLl,l — 1)A — (al,n—l — 1>B))

=g—1
as A and B are general points of (', and since by semicontinuity we
have h( QZ‘X g — 1, we conclude hO(Ll’ ) = g — 1. By the base
change theorem we have a surjection H°(L;) — HY( Ll’ ). Thus, we have
H°(Opg,(9—1)(-A—By)) € H(L] ) = Vi € H(Op,(9— 1)) and hence, for
Q € E;,—{A;, B}, the vanishing sequence of V; at @ starts with 0, ..., g—3,
and since Vj(—gQ) C H°(Og(g — 1)(—gQ)) = 0, we conclude V; has only
simple ramification points on F; — {A;, B;}.

On the other hand, as h%(Ly|.(—A)) = h'(L,
that V( Al) V( Bl) V( Al ) Then

Vi(—(g—1)A;) = Vi(—(g—1)A—B)) € H(Og,(9—1)(—(g—1)A—B1)) = 0

(Li] .(—=B)) = 0, it follows

and hence A;(analogously, B;) is not a ramification point of V.

Now, we are going to see what happens on C'. It follows from equation
4.2.1 that £ has focus on C' and the limit linear system of £ on C is
Vo = H%wce). Since C is a general smooth curve, Vo € H(we(A + B))
has only simple ramification points on C' — {A, B}. This proves the first
statement of the proposition.

We will prove the last statement of the proposition. Assume n = q(g—1),
where ¢ > 0 is an even integer, and ¢ = n/2. Since the limit linear system
of £Lon Cis Vo= Hwe) € H'(we(A+ B)), wty,.(A) = wty,.(B) = g — 1.
On the other hand, by Pliicker formula, we get

deg(Wy) = (9 —1)(9> —g—1) and
deg(Ry,) =(g—1)(¢* —g—1)— (9 —3)(g — 1).



32 4. THE DIVISOR

Therefore, we have (g —1)(¢> — g — 1) — (¢ — 1)? limit ramification points
on C —{A,B}. Since A; and B; are not ramification points of V; and
deg(Ry;) = g — 1 for every [ such that i 4+ [(g — 2) is not a multiple of n
and n —d = [, it is enough to show that there are exactly g — 1 integers [
satisfying the condition: 1 <[ < n—1,i+1(g—2) is not a multiple of n and
n —d = [. This condition is equivalent to: 1 <[ <n—1andi+1(g—1)is
a multiple of n. We have i+ (g — 1) is a multiple of n if and only if [ + ¢/2
is a multiple of q. Therefore, the condition 1 <! <n—1andi+I(g—1)
is a multiple of n is equivalent to | = ¢ —q/2,2¢ —q/2,...,(9—1)q — q/2;
thus there are exactly g — 1 integers [ satisfying that condition. O

Proposition 4.2.2. Let X be a nodal curve which is the union of a smooth
curve C' of genus g—1 and a chain of rational smooth curves Ey, ..., E, 1.
Suppose C' intersects only Ey and E,,_;. Let A€ CNE, and Be CNE,_;
be the unique points of intersection. Assume that (C, A, B) is a two-pointed
general smooth curve. Let p: C — X be a smoothing of X. Fix a section I
of p intersecting X at a point P € C, where P is not a node of X and

h'(we(—aA —bB — P)) =0,

for every nonnegative integers a and b with a+b = g—2. Let £ := w,(—T)
and let Wy be the limit ramification divisor of L. Assume thatn = q(g—1),
where ¢ > 0. Then Wy contains no node of X.

Proof. We have

L‘Czwc(A—l—B—P),L‘Ej:OEj. (4.2.2)
Foreachl=1,...,n—1, set
n—1
L ZL(—ZGZ,7Er),
r=1

where

apy = (n—1r)app—1—max{l —r,0}(g — 1)—max{n —d — r, 0},
llg—1)=najp-1—(n—4d),1<d<n,a,1>1

If (g — 1) is a multiple of n, then a;,-1 < g —1(as i < n and [ < n) and
a1 + ajn—1 = g — 1, and hence a;; > 1. Analogously, if /(g — 1) is not a
multiple of n, then a;,-1 < g and a;; + a;,,—1 = ¢, and hence a;; > 1.

If (g — 1) is a multiple of n, then we have
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Lo = wo(—(ar — 1)A = (ap—1 — 1)B — P),
LI‘EZ = OEl(g - 1)7
Li|g, = O, it j #1.
If {(g — 1) is not a multiple of n and n — d # [, then
LZ‘C = wc(—(au — 1)A — (agm_l — 1)B — P),
Ll‘El - OEz(g - 1)7
Lilp  =0p, (1),
Li|, =0g, ifj#£I,n—d
If I(g — 1) is not a multiple of n and n — d = [, then
ﬁl‘c =we(—(ap — 1A — (a1 —1)B — P),
Ll‘El - OEz(g)a
LZ‘EJ- = Opg,, it j #1.
Thus, £; has focus on E;. Let V; be the limit linear system of £ on Ej.

Let A; and B; be the nodes of X lying on FE;, with B; = A;,1 for every
I=1,...,n—2. When [(g — 1) is a multiple of n, we have

BO(61] o (~4)) = hO(1] o(~B)) = 0.
by the hypothesis of the proposition, which implies
Vi(=A) = Vi(=B)) = Vi(-Ai — B)).
Then
Vi(—(g-1)4) = Vi(=(g—1) A= By) € H(Op,(9-1)(—(9-1)Ai—B1)) = 0,

and hence A;(analogously, B;) is not a ramification point of V;. Now assume
that (g — 1) is not a multiple of n. Then h°(L;| ) = 0, by the hypothesis
of the proposition. Thus,

V= HO(OEl(g — 1)(—31)), ifn—d<|,
Vi = HYOg,(g — 1)(=A), if n —d > 1, and
Vi = HOp (9)(—Ar — B). it n—d = 1.

Now, we are going to see what happens on C'. It follows from equation
4.2.2 that £ has focus on C and the limit linear system of £ on C is
Vo = H(we(A + B — P)). Notice that A and B are not ramification
points of V¢, by the hypothesis of the proposition. On the other hand, by
Pliicker formula, we get

(%ile)
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deg(Wy) = (9 — 1)(9> — g — 1) and
deg(Ry,) =(g—1)(¢* —g—1)— (9 —2)(g — 1).

Therefore, we have (g — 1)(¢*> — g — 1) — (g9 — 2)(g — 1) limit ramification
points on C — {A, B}. Since A; and B; are not ramification points of
V, and deg(Ry;) = g — 1 for every [ such that I(g — 1) is a multiple of
n, it is enough to show that there are exactly g — 2 integers [ satisfying
the condition: 1 <1 < n —1 and (g — 1) is a multiple of n. We have
I(g — 1) is a multiple of n if and only if [ is a multiple of q. Therefore,
the condition 1 <1 < n —1 and I(g — 1) is a multiple of n is equivalent
tol =q,2q,...,(g — 2)q; thus there are exactly g — 2 integers [ satisfying
that condition. O



Chapter 5

Flag curves

5.1 A result on flag curves

A flag curve is a nodal curve X satisfying the following properties:
(1) It is of compact type, i.e., the number of nodes of X is smaller (by
one) than the number of components.
(2) Each component of X is either P! or an elliptic curve.
(3) Each elliptic component of X contains exactly one node of X.
(4) Each P! contains at least 2 nodes of X.

Proposition 5.1.1. Let X be a flag curve of genus g. Assume g is an odd
integer and let p : C — 3 := SpecC[[t]] be a smoothing of X. Let C, be the
generic fiber of p and C, the geometric generic fiber. Then C. satisfies the
following condition:

for each P, € C., the ramification points of the complete linear system
H’(we (—P.)) have ramification weight at most 2.

Proof. Let P, € C,. After base change, we may assume that P, is a
rational point of C,, and thus there is a section I' of p intersecting C, at
P,. After base changes and a sequence of blowups at the singular points of
the special fiber Cy, we may assume that C is regular and that I' intersects
the special fiber at a point P which is not a node of Cy. After all the base
changes and the sequence of blowups, each node is replaced by a chain of
rational smooth curves and Cy is still a flag curve.

Let £ := w,(—TI') and let W, be the limit ramification divisor of L.
To prove the statement of the proposition, it is enough to show that
multg(Wy) < 2 for every Q € Cy. There are two cases to consider.

Case (1): P lies on a rational component Y of C.

35
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We will show that multg(Wy) < 2 for every @) € Cy. To prove this,
we will show that the multiplicity of Wy at each node of Cy is 0, and
multg(Wp) < 2if @ € Cp is not a node.

The limit linear system of w, on Y is of the form (see [EH2|)

V.= HO(wY((CL1 +1)R)) ... & HO(WY((an +1)R,))
- HO(wY(2a1R1 + ...+ 2a,R,)),

where n is the number of connected components of Cy — Y, the integers
a; are the genera of the closures of the connected components of Cy — Y,
and each R; is the point of intersection of ¥ and the connected component
of Cp — Y of genus a;. Notice that if w,(Dy) has degree 2g — 2 on a
component Z of Cy and degree 0 on the other components of Cy, where
Dy C Cy is a divisor, then £(Dy) has focus on Z. In this way, we can get a
limit linear system V7 of £ on each component Z of C, and the connecting
number between £(Dy,) and £(Dy,) corresponding to components Z; # Zs
of Cy is equal to the connecting number between wy,(Dz,) and w,(Dg,)
corresponding to Z; and Zy. The limit linear system of £ on Y is

VW = V(—P) C Ho(wy(—P +2a1R1+ ...+ QGan))

It follows from Proposition 3.1.3 that wty, (@) < 1ifQ € Y—{Ry,..., R,},
whence multg(Wy) < 2 if Q € Y is not a node of Cy. (In fact, if Q € Y
is not a node of Cy, then multg(Wy) < 1.) Now, we have to prove that
the multiplicity of W, at each point R; is 0. Assume that j = 1 and R;
is the point of intersection of Y and a rational component Y; of Cy. By
Propositions 3.1.3 and 3.1.4, we have

wty, (Ry) = (Z aj) —1+e+ (a1 —1)(g—1)
J#1
=g—a1—1+61+(a1—1)(g—1)

where €; € {0,1}. Let R},..., R, be the nodes of Cy lying on Y;. Assume
R = Ry. Let Vi, be the limit linear system of £ on Y;. We have

mult g, (Wo) = wty, (R1) + wty,, (R;,) + (9 — 1)(g — 2 — (29 — 2))
= wty, (R,) +9—a1—1+ea+ (a1 —1)(g—1) —g(g— 1)
= wty, (R;,) + (g — D)(a1 — g) — a1 + €1

On the other hand, consider the limit linear system of w, on Y}
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V' = H(wy,((d) + DR)) & ... & H'(wy, ((a), +1)R,,))
C H(wy,(2ai R, + ...+ 2a],R))).

We have that V4, C V', By Propositions 3.1.1 and 3.1.4 we have that the
orders of vanishing at R/ of the sections in V' are

0+(al,—1),...,a, —1+(al,—1),a,,+1+(al,—1),...,a +...+al, +(a,—1)

and wty/(R},) = (324, a;) + (az, — 1)g. Thus, the orders of vanishing at
R!

' of the sections in Vy, are of the form

{al, —1,...,2(al, —1),a! +1+(al,—1),...,a +...+a, +(a,— 1)} —{l},
for some [. Thus

why, (R)) = why(Rly) +g—1—1

= d)+(a, -g+g—1-1
j#m
=g—a,+(a,—Dg+g—1—1.

Therefore, since a; + a’, = g, we have
’ m ’

multp,(Wo) =g —al, + (a,, —1)g+g—1—1+(g—1)(a1 —g) —a1 + &
=(g=D(@n+ar—g)+(g—am—ay,) + (@, -1 +a
=(a, —1—1)+e <e <1

Since the intersection multiplicity of the ramification divisor of £ and the
special fiber at the node R; cannot be 1, we have multg, (Wy) = 0. (No-
tice that, the only important information about V3 we have used in the
reasoning above is the ramification weight of V4 at the point R;.)

Now, we are going to see what happens on Y;. We have to prove that
the multiplicity of Wy at each point R} is 0, and multg(Wy) <2if Q € Y
is not a node of Cy. Since multg, (Wy) =0, a,, — 1 — [ = —e;. This implies
that l =a/, —1orl =a . Then dimcVy,(—(a/, +1)R] ) = g—2 and hence
Vi 2 V/(—(ay+1)RY,) = HOwy, (d44+ 1) R}) . .. & H(wy, (ah,— D) RL)).

Now, using the last Formula in Proposition 3.1.2 for V; = V4, and using
Proposition 3.1.4, we are able to use the same reasoning above to conclude
that mult R;(WO) = 0 if R} is the point of intersection of ¥7 and a rational
component of Cy. Also, using Proposition 3.1.2, we get that multy (1) < 2
if () € Y7 is not a node of Cy. Notice that, we can use the same reasoning
above, repeatedly, for each rational component in Cy.
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It remains to prove that, if Y is a rational component of Cy intersecting
an elliptic component E of Cy, then the point of intersection of Y and E
does not appear in Wy and multg(Wy) < 2 if @ € E is not a node of Cy.
Let Ry, ..., Ry be the nodes of Cy lying on Y and C' the node of Cy lying
on E. Assume R;, = C and let Vi, Vg be the limit linear systems of £ on
Y and F respectively. We have an equality of the form

IUtVy(Rk) = (zj;&k C_lj) — 14 €+ (dk; — 1)(g — 1),

where ¢, € {0,1}, the integers a; are the genera of the closures of the

connected components of Cy — Y, and each R; is the point of intersection

of Y a_nd the connected component of Cy — Y of genus a@;. Since a; = 1,

wty, (Ry) = g — 2 + €;. Then

mult s, (Wo) = wh (Re) + ity (C) + (9= 1)(g — 2 — (29— 2)

=g—2+ e, +why(C) —glg— 1)
=wty,(C)+9—2—9g(g— 1) + &

On the other hand, as the limit linear system of w, on E is

V"= Hwg(gC)) € H(wgp(2(g — 1)C)),

it follows that Vg C V' = H%wg(gC)). The orders of vanishing at C' of
the sections in V' are

g—2,...,29—4,29 — 2

and wty(C) = ¢g> — 2g + 1. Thus, the orders of vanishing at C' of the
sections in Vg are of the form

{9—2,...,29 — 4,29 — 2} — {I},
where | € {g —2,...,29 — 4,29 — 2}. Then
wty,(C) = wty(C)+g—1—1
—¢*—29+1+g—1-1
:g2—g—l.
Therefore

multp, Wo) =¢* —g—1+g—2—g(g—1) + ¢
=(g—2—-0)+e <¢ <1
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It follows that multp (W) = 0 and hence Ry is not a limit ramification
point, and [ = g—2 or [ = g— 1, which implies that dim¢Vg(—gC) = g—2
and hence Vg D V/(—gC) = H(wg((g — 2)0)).

By using Proposition 3.2.1, we get multg(Wy) < 2 if Q € E is not a
node of Cy. This proves the case (1).

Case (2): P lies on an elliptic component E of Cy.

We will show that multg(Wp) < 2 for every @@ € Cyp. To prove this,
we will show that the multiplicity of W, at each node of Cj is 0, and
multg(Wp) < 2if Q € Cp is not a node.

Let C be the node of Cj lying on E. Since the limit linear system of w),
on E is

V = Hwp(9C)) € H(wr(2(g — 1)C)),
the limit linear system of £ on F is
Vg =V (=P) = H (wg(gC — P)) C Hwg(2(g — 1)C — P)).

Notice that Vg has at most simple ramification points on £ — {C'}, whence
multg(Wp) < 2 if @ € E is not a node of Cy. Now, we have to prove that
the multiplicity of Wy at the point C' is 0. We have that Vgp(—nC) = Vg
for every 0 <n < g — 2. For every n > g — 2

Vi(—nC) = H(wg(9C — P)) N H(wp(2(g — 1)C — P — n0C))
= H%wp(2(g — 1)C — P —n()).
Then dim¢Ve(—nC) = 2(g—1) —n—1 for every g —2 < n < 2g—4. Thus,
since Vg(—(29 — 3)C) = H(wg(C — P)) = 0, the orders of vanishing at C
of the sections in Vg are g —2,...,29 —4. Hence wty,(C) = (¢—1)(g —2).
Assume that C'is the point of intersection of £ and a rational component
Y of Cy. Let Ry, ..., R, be the nodes of Cy lying on Y. Assume R, = C

and let V3 be the limit linear system of £ on Y. As the limit linear system
of w, on Y is of the form

V' i= Hwy((ap + 1)Ry)) @ ... ® H(wy((a, + 1)R,))
C HU(wY<2a1R1 +...+ QCLan))a

it follows that V3 C V. By Propositions 3.1.1 and 3.1.4 we have that the
orders of vanishing at R,, of the sections in V' are

0+(a,—1),...,an—14+(an—1),an+1+(a,—1),...,a14...4a,+(a,—1)
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and wty:(R,) = (3,4, a;) + (@, — 1)g. Thus, the orders of vanishing at
R,, of the sections in Vy are of the form

{an—1,...,2(a, —1),an + 1+ (@ = 1), ..., a1+ +an+ (a6, — 1)} = {1},
for some [. Thus
thY(Rn) = th/(R )+g— 1-—1

:Za] (an—1)g+g—1—1
J#Nn
:9—&n+(an—1)g+g—1—l.

Since a, = 1, wty, (R,) = 2(9g — 1) — [. Therefore

multc(Wy) = wty, (R,) + wty, (C) — g(g — 1)

=2(g—1)—Il+(g—1)(g—2)—glg—1)
S

It follows that mults(Wy) = 0 and hence C is not a limit ramification
point, and [ = 0, which implies that

Vi = H(wy((a1 + 1)R)) @ ... ® H(wy((an-1 + 1)R,_1)).
By Propositions 3.1.1 and 3.1.4, we have for every k # n

wiy, (Re) = (D aj) + (ay = 1)(g — 1)

J7#kn
= _a)—1+(m—1)g—1).
J#k
Thus, the proof of this case follows as in the case (1). O

5.2 Effective divisors in M,

Let g and ¢ be positive integers such that g > 5 and 2 < i < [g/2]. We will
define a family of curves over P! in the following steps:

Step 1: Fix 3 distinct points R, S and T on P!, and let P} | := P!,
R, 1 :=R,S;1:=5and T; ;1 :=T. (We use this notation to extend a
notation we will see later.) Begin with the fibered product P} ; x P! |
and then blow up the points (R;_1, R;—1), (Si_1,S;—1) and (Tz—1,Tz—1)- Let
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P%Ri_l, Ri—1)7IP)(1Si—1asi—1) and ]P)(lTi—laTi—l) be the rational curves on the blowup

(]P)zl—l X ]P)zl—l) over the pOiIltS (Ri—17Ri—1)7 (Si—lasi—l) and (T%—laTi—l) of
P! | x P! ,. The points in the intersections ({R;_1} x P} ;) N Plr Ay
({Sim1} x Py ) NPl gy and ({Tia} xPi_y) NP, ) will be denoted
R/',S" and T’ respectively. Also, abusing notation, we denote the strict
transform of each fiber {Q} x P} | C P! | x P} | by P! .

Step 2: Now, fix g smooth pointed elliptic curves (Ey, Ch), ..., (E,, Cy).
Let ) be the disjoint union of (P} ; x P! ,), P! x E; and P! x E;,; modulo
the identification of the strict transform of the diagonal A C (P}, xPL )
with P! x {C;} € P! x E;, and the identification of the strict transform
(]P)il_l X {Si_l})~§ (Pz‘l—l X I[Dzl_l)NWith Pl X {Ci+1} - Pl X Ei—i—l'

Step 3: Assume ¢ > 3 and consider a chain of ¢« — 2 three pointed ra-
tional curves (P{, Ry, S1,T1), ..., (Pl_y, Ri—2, Si—2,Tj_9) with T; = R; 4 for
every 1 < 5 <1 — 3. Now, attach the elliptic curves F1,..., E; 1 at the
points Ry, S1, 59, ...,S;_s respectively, identifying the points C1,...,C;_;
with the points Ry, S1,59,...,5; 9 respectively, obtaining a nodal curve
which we will call X;. If ¢ = 2, we set X; := FE; and T, := (.
Analogously, consider a chain of ¢ — ¢ — 2 three pointed rational curves
(P}, Ri, Si, i), ..., (P, 3, Ry_3, 543, T,_3) such that Tj = Rj,, for every
i < 7 < g—4. Now, attach the elliptic curves F; o, ..., F, at the points
Siy ..., S¢-3, Ty—3 respectively, identifying the points Cjyo, ..., C, with the
points Sj, ..., Sy—3, T;_3 respectively, obtaining a nodal curve which we will
call Y;.

Step 4: Let X be the disjoint union of Y, P! x X; and P! x ¥; modulo
the identification of (P} | x {R; 1}) C Y with P! x {T; »} C P! x X;, and
the identification of (P} ; x {T;_1}) C Y with P' x {R;} C P! x Y;. This
gives a family 7m; : X — P! of stable curves of genus g.

Abusing notation, for each fiber F' of m;, we denote by R;_1,S;_1 and
T;_1 the points in the intersections F'N(PL, x {R;_1}), FN(PL, x {S;_1})
and F N (P!, x {T;_1}). Figure 3.1 describes the family given by ;.

Proposition 5.2.1. Let D C Wg be an effective divisor, with class
D =a\— CLO(SO — a151 — ... a[g/2]5[g/2]
If m¥D =0, for every 2 <1i < |[g/2], then

a = (I(g —1)/(g —1))ar, for every 2 <1< [g/2].
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Ip’ R ; T

Figure 5.1: The family.

Proof. For every i, the degree of (Jy)r, is 0, because each fiber of m;
contains only disconnecting nodes. On the other hand, for every fiber F
of m;, each section of H'(w,| ) ) vanishes at each P'.

Furthermore, we have that H'(wy,|,) = H%(wgp(C)) for every elliptic
component E of F', where C' is the node of F' lying on E. The upshot is
that

H'(wr,

p) = @p H(wp),

for every fiber F' of m;. Thus, 7 (wy,) is trivial and hence deg((A)s,) = 0.
Assume ¢ > 4. By the construction of 7;, we have that

deg((61)r,) = A%+ ((PLy % {Si-1}))”
= A =3+ (P x {Si-1})? = 1)
=2-2(0)—-34+(0-1)=-2,
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where A and (P}, x {S;,_1}) are the strict transforms of the diagonal A
and P} | x {S; 1} in the blow up (P} ; x P} ) of P} | x P! | at the points
(Ri—1, Ri—1), (Si—1, Si—1) and (T;—1, Ti—1).

On the other hand, we have deg((d2)r,) = 1, as the fiber of m; over S
has a disconnecting node S’ such that the closure of one of the connected
components of m; *(S)—{S’} has genus 2 and the total space of 7; is smooth
at S’. (The total space of 7; is smooth at the point S’ as this point can
be seen as a point of (P} ; x P! ,), which is a smooth surface.)

For 3 <1 <i—2, we have deg((&;)r,) = 0, as the family is locally trivial
around P! x {Q} C X for every @ which is a node of X; or Y;.

Now, we will compute deg((d;—1)r,). Notice that for every fiber F of 7,
the closure of one of the connected components of F' — {R;_1} has genus
i — 1. If g is even and i = g/2, then for each fiber F', the closure of one of
the connected components of F' — {7;_;} has genus i — 1 and hence

(P, x {Rizi}))? + (P, x {T;1]))?
(P x {Ria})* = 1)+ (P x {T;.1})* = 1)
=0-1)+0~-1)=-2

deg((0i-1)x;)

Otherwise,

deg((6i-1)x) = (Pi_; x {Ri_1}))’
= (P, ; x {Ri.1})* -1
—0—1=—1

To compute deg((d;)r,), first notice that the fiber of m; over R has a disco—
nnecting node R’ such that the closure of one of the connected components
of 7,1 (R) — { R’} has genus 7 and the total space of m; is smooth at R', and
the same holds for the fiber of m; at 7. Now, if g is odd and ¢ = (¢ — 1)/2,
then for each fiber F', the closure of one of the connected components of
F — {T;_1} has genus i and hence

deg((61)z,) =2+ (P_y x {Ti-1}))?
=2+ ((Piy x {Tia})’ = 1)
—24+(0-1)=1
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Otherwise, deg((d;)r,) = 2. Finally, if ¢ < [g/2] — 1, then

i

deg((0is1)m) = (Pi_y x {Ti-1}))?
= ((Piy x {Tia})’ = 1)
=0—-1=-1

and deg((9))r,) = 0, if i +2 < [ < [g/2]. Now, as m;D = 0, for every
2 <i<[g/2], it follows that

2a1 — as + a;—1 — 2a; + a;11 = 0 for every 2 < i < [g/2],
2a1 — ag + 2a;—1 — 2a; = 0, if g is even and i = ¢g/2, and
201 —as+a;1—a; =0, if gisodd and i = (g — 1)/2.

For 7 = 2,3, analogously, we get the same equations. Now, solving the
system of [g/2] — 1 equations, we get that

ar = (I(g —1)/(g — 1))ay, for every 2 <1< [g/2)].
O

Corollary 5.2.2. Let g be an odd positive integer such that g > 5. Let
S2W C M, be the effective divisor which is defined as the closure of the
locus of smooth curves C' with a pair of points (P, Q) satisfying that Q
is a ramification point of the linear system H®(wc(—P)) with ramification
weight at least 3.

Write the class of SW in Picpu,(M,) @ Q in the form

S2W = aX — apdy — a16y — . .. — A[g/219]9/2]
Then
a;= (I(g —1)/(g —1))aq, for every 2 <1 <[g/2].
Proof. Just combine Propositions 5.1.1 and 5.2.1. O



Chapter 6

The reducible case

6.1 The family

Consider a general family 7 : X — T of stable curves over a smooth
projective curve T'. As the family is general, the singular curves we have
in our family have only one node and these curves are not in the divisor
S2W we want to compute. We will restrict ourselves to a neighborhood in
T of some point tj, such that X;, is a singular fiber and the other fibers
are nonsingular. Assume that the singular fiber is reducible.

The special fiber is a nodal union of two general smooth pointed curves
(X, A) and (Y, B), identifying A with B. Suppose gy < gx.

Let X be the blowup of X at the ramification points of the complete lin-
ear systems H°(wx(—(gx —1)A)) and H°(wy (—(gy —1)B)). Notice that X
is the blowup of X at the supports of the unique effective divisors of X and
Y which are linearly equivalent to Kx — (gx — 1)A and Ky — (gv — 1)B,
respectively. Notice that the points A and B are not ramification points of
the linear systems H°(wx(—(gx —1)A)) and H°(wy(—(gy —1)B)), respec-
tively, as A and B are general points of X and Y respectively. Abusing
notation, we denote by X and Y the strict transform of X and Y in X. Also
if P € X is one of the blown up points, we denote by PL the component

of the exceptional divisor on X corresponding to P. Abusing notation, we
denote by P € X the point of intersection of X UY and PL. These points
are nodes of the singular fiber of the family 7 : X — T'; also this singular
fiber has the point A € X as a node.

Let Y = X x7X. The singularities of Y are the points (A4, A) and (P, A),
where the points P € X — {A} are nodes of the singular fiber of 7.

To solve the singularities of Y, we blow up X x X and Y xY’; let B be this

45
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blowup. We obtain a P! over each singularity of Y. We denote by ]P’%P A) the
rational curve on B over the point (P, A) € Y and IP’% 4.4) the rational curve
on B over the point (A, A) € Y. Let A be the strict transform in B of the

inverse image of A via the natural morphism Y — X xpX. Let Z11, Z12, Z21
and Zoo be the strict transforms of X x X, X xY, YV x X and Y xY

respectively. Let (Ph x X) and (Pp x Y) be the strict transforms of P}, x X
and PL x Y respectively. A local analysis shows that A intersects IP’% AA)

transversally. Also, ]PD% AA) = Z11 N Zoyy and Zq9, Zo1 do not contain IP’% AA) If
Pe X—{A}isa n~ode of the singular fiber of 7, then ]P’%RA) = ZnN(PLxY)
and Zis, (Pp x X) do not contain P(p, 4. Also, if P € Y — {B} is a node
of the singular fiber of 7, then P{,, ;) = Zos N (P}, x X) and Zy;, (Pp x V)
do not contain ]P)%P 4 See figure 6.1.

Let p1,p2 be the projection maps of Y and b : B — Y the blowup. Set
pi=piobfori=1,2 and L =w, (—A — Zp).

Figure 6.1: The family over X.
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6.2 Direct images

Proposition 6.2.1. p1.(£) is locally free of rank g — 1.

Proof. 1t is enough to show that hO(L‘Bp) =g —1 for every P € X.
There are 8 cases to consider.
Case (1): Bp is a smooth curve. Then

HO(&, ) = HO(wx,p (—P))

it follows that hO(L’BP) =g—1.
Case (2): P € X —{A} and P is not a node of the singular fiber of 7.
Then

L], =wx(24-P), L], =wy

and thus hO(L’BP) =g-— 1.
Case (3): P € X — {A} is a node of the singular fiber of 7. Then

L)y =wx(A=P), L], =O0p(1), L], =wy

therefore hO(L’BP) =g—1.
Case (4): P = A. Then

Ly =wx(A), L] =Om, L], =wy

it follows that hO(L’BP) =g—1.
Case (5): P €Y —{B} and P is not a node of the singular fiber of 7.
Then

L], =wx(A), L], =wy(B—P)

Then we have that hO(L’BP) =g—1.
Case (6): P €Y — {B} is a node of the singular fiber of 7. Then

L]y =wx(A), L], = Op, L], =wy(B - P)

Therefore hO(L‘Bp) =g—1.
Case (7): Let Bg be the fiber of B over a point Q € PL —{ P}, for some
P} intersecting X. Then

Ly =wx(A-P), L], =wy(B)
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Then we obtain that ho(ﬁf%) =g— 1.

Case (8): Let B be the fiber of B over a point Q € P, —{ P}, for some
PL intersecting Y. Then

L‘X = wX(A), L‘Y = wy(B - P)
and it follows that h( 13‘3 =g— 1. O

Proposition 6.2.2. R'p;,(£) = O

Proof. Notice that by Riemann-Roch we have hl(L’ 13P) = 1 for every
P e X, as hU(L’BP) = g — 1. It follows that R'pi.(£) is invertible. Let

D=A + 711 and consider the long exact sequence
0— pl*(z’) — p]-*(w/)l) — P1x wm’D

Rlpl*(L) — R! p1*<wp1> — R! P1x (“")01 — 0

)

= 0 in codimension 2. Indeed, con-

Now, we will show that R!py, wpl‘ D

sider the exact sequence

0= wp (—Z11)|x = Wor|lp = Wp|, — 0

b = oz,

Since R'p1.(w,, (—Z11) ’A 0, as the restriction of wpl(—le)’~ to each
fiber is supported at a pomt we have R!pi,( Wm’ D) Rlpl*(wpﬁ Zu)' To

show that R!pi.(w), ’ 2u) = = ( in codimension 2, it is enough to show that

hY(Bp, (w,, ‘ Zu, ‘Bp =0 for every P € X away from a codimension- 2 locus.
It P¢gX, then this is true. Now, let P € X such that P is not a node of
Xt,. Consider the exact sequence

0= wpy, (=2Z11) = wp, = wp,|, =0
then we have an exact sequence
Wo(=Z11)|5, = wip = (Wp |5 )5, =0

Writing Bp = X UY', we see that the image of the first map vanishes over
X, as X C Zj;. Thus, this image is wpl(_le)’Y = wy. Hence, we have
the exact sequence

0 — wy = ws, — (W, P—>O

2l
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Taking the long exact sequence in cohomology, we get

Hl(Y wY)%Hl(Bp,wgp)—)Hl(‘Bp, wpl —)0

2],

By duality, the map HY(Y,wy) — H(Bp,ws,) is a surjection if and
only if the map Ho(ﬁp,OBp) — H°(Y,Oy) is injective, which is true.
Thus, R'p. wpl ‘ p) = 0 in codimension 2 and hence we have a surjection
R'p1.(L) = R'pri(w,,) in codimension 2. As R'p;.(L) is an invertible
sheaf and R'py.(w,,) = O, it follows that R'py. (L) = Ox. O

6.3 Classes of the degeneracy scheme and the rami-
fication divisor

Let W' be the degeneracy locus of the evaluation map pjp1.(£) — JI~*(L)
and W the closure of W' N B,,;.

Proposition 6.3.1.

+1 +1
wew=(§)a- (") )z (5)m- ()

(), R () ) 3 men

PLNX#£0D PLNX D
gy 1 -~ (gx +1 1 -
—<<2)+1) Z(IP’PXX)—( ) ) > (PpxY)
PLNY #0 PLNY 0

Proof. Consider a slice > on X intersecting f)thO transversally at a point
which is not a node. Let 8 be the fibered product

s—1.®

b

Y—X

The family of curves 8§ — X has smooth generic fiber. Since the formation
of the degeneracy scheme commutes with base change, we have that f*(WW’)
is the degeneracy scheme of the invertible sheaf f*(L).

Thus, it is enough to see that the pull back via f of the right side
of the equality we want to prove is effective and does not have vertical
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components for every point P € 5@0 which is not a node. For this, we use
Proposition 1.3.1. Abusing notation, we denote by £ the invertible sheaf
f*(£) on 8, and let V = HY(L). There are 4 cases to consider.

Case (1): Let P € X — {A} such that P is not a node of X,.

We have

L), =wx(2A—P), L], =
Consider the exact sequence

0 — H(wy(—B)) — H%( ) = H%wx (24 — P)).

Clyor

It follows that hO(L‘XUy) < hwy(—B))+h(wx(2A—P)) =gy —1+gx =
g — 1 and since by semicontinuity h°(£|, ) = g — 1, then h%(L|, ) =
g — 1 and we have a surjection H( L’XUy — H%wx(2A — P)). By the
base change theorem we have a surjection H°(£) — HY( ) and hence
V], = H'(wx (24— P)).

We will show that

e

dime (V| (—iA))+dime(V(=iY)|,(=B)) < g — 1 for every i > 1.

)y (

We have the exact sequence

0— V(=iY)|,(=B) = V(=iY — V(=iY)|, —0.

)y ) xor

Then dimc(V (—iY)|,.(—B)) <dimc(V (—iY )=g—1and as

)‘y )‘XUY
V| (—i4) = H(wx(—(i — 2)A — P)),

it follows that dim@(V’X(—iA))—l—dim@(V(—zY)’Y(—B)) < g — 1 for every
t > gx + 2. On the other hand for 2 < i < gx + 1 we have

V(=iY)|,(=B) € H(wy((i —1)B)),
which implies that dimg(V(—iY) |, (—B)) < h®(wy ((i—1)B)) = gy +i—2;
also we have dimC(V‘X(—z’A)) = W (wx(=(i—2)A—P)) =gx—i+1,as P
is an ordinary point of the complete linear system H°(wx(—(gx — 1)A)).
Finally, for ¢ = 1 we have dimCV’X(—A) = h%(wx(A— P)) = gx — 1 and

dime(V(=Y)|;.(=B)) < h(wy) = gv-
Now, we will show that

dimg(V |, (—iB))+dime(V(—iX)|(—A)) < g — 1 for every i > 1.

x
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Consider the exact sequence
0= H(wx(A—P)) = H°(L|, ) = H(wy).

Since h°(L|, ) = g — 1= h'(wx(A — P)) + h’(wy), we have a surjection
HO(L| ) = H%(wy), and as we have a surjection H(L) — HO(L|, ),
it follows that V|, = H(wy). Thus, we get V|Y(—iB) = H%wy(—iB)) =
0 for every 7« > gy. On the other hand, as we have the exact sequence

0= V(—iX)| (—A) = V(=iX)| , = V(=iX)|, =0,

it follows that dim¢V (—iX)|, (—A4) <dimc(V(=iX)|, ) = 9 — 1. Then
dim@(V’Y(—z'B))—l—dim(c(V(—Z'X)‘X(—A)) < g — 1 for every i > gy. Now,
for : < gy — 1 we have

V(=iX)|(=4) € H(wx((i + A~ P)),

which implies that dim@V(—iX)‘X(—A) < gx—1+41. Also dimCV‘Y(—iB) =
ho(wy(—iB)) =gy — 1.

Thus, the hypothesis of Proposition 1.3.1 are satisfied in this case. Since
V|, = H(wy), we get Twy, (B) =0+1+...+gy —1=(%). Also since
V‘X = HO(wX(ZA—P)), we have va|X(A) =0+4+2+.. tox = (gx2+1> —1.
Hence the multiplicities of X and Y in the degeneracy scheme are what we
stated. B

Case (2): Let P € Y — {B} such that P is not a node of X;,.

We have
L], =wx(A4), L], =wy(B - P).
Considering the exact sequence
0 — H(wy(—P)) = H (L] ) = H'(wx(A)),
as in the first case, we get V|X = H%wx(A)). We will show that
dime(V|  (—iA))+dime(V (=iY)|,(=B)) < g — 1 for every i > 1.

We have V|, (—iA) = H(wx(—(i—1)A)) = 0 for every i > gx+1. On the
other hand, for i < gx we have dim@(V’X(—iA)) = W (wx(—(i —1)A)) =
gx — i+ 1, and since V(—iY)|,(=B) € Hwy(iB — P)), we have that
dimg(V(=iY)|,(=B)) < h’(wy (iB — P)) = gy +1i — 2.

Now, we will show that
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dimg (V| (—iB))+dime(V(—iX) | (—A)) < g — 1 for every i > 1.
Considering the exact sequence
0 — H'(wx) = H(L] ) = H(wy(B - P)),

we get V|, = H'(wy (B — P)). We have V|, (—iB) = H(wy(—(i —1)B —
P)) =0 for every i > gy + 1. On the other hand, for i < gy we have

V(=iX)| ¢ (=4) € H(wx (i4)),

which implies that dimeV (—iX)|, (—A4) < gx—1+i. Also dimcV|, (—iB) =
h(wy(—(i —1)B — P)) = gy — i, as P is an ordinary point of the complete
linear system H%(wy(—(gy — 1)B)).

Thus, the hypothesis of Proposition 1.3.1 are satified in this case. Since
V|, = Hwy(B — P)), we get Twy, (B) =1+...+gy —1 = (%); also
since V|, = Hwx(A4)), we have Twy| (A) = 14+ ...+ gx = (7).
Hence the multiplicities of X and Y in the degeneracy scheme are what we
stated.

Case (3): Consider Q € PL — {P} such that P} intersects X.

We have
L], =wx(A—P), L], =wy(B).
Considering the exact sequence
0— Hwy) = H(L|, ) = H(wx(A— P)),
we get V| = H(wx (A — P)). We will show that
dim@(V‘X(—z’A))+dim@(V(—z’Y)‘Y(—B)) < g—1 for every i > 1.

We have V‘X(—z’A) = H%wx(—(i —1)A — P)) = 0 for every i > gy +
1; on the other hand, for « < gx — 1, since P is a ramification point
of the complete linear system HY(wy(—(gx — 1)A)), we have (Propo-
sitions 1.3.3 and 1.3.2) dim@(V’X(—iA)) = W(wx(—=(G — 1)A - P)) =
gx —i. As V(=iY)|,(—B) € H’(wy(iB)), then dim¢(V(—iY)|,(=B)) <
h(wy (iB)) = gy +1i — 1.

Finally, for i = gx, we have dim@V’X(—gXA) = h(wx(—(9x — 1A —
P)) = 1, as P is a ramification point of the complete linear system
H(wx(—(gx — 1)A)). Now, we will show that dime(V(—gxY)|, (=B)) <
g—2. As
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L(—gxY)|y = wx(—(9x — 1)A = P), L(—gxY)|, = wy((gx + 1)B),

then £(—gxY) has focus on Y. Let V3 = V(—gXY)’Y be the limit linear
system on Y. Then dim¢Vy = g — 1. Since B is a general point of Y, the
orders of vanishing at B of the sections of wy ((gx +1)B) are {0,1,...,gx —
1,9x +1,...,g}; and since Vy has codimension 1 in H'(wy((gx + 1)B)),
the orders of vanishing at B of the sections of wy ((gx + 1)B) in Vy are of
the form {0,1,...,9x—1,9x+1,...,9}—{l}, forsome [ € {0,1,...,gx —
1,gx +1,...,9}. Then we have that wty, (B) = gv + ¢ — 1 — 1. On the
other hand, notice that

L(—gyX)|y =wx((gy +1)A = P), L(—gv X)|, = wy(—(9v — 1)B),

then £(—gy X) has focus on X. Let Vx = V(—gyX)|, be the limit linear
system on X. As dimcVyx = g — 1 = h%wx((gy + 1)A — P)), it follows
that Vy = H%(wx((gy + 1)A — P)). Then the orders of vanishing at A
of the sections in Vx are {0,1,...,9y — L,gv +1,...,9 — 2,9} and hence
wty, (A) = gx. Now, as L(—gy X) has focus on X and £L(—gxY') has focus
on Y, it follows that the connecting number between these sheaves with
respect to X and Y is Ixy = 0 — (—gy) + 0 — (—gx) = g. Therefore, we
have

thX(A) +thY(B) + (g - 1)(9 —2- ZXY) >0, 1e.,
gxtgy+9-—1-14+(g—-1)(g—2-g) =0

It follows that [ < 1. If [ = 0, the intersection multiplicity of the ram-
ification divisor and the special fiber at the node would be 1, which is
impossible. Thus, we get that [ = 1. It follows that dimc¢Vy (—B) = g — 2,
that is, dim¢V (—gxY)|, (=B) = g — 2.

To show the inequality dim¢V |, (—iB)+dimcV (—iX)| (—A) < g —1
is similar to the begining of Case (2), exchanging X with Y and A with
B. Thus, we get V|, = H(wy(B)). Now, since V|, = H(wx(A — P)),
Twy| (A) =1+.. . +gx —24gx = (%) +1. Alsosince V|, = H(wy(B)),
Twy|, (B)=1+...+gy = (QYZH). Hence the multiplicities of X and Y in
the degeneracy scheme are what we stated.

Case (4): Consider Q € P, — { P} such that PL intersects Y.

This case is similar to Case (3) exchanging X with Y and A with B.
Thus, we get that the multiplicities of X and Y in the degeneracy scheme
are what we stated. U
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Lemma 6.3.2. Let K, = ¢i(wx), K, = c1(w,,) and K,, := c1(w,,). Let
b : X — X be the blow-up. Then

A2=_K, A
p1e(A?) = =" (K)

Proof. Let g :'Y —>N3C X7 X be the natural morphism and b : B — Y
the blow-up. Let f : A — A be the morphism induced by g o b, and let
A’A P!, A
On the other hand, (g o b)*(IA)‘E =
(4,4)

p1, D2 be the projection maps of Y. Since (g o b)*(Za) modulo torsion is
X 'ZP%A,A)’ we have that (g o b)*(IA)‘ x modulo torsion is T3 |5 - Z, L

= f* IA’A andIA’A >l =w,0J
(identifying A with X), where J is the ideal sheaf of the nodes. Then we
have that f*(w:) ® Iz = Zx|z - T P, oA and hence Zx|z = f*(wx).
Thus, denoting by pi, p» the projection maps of X x7 X, we have

03<_£)‘£:f*<wﬂ'):f wp1‘A (b* * wpl ’A b*wpl)‘A wm‘ﬁ'
Therefore A2 = —-K,, A and pr(A2) = —pr (f*(K,)) = =0 (K). O

Proposition 6.3.3.

W= ()8 + K= X @hxXT— 3 @hxv)

PHLNX#0 PLNX 0
- > (PpxX)— > (PpxY)-(9-1A
PLNY #0 PLOY #0

— plﬂ'*/\ + ( gx — 1)pTX — (g — 1)Z11
Proof. By the Thom-Porteous Formula:
(W] = e1(J372(L)) — erlpipra(£)).

Using the exact sequences of truncation, we get (Proposition 2.4.1)

a(J5(L) (9 N 1)c1<wm> (g - Der(L)

2

_ (ggl)Km (9= 1)K, — A= Zu)

~ () K0 -0 DB~ (g~ vz
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Now, we will compute ¢;(p1.(£)). By Grothendieck-Riemann-Roch we
have:

ch(pu(£)) = pr(ch(L) - td(Ty 5))
c1(L)? K
= p1 (14 1 (L) + 1(2 S ya- P tdy(Ty ) + )
Kl
= o1+ (@1(£) = =)
c1(£)? K, c1(L)
+ 12 - p21 + tdy (T 5)) + )
K ~
= p1(1 + ( 2p1 —A—Zn)
+(K§1+B2+Zfl—2[(m-K—sz-ZHwZ-ZH
2
K2 -K, A—K, -Z
- T (T ) )

On the other hand, we have the following formulas:

(1)p1«(Z11) = 0, as Zy; is vertical with respect to p;.

(2)p1:(Z3) = =X, as Z} = —Z11 - (By, — Z11) and the only component,
of Z11 - (By, — Z11) which is not contracted by p; is (X X {A}).

(3)p1:(K,, - Z11) = (29x — 1) X, as writing Bp = X UY for each point
P € X — {A} which is not a node of X, we have that K, |, = wx(A) has
degree 2gx — 1.

Also, recall that pi,(tda(Ty /i)) = A, = 7" A;. Using these formulas and
the previous lemma, we get

(L)) = (g — 2) 4 — ) = X = A (Kr) = 2(2gx ~ DX +2X

2
(K) — (29 — DX
_ = )2(9*" X

=(g—2)—V"(K;)—(9x — DX +7T A\ + ...,

Since R'p1.(£) = O (Proposition 6.2.2), we have that ch(p1(£)) = (9 —
2) + c1(p1+(L)) + .. Then

Cl(m*( ) = —b"(K7) = (gx = DX + 7\

x

and hence

) = (§) 8~ (o= DB~ (g D) Zu =i (-0 (5) — (g~ DX 47
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2
On the other hand, as Kz = V*(K,) + > P}, it follows that

K,, = pi(Kz) = pit"* (Kz) + pi (32 Pp),

Le., pit*(K;) = K,,— pi(>_P}). This, together with the formula for [W'],
implies the proposition. O
By Propositions 6.3.1 and 6.3.3, we get the formula for [IW]:

= (2) 8~ 0= DB~ (0= D20+ (0 + (0 — DX = T,

) = (§) 8+ K — (g = DB = 470+ lox — 10X - (7 ) 2

_(<92y> +g—1)ZH—(<gX2+1) )z <9X2‘|‘1>Z22

_((9Y2+1>+1) > (IP}DXX)~—(<92X>+2) > (PpxY)

PLNX#0 PLNX 0
gy ~ gx +1 ~
—(<2>+2) Z(P}x){)—(( ) )+1) > (PpxY)
PLNY #0) PLNY #0

6.4 Lower bounds for the coefficients

Let j denote the genus of Y, and let A := ;. Our next aim is to compute
Tep1«((W]-((W]+K,)-((W]+2K,,)). To doit, it is necessary to compute all
intersections appearing. We list some of the most representative formulas
in the following lemma (see appendix for a list of all intersections).

Lemma 6.4.1. We have the following formulas:

(
(Z1 - Kp) = —(29x — 1)gx9;
(A?-K,,) = =12\ 4 §;
P1:(Kp, - Kp, - Z11) = (29x — 1)(3gx — 2)9;
(
(
(

D1:( 23 - A) = —gx6;
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Proof. To show the calculation techniques, we will prove the formulas
(1),(2), (4), (6), (8) and (9). )

(1) (P X))? = —(Plyx X - (B, — (Phx X)) = — (P x {A} +{P} x X)

Then ((PL x X))? = —(PL x {A} + {P} x X) - (PL x X). On the other
hand, we have PL, x {A} = (PL xY) - (PL x X), then PL x {A}-(PL x X) =
(PL xY)-((PL x X))? is the self-intersection of PL x {A} on (PL x Y); this
self-intersection is the self-intersection of PL x {A} on PL x Y minus 1, as
(PL x Y) is the blow-up of PL x Y at the point (P, A) € P} x {A}. Since
the self-intersection of P% x {A} on PL x Y is 0, PL x {A}-(PL x X) = —1.
Analogously, {P} x X - (PL x X) = —1. This implies Formula (1).

(2) We have that Kp21 - Z11 is the self-intersection of K, - Z1; on Z;.
Let ¢ : Z;; — B and j : X — X be the inclusion maps, ¢ : X x X — X
the second projection and ¢ : Z1; — X X X the morphism induced by the
blow-up b: B = X xp X

B XXX

N

Zy—>=Xx X2 .

Then we have
K, - Zn=7K, =i'p;K; = "5 Kr = ¢*¢5(Kx + A).

Therefore, the self-intersection of K, -Z1; on Z1; is 0, and from this Formula
(2) follows.
(4) By using the projection formula and Lemma 6.3.2, we get

Tup1e(A7 - K,) = Fapr(A” - pjK5)
= F(p1(A%) - K)
= T (= (Ky) - (0 (KR) + ) Pp))
= m b (—b*(K?) = —w*(Kg) = — (12X = §;) = =12\ + §;

(6) We have that A?. Z11 1s the self-intersection of A Z11 on Zyp; this
self-intersection is the self-intersection of the diagonal on X x X minus 1,
as Z1 is the blow-up of X x X at the points (A, A) and (P, A), where
the points P € X — {A} are the nodes of X, and the diagonal of X x X
passes through the point (A, A) and does not pass through the points
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(P, A). Since the self-intersection of the diagonal on X x X is —(2gx —2),
we have A?. Z;; = —(2gx — 1). Formula (6) follows.
(8) By using the projection formula, we get

Tap1e(Kp, - Ky, - p1X) = Tup1(K), - p1(K7) - p1X)
= Tup1s(Kp, - p1 (K7 - X))
= T (p1(K,) - Kz - X)
= T((29 — 2) K7 - X)
= (29 — 2)(3gx — 2)J;

(9) By using the projection formula, we get

%*Pl*(Zfl : sz) = %*pl*(Zfl . pT(K%))
= T(p1:(23)) - Kz)
=T.(—X - K3)
= —(3gx — 2)J;

Using Singular [S] for the computations, we obtain
Fopre (W] - (W] + K,,) - (W] + 2,,)) = alg)A + b;(9)3;, where

a(g) = 9¢° — 51g* + 129¢3 — 207¢> + 174g — 54
(as computed in chapter 4) and

bi(g) = 659> — 6j'g + 125" — 65°¢> — 35°¢> — 35°g — 185° + 35%¢"
+352¢% + 12529 + 65° — 3j¢° + 125¢* — 21j¢® + 21j¢% — 2159 + 6.

Proposition 6.4.2. The divisor W is flat over X.

Proof. Tt is enough to show that W does not contain any irreducible
component of each fiber Bp. Indeed, let Zy, be the ideal sheaf of W and
consider the natural morphism Zy < Ogz. Since Og is flat over X, we
have that if IW"BP — Og,, is injective for every point P € X (which is true
when W does not contain any irreducible component of each singular fiber
Bp), then the cokernel of the morphism Zy — Og is flat over X.

There are 4 cases to consider.

Case (1): Let P = A and let By = X UP'UY be the fiber of B over
the point A.

Let £1 := L(—(g9y —1)Z11 — (9y — 1)Z21). Then, we have
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Ll‘x = WX(QYA)a 51’]1:)1 = Op1, 51‘Y = WY(_(QY — 1)3)-

Then hO(LﬂBA) = g — 1 and hence p1.(£1) is locally free of rank g — 1 in
a neighborhood of A.

Consider X and 8 as in the begining of the proof of Proposition 6.3.1,
but assume that X is a slice through the point A € X intersecting X and Y
transversally at the point A. Since f*(£1) has focus on X, the degeneracy
scheme of f*(L;) does not contain X, i.e., the pullback of the degeneracy
scheme of £; does not contain X. Then W does not contain X.

On the other hand, analogously, by considering the invertible sheaf
Lo = L(—gxZ1a — gx Za2) we get that W does not contain Y.

Now, we are going to see what happens on P!. Abusing notation, we
denote by £ the invertible sheaf f*(£) on 8.

Let £ := L(gx X + (g9v —1)Y + f*(A)). We have

&) =wx(~(ax — DA), ] = Onilg). £/, = wr(~(9v — 1)B).

Thus £’ has focus on P'. Let V' = H%(L'), then V'|,, € H(Opi(g)). As
L’(—gXX)‘X = wx (A), it follows that V’(—gXX)‘]Pl has A as a base point.
Therefore,

V'(=gxX)|p € H(L'(—gx X)|pi(—A)) = H(Opi(9)(—(9x + 1) A)).
On the other hand, we have

dime V'(—gx X)|p = g — dime V' (—gx X)| 4y (—A — B)
> g — h'(wyx)
=9 —9x = gy

Hence V’(—gXX)‘]P)1 = HY(Opi(g)(—(9x + 1)A)). Analogously, we get
V’(—ng)‘P1 = H(Op (9)(—(gy + 1)B)), and since

(
H(Op(9)(—(gx + 1)A)) N H*(Op: (g)(—(9y + 1)B)) =0
as subspaces of H O(O]pl (9)), then by dimension considerations,
V'|p = H' (O (9)(—(9x + 1)A)) & H*(Op1(9)(—(9v + 1)B)).
Let R := P'nA. We have V/(—f*(A))|p € V'|p(—R). On the other

hand, the degree of the ramification divisor of V'|p: is g, wty, (A) = gy

and wty, (B) = gx. Then A and B are the only ramification points of

rl
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Vv’ ’Pl and hence dimcV’ ‘]P,l(—R) = g — 1. Thus, the limit linear system
of £ on P! is V’(—f*(ﬁ))‘ﬁp1 = V’|,.(—R). Then, the limit lincar system
of £ on P! does not depend on the slice ¥. Notice that, if N C W is a
irreducible curve passing through a point Q € P! — {A, B} such that the
generic point of N lies on a smooth fiber of py, then () is a limit ramification
point on some slice X, and hence @ is a ramification point of V’ ’Pl(—R).
We conclude that W does not contain P!

Case (2): Consider a fiber Bp = X UP' UY, where PL N X # 0.

By considering the invertible sheaf £ := £(—gy (PLx X) —(gy —1)Z11),
as in Case (1), we get that 1 does not contain X.

Now, consider 3 and S as in the begining of the proof of Proposition
6.3.1, but assume X is a slice in X intersecting P}, and X transversally at
the point P. Abusing notation, we denote by £ the invertible sheaf f*(£)
on 8, and let V := HY(L). We will see what happens on P!,

For each i > 0, let £; := £(—iP!) and let W/ be the degeneracy scheme
of £;. Let mp (i) denote the multiplicity of P! in the divisor W/. By
Equation 1.3.2, we get

) xur(
Furthermore,

Lily =wx(—(i = 1)A = P), Li|p, = Opi (1 + 20), £i|, = wy(—iB),
which implies that £; has focus on P! for each i > gx, and hence mpm (1) =0
for every i > gx. It follows that

gx—1

mei (0) = dimcV (—iP')|, , (—A— B).
i=0
On the other hand, for each ¢ > 0 we have
dimcv(—ipl

oy (=4 = B) < h(wx(—iA = P)) + h¥(wy (= (i + 1) B)),

which implies that

mp1 (0) < TWo(wy(A-p)) (A) + Twio, ) (B)

)
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This, together with the fact that W' contains Zj; and (PL x Y) with

multiplicities (5’2’“ ) and (95() + 1 respectively (Proposition 6.3.1), implies

that W does not contain P'.

Now, we are going to show that W does not contain Y. Let £’ :=
L(gxX + (gv — 1)Y). We have

Ly = wx(—(gx = 1)A = P), £'|,, = Onlg), £'|, = wy(—(gv — 1)B).

Thus £’ has focus on P'. Let V' = H°(L'), then V'|,, € H(Op(g)). Since
[J’(—gXX)‘X = wyx(A — P), we have that V’(—gXX)’EM has A as a base
point. Then

V/(=gxX)|p © HY(L'(—gx X) |5 (= A)) = H(Opi(9)(—(gx + 1)A)).
On the other hand, we have
dime V'(—gx X)|p = g — 1 — dime V' (—gx X)| (A — B)
>g9—1-(9x—1)
=49 —9x = 9y

Therefore V'(—gx X) ’]P,l = H°(Opi(g)(—(gx +1)A)). Analogously, we have
V/(—QYY)‘HM C H(Opi (g)(—(gy + 1)B)). Now, notice that

dim(C V/(_gYY)‘IPl =g — 1 - dimC V/(_gYY>’XUy(_A - B)
>g—1—-ygy
= gx — 17

and since
H(Opi(9)(—(9x +1)A)) N H(Op1 (9)(—(g9v + 1)B)) = 0
as subspaces of H(Opi(g)), then by dimension considerations,
V'] = H(Op(9)(—(9x +1)A)) & V'(=gvY) 5.

Let Vpr := V'|,,. Tt follows that Vei(—gxA) = Vei(—(gx + 1)A). Then,
writing the vanishing orders at A of the sections of Vpr,

{0,...,9} —{l, 1},

where 0 < [; < ly < g, we have [{ = gx or [y = gx. On the other hand,
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L(—gy X + (9v = 1)Y)|, = wx((9v + 1)A - P),
L(—gy X + (gy — 1Y) = Opi,
L(—gy X + (gv — DY)|, = wy(—(9v — 1)B).

Then £(—gy X + (gy — 1)Y) has focus on X, and by dimension considera-
tions, the limit linear system of £ on X is Vx = H(wx((gy +1)A—P)). As
P is a ramification point of H(wx(—(gx — 1)A)), it follows the vanishing
orders at A of the sections of Vyx are {0,...,9y — L9y +1,...,9 — 2,9}
and hence wty, (A) = gx. Since L(—gy X + (gy —1)Y') has focus on X and
L(gx X+ (gy —1)Y) has focus on P!, the connecting number between these
sheaves with respect to X and Plis Iypr = gy —1—(—gy)+gx—(gv—1) = g.
Therefore, we have

wiyy (A) + wiy, (A) + (9 —1)(g —2 = Ixpm) > 0, Le,
gx +29—1—(l1+1) —2(g—1) >0.

It follows that [y + lo < gx + 1; and since I; = gx or Iy = gx, we have that
Iy =0and [y = gx, or [y =1 and [, = gx. But, for [y = 0 the intersection
multiplicity of the ramification divisor and the special fiber at the node
is 1, which is impossible. Thus, we get that I; = 1, [y = gx and hence
wty, (A) =29 —1— (14 gx) = 2(g — 1) — gx and the limit ramification
divisor does not contain the point A. Also, since degRy,, = 2(g — 1), we
have wty,, (B) < gx.
On the other hand, we have that

Vor(—gyB) = Ve (—(gy + 1)B) = V/(—gvY) | s

has dimension gx — 1. Then, writing the orders of vanishing at B of the
sections of Vpi,

{07 T 79} T {l/17 ’2}7
where 0 < I} < [l < g, we get that I] = gy. On the other hand,
L(gxX — (gx +1)Y)|, =wx(—(9x —1)A—P),
L(gxX — (gx + 1)Y)|p = Op1, L(gx X — (gx + 1)Y)|;, = wy((9x +1)B).

Then L£L(gxX — (9x + 1)Y) has focus on Y. Let V3 be the limit linear
system on Y'; writing the orders of vanishing at B of the sections of Vy,
{0,...,9x — Ligx+1,...,9} — {l}, we get wty,(B) =gy +g—1—1. As
L(gxX + (gv — 1)Y) has focus on P! and L£(gx X — (gx + 1)Y) has focus
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on Y, it follows that the connecting number between these sheaves with
respect to P! and Y is Ipiy = gy —1—gx +9x — (—(g9x+1)) = g. Therefore,
we have

wtv]pl (B) +thY(B) + (g_ 1)(9_ 2— l[P”Y) > 07 i'e'7
20 —1—-(1+15)+gv+9g—1-1-2(g—1) >0.

It follows that I] + 15 +1 < gy + g; and hence 5, +1 < g. Now, since
wty,, (B) < gx, we have 29 — 1 — (I} + 1) < gx; then I} +15 > g — 1+ gy,
ie, l, > g—1. We conclude that [l = 1 and I, = g —1, or I = 0 and
g—1<1,<g. But, for { =0 and [, = g — 1, the intersection multiplicity
of the ramification divisor and the special fiber at the node is 1, which is
impossible. The remaining cases, that is, [ =1 and I, =¢g— 1,1 =0 and
5 = g, imply the limit ramification divisor does not contain the point B.

Now, notice that when | = 1 and l;, = g—1; we have wty,, (B) = gx, and
as wty,, (A) = 2(g9 — 1) — gx, it follows that the limit ramification divisor
does not contain any point of P!.

On the other hand, by using the formula for the class of W (see after
proposition 6.3.3), together with the following facts: the intersection mul-
tiplicities of all K, K,,, A and piT* Ay with P! are zero; and Zy; - P! = —1,
Zyp Pl =1, (PL x X)-P' =1, (PL xY) P! = —1, we conclude that
W -P! = 1. Thus, since W does not contain P!, there is a unique irreducible
component of W intersecting P!, and this intersection is transversal. Let
D = W NPL Then, D € P! is a limit ramification point on the slice .
It follows that the case [ = 1 and I, = g — 1 is impossible, and hence [ = 0
and I, = g. Then Vy = H(wy(gxB)). Thus, the limit linear system on Y
does not depend on the slice X2, and hence W does not contain Y.

Case (3): Consider a fiber Bp = X UP'UY, where PLNY # (.

This case is similar to Case (2).

Case (4): P € 5th0 is not a node.

By the proof of Proposition 6.3.1, we have that for each slice ¥ passing
through the point P, f*(W) does not contain any vertical component on
S. O

Now, we want to prove that S*W N By, is finite. There are some cases
which are easy to handle (see Propositions 6.4.4 and 6.4.5), but in the
general case, we need to state the following hypothesis:

Hypothesis (x).
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If (X, A) is a general pointed smooth curve, then for every ramification
point P € X of the complete linear system H"(wx(—(g9x — 1)A)) and for
every i > 1, the complete linear system H°(wx((i + 1)A — P)) does not
have ramification points on X — { A} having ramification weight at least 3.

Proposition 6.4.3. S?W N B, is finite.

Proof. Since W is flat, for each singular fiber Bp, we have that WNBp is
the limit ramification divisor over any slice ¥ intersecting X, transversally
at the point P. We are going to see what happens on each fiber; keeping
the notation as in the begining of the proof of Proposition 6.3.1, we denote
by £ the invertible sheaf f*(£) on 8.

Case (1): P € X is not a node of Xy,.

We have

L’(_(gX + 1)Y)‘X — wX<_(gX - 1)A - P)v
L(—(gx +1)Y)|, = wy((gx +1)B).

Then £(—(gx + 1)Y) has focus on Y, and since P is not a ramification
point of H(wx(—(gx — 1)A)), by dimension considerations we have that
the limit linear system of £ on Y is V4 = H%wy(gxB)). On the other
hand,

L(=(9v = 1DX)|y = wx((9v + 1)A = P),
£(~(gy = DX)], = wr(~(gy ~ 1)B).
Then £(—(gy —1)X) has focus on X, and by dimension considerations we
have that the limit linear system of £ on X is Vx = H%(wx ((gy +1)A—P)).
Since B is a general point of Y, the orders of vanishing at B of the
sections in Vy are {1,...,gx —1,9x+1,...,¢g}; then wty, (B) = gy +g—1.
Also,{0,...,gv—1,gy+1,...,g—1} are the orders of vanishing at A of the

sections in Vx; hence wty, (A) = gx — 1. Thus, the number of ramification
points of Vy and Vy on (X — {A}) U (Y — {B}) is

(9—1D((g—2)(gx — 1) +29x —2+gy) — (9x — 1)
+(g—1)((9—2)(gy —1)+29y —2+9gx +1) — (9v + 9 — 1);

this sum is (g —1)(g?> — g —1), and since this number is the total number of
limit ramification points, we have that W does not contain the node. On
the other hand, as Vy = H%(wy(gxB)), it follows from Proposition 1.3.4
that wty, (Q) = 1 for every ramification point @ of V3 on Y — {B}. Also,
for Q € X — {A}, it follows from Propositions 1.3.5 and 1.3.6 that
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hW(wx((gy + 1A - P — (g +1)Q))
W(wx((gy +1)A—=P —(9-3)Q)) =

Then, the orders of vanishing at () of the sections in Vy are

0,
2

{0,...,9 —4,a,-3,a4_9}, where a,_» < g.

Thus, wty, (Q ) 3 if and only if h%(wx((gy + 1)A — P — gQ)) = 1 and
ho(wx((ger 1)A (g 2)Q))) = 2; and in this case wty, (@) = 3. Since
RO (wx ((gy + 1) gQ)) = 1if and only if @ is a ramification point of
HO(wX((gy—l—l)A)) and P is a ramification point of H%(wx ((gy+1)A—gQ)),
we get that there only exist a finitely many points (P, Q) € Z11 such that
P € X is not a node of Xy, Q@ € X — {A} and wty, (Q) = 3, where
Vi = Hwx((gy + DA=P)).

Case (2): P €Y is not a node of Xy,.

This case is similar to Case (1):

Vy = H'(wx(gvA)) € H(wx((gy + 1)A)) and
Vy = H(wy((9x +1)B — P))

are the limit linear systems on X and Y respectively. Also, W does not
contain the node, wty, (Q)) = 1 for every ramification point @) of Vx on
X — {A}; for each Q € Y — {B} we have that wty, (@) > 3 if and only
if wty, (Q) = 3; and there exists a finitely many points (P, Q) € Za such
that P € Y is not a node of DCtO, Q €Y — {B} and wty, (Q) = 3.

Case (3): Consider Q € PL — {P} such that PL intersects X.

By the proof of Case (3) of Proposition 6.3.1, we have that the limit
linear systems on X and Y satisfy Vx = H(wx((gy +1)A— P)) and V3 C
H%wy((gx + 1)B)). Also, we obtained that [ = 1, where {0,1,...,gx —
L,gx +1,...,9} — {l} are the orders of vanishing at B of the sections of
wy((9x + 1)B) in Vy. Therefore W does not contain the node B, Vy #
HO%wy (9xB)) and V4 D H(wy ((9x — 1)B)).

Now, consider a linear system V C H%(wy ((gx + 1)B)) satisfying

V 2O Hwy((9x —1)B)) and dim¢V = g — 1.

We have that D € Y — {B} is a ramification point of V if and only if
V(=(g—1)D) #0,ie.,V 2 Hwy((9x +1)B — (¢ —1)D)). On the other
hand, for every D € Y — {B},

Hwy ((9x —1)B)) N Hwy ((9x +1)B = (9 —1)D)) =0
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as subspaces of H(wy((gx + 1)B)). Hence, by dimension considerations,
D €Y — {B} is a ramification point of V' if and only if

V= Hwy((gx —1)B)) ® H(wy((gx + 1)B — (g — 1)D)).

It follows that V3 and HY(wy(gxB)) do not have ramification points in
common on Y — {B}, and since the limit linear system on Y C Bp is
H'(wy(gxB)), we have that for every D € Y — {B}, W does not contain
PL x {D}.

On the other hand, by using the formula for the class of W (see after
Proposition 6.3.3), we conclude that W - PL x {D} = 1 for every point
D € Y—{B}. Then, for each D € Y —{B}, we have W intersects PLx {D}
at a single point; thus, as @ varies in P}, — {P}, the limit linear system
Vy on' Y C B varies through distinct subspaces of H%(wy ((gx + 1)B)),
and furthermore, those limit linear systems on Y do not have ramification
points in common on Y — {B}. Also, notice that, as @ varies in Ph, the
limit linear system Vy on Y C B varies through all the subspaces V' of
H%wy((gx +1)B)) satisfying V 2 H(wy((gx —1)B)) and dimcV = g—1.

Since H(wy ((9x —1)B)) C Vy C H%wy((gx + 1)B)), for every point
D €Y — {B} we have that wty, (D) = wtgo, (gy+1)8)(D) +9 —1 =1,
where {bg,...,b,_1} — {l'} are the orders of vanishing at D of the sections
in Vy-, with {by,...,bs—1} the orders of vanishing at D of the sections of
H%wy((gx + 1)B)). If D € Y — {B} is an ordinary point of the linear
system H%(wy ((9x —1)B)) then {0,...,9—3} C{by,...,by—1} —{l'}, and
hence I’ > g —2; and since wi go(,, ((gx+1)8) (D) < 1, we have wty, (D) < 2.
On the other hand, as H’(wy((gx — 1)B)) has only simple ramification
points on Y — {B}, it follows that {0,...,9 — 4} C {by,...,by—1} — {I'}.
Therefore I > g — 3, and if D € Y — {B} is an ordinary point of
H%wy((gx + 1)B)) then wty, (D) < 2.

Now, consider D € Y — {B} such that D is a ramification point in
common of the linear systems H(wy ((gx —1)B)) and H%(wy ((9x +1)B)).
Then, we have

{0,...,g—4,g—2}g{bo,...,bg_l}—{l’} and
{b()a"'abg—l}:{07"'7.9_27.9};

which imply I’ = g — 3 or I’ = g. Therefore, if D is a ramification point
of Vy, then I' = g — 3 and wty, (D) = 3. Then, for D € Y — {B}, we
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have wty, (D) > 3 if and only if wty, (D) = 3. Also, if « is the num-
ber of ramification points in common on Y — {B} of the linear systems
Hwy((9gx — 1)B)) and H%wy((gx + 1)B)), then there exist o points
(Q, D) € (PLxY) such that Q € PL—{P}, D € Y —{B} and wty, (D) = 3,
where Vy is the limit linear system on Y C Bg.

On the other hand, the hypothesis (x) implies that there are no points
(Q, D) € (PLx X) such that Q € PL—{P}, D € X—{A} and wty, (D) > 3,
where Vy = H'(wx((gy + 1)A — P)).

Case (4): Consider Q € PL — {P} such that PL intersects Y.

This case is similar to Case (3): We have the limit linear systems on X
and Y satisfy

Vy € H(wx((gy +1)A)) and Vy = H(wy((9x +1)B — P)).

Also, W does not contain the node, Vy D H%(wx((gy — 1)A)) and Vx #
H%wx(gyA)). If B is the number of ramification points in common on
X —{A} of the linear systems H°(wx((gy —1)A)) and H(wx((gy +1)A)),
then there exist 3 points (Q, D) € (P% x X) such that Q € PL—{P}, D €
X —{A} and wty, (D) = 3, where Vx is the limit linear system on X C B,.
Also, there are no points (Q, D) € (PL x Y) such that Q € PL — {P},
D €Y — {B} and wty, (D) > 3, where V3 = H(wy((gx +1)B — P)).

Case (5): Let P = A and let By = X UPLUY be the fiber of B over
the point A.

We have

L(—(gy — )X + (gy — 1Y)|, = H'(wx(gvA)),
L(—(gy — DX + (g9v — DY) = Op,
L(—=(gy — )X + (gy — 1)Y)|, = H(wy(—(9v — 1)B)).
Then £(—(gy —1)X + (gy —1)Y) has focus on X and Vy = H(wx(gy A)).
Also,

L(gxX — gxV)|y = H(wx(—(g9x — 1A)), L(gxX — gxV)|p = Opr.
L(gx X — gxY)|, = H(wy(9x B));

Then L£(gxX — gxY) has focus on Y and Vy = HYwy(gxB)). On the
other hand,

L(gx X + (gv = 1)Y)| = H(wx(—=(9x — 1)A)),
L(gxX + (g9v — DY)|p = Om(9)(—R),
L(gx X + (g9v — 1)Y)|, = H(wy(—(g9v — 1)B));
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where R =P' N A. Then £(g9xX + (gy — 1)Y) has focus on P!,
Let {0,...,g— 1} —{l"} be the orders of vanishing at A of the sections
in the limit linear system Vp1. It follows that

wivy (A) +wiy, (A) + (g —1)(g —2—(9—1)) 20, ie,
gx+g—1-0"—(g—1)>0.

Then !” < gx. By the proof of Case (1) of Proposition 6.4.2, we have that
Vi 2 H(Osi(9)(—R — (gx + 1)4)) & H(Ops(9)(~ R — (g + 1)B)), and
since the numbers 0,...,gx — 2 are the orders of vanishing at A of the
sections in the linear system

H®(Op1 (9)(—R — (9x +1)A)) ® H*(Om(g)(—=R = (9v +1)B)) C
HY(Op(g)(— 1)),

we get [” > gx — 1. Therefore gx — 1 <" < gx, but for I” = gx — 1, the
intersection multiplicity of the ramification divisor and the special fiber
at the point A is 1, which is impossible. Thus, I” = gy and W does not
contain the point A. Analogously, W does not contain the point B.

On the other hand, the number of ramification points of Vx and Vy on

(X ={Ahu (Y —{B})is

(=g =2)(gx — 1) +29x — 2+ gy) — gx
+(g—1)((g —2)(gy — 1) +29v — 2+ gx) — gv.

This sum is (§—1)(g?—g—1)—1, which implies there is a unique ramification
point of Vp1 on P! — {A, B}, and this point has ramification weight 1.
Noticing that Vx has only simple ramification points on X — {A} and Vy
has only simple ramification points on Y — { B}, we conclude there are no
points lying on this fiber of weight at least 3.

Case (6): Consider the fiber Bp = X UP'UY, where P € X — {A} is
a node of Xy,.

By the proof of Proposition 6.4.2, the limit linear systems on X and Y
are Vy = H(wx((gy+1)A—P)) and Vy = H°(wy (gx B)) respectively; also,
there is a unique limit ramification point on P! —{ A, B}, and this point has
ramification weight 1. Asin Case (3), we have Vx = H(wx((gy +1)A—P))
does not have ramification points on X — {A} having ramification weight
at least 3. Also, since Vy = H(wy(gxB)), we get wty, (D) = 1 for every
ramification point D of Vy on Y — {B}. Therefore, there are no points
lying on this fiber of weight at least 3.
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Case (7): Consider the fiber Bp = X UP' UY, where P € Y — {B} is
a node of X,.

This case is similar to Case (6); there are no points lying on this fiber
of weight at least 3. O

In the following propositions, we get more information without using
the hypothesis (x).

Proposition 6.4.4. If g = 3, then S°W N By, = 0.

Proof. We have gx = 2 and gy = 1. As in Proposition 6.4.3, we will see
what happens on each singular fiber Bp.

Case (1): P € X is not a node of X;,.

It is enough to show that there is no point Q € X — {A} such that
hY(wx(2A — P —3Q)) =1 and h®(wx(2A — P — Q)) = 2.

Suppose h’(wx (24 — P —3Q)) = 1 and h'(wx(2A — P — Q)) = 2. As
deg(wx (24 — P —3Q)) = 0 and h'(wx(24 — P — 3Q)) = 1, it follows
that Kx + 2A — P and 3() are linearly equivalent divisors; and since we
have h(wyx(24 — P — Q)) = 2, we conclude h°(Ox(2Q)) = 2. Then
h(wx(—2Q)) = 1, and since deg(wyx(—2Q)) = 0, we have that Kx and
2() are linearly equivalent. We conclude that 2A and P + () are linearly
equivalent; but this is impossible, as h?(Ox(2A4)) = 1.

Case (2): P €Y is not a node of ito.

Notice that, since gy = 1, Vi = H(wy ((gx +1)B — P)) has only simple
ramification points.

Case (3): Consider Q € PL — {P} such that PL intersects X.

Notice that H°(wy(B)) has only the point B as a ramification point.
Also, as showed in the case (1), there is no point Q € X — {A} such that
W (wx(2A — P —3Q)) =1 and h’(wx (24 — P —Q)) = 2.

Finally, notice that we do not have Case (4) of Proposition 6.4.3, as
gy = 1. U

Proposition 6.4.5. If g = 4 and gy = 2, then S*W N By, = 0.

Proof. We have gx = 2 and gy = 2. As in Proposition 6.4.3, we will see
what happens on each singular fiber Bp.

Case (1): P € X is not a node of 5@0.

It is enough to show that there is no point @ € X — {A} such that
W (wx(3A — P —4Q)) =1 and h®(wx(34 — P —2Q)) = 2.
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Suppose h'(wx (34 — P —4Q)) = 1 and h’(wx(3A — P — 2Q)) = 2.
As deg(wx (34 — P —4Q)) = 0 and h’(wx (34 — P — 4Q)) = 1, it follows
that Kx + 3A — P and 4() are linearly equivalent divisors; and since we
have h'(wx(3A — P — 2Q)) = 2, we conclude h'(Ox(2Q)) = 2. Then
h'(wx(—2Q)) = 1, and since deg(wx(—2Q)) = 0, we get that Ky and
2() are linearly equivalent. We conclude that 34 — P and 2(Q) are linearly
equivalent; which implies that

2 = W(wy) = I(O0x(2Q)) = K(Ox(3A — P))

and hence h°(wy (P — 3A)) = 1. Tt follows that h%(wx(—3A4)) = 1, which
is impossible. N

Case (2): P €Y is not a node of Xy,.

This case is similar to Case (1).

Case (3): Consider Q € PL — {P} such that PL intersects X.

As showed in the case (1), there is no point @ € X — {A} such that
P (wx(3A—P—4Q)) = 1 and h’(wx(3A— P—2Q)) = 2. Thus, it is enough
to show that H(wy(B)) and H'(wy(3B)) do not have ramification points
in common on Y — {B}. Suppose @ € Y — {B} is a ramification point in
common of the complete linear systems H"(wy(B)) and H'(wy(3B)). We
have h'(wy (B — 2Q)) = 1, i.e., h®(wy(-2Q)) = 1. Then Ky and 2Q are
linearly equivalent. On the other hand, since h’(wy (3B — 4Q)) = 1, we
have h%(Oy (3B —2Q)) = 1; it follows that there exists a point R € Y such
that 3B — 2@Q) and R are linearly equivalent. Thus, we have

2 = B(wy) = KOy (2Q)) = K(Oy (3B — R))

and hence h'(wy(R — 3B)) = 1. As B € Y is a general point, it follows
that R # B; therefore h’(wy(—3B)) = 1, which is impossible.
Case (4): Consider Q € PL — { P} such that P} intersects Y.
This case is similar to Case (3). O
Observe that if we write the class of S?2W as

STW = aX — apdy — @101 — ... — ajg/200/2,

then Propositions 6.4.4 and 6.4.5 tell us that a; = b; for g = 3, and ay = by
for g = 4, where b; := b;(g) are the numbers computed before Proposition
6.4.2.



Appendix A

Intersections appearing in the
reducible case

A.1 List of intersections

We have the following formulas:

(1) If PL N X # 0, then Tpr.((Ph x X))?) = 26,
(2) Tup1:(K, - Z11) =

(3) Fopra(ZH - K,) = —(20x — Daxd,

(4) Tupra(A? - K,,) = =121 + §;

(5) Tapre(Kp, - Kp, - Zu1) = (29x — 1)(3gx — 2)d
(6) Tep1(A? - Z11) = —(29x — 1)9;

(7) Tepre(Zf1 - A) = —gx9;

(8) Tup1( Ky, - Kp, - p1X) = (29 — 2)(3gx — 2)J;
9) %*Pl*(Z% sz) —(3g9x — 2)9;

(10) 7 Pl*(Zn piTA) =0

( 1) TP (A2 ZQQ) (2gy — 1)5

(12) mep (ZQQ A) = _9Y5

(13) epra(Zi1 - Zaz - A) = §;

(14) Top14(Z§ ) = gx0;

(15) mep *(ZQZ) = gy 9;

(16) mm*(Zfl + Zyg) = —0;

(17) TP *(ZQQ . le) (5

(18) Tup1(Z7; - piX) = gx9;

(19) %*,01*(222 . PTX) —0j

(20) ep14(Z11 - Za2 - p1X) =0

71
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21) pl*(( ) X) 0

22) T, *(ZQQ plw*)\) =0

23 *(ZH ZQQ plﬂ'*)\) =0

24) Tpr((p3X)* - piAA) = 0

25) Tup *(Zn (PL, x X)) =0
(

26) Tup1:(Z%, - (PL x Y)) =0

27) If PL N X # 0, then 7.p1.(Z3 - (PL x V) = —9;

28) If IP’l NY # 0, then T.p1.(Z% - (PL xY)) =0

29) If IP’l NY # 0, then Tp1.(Z% - (Ph x X)) = —9;
(

30) If IPﬂ N X # 0, then 7.p1.(Z22, - (PL x X)) =0

(21) 7

(22) 7

(23) w

(24) w

(25) w

(26) 7

(27)

(28)

(29)

(30)

(31) m Pl*(Zn 5X) = gx0;

(32) Tupr(Z3, - sz) = —(3gv — 2)4;
(33) Tupr(Z11 - Zop - K,,) = 0

(34) Topra(K,, - K, - A) = 12X — 6
(35) Fupra(I5, - A2) = —12) + 4,

(36) Tupra(A?) = 12X — 0,

(37) Fupra( K2 - A) = 12X — §;

(38) Tupre (K2 - A) = 12\ — (g — 1)d;
(39) Tepra(K, - A - Z11) = (29x — 1)0;
(40) mepra (K, - A - Za2) = (29y — 1)9;
(41) Fopril K, - A Z11) = (3gx — 2)6;
(42) Tpra(K,, - A - Zoy) = (3gy — 2)6,
(43) Topr(K3) =0

(44) 7 *(Kg’z) =0

(45) Tpr (I, - Kp,) = (29 — 2)(12X = &)
(45) Tepra( K3, - K)) = (29 — 2)(12A — (g — 1)0))
(46) Fopra(A2 - piF*A) = —(2g — 2)A
(47) Topr(K3 - piT*A) = 0

(48) Tup1(K,, - K, - piT*A) = (29 — 2)% A
(49) 7T*p1*(K§ PIFA) = 0

(50) Top1s(K,, - A - piT*A) = (29 — 2)A
(51) Fupra(Kp, - A - piTA) = (29 — 2)A
(52) %*pl*((plX )2 piTA) =0

(53) Tuprx(piX - p3X - piTN) =0

(54) %*/01*( X - Z11 ,0171'*)\) =0
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'p2X piTA) =0

psX - pimA) =0
o7 PiX - pimiA) =0
8 . ZQQ K ) 0
99 77*/01*(222 - Kp,) = —(29v — 1)gv9;
60) If PL N X # 0, then Topr. ((PL x X))2 - pi7*\) =
61) If IP1 N X # (), then W*pl*(((Pl X Y))2 PITEN) =
62) If IP’l NY # 0, then Tp1((PL x Y))2 - pi7*N)
63) If PLNY # (), then W*pl*(((PP X X))2 PITEN) =
64) Tupr((PL x X) - (PL X Y) - pi7*)\) =0
65) If P # @, then Tp1.((Pp x X) - (Ph x X) - pim*A) = 0
66) If P # Q, then m.p1.((PL x Y) - (]P%2 X Y) . pimA) =0
67) If P # Q, then m.pp.((PL x X) - (IP%? X Y) - pimA) =0
68) Tup1((Ph x X) - Z11 - pi7*A) = 0
9 PL x X) - Zay - pi7*A) = 0
0 1P>1 ) Zy - pEA) =0
L x Y)N- Zyy - piT*N) = 0
i X - piTmN) =0
i X - piTN) =0

(2

56 %*,01*(
(22

(

ot

0
0
=0
0

- 9o
—_

maza =

J

2

4
5
76
7) If PL N Y + @ then T ((Pp x X))?) = 5
8) If IP’l N X # 0, then Tpp.((PL x Y))?) =

79) If IPP m v ;é 0, then Tp1. (((Ph x Y))?) = 25
0 piX)=0
1 : pSX) =0
2 -ZQQ) ~0
3 - (Pp x X))

-~

~ '~
ﬂ>12>1

oo 0o o
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oo

iy

co
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J
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'le) =0
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0
0
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D1 (Ep, - (pif*)‘)Z) =0

P1:(Kp, - (PIT*N)?) =0
P1(A - (pITA)?) = 0

«P1:(P1 X - (plﬂ—*)‘) ) =0

X () = 0

(PiTA)?) =0

(P A)?) =0

Pl X X) - (pf%*)\)Z) =0

«P1x(A (/);XV) —0;
11 (p3X)?) =0
2+ (p3X)?) =0
4Pl IP” x X) - (p3X)?) =0
pxY) - (p3X)*) =0
]Pl X X))2 - Kp,) = —(29x — 1)0;
]P’}s X Y))? - Kp,) = —(2gy — 1)§;
]P X X))2 ’ sz) = 5j
(( ]P’}a <Y)) - Kpy) =9 B
120) If PL N X # 0, then Tpr.((PL x X))2 - A) = —4;
21) If 1@1 NY %0, then T,p1. ((PL x X))2-A) =0
2) If Pl NX 0, then Topr ((PL x Y))2- A) =0
3) If IPl NY # 0, then T,pp. ((PL x Y))2- A) = —4;
4) 1f IPﬂ N X # 0, then T.p1.(((PL x X))2- piX) = —0;
5) If Pl NY # 0, then 7.p1.((PL x X))%- piX) =0
26) If P}D NX # 0, then Tpr.((PL x X))? - Z11) = —0;



127) FPLNY # 0, then T.p1.
28) If IP’l N X # 0, then T,p1
29) If IP’l NY # (0, then 7, p1.

131) If IP’l NY = (), then T, p14
132) If IP’l N X # (), then T, p1.
33) If IP’l NY = (), then T,p14
34) T (B x X))

(((PP
((Pp
(P}
130) If IP’l N X # 0, then T.p1.(((PL
((Pp
(Pp
(((Pl

Pz) 5]'
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XX)N)Q'ZH)
Y))? - Z)
Y))? - Zay)

X))? Zss)
X))? - Za)
Y))?- Zn)

XY))2 le)

135) If PL N X # 0, then Topr(((PL x X))? - (PL x Y)) = —d;
136) If IPl NY # 0, then Tpr. (P x X))2- (PL x Y)) =0

137) Fapro(((Bh x Y))2 - 5X) =
3
3

—6;
8) If PL N X # 0, then py, (((PL x Y))?
9) If Pl NY # 0, then F.pr. ((PL x V)2

(BL x X)) =0
(PL x X)) = 5,

140 pl*( Ky, Za) = (29y — 1)(3gy — 2)0;
141) Tpra(Kp, - Kp2 - p3X) = (29x — 1)(29 — 2)4;
142) Fopr (K, -Km (PL x X)) = —(29x — 1)9;
143 *(Kpl ’ sz ’ (P}D X Y)~) (QQY - 1)
p1e (£, é 1 X) = (ggx —1)6;

145 *(Km A-(PLxX))=0
146) Fopra(K, - A - (PL x Y)) =0

147) Tpra(Kp, - A - p3X) = (29x — 1)9;

48) Tp1 (K, - piTA - piX) =

49 *(Kp . plTi'*)\ . ZH) =

150) Tup1u(K,, - piT*N - Zag) = 0

151) Fupra( K, - piTN - p3X) =

152) Topre(K,, - pim A - (PL x X)) =0

153) Tupru(K,, - piTN - (PL x Y)) =0

154) Tpri(Kp, - pi1X - Z11) = —(29x — 1)gx6;

155 Pl*( X Zy) = (29y — 1)0;

156) Tp14(K,, - piX - p5X) =0

157) If PL N X ;é (2) then T.p1.(K,, - piX - (PL x X)) = (29x — 1)J;
158) If IP’l NY # 0, then T,p1. (K, pl -(PL x X)) =0

159) If Pl N X # 0, then T,p1. Kp plX (IP’1 xY)) =29y — 1)J;

160) If IP’l NY # (), then T, p14

(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(140) 7
(141) 7
(142)
(143) 7
(144) 7, p14
(145) 7
(146) 7
(147) 7
(148) 7
(149) 7
(150) =
(151) 7
(152) 7
(153) 7
(154) 7
(155) 7
(156)
(157)
(158)
(159) (
(160) (K,
(161) If IP’l N X # (), then T,p1.(K
(162) (

162) If IP’l NY # (), then T,p1. Kp1
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INTERSECTIONS APPEARING IN THE REDUCIBLE CASE

(163) Tup14(Ky, - Z11 - (Pp x Y)) =0

(164) (Km - Z11-p3X) =0

(165) Pl*( Ly p3X) =0

(166) . p1s (K, 'Zzz (P x X)) = )
(167) If PL N X # (), then W*pl*(Km Zay-(PLXY))=0
(168) If ]P)l ny 7é @ then W*pl*(K Z22 (Pl X Y)~) ( gy — 1)5]
(169) If IPﬂ NX # 0, then 7, p1. (K, p;X (PL, x X)) =
(170) If IP’l ny 75 @ then 7.p1.(K,, - p3X - (PL x X)) = (ZgX —1)6;
(171) 7 pl*( (PpxY)) = 0

(172) Fopro (K, <Pp x X) - (Pl x Y)) =

(173) Fopra(Kp, - A - piX) = (3gx — 2)@

(174) Fopra(Kp, - A - p3X) = (2gx — 1)6;

(175) If PL N X £ 0, then Tupr(K,, - A - (PL x X)) = —4;
(176) If 1P>1 NY #0, then Tp1(K,, - A - (PL x X)) =0
(177) If IP’l NX # 0, then Topr(K,, - A- (PLx Y)) =0
(178) If IPl NY # 0, then Tp1.(K,, - A - (PL x Y)) = =6,
(179) 7 pl*( o PN piX) =0

(180) w /)1*( 'P17T*/\ : Zn) =0

(181) ( . pik%*A . ZQQ) =0

(152) Fop (I 917 A - p3X) = 0

(183) Fupru(K,, - pLT*N - (PL x X)) =0

(184) Fypra(K,, - pi7*N - (PL X Y)) =0

(185) Tapru(K,, - piX - Z11) =0

(156) F.pu (K - 1 - Za) — 0

(187) Fupra (K, - piX - p5X) = 0

(188) Fopra(K,, - ’{X A(PL x X)) =0

(189) Fopr. (K, - piX - (BL x V) = 0

(190) 714 (K, - Z11 - p3X) = (39X — 2)4;

(191) = *(sz - Zu - (Pp x X)) =

(192) Fuprs(Kpy - Z11 - (Pp x Y)) =

(193) *(Kp2 . Z22 X) (3gy — 2)5

(194) T pra (K, - Z22 - (P}: x X)) =

(195) Tupra(Kp, - Zoa - (Pp X Y)) =

(196) 7 *(K X - (P X))

(197) Fopre(Kpy - X - (Ph % Y)) =

(198) F.pn. (e - (B x X (P x Y>> -3,



A. INTERSECTIONS APPEARING IN THE REDUCIBLE CASE

199) Fopra(A - piFA - piX) =0

200) *( . plﬂ'*)\ le) =0

201) *( . plﬂ'*)\ ZQQ) =0

202) *( PN p3X) =0

203) *( N (PL x X)) =0

204) Fopra(A - piFN - (PL X V) =0

205) T pl*( - piX - Z1) = —gx9;

206) Fopra(A - piX - Zag) = 6;

207) Fupra(A - piX - p5X) = 5

208) If Pp N X # 0, then Fopr. (A - piX - (Ph x X)) = 6

(
(
(
(
(
(
(
(
(
(
(209) If IP’l NY # 0, then Ty p1. (A p;X (PL x X)) =0
(210) F.pro (B - i X - (B x ¥)) = 0

(211) Tepra(A - Z11 - p3X) = =05

(212) If P, N X = (), then 7T*,01*(A 71 - (PL x X))
(213) If IP’l NY ## (), then W*pl*(A 211 - (IP1 X X))
(214 pl*(A ZH (]P)l XY)) 0

(215 W*pl*( Z22 pQX) = 5

(216) If IP’l N X # (0, then 7T*,01*(A Zoo - (]P’}g X Y)~)
(21

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

d;
0

) T

)

)

)

) T

)

) 0
217) If Pl NY # 0, then Topro(A - Zyy - (PL x Y)) = 6,

) Feprs(A - Zog - (Pl x X)) =0

) 7 ﬂMA psX - (Ph x X)) =0

) Fpra(A - p5X - (PL x Y)) =0
221) 7 *( (PLx X) - (PLxY)) =
222) *(p *)\ Z11 ZQQ):O

) T

) T

) T

) T

) T

) T

) T

)

)

)

)

)

218
219

220

223
224
225
226
227
228
229 T P11\ P 'Z22 (Pl X X))
230 W*pl*(pl - L9 - (Pl XY))

P(PiTN - 5 X - (Pp x X)) =0

Pr(piTN - p3X - (Pp x Y)) =0

*(p’{X

*( . ZH (Pl X X)) 0

*(PTX Zn - (PpxY)) =0

Pl*( 2y - p3X) =0;
(pi

Zi1 - p3X) = gx0;

231) If PL N X # (), then T.p1.(piX - p3 X -
232) If IP’l NY # 0, then T,p1.(pi X - p3X -

(p X)
TX -
233) If IPﬂ N X # (), then T.p1.(p1 X - psX -
TX -

X)
Y)
)

)
)
)
)

(Pp
(Pp
(Pp
234) If IP’l NY # (), then T,p1.(p; X - ps X - (IP’P X Y

0
0
0

77
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If PLN X # 0, then Tp1.(pi X - (PL x X) - (PL x Y))
If PLNY # 0, then T (0} X - (PL x X) - (PL x Y))

Wy
0

(235)

(236)

(237) %*pl*(le . Z22 . p;X) =0

(238) %*pl*(le : Z22 : (]P)}:) X X)~) =0

(239) Fp1(Z11 - Zog - (PL X Y)) =0

(240) If ]P)}g NnX 7é (Z), then %*,01*(211 . p;X . (P}g X X)~) = —5]'
(241) If PLNY # ), then 7.p1.(Z11 - p;X -(PL x X)) =0
(242) Topra(Zur - p5X - (Pp x Y')) =

(243) If PL N X £ (), then Tup1.(Z11 - (]P}D x X) - (PL xY)) =
(244) If PLNY # ), then 7.p1.(Z11 - (P}D x X)-(PLxY))=0
(245) Tupra(Zoa - psX - (Pp x X)) = .

(246) If PL N X # (), then T p1.(Zas - ng (PLxY))=0
(247) If ]P)}g ny 7é (Z), then %*pl*(Zgg X (]P)l X Y)~) = 5]'
(248) If PL N X = (), then Tup1.(Zos - (]P’l x X) - (PhxY))=0
(249) If PLNY # 0, then Tupri(Zas - (PL x X) - (PL x Y)) = 4,
(250) Fopra(p3X - (Ph x X+ (Ph x V) =0

(251) If PL N X # 0, then 7. p1.(((PL x Y))? - piX) = —4;
(252) If 1P>1 NY # 0, then Tpr.((PL x Y))2 - piX) =0

(253) 7 /)u(A2 piX) = —(29x — 1)9;

(254) Fpra(A? - p5X) = —(29x — 1)6;

(255) Fopra (A% - (P x X)) =

(256) Fopra (A% - (PL x V) =
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