Sharpness results via randomized algorithms

Hugo Duminil-Copin¹, Vincent Tassion², Aran Raoufi³

 1 Bures-sur-Yvette

 2 Zürich

 3 Bures-sur-Yvette

In these lectures, we will present different techniques developed over the past few years, enabling mathematicians to prove that phase transitions are sharp. We will focus on a few classical models of statistical physics, including Bernoulli percolation, the Ising model and the random-cluster model. In particular, we will prove that the connectivity probabilities of the subcritical random-cluster model decay exponentially fast. The strategy, relying on randomized algorithms, extends to continuum percolation models such as Boolean and Voronoi percolation in arbitrary dimension.