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Preface

Compressive sensing (CS) is a novel idea that rethinks data acquisi-
tion. The theory was so revolutionary when it was created in 2004
that an early paper outlining it was initially rejected on the basis
that its claims appeared impossible to be substantiated.

The impact of compressive sensing goes far beyond the research
labs and enters a more organic social level. This new area was able
to establish a true synergy between many disciplines of science, tech-
nology and engineering. Usually such groups are far apart due to the
cultural differences of their respective fields. Now, thanks to com-
pressive sensing, it is frequent to see pure mathematicians, applied
mathematicians, computer scientists, and hardware engineers coming
together to share ideas about the theory and its applications [1].

We were motivated to study CS, not only because it is a novel idea
that has had a great impact in the academic community, but also
because it is a very rich theory that covers interesting mathemati-
cal tools as well as notions of acquisition, compression, dimensional
reduction and optimization. Furthermore, the applications of com-
pressive sensing are very much related to audio-visual media, vision
and graphics, our main research focus.

This work started as the final project of one of the authors,
Adriana Schulz, at the Department of Electronics and Computer En-
gineering of POLI/UFRJ under the co-supervision of the two other
authors, Eduardo da Silva and Luiz Velho. Motivated by the extreme
success of this study, the authors continued pursuing further research
in the area. Finally, this book was written as the course notes for an
intermediate level tutorial for the 27th Brazilian Mathematics Collo-
quium.



The intention of this book is to develop a presentation of the fun-
damental aspects involved in CS which may be used as a bibliographic
guide for those who are initiating on this field. We were careful to
elaborate examples of applications in different acquisition scenarios,
which allowed us to answer a few interesting questions and evaluate
the performance of the technique. We also illustrate applications in
image processing, graphics and vision. Some of these applications
are related to emerging subareas, known as image-based modeling
and rendering, which combine methods from all the aforementioned
fields.
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Chapter 1

Introduction

Acquisition and reconstruction are essential in every signal processing
system and sampling theorems are responsible for the bridge between
continuous and discrete domains. The most important theorem that
sets a limit to the sampling rate guaranteeing signal recovery is the
Shannon-Nyquist theorem for band-limited signals.

We know, however, that natural and manmade signals tend to be
compressible, i.e., if point sampled many of the acquired coefficients
will be redundant. Hence, a lot of effort has been made in order to
rewrite the sampled data reducing the number of bits required to rep-
resent it. These schemes perform what is referred to as compression.

The sample-then-compress framework is very efficient and is used
in many applications with a good performance. However, the fact
that we are able to compress the acquired data, suggests that Nyquist
was a pessimist, who considered the worst case scenario in which all
that is known is that the signals are band-limited. But what if,
instead of considering the Nyquist rate, we would try to recover the
data by sensing at the information rate?

This is what compressive sensing is about. It comes out as a
new paradigm for data acquisition that rises against the common
knowledge of the filed. In truth, it gives stable and robust algorithms
that allows sensing at rates much smaller then the Nyquist limit and
recovering the signals with little corruption.

The basic idea is that compressibility translates in the existence

11



12 CHAPTER 1. INTRODUCTION

of a representation in which the signal is sparse (most coefficients
are zero). Therefore, while taking only a small number of samples
would make the recovery problem ill-posed (an infinite number of
solutions would be available), the compressibility property allows us
to search in all possible solutions the one that makes the recovered
signal sparse.

Of course, there is a twist in the word “sample”. We cannot point
sample the signal and hope to reconstruct it with a very small number
of measurements because, once it is sparse, most of our acquired data
will be zero. Instead, we measure the signal by calculating its inner
product against different test functions.

Compressive sensing is intriguing not only because it proves that
it is possible to reconstruct a signal with a very small number of
measurements but also because it is nonadaptive. By this we mean
that the algorithm is completely blind, not needing to guess charac-
teristics of the original object (apart from sparsity). Moreover, the
solution is obtained by means of a linear program that solves a convex
optimization problem.

1.1 Organization

In Chapter 2, we consider the classic methods for image compression
which apply the sample-then-compress framework. We study schemes
that make use of transforms (as the DCT and Wavelets) in order to
exploit signal redundancy and map the data coefficients that are less
correlated and, therefore, sparse.

Growing in abstraction levels, this compression paradigm is re-
lated in Chapter 3 to signal representation and reconstruction models.
The latter are then studied with emphasis in approximation theory.

With the former analysis, the stage is set for the investigation of
compressive sensing. Nevertheless, before we examine the fundamen-
tal theorems, some effort is made in Chapter 4 to intuitively justify
the combination of sensing and compression in a single procedure.

Based on the definition of the reconstruction algorithm, we must
establish the characteristics that, when imposed to the acquisition
model, guarantee good performances. Hence, in Chapter 5, a few
parameters are defined and several theorems that evaluate CS in dif-
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ferent contexts are exposed.

In Chapter 6, we verify the CS theory by means of examples. We
consider applications for image compression in scenarios where the
signal is either sparse or only approximately sparse, as well as when
measurements are corrupted by Gaussian and quantization noise.

In Chapter 7, we discuss new applications in Computer Graphics,
Vision and related fields.



Chapter 2

Image Compression

During the last decades we have been experiencing a multimedia rev-
olution that has enabled the access to large amounts of data even in
adverse situations. A key ingredient that has made these technologies
possible is the ability to express information in a compact form.

Data compression, therefore, aims at reducing the number of bits
required to represent a signal by exploiting structures in the data
(such as sparsity and redundancy) and characteristics of the users
(such as the limited perceptual abilities of human beings).

To evaluate compression efficiency, it can be taken into account
properties of the algorithm (complexity, velocity, memory consump-
tion), the amount of compression, and how closely the reconstruction
resembles the original signal.

In this work, we will focus on the rate-distortion criteria, that
evaluates the trade-offs between the average number of bits used to
represent each signal sample value and a quantification of the differ-
ence between the original signal and its reconstruction after compres-
sion.

Figure 2.1 illustrates a rate-distortion function R(D) that specifies
the lowest rate at which the output of a source can be encoded while
keeping the distortion less than or equal to D. This function is very
useful because it defines a bound and therefore a way to determine
optimality given a particular source. It will not always be possible
to design optimal compression schemes and thus the goal of many

14
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R(D)

Figure 2.1: The rate-distortion function.

researchers in this area is to improve performance by approaching
the R(D) curve.

In this chapter, we will overview the basic elements of compression
techniques and some popular standards for image compression.

2.1 Transform Coding

Most signals observed in nature are, in some way, compressible. This
is not surprising if we consider that redundancy plays an important
role in facilitating human perception. For example, it is easier and
more pleasant to read a text with repetitions, listen to songs that
do not have many abrupt variations, and watch videos with triv-
ial differences between frames. The same thing occurs with images,
where adjacent pixels tent do be very similar. In Figure 2.2, one can
compare a redundant image (left) with a non-redundant one (right).

The existence of redundancy indicates that storing an image as a
matrix in which each coefficient is the intensity of the correspondent
pixel is inefficient because many pixel values will be equivalent.

The solution is to find a sparse representation, i.e., a representa-
tion in which the information is concentrated in only a few significant
coefficients, the rest being zero valued. If this is accomplished, the
number of coefficients that needs to be stored (or transmitted) will
be largely reduced.

Transform coding [3] is the name given to data compression tech-
niques that change the signal representations to minimize redun-
dancy. Figure 2.3 introduces the three basic operations of transform
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(a) Image lena. (b) White Gaussian noise.

Figure 2.2: In the image lena, pixels that are not in the boundary
region are very similar to adjacent ones. The white noise, however,
is not compressible. (Extracted from [2].)

coding.

Original Compressed
———= Tranformation Quantization Encoding
Image Image

Figure 2.3: Transform coding operations.

The transformation of the image into a set of less redundant coeffi-
cients is the first step of the compression procedure. Simultaneously,
it minimizes the correlation among coefficients and maximizes the
energy concentration. Nevertheless, obtaining a matrix with many
zeros is not enough to reduce the number of bits required for signal
reconstruction.

It is interesting to point out that pixel values usually range be-
tween 0 and 255, i.e, each pixel is represented by 8 bits. After apply-
ing a transformation, however, the coefficients can assume arbitrary
floating-point values. Moreover, transformations often generate many
very small coefficients instead of just zero-valued ones.

Both of these problems are solved during the quantization step,
which aims at representing a large range of values by a relatively
small set of symbols. Though this strongly reduces the rate, it often
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leads to information loss.

The last step aims at mapping the symbols in the smallest stream
of bits possible. This procedure, called encoding, takes into account
the statistical characteristics of the symbols and the positions of the
significant (non-zero) coefficients in the matrix.

A simple illustration of a coding scheme that uses a transforma-
tion operation is the Differential Pulse Coded Modulation (DPCM)
[2]. The fact that, in most natural images, adjacent pixels tend to
have similar values indicates that a reasonable compression scheme
would involve transmitting the difference between adjacent pixel in-
stead of the original values.

This is the procedure of the DPCM, which uses as an estimate
the value of the adjacent right pixel and transmits only the difference
between the two. The advantage is that the values will now con-
centrate around zero and therefore more efficient quantization and
coding schemes can be employed.

Notice that, without quantization and coding, this procedure, in-
stead of reducing the output bit stream, enlarges it, because the pixel
values which before transformation were between {0,255}, range be-
tween {—255,255} after it.

In the following sections, we will study in more detail and will
exemplify these three basic operations.

2.2 Transformation

From what was just mentioned, we conclude that the goal of the trans-
formation step is to exploit information redundancy so as to adapt
the signal in order to facilitate efficient quantization and encoding.
These are usually linear transforms that are applied to a sequence
of inputs. In images, we have to partition the array of pixels into
blocks of size N which will then be mapped to a transform sequence,
as shown in Figure 2.4. The size of N is dictated by practical consid-
erations. While large blocks will allow a greater number of zero coef-
ficients, transform complexity grows more than linearly with N and
statistical characteristics change abruptly (images are not stationary
signals but we can assume stationary in a block if N is small).
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Figure 2.4: Partition of an image array into blocks of size N = 6 and
the sequence of correspondent vectors.

Let us now analyze three very common transforms and their ap-
plications in image compression.

2.2.1 Karhunen-Loéve Transform (KLT)

KLT [4] is referred by many authors as PCA (Principal Components
Analysis). In general, if we partition an image into blocks of size
N and then represent each block as a vector in RY, the correlation
between the coordinates will be very large, as shown in Figure 2.5.

The idea of KLT is to rotate the axes in order to minimize the
correlation, which can be interpreted as redundancy between coeffi-
cients, and consequently increase energy concentration.

The basis vectors of the KLT are given by the orthonormalized
eigenvectors of its autocorrelation matrix. This indicates a drawback
to this technique: it is functionally dependent on the input data.

2.2.2 Discrete Cosine Transform (DCT)

The DCT [4] is very similar to the Fourier transform in the sense that
it provides a spectral analysis of the signal. It has, however, a few
properties, that make it interesting for compression applications.

The cosine transform is very closely related to the KLT of a first-
order stationary Markov sequence when the correlation parameter is
close to 1 and therefore, provides excellent energy compaction for
highly correlated data.

Moreover, it is a real transform that can be implemented by a fast
algorithm and is data independent.
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x2

X2 . o . . y1
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.St 2 VLA
L) .. ° - . . .
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(a) (b)

Figure 2.5: Each image block is represented in (a) as a vector in R?
and the on the KLT transform shown in (b) each vector [a b]T =
azy + bxy will be represented by [c d]T = cy; + dys. (Extracted from

2].)

We represent an image in the DCT domain by a matrix where
each coefficient is given by

N1—1 Ny—1
Xiy ko = a1 (kn)aa(k2) Y D Tnyiny cos By - kr] cos [B - ko
TLl:O n2:0

where %y, n, is the value of the pixel at (n1,n2),

T 1
@M(anrQ)

ai(k) = /7 ifk=0

ai<k)—\/7 itk #0

= N

and

Notice that the first coefficient corresponds to the average signal level
(DC value) of the signal and greater frequencies are associated with
higher coefficients.

Figure 2.6 illustrates the transformation applied to the image lena.
To simplify the example, block partitioning was not used. A better
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(a) Original image. (b) DCT transform of (a).

(¢) Most significant coefficients.  (d) Image reconstructed form (c).

Figure 2.6: Example of image reconstructed with 1 out of 10 coeffi-
cients: we set to zero the smallest values of the DCT transform and
reconstruct the image by applying an inverse DCT. We observe that,
since many DCT coefficients are close to zero, the distortion is rather
small.

result would have been achieved if we had applied the DCT individ-
ually to N x N blocks.

2.2.3 Discrete Wavelet Transform (DWT)

While the time domain describes the way a signal varies in time and
its Fourier transform sheds light to the frequencies distribution, the
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Wavelet transform can be interpreted as a way to extract information
from a signal concerning both time and frequency. A first approach to
achieve simultaneously both features is to apply the Fourier transform
to windows of the original signal x(¢). This is known as the Short
Term Fourier Transform (STFT) [5], and can be defined as

Xp(w,t) = /700 z(T)g(T — t)e 9Tdr (2.1)

oo

where g(t) is a window function centered in zero, with variance in

. 1 2 . . 2
time" o7, and variance in frequency o;,.

(a) STFT (b) Wavelet Transform

Figure 2.7: Time X frequency plane for the STFT and Wavelet trans-
form. (Extracted from [6].)

Notice from Figure 2.7(a) and Equation 2.1 that the information
in (wp, to) mostly depends on the values of signal x(¢) in the intervals
[wo — 0w,wo + 0] and [tg — oy, to + 04]. The smaller o7 the better
a feature can be localized in the time domain, while the smaller the
o2 the better the frequency resolution of the STFT. However, the
uncertainty principle states that we cannot find a window function
g(t) that allows for both o7 and o2 to be arbitrarily small, i.e., it is

1We calculate variance as follows

o S tPa(t)dt
7T T g
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impossible to obtain precise localization in both domains simultane-
ously.

Therefore, a fixed window function implies a predetermined res-
olution in which information is obtained. Images, however, as well
as most natural signals, combine features of different detail levels.
Therefore, a major drawback in the STFT is that the size of the
window function is invariant.

The Wavelet transform tries to solve this problem by introducing
the concept of scale. A scale is closely related to the width of the
window and represents a measure of the amount of detail in the signal.
The Wavelet transform of a signal x(¢) is the decomposition of z(t)
on the basis composed by translated and scaled version of a mother
function ®(¢). The mother function scaled by s and translated by ¢
is described as follows:

1 T—t
D,(7) = ﬁq)(T)
where % is a normalization factor.

The function ®,,(7) dilates and contracts with s, varying in-
versely to its Fourier transform, as shown in Figure 2.8. Therefore,
the interval of the signal x(t) that contributes to its Wavelet trans-
form at (s,t) varies as shown in Figure 2.7(b).

Do 0(7)

T

W

2
Fourier
Transform
n e
\/ V ! 1

Wy w

Figure 2.8: Scaled wavelet functions and their Fourier transforms.
(Extracted from [6].)

The values of the transformed coefficients for a given scale inform
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how much there is of the signal at a given resolution level. In small
scales, refinement signal details are explored, while in large ones,
coarse details are analyzed.

The redundancy generated by mapping a one dimensional signal
in a two dimensional function indicates that recovery will still be
possible after discretization is done. A common partition of the time
x frequency grid is shown in Figure 2.9 and is known as a dyadic
lattice:

(s,t) € {(2™,n2™tg),n,m € Z}

Figure 2.9: The discrete grid of the DWT. (Extracted from [5].)

In terms of signal processing, a Wavelet transform is equivalent to
filtering a signal in different subbands, each representing the signal
information in a different resolution. This conclusion can be drawn
from Figure 2.8, where the scaled Wavelet function is represented in
the frequency domain by band-pass filters.

A common way to generate this subband decomposition is by di-
viding a signal into low and high-pass bands and then filtering again
the low-pass channel in low and high-pass channels. The process of
dividing the resulting low-pass channel is repeated until a predeter-
mined number of stages is reached.

At each step, the low-pass filtering corresponds to a smoothing
of the signal and the removal of details, whereas the high-pass corre-
sponds to the differences between the scales.

In images, the DWT is applied both to rows and columns, as
shown in Figure 2.10. In this Figure we notice that most of the
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coefficients are close to zero and that the horizontal, vertical and
diagonal bands are closely related. These features, allied to the ability
of dividing the information in detail levels, make the DWT interesting
for compression applications.

(a) Original image (b) Wavelet Transform

Figure 2.10: Example of 2D Wavelet transform of three stages. In (b)
the coefficients are represented on a grayscale, white corresponding to
positive values, back to negative and gray to zero values. (Extracted
from [7].)

2.3 Quantization

Quantization [3] consists in representing a source output using one of
a finite (and usually small) number of codewords. Since the number of
codewords and the characteristics of the quantizer are closely related
to the level of compression and the loss in fidelity, it is essential to
bear in mind a rate-distortion criteria during this procedure.

Here we present two kinds of quantizers that differ in terms of the
set of inputs and outputs, that can be either scalars or vectors.
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2.3.1 Scalar Quantization

Scalar quantization consists in dividing a scalar input range into in-
tervals and assigning for each one a codeword and an output value.

Figure 2.11 is an example of a linear quantizer, where all intervals
have the same size, called quantization step.

Output

/

levels

Figure 2.11: Linear quantizer input-output map.

In many applications it is not efficient to establish constant dis-
tances between decision and reconstruction levels. If this does not
happen the quantization is called non-linear. In most image com-
pression standards, however, the latter is not used because entropy
coding combined with linear quantization provides a very similar per-
formance and is less complex to implement.

2.3.2 Vector Quantization

From what has been studied up until now and from basic results in
information theory, it is clear that encoding a sequence of outputs
instead of individual samples separately is more efficient according to
a rate-distortion criteria.

In this case, instead of quantizing each image pixel, we divide
images into blocks of size N and represent each one as a vector in
RY. The output of the quantizer is a finite set of vectors called
codebook and each block of the source output is associated to the
closest vector in the codebook, usually by applying the Euclidean
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norm.

The process of finding the optimal codebook of size k for a given
source set of vectors § involves choosing the k vectors of the code-
book, and the k quantization cells - each quantization cell corresponds
to the subset of S that is associated to the k** code-vector. This pro-
cedure is not analytical because it involves two related considerations:

e Given the quantization cells, the best codebook is constructed
by extracting the centers of each cell.

e Given the codebook, the best quantization cells are found by
assigning each element in S to its closest vector in the codebook.

Hence, there are many algorithms for finding the best codebook
given certain input data. Here we will describe one of the simplest,
yet very popular, referred to as LBG:

1. Initialize the codebook by selecting k vectors at random.

2. Specify the quantization cells, i.e., assign to each source output
the closest vector in the codebook.

3. Reset the codebook by selecting the centers of each quantization
cell.

4. Return to step 2 unless a finalization condition is reached.

2.4 Encoding

We refer to coding [8] as the process of assigning binary represen-
tations to the output of a source, here referred to as alphabet. For
example, the ASCII code uses 8 bits and each of the 28 possible com-
binations is associated to one of 256 letters or punctuation marks.
This is a so called fized-length code because all symbols are repre-
sented by the same number of bits.

To minimize the average number of bits per symbol, we should
use fewer bits to represent symbols that occur more often. This is
done in the Morse code, as illustrated in Figure 2.12. Note that the
smallest codeword is associated to the letter E, which is the most
used in the English language.
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A._ Jooen S.. 2.
B_.. K-._ T_ En R
C_._ L._ U..- 4.0
D_.. M__ V... 5.....
E N_. W.__ 6_....
F.._ O___ X o 7__
G__ P.__. Yo.__  8___..
H Q-—._ Z__ 9____.
I R._ 1.____ 0_____

Figure 2.12: Morse code.

We measure efficiency in terms of rate minimization by comparing
the average symbol length with the alphabet’s entropy, which is a
measurement of the average information per source symbol.

Let 8§ = {s1,...sk} be a given alphabet where each symbol has
the probability of occurrence pr, = P(S = si). The entropy is given
by:

K
1
H(S) = ;pk -log (m) (2.2)

and the average code length by:

K
L= Zpk g
k=1

where [, is the size of the codeword associated to the symbol sy.
In this case, coding efficiency is measured by:

The Shannon Theorem guarantees L > H(S) and therefore the
optimal code occurs when n = 1.

Along with minimizing rate, efficient codes must be uniquely de-
codable, i.e., there must be no ambiguity between codewords. It is
also desirable that the decoding be instantaneous, which means that
the decoder knows the moment a code is complete without having to
wait until the beginning of the next codeword.

Now we will outline two coding procedures that are often em-
ployed in image compression standards.
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2.4.1 Huffman Code

David Huffman developed an instantaneous code where the average
symbol length is very close to the entropy. It is based on two obser-
vations:

e Symbols with greater probability of occurrence should have
smaller codewords.

e The two symbols that occur least frequently should have the
same length.

We will demonstrate this coding procedure by an example. Let
S = {s1, 82, 83, 84} be an alphabet where the probability of occurrence
of each symbol is respectively {0.5,0.25,0.125,0.125}.

The symbols are arranged in order of decreasing probability and
the last two symbols are combined iteratively until only one symbol
is left. Figure 2.13 illustrates this procedure and the decision tree
generated by the coding strategy.

S1 0.5

1
§p0.25 -
0.125 03
5 125
3 0.25
§4-0:125

Figure 2.13: Huffman code.

Table 2.1: Associated codewords generated by the Huffman coding.

Symbol | Codeword
S1 0
S92 10
S92 110
S 111

Table 2.1 displays the codewords associated to each symbol. No-
tice that in this case, since the distribution of probabilities is dyadic,
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the code is optimal, i.e., n = 1.

2.4.2 Arithmetic Code

Though very successful in many circumstances, the Huffman code
becomes inefficient when a single symbol has a very large probability
of occurrence. This is often the case in small alphabets, where the
obligation of using an integer number of bits to represent each symbol,
limits the reduction of the average code length.

In this case, a better performance would be achieved by blocking
groups of symbols together and generating codes capable of charac-
terizing entire sequences of symbols by a unique identifier. This is
the proposition of the arithmetic code, which maps each sequence
into the unit interval [0,1). We will illustrate the encoding procedure
with an example.

Let & = {s1, 52,83} be a given alphabet where each symbol has
the probability of occurrence p; = 0.5, po = 0.2, p3 = 0.3. The
first step consists in dividing the unit interval into regions that are
associated with each symbol. The size of each region is, of course,
directly related to the symbol probability, since larger regions will
require a smaller number of decimal figures to be represented.

If the first symbol to be encoded is s1, then the code will be a
number in [0, 0.5) and this interval will be divided according to the al-
phabet’s probability distribution. This process is repeated iteratively
as shown in Figure 2.14, which considers the sequence (s1, $3, $2), and
the transmitted code is a number between 0.425 and 0.455, for ex-
ample the mean 0.44. The decoder procedure is also done iteratively
dividing the interval and finding the associated symbols.

There are, however, two problems associated with arithmetic cod-
ing:

e There is no information provided as to when the decoding
should stop.

e The binary representation of a real value with infinite precision
can be infinitely long.

The first problem can be solved either by informing the decoder
the size of the sequence or by associating a region of the unit interval
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51
5 1025
! S9
S — -
s '21 0.425
Sod 25
} o 0.455-
1.5 0.5 :
.‘32
0.7
S3
L1

Figure 2.14: Example of arithmetic encoding.

with an end-of-transmission symbol. Figure 2.15 illustrates the EOT
symbol, that brings the decoding procedure to a stop as soon as it is
detected.

S1 S 53 LOT

Figure 2.15: The end-of-transmission symbol.

There are several approaches to solve the second problem. The
simplest one would be to encode each decimal symbol at a time, i.e.,
when we reach an interval small enough to make the n' digit stop
varying, it is transmitted.

2.5 Standards

In this section we will illustrate image compression by describing two
very important standards: JPEG and JPEG2000.
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2.5.1 JPEG

The JPEG [3] standard uses a very popular compression technique
that involves DCT transform, followed by scalar quantization and
Huffman coding.

The procedure starts by dividing the image into blocks of size
8 x 8 which are transformed by a forward DCT. This transformation
isolates, in general, the important image components in the upper
left portion of the matrix.

The calculated coefficients are quantized by uniform scalar quan-
tization, where the step size varies increasingly as we move from DC
coeflicients to higher-order coefficients. The variation of the step size
is related to the perception of the human visual system to errors in
different spatial frequencies. Since the human eye is less sensitive to
higher spatial frequencies, we can accept greater quantization errors
for the coefficients that represent them. The following matrix shows
the weight of each quantization step, i.e., the quantization step of
the coeflicient ¢;; is gglobalQij, Where gglobal is a parameter associated
with the compression rate.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
T2 92 95 98 112 100 103 99

The DC values are encoded separately from the AC ones because
they vary little between adjacent blocks and, thus, it is interesting to
encode the difference between neighbors. Therefore the DC values,
i.e., the fist coefficient of each transformed block, are coded using
DPCM followed by a Huffman entropy encoder.

To understand the coding of the AC coefficients it is important
to analyze some properties of the matrix that stores the quantized
coefficients of a typical DCT-transformed image block:
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Notice that, not only is the matrix sparse, but also most of the
nonzero coefficients are located on its upper-left corner. These char-
acteristics suggest a scanning in a diagonal zigzag pattern, as shown
in Figure 2.16.

Figure 2.16: The zigzag scanning pattern.

The JPEG standard uses run-length encoding; i.e., each nonzero
value that is scanned in the above fashion is stored as a sequence of
pairs (run, length); the first indicating the number of preceding zeros
and the second the values of the component. These pairs are then
encoded using a Huffman code.

A drawback of dividing the image into blocks is that coding arti-
facts may be generated at block edges. This effect, called blockiness,
is illustrated in Figure 2.17 .



2.5. STANDARDS 33

Figure 2.17: Example of the blocking effect generated by a JPEG

compression with very high rate.

2.5.2 JPEG2000

JPEG2000 [9] gains up to about 20% compression performance for
medium compression rates in comparison to the first JPEG stan-
dard, but has, however, notably higher computational and memory
demands. It involves a Wavelet transform followed by scallar quan-
tization and arithmetic coding.

The Wavelet transform is applied to the tilled image, where the
size of the tile can vary widely, being possible to consider the whole
image as one single tile. This is important because small tiles can
generate blocking effects, as in the JPEG standard.

The Wavelet coefficients are quantized by a uniform scalar quan-
tizer with step size varying between subbands considering the human
visual sensibility to different scaled informations. Each bit plane?
of the quantized coefficients is then encoded using a process called
Embedded Block Coding with Optimal Truncation (EBCOT).

As studied in section 2.2.3 Wavelet transform divide the image

2 A bit plane of a digital discrete signal is a set of bits having the same position
in the respective binary numbers. For example, for 8-bit data representation there
are 8 bitplanes: the first one contains the set of the most significant bits and the

8th contains the least significant bits.
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into subbands that represent approximation scales. Notice, however,
that some Wavelet coefficients in different subbands represent the
same spacial location in the image. In Figure 2.10(b), it is notewor-
thy that the vertical subbands approximate scaled versions of each
other, the same being true for horizontal and diagonal bands. This
means that there exists a relation between the Wavelets coefficients
illustrated in Figure 2.18.

"

Figure 2.18: Related Wavelet coefficients.

|
=

Many algorithms, as the EZW and the SPHT codes, exploit the
similarity among bands of the same orientation in order to reduce
the size of the encoded image. JPEG2000 coding, however, does not
exploit inter-subband redundancies. Instead, the EBCOT algorithm
partitions each subband into small rectangular blocks called code-
blocks and encodes each one independently.

Though there is an efficiency loss for not exploiting the correla-
tion between subbands, this is compensated for because this method
produces bit streams that are SNR and resolution scalable. For each
codeblock a separate highly scalable bit stream is generated and may
be independently truncated to any of a collection of different lengths.

The bits generated by the EBCOT algorithm are then encoded
using an arithmetic code.
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2.6 Classification of Compression

Techniques

Many authors distinguish compression techniques as lossless or lossy,
the former referring to invertible representations and the latter to
representations in which some of the information is lost. Since quan-
tization involves distortion effects, it is clear that we have focused our
study in lossy compression schemes. In terms of the rate-distortion
criteria, lossless compression would occur when the function R(D)
crosses the y-axis, i.e., when the distortion is zero.

For images we are usually interested in lossy techniques because
they allow lower rates and the human visual system is not sensitive
to small distortions. An exception to this rule would be when dealing
with medical images, where the slightest error can result in a wrong
diagnosis.

Another form of classification is linear and non-linear compres-
sion. To illustrate the difference between the two we will discuss the
JPEG standard for image compression.

As shown in Section 2.5.1, the DCT transform results in a sparse
matrix where the significant coefficients are concentrated in the
upper-left corner and an encoding procedure called run-length coding
makes use of these properties in order to reduce the size of the output
stream of bits. Another approach would be to consider that all com-
ponents in the lower-right corner are small, and so store only N values
that belong to the region of the matrix that is usually significant, as
shown in Figure 2.19.

This would not be as efficient as the run-length coding because
some high-frequency information might be lost and zero-valued co-
efficients would be unnecessarily stored. However this approach is
interesting because the compression technique does not depend on
the image, i.e., we do not need to know a priori where the significant
coefficients are before we begin encoding. This is what is referred to
in literature as linear compression. In other words, if A and B are
images and A and B are their compressed forms, the compression
of A+ B will result in A + B. In non-linear compression, however,
the location of the significant coefficients must be known before the
reconstruction can be accomplished and, therefore, the linearity does
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Figure 2.19: Example of region of matrix that would be selected as

being significant in a linear compression scheme. (Extracted from

2].)

not hold.

In Figure 2.20 we compare the reconstruction of image lena with
1 out of 10 coeflicients using non-linear and linear DCT compression
and are able o conclude that the latter scheme is much less efficient.
In 2.20(c) we set to zero the smallest values of the DCT transform
and in 2.20(e) we set to zero the DCT coefficients that are not on
the upper-left corner of the transformed matrix. Images 2.20(d) and
2.20(f) are reconstructed by applying an inverse DCT to 2.20(c) and
2.20(e), respectively.
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(a) Original image. (b) DCT transform of (a).

(c) Most significant coefficients. (d) Reconstruction from (c).

(e) Coeflicients on upper-left corner.  (f) Reconstruction form (e).

Figure 2.20: Example of image reconstructed with 1 out of 10 coeffi-

cients



Chapter 3

Signal Representations

Representation is a key aspect in signal processing. It refers to de-
scribing a signal completely and unambiguously as a sequence of enu-
merable coefficients. The importance of this procedure can be asso-
ciated with the continuous nature of existing signals, which has to be
overcome before digital processing.

Discretization, however, is not the only benefit we are searching
for. Good signal representations can enable a series of procedures
as analysis, noise filtering and compression. The idea behind this
is that depending on how we describe a signal some of its aspects
can be highlighted, i.e., we can distribute the information of interest
between specific components and therefore ease access to them [10].

In this chapter we will overview different ways of representing
signals and analyze their basic characteristics and how signals can be
reconstructed from them.

3.1 Parallel to Image Compression

In the former chapter, we discussed transform coding as a method for
compressing images by representing the same information in a smaller

38
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number of coeflicients. It is interesting to point out, however, that
when we exploit redundancy to map the image data to less correlated
coefficients, we are actually choosing a new way to represent the
signal.

We can interpret an n x n image block as a vector in RY, where
N = n2. In the bit-map representation, each of the N canonical basis
vectors would corespond to the information of a single pixel.

Since each orthonormal basis is a rotation of each other, the DCT
transform is, therefore, no more than the rotation of this basis. Notice
that the DCT expands the original image in sequence of cosines, i.e.,
the transformation is actually the projection in a new orthonormal
basis.

The bit-map (canonical) basis is equivalent to Dirac functions in
a two dimensional space, as shown in Figure 3.1(a), while the DCT
basis is illustraded in Figure 3.1(b).
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(a) 8 x 8 bit map basis. (b) 8 x 8 DCT basis.

Figure 3.1: Waveforms that compose the bit map and DCT bases.

Notice, however, that the DCT preserves many properties such as
invertibility and orthogonality, which cannot be guaranteed for arbi-
trary representations. In the next section, we will, therefore, define
such representations in a more abstract and generalized manner.
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3.2 Signal Decompositions

We define a signal representation [5] by a function R : H — S that
maps a Hilbert space! H into a space of sequences. For a given signal,
x € H, its representation R(x) is a sequence:

R(z) = (s1,52,83...) €S

where s, is a pair (ay, g4, ), the first representing a coefficient and
the second a waveform.

Associated with R is a set of functions D = (gx)aer called dictio-
nary. Notice that the dictionary may be uncountable, however, the
(g, )nez used in the representation of a particular signal X consists
of a countable subset.

In some cases, the function R is invertible and the signal x will
be perfectly reconstructed from its representation R(x). We then
say that the representation is exact and the original signal is recon-
structed by the linear combination

L= E AnGry,

nez

Nevertheless, when the representation is not exact, we make use
of techniques to approximate the reconstruction of x.

The dimension N of the signal space H is associated with the
number of elements of the dictionary that are needed to span the
space. A good representation scheme requires the use of a complete
dictionary, i.e., any function in H can be expanded by a combination
of the waveforms (gx)xer. It is noteworthy, however, that the size
of the dictionary may be larger than N. In this case, we say that
the dictionary is redundant because there is more than one way to
represent the same signal. It is important to point out that, is some
cases, we deal with infinite dimensions.

1A Hilbert space is an inner product space which, as a metric space, is com-
plete, i.e., an abstract vector space in which distances and angles can be measured
and which is complete, meaning that if a sequence of vectors approaches a limit,

then that limit is guaranteed to be in the space as well.
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The key point in signal decompositions is thus to obtain the se-
quence of dictionary waveforms (gy, )nez and their corresponding co-
efficients (o, )nez. There are many methods that do so, exploiting
signal properties, as mentioned earlier. We will now distinguish be-
tween two representation models: basis and frames.

3.2.1 Basis

A basis [11] is a set of linearly independent elements (¢))rer that
span the Hilbert space H. By linear independence we mean that no
function can be expressed as a linear combination of the others - this
implies that the set is minimal.

Orthogonal Basis

We define an orthonormal basis as a collection of functions {¢x; \ €
I'} that are complete in the sense that they span H and satisfy:

[ " Gu0)6;(t)dt = 8(i— §), Vij €T

where ¢ = Re{¢} — jIm{¢} is de complex conjugate.
In this case, the representation is exact and the reconstruction is
given by

T = Z<x7 ¢/\>¢)\

A€l

where the inner product (z,¢\) = [~ z(t)¢(t)dt is interpreted as
the projection of the signal of interest in the base function ¢,.

3.2.2 Frames

Frames [11] are a generalization of the concept of basis in a linear
space. While a set of vectors forms a basis in R if they span RM
and are linearly independent, a set of N > M vectors form a frame
if they span RM.
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More formally, a frame is a family of vectors (¢))xer that char-
acterizes any signal x in a Hilbert space H from its inner product
{{x, #») }rer, where the index set T' might be finite or infinite.

Frame Theory, developed by Duffin and Schaeffer, sets a condition
for the frame to define a complete and stable signal representation:
Definition 1. The sequence (¢x)rer is a frame of H if there exist
two constants A > 0 and B > 0 such that for any x € H

Azl <37 (@, 60) > < Bll2||?

el
When A = B the frame is said to be tight.

It is noteworthy that a frame representation may be redundant,
and, considering ||¢x|| = 1,V € T', this redundancy can be measured
by the frame bounds A and B. The following example will be used to
illustrate frame redundancy:

Example 1. Let (e1,es) be an orthonormal basis of a two-

dimensional plane H. The three vectors:

- e \/§ ! \/3
p1=¢€1, P2 = 2+2€27¢53— 5 5 €2

have equal angles of 2{ between any two vectors. For any v € H

>l ¢l

1 V3 1 V3
= [z, e’ +] = glwe) + G (m e + | = iz er) — (o)

These three vectors thus define a tight frame with A = B = % The
frame bound % gives the redundancy ratio, i.e., three vectors in a

two-dimensional space.
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3.3 Uniform Point Sampling

In this section we will introduce the simplest method for representing
a function and analyze some of its characteristics.

Point sampling discretizes a signal x(¢) by taking a partition
t1 <ty < --- <ty of the domain interval I. The subsequent repre-
sentation is given by the vector:

Ty = (2(t1), 2(t2), ..., 2(ty)) € RY

This way, the space of real functions defined on the interval I
is represented by the Euclidean space RY. Point sampling is called
uniform if ¢,, = nts, Vn.

What remains to be investigated is if uniform point sampling is an
exact representation and how can the original function x be recovered
from x,,.

The Shannon theorem guarantees that a band-limited signal can
be perfectly reconstructed if the sampling rate is 1/(2wg) seconds,
where wy is the highest frequency in the original signal. We will not
demonstrate this theorem here, but we will try to convince the reader
with the following observations. Additional material regarding this
theorem can be found in [12].

It is intuitive that sampling a signal in the time domain is equiv-
alent to multiplying it by a Dirac comb. The Fourier transform of
a Dirac comb is also a Dirac comb and therefore, in the frequency
domain, the band-limited spectrum of the signal is being convolved
by a Dirac comb, see Figure 3.2.

By observing these pictures it is easy to see that if the sampling
rate wg is greater than 2wy, then the signal in the frequency domain
can be recovered by an ideal low pass filter, as shown in Figure 3.3.

Since the Fourier transform of the Gate function is a sinc function,
the reconstruction of the signal in the time domain is no more than
an interpolation of the sampled vector by sinc functions.

On the other hand, if this limit of 2wq , called the Nyquist rate,
is not respected, then repeated spectrums will overlap and it will
be impossible to recover the signal by a low pass filtering. This
phenomenon is called aliasing, and is illustrated in Figure 3.4.
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Figure 3.2: Sampling in time and the consequences in the frequency

domain.
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Figure 3.3: Extracting the repeated spectrums.

Notice that point sampling involves representing a signal as se-
quence of values

R(l‘) = (Oén)nez

where v, is the projection of the signal on a delayed Dirac

an = {x,0(t —nty)) = /Oo xd(t — nts) = x(nts).

— 00

This representation is an invertible function, once the original
signal can be reconstructed by an interpolation of sinc functions.
The exact reconstruction is then given by

x = Z aph(t —nty)

nez
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Figure 3.4: Undersampling in time and the consequences in the fre-

quency domain.

where h = sinc (ti) is a scaled sinc function.
This is a very interesting example, because the projection wave-
forms used for representation are different from the reconstruction

waveforms (dictionary).

3.3.1 Oversampling

If the sampling rate wg is greater than 2w, we observe information
redundancy, i.e., the number of samples is larger than it has to be
to enable reconstruction of the signals. This can be usefull for many
applications because it minimizes noise errors and allows the use of
less complex anti-aliasing filters.

In this case, however, the scaled sinc functions that can be used
to reconstruct this signal are not necessarily orthogonal. Note that

(h(t), h(t — nty)) = (H(jw), H(jw)e 7*)

where H(jw) is a Gate function of badwidth 2/tg, t¢ = 1/wp, and
ts = 1/ws. Therefore, if ts = to/2, then (H(jw), H(jw)e /*t) = 0
and the basis is orthogonal.

However, when we oversample, this does not occur. Actually, the
set (h(t — nts))nez becomes complete and redundant. In terms of
what has been just described, this set is a frame.

3.3.2 Undersampling

In many applications, however, the signal of interest is not band lim-
ited or it is necessary to sample in a rate smaller than the Nyquist
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limit. In this case, uniform sampling will undoubtedly produce alias-
ing.

In signal processing this problem is usually solved by applying
an anti-aliasing filter. Since the periodic spectrum will overlap, to
minimize the distortion effect, frequencies higher than w, are elim-
inated before sampling starts. This is accomplished by a low-pass
filter known as the anti-aliasing filter. Figure 3.5 illustrates this pro-
cedure.
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Figure 3.5: Anti-aliasing filter.

Let us now analyze this problem using the concepts of representa-
tion and reconstruction. There are two problems with undersampling.
The first is that high frequency information is lost and the second is
that the low frequencies are distorted due to spectrum superpositions.
Since the first problem cannot be solved using uniform sampling at
such a low rate, we will focus on avoiding the second.

The idea is to smoothen the signal before sampling, i.e., to extract
high frequencies by applying a low-pass filter. Filtering the high fre-
quency information and then projecting the result signal on a delayed
Dirac function is equivalt to projecting the original signal on a small
pulse waveform v(t), as shown in Figure 3.6.

It is interesting to point out that this kind of sampling is actually
common and easier to implement than the Dirac comb. A camera, for
instance, when acquiring an image, sets for each pixel an average of
the surrounding values. This is not only a good procedure because it
minimizes distortion effects, but also because it is easier to implement
on hardware. Point sampling in a camera doesn’t gather much light,
and therefore the signal to noise ratio will be inadequate. Moreover,
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Figure 3.6: Undersampling.

o

sampling by Diracs would require a very precise sensing mechanism,

and usually electron beams have Gaussian intensity functions.
Consider that v(t) is a scaled sinc function. In this case, we are

projecting the signal on a basis of delayed sincs (vy,)nez, where

t — ntg
vn(t):sinc< tn >

S

This is, in fact, an orthogonal basis and, therefore, we can reconstruct

the signal by
= Z(az, Up ) U,
neZ
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If ¢4 is such that the Nyquist limit is respected, then reconstruc-
tion is exact (& = x); however, if ¢s is large, then we are taking a
signal of a Hilbert space and projecting it in the subspace spanned
by (en)nez. Notice that this projection is taking a vector from a
subspace of higher dimension and projecting it in a subspace of lower
dimension and, therefore, this is a form of compression.

3.4 Approximation Theory

Being able to represent signals using different bases is usefull in signal
processing because it allows to approximate certain types of signals
using just a few vectors.

In this section we will exploit in a more formal way what was just
illustrated by the undersampling problem.

3.4.1 Approximation on a Linear Basis

Given a signal = and an orthogonal basis B = (¢ )xer, an approxi-
mation projects x over M basis vectors

ose= 3 (@ bulb (5.1

nelpy

The choice of the M vectors can be done a prior: or a posteriori
(depending on the signal x). In the first case, the approximation is
called linear and, in the second, non-linear.

Though linear approximations are simpler to implement, the dis-
tortion generated will highly depend on the original signal, whereas
in the non-liner case we can adapt the projection vector to minimize
the approximation error.

In this context, we can discuss DCT linear and non-linear com-
pression studied in Section 2.6. The DCT involves projecting the
signal into a basis that makes it sparse and the run-length coding
involves choosing from this new basis the most significant vectors.
In this non-linear procedure, we need to save each coefficient value
and its ‘position’; which refers to the vectors of this new basis that
are most important to represent the signal. In linear compression,
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the significant vectors are known a priori, and we only need to store
the coordinate values, which are the projections of the signal on each
base vector.

3.4.2 Approximation on Overcomplete Dictionar-
ies

Linear expansion in a single basis is not always efficient because the
information will be diluted across the whole basis. In overcomplete
dictionaries [13], however, we are able to express the same signal
using a smaller number of coefficients. Mallat illustrated this idea
[14] by comparing signal representations to language vocabularies.
While a small vocabulary may be sufficient to express any idea, it
will sometimes require the use of full sentences to replace unavailable
words otherwise available in large dictionaries.

Therefore, a good compression scheme involves finding the best
representation of an image using a redundant dictionary. It is note-
worthy that a trade-off considering the dictionary’s size must be an-
alyzed because, while a big dictionary guarantees a small number of
values necessary to represent a given signal, it also demands a large
number of bits to specify each vector.

Due to redundancy there are, however, innumerable ways to rep-
resent the same signal. The intention of most of the developed tech-
niques is to find a representation which concentrates the energy in a
small number of coefficients.

What we are looking for is a sparse representation, i.e., a represen-
tation with a larger number of zero coefficients. We can reduce this
problem to the one of finding, for a given N-dimensional signal z, a
P-sized dictionary D = {¢1,92,-..,9p}, and avalue M, M < N < P,

the representation
M-1

TM = Z Apr, Ipm (32)
m=0

that minimizes ||z — /]

This problem, however, is combinatorial and NP-hard. Thus, a
series of pursuit methods were developed to reduce computational
complexity by searching efficient but non-optimal approximations. To
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illustrate how the latter perform, we will overview two very popular
algorithms.

Basis Pursuits

Basis pursuits [15] consists in solving the following convex optimiza-
tion problem with inequality constraints

P-1
min ||e||1, subject to Z Qplp =T
p=0

where « is a vector of dimension P containing the ay, coefficients.

This is more a principle than an algorithm, and there are many
computational solutions to this problem, the most popular ones using
linear programming.

The idea behind this technique is that the /;-norm enhances spar-
sity, as will be discussed in Chapter 4.

Therefore a good approximation strategy results from extracting
the M largest coefficients of the optimal P-sized a vector.

Matching Pursuits

Matching pursuit [14] is a greedy algorithm that decomposes a sig-
nal into a linear expansion of waveforms that are selected from a
redundant dictionary.

At each step, the dictionary element that best matches the signal
structure is chosen and the projection of the signal on it is stored.
This process is repeated M times using the residual which results
from the subtraction.

The advantage of this technique is that it is less computationaly
expensive than Basis Pursuits and very powerful in terms of per-
formance. It also shares many interesting properties such as energy
conservation and invertibility when M = P. However, since it max-
imizes the projection at each step without considering the overall
signal structure, it is suboptimal.



Chapter 4

Compressive Sensing:

An Overview

Up until now we have been following the sample-then-compress frame-
work, i.e., for a given image, we find a sparse representation and then
encode the significant coefficients. The shortcomings of this approach
are that before a compressing scheme can be applied, the encoder
must:

e store a large number of samples;
e compute all the transform coefficients; and

e find the locations of the large coefficients.

This is what usually happens in popular image acquisition in-
struments. Common digital cameras sample using a large number of
mega-pixels, but store the images in a compressed form, for exam-
ple, the JPEG standard. This indicates that we only need a small
percentage of the measured coefficients to reconstruct the signal and,
therefore, efficiency is lost.

o1
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This suggests that a smarter and cheaper method could be used
to improve performance. In this context, compressive sensing ap-
pears. It involves sampling the original signal in a rate smaller than
the Nyquist limit and reconstructing it by means of an optimization
procedure.

In this chapter we will study the main concepts of this novel idea
and how it first came to existence. We will leave the formalization of
the theory involved for the next chapter.

4.1 Essential Aspects

What we want is to build an acquisition scheme that captures the
image already in a compressed form. Consider the DCT based com-
pression scheme. If we knew a priori which were the most signif-
icant DCT coeflicients (consider, for instance, a linear compression
scheme), we could then simply measure their values without the need
of exploiting each pixel information.

Note that the word sample here has a new meaning. It refers no
longer to point samples, but rather to more general linear measure-
ments of the signal. Each measurement ¥, in the acquisition system
is an inner product of the signal x against a different test function
¢m (for example, a row of the DCT transform matrix)

y1= (@, ¢1), y2= (2, d2), ... , ym = (r,0nm)

where M is the number of measurements.

However, as we have seen in the previous chapters, linear ap-
proximations usually have performances that are far from optimal,
illustrating that this a priori knowledge is hard to obtain. Accord-
ingly, though it is true that z is sparse in some domain, we can not
know exactly which are the significant coefficients. Moreover, it is
desirable to obtain a nonadaptive solution to the problem, so as to
be able to use the same mechanism to capture information from any
signal.
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4.1.1 The Algebraic Problem

Let s be the signal represented in a sparse domain, i.e,
s=Vx

where x is the original signal and ¥ is a transformation that makes
s sparse, for example, the DCT.

To take a small number of measurements is to multiply = by a fat!
matrix ®q as shown in Figure 4.1, where each row is a measurement
function ¢,.

N
| S-sparse

Figure 4.1: The acquisition matrix. (Extracted from [16].)

y=®qx
z=U's = s ="z
y = Oqs, where Og = &g - U*

The reconstruction problem involves finding = so that y = ®qx,
or, analogously, s so that y = ©qs. This problem, however, is ill
posed because there is an infinite number of possible solutions. All
the same, not all solutions satisfy the sparsity property of s and,
therefore, a simple choice would consist of searching among all pos-
sible solutions the one that makes s the sparsest.

1We use the term fat to refer to a matrix where the number of rows exceeds

the number of columns.
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4.1.2 Sparsity and the /; Norm
Sparsity can be described by the [y norm

ledly, = #{i : ali) # 0}

where # denotes the number of elements in the set.
Hence, the solution we want is

min ||Wz[|,  subject to Por =y
x
Or, alternatively

min ||s[|;, subject to Oqs =y
S

Yet, this problem is combinatorial and NP-hard; however it has
been observed that sparse signals have small /1 norms relative to their
energy. We will motivate the relation between the [y and the [; norm
by the 2-dimensional example in Figure 4.2.

Figure 4.2: Sparsity and the /3 norm.

Suppose we wish to find the signal s that has minimum [y norm,
given that s respects a linear equation that constrains its position
in R2 to the dotted line. Note that if we minimize the I3 norm the



4.2. THE FOURIER SAMPLING THEOREM 55

optimal solution will be given by s = b, which is not sparse and far
from the [y solutions « and 3. However, the [; minimization would
result in s = «, which is the exact solution we wanted.

The [; norm is convex, which makes optimization problem com-
putationally tractable. Hence, all the following analyses and results
will be given considering /; minimization.

4.1.3 The Recovery Algorithm

We can now understand the idea of compressive sensing in terms of
its recovery algorithm. This theory involves undersampling a signal
and then recovering it by the convex optimization problem

min ||s[|; subject to Ogs =y
S

Though we have understood why this is a good procedure, we
still have to analyze its efficiency. How can we know for sure that
the sparsest solution is the one that reconstructs the original signal
s?7 What do we need to assume about the sensing matrix and the
number of samples? What kind of results can we guarantee?

A series of theorems and definitions have been proposed to for-
malize this idea and to specify sufficient conditions that guarantee
good results. These will be studied with some care in the following
chapter. We will, nevertheless, take some time to introduce the first
theorem proposed in this field. Though it is much weaker than the
ones that will be considered in the future, it sheds light to many
interesting ideas, as well as how the researchers first came up with
CS.

4.2 The Fourier Sampling Theorem

4.2.1 The Magnetic Resonance Imaging Problem

The classical tomography problem consists in reconstructing a 2D
image x from samples of its Fourier transform #(w) on the star shaped
domain (2 illustrated by Figure 4.3.
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Figure 4.3: Sampling domain 2 in the frequency plane. (Extracted
from [17].)

The most common algorithm, called filtered backprojection, as-
sumes the non-sampled Fourier coeflicients to be zero, in this way re-
constructing the image with minimal energy. An image reconstructed
by this procedure is shown in Figure 4.4 and illustrates how this mech-
anism has a bad performance.

(a) Original image. (b) Reconstruction with (c¢) Reconstruction using

filtered backprojection. convex optimization.

Figure 4.4: First CS experiment applied to the Logan-Shepp phantom
test image. (Extracted from [17].)
The solution proposed by [17] involves guessing the missing

Fourier coefficients by means of a convex optimization based on the
total-variation norm 2

2The total-variation (T'V) norm can be interpreted as the l1-norm of the (ap-
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min ||y||;, subject to  g(w) = Z(w),Vw € Q
y

This was implemented with some numerical constants and re-
sulted in the ezxact reconstruction of the original image. This surpris-
ing result led the researches to formalize a new sampling theorem.

4.2.2 New Sampling Theorem

Theorem 1 (Fourier Sampling Theorem [17]). Assume that © €
RY is S-sparse and that we are given M Fourier coefficients with
frequencies selected uniformly at random?. Suppose that the number

of measurements* obeys
M>C-S - logN
where C' is a relatively small constant. Then minimizing
msin llsll;, subject to Oqs =1y

reconstructs x exactly with overwhelming probability.

This theorem differs from usual constraint specifications because
it involves probabilistic results. The reason for this rather unorthodox
approach is that we cannot obtain powerful results if we consider all
measurable sets of size M, as there are some special sparse signals
that vanish nearly everywhere in the Fourier domain.

To illustrate this, consider the discrete Dirac comb in RY, where
N is a perfect square and the signal spikes are equally spaced by v/N,
as shown in Figure 4.5.

propriately discretized) gradient.
31In this case, we denote by ® the N x N Fourier transform matrix and by ®q

the fat matrix created by extracting N rows of ®.
41t is common in literature to denote the set that supports the signal by T

and the sampling set by Q. Therefore, S = |T'| and M = |Q].
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Figure 4.5: Comb filter. (Extracted from [18].)

Let © be the set of all frequencies but the multiples of v/N. Then
the observed signal in the Fourier domain is equal to zero and the
reconstruction is identically zero. Note that the problem here does
not really have anything to do with /; minimization once the signal
cannot be reconstructed from its Fourier samples using any possible
method.

Another interesting point to analyze is whether it would be pos-
sible to recover an arbitrary signal from less than C'S'log N samples
using another algorithm. To motivate that this solution is tight we
will use the same example of the Dirac comb. If z is as shown in
Figure 4.5, to be able to recover it from Z, the observation set (2
must contain at least on spike. Supposing that

N N
|T|<|Q|<§<:>\/]V<M<5

and choosing € uniformly at random, the probability that no spike
is chosen is given by [17]

N—VN VN

- -2)
(1)

Therefore, for the probability of unsuccessful recovery to be smaller

that N~°, it must be true that

V'N -log (1— 2]]\\74) < —dlog N
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Since M < %, log ( — %) R —% and we obtain the solution

M > Const-6-VN -log N
Hence, we conclude that the above theorem identifies a funda-

mental limit, and thus no recovery can be successfully achieved with
significantly fewer observations.

recovery rate

01 02 03 04 05 06 07 08 03

IT|/ M

Figure 4.6: Numerical example. (Extracted from [18].)

A final illustration is given in Figure 4.6, which shows how the
recovery rate decreases when the number of samples decreases in
relation to the set that supports the signal. To build this graph
signals of size N = 1024 were used and |T'| spikes were randomly
placed.

4.2.3 Relashionship with Nyquist Sampling

Theorem

Consider the signal in Figure 4.7(a). To follow the Nyquist sampling
scheme, we would have to consider the size of the signal band in the
frequency domain and sample it at twice that rate. In CS theory, on
the other hand, we don’t have to consider the signal band at all. All
that is relevant is the number of nonzero coefficients which, multiplied
by a log factor, gives us the sensing rate.

When sampling in the Fourier domain, the measurements are as
shown by the dots of Figure 4.7(b), and reconstruction involves an



60 CHAPTER 4. CS: AN OVERVIEW
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(a) Sparse signal in the time domain. (b) Fourier transform of (a) and CS

measurements (dots).

Figure 4.7: CS intrepolation ploblem. (Extracted from [18].)

interpolation procedure that returns the curve. Notice, however, that

this problem cannot be solved by a simple interpolation formula, as

is done in the Nyquist sampling theorem with the sinc function. In-

stead, we reach the interpolated result by means of a convex opti-

mization procedure that minimizes the Iy norm of the sparse signal.
This problem was solved by [18] and the recovery is exact.

4.3 Uncertainty Principles

Though CS may seem like a great breakthrough, the basic principles
around it have been known for quite some time. In fact, we can con-
sider this novel idea as an extension of the theory about uncertainty
principles.

We have already mentioned in our study of the Wavelet transform
in Section 2.2.3 that a function and its Fourier transform cannot both
be highly concentrated. We can extend this uncertainty principle to
functions x that are not concentrated in an interval. Instead, if = is
practically zero outside a measurable set T" and its Fourier transform
Z is practically zero outside a measurable set 2, then [19]

T]-19[>1-0
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where ¢ is an oscillation parameter related to the practically zero
definition.

In the discrete case, if z € RY has N; nonzero components and 2
is not zero at N, the uncertainty principle states that

N,-N,>N

where the lower bound N; N, = N is reached in the case where z is a
Dirac comb. Note that this happens in the example shown in Figure
4.5, where N; = VN and N, = VN.

In most common studies, uncertainty principles are used to prove
that certain things are impossible, for example, obtaing good resolu-
tions simultaneously in the time and frequency domains. However,
in this approach, we make use of this theorem to allow recovery of
signals despite amounts of missing information.

Donoho and Stark showed in [19] that it is possible to recover a
bandlimited signal when sampled with missing elements. Consider
that the signal x, where & € €2, is observed in the time domain but a
subset T of the information is lost. Then the observed signal r(t) is
such that

where n(t) is a noise signal.

It can be demonstrated that x can be recovered from r, provided
that |T¢[|Q| < 1.

Intuitively, consider the signal h, he ), completely concentrated
on T° The problem of reconstructing x from r derives from the
fact that  and x + h cannot be distinguished and therefore the re-
construction error can be arbitrary large. However, such function h
cannot exist because if it did the uncertainty principle would require
|7¢||2] > 1. Hence, a stable reconstruction to the above problem can
be achieved.
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4.4 Extensions

The practical relevance of Theorem 1 has two limitations. The first
one is that it restricts the sampling domain to Fourier and we are
not always at liberty to choose the types of measurements we use to
acquire a signal. The second is that completely unstructured mea-
surement systems are computationally hard.

In view of these shortcomings, a significant amount of effort has
been given to make CS theory useful for practical applications. Not
only have researches expanded this result, but they also described
conditions that guarantee good performances in adverse situations.



Chapter 5

Compressive Sensing:

Theoretical Aspects

In the previous chapter we introduced a sampling theory that em-
bbeds compression. We will now provide some key mathematical
insights underlying this new approach.

Two different results will be discussed:

e Basic CS - theory that stipulates constraints for the exact re-
covery of sparse signals.

e Robust CS - expansion of the former results to allow CS to be
used in applications where the signal is not exactly sparse or
the measurements are corrupted by noise.

This chapter also includes some important considerations for the
design of efficient sensing matrices.

63



64 CHAPTER 5. CS: THEORETICAL ASPECTS

5.1 Basic CS

Basic CS deals with analyzing the constraints that guarantee perfect
reconstruction by means of an l; optimization, considering that there
exists a domain in which the signal z is S-sparse and that the acquired
measurements are not corrupted by noise.

The first concept that needs to be extended from the discussed
Fourier Sampling Theorem is that the domain where x is sparse and
the domain where the samples are taken may vary in different ap-
plications, not necessarily being time and frequency. Therefore, it is
of utmost importance to develop a way of determining if a sampling
domain is efficient, given that the signal is sparse after it is multiplied
by U, where U is, for example, a wavelet transform. !

INotation review:

We use z to refer to an input signal and s to denote its S-sparse representation.
T is the set that supports s and is of size |T'| = S and Q is the random measurement
subset of size |Q = M.

We denote by ® the matrix that spans RY, where each row is a measurement

function ¢, to be applied to the signal x. Therefore, the sensing problem is
y = Pz

where ®¢ is a fat matrix created by randomly selecting M rows of ®. Since x is

sparse in the ¥ domain, the sparse representation of z is given by
s =Yz
And therefore, since V¥ is unitary (orthonormal transform),
y=>oa0*s
=y = Oqs, where O = qU*

We also denote © = ®U* and Oqr is the submatrix created by extracting the
columns of ©q corresponding to the indexes of T'. Note that © is N x N, Oq is
M x N, and ©qr is M x S.
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5.1.1 Incoherence

Coherence [20] is a measurement of the correlation between the sens-
ing waveforms ¢, and the waveforms where the signal is supposed to
be sparse 1. Assuming both have unit ls norm, the definition is as
follows.

Definition 2 (Coherence between ¥ and & [21]).

(@, W) = VN max|(év5)] 5 Nill [1ill =1

Note that (P, ¥) measures the minimum angle between the sens-
ing waveforms and the sparsity waveforms. Therefore, if we look at
the waveforms as vectors in RY, then high incoherencies mean that
these vectors are far apart, i.e., nearly orthogonal.

From linear algebra we get

1< pu(®,9) < VN

Demostration: The upper bound comes from the Cauchy-
Schwarz inequality

[, )2 < lloall” - 6517 = n(®@, ) < VN

and the lower bound can be derived if we consider that ¥ is an
orthogonal basis

D on gl =1 = max|(g:, ;)| > (®,0)>1
J

1
ww
O
Therefore, the time and the frequency domains are maximally in-
coherent, since the Fourier basis vy (t) = TlﬁeT and the canonical
basis ¢y (t) = 0(t — k) yield p = 1. This is very good because better
results are achieved when coherence is small, i.e., when both domains
are poorly correlated.
We can perceive this observation if we notice that sampling in the
sparse domain directly returns many zero-valued coefficients. The
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advantage of incoherence is that if we measure a series of random
combinations of the entries, we learn something new about the sparse
vector with every measurement.

We can also define incoherence based on the matrix ©.

Definition 3 (Mutual Coherence [22]).
o) = \/Nma,x|@i7j|
i

Notice that this is equivalent to Definition 2

¢ PLYT . P1YN
o= | [ . Wwr]=]
PN PNUT - SNUN

And, since each row (or column) of © has necessarily an unitary
Iy-norm 2, p will take a value between 1 and v/ N.

In terms of the matrix ©, u can be interpreted as a rough measure
of how concentrated the rows of © are. From the above comment we
notice that if there is a coincident vector ¢; and v;, the it row of ©
will be maximally concentrated, i.e., ©;; = 1 and 0, = 0,Vk # 1.
On the other hand, the best recovery possibility occurs if ¢; is spread

out in the ¥ domain, i.e., when the row is diluted: ©;; = Tlﬁ’Vk'

5.1.2 Result Theorem

Theorem 2 ([20]). Let © be an N X N orthogonal matriz and pu(©)
be as defined previously. Fix a subsetT of the signal domain. Choose
a subset Q of the measurement domain of size M , and a sign sequence

z on T uniformly at random. Suppose that

M > Gy - |T] - 4%(8) - log (N)

2The rows have unitary l2-norm if we consider ¥ orthonormal and the columns

have unitary la-norm if we consider ® orthonormal.
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for some fized numerical constant Cy. Then for every signal s sup-
ported on T with signs matching z, the recovery from y = Ogqs by

solving

§=min|[s"[|, subjectto Oqs" =y
=

Is exact (§ = s) with overwhelming probability.

Theorem 2 extends the previous Fourier Sampling Theorem with
the exception that the latter holds for each sign sequence. The need to
randomize the signs comes from an artifact that was used to demon-
strate the thesis. It is highly probable that it still holds without this
constraint, however researchers have not been able to prove this up
until now [18].

We will not demonstrate this theorem here, but we will give two
examples that serve as insights to its tightness.

To show that this is a fundamental limit, consider ¥ the time and
® the frequency domain. Then, u = 1 and the above theorem results
in the Fourier Sampling Theorem, which we have proven to be tight.

On the other hand, consider that ® and ¥ are the same, i.e.,
p?(®,¥) = N and we want to recover a signal that is 1-sparse. The
theorem says that we actually need to measure every coefficient to
guarantee recovery. This is intuitive because since each measurement
informs only one of the 1, coefficients, unless we measure the nonzero
coefficient, the information will vanish. Therefore, to reconstruct =
with probability greater than 1—4, we need to see all ¢) components.

The latter result is maintained without the need to assume ® = ¥,
as long as we consider both orthogonal. In fact, if there exists two
coefficients i and j, such that |(¢;,;)| = 1, then u(®, ¥) = /N and
the number of measurements needed to recover a 1-sparse signal x is
N. To see this result intuitively, note that 6; ; = 1, 6;, = 0,Vk # j
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and 0 ; = 0,Vk # j. Therefore, y = ©s can be rewritten as:

* ...o0x 0 % ... % 0
* * 0 % *
y=10 1 0 *
* x 0 * * 0
[ * ... x 0 *x ... x| [0 ]

Notice that unless ¢; is chosen, i.e., unless j € Q we will not
obtain any information because ©qs = 0. Therefore, to guarantee
recovery we must sample with the hole matrix ©qg = ©.

5.2 Restricted Isometries
In this section, we will define strict conditions that when imposed to

the matrix © guarantee that CS is efficient.

5.2.1 An Uncertainty Principle

Below is an intermediate result that follows directly from incoherence.

Theorem 3 ([18]). Let ©, T, and Q2 be as in Theorem 2. Suppose

that the number of measurements M obeys
M > -|T| - () - maz (Cilog|T|, C2log (3/9)),
for some positive constants Cy, Cy. Then
N *

The above equation means that all the eigenvalues of &-05,0qr

are between % and % To see that this is an uncertainty princi-

ple, let s € RY be a sequence supported on 7', and suppose that
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| 20847O0ar — I|| < 1/2 (which is very likely the case). It follows
that

1 M 3 M 9
i < oo sl
2 N 2 N
This asserts that the portion of the energy of s that will be con-
centrated on the set € is essentially proportional to M. Notice that

2 2
Islli, < [1©asll,

sl = S and, therelore, we can rewrite the equation as
» =11®s|;, and, theref ite th i

1 M | _ - 2 3 M | _ o

R = [ A Y A=y

where § = Os and 3q is § restricted to set €2, 5o = Oqs.

Hence, the relation says that the energy of the signal restricted of
the set €2 is much smaller than the energy of the signal. This is an un-
certainty relation because it means that if a signal is S-sparse (if the
signal is concentrated on T'), then it cannot be concentrated on the
set ). If fact, this relation is quantized because there is a fixed value
M/N to which the concentration in each domain is proportional.

Though usually uncertainty principles are considered bad, this
one actually makes recovery possible. We can only take less mea-
surements because the energy is diluted in the ® domain and, thus,
by taking random measurements, we are able to obtain a considerate
amount of information about the signal.

5.2.2 The Restricted Isometry Property

Based on the intermediate result presented in Section 5.2.1, Candes
and Tao defined in [22] the restricted isometry property. A refined
approach appears in [23].

Definition 4 (Restricted Isometry Constant [23]). For each integer
S =1,2,...,N we define the S-restricted isometry constant ds of a

matrix ©q as the smallest number such that
(1=69)llsll?, < lI@ars|l7, < (1+ds)|sl7,

for all S-sparse vectors.
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The restricted isometry is a property of the measurement matrix
Oq that refers to the existence and boundary of dg. The RIP es-
tablishes a condition which, if obeyed by Ogq, guarantees recovery of
sparse vectors. Notice that the constant g is intrinsic to the struc-
ture of Oq and, therefore, by setting constraints to its size, we can
quantify the efficiency of the sensing matrix.

The reason we call this RIP is straightforward: the energy of
the signal restricted to the set € is proportional to the size of €.
Nevertheless, some authors describe this as an Uniform Uncertainty
principle (UUP). The relation to the uncertainty principles has al-
ready been established in Section 5.2.1 and involves guaranteing that
the signal cannot be concentrated simultaneously on both sets. This
condition, however, is stronger than Theorem 3 because it is valid for
every set T (every S-sparse vector). Hence, it is called uniform.

We will now try to illustrate what this property means in terms
of linear algebra. By undersampling we get an ill posed problem and,
from the infinite number of solutions, we are going to choose the one
that makes s the sparsest. However, how can we know for sure that
this solution is unique? How can we force that there will be no other
solution that is as sparse as s or sparser? As mentioned earlier, we
can only guarantee this if we have incoherent measurements, i.e., if
the sensing matrix has some properties.

First of all, note that if ©g has linear dependent columns, two
different sparse vectors can result in the same measurement.

Demostration:
N
Oq-c= E ¢j -vj, where v; is a column of Oq
=1

Let ¢ # 0 be a vector such that Zj\]:l ¢;-v; = 0 (this is always possible
because the columuns are 1.d.). Then, if we partition the set of indexes
I={1,2,...,N} into two disjoint sets Iy U Iy = I, it results that

Oq-c= ch~vj = Z—cj-vj
Jj€h JEI2
And we measure the vectors a and b defined as follows

o= (lj:Cj7ifj€Il b— bj:—Cj,iijIQ
aj:O,iijIQ bjzo,iijIl
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by ©¢q, we obtain the same result y = Oqa = Oab. O

Hence, we conclude that the existence of linear dependent columns
lead to equivalent measurements for two different input signals and,
therefore, recovery can only be guaranteed if the columns are linear
independent. However, we cannot impose linear independence be-
cause the matrix is fat, i.e., the number of columns is larger than the
number of rows. Here again sparsity comes to the rescue. All we need
is that the columns of O behave like an 1.i. system for sparse linear
combinations involving no more than S vectors. That is exactly what
the RIP gives us, it says that for every T of size no bigger than S,
Oqr is approximately orthogonal.

It can be easily shown that, if dog < 1 for S > 1, for any T
such that |T'| < S, there is a unique s with ||s]|;, < S and obeying
y = BOgqs.

Demostration: Suppose for contradiction that there are two S-
sparse signals s; and sy such that ©qgs; = ©qsy = y. Then, let h be
such that h = s; — so. It is clear that h is 25-sparse and that

@Qh = @Q(Sl - 82) = @QSl - @QSQ = 0
The RIP states that
(1= ba5)[|RlI*> < [|©arh|* =0

Since 25 < 1, (1—3J25) > 0 and, therefore we must have ||h||? = 0
contradicting the hypothesis that s; and s, were distinct. O

We should point out that these results are general in the sense
that they are not considering that the recovery algorithm is based on
the {{ norm.

5.2.3 Result for Basic CS

Theorem 4 ([23, 24]). Let s be an S-sparse signal supported on T
and measured by ©q. Assume that the restricted isometry constant

for the matriz ©qr is such that dag < V2 — 1. Then the solution §
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to

§ =min|[s*[|;, subject to ©Os" =y
=

s exact, i.e., § = s.

This result is deterministic, not involving a non-zero probability
of failure and is also universal in the sense that all sufficiently sparse
vectors are exactly reconstructed from Ogqs.

We can interpret this result as a slightly stronger condition that
is related to the [; norm reconstruction strategy. In fact, it can be
shown that for

e Jo5 < 1 solution to the [y norm is unique; and

e Js5 < \/2—1 solution to the Iy norm and the I are unique and
the same.

5.3 Robust CS

Most signals are not usually sparse; they can be approximately sparse
or have an exponential decay. Moreover, measurements are not usu-
ally perfect and some level of noise is added to them. For CS to be
suitable for real application it must be robust to these kinds of in-
accuracies. Therefore, a lot of effort was made to set conditions and
theorems to expand the CS theory.

In this section, we will present theorems that make CS robust to
applications when:

e the signal is not exactly sparse; or

e measurements are corrupted by noise.

5.3.1 Signals that are not Exactly Sparse

In general we cannot assume that images are sparse in a specific
domain. However, they are compressible in the sense that, after the
DCT or Wavelet transform, the coefficients decay rapidly, typically
like a power law.
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In this case, if x is an image, s = Wz is only approximately sparse,
and, therefore, we denote by sg the best S-sparse approximation of s,
i.e., the result obtained when we force the N — .S smallest coefficients
of s to be zero.

The following theorem evaluates the performance of CS in this
scenario.

Theorem 5 ([24]). Assume that s is approzimately sparse and let

sg be as defined above. Then if 25 < V/2 — 1, the solution § to
§=min|[s"[|, subjectto Ogqs" =y
pe-

obeys
15 = slli, <C-[I5 = sslh,
and
15 = slli, < Cos™/% -5 = 55,
for reasonable values of the constant Cy.
Roughly speaking, the theorem says that CS recovers the S largest
entries of s. Notice that, in the particular case when s is S-sparse,

I — ss|| = 0 and the recovery is exact.
This result has the following desired properties:

e it is a deterministic statement and there is no probability of
failure;

e it is universal in that it holds for all signals; and
e it holds for a wide range of values of S.
Again, the demonstration of the above theorem is not the objec-

tive of this section and, therefore, will not be presented here. For the
interested reader, we recommend [24, 25].



74 CHAPTER 5. CS: THEORETICAL ASPECTS

5.3.2 Signals that are Corrupted by Noise

Another very import and realistic scenario to consider is when the
acquired data is corrupted with noise, i.e.,

y=®xr+n

where n is an unknown noise contribution bounded by a known
amount ||n||;, <e.

The property that will allow the method to be applicable is sta-
bility [25]: small changes in the observations should result in small
changes in recovery. Hence, considering the undersampling problem,
the best result we can hope for is a reconstruction error proportional
to e.

Demostration: [25] Consider the best possible condition in
which we know a priori the support T of sg. In this case, we can
reconstruct § by a Least-Squares method, for example:

G— (0570ar) 104y on T
0 elsewhere

and suppose that no other method would exhibit a fundamentally
better performance. Therefore,

§ — 8§ = (GET(_)QT)_le);ZTn
and if the eigenvalues of ©¢,0qr are well behaved, then
8 = ssll. = [|©arni, ~ €

d
Therefore, the result we are searching for is a bound for © that
guarantees that the reconstructed § obeys

[$ = sslli, < Cre (5.1)

for a rather small constant C7.
This can be achieved by minimizing the /3 norm and considering
the constraint ||©qs — y|| <e.
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Theorem 6 ([24]). Assume that y = ©qs+n where ||n||;, <e. Then
if 625 < /2 — 1, the solution § to

§ =min ||s[|;, subject to ||Oas—ylli, <e
S

obeys
15— sy < CoS™Y2- |3 = sslly, + Cie (5.2)

for reasonable values of the constant Cy and Cf.

It is noteworthy that the reconstruction error is a superposition
of two factors: the errors that yield from sparsity approximation and
the error that results from the additive noise.

For the reader interested in the proofs of Theorems 5 and 6 we
recommend [22, 24].

5.4 Design of Efficient Sensing Matrices

It is, of course, of great importance to have matrices that preserve
the RIP. Given a sensing matrix ®, the calculus of the associated
restricted isometry constant is NP hard and thus testing this property
at each acquisition is unfeasible. We can, however, determine some
measurement ensembles where the RIP holds.

The actual problem is to design a fat sensing matrix Ggq, so that
any subset of columns of size S be approximately orthogonal. Here,
randomness re-enters the picture because setting a deterministic Oq
may be a very difficult task (especially considering large values of
S ), but it can be easily shown [22] that trivial random structures
perform quite well.

Interestingly, the high dimensionality of the usually handled sig-
nals also gives a positive contribution. It can be shown [26] that if
N is large, a small set of randomly selected vectors in RY will be
approximately orthogonal.

The following results obtained by [22, 25] provide several examples
of matrices that obey RIP.
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Theorem 7 (Gaussian Matrices). Let the entries of Oq be i.i.d.,
Gaussian with mean zero and variance 1/M. Then the RIP holds

with overwhelming probability if
S <C-M/log(N/M)
for a relatively small constant C.

Theorem 8 (Random Projections). Let Oq be a random Gaussian
matriz whose rows were orthonormalized. Then the RIP holds with

overwhelming probability if
S <C-M/log(N/M)

for a relatively small constant C'.

A measurement using this matrix involves projecting the signal
on an orthogonal subspace which was chosen uniformly at random.
Notice that the result of Theorem 7 is the same as Theorem 8 because,
essentially, we have the same Gaussian matrix.

Theorem 9 (Binary Matrices). Let the entries of Oq be independent

taking values +1/v/ M with equal probability. Then the RIP holds with

overwhelming probability if
S<C-M/log(N/M)

for a relatively small constant C.

This case is also very similar to Theorem 7. However, it measures
the correlation between the signal and random sign sequences instead
of the correlation between the signal and white noise.

Theorems 7, 8 and 9 can be extended to several other distribu-
tions, but we will not present them here. Instead, we will focus on a
much stronger result.
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Theorem 10 (General Orthogonal Measurement Ensembles). Let ©
be an orthogonal matriz and Oq be obtaineed by selecting M rows
from © uniformly at random. Then the RIP holds with overwhelming

probability if

1 M
<C.—._-
5=C p?  (log N)°

for a relatively small constant C'.

Theorem 10 is very significant because, as we have mentioned be-
fore, in many applications the signal is not sparse in the time domain,
but rather in a fixed orthonormal basis . Therefore, this theorem
guaranties that if we can determine an orthogonal matrix @ such that
u(®, W) is small®, then recovery is exact when the measurements are
taken with ®q.

This result is not trivial and certainly not optimal, but researchers
have been unable to improve it up until now [18].

3This is equivalent to setting © = ®¥* and forcing u(©) to be small.



Chapter 6

Experiments

In this chapter we will verify CS theory by means of examples in
image acquisition.

The different acquisition approaches will be evaluated in terms
of their peak signal to noise ratios (PSNR) for different amounts of
measurements, M.

The source code used to generate the following results is available
at www.impa.br/«aschulz/CS and a detailed explanation on how to
reproduce them is given at the end of this chapter.

6.1 Experimental Setup

CS investigations were made on four different images of size N =
2562 = 65536, which differ in terms of both sparsity and high en-
ergy coefficient distribution in the frequency domain (see Figure 6.1).
Since Phantom is piecewise constant and Lena is smooth, the energy
is mostly concentrated on the high frequency coefficients. On the
other hand, since Tezt is an image with abrupt intensity variations,
its energy is spread along almost all the DCT basis. Middling, Cam-
era man has an intermediate energy spread, displaying strong inten-

78
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sities at some DCT diagonals which correspond to the sharp image
lines.

(a) Phantom

(c) Camera man (d) Text

Figure 6.1: Test images.

Since the images are stored in the computer as a matrix of pix-
els, we simulated acquisition by means of measurements that involve
linear combinations of these pixels.

The following recovery strategies were considered:

DCT-l;-N Random Noiselet measurements followed by minimiza-
tion of the l;-norm of the image’s DCT;

B_DCT-/;-N Random Noiselet measurements followed by mini-
mization of the [;-norm of the image’s block DCT;

DWT-[;-N Random Noiselet measurements followed by minimiza-
tion of the l;-norm of the image’s DWT;
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SVD-[;-N Random Noiselet measurements followed by minimiza-
tion of the [;-norm of the image’s SVD;

TV-N Random Noiselet measurements followed by minimization of
the image’s T'V-norm;

DCT-Il5-L Linear DCT compression scheme;
B_DCT-l5-L Linear block DCT compression scheme; and

DCT-/;-LN Linear DCT and random Noiselet measurements fol-
lowed by minimization of the /;-norm of the image’s DCT

In strategies DCT-[;-N, B.DCT-[;-N, DWT-[;-N, SVD-[;-N and
DCT-l;-N measurements are taken by choosing at random M wave-
forms of an N x N Noiselet transform [27]. Such measurements were
chosen because they are highly incoherent with the considered sparse
domains and the RIP tends to hold for reasonable values of M. In
addition, the matrix created is orthogonal and self-adjoint, thus be-
ing easy to manipulate. Below is an illustration of the measurement
matrix ® for N = 4.

Recovery of DCT-[;-N, B.DCT-[;-N, DWT-[;-N and SVD-[;-N
are based on Equation

§ =min ||s[|;,, subject to |ly — PqW"s|;, <e, (6.1)
S

where @, is the Noiselet matrix ® restricted to M = || randomly
selected rows and ¥ is the matrix that transforms the signal into the
sparse representation (DCT, block DCT, DWT and SVD).

The efficiency of each strategy is related to how sparse the images
are in the considered domain. The DCT and the Wavelet domains
were chosen because of their widespread use in image compression
standards. We considered taking the DCT transform of the entire
image as well partitioning the array of pixels into blocks of size 8 x 8
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(this value was chosen because of its use in the JPEG standard). In
addition, since most published theorems relate to orthogonal rather
than to the more efficient biorthogonal basis, we used an orthonormal
Wavelet basis (Coiflet with 2 vanishing moments).

Since sparsity plays a very significant role in determining CS effi-
ciency, we compare results when considering ¥ the SVD, which gives
a very accurate sparse representation. This technique requires knowl-
edge of the SVD basis, that is calculated from the whole image in-
formation (not available in CS) and requires a large data rate for
transmission (which is not taken into account). Nevertheless we used
such results as upper bounds that, although loose, give interesting
insights into performance limitations.

In many recent publications [17, 28], CS researchers have used the
total variation (TV) norm, which can be interpreted as the {;-norm
of the (appropriately discretized) gradient. Applied to images, the
TV-norm minimization favors a certain smoothness that is usually
found in natural and manmade pictures without penalizing discon-
tinuous features and is, therefore, very effective. In strategy TV-N,
the image is reconstructed by solving the following convex optimiza-
tion problem:

& = min |||, subject to |y — Poxl, <e. (6.2)
xT

In strategies DCT-l5-L and B_DCT-I5-L, measurements are taken
by obtaining the first M DCT coefficients (according to the diagonal
zigzag scanning pattern described in Section 2.5.1) and recovery is
done by setting to zero the unknown values and then applying the
inverse DCT transform. It is relevant to compare these acquisition
strategies with CS because they are also nonadaptive, in the sense
that the measurement functions are the same for every considered
image.

We also evaluated an alternative acquisition scheme suggested in
[28] that combines strategies DCT-l1-N and DCT-ly-L. In strategy
DCT-I;-LN, we sense the first thousand linear DCT coefficients (i.e.,
the most important ones according to the zigzag scanning pattern)
and M — 1k (where k = 10%) Noiselet waveforms (chosen at random
as in strategy DCT-[;-N). Recovery is based on the minimization of
the l;-norm of the image’s DCT.
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6.1.1 Implementation Aspects

The experiments were implemented in MATLAB and the [;-Magic [29]
toolbox was used to solve the optimization problems that recover the
sensed image.

The Wavelet basis was generated using the WAVELAB [30] package
and the Noiselet basis using an algorithm made available by Romberg
[28].

Computational Errors

Due to a great number of varying parameters we had trouble config-
uring the optimization routine that solves Equation

5 =min|[sl|;, subject to y=Pq¥"s (6.3)
S

in the 11- Magic toolbox. Nevertheless, results converge very well
using the function that solves Equation 6.1. Since, to the best of our
knowledge, there is no significant difference between both procedures,
we implemented recovery by solving Equation 6.1 even in the cases
where images are strictly sparse.

When measurements are uncorrupted by noise, we assumed € =
1073||y|;, and solved the quadratically constrained convex optimiza-
tion problem. In these examples, results improve (in the sense that
higher PSNRs are reached) as we reduce €. Nevertheless, we were able
to induce from a few tests that the Measurement x PSNR curve for-
mat is the same for varying values of e. We also observe that, while
the improvement is expressive when the images are strictly sparse
in the reconstruction domain, reducing € leads to no significant im-
provement when we can only guarantee approximate sparsity. This
phenomenon can be explained by the distortion provoked by the ab-
sence of sparsity which overcomes the computational errors, making
the adjustment of e ineffective.

In the cases where noise is added to the acquired measurements
the value of € must be proportional to a bound on the noise contri-
bution. In these scenarios, the parameter ¢ was chosen according to
a series of experiments and varies according to the error size. Calcu-
lating the PSNR for varying values of € an optimal value is observed.
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Under this value the best solution is outside the convex set bounded
by the constraints and above it the solution is less exact.

6.2 Basic CS

To evaluate applications on image compression for Basic CS, it was
necessary to force sparsity in the DCT representation of the images.
Therefore, for S = 3.5k, 6k, 10k, and 14k (where k = 10°) we selected
the N — S smallest DCT coefficients of each image and set them to
zero in order to generate the image that would be compressed.

Figure 6.2 shows the results obtained for different sparse represen-
tation of Lena and acquisition strategies DCT-l;-N, DCT-l5-L. and
DCT-1;-LN*. The first meaningful characteristic that we observe from
the results is that compressive sampling routines start to have good
performances after a specific number of measurements are taken. This
threshold can be associated with the number of samples set by Theo-
rem 2. Notice that this borderline depends linearly on the sparsity of
the signal. Comparing the graphs in Figure 6.2 we see that as S (the
number of nonzero coefficients) increases, the threshold above which
CS is efficient also increases.

We calculated the coherence by (see Equation 1 for a definition
of ©)

1(©) = VN max |0, ;]|
2]

and obtained p(©) = 2.82 for strategy DCT-I1-N, while p(©) =
VN = 256 for strategy DCT-l5-LN.

Therefore, although the thresholds for both strategies are essen-
tially the same, the coherence of one is almost a hundred times larger
than the other. This may strike the reader as a contradiction to the
tightness of Theorem 2. Notice, however, that ©q is not orthogonal
in strategy DCT-l5-LN and thus the theorem cannot be applied in
this particular example.

n each graph the PSNR (peak signal-to-noise ratio between the sparse version
of the image and the compressed reconstruction) versus the number of measure-

ments is shown.
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Figure 6.2: Results for different sparse versions of test image Lena

and CS strategies DCT-l;-N, DCT-ls-L. and DCT-[5-LN.

It is also relevant to point out that before the boundary, strategy
DCT-l5-LN performs better than DCT-/;-N and this tendency is not
sustained when CS theory starts to operate. This result can be jus-
tified by the fact that, when taking a small number of samples the
knowledge of the low frequency coefficients adds more information to
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the signal than random measurements. In fact, the best acquisition
strategy in this region is the linear DCT.

PSNR

DCT*\{N
- - DCT-\]—L

10 20 30 40 50 60
Measurements( x 10°)

Figure 6.3: Recovery of the 10k-sparse representation of Lena with

€ = 0.001 for strategy DCT-[1-N and € = 0.1 for strategy DCT-l5-LN.

= = = phantom =—O=—lena cameraman =—@=— text

10 20 30 40 50 60 10 20 30 40 50 60
Measurements( x 10%) Measurements( x 10°%)

(a) Linear Compression (b) Compressive Sensing

Figure 6.4: Results for strategies DCT-l2-L (on the left) and (on the

right) for the 10k-sparse representation of the four test images.
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A very important comment is that, although it may seem that
for M higher than the threshold strategy DCT-l;-N performs better
than DCT-[5-LN, this is not true. We should consider that after the
threshold the signal is perfectly reconstructed and what we see are
measurement errors. To illustrate this point, we plotted in Figure 6.3
the recovery of the 10k-sparse image Lena for very small values of e.
Notice that the oscillation for high values of M supports the idea of
additional computational errors.

50 100 150 200

(c) Camera man (d) Text

Figure 6.5: Spectral distrifution of the 10k-sparse representation of
the test images.
Figure 6.4(a) shows results for strategy DCT-l3-L on the 10k-

sparse representation of the four test images and Figure 6.4(b) shows
results for strategies DCT-/;-N on the 10k-sparse representation of
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the four test images. It is noteworthy (see Figure 6.4(b)) that CS
performance does not vary between the tested images. We have dis-
cussed that the energy distribution of the considered images are quite
different and Figure 6.5 confirms this by illustrating the distribution
of the nonzero coefficients in the DCT domain when 10k-sparsity is
forced.

Nevertheless, different spectral distributions do not affect CS.
This is because the algorithm depends on how sparse the signal is,
but is nonadaptive in the sense that the position of the significant
coefficients is irrelevant. Comparing Figures 6.4(a) and 6.4(b) we ob-
serve that while performance of linear compression schemes highly
depend on the spectral distribution of the images, these differences
do not influence CS recovery.
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Figure 6.6: Results for the 10k-sparse representation of Lena and

strategies DCT-/1-N, B_LDCT-l;-N DWT-[;-N and SVD-[;-N.

From Figure 6.6 we observe that performance is practically the
same for the 10k-sparse representation of Lena and strategies DCT-
[1-N, B_LDCT-l;-N, DWT-I;-N and SVD-I/;-N. This is because in each
case, we imposed sparsity in the specific domain in which reconstruc-
tion would take place and the incoherence is very similar in all ac-
quisition schemes.



88 CHAPTER 6. EXPERIMENTS

6.3 Sparsity Errors

We have argued that images can be well approximated by a sparse
represented with little loss in terms of human perception. Never-
theless, the images are not strictly sparse in these domains. This
observation is supported by Figure 6.7, that shows the DCT trans-
form of test image Lena. While in 6.7(a) it seems sparse, the method
for stretching contrasts used in 6.7(b), enhances the presence of small
but nonzero coefficients.

In this section we aim at testing CS when strict sparsity cannot
be assumed. We used the original images (without imposing sparsity)
and evaluated CS acquisition strategies by measuring the PSNR for
different number of measurements.

(a) (b)

Figure 6.7: Different visualizations of Lena’s DCT.

In Figures 6.8 and 6.9 we compare strategies DCT-/;-N, B_DCT-
[1-N, DWT-[;-N, SVD-{;-N, DCT-l5-L. and B_DCT-I5-L for all four
test images.

From the results, we conclude that CS performance depends very
strongly on the choice of the basis that best represents the signal.
Results improve as we move from DCT to Wavelet transforms and
CS is very efficient when the SVD basis is used.

It must be reinforced that the reconstruction method based on the
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Figure 6.8: Results for CS recovery considering sparsity errors.
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Figure 6.9: Results for CS recovery considering sparsity errors.
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SVD cannot be used in practice because it requires an a priori knowl-
edge of the image’s Singular Value Decomposition. Nevertheless, the
results for acquisition strategy SVD-I — 1-N are relevant because they
establish that CS performs well when we use a domain in which the
signal is very much sparse.

Comparing DCT-[;-N and DCT-I5-1. we observe that considering
the DCT as the sparse domain, CS is worse than the linear compres-
sion scheme, even considering large number of measurements. The
explanation to this somewhat disappointing result is that the images
are not sparse in the DCT domain, as can be seen in Figure 6.7.

Nevertheless, when the image is partitioned into blocks of size
8 x 8, results improve significantly supporting the observation made
in Section 2.2 that block partitioning enhances sparsity (compare
strategies DCT-/;-L and B_.DCT-l;-L).

We will take this opportunity to check Theorem 5, that states
that if we need M measurements to recover an S-sparse signal, then
if the signal is not sparse, we would recover the S largest coefficients
with this number of samples. In other words, we want to confirm
that forcing S-sparsity and taking M measurements is approximately
the same as taking M measurements on the original image (if M is
the number of measurements associated with the sparsity value S by
Theorem 2).

Notice that to generate Figure 6.2 we calculated PSNR by com-
paring the recovered data to the sparse representation of the original
image. Therefore in Figure 6.10 we compared results from Section
6.2 with the original test images.

We can make out that 20k measurements are needed to recover
the 3.5k-sparse representation of Lena? and, therefore, Theorem 5
guarantees that 20k measurements recover the 3.5k most significant
coefficients of the original image. Notice that, compared to the origi-
nal image, the reconstruction of the 3.5k-sparse representation results
in PSNR = 28.8 and the reconstruction of the original image, when
20k measurements are taken, results in PSNR = 26.6, as shown in
Figure 6.10. The same analysis can be made on the other graphs and
Table 6.1 compares the different PSNR calculated when we compare,
to the original image, the results obtained when sparsity is or not

2To compute this value we also considered Figure 6.2.
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Figure 6.10: On the left, results for strategy DCT-/1-N on test image
Lena when different levels of sparsity are forced and PSNR is mea-
sured by comparing with the original (only approximately sparse)
image. On the right, results for the same image and recovery strat-

egy when no sparsity is forced.

forced before CS measurements are applied. The variations can be
associated with the constant Cy of Theorem 5.

6.4 Measurement Errors

As mentioned in the previous chapter, acquired data is usually cor-
rupted by noise and a very important property of CS that allows it
to be used in practice is its robustness to this kind of inaccuracy.

In this section, we will evaluate CS performance when noise is
added to the acquired measurements. We consider both Gaussian
and quantization noise.
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Table 6.1: Different PSNR calculated when we compare, to the orig-
inal image, the results obtained when sparsity is or not forced before
CS measurements are applied.

H Test image Lena

|

Measurements Sparsity is forced Sparsity is not forced
M = 20k S =35k PSNR =28.8 PSNR = 26.6
M = 25k S = 6k PSNR = 30.7 PSNR = 27.8
M = 35k S =10k PSNR =33.0 PSNR = 30.2
M = 40k S =14k PSNR = 34.9 PSNR = 31.5

6.4.1 Gaussian Errors

We consider test image Lena and strategy DWT-[;N. Since the ac-
quired measurements are corrupted by an independent white Gaus-
sian noise, we have

y=>Pqrg+n

where n is a random variable with normal distribution and variance
o2.
Figure 6.11 shows the result obtained for 02 = 0.1, 1,3, 5,10

It is interesting to observe that the curve format stays the same
when errors are added and that, since we are considering a sparse
signal, there is a characteristic threshold above which CS is effec-
tive. Nevertheless, even considering the number of measurements
high enough so that efficiency is reached, PSNRs are smaller for
higher values of ¢. This confirms that the reconstruction error is
proportional to the measurement error, a very important result al-
ready stated in Chapter 5.

6.4.2 Quantization

In general, measurements cannot be taken with arbitrary large pre-
cision, and a round-off error is added to the acquired data. This
quantization process is very important to our study because we are
interested in compressing the signal. As seen in Chapter 2, the size
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Figure 6.11: Results for applications of scheme DWT-/;-N to noisy

versions of the 10k-sparse representation of image Lena.

of the quantization step is extremely relevant to determine the com-
pression rate which, in turn, is used to evaluate compression efficiency
based on the rate-distortion criteria.

Unlike the Gaussian noise, the quantization error is determinis-
tic and signal-dependent. Therefore, a relevant contribution to CS
theory consists in verifying how it performs in the presence of quan-
tization errors and, then, plot the Rate x Distortion curve.

A Sparse Example

We consider Strategy DWT-I;-N and the 10k-sparse representation
of image Lena, when a scalar uniform quantizer of varying step sizes
is applied to the measurements.

As we have previously discussed, the parameter € used to solve
Equation 6.1 was chosen according to a series of experiments. To
illustrate the calculus of the optimal value for €, we present in Table
6.2 the variations of the PSNR according to parameter € for different
quantization steps and a fixed number of measurements, M = 45k.
We highlighted the chosen ¢ for each quantization step.
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Table 6.2: PSNR values (dB) for M = 45k and several values of ¢
and ¢s (quantization step).

gs = 0.01 qgs =0.1 qgs = 0.5
€e=0.001 8785 | ¢=0.001 76.78 e=0.001 63.88
e=0.0056 87.84 e=0.006 76.78 e=0.005 63.88
e=0.010 87.83 €e=001 76.78 | ¢=0.010 63.87
e =0.050 86.60 e=0.000 76.78 || €e=0.050 63.87
e=0.100 86.48 e=0.100 76.78 e=0.100 63.87
e =0.500 84.21 e =0.500 76.07 e=1.000 63.83
e=1.000 83.14 e=1.000 76.78 € =15.000 63.42

as =3 gqs =10 gs = 50
e =0.001 48.25 e=0.500 37.79 e=10.00 24.79
e=0.010 48.25 e=1.000 37.79 e =50.00 24.87
e =0.100 48.25 e=>5.000 37.80 e =200.0 25.06
€ =0.500 48.27 || e=10.00 37.80 || ¢e=500.0 25.34
e=1.000 48.26 e =50.00 37.78 || e =800.0 25.56
€ =15.000 48.24 e =100.0 37.72 e =1000  25.52
e =10.00 48.18 e =250.0 37.19 e =2000 24.59
€ =20.00 48.08 e =500.0 35.90 e = 5000 19.95

Notice that the optimal € increases and diminishes proportionally
to the quantization step (that reflects the error size) and that there
is an optimal value for each step size, as explained in Section 6.1.1.
From Table 6.2, however, we observe that both of these behaviors are
not exact. This is also due to computational errors that are noticeable
since the PSNR variations are small.

For each fixed quantization step we varied the number of mea-
surements and plotted the Rate x PSNR curve, as shown in Figure
6.12.

The rate was calculated, as follows

M
Rate = N -H,

where H, is the entropy of the measured data y and N = 2562 is the
image size.
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To calculate H, we built an histogram based on the minimum and
maximum values assumed by ¥ (Ymin, Ymax) and the quantization step,
gs- Hence, we obtain a vector v, of size

K = Ymax — Ymin
ds

where v, (k) indicates the number of coefficients of y that range be-
tween {Ymin + (kK —1)¢s, Ymin +k¢s }. The problem of unused quantiza-
tion values is resolved by considering each of them to have occurred
once,

vy (k) = vy (k) +1,Vk € {1,2,..., K}
Hence, the probability of occurrence of each symbol is given by

o, (k)
y(k) = -
=1 )

and H, is calculated as in Equation 2.2.

100
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step=0.01 |
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Figure 6.12: Results for applications of strategy DWT-;-N to quan-

tized versions of the 10k-sparse representation of image Lena.

We observe a threshold, related to the transition point, where CS
theory starts to operate efficiently. As we increase the size of the
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quantization step, the curve approaches the y axis but the PSNR
diminishes. This was expected because, by boosting quantization
effects, we minimize rate but create higher distortions.

Both Sparsity and Quantization Errors

To formally evaluate the performance of CS, we have to consider the
real case, where quantization errors are added and the images are only
approximately sparse. We can then calculate Rate x PSNR for vary-
ing quantization steps and plot the rate-distortion curve by selecting
the most efficient quantization step ate each point (approximately
the convex hull of all Rate x PSNR curves).

In Figure 6.13 the rate-distortion curve was plotted for all tested
images and strategies DCT-l;-N, B.DCT-l;-N, DWT-/;-N, SVD-[;-N
and TV-N. We can observe that CS recovery schemes that perform
the [1-norm minimization in the Wavelet domain are far less efficient
than the JPEG2000 standard. However, by analyzing the results for
strategy SVD-1;-N and for the test image Phantom on strategy TV-
N, we can see that there is room for improvement; in both cases one
gets better results than with JPEG2000. The Phantom image in the
frequency domain and the SVD transform are both very sparse. This
indicates that, by choosing representations that strengthen sparsity,
one can reduce not only the number of measurements needed to re-
construct the signal but also the approximation error.

It is important to mention that, though strategy SVD-l;-N
presents an upper bound to CS performance, it is not really prac-
tical because it requires an a prior: knowledge of the image’s SVD.
Figure 6.14 highlights this argument by contrasting recovery of the
image Camera man using as a basis Camera man’s SVD and Lena’s
SVD. In Figure 6.15 the Rate x PSNR curve was plotted for all test
images and strategies DCT-l;-N, DWT-/;-N, TV-N and SVD-/;-N
using varying quantization steps. It can be observed that, for a par-
ticular compression rate, each image and recovery strategy has an
optimal quantization step that produces the highest PSNR. If the
image is not sparse in the considered domain, the curves show that
it is more efficient to take a large number of measurements and com-
pensate for the potential rate increase by enlarging the quantization
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Figure 6.13: Rate-Distortion curves for compression standard
JPEG2000 and CS acquisition strategies DCT-l;-N, B_DCT-[;-N,
DWT-[;-N, SVD-[;-N and TV-N.

step.
We have studied in the previous chapter that the recovery error
is bounded by the sum of the measurement error and the error due
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e —— Cameraman’s SVD|
70 - - -Llena's SVD

Figure 6.14: Rate x PSNR curve for test image Camera man and two
versions of strategy SVD-/;-N. One of them uses the natural (Camera
man’s) SVD basis and the other one uses Lena’s SVD to reconstruct

the signal.

to the fact that the signal is not strictly sparse. In the context of
quantization errors we can rewrite Equation 5.2 as

ly = all, < C- | eq+ 5 |zs —z|, |, (6.4)
—_——

€s

where C' is relatively small and xg is an approximation of z where
the S largest coefficients in the ¥ domain are observed.

This implies that the reconstruction error in CS is of the order of
the mazimum of the quantization (e,) and sparsity errors (es) [31].

This result is closely related to the fact that, for a fixed PSNR,
the ideal quantization step is approximately the same in all evaluated
scenarios (see Figure 6.15). The PSNR determines the acceptable dis-
tortion and, therefore, the values of ¢, and €,. Since ¢, only depends
on the quantization step, the fixed PSNR determines the optimal
quantization step.

The value €4, on the other hand, depends on the sparsity distri-
bution and, hence, on the number of measurements. Therefore we
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Figure 6.15: Rate x PSNR for varying quantization steps: (a-d)
shows results for strategy DCT-11-N, (e-h) shows results for strategy
DWT-I;-N, (i-1) shows results for strategy TV-N and (m-p) shows
results for strategy SVD-I;-N.
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can relate to Equation 6.4 by observing Figure 6.16, which shows
the results in terms of Number of Measurements x PSNR. For each
strategy, the number of measurements determines €,; in addition, all
quantization steps that make ¢, of the order of €, (or smaller) result
in the same PSNR. Therefore, all curves overlap until the number
of measurements is large enough so that e, exceeds ¢, (see Figure
6.16(b)). In Figure 6.16(a)), it is noteworthy that for quantization
steps smaller than 3, the curves overlap completely. This is so because
as the errors due to sparsity are very large, reducing the quantiza-
tion step is ineffective in increasing PSNR. In contrast, in Figure
6.16(d), where the image is strongly sparse in the considered domain
(SVD), €5 tends to be much smaller, and therefore such behavior is
not observed.

6.5 Software

The MATLAB scripts that reproduce all the above results are avail-
able at www.impa.br/«aschulz/CS. The zip file already includes the
test images, the optimization functions from L1-Magic, and the al-
gorithm for generating Noiselets made available by Justin Romberg.
The recovery strategies that make use of Wavelets require the WAVE-
LAB toolbox, that can be downloaded from [30].

Before starting, it is necessary to compile the mex code that gen-
erates Noiselets. To do so, simply open file CS-codes/Measurements
in MATLAB and run:

>> mex realnoiselet.c

Since the optimization algorithm is computationally expensive, it
may take a while to run it. For simpler tests, we recommend using
smaller images, such as lena64.pgm (available at CS-codes/Data).

Below, we specify the 8 main functions (in folder CS-codes/CS)
that implement the acquisition strategies described in Section 6.1.
Examples of how to use these functions to generate graphs, such as
the ones shown in this chapter, can be found in CS-codes/Demos.
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Figure 6.16: Number of Measurements x PSNR for different quanti-

zation steps and test image Phantom.

Strategy DCT-l;-N

Syntax? :

3All functions have required arguments and a number of pairs of optional
arguments (options). The first element of each pair is a string (the keyword that
defines the parameter), and the second is the value. Some examples on how to
use function DCT_11_N are:

DCT11-N(’q¢’, ’lena.pgm’, 10000);

DCT11_N(’qc’, ’lena.pgm’, 10000, ’s’, 35000);

DCT11.N(’q¢’, ’lena.pgm’, 10000, ’e’, 50, ’q’, 0.2);
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DCT_11_N(constraint, ImgName, M, options)
The necessary inputs are:
constraint - specifies if we are using equation 6.3 with equality
constraints in which case the value is ‘eq’ or equation 6.1 with
quadratic constraints in which case the value is ‘qc’;
ImgName - the name of the file where the original input image is
stored;
M - the number of measurements that will be taken.

The optional inputs are:

<‘e’ , epsilon> - specifies the value of the variable e (the default
value is 10~ 3y);

<‘q’, q_step> - in the case of add quantization error, it specifies
the value of the quantization step;

<‘s’, Sparsity> - in the case of imposing sparsity, it specifies the
number of nonzero coefficients.

Strategy B_DCT-/;-N

Syntax:

BDCT_11_N(constraint, ImgName, M, blocksize, options)
The necessary inputs are:
constraint - specifies if we are using equation 6.3 with equality
constraints in which case the value is ‘eq’ or equation 6.1 with
quadratic constraints in which case the value is ‘qc’;
ImgName - the name of the file where the original input image is
stored;
M - the number of measurements that will be taken.
blocksize - specifies the image partitioning, the size of the block is
blocksize X blocksize

The optional inputs are:

<‘e’ , epsilon> - specifies the value of the variable e (the default
value is 10~ 3y);

<‘q’, g_step> - in the case of add quantization error, it specifies
the value of the quantization step;




104 CHAPTER 6. EXPERIMENTS

<‘s’, Sparsity> - in the case of imposing sparsity, it specifies the
number of nonzero coefficients.

Strategy DWT-/;-N

Syntax:

DWT_11_N(constraint, ImgName, M, options)
The necessary inputs are:
constraint - specifies if we are using equation 6.3 with equality
constraints in which case the value is ‘eq’ or equation 6.1 with
quadratic constraints in which case the value is ‘qc’;
ImgName - the name of the file where the original input image is
stored;
M - the number of measurements that will be taken.

The optional inputs are:

<‘e’ , epsilon> - specifies the value of the variable € (the default
value is 10~ 3y);

<‘q’, g_step> - in the case of add quantization error, it specifies
the value of the quantization step;

<‘s’, Sparsity> - in the case of imposing sparsity, it specifies the
number of nonzero coefficients.

Strategy SVD-[;-N

Syntax:

SVD_11_N(constraint, ImgName, M, options)
The necessary inputs are:
constraint - specifies if we are using equation 6.3 with equality
constraints in which case the value is ‘eq’ or equation 6.1 with
quadratic constraints in which case the value is ‘qc’;
ImgName - the name of the file where the original input image is
stored;
M - the number of measurements that will be taken.

The optional inputs are:
<‘e’ , epsilon> - specifies the value of the variable e (the default
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value is 10~ 3y);

<‘q’, q_step> - in the case of add quantization error, it specifies
the value of the quantization step;

<‘s’, Sparsity> - in the case of imposing sparsity, it specifies the
number of nonzero coefficients.

Strategy TV-N

Syntax:

TV_N(constraint, ImgName, M, options)
The necessary inputs are:
constraint - specifies if we are using equation 6.3 with equality
constraints in which case the value is ‘eq’ or equation 6.1 with
quadratic constraints in which case the value is ‘qc’;
ImgName - the name of the file where the original input image is
stored;
M - the number of measurements that will be taken.

The optional inputs are:

<‘e’ , epsilon> - specifies the value of the variable e (the default
value is 10~ 3y);

<‘q’, q_step> - in the case of add quantization error, it specifies
the value of the quantization step.

Strategy DCT-I5-N

Syntax:
DCT_12_N(ImgName, M, options)
The necessary inputs are:
ImgName - the name of the file where the original input image is
stored;
M - the number of measurements that will be taken.

The optional inputs are:
<‘q’, q_step> - in the case of add quantization error, it specifies
the value of the quantization step;
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<‘s’, Sparsity> - in the case of imposing sparsity, it specifies the
number of nonzero coefficients.

Strategy B_DCT-[5-N

Syntax:

BDCT_12_N(constraint, ImgName, M, blocksize, options)
The necessary inputs are:
ImgName - the name of the file where the original input image is
stored;
M - the number of measurements that will be taken.
blocksize - specifies the image partitioning, the size of the block is
blocksize X blocksize

The optional inputs are:

<‘q’, q_step> - in the case of add quantization error, it specifies
the value of the quantization step;

<‘s’, Sparsity> - in the case of imposing sparsity, it specifies the
number of nonzero coefficients.

Strategy DCT-[;-LN

Syntax:

DCT_11_LN(constraint, ImgName, M, MO, options)
The necessary inputs are:
constraint - specifies if we are using equation 6.3 with equality
constraints in which case the value is ‘eq’ or equation 6.1 with
quadratic constraints in which case the value is ‘qc’;
ImgName - the name of the file where the original input image is
stored;
M - the total number of measurements that will be taken.
MO - the number of linear DCT measurements.

The optional inputs are:

<‘e’ , epsilon> - specifies the value of the variable € (the default
value is 107 3y);

<‘q’, g_step> - in the case of add quantization error, it specifies
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the value of the quantization step;
<‘s’, Sparsity> - in the case of imposing sparsity, it specifies the
number of nonzero coefficients.



Chapter 7

Applications in
Graphics

and Vision

The change of paradigm suggested by compressive sensing has drawn
great attention from both the scientific and engineering communities.
The large body of research already created, as well as, the consoli-
dation of the theoretical foundations in the field established solid
grounds for the development of emerging applications in various ar-
eas of science and technology.

In this chapter we will give an overview of new applications in
Computer Graphics, Vision and related fields. Due to the vast scope
of application areas it would not be possible to review all recent ac-
tivity in all areas. Therefore, we will leave out applications in other
important areas, such as: Coding and Information Theory, Statisti-
cal Signal Processing, Machine Learning, Biosensing, Hyperspectral
Imaging, Radar, Astronomy, Communications, and Circuit Analysis.

108
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Our choice to focus in Graphics and Vision is clearly motivated by
our specific research agenda. However, the interested reader can find
a broad coverage of the developments in all the above mentioned
application areas in the Rice CS portal [32].

7.1 Overview of Applications

The very nature of Computer Graphics and Vision makes these two
areas particularly suited to exploit the compressive sensing results in
the development of new techniques for various applications.

Graphics and Vision deal primarily with images and video, which
by themselves represent large amounts of raw data. Computer Graph-
ics is concerned with image synthesis, while Computer Vision with
mmage analysis.

A recent trend promoted the integration of Graphics and Vision
based on images. In this way, the subareas of “image-Based Model-
ing”, “Image-Based Rendering”, “Model-Based Image Analysis” ap-
peared to take advantage of the synergy of methods that perform
image analysis and synthesis in a unified fashion.

The scenario described above creates many opportunities for the
use of compressive sensing in new data acquisition hardware as well
as in new methods for model inference from reduced datasets.

In the sequence, we will discuss recent results in Graphics Hard-
ware, Imaging Methods, Video, Image Analysis, Medical Imaging,
Geophysics, and Image Synthesis.

7.1.1 Hardware

One of the keys for the realization of the full potential of compressive
sensing in Graphics and Vision is the design of suitable data acquisi-
tion devices. In that context, there are two distinct research avenues:
On one hand, it is necessary to develop a method that can capture
data related to physical attributes of three-dimensional scenes, such
as visual information. Note that, the device must be able to measure
the inner-products between the scenes and a set of CS test functions;
On the other hand, it would be desirable to encourage architectures
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that take advantage of parallelism and distributed processing, such
as in a wireless network of sensors. Some steps have already been
taken in these two directions.

A landmark in image acquisition for compressive sensing was the
development of the one-pizel camera, by the Digital Signal Processing
group at Rice University [33].

The design of this new digital image/video camera inverts the
traditional paradigm for imaging capture. It directly acquires ran-
dom projections of a scene without first collecting the pixels. The
camera architecture employs a digital micromirror array to optically
calculate linear projections of the scene onto pseudorandom binary
patterns. This information is collected by a single photo-detector
(hence a "single pixel”). By the virtue of compressive sensing, it
measures the scene fewer times than the number of pixels in the the
reconstructed image.

One advantage of this design is that since the camera employs
only a single detector, it can also be adapted to imaging at specific
wavelengths, even outside the visible range — which would be difficult
to do with conventional images.

Figure 7.1 shows a laboratory prototype of the single-pixel cam-
era. In this figure it can be seen the scene (a patch with the letter
R), the lens / micromirror assembly and the photo-sensor.

A schematic diagram of the components of the device is shown in
Figure 7.2.

Figure 7.3 shows the results of the reconstruction of a simple
scene, consisting of a rectangular patch with the letter R, using
this hardware. A conventional picture of the scene is shown in Fig-
ure 7.3(a) and an image reconstructed from 1300 measurements is
shown in Figure 7.3(b). Both images have a resolution of 256 x 256
pixels.

As indicated in Figure 7.2, devices such as the single pixel camera
can benefit from a setting that incorporates wireless data transmis-
sion and distributed sensing. The challenge is to integrate the mea-
sures from many such simple sensors while exploiting the framework
of compressive sensing. Some works that address these issues are
Bajwa et al.[34] and Baron et al. [35].
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Light DMD+ALP Board

Photodiode Circuit

Figure 7.1: Laboratory prototype of the single-pixel camera. (Ex-
tracted from [33].)

7.1.2 Imaging

Image Processing is arguably one of the areas that adopted compres-
sive sensing most vigorously.

Note that in this context, the goal is to process the information in
various ways using the compressive sensing framework. Such methods
and techniques constitute a natural follow-up for compressive sensing
devices, such as the single-pixel camera.

Some practical works in this area include: compressive image fu-
sion by Wan et al. [36]; compressive sensing for background subtrac-
tion by Cevher et al. [37]; multiscale sparse image representation with
learned dictionaries by Mairal et al. [38]; manifold lifting for multi-
view compressive imaging by Wakin [39]; and image super-resolution
using Sparse Representations by Yang et al. [40].

On a different track, a relevant theoretical work in imaging is

the one by Hennenfent and Herrmann [41] that discusses irregular
sampling and its relations to aliasing and noise.
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Figure 7.2: Diagram of the single-pixel camera components. (Ex-

tracted from [33].)
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Figure 7.3: Example of image captured by the single pixel camera
(a) 256x256 conventional image of a black-and-white letter R, (b)
Reconstructed image from 1300 random measurements. (Extracted

from [33].)

7.1.3 Video

Video Processing extends Imaging in the temporal dimension. In
this area the requirements for data representation, processing and
transmission are even more demanding.

Some works in this area include: compressive coded aperture
video reconstruction by Roummel et al. [42]; distributed compres-



7.1. OVERVIEW OF APPLICATIONS 113

sive video sensing by Kang and Lu. [43]; compressive imaging for
video representation and coding by Wakin et al. [44]; compressive
video sampling by Stankovic et al. [45]; and multiscale methods for
compressive sensing of video by Park and Wakin. [46].

7.1.4 Medical Imaging and Geophysics

Medical Imaging and Geophysics deal with volumetric data, which
can be viewed as “3D images”. In a sense, this area has similar
characteristics of Video Processing. Nonetheless, the type of data has
different properties due to the particular nature of the time dimension
in video.

Some representative works in this area are: compressed sensing
based interior tomography by Yu and Wang [47]; and optimized com-
pressed sensing for seismic data reconstruction by Tang et al. [48].

7.1.5 Vision

The problems in Computer Vision are related to inference of models
from images and video. There are two general approaches for the
solution of such problems. One approach assumes contextual knowl-
edge and the main task is fitting the data to known models. The
other approach attempts to learn the models from the data by ex-
tracting the underlying structure. In both cases, the compressive
sensing framework helps due to the fact that although the data, in
general, has very high dimensionality the model structure has much
less degrees of freedom due to data coherence.

Some works in computer vision are: compressive sensing of pa-
rameterized shapes in images by Gurbuz et al. [49]; smashed filters
for compressive classification and target recognition by Davenport et
al. [50]; feature selection in face recognition by Yang et al. [51];
simultaneous sensing matrix and sparsifying dictionary optimization
by Duarte-Carvajalino and Sapiro [52]; and sparse representations for
image classification by Rodriguez and Sapiro [53].
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7.1.6 Computer Graphics

The problems in Computer Graphics range from generating represen-
tations of objects in three dimensional scenes to image synthesis of
the scenes.

In the image-based approach to modeling and rendering, the so-
lution of these problems is devised using image data.

In this context, a fundamentally difficult problem due to the sheer
amount of data involved is the acquisition of samples of the plenoptic
function, which describes the visual information in a scene.

Some recent works in applying compressive sensing to capture
such light fields are: compressive light transport sensing by Peers
et al. [54]; compressive dual photography by Sen and Darabi [55];
and compressive structured light for recovering inhomogeneous par-
ticipating media by Gu et al. [56];

7.2 Case Study

In this section, we will discuss the application of compressive sensing
to dual photography proposed by Sen et al. [57]. Our interest in this
work results from the fact that it is one of the first applications of CS
in computer graphics and that it deals with the fundamental problem
of capturing the light transport characteristics of a scene.

7.2.1 Dual Photography

Dual photography is a technique that enables the interchange of cam-
eras and light sources of a scene, therefore allowing us to take pictures
from the point of view of the projector.

Fixed the position of the camera and the projector, we can calcu-
late the light field from the projector through the scene and onto the
camera. Since the light transport is linear, we can represent it by a
matrix T and the reflectance function can be written as

c=TI (7.1)

where ¢ (size N, x 1) and [ (size N; x 1) are column vectors that
represent the projected pattern and the image taken by the camera,
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respectively. Figure 7.4(a) shows what will be referred as the pri-
mal configuration, where the light is emitted by a real projector and
acquired by a real camera.

projector camera virtual camera virtual projector

_F ®

pixel
pixel i

q

N

c=TI I'-T¢’

scene scene

(a) Primal Configuration (b) Dual Configuration.
Figure 7.4: Diagram of dual photography.

In [57] Helmholtz reciprocity is used to establish that, since the
light transport is the same along a light path regardless of the di-
rection of the flow of light, measuring the light that starts from the
projector pixel j and arrives at the camera pixel ¢ is equivalent to
measuring the transport of energy that starts from the camera pixel
¢ and arrives at the projector pixel j. This means that we can re-
place the projector for a virtual camera and the camera for a virtual
projector (see Figure 7.4(b)) and represent the dual of Equation 7.1
as:

I =17¢ (7.2)

Figure 7.5 shows results for this technique. Notice that, once the
transport matrix T must be acquired, we can use this information to
relight the scene. Figure 7.5(c) shows a projective pattern that has
been virtually projected onto the image when an illumination vector
[ was multiplied by T.

It is also important to mention that this technique can still be
used in scenes where diffuse inter-reflections or surface scatterings
dominate the appearance. In Figure 7.6 dual photography reveals
the front of the card that could not be seen from the point of view of
the camera. Notice that in this experiment the light undergoes two
diffuse bounces before reaching the camera.

An important aspect to consider in this procedure is the acquisi-
tion of the light transport matrix T. A simple way to do this is what
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(a) Primal image. (b) Dual image. (c) Image relighting.

Figure 7.5: Results of dual photography. (Extracted from [57].)

is referred to as “brute force” scan and consists in scanning the pro-
jector pixel by pixel (i.e, displaying N; different patterns each with a
single pixel lit up at a time) and acquiring the resulting image with
the camera.

This algorithm requires however a very large number of measure-
ments. Consider for example an image of size 512 x 512 and a pro-
jector of resolution 512 x 512. Assuming that the capture rate is
approximately 25 patterns/minute and that data is stored as three
32-bit floats for each matrix element, it would take 7.3 days to acquire
the light field and it would require 3.3TB to store the data.

Hence, the challenge in this area is to capture T as efficiently
as possible using algorithms that explore the compressibility of light
fields. The problems concerning most of the existing algorithms that
explore redundancy to speed up the acquisition of light fields are
that most strategies are quite complex to implement and usually it
is difficult to estimate bounds on the adaptiveness of the solutions.

We can understand that T is compressible by observing that, if a
scene does not have a lot of global illumination effects, the contribu-
tion of a single projector pixel will be concentrated in a small region
of the image acquired by the camera. This means that the transport
matrix is sparse.
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projector

(a) Experimental setup. (b) Camera view.

(¢) Dual reconstruction.

Figure 7.6: Results of dual photography with indirect light transport.
(Extracted from [57].)

In this context, CS comes out a very useful tool that, by exploit-
ing sparsity in the transport matrix, accelerates its acquisition very
efficiently.

7.2.2 Compressive Sensing

In CS schemes the idea is to take M <« N; measurements, i.e, to
generate M < N; approximately random illumination patterns and
reconstruct T from the acquired images.

Let C be the matrix created by stacking the column vectors ¢;
for ¢ = 1,...,M and L the matrix created by stacking the column
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vectors [; (see Equation 7.1). Then
C=TL (7.3)

and therefore
=L"t! fori=1,...,N, (7.4)

where ¢l ! (size M x 1) and t! (size N; x 1) are the i-th rows of C
and T respectively (see Figure 7.7).

Tﬂ i ul o e
i
T - L AN |
N. x N,
N, x M
N, x M

Figure 7.7: Sensing equation.

We have already argued that T is sparse (¢; is parse Vi) and
therefore CS theory states we can recover t; based on Equation 7.4
using a convex optimization algorithm as long as L7 preserves the
RIP.

In [55] L is generated using Bernoulli patterns (the matrix is com-
posed by 1’s and -1’s randomly selected with equal probability). The
experimental setup is shown in Figure 7.8.

It is noteworthy that, though we can usually assume that T is
sparse, in cases when pixels in the camera get contributions from
many pixel in the projector (e.g. due to significant global effects,
such as defocussing of the camera), it is necessary to represent ¢; in
a basis in which it is sparse by applying a transform matrix V.

INotice that C;-T is a vector that stores a sequence of M measurements of a

single pixel.



7.2. CASE STUDY 119

cameray

scene

y =

(a) 256 x 256 Bernoulli pattern (b) Experimental setup.

Figure 7.8: Compressive dual photography. (Extracted from [55].)

We have already enforced that one of the most significant advan-
tages of CS is that it is nonadaptive. In this scenario, this implies
that the procedure does not require real time processing during ac-
quisition as in [57], where an estimation of the energy distribution has
to be made prior to sensing. Since the patterns are all pre-computed,
they can be displayed at an extremely fast framerate, without the
need of any computational power for run-time processing.

Moreover, the illumination patterns are chosen regardless of the
scene. This is true even in the cases when we must consider a different
basis in which the signal is sparse, once the knowledge of the ¥ basis
is only used for reconstruction and not for sensing? These simple
binary patterns are easy to implement (compared e.g. to a basis
of Daubechies Wavelets) and make good use of the limited dynamic
range and quantization of the projector, thereby improving the SNR,
of the results.

Figure 7.9 shows a result obtained by [55]. We observe that the
technique is able to capture global illumination effects such as diffuse-
diffuse inter-reflections. However, in this more extreme case, they
tend to fall off quicker than the ground truth image. The authors
associated this difference with the limitations of the HDR capture
configuration. Notice that, since the contrast between brightest and

21t is of course essential that LT still meets the RIP when combined with W.
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dimmest entries in this matrix can be large, these limitations can lead
to significant inaccuracies.

(a) Ground truth. (b) Rendered image.

Figure 7.9: Results extracted from [55].
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