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Foreword

The course given during the 232 Coléquio Brasileiro de Ma-
temética (Rio de Janeiro, July 2001) is an introduction to the
theory of toric varieties. This elementary introduction does not
pretend to originality but to give examples and motivation for
the study of toric varieties. The theory of toric varieties plays
a prominent role in various domains of mathematics, giving ex-
plicit relations between combinatorial geometry and algebraic
geometry. They provide an important field of examples and
models. The Fulton’s preface of [11] explains very well the in-
terest of these objects “Toric varieties provide a ... way to see
many examples and phenomena in algebraic geometry... For
example, they are rational, and, although they may be singu-
lar, the singularities are rational. Nevertheless, toric varieties
have provided a remarkably fertile testing ground for general
theories.”

Basic references for toric varieties are [10], [11] and [15].
These references give complete proofs of the results and de-
scriptions. They were (abusively) used for writing these notes
and the reader can consult them for useful complementary ref-
erences and details.

Various applications of toric varieties can be found in the
litterature, in particular in the book [11]. Interesting applica-
tions and suitable references are given in [7]: applications to
Algebraic coding theory, Error-correcting codes, Integer pro-
gramming and combinatorics, Computing resultants and solv-
ing equations, including the study of magic squares (see 8.3).
Applications to Symplectic Manifolds are given in [1]. Of course
this list is not exhaustive.

Special thanks to Gottfried Barthel, Karl-Heinz Fieseler and
Ludger Kaup: in their friendly company, I discovered the won-
derful country of toric varieties.

Marseille, 29 Mai 2001
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1 From combinatorial geometry to toric va-
rieties

The procedure of the construction of (affine) toric varieties as-
sociates to a cone ¢ in the Euclidean space R" successively:
the dual cone &, a monoid S,, a finitely generated C-algebra
R, and finally an algebraic variety X,. In the following, we
describe the steps of this procedure :

c — ¢ — S, —~ R, — X,

and recall some useful definitions and results of algebraic ge-
ometry.

1.1 Cones
Let A = {vy,...,v,} be a finite set of vectors in R", the set
c={zeR" :z=XMvi+---+X v, NER, X\ >0}

is called a polyhedral cone. The vectors vy,...,v, are called
generators of the cone o.

If A ={ then o = {0} is the zero cone.

Example 1.1 In R? with canonical basis (ey, e2), one has the
following cones :

Vg = €9
Vg=E€9
e |
. / o
0 v1=€1 0
0 vi=e;

U1 :261 — €2

Fig. 1. Examples of cones

The dimension of o, denoted dim o, is the dimension of the
smallest linear space containing o.
In the following, N will denote a fixed lattice N = Z" C R™.



Definition 1.1 A cone o is a lattice (or rational) cone if all
the generators v; of o belong to N.

A cone is strongly convex if it does not contain any straight
line going through the origin (i.e. o N (—o) = {0}).

The first step of the procedure of construction of toric vari-
eties is the definition of the dual cone associated to a cone. Let
(R™)* be the dual space of R" and ( , ) the dual pairing. To
each cone we associate the dual cone &

={ue (R" : (u,v) >0 Yveo}

Qe

Example 1.2 Let us denote by (e7,e}) the canonical (dual)
basis of (R?)*. One has the examples:

2//, - /ei+2e§
oy
RN

Fig. 2. Examples of dual cones

Giving a lattice N in R", we define the dual lattice M =
Homy(N;Z) = Z™ in (R™)* and we have the property :

Property 1.1 If o is a lattice cone, then & is a lattice cone
(relatively to M ).

If o is a polyhedral convex cone, then & is a polyhedral convex
cone.

In fact, polyhedral cones ¢ can also be defined as intersec-
tions of half-spaces. Each (co)vector u € (R")* defines a half-
space H, = {v € R": (u,v) > 0}. Let {u;},7=1,...,¢ denote



a set of generators of & (as a cone), then
t
o= ﬂHW ={veR": (u,v) >0,...,(u,v) >0}
i=1

Remark that if o is a strongly convex cone, then & is not
necessarily a strongly convex cone (see 7 in Example 1.2).

Lemma 1.1 Let o be a lattice cone generated by (vy,...,v,),
then & = N7; where T; is the ray generated by the vector v;.

1.2 Faces

Definition 1.2 Let o be a cone and let A € 6 N M, then
r=ocnNA={veo : (\v)=0}
1s called a face of o. We will write T < o.

This definition coincides with the intuitive one. (Exercise).
A cone is a face of itself, other faces are called proper faces.
An one dimensional face is called an edge.

Property 1.2 Let o be a rational polyhedral convex cone, then
(i) Bvery face T = o N\t is a rational polyhedral convex cone.
(ii) Fwvery intersection of faces of o is a face of o.

(iii) Ewery face of a face is a face.

PROOF: (i) is easy exercise. In fact, if {v;} is a set of gen-
erators of the cone o, the cone 7 is generated by those among
vectors v; such that (A, v;) = 0.

(ii) comes from the relation

1
ﬂ(aﬂ)\f) :Uﬂ (Z)‘Z>
for \; € 5.

(i) f 7 = o N A and vy = 7NN, for A € & and X € 7,
then for sufficiently large positive p, one has X' + pA € & and
y=0on (N +p\)t O



Remark 1.1 If 7 < o, then & C 7. (Easy exercise).
Remark 1.2 If 0 = 01 + 09, then & = &, N Fs.

Property 1.3 If 7 = o N\ (with \ € &) is a face of o, then
T = 5+R20(—)\).

PROOF:  As two sides are polyedral convex cones (because
A € §), it is sufficient to show that their duals coincide. On
the one hand (7) = 7, on the other hand (& + Rxo(—)) =
o N (=A) =oNAt =71. Let us explicit the second equality: if
v € oN(=A), then (v, —A) > 0 because v € (—A) and (v, A) > 0
because v € o and X € &, then (v, \) = 0, converse is obvious.
O

Example 1.3 Let us consider the following examples:

e

' // //
T

*® 20 A
€2 €5
A
O0———e; = e;=A
e: je

~_ 2

o /

~_ 0 p=-€; “®

€1-€2

Fig. 3.
Firstly one considers 7 as a face of gyg. The vector A = e]
satisfies :
A E gy T=09MN At

and we have
7 =50+ Rso(—))

7



Let us now consider 7 as a face of the following cone o7 :
The vector p = —ej satisfies :

JIASNes] 7':01ﬁuL

and we have
7 =01+ Rxo(—p)

Finally let us consider the origin {0} as a face of oy :

///el / %ef / el
LY {6} =(R?)*

Fig. 4.
The vector v = e] + €} satisfies :

vV E dy {0}:0'()mvL

and one has )
{0} = (R*)" = &0 + Rxo(—v).

Definition 1.3 The relative interior of a cone o is the topo-
logical interior of the space R.o genmerated by o. A point of
the relative interior is obtained taking a strictly positive linear
combination of dim(o) linearly independent vectors among the
generators of o. If o is a rational cone, these vectors can be
elements of the lattice.

For any vector v in o, there is a face 7 < ¢ such that v is in
the relative interior of 7.

Property 1.4 IfT < o, then N7+ is a face of & with dim(7)+
dim(¢ N 74) = n. This provides a one-to-one correspondence
(with reverse order) between faces of o and faces of &.



PROOF: Faces of & are cones 5 Nvt with v € (§)NN = o N N.
If 7 is the cone containing v in its relative interior, then 5Nvt =
FN(FNvt) = N7t then every face of & is of the stated type.

The correspondence 7 — 7* = ¢ N 7' reverses order and we
have 7 C (7%)*, then 7% = ((7%)*)* and the correspondence is
bijective. The rest is easy. (]

1.3 Monoids

Definition 1.4 A semi-group (i.e. a non empty set S with an
associative operation + : S x S — S) is called a monoid if it
is commutative, has a zero element (0 4+ s = s,Vs € §) and
satisfies the simplification law, i.e. :

s+t=s+t = s=5 fors,s andte S
Lemma 1.2 If o is a cone, then 0 N N is a monoid.

Proor: Ifz,y € cN N, then z 4+ y € 0 N N and the rest is
easily verified. O

Definition 1.5 A monoid S is finitely generated if there exists
ai,...,ar € S such that

Vs €8, s=Aay+ -+ Apap with \; € Z>o.
Elements aq, ..., a; are called generators of the monoid.

Lemma 1.3 (Gordon’s Lemma). If o is a polyhedral lattice
cone, then o N N is a finitely generated monoid.

PrROOF: Let A = {vy, -+, v} be the set of vectors defining
the cone 0. Each v; is an element of 0 N N. The set K =
{> tiv;, 0<t; <1} is compact and N is discrete, therefore
K N N is a finite set. We show that it generates ¢ N N. In
fact, every v € 0 N N can be written v = > _(n; + r;)v; where
n; € Zsp and 0 < r; < 1. Each v; and the sum > r;v; belong
to K N N, so we obtain the result. O

We will apply this lemma to the polyhedral lattice cone &
and will denote by S, the monoid 6 N M.

9



Example 1.4 In R? consider the 0-dimensional cone o = {0}

o= {0}

Fig. 5. The case o = {0}.
In this example, S, = & N M is generated by the vectors
(e}, —el, e5, —e3). It is also generated by (e}, €5, —ei — e3).

Example 1.5 In R?, consider the following cone

€2 ej+2¢5
94
0 /
261—62

G
//.
Fig. 6. A classical example.

€1

In this example, S, = § N M, marked e, is not generated by
the vectors e} and e} + 2ej alone. To obtain a set of generators,
one has to add ej +e5. Then, S, is generated by (e, ef+e3, €]+
2e}).

Proposition 1.1 Let o be a rational polyhedral convexr cone
and T = o N A" is a face of o, with \ € S, = 5 N M, then
Sy =S5+ Zso.(— ).

PrOOF: The proof is a direct consequence of Property 1.3
taking intersection of both sides with M = Z". (|

Example 1.6 In the cases considered in Example 1.3, we ob-
tain respectively:
For the face 7 of oy, the vector A = e] satisfies 7 = &y +
Rso(=A) and
Sy = 8oy + Zz0.(—=A)

10



If 7 is considered as a face of o1, the vector = —ej satisfies
7 =051+ Rso(—p) and

Sy = So, + Z>o.(—p1)

Finally, let us consider the vertex {0} as a face of oy, the
vector v = e} + e; satisfies {0} = 5y + Rxo(—v), then

S{o} = SO-O + Zzo.(fl/).

11



2 Affine toric varieties

2.1 Laurent polynomials

Let us denote by C[z,27Y] = Clz1,. .., 2n, 2 'y - . ., 2, '] the ring

of Laurent polynomials. A Laurent monomial is written \.z% =
Azfteo 20 with A € C* and @ = (ay,...,a,) € Z". One of

the important result in the definition of toric varieties, and key
of the second step, is the fact that the mapping

0 :Z" — Clz, 27

a=(ag,...,0n) — 28=2" - z0n

n

is an isomorphism between the additive group Z" and the mul-
tiplicative group of monic Laurent monomials. Monic means
that the coefficient of the monomial is 1. This isomorphism is
easy to prove and let as an exercise.

Definition 2.1 The support of a Laurent polynomial f =
Zﬁnite )\aza 18 deﬁﬂ@d by

supp(f) = {a €Z" : X\, #0}
Proposition 2.1 For a lattice cone o, the ring
R,={f¢€ (C[z,z_l] :supp(f) Cc 6N M}

is a finitely generated monomial algebra (i.e. is a C-algebra
generated by Laurent monomials).

This result is a direct consequence of the Gordon’s Lemma.

The following section recalls how we can associate to each
finitely generated C-algebra (in particular to R,) a coordinate
ring, then an affine variety.

2.2 Some basic results of algebraic geometry

The proofs of results of this section can be found in [10] or [11]
for example.

12



Let C[¢] = Cl&y, . . ., &) be the ring of polynomials in k vari-
ables over C.

Definition 2.2 If E = (f1,... f) C C[¢], then
V(E)y={zeC" : file) == fi(z) =0}
18 called the affine algebraic set defined by E.
Let I denote the ideal generated by F, then V(I) = V(E).
Definition 2.3 Let X C C*, then

I(X)={feCl¢ : flx=0}
18 an ideal, called the vanishing ideal of X.

Example 2.1 For = = (zy,...,2;) € C*, let us consider E =
{&—z1, -+, &—xr}. Then V(E) = {z} and I({x}) = C[¢](&—
z1) + -+ C[¢](& — z). It is a maximal ideal denoted by M,
(recall that an ideal M is maximal if for each ideal M’ such

that M C M’ then M = M’).

Let us remember that an ideal [ in a ring R (commutative
and with unit element 1) is maximal if and only if R/I is a
field. As a corollary, every maximal ideal is prime.

Theorem 2.1 (Weak version of the Nullstellensatz) : Every
mazimal ideal in C[€] can be written M, for a point x.

Corollary 2.1 The correspondence x — M, is a one-to-one
correspondence between points in C* and mazimal ideals M of

Cle].
CF e {M C C[¢], M mazimal ideal} =: Spec(C[¢])

Lemma 2.1 Let I be an ideal of C[¢], then V(I) = {z € C* :
IcM,}.

Definition 2.4 Let us denote the vanishing ideal of V(I) by
Iy = I(V(I)), then Ry = C[¢]/Iy is the coordinate ring of the
affine algebraic set V(I). It is generated as a C-algebra by the
classes f_j of the coordinate functions ;.

13



The generators Ej =¢; + Iy of Ry are restrictions of coordi-
nate functions to the affine algebraic set V.

We remark that if I = {0}, then V(I) = C* and Ry = C[¢].
The Corollary 2.1, written for I = {0}, is generalized for any
ideal in the following way:

Corollary 2.2 There is a one-to-one correspondence
V «— {M C Ry, M mazimal ideal} =: Spec(Ry)

Defining the Zariski topology on each side (see, for example
[10], VI.1), we obtain an homeomorphism

V = Spec(Ry)

Each commutative finitely generated C-algebra R determines
an affine complex variety Spec(R). If generators of R are
choosen, R can be written C[¢y,...,&]/] where I is an ideal.
Then Spec(R) is identified with the subvariety V(I) in CF,
which is the set of common zeroes of polynomials in I.

Remark 2.1 A finitely generated C-algebra R can be written
Cl&, ... ,&]/1, as a coordinate ring, for different & and ideals
I. Tt means that we associate by this way, different affine al-
gebraic sets V(I) € CF. In fact, the Corollary 2.2 shows that
these representations V'(I) are all homeomorphic to the variety
Spec(Ry).

2.3 Affine toric varieties

We are now able to define the affine toric variety associated to
a cone o:

Definition 2.5 The affine toric variety corresponding to a ra-
tional, polyhedral, strictly convex cone o is X, := Spec(R,).

The previous section shows that we can represent the finitely
generated C-algebra R, as a coordinate ring in different ways,

14



according to a choice of generators of S,. Different choices
provide different representations of the “abstract affine toric
variety” Spec(R,) in different complex spaces C*. In the fol-
lowing we will denote by X, such a representation. By Remark
2.1 they are all homeomorphic.

Let us explicit the construction by an example, then we will
give the general case.

In the case of Example 1.5, let a; = e}, a2 = e] + €} and a3 =
e} +2e5 be a system of generators of S,. By the isomorphism 6,
they correspond to monic Laurent monomials u; = 21, us = 2122
and u3 = z,25. The C-algebra R, can be represented as

R, = Cluy, ug, uz] = C[&1,&2,83]/ 15

where the relation a; +az = 2as provides the relation ujug = u%
between coordinates. The ideal I, is then generated by the
binomial relation & &3 = &5 and the affine toric variety corre-
sponding to the cone o is represented in C? as the quadratic
cone

X, =V(I,) ={z = (x1,19,23) € C* : x5 = 23}

It has a singularity at the origin of C3. The following picture
gives the real part of X, in R3.

Fig. 7. The quadratic cone
In the general case, the situation is the same : Let aq, ..., a
be a system of generators of S,, where each a; is written a; =
(al,...,a") € 5N M. By the isomorphism 6, we obtain monic
Laurent monomials u; = z% = z;”l coznt € Clz,z7Y for i =
1,...,k. The C-algebra R, = Cluy,...,u;] can be represented

15



by
R, =Cl&, ..., &/,
for some ideal I, that we must determinate.
Relations between generators of S, are written

k k
(*) Z vjaj = Zujaj Py Vi € Lz
j=1 j=1

we obtain the monomial relations

(zal)Vl o (Za;c)l/k — (Zal)lh . (Zak)uk

) ol aly . .
where 2% = (2]",...,2n" ), L.e. relations
vy Vi _ o, M1 Pk
ul...uk _ul...uk

between the coordinates and finally the binomial relations

(++) g g

that generate I,.

Theorem 2.2 Let o be a lattice cone in R™ and A = (ay, . .., ax)
a system of generators of Sy, the corresponding toric variety X,
is represented by the affine toric variety V (I,) C C* where I, is
an ideal of C[&y, ..., & generated by finitely many binomials of
the form (**) corresponding to relations (*) between elements

of A.

ProoOF: By Lemma 1.3, the monoid of all integral, positive,
linear relations (*) is finitely generated. The rest of the proof
consists to show that every element of I, is a sum of binomials
of the previous type (see [10], Theorem VI.2.7). O
As a consequence of the Theorem 2.2, a point z = (z1,... 1) €
CF represents a point of X, if and only if the relation z7 - - - 2}* =

" - -} holds for all (v, u) appearing in the relation (*).

Example 2.2 Let us consider the cone o = {0}, the dual cone
is & = (R™)*. We can choose different systems of generators of
Sy, for example

* * * *
Ay =(ef,...,en,—€f,...,—€n)

16



or

Ay = (e,...,e,—(e]+---+e)).
Let us take the first system of generators. The corresponding
monomial C-algebra is

C[zl,...,zn,zfl,...,zgl] =Cl&, ..., &)/ 1,

where

I, = (C[f} (§1£n+1 - 1) ot C[ﬂ(gng%z - 1)

hence XlT = V((§1£n+1 - 1)7 Ty (§71§2n - 1))
For n = 1, the obtained variety is a complex hyperbola whose

asymptotes are the axis & = 0 and & = 0. It can be projected
bijectively on the axis & = 0 and the image is C* :

Fig. 8.

In the general case (n > 1), and by the same way, X, is
homeomorphic to

T={(z1,...,20) €C" : z£0, i=1,...,n}=(C")"

using the projection C?" — C" on the first coordinates.
With the second system of generators As, we have R, =

Cl&, ..+, &n, Eni1]/ I where I, = C[€](&1 -+ - €néni1 — 1) and we
obtain another realization of X,, homeomorphic to T, now in

CnJrl

Definition 2.6 The set T = (C*)" is called the complex alge-
braic n-torus.

Remark 2.2 1. T includes the real torus as : T = (S!)" x
(Rxp)".

17



2. T is a closed subset of C?" but, as a subspace of C", it is
not closed.

Proposition 2.2 Let o be a lattice cone in R™, the affine toric
variety X, contains the torus T = (C*)" as a Zariski open
dense subset.

PrROOF: Let (ay,...,a;) be a system of generators for the
monoid S, and let V(I,) C CF be a representation of X,.
With the previous coordinates of R", each a; is written a; =
(al,...a") with o/ € Z and t € T is written ¢t = (t1,...,t,)
with t; € C*. The embedding h: T — X, is given by

t=(tr,... ta) — (t%, ... t%) € V(I,) N (C*)*
where X

% =t e CF.

We prove that h is a bijection from (C*)" to X, N (C*)k.
As h(t) satisfies the binomial relations, it is clear that h(t) €
X, N (C)~.

Let us show that A is injective. Let a € S, such that all points
a+ e are in S,, with e} basis of (R")*. The Laurent mono-
mials 2% = fy(u), 2474 = fi(u) are in R, = C[u] C C[z,z7Y]
(coordinate ring). Let h(t) = z be a point in X, N (C*),
then f;(h(t)) = t;t* = t;fo(h(t)) and the ¢; are determined by
ti = fi(h(1))/ fo(h(1)).

The map h is surjective. Any point € X, N (C*)* can be
written

z = h(fi(z)/fo(@), ..., fu(@)/ fo(2))

as the f; are non zero in the point z. O

Example 2.3 In the case of example 1.5, the embedding is
given by

(t1,19) = (b1, ks, 183) € V(1) N (C7)°
From the Proposition 2.2, one obtains:
Property 2.1 If o is a lattice cone in R", then dimc X, = n.

18



Example 2.4 Let o € R? be the following cone
€9 5

v Y
el e]

Fig. 9.
S, is generated by (e, e3), R, = C[£1, &), then I, = {0} and

X, is C2. The same result is obtained if ¢ is generated by any
basis of the lattice N.

Example 2.5 Let 7 € R? be the following cone

N 24

Fig. 10.
S; is generated by (e}, —ej,€3) and R, = Cluy, ug, ug] with
uy = u; . One can write R, = C[¢;, &, &3] /(&€& — 1) and X, is
Czl X sz'

Example 2.6 Let 0 € R? be the cone generated by ey, e, e3
and ay = e; — eg + e3. Then S, is generated by e, e5, e} + €5
and e + e,

RU = C[ulvu37u1u27u2u3] = C[§17£27§3a§4]/10

where I, is generated by &€y = £¢3. The toric variety X, is
an hypersurface in C* defined by z124 = o3, i.e. a cone over
a quadric surface.

Example 2.7 Let o be the cone in R” generated by ey, - - -, ep,
with p < n. Then S, is generated by (€7, - -, €5, €5 1, =€,
e, —er). One has

R(T = (C[Zla T Zpa Zp+17 Z;+117 Tty Rn, Zyzl]

and X, = CP x (C*)"P. The same result is obtained if o is
generated by p vectors which are a part of a basis of the lattice
N.
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Remark 2.3 Let us denote Ng = N ®7 R. A lattice homo-
morphism ¢ : N’ — N defines an homomorphism of real vector
spaces @g : Ng — Ng. Assume that ¢g maps a (polyhedral, ra-
tional, strictly convex) cone ¢’ of N’ in a (polyhedral, rational,
strictly convex) cone o of N. Then the dual map @ : M — M’
provides a map S, — S,.. It defines a map R, — R, and a
map X, — X,.

Let us apply the Remark on an Example:

Example 2.8 This is the example of an arbitrary 2-dimensional
affine toric variety.

Let us consider in R? the cone generated by e, and pe; — ges,
for integers p, q € Z~¢ such that 0 < g < p and (p,q) = 1.

€4
o
[0
Jel-Z2es
Fig. 11.
Then R, = CJ..., 2} 23, ...] where the monoids z}zj appear for

all 7 and j such that j < p/q i. Let N’ the sublattice of N
generated by pe; — ges and e, i.e. by pe; and es. In the figure
11, p = 3, ¢ = 2 and N’ is pictured by the points e. Let us
call ¢’ the cone o considered in N’ instead of N. Then o' is
generated by two generators of the lattice N, so X,/ is C* (cf.
Example 2.4).

In such a situation, the inclusion N C N provides a map
X, — X, (Remark 2.3). This map can be explicited in the
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following way:

Let us denote by x and y the monomials corresponding to
the generators e} and e of the dual latice M. The dual lattice
M’ C M corresponding to N’ is generated by ;1)6’{ and ej. The
monomials corresponding to these generators are u and y such
that u?” = x. The monoid S, is generated by %e’{ and %e’{ + e,
then

Ry = Clu,uy] = Clu,v] with v =uy
On the other hand, the monoid S, is generated by all e} + mej
with 0 < m < p. Then

R, = Clz,zy, ..., zy"] = Clu’,uP v, ..., uvP~ vP] C Clu,v]

and X, is the cone over the rational normal curve of degree p.
The inclusion R, C Clu,v] induces a map

Spec(Clu,v]) = X,» = C* — Spec(R,) = X,.

Here the group I', = Z/pZ of p-th roots of unity acts on X,
by ¢ - (u,v) = (u,(%) and then X, = X,/T, = C*>/T, is a
cyclic quotient singularity. The map X, — X, is the quotient
map.

The group of p-roots of unity acts on the coordinate ring
Clu, v] in the following way f +— f(Cu,{v). Then

R, = Clu,v]""

is the ring of invariants polynomials under the group action.

In a more general way, one has the following Lemma (see
[11],2.2):

Lemma 2.2 If n = 2, then singular affine toric varieties are
cyclic quotient singularities.
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3 Toric Varieties

3.1 Fans

Definition 3.1 A fan A in the Euclidean space R™ is a finite
union of cones such that:

(i) every cone of A is a strongly convex, polyhedral, lattice
cone,

(ii) every face of a cone of A is a cone of A,

N p ;s
Y
(iii) if o and o’ are cones of A, then o Na' is a common face
of o and o'.

In the following, unless specified, all cones we will consider
will be strongly convex, polyhedral, lattice cones.

Example 3.1 Examples of fans:

Fig. 12.

The toric varieties associated to fans will be constructed by
gluing affine ones associated to cones. Let us begin by recalling
a very simple example, the one of the projective space P2.

Example 3.2 Let us denote by (ty : t; : t3) the homogeneous
coordinates of the space P2. It is classically covered by three
coordinate charts:

Uy corresponding to ty # 0, with affine coordinates
(t1/to, ta/to) = (21, 22)

U, corresponding to t; # 0, with affine coordinates
(to/tr,ta/t1) = (21, 21 ' 22)
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Uy corresponding to ty # 0, with affine coordinates
(to/te,11/12) = (55, 2123 )

Now let us consider in R? the following fan:

eite g
N AN 4
-61-62\\Q -e > ei-e;

Fig. 13.
then :

i) Sy, admits as generators (e}, €}), hence Ry, = Clz1, 22 and

X, = (C%ZI@) (Example 2.4);

ii) in the same way, (— el, 61 +¢€3) is a system of generators
of S,,, hence R,, = Clz;*, 2 '20] and X,, = (C 11

(21 121 22)

0

ili) finally, (—e3},ef — e}) is a system of generators of S,,,
hence R,, = C[z, !, 212, '] and X, = C?_,

2 2yt

We see that the three affine toric vari(e%cies Z:o)rrespond to the
three coordinate charts of P2, In fact, the structure of the fan
provides a gluing between these charts allowing to reconstruct
the toric variety P? from the X,,. Let us explicit the gluing of
X,, and X,, “along” X, such that 7 =0y No;.

According to Examples 1.3 and 1.6, one has S, = S,, +
Zso(—e7) and S; = Sgl + Z>o(e7). The affine toric variety X,
is represented by X, = C; x C,, in X,, = (sz ) and by
X, = (Czl,1 X szl in XG1 = (C R

(21 "y21 22
We can glue together X,, and 1XUI1 alc))ng X using the change
of coordinates (z1, z2) + (2%, 21 '22). We obtain P?\ {(0: 0 :
1)}
This example is a particular case of the general construction
that we perform in the following section.
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3.2 Toric varieties

In a general way, let 7 be a face of a cone o, then S, = S, +
Z>o(—X) where A € 6N M and 7 = o0 N A\* (Proposition 1.1).

The monoid S; is thus obtained from S, by adding one gen-
erator —A. As A can be choosen as an element of a system of
generators (ay,...,a;) for S,, we may assume that A = ay, is
the last vector in the system of generators of S, and we denote
apy1 = —A. In order to obtain the relationships between the
generators of S;, one has to consider previous relationships be-
tween the generators (ay, ..., ax) of S, and the supplementary
relationship ay + ar1 = 0.

This relationship corresponds to the multiplicative one
urugs1 = 1 in R, and that is the only supplementary relation-
ship we need in order to obtain R, from R,. As the generators
u; are precisely the coordinate functions on the toric varieties
X, and X, this means that the projection C*! — CF :

(‘rlv e 7xka$k+1) — (‘rlv e 71;76)

identifies X, with the open subset of X, defined by z; # 0.
This can be written :

Lemma 3.1 There is a natural identification X, = X, \ (u =
0).

Let us suppose that 7 is the common face of two cones o
and ¢/. The Lemma 3.1 allows us to glue together X, and
X, “along” their common part X,. This is performed in the
following way:

Let us write (v, ...,v;) the coordinates on X,. By Lemma
3.1 there is an homeomorphism X, = X, \ (v, = 0) and we
obtain a gluing map

Yoot Xo \ (ug = 0) — X, — X, \ (v = 0).

Example 3.3 Let us return to the example of the projective
space IP?, using the previous notations, one has:
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With 7 considered as a face of og, then X, = X, \ (21 =
0) =C; xC,,. in X, = C%Wz).
In the same way, 7 being considered as a face of oy, then
X, =X, \ (2,1 =0) = C.ixC,inX, = (C(Qz,l )
1 1 »*1 2
The gluing of X,, and X,, along X, is P*\ {(0 : 0 : 1)}.
Gluing this space by the same procedure with X, = C?

(7"t

22

we obtain the total space P2.

Theorem 3.1 (First Definition of Toric Varieties). Let A be
a fan in R™. Consider the disjoint union UyeaX, where two
points © € X, and &' € Xy are identified if 1y o (z) = 2'. The
resulting space Xa is called a toric variety. It is a topological
space endowed with an open covering by the affine toric vari-
eties X, for o € A. It is an algebraic variety whose charts are
defined by binomial relations.

In fact, we have shown that, for a face 7 of a cone o, one has
inclusions:

T — 0
T — 7

R, — R,

X, — X,

Before giving more examples, let us show a fundamental re-
sult :

Proposition 3.1 Every n-dimensional toric variety contains
the torus T = (C*)" as a Zariski open dense subset.

PROOF: The torus T corresponds to the zero cone, which is
a face of every o € A, ie. T = X{g,. The embedding of the
torus into every affine toric variety X, has been shown in the
Proposition 2.2. By the previous identifications, all the tori
corresponding to affine toric varieties X, in X are identified
as an open dense subset in Xx. O



3.3 More examples
Here are some of the classical examples of toric varieties :

Example 3.4 Example of P? can be generalized to P" con-
sidering, in R", the fan A generated by all proper subsets of

(vo, - +,v,) = (€1, - ,en,—(e1 + -+ e,)), i.e. gy generated
by (e1,--,e,) and for i = 1,...n, the cone o; is generated by
(e1, - ,€i-1,€i+1,en, —(e1+---+e,)). The affine toric varieties

X,, are copies of C", corresponding to classical charts of P and
glued together in order to obtain P".

Example 3.5 Consider the following fan :
€2

*

2

Fig. 14.
which gives the following monoids:

Sy gen. by (—ej,e5) < S, gen. by (e, e5)

! !

So, gen. by (—ej, —€5) < Sy, gen. by (e, —e3)

and the following C-algebra:

Rn’l = (C[Zfl, 22] — (C[Zl, ZQ] = Ro'o

) )

Roy=Clzi', %'l < Clanz'] =R,
The gluing of X,, and X,, gives P! x C with coordinates
((to : t1), z2) where (21 = to/t1),
The gluing of X,, and X,, gives P! x C with coordinates
((to : tl)? 251);

The gluing of these two gives Xa = P! x P! with coordinates
((to : t1), (80 : s1)) where (22 = so/51).
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Example 3.6 Consider the following fan :
€2

L, [
e1 / .

Fig. 15.

then S,, is generated by (e}, €5, —e3). The monoid S, is gener-
ated by (e], —ej,e3) and Sy is generated by (e], —e7, e3, —e3).
The corresponding C-algebras are respectively R,, = Clz1, 22, 25 1],
Ry, = Clz1, 27", 2] and Rygy = Clz1, 21", 22,25 ']. The corre-
sponding affine toric varieties are X, = C, x C,, X,, =
C;, x C,, and X, = C; x C},. The gluing of the affine toric
X, and X,, along Xg) gives X5 = C* — {0}.

Example 3.7 Consider the following fan :

51 o
3
02
Fig. 16.
Then the monoids S,, are generated:
SU1 by (761763) « SUO by (6){763)

! !

Sa, by (—€1 —qe5, —e3) < Sg, by (€] + qe3, —€5)
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and the corresponding affine varieties are
2 — 2
KXo =Clp, o Xe=C

) (21,22)

! !

X, =C2_ = X, =C?

(27125 %25 Y) (229,25 ")
The gluing of X, and X,, gives P! x C with coordinates ((to :
t1), z2) where 21 = to/t1, the gluing of X,,, and X,,, gives P! x C
with coordinates ((sg : 1), 2, ') where 2128 = s0/s1.

These two varieties, glued together, provide a P'-bundle over
P! (identifying the second coordinates), which is a rational
ruled surface denoted H, and called Hirzebruch surface. It
is the hypersurface in P! x P? defined by

{(o: M), (o s g s ) = Ajpo = A}

Example 3.8 Consider the following fan :

Fig. 17.

Then X, is the affine quadratic cone (cf Example 1.5), X,
and X,, are affine planes (Example 2.4). The affine quadratic
cone is completed by a “circle at infinity” that represents a
complex projective line. The real picture of X is a pinched
torus.

Example 3.9 Let dy, ..., d, be positive integers. Consider the
same fan than in Example 3.4 but consider the lattice N’ gen-
erated by the vectors (1/d;) - v;, for ¢ = 0,...,n. Then the
resulting toric variety is

P(dy,...,d,) = C""' — {0}/C*
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where C* acts on C"*'—{0} by ¢-(z, ..., z,) = ((Pxy, ..., (%x,).
It is called twisted or weighted projective space.

3.4 Geometric and Topological Properties of Toric va-
rieties

Definition 3.2 A cone o defined by the set of vectors (vy, . .. v,)
is a simplex if all the vectors v; are linearly independent. A fan
A is simplicial if all cones of A are simplices.

Definition 3.3 A vector v € Z" is primitive if its coordinates
are coprime. A cone is regular if the vectors (vy,...,v,) span-
ning the cone are primitive and there exists primitive vectors
(Vg1 - - -, V) Such that det(vy, ..., v,) = £1. In another words,
the vectors (vy, ..., v,) can be completed in a basis of the lattice
N. A fan is reqular if all its cones are reqular ones.

Definition 3.4 1. A fan A is complete if its cones cover R",
i.e |A] =R"

2. A fan is polytopal if there exists a polytope P such that 0 € P
and A is spanned by the faces of P (let us recall that a polytope
is the convex hull of a finite number of points).

Remark 3.1 1. Every complete fan in R? is polytopal,

2. Not every complete fan is isomorphic to a polytopal one.
For example take the cube in R? with all coordinates 1. The
faces of the cube provide a polytopal fan. Now replace the
point (1,1,1) by (1,2,3) and consider the corresponding fan.
It is clearly not isomorphic to a polytopal one : there exists 4
vectors generating a face and whose extremities do not lie in
the same affine plane.

Theorem 3.2 1. The fan A is complete if and only if Xa is
compact.

2. The fan A is reqular if and only if Xa is smooth.

3. The fan A is polytopal if and only if Xa is projective.
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ProoOF: Although the results are simple, some of the proofs
use deep results of algebraic geometry. We will either give the
proofs later as Propositions or will give suitable references for
the interested reader.

1.a) If XA is compact, then A is complete.

This will be proved in the Proposition 4.3.

1.b) If A is complete then Xa is compact.

Let us give two references for the proofs of the assertion. The
first one ([11], section 2.4) uses properness of the map Xa —
{pt} induced by the morphism of fans A — {0} (see Remark
2.3 generalized to the case of fans). A properness criteria at
the level of valuation rings gives the conclusion.

The second proof, given in [10], VI, theorem 9.1, uses directly
considerations on accumulation points in toric varieties.

2.a) If the fan A is regular, then Xa is smooth.

Example 2.4 shows that if a p-dimensional cone o is generated
by a part of a basis of N, the X, is smooth and isomorphic to
CP x (C*)n>,

2.b) If XA is smooth, then the fan A is reqular

The proof will be performed in Proposition 4.5
3) The fan A is polytopal if and only if Xa is projective.

The proof is more delicate, see [10], VII.3. O

The Theorem 3.2 implies the following properties:

Corollary 3.1 (i) An affine toric variety X, is smooth if and
only if X, = CP x (C*)" P where p =dimo.

(i) If A is complete, then X is a compactification of T =
(C)n.

The Lemma 2.2 is generalized in the following way:

Lemma 3.2 Let A be a simplicial fan, then Xa is an orbifold,
i.e. all singularities are quotient singularities.
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4 The torus action and the orbits.

4.1 The torus action

The torus T = (C*)" is a group operating on itself by multipli-
cation. The action of the torus on each affine toric variety X,
is described as follows :

Let (ay, ..., a;) be a system of generators for the monoid S,.
With the previous coordinates of R", each a; is written a; =
(al,...a}) with o} € Z and t € T is written t = (t1,...,t,)
with t; € C*. A point z € X, is written z = (z1,...,21) € CF.
The action of T on X, is given by :

Tx X, — X,
(t,z) — t-z=(t":,...,t%2)

1 n
where t% = t]" .- -t € C*.

Example 4.1 In the case of Example 1.5, a; = (1,0), ap =
(1,1) and a3 = (1,2). For t € T we have t = ¢, t% =
tity and t% = t1t3. If (21, 29,23) is in X,, the point t.z =
(t™ @y, 1229, t%23) is also in X,.

Now let A be a fan in R" and let 7 be a face of the cone
o € A. The identification X, = X, \ (ux = 0) is compatible
with the torus action, which implies that the gluing maps 1y o
are also compatible with the torus action. We obtain the:

Theorem 4.1 Let A be a fan in R", the torus action on the
affine toric varieties X,, for o € A, provide a torus action on
the toric variety Xa.

4.2 Orbits

Let us consider the case A = {0}, then Xx = (C*)" is the
torus. There is only one orbit which is the total space Xa and

is the orbit of the point whose coordinates w; are (1,...,1) in
cn.
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In the general case, the apex o = {0} of A provides an open
dense orbit which is the embedded torus T = (C*)* (Proposi-
tion 3.1). Let us describe the other orbits.

There is a correspondence (see Corollary 2.1)
CF « {M cC C[¢] : M maximal ideal} < Home_q,(C[¢], C)

With this correspondence, the point = (z1,...,x)) corre-
sponds to the ideal M, = C[¢](& — 1) + - -+ + C[¢](& — xx)
and to the homomorphism ¢ : C[¢] — C such that Kerp = M,
Le. o(f) = f(x).

If I is an ideal in C[¢], then V = V(I) = {z € C*: I C M,}
and Iy = I(V(I)) (Definition 2.4). The set V is an affine
algebraic set whose coordinate ring is Ry = C[¢]/Iy and we
have the correspondence (Corollary 2.2)

V < {M C Ry : M maximal ideal} < Homc_q,(Ry,C)

As a semi-group, the dual lattice M is generated by =ej,
it =1,...n and the Laurent polynomial ring C[M] is generated
by z;, zi_l, 1 =1,...n. We have identifications

T = Spec(C[M]) = Hom(M,C*) = N @, C* = (C*)"

where N = Homy (M, Z) and Hom(M, C*) are group homomor-
phisms.

All semi-groups S, = & N M are semi-groups of the lattice
M and CJ[S,] is a sub-algebra of C[M]. These sub-algebras are
generated by monomials in variables u;.

If S, is generated by (ai,...,ax), then elements u; = 2%,
i=1,...,k, are generators of the C-sub-algebra C[S,], written
as Cluy, ..., ux]. For a € S,, we will write z* the corresponding

element of C[S,], with multiplication 2%.2% = 29** and 2° = 1.

Remark 4.1 Points of Spec(C[S,]) correspond to homomor-
phisms of semi-groups of S, in C where C = C* U {0} is an
abelian semi-group via multiplication:

X, = Spec(C[S,])
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(semi-group homomorphisms). If ¢ € Homg,(S,, C), the point
x corresponding to ¢ satisfies p(a) = z%(x) (evaluation in z)
for all @ € S,. This means that ¢(a;) is the i-th coordinate of
r,ie x=(p(a), -, p(ar)) € Ck.

The action of T on X, can be interpreted on the following
way:
t € T being identified with the group homomorphism
ML Cr and
z € X, being identified with the semi-group homomor-
phism S, = C, then
t.x € X, is identified with the semi-group homomorphism
Se — Cyu — t(u).z(u)

Definition 4.1 Distinguished points. Let o be a cone and
X, the associated affine toric variety. We associate to each face
T of o a distinguished point x, corresponding to the semi-group
homomorphism defined, on generators a of Sy, by

SDT((I):{ 1 ifactt

0 in other cases

Example 4.2 In the case of Example 1.5, the genrators of S,
are a; = (1,0), a2 = (1,1) and a3 = (1,2). If 7y is the face
generated by 2e; — eg, then only a3 € 7. Then ¢, (a1) =
©r,(a2) = 0 and @, (a3) = 1. The point x, has coordinates
2% (zy) = 22(z,) = 0 and 2%(z,) = 1, i.e. z, = (0,0,1).

In the same way, if 75 is the face generated by ey, then 75" is
the straight line generated by e;. We obtain ¢,,(a;) = 1 and
©n(a2) = ¢r,(az) = 0. Then z,, = (1,0,0).

If we consider o as a face of o itself, o = {0}, so there is no
a; in ot and z, = (0,0,0).

Finally if we consider the face {0} of o, then {0}* = R2
contains all points a;, then xgy = (1,1,1).

Definition 4.2 Let 0 be a cone in R" and 7 a face of 0. The
orbit of T in X, corresponding to the face T is the orbit of the
distinguished point x,, we denote it by O;.
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Example 4.3 In the previous example,

0O, = {(0,0,0)} orbit of the distinguished point

z, = (0,0,0)

0, = {0} x {0} x (CES, orbit of the distinguished point
z, =(0,0,1)

0., = C¢ x {0} x {0}, orbit of the distinguished point
zs, = (1,0,0)

Oy = (C*)?, orbit of the distinguished point
T} = (1, 1, 1)

Fig. 18. Orbits in the quadratic cone.

Theorem 4.2 Let A be a fan in R™, for each o € A, we can
associate a distinguished point x, € X, C Xa and the orbit
O, C X, of x, satisfying:

1) Xo= Hr<a O’”
2) if V; denotes the closure of the orbit O, then V; =[]
3) 0r = Vi \Urss V.

T7<0 007
The (easy) proof of the Theorem can be found in [11] 3.1.

Example 4.4 Continuing the example 4.2, V;, = 671 is the
&s-axis homeomorphic to C and is O, [[ O, = (C*\ {0} [ [{0}.
One can easily write other relations corresponding to orbits.
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Description of the closure V, of the orbits

Let 7 be a face of the cone ¢, then O, C V. = O,. According
to the description of the orbit O;, the image of V; = O, in a
representation of X, can be determined in the following way.
Let us consider a system of generators (ay, . . . a) of the monoid
S,, we denote by I the set of indices 1 < ¢ < k such that
a; ¢ 7. In other words, if (vy,...,vs) denote the vectors that
span 7, one has

i€l <<= Vj, 1<j<s (a,vj)#0

In X, with coordinates u; = 2%, then V is defined by u; = 0 if
el
Let us give two examples :

Example 4.5 In the case of Example 1.5, the affine toric va-
riety X, has coordinates (u1,us,u3) = (21, 2122, 2123) and S, is
generated by a; = €], as = €] + €5 and a3z = €] + 2e5. Let us
consider the edge 7 generated by 2e; — ey, then

el <— <ai,2€17€2>7é0

hence I = {1,2}. In X,, the set V;, is defined by u; = 0,
ug = 0. In Céh&&), we have V;, = {0} x {0} x Cg,.
Consider the edge 7 generated by ey, then

iel <= (aje)#0

hence I = {2,3}. In X, the set V, is defined by us = 0, uz = 0.
In C?= (C?&’&’ES) it is V;, = C¢, x {0} x {0}.

The cone o is a face of itself. For this face, I = {1,2,3} and,
in X,, the set V, is defined by u; = 0, us = 0, ug = 0. Hence

V, = O, is the origin (0,0,0) € C3.

Example 4.6 Orbits in P2,

With the notations and the pictures of Examples 3.1 and 3.3,
let us consider the image of V; = O, in X5, and X,

The monoid S,, is generated by a; = ej and az = €3. In X,
with coordinates (u1,us) = (21, 22), one has:

1el] <— <a1;,62>7é0
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hence I = {2}. In X,, = C}, . V; is defined by us = 2, = 0.
Hence V; is C¢, x {0} and O, = C;, x {0} is the orbit of {z,} =
(1,0). This point is a representation of the point (1 :1: 0) of
P2,

The monoid S,, is generated by a; = —ej and as = —ej +€5.
In X,, with coordinates (u;,us) = (27, 21 *22), one has:

iel < (aje)#0

hence I = {2}. In X,,, = C? Y V, is defined by up = 2; 120 =

0. Hence V; is C,-1) x {O}th’lflﬁe orbit O, = (Cz‘zl,l) x {0} is the
same than before, i.e. the orbit of {z,}.

The projective space is the union of 7 orbits of the torus
action :

- Oy = (C)?,

- 3 orbits homeomorphic to C* corresponding to the three
edges and whose images in each X, are described in the same
way than O,. They are the orbits of the points (1 : 1 : 0),
(1:0:1) and (0:1:1) of P2

- 3 fixed points {z,,}, i = 1,2,3 corresponding to the 2-
dimensional cones g;. They are fixed points of the torus action
and are the points (1:0:0), (0:1:0) and (0:0:1).

Example 4.7 Let us consider the cone 0 € R" generated by
all vectors e; of the basis of R" and the face 7 generated by
(ei)icr with I C {1,...,n}, [I| = p. The orbit O, containing
T, is

{(21,...2,) €C":z;=0fori eI, and z; 0 for i ¢ I'}

Then O, = Hom(7+*NM,C*). If dim7 = p, then dim 7+ =n—p
and dim¢c O, =n — p.

Abstract description of orbits O, and their closure V..
Let us fix 7 and denote by N, the sublattice of IV generated
(as a group) by TN N,

(SL) N;=(TNAN)+ (=TNN).
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As 7 is saturated (i.e. if n.u € 7 for n € Zsg, then u € 7),
then N; is also saturated. The quotient N(7) = N/N; is also
a lattice, called the quotient lattice. Its dual lattice is M (1) =
TN M.

Then O; = Ty = Hom(M(7),C*) = Spec(C[M(7)]) is a
torus whose dimension is n —dim(7). The torus Ty acts on O,
transitively, via the projection Ty — Ty

Let us denote by Ng = N ®z R the real vector space asso-
ciated to N. For each cone ¢ such that 7 < o, one defines the
“quotient cone”

7 = (0 + (N-)r) /(Nr)r C Nr/(N7)r = N(7)r
Definition 4.3 The star of T is defined by

Star(t) ={c:7 <o}

AN / =

7S
- Star ()

\

Fig. 19. Star of 7

The closure of O; is identified to V(7) = Xgigr(r). It is a
toric variety whose dimension is n —dim(7). The embedding of
the torus O, in V(1) corresponds to the cone {0} =7 in N(7).

Property 4.1 1. Ifdimg o = n, then O, is a fized point {z,}.
Consider a representation of X, in CF, then O, = {z,} corre-
sponds to the origin of C*.

2. If dimg o = k, then O, = (C*)"*,

3. Let 7; be an edge (1-dimensional cone) in A, then O, =
(C*)"t. If dimg A = n, then D; = V. is a codimension one
variety in Xa. We will see that D; is a Weil divisor.
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Let 7 < o, then the toric variety V() is covered by the
following affine varieties U, (7) (see [11]3.1):

U, (1) = Spec(C[(7) N M(7)]) = Spec(C[6 N7+ N M]).

Let us remark that & N 7+ is the face of & corresponding to 7
by duality. In particular U.(7) = O;.

4.3 Toric varieties and fans

We have seen the process which associates a toric variety to a
fan. In this section, one is interested by the converse question:
can we associate a fan to a “suitable” variety?

For each k € 7Z, one has an algebraic groups homomorphism
cC—-C zs 2
providing the isomorphism Homg, 4. (C*,C*) = Z.
Let N be a lattice, with dual lattice M, one has
(4) T =Ty = Hom(M,C")
and, with the choice of a basis for NV, one has isomorphisms
(B) Hom(C*, T) 2 Hom(Z, N) = N.

Every one-parameter sub-group A : C* — T corresponds to an
unique v € N. Let us denote by A, the one-parameter sub-
group corresponding to v. One has

v=(v1,...,0,) EZ" Ao(2) = (2%, ..., 2")

In a dual way, one has: Hom(T,C*) = Hom(N, Z) = M.
Every character x : T — C* corresponds to an unique u €
M. Let x* € Hom(T,C*) be the character corresponding to
u = (uy,...,uy) € M. For t = (t1,...,t,) € T, then x*(t) =
t}t - - -t We will denote also by x* the corresponding function
in the coordinate ring C[M].

[Let us recall that a basis of the complex vectorial space C[M]
is given by the elements x* with v € M. To the generators
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u; € M correspond generators x" for the C-algebra C[M].
More precisely, if (eq,...,e,) is a basis for N, (e],...,el) is
a basis for M and ¥ = x; a basis for the ring of Laurent
polynomial with n variables C[M].]

If z € C*, then \,(2) € T, and (by (A)), Ay(2) corresponds

to a group homomorphism from M in C*. More explicitely

M=) () = X*(ul2) = 200

where ( , ) is the dual pairing M @ N — Z, i.e.

u v — (u, v)
M X N — Z
Hom(T,C*) x Hom(C*,T) — Hom(C*,C*)
X A =z e 20 =y (A(2))

In fact, it t = \y(2) withv = (vq,...,v,) € N=Z"and z € C*,
then ¢; = 2% and

X,q
—~
>
<
—
N
~—
~—
I
X,q
—
~
~—
I

Bt = () ()
— Ut Z<U’U>

By this description, one recovers the lattice N from T = Ty.

Conversely, can we recover the cone o from the embedding
T — X, ? For this purpose, we look at the behavior of the
limit lim, .o A,(2) for v (varying) in N.

For example, let us suppose that o is the cone generated
by a part (ei,...,e,) of a basis for N. We know that X, =
CP x (C*)"? (Example 2.7). For v = (v1,...,v,) € Z", then
Mo(2) = (2™, ... 2%) and the limit lim, o \,(z) exists and lies
in X, if and only if v; > 0 for all v; and v; = 0 if ¢ > p. In other
words, the limit exists in X, if and only if v € ¢ and in that
case, the limit is (yi,...,y,) where y; = 1 if v; =0 and y; = 0
if v; > 0. The possible limits are the distinguished points x,
for 7 < 0.

Let us remark that the point x, is independent of o such
that 7 is a face of 0. If 7 < 0 < 7, the inclusion X, — X,
sends the point z. of X, on the point =, of X,.
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Proposition 4.1 Ifv € |A] and T is the cone of A containing
v in its relative interior, then lim, o A, (2) = ;.

Proor: We work in X, for all o containing 7 as a face. We
know that A,(z) is identified with the homomorphism from M
to C*, u — 2%, As v is in the relative interior of 7 and
T < o, foru€ S, =&NM, one has {u,v) > 0 and equality
holds exactly for elements u € 4. Let us remember that z,
corresponds to the semi-group homomorphism S, — C which
sends u on 1 if u € 7% and on 0 in other cases. The limit
homomorphism from S, to C is the one which defines z,. O

Proposition 4.2 If v does not belong to any cone of A, then
lim, .o A,(2) does not exist in Xa.

ProOOF: If v ¢ o, the points A,(z) have no limit in X, when
z goes to 0. To see that, take u € & such that (u,v) < 0 (we
have o = (&)), then x*(A\,(2)) = 2" goes to infinite when z
goes to 0. ]
As a conclusion, o N N is the set of vectors v € N such that
Ap(z) admits a limit in X, when z goes to 0 and the limit is z,
if v is in the relative interior of o. If v does not belong to |A|
(union of the cones of A), then the limit does not exist.

Proposition 4.3 If Xa is compact, then A is complete.

PRrROOF: If |A] is not all Ng, there would be a vector v such
that v does not belong to any cone (A is finite). In that case,
Ap(z) does not have a limit in X when z goes to 0 and that
gives a contradiction with the compacity. 0

Exercises : 1. For v € N, the morphism )\, : C* — T extends
in a morphism C — X, if and only if v € |A|.

2. For v € N, the morphism ), extends in a morphism
P! — X, if and only if v and —v belong to |A].

Proposition 4.4 Toric varieties are normal.

PRrROOF: An algebraic variety is normal if, for any point z, the
local ring R, is integrally closed. For a toric variety, the local
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ring in z, is R,. If o is generated by (v1, ..., v,), the Lemma 1.1
implies that R, = NR,, where the 7; are the rays corresponding

to the vectors v;. As R, = (C[xl,xg,xgl, ooy Xy, 1] s inte-
grally closed and the intersection of integrally closed domains
is integrally closed, we obtain the result. a

From the previous result, one obtains the following “Second
Definition of Toric Varieties”:

Theorem 4.3 A (n-dimensional) toric variety is an algebraic
normal variety X that contains a torus T = (C*)" as a dense
open subset, together with an action T x X — X of T on X
that extends the natural action of the torus T on itself.

or, equivalently:

Theorem 4.4 A (n-dimensional) toric variety is an algebraic
normal variety X with an algebraic action of the torus T =
(C*)™, which is almost transitive and effective.

The almost transitive action implies the existence of a dense
orbit and effectiveness implies that the dense orbit is a torus.

Proposition 4.5 If the toric variety Xa associated to a fan A
18 smooth, then the fan A is reqular.

PROOF: Let us consider firstly the case of the fan generated
by a cone ¢ such that dim(oc) = n. Then if S, = 6 N M is
generated by (ay, ..., ar), one has

C[Ss] = Ry = C[z%, ..., 2%] = C[&, ..., &)/,

local ring of z,.

Let us denote by M the maximal ideal of A, corresponding
to the point x,. Then

X, is smooth <= R, is regular (g) dim R, = dimy, /\/l//\/l2

where M /M? is identified with the cotangent space.
As dim R, = dim X, = dim T = n, one obtains:

X, is smooth <= dim M/M? =n
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M is generated by all elements x* for u # 0 in S, and M? is
generated by all elements x* such that u is sum of two elements
of S, — {0}.

M /M? has for basis the images of elements x* for u € S, —
{0} which are not sum of two vectors in S, —{0}. In particular,
the first elements in M on the rays of & (primitive vectors) are

elements of M /M?.

If X, is smooth, & cannot have more than n rays and the
primitive generators of these rays must generate S, .

As o is strongly convex, & generates Mg and S, generates M
as a group (i.e. M = S;+ (—S,)). The primitive generators of
S, give a basis of M and, by duality, o is generated by a basis
of N. This implies X, = C".

Let us now consider the general case, i.e. dimo =p < n.

In that case, let us consider the sub-lattice N, = (¢ " N) +
(—=oNN) C N generated (as a sub-group) by o NN (see (SL)).

One has a decomposition N = N, & N”, such that ¢ = ¢’ ®
{0}, and the cone ¢, in N,, satisfies dim ¢’ = dim o = dim N,.

Using the dual decomposition M = M’ & M", one has

Sy = ((¢") N M')® M" and

X=X X Tyn & Xy X (C*)n—p

and X, is the toric variety corresponding to the cone ¢’ in the
lattice N, (respectively to the torus Ty, ).

If X, is smooth, then X, must be smooth and ¢’ must be a
basis for N,. O
4.4 Toric variety associated to a polytope

Let P be a convex polytope in (R™)*, i.e. the convex hull of a
finite number of points. We associate the polar polytope P° in
R"™ in the following way:

P°={veR":(u,v) > -1, Vue€ P}
Lemma 4.1 a) P° is a convex polytope.
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b) if P is rational (lattice polytope), then P° is a lattice poly-
tope.

A face F of P is written
F ={ue€ P:{(u,v) =r where v € R" is such that (u,v) >r,
Yu € P}

In the following we suppose that {0} € Int (P). For every face
F of P then

F*={ve P°:({u,v) =—1,Vu € F} is a face of P°.
Example 4.8 1. The polar polytope of
3 _

Fig. 20.
2. The polar polytope of the octaedrum (whose all vertices
have coordinates 0 or £1)

is the cube

P P
whose all vertices have coordinates =+1.
Fig. 21.

Lemma 4.2 a) There is a one-to-one correspondence between
faces of P and faces of P° : F < F* reversing order.
b) dim F 4+ dim F* =n — 1.
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Fan associated to a polytope. Let P a polytope, we asso-
ciate a cone o to each face F of the polytope P in the following
way:

or ={v e Ng: (u,v) < (u,v) VueFVu e P}

The dual cone 5F in (R™)* is generated by the vectors v’ —u
such that u € F,u' € P. The cone o, in R", has F* for basis.

Example 4.9

)

Fig. 22.

In this picture, the polar polytope of P is P°. To the face F
of P (here a vertex), we associate the face F* of P°, the cone
or in R” and its dual 5F in (R™)*.

Proposition 4.6 a) The cones op form a fan Ap.

b) If {0} € Int (P), then Ap is made of the cones based on
the faces of the polar polytope P°.

The proof of the Proposition is an easy exercise (see [11],
1.5).

Definition 4.4 A function ¢ : |A| — R is called support func-
tion on A if it takes integer values on NN|A|, is linear on each
cone o € A and is positively homogeneous (i.e. (av) = ap(v)
forv e |A] and a > 0).
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If P denotes a n-convex polytope whose vertices are in M,
we define the support function associated to P as

Yp:Ng— R ¢p(v) = ;rellf3<u’ v)

The support function ¢p has integer values on N. Conversely,
the polytope P is defined by the support function p in the
following way:

P={u€ Mg: (u,v) >¢pv) VYveE Ng}

Let us consider the (finite) complete fan Ap associated to P.
Then ¢p € SP(Ap) and ¢p is strictly upper convex relatively
to Ap, i.e. for all o € Ap, there is u, € M such that

Yp(v) < (ug,v) Vv € |A]

and there is equality if and only if v € .
We recover the correspondence between faces F' of P and
cones o of A. The cone of is defined by

op ={v e Ng:9)=(u,v) Yu€ F}

The fan Ap is polytopal, i.e. is generated by the faces of a
polytope. Let us remark that, by Theorem 3.2, the toric variety
Xa, 1s a projective variety.

More relations between polytopes and fans will be given in
5.2.



5 Divisors and homology

5.1 Divisors

Let us consider firstly the case of a general complex algebraic
variety X.

Definition 5.1 A Weil divisor is an element of the free abelian
group W(X) generated by the irreducible closed subvarieties of
(complex) codimension 1 in X.

Such a divisor can be written :

anAz — ijBj with i, My > 0
where the A; and B; are subvarieties of codimension 1 in X.

Example 5.1 In the space C? with coordinates (21, 22), let us
consider the axis z; = 0 denoted by A, and the axis 2z, = 0
denoted by B. An example of Weil divisor is given by 24 — B.

Let us denote by R(U) the set of rational functions in an
affine open set U in X.

Definition 5.2 A Cartier divisor (or locally principal divisor)
D = (U,, fa) is the data of a covering X = |JU, of X by affine
open sets and nonzero rational functions f, € R(U,). These
data must satisfy the following property: if U, NUg # 0, then
fol f3 € O*(UaNUp) (nowhere zero holomorphic function). The
set of Cartier divisors is a group denoted by C(X).

Example 5.2 Let us consider X = C? covered by only one
open set U = C? and consider, in U, the rational function
f(21, 22) = 2%/ 29, we obtain a Cartier divisor D = (U, f).

Proposition 5.1 Let X be a normal variety, there is an inclu-
sion

C(X) = W(X)

Example 5.3 Let us explicit this inclusion in the previous ex-
ample : If A = {f = 0} is the set of zeroes of f counted
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with multiplicities and B = {1/f = 0} is the set of poles of
f counted with multiplicities, then the previous Weil divisor
2A — B corresponds to the previous Cartier divisor D = (U, f).

In general the map C'(X) — W(X) is defined by
D ~— [Dl= Y  ordy(D)-V

codim(V,X)=1

where ordy (D) is the vanishing order of an equation for D in
the local ring along the subvariety V. If X is normal, then local
rings are discrete valuation rings and the order is the naive one.

In fact, the previous example is an example of principal divi-
sor : The subgroup of principal divisors, denoted by P(X), is
the subgroup of Cartier divisors corresponding to the nonzero
rational functions. Let us consider the quotients :

C(X)=C(X)/P(X) and W(X)=W(X)/P(X)

There is an inclusion C(X) — W(X), which is not an equal-
ity as shown by the example of the toric variety of Example
2.8 (with g=1) : let X be the quotient variety of C? by the
subgroup G of p-th roots of unity. Then, we have :

C(X) = {0} — W(X) =7, .

Let X = Xa be a toric variety. The Weil and Cartier divisor
classes, invariant by the action of the torus T will be denoted
respectively CT(X) and WT(X). In the same way, the subgroup
of the invariant principal divisors will be denoted PT(X). We
define CT(X) = CT(X)/PT(X) et WI(X) = WT(X)/PT(X).
There is still an inclusion

CHX) — WH(X)

Let A be a fan containing ¢ edges and let Xa be the as-
sociated toric variety. Let 7; be a edge of A and denote by
D, =V, the closure of the orbit O,, associated to 7;, then D is
an invariant Weil divisor and all such divisors are on the form

q
ZAZD,- NET.
=1
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We obtain :

Lemma 5.1 The group of invariant Weil divisors is homeo-
morphic to :

q
WrX) = 2D
i=1
There is a surjective homomorphism

div: M — CT(X)
q

u — div(u) = Z(u,w)Di

i=1

where v; is the first lattice point on the edge 7;. This implies :

Lemma 5.2 Letu € M and v; the first lattice point of the edge
T;, then
ordy, (div(u)) = (u,v;)

Let us consider a cone o, an invariant Cartier divisor on X,
is written div(u) for some u € M. Moreover,

div(u) = div(v) & u—u' € e N M = M(0)
and one obtains
C"(X,) = M/M(o).

In general, Cartier invariant divisors on Xa are defined by
data u(o) € M/M(o) for all o, providing divisors div(—u(c))
on X, and which coincide on intersections. It means that if
T < o, the image of u(o) by the canonical map M/M(c) —
M/M(7) is u(7). One obtains

CT(Xa) = Ker[@;M/M(0;) — ®;; M /M (0; N o).

Proposition 5.2 A Weil divisor > a;D; is a Cartier divisor
if and only if for every mazimal cone o there is u(c) € M such
that for all v; € o one has (u(0),v;) = a;.
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Example 5.4 In the case of Example 1.5, there are two invari-
ant Weil divisors corresponding to the two edges of the cone
o : D corresponding to the edge 7, of e5 and D5 corresponding
to the edge 7 spanned by 2e; — ey. If u € M has coordinates
(a,b) in (C*)?, then div(u) = bD; + (2a— b) Dy and all invariant
Cartier divisors are on this form. For example, 2D; and 2D,
are such Cartier divisors but D; and D, are not.

The two divisors 2D, and 2D, are principal divisors, so we
obtain : CT(X) = 0 and WT(X) = Z,.

Example 5.5 The Weil divisor Dy + Dy + D3 of Example 3.8
is a Cartier divisor, Dy is not a Cartier divisor.

Example 5.6 Let o be the cone spanned by x; = 2e; — e; and
9 = —ej+2e5. Each of these two vectors span a edge 7; and the
two corresponding Weil divisors are denoted Dy and D,. Then
A Dy 4+ XoDs is a Cartier divisor if and only if A\; = Ay mod3
(Exercise).

5.2 Support functions and divisors.

The set of support functions (Definition 4.4) is a Z-module
denoted by SF(A). An element u of M can be viewed as a
support function and one has an inclusion of Z-modules:

Hom(N,Z) = M C SF(A)

Support functions are also called piecewise linear characters.
The reason is that one can write SF(A) in the following way

SF(A) = {h N > Z:Vo € A<n) Ju, € M h|gﬁM = ua|0-ﬁ]\/[}

Let (v1,...,v,) be the primitive vectors of the edges 7; of A,
one defines a map

SF(A) = W(Xa) ¢ div(y) = Zw(v@-)Di

where D; is the Weil divisor corresponding to 7;. Let us remark
that div(v) is an invariant Cartier divisor.
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Lemma 5.3 There is an isomorphism
SF(A) = CT(Xa)
and in the non degenerate case
SF(A)/M = CT(X,)

Let us consider a polytope P and the associated support
function ¥p € SF(Ap). The Cartier divisor Dp = Y 1p(v;)D;
corresponding to ip is ample, this property is equivalent to the
fact that ¢p is strictly upper convex, i.e.

Y(v) +9(v) < Plv+v)
Theorem 5.1 There is a bijective correspondence between

pairs (A, ) with
( integer n-dimens® ) - A finite, complete,
polytopes P in Mg W € SF(A) strictly
upper convez rell to A
pairs (X, D) with
— X projective variety
D ample Cartier div.

If moreover P is simple (i.e. every vertex is incident to n
rays) then A is simplicial if and only if X is an orbifold.

5.3 Divisors, homology and cohomology.

Let us come back to the general case of a complex algebraic
variety. For more details on this section, see [11], 3.3. These
results will be used in section 7.1.

Let n denote the (complex) dimension of X. A Weil divisor
defines an (2n — 2)-cycle in X. The application which asso-
ciates, to each Weil divisor, its homology class defines in an
evident way an homomorphism x : W(X) — Hy,_o(X). The
image of a principal divisor is zero, so we obtain an homomor-
phism, still denoted

K W(X) — H271,72(X) .
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In other hand, for a normal variety, there is an isomorphism
(cf. [12], I, Prop. 6.15)

v :C(X) =, Pic(X)

between the group of classes of Cartier divisors and the Picard
group of X, denoted Pic(X). This one is the group of isomor-
phy classes of line bundles (or isomorphy classes of inversible
sheaves) on X. The isomorphism ¢ is given by the map which
associates, to the divisor D = (U, fa), the subsheaf O(D) of
the sheaf of rational functions, generated by 1/f, on U,. The
sheaf O(D) corresponds to the line bundle whose transition
functions U, — Up are given by f,/fs. Reciprocally, given an
inversible sheaf, we associate the class of the divisor of a global
rational and non trivial section.

Note that the kernel of ¢ is the group of principal divisors
on X.

The data {u(c) € M/M(o)} for a Cartier divisor D deter-
mines a continuous piecewise function tp on the support |A.
The restricition of ¥p to the cone o is the linear function u(o):

Yp(v) = (u(o),v) for v € o.
If D=>"a;D;, then ¢¥p(v;) = —a; (see 5.2).

An invariant Cartier divisor D = > a;D; on Xa determines
a rational convex polyhedron in My by

Pp={u€ Mg : {u,v;) > —a; Vi}
and the global sections of the line bundle O(D) are given by
I'(X,0(D)) = BueppnmC-x" .

By composition of ¢ with the morphism Pic(X) — H?(X),
which associates to each line bundle £ on X its Chern class
c!(€), we obtain a morphism denoted

' C(X) — H*X).
Proposition 5.3 For toric varieties there is an isomorphism

CT(X) 2 Pic(X), D+~ O(D)
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6 Resolution of singularities

6.1 The Hirzebruch surface

Let us consider the fan consisting of the cones oy and o; and

their faces in the following picture:
€y = Vg

U1

ae; — ez = V2

Fig. 23.

Then X,, and X,, are smooth. Writing = the coordinate
corresponding to ej and y the one corresponding to €3, one
obtains (Example 3.7)

X, = CF and X, =C}

(z,y) zyt,y=t)

The common ray 7 = g¢ N 07 determines a curve D, on the
surface X, contained in the union of the open subsets X,, and
X5, We show that D, N X, is C, also D, N X,, is C and the
union of both is P!.

The equation of D; N X,, in X, = C? is 2z¥ = 0 where v
is the generator of S,, = &y N M which does not vanish on
7 (see 4.2). For example, in D, N X,,, the covector e does
not vanish on 7, then D, is defined by the equation z = 0 in
Xo, = Spec(Clz, y]).

In the same way, D, is defined by zy® = 0 in
X5, = Spec(Clay®,y ™))

The ideal 7 defining the curve D; is Z|x, = (z) in R,, and
Z|x, = (zy®) in R,,. The curve D; is covered by two affine
charts

Vo = D,NX,, = Spec(C[y]) and V; = D.NX,, = Spec(Cly ).

Let us remember that an ideal defined by rational functions
fi on elements U; of a covering of X determines an 1-cocycle
defined by f;/f; on U; N U;. The ideal Z/Z? is trivial and
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generated by z in the first chart, it is trivial and generated by
xzy® in the second one. Then it defines an 1-cocycle with value
in Op_, and whose value is y* on V5 N V;. Therefore it can be
represented as an inversible sheaf O(a) on D,.

The self-intersection number of D, is the degree of the normal
bundle to the embedding of the curve D, = P! in X, i.e. the
line bundle N = O(—D,) = O(—a) on P!. One has (see also
[10], VII Lemma 6.2):

(DT'DT)X = —a

If X is a complete surface,

(D,.D.)x = /D 1 (N)
so we obtain
(D;.D))x = c1(N) = —c1(T/T%) = —a

and as Z/Z? is the dual of the normal sheaf N, one has
c1(Z/1?) = a.

Example 6.1 The example of the cylinder and the Md&bius
strip gives an intuition of that fact: The circle S at level 0 is a
divisor in the two varieties. In the cylinder, the tangent bundle
to S and the normal bundle to S are trivial and (S.S)x = 0.
In the Mobius strip, the tangent bundle to S is trivial, but the
normal bundle is not trivial. A small deformation of S into S’
meeting S in one point gives (S.5) = —1.

On the previous example, one has
avy = vy + Vs

Remark 6.1 The toric variety corresponding to the fan of Fig-
ure 19 is Opi(—a) on PL. On the other hand, the toric variety
corresponding to the fan
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Fig. 24.
is Opi(a) on P!. The Hirzebruch surface is obtained as the glu-
ing of these two bundles (see Example 3.7). We get a projective
line bundle on P!, obtained by fiberwise compactification of the
total space of the bundle Opi(a).

In a similar way, one obtains

01)2 = V1 + U3
—avy = V2 + g
Ovg = v+ vs

Drawing the divisors (homeomorphic to P!) with their self-

intersections (written in bold), one has Dthe followirg picture:
3 1

6.2 Toric surfaces

The compact smooth toric surfaces are given by a sequence of
lattice points vy, vy, ..., v4-1, Vg = vy (in trigonometric order)
in N = Z2. The successive pairs (v, v;;1) are generators of the
lattice, i.e. det(v;,v;+1) = £1. In other words, the volume of
the parallelepiped constructed on v; and v; 1 is 1.

We have v5 = —vg 4+ a1v; and in general v; 1 = —v;_1 + a;v;,
for 1 <17 <d.
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Possible configurations are limited by constraints. For exam-
ple, the following situation is impossible: v; is situated in the
angle (v;41, —v;) and v;11 in the angle (—v;, —v;41). The reason
is that if v; = —av; + bviy1 and v = —cv; — dvyyp with all
coefficients a, b, ¢, d > 0, we must have

—a b
det(_c —d)l

but ad + bc > 2, which is impossible.
We have the Theorem :

Theorem 6.1 The only compact smooth toric surface given by
d = 3 lattice points is Xo = P2. Ifd = 4, then Xa is an
Hirzebruch surface H,. In particular if a = 0, then XaA =
P! x P!,

Theorem 6.2 All compact toric surfaces are obtained from P>
or an Hirzebruch surface H, by a succession of blowing-up in
fized points of the torus action.

That means that, if d > 5, there is j, 1 < j < d such that
vj = Vj—1 + vj11. In general, one has:

V; o 0 1 Vi-1
vipr)  \ -1 a Ui
and the integers a; must satisfy
0 1 0 1\ (0 1Y) _ (10
—1 aq —1 a9 -1 aq o 0 1
Lemma 6.1 The sequence of integers a; satisfies

a;+as+---ag=3d—12.

6.3 Playing with multiplicities

The operation of adding v' = v; + vj41 between v; and vj,;
changes the sequence of integers a1, as, . . ., aq by adding 1 to a;
and aj;; and inserting the integer 1 between them. Part of the
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sequence of vertices is, before the operation: (v;j_1,v;,vj+1, Vj+2)
with:

ajv; = vji—1 + V41 and @154 = v + V40

It becomes (vj_1, v}, V', V41, Vj42) With ajv; = v;_1+v' —v; and
/ .
Aj41Vj41 = V' — Vjq1 + Vj19, then:

(CL]'—Fl)’Uj = ’Uj_1—|-’Ul, 1.0 = Vj+Uj+1 and (aj+1+1)vj+1 = U/—l—’U]urg.

Each edge 7;, generated by v; determines a divisor D; =
P! in XA with multiplicity (—a;). The normal bundle to the
embedding is the line bundle O(—a;) in P'. The curves D;
meet transversaly or are disjoint. If a;u; = v;_1 + v;11, the self
intersection (D;, D;) is —a; = — det(v;—1,vi41). One has the
following picture:

D:
Vit1 v
D:
v; i+1
—aj —a
D;_,

Fig. 26.
where the role of the D; changes as basis and fibre, passing
from one of the divisor to the following.

Example 6.2 Let us consider the following fan:
7
7
v
70

such that X, = P2

U1

Ay
D,

By blowing up in the point z,, we obtain:
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where interior of the right picture is a torus and the point z,»
is a fixed point for the torus action. Blowing up that point, we
obtain:

vy v

We can contract Dy which has self-intersection —1. That
means adding 1 to self-intersection of neighborhood divisors:

/

U1 v
0
Ay 0
Vs "

Fig. 27.
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We obtain X, = P! x P! whose real picture is a torus:

Fig. 28.
The sequence of blowing-up and contraction can be written:

XA, — Xa, — Xa, — Xa,

Example 6.3 Another example of such a process is the follow-

w3
Xa =P? Blow-up z, Blow-up z, Contracting Dy

Fig. 29.
The toric variety associated to the last fan is the blow-up of
a quadratic cone in its vertex. In the last fan, one has 2w, =
wp+ws, then the fan (wy, wy, wy) corresponds to the total space
of the bundle Op:(—2) over P!. The fiber becomes the basis of
the following bundle.
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6.4 Resolution of singularities

Let us remember the Example 2.4 for which X, = C? and
the cone generated by e; and ey corresponds to the fixed point
z, =0 in C2.

The following example will be the model for resolving singu-
larities, i.e. the blow-up in a fixed point z = z, of the torus
action. That is obtained by adding the sum of two adjacent
vectors generating o.

Example 6.4 Consider the following fan

€2 e1+es

Fig. 30.
Sey = {€1 —e3,e5} and S, = {e},—€j + e3}. Then X, =

Cluru) = C? and X,, = Cyy uy) = C? . Let us glue

(z125",22) (21;21_122) )
together X, and X,, along X,;. The monoid S; is generated
by (e} — €5, e5,ei, —ej + ¢e3) and R, = Clug, ug, ug, u4] such that
uius = uz and ujug = 1. Then X is represented

in Xy, as C; xC,=C _,xC,, =X, \(u=0)

zlz;1

in X,,, as C,xC;, =C, x (C;,1Z2 =X,, \ (ug =0)

and these two smooth varieties are glued using the changement
of coordinates (uy,us) — (uyug, uy?t).

Let us describe another way : The corresponding toric variety
is a subvariety of C%thz) X IP(ltoztl) given by z1t; = 2yt¢ covered
by two varieties Xy and X; where t; # 0 and ¢; # 0. On X,
there are coordinates z; and t1/ty = 22/21, i.e. X,,; on Xj,
there are coordinates z; and #/t; = z1/29, i.e. X,,. Obtained
variety is the blow-up of a point in C? (the origin is replaced
by P!, i.e. by directions through the point 0).

Example 6.5 Let us consider the following fan (cone) A and
its subdivision A’ :
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%
“Z

A

361—262

Fig. 31. Resolution of singularities.

The fan A’ is a regular fan, hence X s is a smooth toric va-
riety. The identity map of N provides a map X — Xa which
is birational proper. It is an isomorphism on the open torus T
contained in each. This is the first example (and standard one)
of resolution of singularities.

The procedure is the following : beginning with the cone o
generated by the two vectors v = ey and v/ = 3e; — 2e,, we add
primitive vectors (here v; = e; and vy = 2e; — e3) such that,
with v9 = v and v3 = v/, we have

Aiv; = Vi1 + Vig1 i=1,2

For ¢ = 1,2, the vectors v; correspond to exceptional divisors
D; 2 P! in X, and their self-intersection are (D;, D;) = —\;
(see 6.1). In this particular case, we obtain two exceptional
divisors with self-intersection —2.

The previous situation can be generalized for all singularity
of dimension 2. If ¢ is a cone which is not generated by a basis
of N, then we can choose generators e; and ey for N such that
o is generated by v = ey and v = me; — keg with 0 < k <m
and (k,m) = 1.

PROOF: Every minimal generator along a ray of o is part of
a basis of Z*: (0,1) and the second one is (m,z) for m > 0.
Applying a lattice automorphism

10 m 0) m 0
c 1 z 1) \em+z 1
we see that x can be modified arbitrarily modulo m, then we
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can take z = —k, with 0 < k <m. If t =0 (mod m), then o
is generated by a basis and X, is smooth.

On the other hand, (k,m) = 1 follows from the fact that the
vector (m, —k) is a minimal generator along the ray.

We can insert the line going through the vector e;. The cone
generated by e; and ey corresponds to a smooth open subset.
The cone generated by e; and me; — key provides a variety
whose singular point is “less” singular than the previous one.
In fact, if one turns the picture by 90°, one obtains

2e1 + 3eo
4
//// es
v = 3e;-2es ’

Fig. 32.
and the vector becomes

(e 1) (e 1) = (o 1)

putting m; = k and k; = —ck — m, we obtain the new vector
(my,—k1). We have in fact the general algorithm:

Algorithm: Let us consider integer numbers (m,—k) such
that 0 < k < m and (k,m) = 1, there exist integer numbers
(mq, —k1) such that

mi=kk = alk—m, with a; > 2, 0< k1 < my, (kl,ml) =1.

If k&, = 0, all cones are regular. In the contrary case, we
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continue the process, writing

m kl 1
— - — =g — —
B m R

my

and using one more time the algorithm in the same way than
the Euclide algorithm. We obtain a continuous fraction, but
with alternative signs:

m 1
—=a —

k

where all a; > 2.

We call continuous fraction of Hirzebruch-Jung the fraction
obtained in this way as an expression of m/k.

Example 6.6 Let us consider the cone o generated by the two
vectors v = eg and v = 12e; — 5ey. The first step is to consider
the Hirzebruch-Jung fraction of 12/5:

then a; = 3, ap = 2 and a3 = 3. We can give the explicit
decomposition of o by vectors v;, such that a;v; = v;—1 + vi11,
vo =17, v, = e; and v,41 = v = e3.

Vg4 Vs Vy VU1 Vo
12 5 3 1 0
( -5 -2 -1 0 1 )
3 2 3

For example 3v; = vy + vy. Thus, we obtain the following
decomposition of the cone o as a regular fan:
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Fig. 33.

Remark 6.2 a) The rays obtained by this procedure are ex-
actly those passing through the vertices of the boundary of
the convex hull of the non-zero points of ¢ N N. The set
{vg,...,vr41} i @ minimal set of generators of the semi-group
ocNN.

b) There are r vertices added between vy = v and v, = v'.
They correspond to rays and to exceptional divisors D; with
(D;, D;) = —a; and D;ND;;1 = x, is a fix point corresponding
to the cone o generated by v; and v;1;.

Example 6.7 Let o be the cone generated by e; and (k+1)e;—
key. Then S, is generated by
vy = €] vy = kej + (k+ 1)ej v3 =€ + €5
with (k 4+ 1)vs = v; + v2. One obtains
R, = Clxy, zo, x3]/(xh ! — 2129)

and the toric variety has a rational double point of type A;. The
resolution of singularities provides k exceptional divisors, iso-
morphic to P! and with self-intersection —2. They are obtained
by the decomposition in Hirzebruch-Jung fraction of k + 1/k.

Property 6.1 [18/ The algebra R, = C[S,] has a minimal
number of generators {u*v'i, 1 <1 < {} where { and the expo-
nents are determined in the following way:
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Let by,...,bi_1 be the integers (> 2) which appear in the
Hirzebruch-Jung continuous fraction of m/(m — k). Then one

has
si=m sy=m—k si1=bis;— i1

t1=0 ta=1 tiy1 = bit; — 11
for2 <i</{-—1.

Developments

In the general case (n > 2), a fan A in a lattice N can be
subdivided by adding vectors in order to provide a simplical
fan. For each simplicial cone of dimension k, let (vy,...,vg)
the primitive vectors along the rays of o, one can define the
multiplicity of o as the index of the lattice generated by the
vectors v; in the lattice generated by o:

mult(o) = [N, : Zvy + -+ - + Zuyg]

(for example, in Example 1.5, u = e; = 1/2v; + 1/2vy and
mult(o) = 2).

The affine toric variety X, is non singular if and only if
mult(o) = 1.

The following Lemma is known as Minkowski Theorem:

Lemma 6.2 If mult(c) > 1, there is a point v in the lattice
such that v = > \v; for 0 < ¢ < 1. For this v minimal on
its ray, the multiplicities of the subdivided k-dimensional cones
are \;.mult(o), with such a cone for every non zero A;.

For surfaces, one obtains a; = mult(cone(v;,v;11)), which
corresponds to the previous procedure.
The following Theorem is a consequence of the Lemma:

Theorem 6.3 For every toric variety X there is a refinement
A" of A such that the induced map Xa — Xa 1s a resolution
of singularities.

The different possibilities of refinements lead to the “flip-
flop” theory and the relation to the Mori program.
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On another hand, the fruitful Oka theory of toric resolutions
presents toric modifications as finite sequence of blowing-ups
(case of curves and surfaces) (see [17]).



7 More algebraic geometry

7.1 Poincaré homomorphism.

The toric varieties are examples of pseudovarieties of (real) even
dimension. By definition, a pseudovariety X of (real) dimension
2n is a connected topological space such that there is a closed
subspace ¥ such that :

(a) X — X is an oriented smooth variety, of dimension 2n,
dense in X,

(b) dim¥ < 2n — 2.

A 2n-pseudovariety admits a fundamental class in integer
homology with closed supports [X] € H§4(X). The Poincaré
morphism

H'(X) — H,(X)
is the cap-product by the fundamental class. If X is smooth,
it is an isomorphism.

An example of pseudovariety for which the Poincaré homo-
morphism is not an isomorphism is given by the toric vari-
ety of Example 2.8 (with q=1). We have H*(X) = 0 and
H{M(X) = 7,

Theorem 7.1 Let X be a normal compact pseudovariety, there
s a commutative diagram :
C(X) = WX
Le Lk
m(x) Sy, o (x)

where the horizontal arrow below is the Poincaré morphism of
the pseudovariety X.

If X is a compact toric variety, one has the following result :

Theorem 7.2 /3] Let X = Xa be a compact toric variety,
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there is a commutative diagram :
CT(X) —  WIX)
1= 1=
2x) Y g, ()
where the vertical isomorphisms are induced by the morphisms
c1 and Kk of the previous theorem.

We obtain by this way an interpretation of the Poincaré mor-
phism in terms of divisors, for compact toric varieties. In par-
ticular, the Poincaré morphism H?(X) — Ha, o(X) is injec-
tive.

Definition 7.1 The toric variety X is said degenerate if it can
be written X =Y x T" where T” is a (proper) subtorus of T
and Y is a toric variety relatively to the torus T’ such that
T=T xT".

In the non degenerate case, the Theorem 7.2 is still valid,
using homology with closed supports. In the general case, one
has the following result:

Theorem 7.3 [8] Let X = XA be a n-dimensional toric vari-
ety containing a toric factor T” of dimension n — d, then we
have the following isomorphisms :

i) H(X) = Hg! (X) = HY(T") = Hgl, ((T") =
and ;

the homomorphisms ¢! and k are injective and there are iso-
morphisms

i) H3(X) = C'(X) o HX(T") = C"(X)a 7" ;
iii) Hso(X) = WHX) @ H5lyy o(T") = WHX) & 2

with b := (”;d), such that the following diagram commutes :
Cl(X)® HA(T") — WI(X)® Hg 5y (T")

ctopr* J’E K®pr* lg

n[X] ¢
HQ(X) - Hziz(,ifz(X)
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This diagram can be completed by the intersection homology
of XA which admits also an interpretation in terms of divisors

(see [4]).

7.2 Betti cohomology numbers
Let X be an algebraic variety, we denote the (cohomological)
Betti numbers by §; = dim H’(X)

Let XA be a compact toric variety, we denote by dj the

number of k-dimensional cones in A.

Proposition 7.1 [11] 4.5. Let Xa be a nonsingular projective
toric variety, then 8; =0 for odd j and

= 1 () o
i=k

Let us write the Poincaré polynomial Px(t) = Y (;t/, then

Px(t) = But™ = dyi(t* = 1) =Y dp(t* —1)"*
k=0 i=0 k=0

For example, the Euler characteristic is
X(X) = Z(_l)]ﬂJ = PX(_l) = dn

Conversely, one has

- n—i
dk = ; (n _ k) /82(n—i)

The proof of the Proposition uses the mixted Hodge structure
on cohomology groups with compact supports. the Proposition
is also true if A is simplicial and complete (and in that case,
the proof uses intersection homology).

7.3 Betti homology numbers

Let us consider the general case of a fan, non necessarily com-
plete and regular. Let us denote by « the dimension of the
smallest linear subspace containing A.
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Proposition 7.2

bz = dim Hg,! o(X) = di — o + (n ; Oé)

ﬂg = dlm H2(X) = bgn_g — ’I"(A)

where r(A) is the rank of the matriz of relations of the non
simplicial cones in A.

Example 7.1 Let us consider in R? the fan generated by the
vertices v; = (1,1,1), vo = (—1,1,1), v3 = (0,—1,1) and for
i =1,2,3 the vertices v; 3 = v; — (0,0, 2).

Fig. 34.

Three of the cones are not simplicial: 71,7 and 73. One ob-
tains the following matrix of relations with vectors v; in columns
entries and non simplicial cones 7; in rows entries (for example
v — vy — vy +v5 = 0):

The rank of the matrix is 7(A) = 2, then
b2n,2:b4:6—3:3 and /82:b4—7“(A):3—2:1

In that case, the toric variety is projective. Let us now change
vy into v] = 2v1 — vy = (3,1, 1), then r(A) =3, 83 = 0 and X
is not projective.
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Property 7.1 Let us consider a 3-dimensional compact toric
variety, then

Bo=0Bs=1 Bi=0=0, Bz=pF—d3+d, [s=d —3

7.4 Characteristic classes.

Let XA be a smooth toric variety. The Poincaré homomor-
phism is an isomorphism between H*(XA) and H$¢ , (Xa) for
every k. The Chern characteristic classes of X are usually de-
fined in cohomology but their image in homology can be easily
described in terms of the orbits. In fact, the total homology
Chern class of X is:

c(Xa) = H?Zl(l + Di)
= ZUEA[VU}

where D; = V,, are the divisors corresponding to the edges of
A. The intersection product is given by

V, if o and 7; span a cone v in A
D,VC,_{

0 in the other case.

This result has been generalized for singular toric varieties by
Ehlers (non published) and independently by [2]. More pre-
cisely, it is well known that there is no cohomology Chern
classes for a singular algebraic variety. In homology we can
define the Schwartz-MacPherson classes which generalize ho-
mology Chern classes and we obtain the following result :

Theorem 7.4 ([2]) Let Xa be any toric variety, the total Schwartz-
MacPherson class of Xa is given by :

o(Xa) = Vi € H.(Xa).

ocEA
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8 Examples of applications

In this section, we give some applications of the theory of
toric varieties. Part of them can be found in [11], and on
the algebraic geometry point of view in [7] (applications to
Algebraic coding theory, Error-correcting codes, Integer pro-
gramming and combinatorics, Computing resultants and solv-
ing equations). Applications to Symplectic Manifolds will be
found in the book of M. Audin [1].

8.1 Sommerville relations

Let P be a convex simplical polytope in R3. Let us denote by
fo the number of vertices, f; the number of edges and f> the
number of faces. One has the relations

fo—fH+fo =2 (Euler) (1)
3fs = 2f1 (2)
fo = 4 (3)

The second relation comes from the fact that each face is a
triangle, then each face has three edges and each edge appears
as an edge of two faces. A polytope bounding a solid must have
more than 4 vertices, this gives the third relation.

Reciprocally, every triple of integers satisfying (1), (2), (3)
can be realized from a convex simplicial polytope in R?.

Let us consider the case n = 4, then we have the relations

fo—h+fo—fs = 2 (Euler) (4)
L2 = 2f3 (5)
fo =5 (6)

the second relation is due to the fact that every 3-simplex has 4
faces of dimension 2, and each of them is face of two 3-simplices.
One has also

h
h

1/2fo(fo— 1) (7)

<
> 4fy - 10 (8)
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Relation (7) is the quadric inequality, valid in all dimensions
and due to the fact that two vertices can be joined by at most
one edge. The relation (8) is more complicated, representing a
lower bound of the number of edges.

Example 8.1 If fy = 5, then f; = fo = 10 and f3 = 5 are
uniquely determined and correspond to the boundary of the
standard 4-simplex.

Exercise. The conditions (4) to (8) give two possibilities for
the sequence (fo, f1, f2, f3) with fo = 6. They are (6, 14, 16, 8)
and (6,15, 18,9).

The sequence of f; defines a sequence h; (say h-numbers) by:

n

By =S (—1) ( ;) foin

i=p
with f,1 =1.
It is possible to obtain the sequence (ho,...,h,) in an easy
way: let us write the sequence (fj,..., fn—1) on the left side of

a triangle (n + 1 rows, we put f, = 0) and number 1 on the
right side. Let us write integers inside the triangle such that
one is obtained as the difference between the integer above it
on the left and the one above it on the right. Then the bottom
row gives the sequence of hy, from left to right.

fo 1
S fo—1 1
f2 h—fot+t1  fo—2 1
L—fitfh—-1  f—-2fo+3 fo—3 1

The Euler relation gives hy = h,. For n = 3 and n = 4,
the relations (1) - (2) (or (4) - (5)) give hy = hy, and h; =
hp—1. The Dehn-Sommerville equations are generalization of
this equation, i.e. hy = hy_p.
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Theorem 8.1 A sequence of integers (fo, f1,.-., fa—1) corre-
sponds to the sequence “fi, = numbers of k-dimensional faces
of a simplicial convex polytope” if and only if the corresponding
h-numbers satisfy the following relations
(1) the Dehn-Sommerville relations: h, = h,—,, V0 < p < [§]
(2) (a) by — byt = 0 for 1 < p < [4]
and, if one writes

B [y ny_1+1 ny
b (5)e (511 ()

with ny >ny_1 > ... >n, >r >1, then

B n, +1 Np_1 n,+1
(b) hpia hp§<p+1>+< » >+ +<r+1 for
1<p<I[§]

The idea of the proof is to construct X = X for a simplicial
fan A such that d; = number of k-dimensional cones = f; 1 =
number of (k — 1)-dimensional faces of P.

The Theorem was conjectured by McMullen [14], then ex-
istence of a convex polytope whose face numbers satisfy the
conditions was proved by Billera and Lee [5]. The proof of
the necessity part is due to Stanley [19] who uses strong argu-
ments such that Lefschetz Theorem for intersection homology
and Decomposition Theorem.

8.2 Lattice points in a polytope

Given a bounded convex lattice polytope (with vertices on M),
there is a procedure to determine the number of lattice points
that are in P, i.e. card(PNM). Firstly, we determine the com-
plete fan A corresponding to P. There is an invariant Cartier
divisor D on X = XA such that O(D) is generated by its
sections and these sections are linear combinations of the char-
acter functions x* for u € P N M. The divisor D is given by a
collection of elements u(c) € M/M (o) (see 4.4 and 5.2.

For every cone o € A, let us denote P, the face of P corre-
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sponding to o:
P, = Pn (ot +u(0))
In another words, P, = PN(o*+u) for any u in M whose image
in M/M (o) is u(o). The lattice M (o) determines a volume
element on o+ + u(c), whose dimension is the codimension of
o.
One has
card (PN M) Z roVol(P,
oeA
where the numbers r, have to be determined. That is provided
by consideration of the Todd class:
The homology Todd class Td(X) of an algebraic complex
variety is an element of H.(X,Q),

Td(X) =Td,(X)+ -+ Tdy(X)

whose top class is the fundamental class T'd,(X) = [X].

If X is non singular, one has Td(X) = td(Tx) N [X] where
Tx is the tangent bundle to X and td the usual cohomological
Todd class (see [13]).

If X is a toric variety, then T'd, 1(X) = 1> [D;] and the
0-dimensional class is T'dy(X) = {pt}.

The Todd class is a Q-linear combination of the [V,],

X):ZTU[V},] re € Q.

oA

As an application of the Riemann-Roch Theorem one obtains
(see [11], 5.3) that the coefficients r, in formulae of card (PNM)
and T'd(X) are the same.

In the same way, if we denote by = >
then

wToVol(Py),

codimo=

card (AP N M) wa

where AP = {\v: v € P}, so AP corresponds to the divisor
AD.
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In dimension 2, the situation is easy, one has:

Ta(x) = [X] + 3 YD + )

and one obtains the Pick’s formula, for convex rational polytope
in the plane

1
card (PN M) = Area (P)+ 3 Perimeter of P + 1.

Let us consider the following example:

Fig. 35.
The area of P is 13, the perimeter (number of segments be-
tween two integer points of the boundary of P) is 8. We obtain

8
card (PN M) = 13+§+1= 18.
In a general way,
8
card (AP N M) = 13X + §>\ +1.

If A = —1, one obtains the number of interior points inside
P N M, which is 10 in this example.

Let us remark that conversely, the knowledge of the number
of integer points gives the r, and the Todd class.

The number of Fy-valued points in X, i.e. card(X(IF,)) is of
importance in incoding theory, being the first step to construct
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codes. The number of F,-valued points in the torus (C*)* is
(q - 1)ka S0

card(X(F) = 3 dun(q — D"

8.3 Magic squares

Magic squares fascinated by their mystery. It is interesting to
see how they appeared in art representations as well in Japan
as in Europe. An old kimono, in the Kyoto National Museum,
is pictured with 2 x 2 and 3 x 3 magic squares. The famous
engraving “Melancholia” by Albrecht Diirer contains the magic
square

6 3 2 13
5 10 11 8
9 6 T 12
4 15 14 1

whose all sums of rows and columns are equal to 34. This
magic square satisfies supplementary properties: all integers
1,2,...,n% appear one (and only one) time, also, the sum of
the two diagonals is equal to 34.

The problem we are interested with is the following: Given
n and s, how many n X n magic squares with m;; > 0 for all 7,
and whose all sums of rows and columns are s can we write?

For n = 2, there are s 4+ 1 magic squares with sum s.

There are 6 magic squares with n = 3 and s = 1 (see below)

There are 21 magic squares with n = 3 and s = 2

There are 55 magic squares with n = 3 and s = 3...

The set of (n x n)-magic squares can be viewed as the set of
solutions in Z%;" of a system of linear equations with integer
coefficients, in the following way. Let us consider the case n =
3 and the matrix M = (m;;). The condition “All rows and
columns of M are equal” appear as 5 independent equations
on the entries of the matrix

- T
m = (m11,m12,m137m21, e ,mgs)
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Let us define the 5 x 9-matrix A by

1 1 1 -1 -1 -1 0 0 O
1 1 1 0 0 0 -1 -1 -1
A=10 1 1 -1 0 0 -1 0 O
1 -1 0 1 -1 0 1 -1 0
1 0 -1 1 0 -1 1 0 -1

In fact, the matrix M is a magic square if and only if Am =0
with m;; > 0 for all 4, j.

The set Sy = ker(A)NZLG" is amonoid in Z2j". The problem
is to find a minimal set of (additive) generators of S4. This is
solved by the determination of an Hilbert basis H, i.e. a subset
of S such that

(a) every M € S, can be written as > ¢, ¢;A; with ¢; > 0
and A; € H,

(b) H is a minimal set relatively to this condition.

In the case of Sy, an Hilbert basis is given by the six 3 x 3-
matrices:

00 1 00 1
Ai=Ts=[0 1 0 Ay=S=[1 0 0
100 010

0 10 100
A4:T12= 1 0 0 A5:T23= 0 01
0 01 0 10

1 00

As=I=10 10

0 01

For every M € Sy, one has

6
M = ZC,‘AZ‘ c; € ZZO
i=1

7



and the rows and columns are s = 3.0 ¢;. In fact the genera-
tors are not linearly independent:

1 11
A1+A2+A3:A4+A5+A6: 1 1 1
1 11

Then to the 6-uple of coefficients ¢ = (¢y, ..., cg) corresponds
the monomial z¢ = z{* - - - xg® with the relation z;z2x3 equiva-
lent to x4z5x6.

The 3x 3 magic squares with sum s are in 1—1-correspondence
with standard monomials of degree s (i.e. monomials of degree
s non divisible by xjzox3).

As in the previous theory of toric varieties, one obtains the
quotient ring

R = (C[.'L'l e .')36]/<IL'1I2$3 — ZE4LB5JJ6>

Let us denote by A = {my,...mg} C Z° the set of inte-
ger vectors corresponding to the 3 x 3 permutation matrices
Al,...,A(; and

ba:(CH =P
the map defined by
s (£ 1)

The corresponding toric variety Spec(R) is X4 = V (z1z023—
T4T5T6).

As in [7], one deduces that the number of 3 x 3 magic squares
with corresponding sum s is equal to

()-(7)

with the convention Z) = 0 if @ < b. In particular, one

recovers the previous examples.
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