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Preface

This set of lecture notes aims to be a leisurely introduction to the impres-
sive collection of mathematical ideas introduced by M. Atiyah and I. Singer
in the early sixties, collectively known as ‘Spin Geometry’, and centering
around their celebrated formula for the index of elliptic operators. The text
was designed to serve as an introduction to the many excellent monographs
available (among these we cite [BGV], [D], [G], [LM], [R], [S], [T]), and the
potential reader should be warned that as such it only scratches the surface
of this fascinating (and very effective!) theory.

Our style of presentation tends to be sloppy at many points, so as to con-
form to the introductory character of the notes. In other words, the adjective
‘leisurely’ above is taken seriously here: as a rule, informal discussions are
preferred to technically rounded expositions. We hope that the assiduous
reader will be able to fill the inevitable gaps, possibly after consulting more
authoritative sources.

Throughout the text emphasis has been given on those aspects of the
theory which have immediate applications to Riemannian Geometry. This
option dictated our choice of restricting the presentation to twisted Dirac
operators over spin manifolds, even though we include in a final chapter a
necessarily brief discussion on the index formula for general elliptic oper-
ators. This approach reinforces the prominence of Dirac type operators in
Atiyah-Singer’s theory since besides admitting a direct definition in terms of
reasonably familiar geometric objects, their understanding provides a signif-
icant, if not essential, step in the formulation and proof of the index formula
in the general setting.

The classical Atiyah-Singer index formula for Dirac operators expresses a
certain topological invariant of a closed spin manifold, the so-called Â-genus,
as the Fredholm index of the associated Dirac operator acting on the space
of spinors, thus providing an effective, fruitful link between geometric and
analytical aspects of the underlying manifold. Here we follow the modern
trend and approach this fundamental formula by using heat equation meth-
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ods. After the continued efforts of many researchers1 it is possible by now
to present an illuminating proof of this result resting ultimately upon some
fairly elementary aspects of the structure of Clifford algebras. In this setting
the heat flow associated to the Dirac Laplacian happens to be the interpolat-
ing mechanism that allows us to express a manifestly global invariant (the
index) as an integral over the manifold of a universal differential form (a
characteristic class) locally computable from geometric data (a Riemannian
metric). In this regard we have chosen here to follow the method due to E.
Getzler (as explained in [BGV] and [R]) as this seems to be the most suitable
in a first contact with index theory. We stress that a complete immersion
into the subtleties of this approach would certainly make the presentation
unnecessarily arid at some points, so we content ourselves with a somewhat
detailed sketch of the main ideas involved in the argument.

These notes are organized as follows. In chapters 1-3 we review the basic
differential-geometric material, namely, smooth manifolds, Lie groups, prin-
cipal and vector bundles and the corresponding connections. In Chapter 4,
we let the classical Hodge-de Rham theory, which expresses certain topolog-
ical invariants of manifolds (the Betti numbers) in terms of geometric data,
to pose as a warm-up for the general theory. The pertinent representation
theory of Clifford algebras and spin groups is described in Chapter 5 and
then used in Chapter 6 to construct the spinor bundle and the Dirac operator,
under the assumption that the underlying manifold is spin. A more general
construction involving twisted Dirac operators appears in Chapter 8, together
with the formulation of the index formula; this uses the material on charac-
teristic classes developed in Chapter 7. In Chapter 9, the central theme is the
heat flow associated to the Dirac Laplacian. We indicate, following Getzler,
how it can be used to implement the ‘fantastic cancellations’ leading to the
proof of the Atiyah-Singer index formula for Dirac oeprators, first established
in the early sixties by means of topological tools. We also include in this chap-
ter a heat equation proof of the main theorem in Hodge theory. In Chapter
10 we indicate how Hirzebruch’s signature and Chern-Gauss-Bonnet formu-
las can be deduced by suitably twisting the spinor bundle. We also present
here a famous result due to M. Gromov and H. B. Lawson providing a geo-
metric obstruction to the existence of metrics of positive scalar curvature on
certain Riemannian manifolds and a brief discussion of the material on four
dimensional spinc structures needed for the formulation of the celebrated
Seiberg-Witten equations. Finally, in Chapter 11, we briefly indicate how the

1We have chosen not to include detailed information on the historical development of the
subject; in this regard, the interested reader should consult the monographs mentioned above
and the references therein.
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index formula for general elliptic operators follows from the Dirac case via
K-theory.

These notes grew up from a two weeks mini-course at the 2001 Summer
Program at IMPA, Rio de Janeiro. The author would like to thank Mar-
cos Dajczer for the nice invitation to participate in this event and Paulo Sad
for suggesting the preparation of the lecture notes for publication in IMPA’s
‘Publicações Matemáticas’ series.

Fortaleza, December, 29, 2010.





Chapter 1

Manifolds and Lie groups

This chapter contains an informal review of the foundational material we
shall need later. Our presentation is intended basically to fix notation, so that
most definitions and proofs are merely sketched and we refer to the many
excellent available sources (most notably1 [GP], [KN], [S] and [W]) for the
details.

1.1 Smooth manifolds and de Rham theory

A manifold M is a Hausdorff topological space with countable basis which has
been sewn together from pieces of a Euclidean space of a given dimension
n. In case the maps providing the sewing (coordinate charts) are diffeomor-
phisms between open subsets of Rn, we say that M is a smooth manifold of
dimension n. More generally, if the sewing maps are diffeomorphism between
open subsets of closed half-spaces in Rn then the boundary ∂M of M is well
defined. This is a smooth (boundaryless) manifold of dimension n− 1.

The gist of the definition is the possibility of transferring the basic calcu-
lus constructions from Rn to this new arena. For example, using the local
identifications to Rn provided by the definition, we can associate to each
point x ∈ M the tangent space TxM of tangent vectors to M at x and TM, the
tangent bundle of M, is conceived by assembling together all of these tangent
spaces:

TM =
∪

x∈M
TxM.

1Taken together, these are in fact general references for the chapters 1 to 4.
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10 CHAPTER 1. MANIFOLDS AND LIE GROUPS

It turns out that TM is itself a (smooth) manifold of dimension 2n and in
fact it has a preferred way to be sewn together: TM is a vector bundle in
the sense of Definition 3.1 below with the obvious projection map λ : TM→
M. Now, smooth maps f : M → N between manifolds can be defined and
any such map lifts to a map f∗ : TM → TN, the derivative map of f . By
definition, f∗ preserves the linear structure on the ‘fibers’ of λ and, for x ∈ M,
f∗(x) : TxM → Tf (x)N is the derivative of f at x, which is the best linear
approximation to f around x. If α : (−ε, ε)→ M is a curve satisfying α(0) = p
and α′(0) = v for some v ∈ TxM then

f∗(v) =
d
dt

f (α(t))|t=0,

so f∗ is a convenient way of recording all the directional derivatives of f . We
recall that if a map f : M → N as above is invertible and the inverse map is
smooth as well we say that f is a diffeomorphism, case in which one should
consider M and N as equivalent objects.

A map X : M → TM such that λ ◦ X = IdM is called a vector field over
M and the space of vector fields over M is denoted by X (M). Locally, i.e. in
terms of a coordinate chart x = (x1, . . . , xn), a vector field is given by

X =
n

∑
i=1

ai
∂

∂xi
,

where the ai’s are smooth functions and {∂/∂x1, . . . , ∂/∂xn} is the standard
pointwise basis for tangent vectors. As the notation suggests, we may think of
vector fields as derivations over the space of smooth functions: X( f ) = f∗(X).
We also denote this by LX f and call it the Lie derivative of f with respect to
X. This point of view makes it natural the definition of the Lie bracket of
X, Y ∈ X (M) by the formula

[X, Y]( f ) = X(Y( f ))−Y(X( f )).

Direct computations imply that the Lie bracket is skew-symmetric ([X, Y] =
−[Y, X]) and satisfies the Jacobi identity

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

Vector fields can be integrated once a point x ∈ M is given. There exists
then a unique map φ : (ax, bx) → M defined on a maximal open interval
containing 0 and satisfying φ(0) = x and ∂φ/∂t = X ◦ φ on (ax, bx). We
say that (the image of) φ is the orbit of X through x. In case we can take
(ax, bx) = R for any x ∈ M, X is said to be complete.
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We can also consider the space T∗x M of all linear maps TxM → R and
define the cotangent bundle

T∗M =
∪

x∈M
T∗x M.

A rule that to each x ∈ M assigns an element in T∗x M, and does it in a smooth
way, is termed a differential 1-form. Locally, a differential 1-form η is given by

η =
n

∑
i=1

aidxi,

where the ai’s are smooth functions on M and {dx1, . . . , dxn} is the standard
pointwise basis for 1-forms dual to {∂/∂x1, . . . , ∂/∂xn}. More generally, for
each 0 ≤ p ≤ n, we can take advantage of the exterior product operation and
consider objects locally defined by expressions like

η = ∑
I

aIdxI ,

where the sum ranges over the set of multi-indices I = {1 ≤ i1 < . . . <
ip ≤ n}, 1 ≤ p ≤ n, and dxI = dxi1 ∧ . . . ∧ dxip (here, the wedge means ex-
terior product). These define global objects (in case they transform properly
under change of coordinates) which are called differential p-forms. The space
of differential p-forms on M is represented by Ap(M), a vector space under
pointwise operations. We also consider A(M) = ⊕n

p=0Ap(M), which is a
graded skew-commutative algebra in the sense that

η ∧ η′ = (−1)pqη′ ∧ η, η ∈ Ap(M), η′ ∈ Aq(M). (1.1.1)

The important notion of orientability can be expressed in terms of dif-
ferential forms. More precisely, M is orientable if and only if there exists a
nowhere vanishing element η ∈ An(M), n = dim M (recall2 that dim ΛnRn =
1). An orientation for M is just a choice of such an element.

There is a fundamental linear first order differential operator d : Ap(M)→
Ap+1(M), the exterior differential, defined locally by

dη = ∑
I

daI ∧ dxI . (1.1.2)

It is not hard to verify that the composite operator vanishes:

d2 = 0, (1.1.3)
2If V is a finite dimensional vector space, we denote by ΛpV the space of multilinear alter-

nating maps V × . . .×V︸ ︷︷ ︸
p times

→ R.
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and, as we shall see, this will have a paramount importance in what follows.
Moreover, d satisfies the following Leibniz type rule

d(η ∧ η′) = dη ∧ η′ + (−1)pη ∧ dη′, η ∈ Ap(M), η′ ∈ Aq(M). (1.1.4)

It turns out that n-forms can be integrated over M (admitting orientabil-
ity) generating the extended real number∫

M
η.

Naturally, we assume that this (improper) integral converges, and we shall
meet this by letting M to be compact, for example. More generally, if η ∈
Ap(M) and f : M′ → M is a map, we can form f ∗η ∈ Ap(M′), the pullback
of η under f , and integrate this over M′ in case dim M′ = p. In particular, if
η ∈ An−1(M) we can make sense of

∫
∂M η and the celebrated Stokes theorem

says that ∫
∂M

η =
∫

M
dη (1.1.5)

in case M is compact. In particular, if M is closed, i.e. compact and without
boundary, we have ∫

M
dη = 0. (1.1.6)

Notice that for f : M′ → M as above we have the compatibility relations:

f ∗d = d f ∗, f ∗(η ∧ η′) = f ∗η ∧ f ∗η′, η, η′ ∈ A(M). (1.1.7)

At this point we recall that part of the business in Algebraic Topology (see
for example [W]) is to associate to a general smooth n-dimensional manifold
M a series of modules, represented by Hsing

p (M, Λ), p = 0, 1, ..., n. These
are the singular homology groups of M with coefficients in the abelian group
Λ.3 Roughly speaking, the definition is as follows. We consider formal finite
linear combinations, with real coefficients, of continuous maps j : ∆p → M,
where ∆p ⊂ Rp+1 is the standard p-simplex, in order to form the space of
singular chains Cp(M). These are connected by boundary homomorphisms
∂ : Cp(M)→ Cp−1(M) satisfying a property similar to (1.1.3):

∂2 = 0,

3In this section we shall restrict ourselves to the case Λ = R and write simply Hsing
p (M) =

Hsing
p (M,R).
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and one can then define

Hsing
p (M) =

ker
(
∂ : Cp(M)→ Cp−1(M)

)
im
(
∂ : Cp+1(M)→ Cp(M)

) ,

by taking the quotient of the space of p-cycles by the space of p-boundaries.
Continuous maps between topological spaces induce homomorphisms at the
singular homology level so that each Hp(M), or more precisely, its dimension
bp(M), the pth Betti number of M, is a topological invariant of M.4

Now, given that M is a smooth manifold, we can also consider the piece-
wise smooth real singular homology groups by repeating the above construct with
piecewise smooth p-chains j : ∆p → M, but these gives us nothing new since
a standard approximation argument implies that the resulting homology the-
ory is naturally isomorphic to the previous one. For us, this has the advan-
tage of being able to represent the singular (topological) homology of M by
means of piecewise smooth cycles, a point of view we shall adopt from now
on.

We now observe that (1.1.3) suggests a similar construction at the level of
differential forms. More precisely, the sequence of arrows

0→ A0(M)
d→ A1(M)

d→ . . . d→ An(M)→ 0, (1.1.8)

the so-called de de Rham complex, leads us to consider the de Rham cohomology
groups

Hp
dR(M) =

ker
(
d : Ap(M)→ Ap+1(M)

)
im
(
d : Ap−1(M)→ Ap(M)

) ,

by quotienting the space of closed p-forms by the subspace of exact p-forms. No-
tice that, by (1.1.7), any f : M′ → M induces a homomorfism f ∗ : Hp

dR(M)→
Hp

dR(M
′) which behaves in the expected way under compositions, so that the

de Rham groups are differential-geometric invariants.
Now, the striking (and fundamental) result is de Rham theorem to the effect

that
Hp

dR(M) ∼= Hp
sing(M),

i.e. the de Rham groups are isomorphic to the singular cohomology groups of
M (of course, ‘cohomology’ here means that we have dualized the singular
homology groups). In fact, this isomorphism is natural in the sense that it
is induced by integration of closed p-forms over p-cycles (or more precisely

4From now on we assume that M is compact as this implies that each bp(M) is finite. We
remark moreover that the Betti numbers are in fact homotopy type invariants of manifolds.
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over piecewise smooth approximations of such p-chains). One should em-
phasize that, as remarked above, in principle the de Rham groups are tied
to the differentiable structure of M and the fact that they recover topological
invariants of M is certainly a cornerstone result in Differential Topology.

This is perhaps the right moment to insert a few comments on Poincaré
duality and the ring structure on the total de Rham cohomology

H∗dR(M) = ⊕n
p=0Hp

dR(M).

In effect, given closed forms η ∈ Ap(M) and η′ ∈ Aq(M), η ∧ η′ is closed (by
(1.1.4)) and, as a simple computation shows, its de Rham cohomology class
[η ∧ η′] does depend only on the corresponding cohomology classes [η] and
[η′] and not on the particular closed forms representing them. This defines a
product

Hp
dR(M)× Hq

dR(M)→ Hp+q
dR (M),

which extends to a ring structure

H∗dR(M)× H∗dR(M)→ H∗dR(M).

Notice that, by (1.1.7), for f : M′ → M′ the induced homomorphism f ∗ is a
ring homomorphism indeed.

In this respect, a fundamental result that we shall prove in Chapter 9 by
entirely analytical methods is Poincaré duality, which says that the bilinear
pairing

Hp
dR(M)× Hn−p

dR (M)→ Hn
dR(M) ∼= R

given by

(η, η′) 7→
∫

M
η ∧ η′,

is non-degenerate (here we assume M oriented). In particular,

bp(M) = bn−p(M). (1.1.9)

As a consequence, let the Euler characteristic of M be given by

χ(M) =
n

∑
i=0

(−1)ibi(M). (1.1.10)

In case n is odd one has χ(M) = 0 by (1.1.9). In case n is even, the cele-
brated Gauss-Chern-Bonnet formula (see Theorem 10.1.1) expresses χ(M) as
the integral over M of a canonical geometrically defined n-form. This is an
example of an index theorem in Differential Geometry predating by many
years the Atiyah-Singer index formula.
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We finish this brief survey on the differential topology of manifolds by
showing how degree theory follows from Poincaré duality. First, if ∆ ⊂ M is
a p-cycle, we can associate to any closed p-form ω over M the real number∫

∆ ω. By (1.1.5) this descends to a linear map T∆ : Hp
dR(M,R) → R and by

Poincaré duality there exists a closed (n− p)-form η∆, well determined up to
cohomology, such that T∆ is given by integration against η∆:

T∆(ω) =
∫

M
ω ∧ η∆. (1.1.11)

We then say that η∆ (or more precisely its cohomology class) is the Poincaré
dual of ∆. A special case occurs when it is given a map f : M → N between
closed oriented manifolds of dimension n and we choose a generic point
y ∈ M so that f−1(y) ⊂ M is a finite collection of points defining a 0-cycle in
M. Its Poincaré dual is an n-form, say ηy, so that if h : M→ R we have∫

M
hηy

(1.1.11)
=

∫
f−1(y)

h = ∑
x∈ f−1(y)

± h(x),

where the signs come from the fact that in the definition of the 0-cycle above
we ascribe to any x ∈ f−1(y) a sign depending on whether f preserves or
not the orientation at the given point. In particular, h ≡ 1 defines the degree
of f by

deg f = ∑
x∈ f−1(y)

±1.

It is possible to show that this integer does not depend on the declared
choices and is a homotopy invariant of f . Moreover, the following trans-
formation of variables formula holds:∫

M
f ∗β = deg f

∫
N

β, (1.1.12)

for any β ∈ An(N).

1.2 Lie groups

Lie groups made their way in Mathematics as a convenient device for the
description of continuous symmetries of spaces. Building upon the founda-
tional work of Lie, a compreensive theory has emerged with many ramifi-
cations and applications. The purpose of this section is to review the most
elementary aspects of Lie group theory in a way that fits to our purposes.



16 CHAPTER 1. MANIFOLDS AND LIE GROUPS

Definition 1.2.1 A Lie group is a smooth manifold G endowed with a map µ :
G×G→ G giving a group structure to G. We also assume that the corresponding
inversion map ν : G→ G, ν(g) = g−1, is a diffeomorphim.

Very often we abuse notation and write µ(g, g′) = gg′ for g, g′ ∈ G. Also,
we denote by e the identity element in G.

In general, given a field K, we denote by Mn(K) the space of n× n matri-
ces with entries in K. It follows that GLn(R) = {A ∈ Mn(R); det A ̸= 0}, the
real general linear group, is a Lie group of dimension n2 with µ(A, B) = AB,
the usual product of matrices. Clearly, the real line R and the unit circle
S1 = {z ∈ C; |z| = 1}, with the obvious operations, are Lie groups as well.
And we still can form products of these, generating, for example, the torus
Tn, the direct product of n circles.

Another way of constructing Lie groups is to consider certain subgroups
of known Lie groups.

Definition 1.2.2 A Lie subgroup H of a Lie group G is a subgroup of G which is
also a submanifold of G. If H = R, we say that the inclusion i : R → G defines a
one-parameter subgroup of G.

For instance, if G ⊂ GLn(R) we say that G is a linear group. Even though
there exist Lie groups which are not linear groups, most of the Lie groups ap-
pearing in geometry can be realized (by their very definition indeed!) as lin-
ear groups. We just mention the examples SLn(R) = {A ∈ GLn(R); det A =
1}, the special linear group, On = {A ∈ GLn(R); At A = Id}, the orthogonal
group, and SOn = {A ∈ On; det A = 1}, the rotation group. As we shall
see in Chapter 4, the last example plays a key role in (oriented) Riemannian
Geometry.

The following example is very instructive. Consider the torus T2 = S1 ×
S1 as a plane square whose sides of length 1 have been identified in the usual
way. For any m, n ∈ R, consider the map H : R → T2, H(t) = (mt, nt),
where we use mod 1 arithmetic. Clearly, each such H is a one-parameter
subgroup. Now, if m/n ∈ Q, it is easy to show the existence of t0 such that
H(t0) = H(0) so that (the image of) H defines a periodic subgroup of T, in
fact a Lie subgroup isomorphic to S1 (see Definition 1.2.3 below). On the
other hand, if m/n /∈ Q, one checks that H never closes up and in fact the
closure of this subgroup is the whole torus. In particular, the subgroup is
not closed. This shows that Lie subgroups can display a very wild behavior
when considered as submanifolds.

It is a basic fact however that a closed (in the topological sense) subgroup
H ⊂ G is automatically a Lie subgroup of G (and an embedded submanifold
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actually). Notice that this assures that the examples SLn(R), On and SOn
above are Lie groups indeed. Another gallery of examples shows up if we
remark that the complex general linear group GLn(C) = {A ∈ Mn(C); det A ̸=
0} is naturally contained in GL2n(R) and this allows us to consider the unitary
group Un = {A ∈ GLn(C); At A = 1} (At denotes the conjugate transpose of
A) and the special unitary group SUn = {A ∈ Un; det A = 1}, which are basic
in complex geometry.

An interesting question at this point is: what are the one-parameter sub-
groups of a given Lie group G? To approach this, we recall the following

Definition 1.2.3 A Lie group homomorphism is a map ψ : G → G′ satisfying
ψ(gg′) = ψ(g)ψ(g′), g, g′ ∈ G. If ψ is a diffeomorphism then we say that it is a
Lie group isomorphism.

Now, the question above becomes the problem of describing the Lie group
homomorphisms ψ : R → G. This is achieved as follows. Define the maps
Rg : G → G and Lg : G → G, the right and left translations by g ∈ G,
respectively, by Lg(g′) = gg′ and Rg(g′) = g′g, g′ ∈ G. As can be readily
checked, the translations are diffeomorphisms.

Definition 1.2.4 A vector field X ∈ X (G) is said to be left (right) invariant if
Lg∗X = X (Rg∗X = X) for any g ∈ G.

We remark that the notation Lg∗X = X, for instance, is a shorthand for
Lg∗Xg′ = Xgg′ .

A left invariant vector field is fully determined by its value at a given point
g ∈ G. In particular, if we take g = e, the space of left invariant vector fields,
denoted by g, gets identified to TeG. Since the Lie bracket of two left invariant
vector fields is still left invariant (because Lg∗[X, Y] = [Lg∗X, Lg∗Y] = [X, Y]),
it follows that [ , ] induces a Lie algebra structure on g. We then say that g

is the Lie algebra5 of G. Formally, a Lie algebra is a finite dimensional (real
or complex) vector space g endowed with a bilinear product [ , ] : g× g → g

satisfying the conditions:

1. [X, Y] = −[Y, X], X, Y ∈ g (skew-symmetry);

2. [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0, X, Y, Z ∈ g (Jacobi identity).

We see without difficulty that the Lie bracket of elements in the Lie al-
gebra of a linear Lie group is given by the usual matrix bracket: [A, B] =

5In general, we shall adopt the usual convention of denoting the Lie algebra of a Lie group
by the small German version of the string of letters representing the given Lie group.
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AB− BA. A good exercise at this point is to determine the Lie algebra of all
Lie groups listed so far. As a by-product, the dimensions of the correspond-
ing groups can be explicitly computed. For example, SOn has dimension
n(n− 1)/2 and, after choosing a positive orthonormal basis {e1, . . . , en} for
Rn, an explicit basis for son is given by the skew-symmetric transformations
ei ∧ ej : Rn → Rn, i < j, where for v, w ∈ Rn,

v ∧ w(x) = ⟨v, x⟩w− ⟨w, x⟩v, x ∈ Rn. (1.2.13)

Since the standard inner product ⟨ , ⟩ on Rn establishes a correspondence be-
tween skew-symmetric transformations and skew-symmetric bilinear forms
on Rn, this furnishes the canonical isomorphism

son ∼= Λ2Rn. (1.2.14)

It is obvious that if H ⊂ G, the Lie algebra h of H is a Lie subalgebra of g
in the sense that the bracket of elements in h remains in h. In particular, the
Lie algebra of a one-parameter subgroup of G is a line in g passing through
0.

Here is the answer to the question posed above on one-parameter sub-
groups.

Proposition 1.2.1 There is a one-to-one correspondence between one-parameter sub-
groups of G and orbits of elements of g (considered as left invariants vector fields)
passing through e.

Proof. Given a one-parameter subgroup ψ : R→ G, consider X = ψ′(0) ∈ g.
Then ψ is the orbit through e of X, considered as a left invariant vector field.⌋

Given that left invariant vector fields are always complete, this proposition
has as a very important consequence the construction of the exponential map
exp : g → G by exp(X) = ψX(1), where ψX is the unique one-parameter
subgroup of G such that ψ′X(0) = X. In the case of linear Lie groups, this is
given by the usual series

exp X =
∞

∑
i=0

Xi

i!
. (1.2.15)

In general, we see that any one-parameter subgroup ψ is of the form ψ(t) =
exp tX, for some X ∈ g.

A straightforward computation gives

Proposition 1.2.2 exp∗(0) = Id : g → g. In particular, there exists a neighbor-
hood U of 0 ∈ g such that exp restricted to U is a diffeomorphism onto its image
V ⊂ G.
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The map exp |U above is a natural coordinate chart around the identity
element of a Lie group, and we see how useful it is when trying to elucidate
the relationship between Lie groups and respective Lie algebras. For instance,
writing elements g, g′ ∈ U as g = exp tX and g′ = exp tY, one checks (after
restricting our attention from now on to linear groups, which allows us to
use (1.2.15), and discarding terms of third order or higher in t) that

gg′ = exp tX exp tY = exp
(

t(X + Y) +
1
2

t2[X, Y]
)

, (1.2.16)

and one sees that the bracket precisely measures the deviation of exp being a
homomorphism or, what amounts to be the same, the obstruction to G being
abelian. Moreover, if G happens to be abelian, then g is also abelian in the
sense that the bracket is identically zero. As an application of (1.2.16), we
have

Proposition 1.2.3 If ϕ : G → G′ is a Lie group homomorphism then φ = ϕ∗(e) :
g→ g′ is a Lie algebra homomorphism in the sense that

φ ([X, Y]g) = [φ(X), φ(Y)]g′ , X, Y ∈ g.

Moreover, ϕ(expG X) = expG′ φ(X), X ∈ g.

Proof. Obviously, ϕ(expG tX) is a one-parameter subgroup of G′ for any
X ∈ g. So we can write ϕ(expG X) = expG′ Y for some Y ∈ g′ and the last
assertion follows since clearly Y = φ(X). As for the first one, notice that

ϕ(expG X expG Y) = ϕ(expG X)ϕ(expG Y).

Now expand using (1.2.16) and compare second order terms.⌋

If we apply this to Adg : G → G, the adjoint action by g, given by
Adg(g′) = gg′g−1, we find that

exp(AdgX) = g exp(X)g−1, (1.2.17)

since the adjoint representation Adg = Adg∗(e) : g → g, at least for linear
groups, is also given by conjugation by g. Starting from (1.2.17), it is not hard
to show that

d
dt

Adexp tXY|t=0 = [X, Y], (1.2.18)

providing yet another interpretation for the bracket. By its turn, this has an
interesting application we shall explore later. Assume we have a bilinear map
B : g× g→ C which is invariant in the sense that B(AdgX, AdgY) = B(X, Y)



20 CHAPTER 1. MANIFOLDS AND LIE GROUPS

for any g ∈ G and X, Y ∈ g. Taking derivatives with respect to g and using
(1.2.18) we find that

B([Z, X], Y) + B(X, [Z, Y]) = 0, (1.2.19)

for any other Z ∈ g. We shall need a variant of this in our discussion of
Chern-Weil theory in Chapter 7.

We now say a few words about the Maurer-Cartan form ϑ of a Lie group
G. This is a g-valued 1-form on G defined by ϑ(X) = Lg−1∗

(X) if X ∈ TgG.
Clearly, ϑ is uniquely determined by the conditions: i) ϑ is left invariant in
the sense that Lg

∗ϑ = ϑ; ii) ϑ is the identity on g = TeG. As can be easily
checked, if g : G → GLn(R) denotes the defining embedding of a linear
group we have

ϑ = g−1dg. (1.2.20)

For us, the importance of ϑ is due to the fact that it determines the non-ho-
mogeneous term in the transformation rule for a connection on a principal or
vector bundle (see the proof of Proposition 3.2.2).

Left invariant forms also play a central role when discussing integra-
tion on Lie groups. Let {X1, . . . , Xn}, n = dim G, be a basis for g and
{ϖ1, . . . , ϖn} ⊂ g∗ be the corresponding dual basis. Clearly, each ϖi ex-
tends uniquely as a left invariant 1-form, i.e. L∗gϖi = ϖi, g ∈ G. We can then
form ϖ = ϖ1 ∧ . . . ∧ ϖn and this is a left invariant n-form in the sense that
∧nL∗gϖ = ϖ.6 Clearly, ϖ is everywhere nonzero and uniquely determined up
to a constant. Moreover, there exists a Lie group homomorphism µ : G→ R+

such that ∧nR∗gϖ = µ(g)ϖ. If G is compact we necessarily have µ ≡ 1 and in-
tegration of ϖ over Borelean subsets U ⊂ G defines a bi-invariant measure dg
on G, which means that dg(U) = dg(Lg′(U)) = dg(Rg′(U)) for g′ ∈ G and
any such U. This measure is uniquely determined up to a positive constant
and, when normalized to satisfy dg(G) = 1, it is called the Haar measure of
G.

1.3 Group actions on manifolds

We now turn to actions of Lie groups on manifolds.

Definition 1.3.1 An action of a Lie group G (or a G-action) on a manifold M is a
smooth map Ψ : G×M→ M satisfying:

6If A : V → V is a linear map we define ∧p A : ΛpV → ΛpV on simple elements by ∧p A(v1 ∧
. . . ∧ vp) = Av1 ∧ . . . ∧ Avp.
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1. Ψ(e, x) = x, x ∈ M;

2. Ψ(g, Ψ(g′, x)) = Ψ(gg′, x), g, g′ ∈ G, x ∈ M.

We also say that M is a G-space.

As usual, we write gx as a shorthand for Ψ(g, x) if no confusion arises.
The conditions above can thus be rewritten as

ex = e and g(g′x) = (gg′)x.

The definition can be rephrased as saying that the action Ψ induces a homo-
morphism Ψ : G → Diff(M) by Ψ(g)(x) = gx. Hence, the concept of action
formalizes the idea of transformations groups.

Technically speaking, the above defines a left G-action on M and similarly
we can consider right actions. Clearly, the definitions are interchangeable
since Ψ̃(x, g) = g−1x defines a right action and which case we take is just a
matter of taste.

A special case deserves some attention and in fact will play a prominent
role in these notes. If M = V, a (real or complex) vector space, and the
G-action on V is by linear transformations (so that Ψ : G → Aut(V)) we
say that Ψ is a representation (or G-representation if emphasis is needed). For
obvious reasons we also reserve the terminology G-module for V. We say
that the representations Ψi : G → Vi, i = 0, 1, are equivalent if there exists an
isomorphism A : V0 → V1 such that the diagram

V0
Ψ0(g)−→ V0

A ↓ ↓ A

V1
Ψ1(g)−→ V1

commutes for any g ∈ G. A basic question of course is the classification of
G-representations up to equivalence but we do not have much to say about
this here.

A G-action on a manifold gives rise to an infinitesimal representation of g

on X (M) as follows. To each X ∈ g we associate X̂ ∈ X (M) by the rule

X̂x =
d
dt

exp(tX)x|t=0, x ∈ M. (1.3.21)

As can be easily checked, this is a linear homomorphism.
Among the many possibilities for a G-action, one would like to single out

for later reference the following one. A G-action on M is said to be free if
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for any x ∈ M, Gx = {g ∈ G; gx = x}, the isotropy group at x, reduces to
the identity element. In this case, the rule X ∈ g 7→ X̂x ∈ TxM, obtained by
composing the infinitesimal representation with evaluation at some x ∈ M,
is linear injective. In effect, if X̂x = 0 for some X ̸= 0 in g, we would have
(exp tX)x = x, for any t ∈ R, a contradiction to Proposition 1.2.2.



Chapter 2

Principal bundles

Even though not essential for a presentation of the fundamentals of Spin Ge-
ometry, principal bundles constitute a natural framework for the discussion
of a number of concepts we shall introduce later (spin bundles, characteristic
classes, etc.) In this chapter, we review the basic theory of principal bundles
with an emphasis toward the geometric aspects.

2.1 The concept of a principal bundle

The local model for a principal bundle is the product U ×G, where U ⊂ Rn

is open and G is a Lie group. One should be aware however that a hidden
symmetry is present here, namely, the usual action of G on itself by right
translations is trivially extended to U × G so that the corresponding orbit
space1 U ×G/G is naturally diffeomorphic to U. A principal bundle is then
just a bunch of such local models coherently related by suitable transition
maps.

Definition 2.1.1 A principal bundle is given by a manifold P (the total space) upon
which a Lie group G acts freely from the right (represent the action by R : P ×
G → P, say) such that the orbit projection π : P → P/G defines a manifold
M = P/G (the base space) and is locally trivial in the sense that for each x ∈ M
there exists a neighborhood x ∈ U ⊂ M and a map ϕ : π−1(U) → U × G (a
trivializing chart) with the property that ϕ(p) = (π(p), φ(p)), p ∈ π−1(U), for

1If M is a G-space and x ∈ M, the orbit through x is the set (actually a submanifold) Gx =
{gx; g ∈ G}. Usually we denote by M/G the space of orbits of a G-action on M.

23
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some φ : π−1(U) → G satisfying φ(pg) = φ(p)g, g ∈ G.2 When emphasis on G
is required, we say that P is a principal G-bundle and that G is the structural group
of P.

A bundle map between principal G-bundles over M is a map f : P → P′

satisfying f (pg) = f (p)g, p ∈ P, g ∈ G. Notice that f induces a map
f : M → M. If f = IdMwe say that f is a bundle isomorphism. In this case
we also say that f performs an equivalence between P and P′. If a principal
bundle P is equivalent to the usual product bundle M×G, we say that P is
trivial. We remark that, for a general principal bundle P, a local trivializing
chart ϕ : π−1(U)→ U×G induces a preferred local section σ : U → π−1(U),
namely σ(x) = ϕ−1(x, e), x ∈ U. Conversely, given a local section σ as before,
we construct a local trivilization by the rule ϕ(σ(x)g) = (x, g). In this way,
local sections are in one-to-one correspondence with local trivializations. In
particular, a principal bundle is trivial if and only if it admits a global section.
Naturally, a crucial question here is to tell whether a given principal bundle is
trivial or not. More generally, one would like to classify principal G-bundles
up to equivalence (see Section 6.1 for more on this point).

We shall find it convenient sometimes to restrict principal G-bundles to
submanifolds M′ ⊂ M. This forms a new principal G-bundle P|M′ whose to-
tal space is π−1(M′). Another useful construction is to start with a principal
G-bundle over M and to consider a Lie subgroup G′ ⊂ G. We say that a prin-

cipal G′-bundle P′ over M is a reduction of P if there is an embedding P′
i
↪→ P

satisfying i(pg) = i(p)g, g ∈ G′, and inducing an identification P′/G′ ∼= M.
Very often it is instructive, and sometimes even mandatory, to define a

principal bundle by means of its transition functions. Consider a principal
G-bundle π : P→ M and assume that M admits a covering by open sets

M =
∪

α∈Λ

Uα

such that ϕα : π−1(Uα)→ Uα×G is a trivializing chart. Recall that associated
to each ϕα we have the corresponding preferred local section σα given by
σα(x) = ϕ−1

α (x, e), x ∈ Uα. Now if Uα ∩Uβ ̸= ∅, we define the corresponding
transition function ξαβ : Uα ∩Uβ → G by the rule

σα(x)ξαβ(x) = σβ(x), x ∈ Uα ∩Uβ. (2.1.1)

If Uα ∩Uβ ∩Uγ ̸= ∅, these clearly satisfy the cocycle condition

ξαβ(x)ξβγ(x) = ξαγ(x), x ∈ Uα ∩Uβ ∩Uγ. (2.1.2)

2Here we abuse notation so that R(p, g) = pg. Notice also that we reserve the same notation
both for the right action of G on P and the action of G on itself by right translations.
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Conversely, it is not hard to show that the transition functions, together with
the additional conditions (2.1.2), completely determine P up to equivalence.

The notion of reduction introduced above can be rephrased in terms of
transition functions. In effect, a reduction of P (with structural group G) to
P′ (with structural group G′) just means that the transition functions of P can
be chosen to take values in G′. In particular, we see that reduction is a strictly
topological issue having to do with the way G′ sits inside G.

2.2 Connections on principal bundles

We now consider the geometric aspects of principal bundles. It follows im-
mediately from the definition of a principal G-bundle that each fiber π−1(x),
x ∈ M, being an orbit of the free action of G on P, is diffeomorphic to G so
that P is foliated by copies of G, the leaves of the vertical foliation. If p ∈ P we
denote by G(p) the fiber containing p.

We now discuss an important class of vector fields over the total space of
a principal bundle. To each X ∈ g, we can associate a vector field X̂ over P by
the recipe described in (1.3.21). Clearly, X̂ is tangent to the vertical foliation
everywhere and it is called a canonical vertical vector field.3 Moreover, we have

Proposition 2.2.1 For each p ∈ P, the map

X ∈ g 7→ X̂p ∈ TpG(p)

is a linear isomorphism.

Proof. This follows from the fact that the G-action on P is free (see the dis-
cussion at the end of Section 1.3).⌋

Thus, passing from G(p) to its tangent space Vp, we obtain a canonical
integrable (in the sense of Frobenius) distribution V on P. Now, the extra
piece of structure needed to implement geometry on P is given by

Definition 2.2.1 A connection on P is a G-invariant choice of a complementary
distribution to V . More precisely, a connection is defined by prescribing a smooth
family p ∈ P 7→ Kp ⊂ TpP of subspaces such that:

1. TpP = Vp ⊕Kp (direct sum);

2. Rg∗(Kp) = Kpg, g ∈ G, p ∈ P.

3In general, if a vector field Y on P is tangent everywhere to the vertical foliation, we say
simply that Y is vertical.
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We remark that connections always exist. Since we are not going to use
this here, we refer to [KN] for a proof.

The above definition is not very satisfactory from a computational view-
point and a reformulation is in order. Thus, given a connection K as above,
we define a g-valued 1-form on P by{

ω(X) = X, X ∈ Vp,
ω(X) = 0, X ∈ Kp,

where we use the identification provided by Proposition 2.2.1. It follows that

K = ker ω (2.2.3)

and condition (2) in the definition of K gets replaced by

Rg
∗ω = Adg−1 ω, (2.2.4)

as the following computation shows:

(R∗gω)p(X̂) = ωpg(Rg∗(X̂))

= ωpg

(
Rg∗

(
d
dt

p exp(tX)|t=0

))
= ωpg

(
d
dt

(p exp(tX)g) |t=0

)
= ωpg

(
d
dt

(
pgg−1 exp(tX)g

)
|t=0

)
(1.2.17)
= ωpg

(
d
dt

(
pg exp(tAdg−1 X)

)
|t=0

)
= ωpg

(( ̂Adg−1 X
)

pg

)
= Adg−1 X

= Adg−1
(
ω(X̂)

)
.

We conclude that giving a connection is equivalent to defining a g-valued
1-form over P satisfying (2.2.4) above, and the relationship between the two
definitions is made explicit by (2.2.3). Note that, under the identification
π−1(U) = U × G provided by a trivializing chart, the connection ω gets
identified to the Maurer-Cartan form ϑ of G. This is because (2.2.4) becomes
Lg∗ω = ω and the way ω is defined on vertical vector fields.

In order to illustrate the advantages of this more computational way of
looking at a connection, let us prove
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Proposition 2.2.2 Let π : P → M be a principal G-bundle, α : [0, 1] → M a
(piecewise smooth) curve and p ∈ P such that π(p) = α(0). Then there exists a
unique horizontal lift α̃ : [0, 1]→ P starting at p, i.e. a unique α̃ such that:

1. α̃(0) = p;

2. α̃′(t) ∈ Kα̃(t), t ∈ [0, 1];

3. π ◦ α̃ = α.

Proof. It suffices to prove this in case α([0, 1]) ⊂ U, where U is associated to
a trivializing map as in Definition 2.1.1. Pick any lift β of α starting at p (i.e.
any β satisfying β(0) = p and π ◦ β = α) and try to find α̃ by

α̃ = βg,

for some g : [0, 1]→ G with g(0) = e. It then follows that

α̃′ = β′g + βg′. (2.2.5)

But
β′g = Rg∗(β′)

and
βg′ = α̃g−1g′ = ( ̂Lg−1∗

g′)α̃,

and from this we get

ω(β′g) = ω(Rg∗(β′)) = R∗gω(β′) = Adg−1(ω(β′)) (2.2.6)

and
ω(βg′) = ω

(
( ̂Lg−1∗

(g′))α̃

)
= Lg−1∗

(g′). (2.2.7)

But α̃ is doomed to be horizontal and then (2.2.5), (2.2.6) and (2.2.7) imply

0 = ω(α̃′) = Adg−1(ω(β′)) + Lg−1∗
(g′),

which can be rewritten as

g′ = −Rg∗
(
ω(β′)

)
,

an ordinary differential equation on G which can be shown to be uniquely
solved for g : [0, 1]→ G with initial condition g(0) = e.⌋

We say that α̃ is the parallel transport of p along α. Later on, we shall
relate this to the more familiar notion of parallel transport in Riemannian
Geometry.

Thus we end up with still another way of looking at a connection on P. It
is just a G-equivariant way of lifting paths from M to P, as it follows from the
uniqueness in the construction above that if pg = p′ then the lift of α starting
at p′ is α̃g.





Chapter 3

Vector bundles

The standard approach to Spin Geometry can be briefly described as a quest
for both canonical vector bundles over a Riemannian manifold M and canon-
ical differential operators acting on the space of sections of such bundles. In
this setting, the definition of the differential operators involves consideration
of an extra piece of geometric data, namely, a connection. In this chapter
we present the basic material on vectors bundles and connections and relate
this to the concepts introduced in the last chapter (principal bundles and
corresponding connections).

3.1 The concept of a vector bundle

Roughly speaking, a vector bundle is a family of linear objects (vector spaces)
parameterized by a nonlinear object (a manifold). The definition is as follows.

Definition 3.1.1 A real vector bundle over a manifold M is given by a manifold E
(the total space) together with a surjection λ : E → M satisfying the following local
trivializing condition. For each x ∈ M there exists an open neighborhood U of x in
M and a diffeomorphism (a trivializing chart) η : λ−1(U) → U ×Rr preserving
the fibred structure (i.e. η takes Ex = λ−1(x) to {x} ×Rr diffeomorphically) and
inducing a well defined linear structure on the fibers. This last sentence means that if
x ∈ Uα ∩Uβ for trivializing charts ηα : λ−1(Uα)→ Uα×Rr and ηβ : λ−1(Uβ)→
Uβ ×Rr then the induced map on fibers ηα ◦ η−1

β (x) : {x} ×Rr → {x} ×Rr is
a linear isomorphism. The integer r apearing here is called the rank of E , denoted
rank(E).

29
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By replacing R by C in the above definition, we come up with the impor-
tant concept of a complex vector bundle. In both cases, if rank(E) = 1 we say
that E is a line bundle.

A bundle map between vector bundles E → N and E ′ → M′ is a map
f : E → E ′ that preserves the fibred structure and is linear when restricted to
the fibers. If M = M′, f |M = IdM and f is an isomorphism along the fibers
we say that E and E ′ are isomorphic. In particular, if E is isomorphic to the
product bundle M×Rr we say that E is trivial. If this happens to be the case
for E = TM, then we say that M is parallelizable.

Triviality of a vector bundle can be rephrased as follows. A section1 of E
is a map σ : M → E such that λ ◦ σ = IdM. Then we have that E is trivial
if and only if E admits r sections linearly independent at each point of M. It
is immediate from this that any Lie group is parallelizable. As we shall see
in Chapter 7, the theory of characteristic classes provides a systematic way of
detecting how far from trivial a given vector bundle is.

As in the case of principal bundles, vector bundles can also be described
in terms of transition functions. For an overlap of trivializing charts as in the
definition, we conceive ταβ(x) for x ∈ Uα ∩Uβ as being the linear transforma-
tion induced by ηα ◦ η−1

β , so that ταβ takes values in GLr(R). These transition
functions also satisfy corresponding cocycle conditions and determine the
vector bundle up to isomorphism. We can also restrict a given vector bundle
E → M to a submanifold M′ ⊂ M so that the new bundle is denoted by
E|M′ . On the other hand, if there exists a Lie group G ⊂ GLr(R) such that
the transition functions of E can be chosen to take value in G, we say that E
admits a reduction to G. For example, by definition E is orientable if it admits
a reduction to GL+

r (R), the group of r × r real matrices with positive deter-
minant. From a geometric viewpoint, a more interesting example of group
reduction is given by

Definition 3.1.2 A Riemannian metric on E is a rule that to each x ∈ M assigns
an inner product ⟨ , ⟩x on the fiber Ex depending smoothly on x. A vector bundle
endowed with a specific Riemannian metric is termed a Riemannian bundle. In case
E is a complex vector bundle and each ⟨ , ⟩x is a hermitian product on Ex we will say
that E is a hermitian bundle.

Riemmanian or hermitian metrics can always be constructed (just first do
it locally by using a trivializing chart and then splice together the results
via a partition of unity). In the real case, it then follows that any vector
bundle can be reduced to Or. Assuming further that E is orientable, we get

1As usual, the space of sections of E is represented by Γ(E).
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a reduction to SOr. In general, if a Riemannian metric is introduced on TM,
the tangent bundle of M, we can integrate the pointwise inner product of
sections η, η′ ∈ Γ(E) with respect to the volume element dM induced by the
metric in order to obtain the L2 product of sections

(η, η′) =
∫

M
⟨η, η′⟩ dM. (3.1.1)

In general, we will represent by ∥ ∥ the corresponding seminorm on Γ(E).
We remark that the usual linear algebra constructions for vector spaces

carry over naturally to the category of vector bundles (both real and com-
plex). In this way, if vector bundles E and E ′ over M are given, we can form
for instance their direct sum E ⊕ E ′, their tensor product E ⊗ E ′, the homomor-
phism bundle Hom(E , E ′) and the determinant bundle ΛrE , r = rank(E). The
canonical isomorphisms associated to the pointwise constructions translate
into corresponding isomorphisms for vector bundles. Thus, Hom(E , E ′) =
E∗ ⊗ E ′, where E∗ = Hom(E ,R) is the dual bundle.2 If we start, for instance,
with the tangent bundle TM we can dualize to obtain T∗M, the cotangent
bundle of M. If we take the tensor product of r copies of TM and s copies
of T∗M, we end up with the bundle ⊗(r,s)(M), whose sections are tensors
of type (r, s) over M. And by the use of the antisymmetrization operation,
we construct, for p = 0, 1, . . . , n, the exterior bundle Λp(M), whose sections
are precisely the differential p-forms over M. More generally, in the pres-
ence of an arbitrary vector bundle, we can consider Λp(M)⊗ E , the bundle
of p-forms with coefficients in E . The space of sections of Λp(M)⊗ E is repre-
sented by Ap(M; E), and notice that we can identify A0(M; E) to Γ(E). In
case E = V for a fixed space V, we write Ap(M; V) = Ap(M; E). For ex-
ample, the g-valued 1-form defining a connection on a principal G-bundle
belongs to A1(P; g).

We complement this brief discussion on vector bundles by indicating yet
another way of constructing new vector bundles out of old ones: the pullback
bundle f ∗E of a vector bundle E → M under a map f : M′ → M. Roughly
speaking, this is the vector bundle over M′ whose fiber over x ∈ M′ is pre-
cisely E f (x). This kind of construction plays a central role in the theory of
characteristic classes and, as a matter of fact, in the classification theory of
vector bundles.

A rather instructive exercise here is to reformulate all the above construc-
tions in terms of transition functions. Finally, we remark that it is not hard
to introduce natural metrics on all derived bundles above once metrics on E ,
E ′, etc., are given.

2In general, if V is a vector space, we denote by V the trivial bundle over M with typical fiber
equal to V.
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3.2 Connections on vector bundles

Unless a vector bundle E → M is trivial, there is in general no preferred way
to identify the various fibers of E . In order to overcome this, some sort of
extra structure is required. This is usually accomplished by first prescribing a
way to differentiate sections of E and then performing the identification along
curves in M by the use of sections with null derivative. This gives rise both
to the geometric notion of parallel transport and its analytical counterpart
described in the definition below.

Definition 3.2.1 A connection on a vector bundle E over M is a linear first order
differential operator ∇ : A0(M; E)→ A1(M; E) satisfying the Leibniz rule

∇( f σ) = d f ⊗ σ + f∇σ, (3.2.2)

where σ ∈ Γ(E) and f is a function on M.

Recalling that A1(M; E) = Γ(T∗M ⊗ E) = Γ(Hom(TM, E)), we obtain
for any X ∈ X (M) the covariant derivative ∇X : Γ(E) → Γ(E) with (3.2.2)
replaced by

∇X( f σ) = X( f )σ + f∇Xσ, ∇ f Xσ = f∇Xσ.

Either way of looking at a connection has its own advantages and we switch
from one to another as convenience demands.

Definition 3.2.2 If E is Riemannian, then we say that ∇ is compatible with the
metric if

X⟨σ1, σ2⟩ = ⟨∇Xσ1, σ2⟩+ ⟨σ1,∇Xσ2⟩, X ∈ X (M), σ1, σ2 ∈ Γ(E). (3.2.3)

Assume from this point on that E is an oriented Riemannian vector bundle
endowed with a compatible connection ∇. Let e = (e1, . . . , er) be a local
pointwise positive orthonormal basis (or simply a frame) defined over U ⊂ M.
If we take into account the principal SOr-bundle PSO

E over M formed by the
set of all frames over M (we call this the frame bundle of E ) then we can regard
e as a local section (and hence a local trivialization) of PSO

E . Now, any local
section σ of E over U can be uniquely written as

σ =
r

∑
i=1

σiei, (3.2.4)

for some functions σi. Defining the connection 1-form θ = {θij} (with respect
to e) by

∇ei =
r

∑
j=1

θij ⊗ ej, (3.2.5)
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it follows from (3.2.4) and the Leibniz rule that

∇σ =
r

∑
i=1

(dσj +
r

∑
j=1

σiθij)⊗ ej. (3.2.6)

In other words, the connection ∇ is locally completely determined by the
connection form θ. Notice that as a result of the compatibility, we have the
additional relations

θij = −θji. (3.2.7)

As an outcome of (3.2.6) and (3.2.7) we have

Proposition 3.2.1 Locally, any connection ∇ on a vector bundle E can be written
in the form

∇ = d + A, (3.2.8)

where d is the usual derivative (acting on r-tuples of functions) and A is an sor-
valued endomorphism acting on the fibers of E .

The relations (3.2.7) just mean that θ ∈ A1(U, sor) and this suggests a way
to define a connection ω on PSO

E (in the sense of Definition 2.2.1) starting from
θ. The next proposition addresses this point and clarifies the relationship
between the two notions of connections introduced so far.

Proposition 3.2.2 Given a connection∇ on a vector bundle E over M, there exists a
unique connection ω on PSO

E such that for any local choice of frame e = (e1, . . . , er)
for E as above we have

θ = e∗ω,

where we regard ω ∈ A1(P; sor) and θ is defined by (3.2.5).

Proof. Since obviously ω is locally defined, this is just a matter of compar-
ing the transformation rules for θ and (the sought for) ω under a change of
frames (see [LM]). We start with θ. Let ē = (ē1, . . . , ēr) be another local frame
over U related to e by the transformation rule

e = ē ξ, (3.2.9)

for some map ξ : U → SOr. As the notation makes it transparent, ξ is
precisely the transition function of PSO

E associated to the change of frames
(3.2.9). For the sake of brevity, we rewrite (3.2.5) as ∇e = θe, and taking into
account that ē defines a new connection form θ by ∇ē = θē we compute

θe = ∇e = ∇(ē ξ) = ∇ē ξ + ē dξ = θē ξ + ē dξ.
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After left multiplication by ξ−1 this gives

θ = ξ−1θξ + ξ−1dξ, (3.2.10)

and we just have to check that ω transforms exactly as (3.2.10) under (3.2.9).
Now, recall that e defines a trivialization ϕ : π−1(U) → U × G by the

rule ϕ(e(x)g) = (x, g) where g = φ : U → G. We claim that, under this
identification,

ω = Adφ−1(e∗ω) + φ−1dφ, (3.2.11)

where, in the righthand side, e∗ω denotes the restriction of ω to {(x, e); x ∈
U}. This follows by breaking ω into two pieces, say ω = ω0 + ω1, according
to the product structure of U ×G. Since ω equals the Maurer-Cartan form
of G along the fibers, we have ω1 = φ−1dφ (cf. 1.2.20). One the other
hand, ω0 = R∗g(e∗ω) = Adφ−1(e∗ω) by (2.2.4). Similarly, using the local
trivialization induced by ē (and self-explanatory notation) we have

ω = Adφ−1(ē∗ω) + φ−1dφ. (3.2.12)

By equating the right hand sides of (3.2.11) and (3.2.12), applying Adφ to the
resulting equation and simplifying, it follows at last that

e∗ω = Adξ−1(ē∗ω) + ξ−1dξ, (3.2.13)

since ξ = φφ−1. Now compare this with (3.2.10).⌋

Notice that the non-homogeneous term ξ−1dξ in (3.2.10) matches with
the fact that connections are not tensors. However, as soon as transforma-
tions rules are concerned, it is relatively straightforward to build up a more
manageable object out of ω: we simply put

Ω = dω + ω ∧ω, (3.2.14)

where matrix multiplication of 1-forms is implicit. One checks without dif-
ficulty that Ω ∈ A2(P; sor) so defined transforms under (3.2.9) in a homoge-
neous way:

Ω = ξ−1Ωξ. (3.2.15)

We call Ω = {Ωij} the curvature 2-form associated to ω. Pulling this back
to M by the use of frames we obtain a family of 2-forms

Θ = e∗Ω ∈ A2(U, sor), (3.2.16)

satisfying the corresponding compatibility condition

Θ = ξ−1Θξ. (3.2.17)
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In order to relate this to the connection, prolong ∇ to a two-step map

A0(M; E) ∇→ A1(M; E) ∇̃→ A2(M; E), (3.2.18)

where
∇̃(α⊗ σ) = dα⊗ σ− α ∧∇σ, α⊗ σ ∈ A1(M; E).

Denoting the composition in (3.2.18) by R, we easily compute that

R( f σ) = f R(σ),

for a function f , so that R is a tensor, the so-called curvature tensor associated
to ∇. As expected, we have

Proposition 3.2.3 One has Rei = ∑r
j=1 Θij ⊗ ej, where Θij = e∗Ωij. Moreover,

if for X, Y ∈ X (M), RX,Y denotes the skew-symmetric transformation on fibers
defined by

RX,Yei =
r

∑
j=1

Θij(X, Y)ej

then
RX,Yσ = ∇X∇Yσ−∇Y∇Xσ−∇[X,Y]σ, σ ∈ Γ(E).

The proof is a simple computation. Notice that this shows that R coin-
cides with the usual notion of curvature of ∇, which measures the devia-
tion from commutativity of the covariant derivative. Also, we can regard
R ∈ A2(M, so(E)), where so(E) is the vector bundle whose fiber over x ∈ M
is the space of skew-symmetric linear transformations of Ex.

We now use the formalism above in order to establish a preliminary link
between geometric and topological aspects of a vector bundle. This is just a
glance at deeper results considered in Chapter 7, where a more systematic
study of the profound relationship between topological and geometric prop-
erties of a vector bundle is presented. But first we need to reinterpret the
concept of parallel transport on PSO

E (with respect to ω) in terms of the more
down-to-earth notion of parallel transport on E . Start with a curve α on M
and let p ∈ PSO

E be such that π(p) = α(0). Let α̃ be the parallel transport
(with respect to ω) of p along α. Equivalently, α̃ defines a frame along α.
Without loss of generality, we may assume the existence of a frame e defined
in a neighborhood of α and extending α̃ there. We then compute (connection
forms with respect to e)

∇α′ei = ∑
j

θij(α
′)⊗ ej = ∑

j
e∗ωij(α

′)⊗ ej

= ∑
j

ωij(e∗α′)⊗ ej = ∑
j

ωij(α̃
′)⊗ ej = 0,
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and we conclude that the frame α̃ = e is parallel along α in the sense that
∇α′e = 0. This clearly induces a notion of parallel transport along α and settles
the problem of identifying fibers at different points of E , at least in case a
curve joining the points is given. Alternatively, for a section σ = ∑ σiei along
α, parallel transport can be defined by solving the linear system of ordinary
differential equations

dσi(α
′) + ∑

j
θij(α

′)σj = 0, j = 1, . . . , r,

for σ = {σi} with given initial conditions. Reciprocally, the parallel transport
determines the connection uniquely for if α : [0, 1]→ M is given and σ ∈ Γ(E)
we clearly have

∇α′σ =
d
dt

Πt(σα(t))|t=0, (3.2.19)

where Πt denotes parallel transport along α from α(t) to α(0).
With these preliminaries out of the way, we say that E is flat if R = 0

identically. By (3.2.16) and Proposition 3.2.3 this is equivalent to Ω ≡ 0 since,
as can be easily checked, Ω is horizontal in the sense that it vanishes in case
at least one of its entries is vertical. By (3.2.14) and Frobenius theorem, this
means that the horizontal distribution K on PSO

E is integrable. By uniqueness,
we see that parallel transport takes place along the integral manifolds of K
and then an easy monodromy argument implies that parallel transport does
not depend on the curve joining two points at M, as far as M is simply
connected. From this it is immediate how to define a global parallel frame3

along M and we have obtained

Proposition 3.2.4 Any flat vector bundle over a simply connected manifold is triv-
ial.

Notice that being trivial is a purely topological question (it just boils down
to checking whether E admits a reduction to the trivial group) while flatness
is definitely a geometric issue. More importantly, this suggests that the ‘total
amount’ of curvature should somehow measure the degree of nontriviality
of E . That this is the case indeed is confirmed by the theory of characteristic
classes developed in Chapter 7.

Applying Proposition 3.2.4 to E = TM, with M Riemannian and carry-
ing the corresponding Levi-Civita connection (see Chapter 4), we conclude
that M is locally isometric to Euclidean space. We just have to compute the
Riemannian metric in terms of the parallel frame of vector fields constructed
above so as to verify that it is precisely the standard Euclidean metric.

3We say that η ∈ Γ(E) is parallel if ∇η = 0.
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We conclude this section by mentioning yet another elementary applica-
tion of parallel transport, which makes it possible to normalize the gauge
potential A arising in (3.2.8) at an arbitrary x ∈ M. This will be crucial when
doing computations later.

Proposition 3.2.5 Given x ∈ M there exists a frame e = (e1, . . . , er) for E defined
in a neighborhood of x such that

∇Xei(x) = 0, i = 1, . . . , r,

for any X ∈ TxM. In other words, A(x) = 0

Proof. Pick any local radial system of curves issuing from x and parallel
translate along the curves a given frame at x.⌋

A frame like this one is said to be normalized at x.

3.3 The associated bundle construction

We now explain how vector bundles over M can be manufactured from rep-
resentations of a Lie group. Let π : P → M be a principal G-bundle and let
ρ : G → Aut(V) be a representation (real or complex) of G on V. The action
of g ∈ G on V is denoted by ρ(g). We first form the product P×V and let G
act on this from the right by the rule

((p, v), g) 7→ (pg, ρ(g−1)v), (p, v) ∈ P×V.

It turns out that the corresponding orbit space E = P×ρ V is naturally a vec-
tor bundle over M (in the appropriate category), the associated vector bundle.
It inherits a linear structure on fibers as follows. If {p, v} ∈ Eπ(p) is the orbit
of an element (p, v) ∈ P×V, we define c{p, v} = {p, cv}, ∈ R. If some other
{p′, v′} ∈ Eπ(p) is given we have p′g = p for some g ∈ G and we then set
{p, v} + {p′, v′} = {p, v + ρ(g−1)v′}. From this we see that the transition
functions of P×ρ V are compositions of the transition functions of P with ρ.

It turns out that any vector bundle E is of the form P×ρ V. For example,
if E is oriented and Riemannian, we just have to take P = PSO

E , the principal
SOr-bundle of all frames of E . It follows at once that

E = PSO
E ×µr Rr,

where µr : SOr → GLr(R) is the standard representation of SOr.
The question now remains: how can one implement geometry on the

associated bundle E = P ×ρ V? From the metric viewpoint, we see easily
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that if ρ is orthogonal (or unitary, if V is complex) in the sense that there exists
an inner product on V such that the G-representation on V is by isometries
(i.e. ⟨ρ(g)v, ρ(g)v′⟩ = ⟨v, v′⟩) then E inherits a natural metric: we just put
⟨{p, v}, {p′, v′}⟩ = ⟨v, v′⟩.

Moreover, one should be able to canonically define a connection ∇ start-
ing from a connection ω on P. To this effect we isolate the following useful
fact.

Proposition 3.3.1 There is a natural one-to-one correspondence between sections
of E = P ×ρ V and maps f : P → V which are equivariant in the sense that
f (pg) = ρ(g−1)( f (p)), p ∈ P, g ∈ G.

Proof. This is given by σ ∈ Γ(E) 7→ f = f (σ), where σ = {p, f (p)}.⌋

We now take α : [0, 1] → M. Given σ0 = {p, v} ∈ Eα(0), for each t we
want to define σt ∈ Eα(t), its parallel transport along α. Once this is done, we
can then prescribe ∇ by the recipe (3.2.19). Now, if α̃ is the parallel transport
(with respect to ω) starting at p ∈ P we simply put σt = {α̃(t), v}. If σ ∈ Γ(E)
is given, one then has

Πtσ(α(t)) = Πt{α̃(t), f (α̃(t))} = {p, f (α̃(t))},

where f = f (σ). Using (3.2.19) one finally has

∇α′(0)σ = {p,Lα̃′(0) f (p)}, (3.3.20)

where L denotes Lie derivative. This shows at once that the covariant deriva-
tive does not depend on α but only on its tangent vector at t = 0. Clearly, the
Leibniz property follows from the corresponding property for L.

As a by-product of the constructions above we get

Proposition 3.3.2 The connection ∇ is compatible with the metric ⟨ , ⟩.

Proof. This is equivalent to checking that parallel transport acts on the fibers
by isometries, but this is clear: in the notation above, |σt| = |v| = |σ0|.⌋

One might ask as well how the curvature R of the associated bundle E =
P×ρ V is related to the curvature Ω of P. Here is the relevant computation.
Take x ∈ M and p ∈ P such that π(p) = x. Choose X, Y ∈ X (M) with
[X, Y] = 0 around x and let X̃ and Ỹ be their horizontal lifts.4 Finally, let
f : P→ V correspond to σ ∈ Γ(E) according to Proposition 3.3.1. We have

4Given X ∈ X (M), there exists a unique G-invariant X̃ ∈ X (P) such that ω(X̃) = 0 and
π∗(X̃) = X. This is the horizontal lift of X.
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RX,Yσ = ∇X∇Yσ−∇Y∇Xσ

= {p, X̃(Ỹ( f ))(p)− Ỹ(X̃( f ))(p)}
= {p, [X̃, Ỹ]( f )(p)}.

Now, π∗[X̃, Ỹ] = [X, Y] = 0 and then [X̃, Ỹ] is vertical. Thus, there exists a
fundamental vertical vector field Â ∈ X (P) (corresponding to some A ∈ g)
such that Â(p) = [X̃, Ỹ](p). On the other hand, since f (gp) = ρ(g−1) f (p) we
obtain [X̃, Ỹ] f (p) = −(ρ∗A) f (p), where ρ∗ : g → End(V) is the derivative
map at e ∈ G. It then follows that

RX,Yσ = {p,−(ρ∗A) f (p)}.

We now recall the well-known formula for the exterior derivative of ω:

dω(X̃, Ỹ) = X̃(ω(Ỹ))− Ỹ(ω(X̃))−ω([X̃, Ỹ]).

In our case, ω(X̃) = ω(Ỹ) = 0 and we get

A = ωp([X̃, Ỹ])

= −dωp(X̃, Ỹ)
(3.2.14)
= −Ω(X̃, Ỹ).

After cleaning up a bit the notation we summarize this in

Proposition 3.3.3 The associated bundle construction yields the relation

RX,Y = ρ∗Ω(X̃, Ỹ). (3.3.21)

Since Ω is horizontal, in (3.3.21) we can replace X̃ and Ỹ by any vector
fields whose horizontal components are X and Y, respectively.





Chapter 4

The rotation group and
Hodge-de Rham theory

In the last chapter we have shown how a connection on a principal G-
bundle P canonically induces a covariant derivative on any associated bundle
E = P×ρ V. Conversely, we have also indicated how a connection (or covari-
ant derivative) ∇ on a vector bundle E determines a connection ω on the
frame bundle PSO

E . The upshot was Proposition 3.2.4 relating geometric and
topological aspects of E . In this chapter we go one step further and explore
the principle according to which the associated bundle construction, when
applied to judiciously chosen representations of the rotation group SOn, al-
lows us to establish a solid arch between the geometry and topology in the
case E = TM, where M is an oriented Riemannian manifold of dimension
n. A variant of this procedure applies in case M is a spin manifold, a more
sophisticated concept we consider in Chapter 6. This chapter is intended to
have a pedagogical flavor (a preparation for things to come) and here we
make use of some basic analytical material a more detailed discussion of
which will be postponed to Chapter 9.

4.1 The Hodge-de Rham set-up

If M is Riemannian we recall that TM is endowed with a canonical connection
∇, the so-called Levi-Civita connection. This is completely determined by the
following conditions:

1. ∇ is compatible with the Riemannian metric ⟨ , ⟩ on TM;

41
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2. ∇ is torsion free, which means that

∇XY−∇YX = [X, Y], X, Y ∈ X (M).

Whenever we refer to a connection on TM, this is the one we shall pick.
Assuming M oriented, from the considerations in Section 3.3 we know

that
TM = PSO

M ×µn Rn,

where for simplicity we write PSO
M = PSO

TM for the principal frame bundle
of TM and µn : SOn → GLn(R) is the standard representation of SOn. By
considering the dual representation µ∗n : SOn → GLn(R∗), we have

T∗M = PSO
M ×µ∗n (R

n)
∗ .

In fact, in the presence of the metric, µn = µ∗n and this induces the usual
isomorphism

TM = T∗M. (4.1.1)

This allows us to suppress the asterisks whenever convenient in the following
discussion.

Now, µn induces a series of representations ∧pµn : SOn → Aut (ΛpRn),
p = 0, 1, . . . , n, where as usual Λ means exterior powers. These are defined
by

∧pµn(g)(v1 ∧ . . . ∧ vp) = µn(g)(v1) ∧ . . . ∧ µn(g)(vp)

on simple elements and then extended by linearity. Applying the associated
bundle construction we clearly have

Λp(M) = PSO
M ×∧pµn ΛpRn,

Λp(M) being the vector bundle of differential p-forms over M so that

Γ(Λp(M)) = Ap(M).

The representation ∧pµn is obviously orthogonal with respect to the natural
inner product on ΛpRn given by

⟨v1 ∧ . . . ∧ vp, w1 ∧ . . . ∧ wp⟩ = det(⟨vi, wj⟩),

It follows that Λp(M) inherits a natural metric, still denoted by ⟨ , ⟩. By its
turn this induces an L2 inner product ( , ) on Ap(M) according to (3.1.1):

(η, η′) =
∫

M
⟨η, η′⟩ dM. (4.1.2)
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In addition, the Levi-Civita connection on TM (or more precisely its con-
nection 1-form θ) can be uniquely lifted to a connection ω on PSO

M and this is
further pushed forward to canonical connections (still denoted by ∇) on the
associated bundles Λp(M). An important observation is that the canonical
connection and metric so constructed are compatible (see Proposition 3.3.2).

At this point, we explain how the exterior derivative d : Ap(M) →
Ap+1(M) defined in (1.1.2) can be recovered in this context. Consider the
sequence of arrows

Ap(M)
∇→ Ap+1(M) = Γ(T∗M⊗Λp(M))

⟨ , ⟩→ Γ(TM⊗Λp(M))
∧→ A(M),

(4.1.3)
so that in terms of a local frame the composite operator is given by

d̂ =
n

∑
i=1

ei ∧∇ei . (4.1.4)

It turns out that d̂ = d, the exterior differential. In fact, choose by Proposition
3.2.5 a normalized frame e for TM at x ∈ M and compute (at x) assuming
that η = f e1 ∧ . . . ∧ ep for some function f :

d̂η = ∑
i

ei ∧∇ei ( f e1 ∧ . . . ∧ ep)

= ∑
i

ei ∧ (ei( f )) e1 ∧ . . . ∧ ep

=

(
∑

i
ei( f )ei

)
e1 ∧ . . . ∧ ep

= d f ∧ e1 ∧ . . . ∧ ep,

and we recover the usual definition of d as in (1.1.2).
We now claim that the adjoint operator1 d∗ of d with respect to the L2

inner product is
d∗ = −∑

i
ei ∧∗ ∇ei .

Here,

v ∧∗ (e1 ∧ . . . ∧ ep) =
p

∑
i=1

(−1)i+1⟨v, ei⟩e1 ∧ . . . ∧ êi ∧ . . . ∧ ep

is the adjoint of v∧, exterior multiplication by v. This is usually referred to
as contraction with v.

1This means that (dη, η) = (η, d∗η′) for any η ∈ Ap−1(M) and η′ ∈ Ap(M). Notice that, as a
rule, in the definition of adjoint operators we always assume that M is closed.
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In order to check the formula for d∗ above we rely upon the Hodge star
operator, the linear map

∗ : Ap(M)→ An−p(M)

defined on simple elements by

∗
(

ei1 ∧ . . . ∧ eip

)
= ϵej1 ∧ . . . ∧ ejn−p ,

with {i1, . . . , ip, j1, . . . , jn−p} being a permutation of {1, . . . , n} of sign ϵ. Here,
{e1, . . . , en} is a positive orthonormal frame. Notice that ∗2 = (−1)p(n−p) on
Ap(M).

Proposition 4.1.1 d∗ = (−1)np+n+1 ∗ d∗ : Ap(M)→ Ap−1(M).

Proof. As above, we choose a normalized frame at x ∈ M and assume η =
f e1 ∧ . . . ∧ ep so that ∗η = f ep+1 ∧ . . . ∧ en. We then have

d(∗η) =
n

∑
i=1

ei ∧∇ei ( f ep+1 ∧ . . . ∧ en)

=
n

∑
i=1

ei( f ) ei ∧ ep+1 ∧ . . . ∧ en

and hence

∗d(∗η) =
n

∑
i=1

ei( f ) ∗ (ei ∧ ep+1 ∧ . . . ∧ en).

Now, the ordered basis {ei, ep+1, . . . , en, e1, . . . , ei−1, ei+1, . . . , ep} can be brought
back to the standard positive basis after (p− 1)(n− p + 1) + p− i (= np +
n + i + 1 (mod 2)) permutations so that

∗
(
ei ∧ ep+1 ∧ . . . ∧ en)

)
= (−1)np+n+i+1e1 ∧ . . . ∧ êi ∧ . . . ∧ ep

and we proceed as follows:

∗d(∗η) = (−1)np+n+1

(
−

n

∑
i=1

ei( f )(−1)i+1e1 ∧ . . . ∧ êi ∧ . . . ∧ ep

)

= (−1)np+n+1

(
−

n

∑
i=1

ei( f )ei ∧∗ (e1 ∧ . . . ∧ ep)

)

= (−1)np+n+1

(
−

n

∑
i=1

ei ∧∗
(
∇ei ( f e1 ∧ . . . ∧ ep)

))
= (−1)np+n+1d∗η,
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as desired.⌋

Finally we can prove the key property relating d and d∗.

Proposition 4.1.2 Assuming M closed, d and d∗ are adjoints to each other in the
sense that

(dη, η′) = (η, d∗η′), η ∈ Ap−1(M), η′ ∈ Ap(M).

Proof. We start by observing that if η, η′ ∈ Ap(M) then ⟨η, η′⟩ dM = ∗⟨η, η′⟩ =
η ∧ ∗η′. Thus,

(dη, η′)− (η, d∗η′) =
∫

M
⟨dη, η′⟩ dM−

∫
M
⟨η, d∗η′⟩ dM

=
∫

M
dη ∧ ∗η′ −

∫
M

η ∧ ∗d∗η′

=
∫

M
dη ∧ ∗η′ − (−1)np+n+1

∫
M

η ∧ ∗ ∗ d ∗ η′.

But d ∗ η′ ∈ An−p+1(M) and this gives ∗2(d ∗ η) = (−1)(n−p+1)(p−1). Insert-
ing this into our computation we get

(dη, η′)− (η, d∗η′) =
∫

M
dη ∧ ∗η′ − (−1)−p2

∫
M

η ∧ d ∗ η′

=
∫

M

(
dη ∧ ∗η′ + (−1)p−1η ∧ d ∗ η′

)
=

∫
M

d(η ∧ ∗η′) = 0,

by (1.1.6).⌋

We now explain how taking suitable compositions of d and d∗ generates
a natural second order differential operator. For example, if η ∈ A1(M) we
have

d∗η = −∑
i

ei ∧∗ ∇ei η = −∑
i
⟨∇ei η, ei⟩

= −div η,

where div η = tr (X 7→ ∇Xη) is the usual divergence operator. In particular,
if η = d f for some f ∈ A0(M) we get

d∗d f = −div (grad f ) = ∆ f ,

where ∆ is the classical Laplacian operator.2

2Note that the sign in our definition of ∆ has been chosen in such a way that the integration
by parts formula for ∆ is deprived of the minus sign:

∫
f ∆ f dM =

∫
|∇ f |2dM.
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We can also make a similar computation on the other extremity of the de
Rham complex. If η = f e1 ∧ . . . ∧ en is the local expression for an element in
An(M), we get without difficulty that

dd∗η = −
(

∑
i

ei (ei( f ))

)
e1 ∧ . . . ∧ en = (∆ f ) e1 ∧ . . . ∧ en.

This suggests that one should define in general the Hodge Laplacian ∆ : Ap(M)→
Ap(M) by the recipe

∆p = dd∗ + d∗d,

and we have finally met one of the main characters of our story.
The Hodge Laplacian is the prototype of a natural second order elliptic

operator on a closed Riemannian manifold. The corresponding spectral the-
ory for this kind of operator (see Section 9.2) assures, among other things,
that the kernel spaces

Hp(M) = {η ∈ Ap(M); ∆η = 0}

have finite dimension and are naturally isomorphic to the de Rham groups
introduced in Section 1.1 and hence, by the de Rham isomorphism theorem,
to the real cohomology groups of M. Elements in Hp(M) are called harmonic
p-forms and the mentioned isomorphism says that each de Rham cohomol-
ogy class has a unique harmonic representative. As a consequence, for each
p, dimHp(M) is a topological invariant of M and in fact equals bp(M), the
pth Betti number of M. This is (part of) the basic theorem in Hodge theory
(see Theorem 9.2.1 below).

Thus we end up with the following amazing picture. From general con-
structions in Algebraic Topology we can assign to a smooth closed manifold
M a series of topological invariants (the Betti numbers of M) which, in the
presence of the differentiable structure, can be recovered by inspecting how
the exterior differential acts on differential forms of various degrees. If we
further introduce a Riemannian structure on M then we can consider the
Hodge Laplacian and Hodge theory says that bp(M) equals the dimension
of the solution space of the elliptic equation ∆η = 0, η ∈ Ap(M). In fact,
combining the two theories we see that the singular cohomology of M can
be represented in terms of harmonic forms, and this opens up the exciting
possibility of reducing topological questions to analytical (or geometrical)
ones.
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4.2 Clifford multiplication and the Weitzenböck for-
mula

It is possible to contemplate the circle of ideas expounded above in action
by a relatively elementary example and at the same time to illustrate the
fundamental steps in the applications of the Clifford algebra formalism in
Riemannian Geometry.3 To this effect, we introduce the Dirac operator D =
d + d∗ locally expressed as

D =
n

∑
i=1

ei · ∇ei ,

where · = ∧−∧∗ is Clifford multiplication by tangent vectors. We remark that
D can alternatively be expressed as the composition of arrows

Ap(M)
∇→ Ap+1(M) = Γ(T∗M⊗Λp(M))

⟨ , ⟩→ Γ(TM⊗Λp(M))
·→ A(M),

(4.2.5)
where the dot means Clifford multiplication.

It is convenient here to think of D as a selfadjoint first order linear op-
erator acting on A(M) = ⊕pAp(M) since it does not preserve the natural
grading of differential forms. Now, D is defined so as to materialize the
square root of ∆:

D2 = ∆ : A(M)→ A(M)

since d2 = 0 implies d∗2 = 0. In particular, (∆η, η) = ∥Dη∥2 (recall we
suppose that M is closed) and we get

kerD = ker ∆. (4.2.6)

This is further explored if we realize that ei · ej = ei ∧ ej − ei ∧∗ ej =
ei ∧ ej − ⟨ei, ej⟩, so we get the Clifford relations

e2
i = −1, ei · ej = −ej · ei, i ̸= j, (4.2.7)

and this will allow us to compute D2 = ∆ at a point x ∈ M by means of a
normalized frame:4

∆ = ∑
i

ei∇ei

(
∑

j
ej∇ej

)
3Here we follow [LM] closely.
4Whenever convenient, we omit the point denoting Clifford multiplication and use through-

out that the connection ∇ on A(M) is a derivation with respect to Clifford multiplication.
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= ∑
ij

eiej∇ei∇ej

= −∑
i
∇ei∇ei + ∑

i ̸=j
eiej∇ei∇ej

= −∑
i
∇ei∇ei + ∑

i<j
eiej(∇ei∇ej −∇ej∇ei )

= −∑
i
∇ei∇ei +

1
2 ∑

i,j
eiejRei ,ej ,

where R is the curvature tensor of Λ(M) = ⊕n
p=0Λp(M) (see Proposition

3.2.3).
The terms arising in the right hand side of this identity have a rather

distinct nature. The second one clearly defines an algebraic selfadjoint oper-
ator R acting on the fibers of Λ(M) = ⊕n

p=0Λp(M) preserving the graded
structure. To stress this, let us represent Rp = R|Ap(M). On the other hand,
the first term is a second order differential operator admitting an invariant
definition and here it is appropriate to shift to a more general setting than
above.

Let E be a Riemannian vector bundle with metric ⟨ , ⟩ and compatible
connection ∇ over a Riemannian manifold M. For X, Y ∈ X (M) consider
the map ∇2

X,Y : Γ(E) → Γ(E) given by ∇2
X,Y(η) = ∇X∇Yη −∇∇XYη. After

taking trace, the Bochner Laplacian ∇∗∇ : Γ(E)→ Γ(E) is given by

∇∗∇(η) = −tr∇2
( ., .)ȷ. (4.2.8)

In terms of a local frame for TM normalized at x ∈ M we clearly have

∇∗∇ = −∑
i
∇ei∇ei ,

and since x is arbitrary, we recover our operator when E = TM. In general,
∇∗∇ is a second order selfadjoint linear operator satisfying the integration
by parts formula: ∫

M
⟨∇∗∇η, η⟩ dM =

∫
M
|∇η|2 dM. (4.2.9)

To see this, pick η ∈ A(M) and note that ei⟨∇ei η, η⟩ = ⟨∇ei∇ei η, η⟩+ |∇ei η|2.
Summing over i we get div X + ⟨∇∗∇η, η⟩ = |∇η|2, where X ∈ X (M) is
given by ⟨X, Y⟩ = ⟨∇Yη, η⟩, Y ∈ X (M), and (4.2.9) follows after integration.

As a consequence of (4.2.9) we see at once that ∇∗∇ is nonnegative and
ker∇∗∇ is formed by parallel forms, i.e. forms satisfying ∇η = 0. We also
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mention that ∇∗∇ can alternatively be defined as the composition

Γ(E) ∇→ Γ(T∗M⊗ E) ∇
∗
→ Γ(E),

where ∇∗ is the adjoint of ∇ with respect to the obvious L2 inner products,
and this accounts for the rather clumsy notation for the Bochner Laplacian.

We thus arrive at the Weitzenböck formula for the Hodge operator acting
on p-forms:

∆ = ∇∗∇+Rp, (4.2.10)

and we now use this to establish a vanishing theorem based on a quasi-
positivity assumption on Rp.

Proposition 4.2.1 Assume (as always) that M is closed and that for 1 ≤ p ≤ n− 1,
Rp is quasi-positive in the sense that Rp ≥ 0 everywhere and Rp(x) > 0 for some
x ∈ M. Then M does not carry any nontrivial harmonic p-form. In particular,
bp(M) = 0.

Proof. Assume first that Rp ≥ 0 everywhere and let η ∈ Hp(M). By (4.2.10)
we have

0 = ⟨∆η, η⟩ = ⟨∇∗∇η, η⟩+ ⟨Rpη, η⟩

and integrating this over M we obtain

0 =
∫

M
|∇η|2dM +

∫
M
⟨Rpη, η⟩dM ≥ 0. (4.2.11)

Thus ∇η = 0 and we have proved in this case that any harmonic form is
parallel. Now assume in addition that Rp is quasi-positive and for the sake
of absurd pick a nonzero η ∈ Hp(M). Since by the above η is parallel we see
that η is nonzero everywhere. But then

∫
M⟨Rpη, η⟩dM > 0 and we have

0 =
∫

M
|∇η|2dM +

∫
M
⟨Rpη, η⟩dM >

∫
M
|∇η|2dM = 0,

thus reaching a contradiction.⌋

We are thus left with the rather involved task of finding natural geometric
conditions in order to assure quasi-positivity for Rp. In case p = 1 the
situation is perfectly well understood and we meet a result first proved by
Bochner [B].

Theorem 4.2.1 At the level of 1-forms we have

R1 = Ric,
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where Ric is the Ricci tensor of M. In particular, if M carries a metric with Ric ≥ 0
everywhere then b1(M) ≤ dim M and if it carries a metric with quasi-positive Ricci
tensor then b1(M) = 0.

Proof. We just have to compute R1 exploring the Clifford relations (4.2.7).
For η ∈ A1(M) we have

R1η =
1
2 ∑

ij
eiejRei ,ej(η)

=
1
2 ∑

ij
eiej ∑

k
⟨Rei ,ej η, ek⟩ek

= −1
6 ∑

i ̸=j ̸=k ̸=i
⟨Rei ,ej ek + Rej ,ek ei + Rek ,ei ej, η⟩eiejek

+
1
2 ∑

ij
eiej⟨Rei ,ej η, ej⟩ej +

1
2 ∑

ij
eiej⟨Rei ,ej η, ei⟩ei.

But
eiejej = −ei

and
eiejei = −eieiej = ej.

Thus
1
2 ∑

ij
eiej⟨Rei ,ej η, ej⟩ej = −

1
2 ∑

ij
⟨Rei ,ej η, ej⟩ei (4.2.12)

and

1
2 ∑

ij
eiej⟨Rei ,ej η, ei⟩ei =

1
2 ∑

ij
⟨Rei ,ej η, ei⟩ej = −

1
2 ∑

ij
⟨Rej ,ei η, ei⟩ej,

and this equals the expression in (4.2.12). We conclude that the last two terms
in the expression for R1η coincide and the first one vanishes because it is a
3-form sitting on an identity with 1-forms all around.5 So we have

R1η = −∑
ij
⟨Rei ,ej η, ej⟩ei

5Note that incidentally we have proved the first Bianchi identity:

RX,Y Z + RY,ZX + RZ,XY = 0, X, Y, Z ∈ X (M). (4.2.13)
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= −∑
ij
⟨Rη,ej ei, ej⟩ei

= ∑
ij
⟨Rη,ej ej, ei⟩ei

= ∑
j

Rη,ej ej
def.
= Ric(η),

as promised.⌋

Bochner’s theorem is the prototype of a vanishing theorem in Riemannian
Geometry. We remark that the result, at least in case Ric is positive every-
where, can also be obtained by variational methods. We just have to appeal
to Bonnet-Myers theorem (see [dC], for example) which says, among other
things, that the Riemannian universal cover M̃ of a closed Riemannian man-
ifold M with Ric > 0 everywhere is compact. It follows that π1(M) is finite
and this implies by topology that b1(M) = 0, as desired. One should empha-
size however that in the Bochner’s argument above the important input is the
method of proof, as it can be greatly generalized to other situations where
variational techniques either are not available or their use is comparatively
harder to implement. For example, Bochner’s theorem implies that a torus
Tn cannot carry a metric with quasi-positive Ricci curvature. It is also true
that Tn does not admit a metric with quasi-positive scalar curvature (a much
weaker condition) and we shall derive this later as a consequence of a vanish-
ing theorem for a twisted Dirac operator following an argument of Gromov
and Lawson (see Theorem 10.3.2). On the other hand, Schoen and Yau [SY]
first proved this same result (in low dimensions at least) by using minimal
submanifolds in a way that is reminiscent of the use of geodesics in the proof
of Bonnet-Myers theorem. In fact, one of the big puzzles in Riemannian
Geometry is precisely to understand why many results in the classification
theory of manifolds admitting metrics with positive scalar curvature can be
proved by using either spin or minimal submanifolds techniques.





Chapter 5

Clifford algebras, spin
groups and their
representations

Clifford algebras are, as we shall see, essential when dealing with Dirac type
operators. Moreover, they constitute the natural framework in any discus-
sion of the spin group Spinn, the universal cover of the rotation group SOn
in dimension n ≥ 3. The purpose of this chapter is to present the basic facts
on Clifford algebras and their (complex) representations. It turns out that in
case n = 2k is even, the corresponding (complexified) Clifford algebra Cln
has a unique irreducible representation (Theorem 5.2.1). Since Spinn ⊂ Cln,
this induces by restriction a fundamental representation on Spinn (the fa-
mous spin representation) and, more interestingly, this representation cannot
be realized by lifting any representation of SOn under the universal covering
map γn : Spinn → SOn. When coupled with the topological condition of a
Riemannian manifold M being spin (which we shall meet in Chapter 6 and
essentially requires the existence of a principal Spinn-bundle over M which
double covers PSO

M and restricts to γn along the fibers) this allows us to apply
the associated bundle construction to the situation. We then end up with
a canonical bundle over M, the spinor bundle, on whose sections (spinors)
a natural differential operator, the Dirac operator, acts. Careful analysis of
this operator unravels unexpected connections between geometric and topo-
logical aspects of M which go far beyond the strict realm of Riemannian
Geometry.

53
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5.1 Clifford algebras and spin groups

Unlike vectors or tensors, spinors do not seem to admit an interpretation
in terms of familiar geometric notions. The usual estrategy to probe their
nature is then rather indirect: we first study their endomorphism algebra,
which happens to have a very simple structure.

Definition 5.1.1 Given n ≥ 1, the Clifford algebra Cln is the real unital algebra
over Rn defined by the relations

vw + wv = −2⟨v, w⟩1, v, w ∈ Rn, (5.1.1)

where 1 ∈ Cln denotes the unity and ⟨ , ⟩ is the standard inner product.

Equivalently, if we fix {e1, . . . , en} an orthonormal basis of Rn we can re-
place (5.1.1) by the Clifford relations

e2
i = −1, eiej = −ejei, i ̸= j. (5.1.2)

Notice the strict resemblance with (4.2.7).
Similarly to the tensor and exterior algebras over Rn, Cln can be defined

and characterized in terms of universal properties (see [LM]) but we shall not
pursue this here. We stick instead to this more concrete definition as it has
a more practical appeal. For instance, it follows easily from the presentation
above that dim Cln = 2n. Moreover, as a vector space, Cln is naturally isomor-
phic to the exterior algebra ΛRn: we just have to check that the assignment

ei1 . . . eip ↔ ei1 ∧ . . . ∧ eip (5.1.3)

does the job since the elements eI = ei1 . . . eip , with I = {1 ≤ i1 < . . . < ip ≤
n}, 1 ≤ p ≤ n, generate Cln. Here of course we set e∅ = 1.

It is easily verified for instance that Cl0 = R, Cl1 = C and Cl2 = H, the
quaternions, which looks promising. A systematic understanding of Cln for
general n starts with the following proposition.

Proposition 5.1.1 Cln is a Z2-graded algebra in the sense that there exists a decom-
position

Cln = Cl0n ⊕Cl1n (5.1.4)

with
Cl0nCl0n ⊂ Cl0n, Cl0nCl1n ⊂ Cl1n, Cl1nCl1n ⊂ Cl0n. (5.1.5)

Proof. Just define Cl0n (respect. Cl1n) to be the subspace generated by the
simple elements eI with ♯I even (respect. odd).⌋

We call the terms in (5.1.4) the even and odd parts of Cln, respectively.
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Corollary 5.1.1 Cl0n is a subalgebra of Cln of dimension 2n−1. In fact, Cl0n is iso-
morphic (as an algebra) to Cln−1.

Proof. The isomorphism Φ : Cln−1 → Cl0n is given by Φ(a) = a0 + a1en,
where a = a0 + a1 is the Z2-decomposition of a.⌋

From this we see the possibility of approaching the classification of Clif-
ford algebras by induction and this is the route we shall take.

We shall find it useful later to determine the center Z(Cln) = {a ∈
Cln; aa′ = a′a, a′ ∈ Cln} of Cln. We shall formulate this in terms of the Z-
grading

Cln = Cl(0)n ⊕Cl(1)n ⊕ . . .⊕Cl(n)n (5.1.6)

coming from (5.1.3). In other words, under the canonical vector space iden-
tification Cln = ΛRn we have Cl(p)

n = ΛpRn. In particular, Cl(1)n = Rn,
considered as a subspace of Cln in the obvious way.

Proposition 5.1.2 If n is even, Z(Cln) = Cl(0)n , and if n is odd, Z(Cln) = Cl(0)n ⊕
Cl(1)n . Thus, in any case, Z(Cln) ∩Cl0n = Cl(0)n .

Proof. Clearly, Z(Cln) = {a ∈ Cln; av = va, v ∈ Rn}. Now, if eI = ei1 . . . eip

and j /∈ I we have
eIej = (−1)pejeI ,

and if j ∈ I,
eIej = (−1)p−1ejeI .

The result follows.⌋

We now shift our attention to Cl∗n, the group of multiplicative invertible
elements in Cln. If v ∈ Rn, v ̸= 0, we have v−1 = −v/|v|2 and Rn − {0} ⊂
Cl∗n. In particular, Sn−1 ⊂ Cl∗n.

Definition 5.1.2 The pin group Pinn is the subgroup of Cl∗n generated by the unit
sphere Sn−1, and the spin group is the even part of Pinn: Spinn = Pinn ∩Cl0n.

The pin group will have an ancillary interest here, as we shall be mainly
concerned with Spinn. We are about to show that Spinn is a compact con-
nected Lie group closely related to SOn, but for this we need a more workable
definition. We start by noticing that the operation on basic elements

ei1 . . . eip 7→ eip . . . ei1

extends uniquely to an anti-isomorphism a 7→ at of Cln. This is the ‘trans-
pose’ map.
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Proposition 5.1.3 We have

Spinn = {a ∈ Pinn; aat = 1} = {v1 . . . vp; vi ∈ Sn−1, p even}.

In particular, Spinn ⊂ Cl0n.

Proof. By definition, a ∈ Pinn if and only if a = v1 . . . vp, with vi ∈ Sn−1.
Thus

aat = v1 . . . vpvp . . . v1 = (−1)p,

and aat = 1 if and only if p is even.⌋

We now consider the basic homomorphism γ : Pinn → GLn(R) given by

γ(a)v = avat, a ∈ Pinn, v ∈ Rn.

Proposition 5.1.4 γ(Pinn) = On.

Proof. We first look at the image of Sn−1 under γ. If a ∈ Sn−1 and v ∈ Rn we
decompose v = λa + a′ with λ ∈ R and ⟨a, a′⟩ = 0. We then compute

γ(a)v = avat

= a(λa + a′)a (at = a since a ∈ Sn−1)

= λa3 + aa′a

= −λa + a′

since aa′ = −a′a− 2⟨a, a′⟩ = −a′a. Hence, γ(a) is the reflection with respect
to the hyperplane perpendicular to a and the result follows from the classical
fact that any element in On is a product of such reflections.1⌋

Corollary 5.1.2 γn(Spinn) = SOn, where γn = γ|Spinn
.

Proof. This is indeed a consequence of the proof and Proposition 5.1.3, since
any element in SOn is a product of an even number of reflections.⌋

Proposition 5.1.5 If n ≥ 3, Spinn is compact, connected, simply connected and
γn : Spinn → SOn is the universal double covering map.

1Notice that this proof actually justifies the definition of γ i.e. that γ(a) ∈ GLn(R) for
a ∈ Pinn.
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Proof. We have a ∈ ker γn if and only if va = av for any v ∈ Rn since
at = a−1 by Proposition 5.1.3. But this means by Proposition 5.1.2 that a ∈
Spinn ∩ Z(Cln) ⊂ Cl0n ∩ Z(Cln) = Cl(0)n = R and hence ker γn = {1,−1}.
This already shows that Spinn is compact and γn is a two-sheeted covering
map. But the arc α(t) = cos t + sin t e1e2, 0 ≤ t ≤ π, lies entirely in Spinn and
connects the two elements in ker γ0. Since π1(SOn) = Z2 this implies that
Spinn is connected and γn is the (nontrivial) universal covering map.⌋

We have thus managed to explicitly describe the universal covering map
γn : Spinn → SOn, n ≥ 3. For later reference, we insert here a few comments
on Lie algebras. First recall that, since at = a−1 for a ∈ Spinn, we have
γn(v) = ava−1, v ∈ Rn. Taking the derivative at e ∈ Spinn, we obtain a Lie
algebra isomorphism

γn∗ : spinn → son.

We want to express this in terms of appropriate basis. Fix a frame {e1, . . . , en}
and recall from the discussion soon before (1.2.13) that {ei ∧ ej}i<j is a basis
for son. As for spinn we have

Proposition 5.1.6 {eiej}i<j is a basis for spinn
∼= Cl(2)n .

Proof. Consider δij(t) = (ei cos t + ej sin t)(−ei cos t + ej sin t) = cos 2t +
sin 2t eiej. Clearly, δij(R) ⊂ Spinn, δij(0) = e and δ′ij(0) = 2eiej. Hence,
spinn contains the subspace generated by {eiej}i<j, whose dimension equals
n(n− 1)/2 = dim son = dim spinn.⌋

Proposition 5.1.7 γn∗(eiej) = 2ei ∧ ej.

Proof. This time we consider δij(t) = cos t + sin t eiej. Then δij(R) ⊂ Spinn,
δij(0) = e, δ′ij(0) = eiej and (δ−1

ij )′(0) = −eiej. On the other hand, for v ∈ Rn,

we have γn
(
δij(t)

)
v = δij(t)vδij(t)−1 and hence

γn∗(eiej)v =
d
dt

γn
(
δij(t)

)
v|t=0

= eiejv− veiej

= eiejv + (eiv + 2⟨ei, v⟩)ej

= eiejv− eiejv− 2⟨ej, v⟩ei + 2⟨ei, v⟩ej

= 2(ei ∧ ej)(v),

as desired.⌋
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5.2 Representations of Clifford algebras and spin
groups

As explained in the Introduction to this chapter, we are looking for a funda-
mental representation τ : Spinn → Aut(V) which is not the lift of a repre-
sentation of SOn (notice that this will happen if and only if τ(−1) = −IdV).
Since Spinn ⊂ Cln, it is natural to obtain τ as the restriction of a suitable
representation of Cln. As a matter of fact, it is convenient here (and it suffices
for our purposes) to complexify the whole picture.

Definition 5.2.1 The complex Clifford algebra is obtained after tensoring with C
the real Clifford algebra Cln:

Cln = Cln ⊗C,

the tensor product being taken over R.

In other words, Cln is defined exactly as Cln in terms of a frame (in par-
ticular, the Clifford relations (5.1.2) remain untouched) except that now we
allow complex coefficients. We have the natural inclusion Cln ⊂ Cln and the
gradings (5.1.5) and (5.1.6) have direct counterparts in the complex case. In
particular, with obvious notation, we have Spinn ⊂ Cl0n ⊂ Cln and Corollary
5.1.1 translates into

Cl0n = Cln−1. (5.2.7)

Moreover, the complexified version of Proposition 5.1.2 remains equally true.
We now turn to complex representations of Cln.

Definition 5.2.2 A complex representation of a complex unital algebraA is an alge-
bra homomorphism ζ : A → Hom(V) where V is a finite dimension complex vector
space.

We also say that V is a (left) A-module (or simply a module if no con-
fusion arises). A representation ζ as above is irreducible if there exists no
nontrivial proper subspace V0 ⊂ V such that ζ(a)(V0) ⊂ V0 for any a ∈ A.
Otherwise, ζ is said to be reducible.2 Finally, a representation ζ is called com-
pletely reducible if there exists a direct sum decomposition

V = V1 ⊕ . . .⊕Vr

of V into irreducible submodules. There is a priori no reason why a represen-
tation of an arbitrary algebra should be completely reducible, but of course
the situation for Clifford algebras is different.

2In this context, the terminology irreducible (or reducible) module should be clear. More-
over, we often represent ζ(a)v simply by av. And of course we will be interested in classifying
representations up to the obvious equivalence relation.
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Proposition 5.2.1 Any representation of Cln is completely reducible.

Proof. Consider the Clifford group Cliffn formed by all the elements of the
type ±ei1 . . . eip , 0 ≤ p ≤ n. This is a finite multiplicative group of order
2n+1 and clearly there exists a one-to-one correspondence between algebra
representations ζ : Cln → Hom(V) and group representations ζ : Cliffn →
Aut(V) with ζ(−1) = −IdV . This means that we just have to check that
any representation of Cliffn is completely reducible. In effect, let ζ be such a
representation and let ⟨ , ⟩ be any hermitian product on V. Define

⟨⟨v, w⟩⟩ = 1
2n+1 ∑

g∈Cliffn

⟨ζ(g)v, ζ(g)w⟩, v, w ∈ V.

It follows that ζ acts by isometries with respect to ⟨⟨ , ⟩⟩. In particular, if V1
is a submodule then V⊥1 = {v ∈ V; ⟨⟨v, w⟩⟩ = 0, w ∈ V1} is a submodule as
well. The result follows by splitting off one irreducible module at a time.⌋

The passage from ⟨ , ⟩ to ⟨⟨ , ⟩⟩ above is an example of the averaging method
in representation theory. In this guise, it says that any representation of a
finite group G can be made unitary and consequently is completely reducible.
Both assertions also hold true more generally if G is compact: we just define

⟨⟨v, w⟩⟩ =
∫

G
⟨gv, gw⟩dg, v, w ∈ V,

where dg is the Haar measure of G. For us, an important application of this
is

Proposition 5.2.2 Let ζ : Spinn → Aut(V) be a representation induced from a
representation of ζ : Cl0n → End(V) via the inclusion Spinn ⊂ Cl0n. Then ζ is
irreducible if and only if ζ is irreducible.

Proof. Clearly, ζ irreducible implies ζ irreducible. For the converse, assume
ζ irreducible and ζ reducible. Since Spinn is compact, by the remarks above
we get a direct sum decomposition

V = V1 ⊕ . . .⊕Vr, r ≥ 2, (5.2.8)

into irreducible Spinn-modules. But each Vi is a Cl0n-module because Spinn
generates Cl0n. This means that (5.2.8) is also a decomposition into Cl0n-
modules, a contradiction.⌋
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We are now ready to present the main theorem in the representation the-
ory of complex Clifford algebras. Its proof uses induction and a crucial in-
gredient is the complex volume element

Γn = i[
n+1

2 ]e1 . . . en. (5.2.9)

This does not depend on the choice of frame and its definition makes essential
use of the complexification. After a simple computation we get

Proposition 5.2.3 Γ2
n = 1 and Γnv = (−1)n+1vΓn for any v ∈ Rn. In particular,

Γn ∈ Z(Cln) if n is odd and Γn ∈ Z(Cl0n) if n is even.

This is going to play a key role in the proof of the following classification
theorem (see [Wu]).

Theorem 5.2.1 If n = 2k there exists a unique irreducible module of dimension 2k

over Cln. If n = 2k + 1, there exist exactly two inequivalent irreducible modules of
dimension 2k over Cln.

Proof. We have Cl0 = Cl0 ⊗ C = R⊗ C = C and this settles the theorem
in case n = 0. Now assume the theorem holds for n = 0, 1, . . . , 2k − 2, and
let V be a Cl2k−1-module. By Proposition 5.2.3, Γ2k−1 = ik−1e1 . . . e2k−1 ∈
Z(Cl2k−1) and Γ2

2k−1 = 1. This implies a decomposition

V = V+ ⊕V−

into Cl2k−1-modules with V± = {x ∈ V; Γ2k−1x = ±x}. Since Cl2k−2 ⊂
Cl2k−1, both V+ and V− are Cl2k−2-modules and the induction hypothesis
gives us decompositions

V± =
⊕

j
W±j (5.2.10)

into irreducible Cl2k−2-submodules of dimension 2k−1. But x ∈W±j implies

e2k−1x = ±e2k−1Γ2k−1x = ∓ik−1e1 . . . e2k−2x ∈W±j ,

and this means that each W±j is a Cl2k−1-module. Moreover, as Cl2k−1-

modules, W+
j ̸= W−j (since left multiplication by e2k−1 gives distinct results)

and the W+
j ’s (respectively, W−j ’s) are mutually equivalent (since left mul-

tiplication by e2k−1 gives the same result). This proves the theorem in this
case.
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Now assume the theorem holds for n = 0, 1, . . . , 2k − 1 and let V be a
Cl2k-module. As before, since Cl2k−1 ⊂ Cl2k, V is a Cl2k−1-module as well
and the induction hypothesis splits V into a sum of Cl2k−1-modules

V = V+ ⊕V−.

Here, V± is a sum of irreducible Cl2k−1-modules W±j as in (5.2.10). Now,
since Γ2k−1e2k = −e2kΓ2k−1, we have

µ(V±) ⊂ V∓,

where µ denotes left multiplication by e2k. Setting Wj = W+
j ⊕ µ(W+

j ) we
finally get a decomposition

V =
⊕

j
Wj

into mutually equivalent Cl2k-modules of dimension 2k.⌋

After this, we are ready to introduce the class of representations of Spinn
we have been searching for.

Definition 5.2.3 The spin representation τ : Spinn → Aut(Ψ) is obtained by re-
stricting any irreducible representation of Cln under the inclusion Spinn ⊂ Cln.

This should be promptly appended by

Proposition 5.2.4 If n = 2k + 1, the equivalence class of τ does not depend on
which irreducible representation of Cln we take. The corresponding module is irre-
ducible and of dimension 2k. If n = 2k, the spin representation splits as a sum

Ψ = Ψ+ ⊕Ψ− (5.2.11)

of two inequivalent irreducible modules of dimension 2k−1. We have Ψ± = {x ∈
Ψ; Γ2kx = ±x} and the ‘exchange relations’

ei ·Ψ± ⊂ Ψ∓, i = 1, . . . , n, (5.2.12)

hold. Moreover, none of the representations above descends to a representation of
SOn.

Proof. Let us examine the case n = 2k + 1 first. Here, according to Theorem
5.2.1, we have two inequivalent representations τ± : Cl2k+1 → Hom(W±),
each of dimension 2k. Taking into account the inclusions Spinn ⊂ Cl02k+1 ⊂
Cl2k+1 we consider τ̃± = τ±|Cl0

2k+1
. But Cl02k+1 = Cl2k (Proposition 5.1.1)
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and Theorem 5.2.1 implies that, as Cl02k+1-modules, τ̃+ = τ̃−. If we restrict
this to Spinn, following the prescription in Definition 5.2.3, then by Proposi-
tion 5.2.2 no further decomposition arises and then τ = τ̃+ = τ̃− as Spinn-
representations. This proves the result in this case.

For the case n = 2k, we have by Theorem 5.2.1 a unique irreducible
representation τ : Cl2k → Hom(Ψ) with dim Ψ = 2k. Restricting this to
Cl02k = Cl2k−1, we get a splitting τ = τ+ ⊕ τ− for irreducible representa-
tions τ± : Cl02k → Hom(Ψ±), dim Ψ± = 2k−1. On the other hand, we have
Γ2

2k = 1 and Γ2k ∈ Z(Cl02k) by Proposition 5.2.3. Thus, as a Cl02k-module,
Ψ splits as a sum of irreducible inequivalent modules corresponding to the
±1-eigenspaces of (left multiplication by) Γ2k. Clearly, these eigenspaces can
be identified to the modules Ψ± above. Again, restricting this to Spinn no
further decomposition arises and τ = τ+ ⊕ τ− as Spinn-representations, as
desired.

Finally, (5.2.12) follows from Proposition 5.2.3 as Γ2k anti-commutes with
any v ∈ Rn, and the last assertion follows from the fact that the various
representations we started off send −1 to −Id.⌋

The representations τ± : Spinn → Aut(Ψ±) arising in the proposition are
called the half-spin representations and elements in Ψ = Ψ+ ⊕ Ψ− are usually
termed spinors.

From now on we assume n = 2k as this is the only case considered in
these notes. It is important here to complement the abstract representation
theory above with a more concrete description. For this notice that Cln has
a natural representation Ξ : Cln → End(Cln) given by multiplication on the
left. This is called the regular representation and enables us to consider Cln as
a left module over itself. Clearly, irreducible submodules of Cln under the
regular representation correspond to minimal left ideals in Cln. The theory
above then implies a decomposition

Cln = Ψ⊕ . . .⊕Ψ︸ ︷︷ ︸
2k times

into mutually equivalent minimal left ideals of dimension 2k. It is often con-
venient to use the minimal ideal Ψ above as a model for the spin representa-
tion since it is specially well suited for computations. For example, it allows
us to introduce a natural inner product on Ψ. We first introduce a natural in-
ner product ⟨ , ⟩ on Cln by declaring that the monomials ei1 . . . eip , 0 ≤ p ≤ n,
constitute an orthonormal basis. This is by its turn extended in the obvious
way as a hermitian product to Cln = Cln ⊗C. In particular, the representa-
tion cl(µn) : SOn → Aut(Cln) given on simple elements by

cl(µn)(g)(v1 . . . vp) = µn(g)v1 . . . µn(g)vp
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is unitary. Moreover, since Ψ ⊂ Cln as a minimal left ideal this induces a
natural hermitian product on Ψ and τ : Spinn → Aut(Ψ) is unitary with
respect to this product. To prove this we just have to observe that elements in
Spinn are products of elements in Sn−1 and this leaves us with the checking
that left multiplication by unit elements is an isometry:

⟨ua, ua′⟩ = ⟨a, a′⟩, u ∈ Sn−1, a, a′ ∈ Ψ, (5.2.13)

and this is immediate.
But one can not finish our discussion of spin representations without men-

tioning an even more explicit description of the spinor space Ψ. Set V = Rn

and introduce an orthogonal complex structure on V. This is a real linear or-
thogonal map J satisfying J2 = −IdV . Extending this to V⊗C in the obvious
way we get a decomposition

V ⊗C = W ⊕W (5.2.14)

into the ±i-eigenspaces of J. If the inner product ⟨ , ⟩ on V is bilinearly
extended to V ⊗C we see easily that ⟨b1, b2⟩ = ⟨c1, c2⟩ = 0, bi ∈ W, ci ∈ W.
Now, if we decompose a = b + c ∈ V ⊗C according to (5.2.14) we can let this
act on V ⊗C by av =

√
2(b ∧ v + c ∧∗ v). Since b2 = c2 = 0 and bc + cb =

−2⟨b, c⟩, a standard argument using universality implies that this extends
uniquely to a representation of Cln on ΛW which must be equivalent to Ψ by
dimensional reasons. In fact, Cln = End(ΛW) and this realizes Cln as a full
matrix algebra: Cln ∼= M2k (C). Actually, we have

Cln = End(Ψ) = Ψ∗ ⊗Ψ = Ψ⊗Ψ, (5.2.15)

where the asterisk means duality and the last isomorphism is given by the
metric. Notice that (5.2.15) justifies the claim made above that the Clifford
algebra is the endomorphism algebra of the space of spinors.

Given this state of affairs, it is natural to ask whether the above picture
can be globalized somehow. More precisely, given a Riemannian manifold M
of dimension n = 2k, we can form the Clifford algebra bundle

Cl(M) = PSO
M ×cl(µn) Cln, (5.2.16)

which is a bundle of Clifford algebras in the sense that, for each x ∈ M, the
fiber Cl(M)x is the complex Clifford algebra over TxM ∼= Rn. We can then
ask whether there exists a bundle S over M such that, for each x ∈ M, Sx is
an irreducible module over Cl(M)x and Cl(M) = End(S).3 The funny thing

3Recall that End(E) = Hom(E , E).
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here is that there exist topological obstructions to the existence of S . In the
next chapter we shall meet the class of spin manifolds, for which the bundle
S is always available.

For further reference, we remark that since the representation cl(µn) is
unitary with respect to the natural hermitian inner product on Cln intro-
duced above we have by Proposition 3.3.2 that Cl(M) comes equipped with
a natural metric ⟨ , ⟩ and compatible connection ∇c. Moreover, pointwise
Clifford multiplication gives an algebra structure to Γ(Cl(M)). Finally, Clif-
ford multiplication Cln ×Cln → Cln is a map of SOn-modules and the usual
Leibniz rule for the derivative of a bilinear form together with (3.3.20) allow
us to conclude

Proposition 5.2.5 The connection ∇c is a derivation on Γ(Cl(M)), which means
that

∇c(a · a′) = (∇ca) · a′ + a · ∇ca′, a, a′ ∈ Γ(Cl(M)). (5.2.17)



Chapter 6

Spin bundles, spin manifolds
and the Dirac operator

In this chapter we shall introduce the important concept of a spin bundle.
When applied to the case E = TM, this is a topological condition which
makes it possible to globally define the Dirac operator on a Riemannian man-
ifold starting from the spin representation τ : Spinn → Aut(Ψ) considered
in the last section. Our presentation is an offspring of classical obstruction
theory and consequently some familiarity with the basic constructions in Al-
gebraic Topology (notably Čech cohomology) is assumed.

6.1 Spin bundles and spin manifolds

We start by recalling the classification theory of principal G-bundles over a
manifold M (see [St]). If M is covered by a family of open sets U = {Uα}α∈Λ
such that a given principal G-bundle P is trivial when restricted to each Uα

(we say that P is adapted to U ) then whenever Uα ∩Uβ ̸= ∅ we can define
the corresponding transition function ξαβ : Uα ∩Uβ → G by (2.1.1) and these
satisfy the cocycle conditions (2.1.2). Technically speaking, the set of data
(U , ξαβ) defines a Čech 1-cocycle with coefficients in G and completely deter-
mines P up to equivalence. This means that if some other principal G-bundle
P′ adapted to U is given then P is equivalent to P′ if and only if there exists
a family of maps ξα : Uα → G satisfying (self-explanatory notation)

ξ ′αβ = ξ−1
α ξαβξα (6.1.1)

65
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on Uα ∩Uβ. The equivalence relation imposed by (6.1.1) defines a set H1(M,U )
parametrizing the equivalence classes of principal G-bundles adapted to U .

By taking refinements of U we eventually succeed in defining

H1(M, G) = lim
U

H1(M,U ), (6.1.2)

where the direct limit is taken over the set of all open coverings of M. If
G is abelian, (6.1.2) defines the first Čech cohomology group of M with
coefficients in G, but in general H1(M, G) is just a pointed space with a
distinguished point corresponding to the trivial G-bundle. In any case, the
argument sketched above leads to the following classification theorem.

Theorem 6.1.1 H1(M, G) parameterizes the set of principal G-bundles over M.

We now turn abruptly to obstruction theory. We assume that our manifold
M has been triangulated and we denote by M(i), i = 0, 1, . . . , n, the union
of the j-skeletons of the given triangulation for j = 0, 1, . . . i. Let E be a real
vector bundle over M of rank r and assuming that, for a given i, the restriction
E|M(i−1) is trivial, we pose the important question: under which conditions (if
any) is it possible to extend this trivialization to M(i)?

To answer this, we assume that E admits a reduction to a Lie group
G ⊂ Glr(R). In fact, after introducing a metric on E we can assume with-
out loss of generality that G ⊂ Or. We then pass to the frame bundle
PO
E of orthonormal frames of E which, under our assumption, happens to

admit a reduction to a principal G-bundle over M, say PG
E . Clearly, for

each i, E|M(i) is trivial if and only if PG
E |M(i) is trivial as well. Returning

to our question, the triviality of PG
E |M(i−1) translates into the existence of a

section σ : M(i−1) → PG
E |M(i−1) . We then let ∆i ⊂ M(i) be an i-simplex

and consider its boundary ∂∆i ≃ Si−1. Since by assumption σ restricts
to a map σ : ∂∆i → PG

E |∂∆i and PG
E |∂∆i = ∂∆i × G we end up with a

map σ : ∂∆i → G defining an element [σ] ∈ πi−1(G). Clearly, σ admits
an extension to ∆i if and only if [σ] vanishes as an element of πi−1(G).
More generally, if Ci(M, πi−1(G)) denotes the space of i-cochains with co-
efficients in πi−1(G) then, given a section σ : Mi−1 → PG

E |M(i−1) correspond-
ing to a trivialization of PG

E |M(i−1) , the construction above yields an element
[σ] ∈ Ci(M, πi−1(G)) which is always an i-cocycle in the sense that δi[σ] = 0
where δi : Ci(M, πi−1(G)) → Ci+1(M, πi−1(G)) is the usual coboundary
map. In this context, the basic result in obstruction theory we shall use (cf.
[Wh]) is that σ can be extended to M(i) if and only if [σ] is a coboundary, i.e.,
[σ] = δi−1β for some β ∈ Ci−1(M, πi−1(G)). In other words, σ|M(i−1) defines
an element [σ] ∈ Hi(M, πi−1(G)), the ith Čech cohomology group of M with
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coefficients in πi−1(G), which happens to be the obstruction to extending σ
to M(i) in the sense that the extension actually takes place if and only if the
‘obstruction element’ [σ] vanishes in Hi(M, πi−1(G)).1

The theory sketched above is the key to understanding the notion of a
spin bundle. But first let us see how orientability fits in this context. As
before, we introduce a Riemannian metric on E so that the corresponding
frame bundle PO

E is a principal Or-bundle over M. Clearly, PO
E |M(0) is always

trivial and, as we have seen, the obstruction to extending this to M(1) lies
in H1(M, π0(Or)) = H1(M,Z2). The corresponding obstruction element is
the first Stiefel-Whitney class of E , denoted by w1(E). In order to relate this to
orientability, we bring about the short exact sequence of coefficient groups

0→ SOr
i→ Or

j→ Z2 → 0,

which induces a long exact sequence of pointed spaces

. . .→ H1(M, SOr)
i∗→ H1(M, Or)

j∗→ H1(M,Z2)→ . . . (6.1.3)

Recalling that H1(M, Or) parameterizes the set of principal Or-bundles over
M so that in particular PO

E ∈ H1(M, Or), we have

Proposition 6.1.1 w1(E) = j∗(PO
E ).

The proof of this (and of Proposition 6.1.2 below) can be carried out
by looking at the axiomatic characterization of Stiefel-Whitney classes (see
[LM]).

By the exactness of (6.1.3) we see that w1(E) = j∗(PO
E ) = 0 if and only

if PO
E = i∗(P′) for some principal SOr-bundle P′, i.e. if and only if E is

orientable. Thus, w1 is the obstruction to orientability.
Now assume E is oriented and Riemannian, so that PO

E admits a reduction
to an SOr-bundle, say PSO

E , and there exists a section σ : M(1) → PSO
E |M(1) . The

obstruction to extending this to M(2) lies in H2(M, π1(SOr)) = H2(M,Z2)
(here we assume r ≥ 3) and is the second Stiefel-Whitney class of E , denoted
w2(E). As before, we have a short exact sequence

0→ Z2 → Spinr
γr→ SOr → 0

1Recall that all the homotopy groups of a Lie group are abelian and hence Hi(M, πi−1(G))
is a πi−1(G)-module indeed. Moreover, in this section we assume for convenience that the local
system of coefficients defined by PG

E → M is simple in the sense that π1(M), the fundamental
group of M, acts trivially on the fibers of PG

E → M, as this implies that the corresponding
cohomology with local coefficients may be identified to the usual Čech cohomology (see [Wh]
for more on this point).
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with corresponding long exact sequence

. . .→ H0(M, SOr)
∂∗→ H1(M,Z2) → H1(M, Spinr)

γr∗→
γr∗→ H1(M, SOr)

∂∗→ H2(M,Z2)→ . . .
(6.1.4)

where ∂∗ is the usual coboundary operator.

Proposition 6.1.2 w2(E) = ∂∗(PSO
E ).

From the exactness of (6.1.4) we see that w2(E) = ∂∗(PSO
E ) = 0 if and only

if there exists a principal Spinr-bundle PSpin
E over M such that γr∗(PSpin

E ) =

PSO
E . Since from the construction of (6.1.4) PSO

E is obtained from PSpin
E as the

quotient by the Z2-action on fibers we get

Proposition 6.1.3 Under the above conditions, the following sentences concerning
an oriented real vector bundle E of rank r over M are equivalent:

1. w2(E) = 0;

2. E|M(2) is trivial;

3. There exists a Spinr-bundle PSpin
E over M and a nontrivial two-sheeted cover-

ing map γ : PSpin
E → PSO

E such that the diagram

PSpin
E

γ−→ PSO
E

↘ ↓
M

commutes and γ(pg) = γ(p)γr(g), for p ∈ PSpin
E and g ∈ Spinr.

If any of the conditions above happens we say that E is a spin bundle.
In particular, an oriented Riemannian manifold of dimension n ≥ 3 is said
to be spin if its tangent bundle TM is spin in the above sense. We remark
that H0(M, SOr) = π0(SOr) is trivial and from (6.1.4) we see that the set of
spin structures on E (corresponding to the various elements in H1(M, Spinr)
mapped onto PSO

E ) is parameterized by H1(M,Z2). We will not go into the
question of when a given manifold (or vector bundle) admits a spin struc-
ture, except for the following result, whose proof, taking into account the
discussion above, is immediate.

Proposition 6.1.4 Any parallelizable manifold (in particular any Lie group) is spin.
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6.2 The Dirac operator on spin manifolds

We now turn to the geometry of spin manifolds. Our intention is to justify
our claim that on a spin manifold M of dimension n = 2k the Dirac operator
is globally defined and enjoys nice properties (recall the discussion at the
Introduction to Chapter 5). In case M is spin we fix a spin structure so we get
a Spinn-bundle PSpin

M over M and a two-sheeted covering map γ : PSpin
M →

PSO
M satisfying the condition in Proposition 6.1.3. If ω ∈ A1(PSO

M , son) is the
Levi-Civita connection on the frame bundle π : PSO

M → M, then we lift this

to PSpin
M under γ in order to obtain a connection ωs = γ∗ω ∈ A(PSpin

M , son),
the so-called spin connection.2 With the spin representation τ at hand, we can
apply the associated bundle construction to the situation and form the spinor
bundle over M:

S(M) = PSpin
M ×τ Ψ.

This is a complex vector bundle of rank 2k over M. Elements in Γ(S(M)) are
usually referred to as spinors. Clearly, for each x ∈ M, S(M)x is an irreducible
module over Cl(M)x and in fact (compare with (5.2.15))

Cl(M) = End(S(M)) = S∗(M)⊗ S(M) = S(M)⊗ S(M). (6.2.5)

In particular, Γ(S(M)) is a module over Γ(Cl(M)). Since Ψ is unitary, S(M)
comes equipped with a natural metric ⟨ , ⟩ and compatible connection ∇s.
We highlight here two basic properties of these structures:

1. Clifford multiplication by unit tangent vectors is an isometry:

⟨uφ, uφ′⟩ = ⟨φ, φ′⟩, u ∈ X (M), |u| = 1, φ, φ′ ∈ Γ(S(M)). (6.2.6)

2. The natural connections on Cl(M) and S(M) are compatible with the
Γ(Cl(M))-module structure on Γ(S(M)):

∇s(aφ) = ∇ca · φ + a∇s φ, a ∈ Γ(Cl(M)), φ ∈ Γ(S(M)). (6.2.7)

The first property follows from (5.2.13) and the second one from the fact
that

TM = PSpin
M ×µn◦γn Rn

and that left Clifford multiplication Rn ⊗Ψ→ Ψ is a map of Spinn-modules.

2In the discussion below, we rely upon the notation of Chapter 3 and will use the superscript
s to refer to the objects (covariant derivative, curvature, etc.) coming from the spin connection.
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We are now finally ready to introduce the main character of our story, the
Dirac operator ∂/ : Γ(S(M))→ Γ(S(M)), defined by the sequence of arrows

Γ(S(M))
∇s
→ Γ(T∗M⊗ S(M))

⟨ , ⟩→ Γ(TM⊗ S(M))
·→ Γ(S((M)),

where the dot means Clifford multiplication. Alternatively, in terms of a local
frame for TM,

∂/ =
n

∑
i=1

ei · ∇s
ei

(6.2.8)

We see that ∂/ is a first order linear differential operator.
Further properties of ∂/ can be determined by noticing that, since u2 = −1,

(6.2.6) means that
⟨uφ, φ′⟩ = −⟨φ, uφ′⟩. (6.2.9)

For φ, φ′ ∈ Γ(S(M)) we now compute at x ∈ M (after choosing a normalized
frame):

⟨∂/φ, φ′⟩ − ⟨φ, ∂/φ′⟩ = ∑
i
⟨ei∇s

ei
φ, φ′⟩ − ⟨φ, ei∇ei φ

′⟩

(6.2.9)
= ∑

i
⟨ei∇s

ei
φ, φ′⟩+ ⟨ei φ,∇ei φ

′⟩

(6.2.7)
= ∑

i
⟨∇s

ei
(ei φ), φ′⟩+ ⟨ei φ,∇s

ei
φ′⟩

= ∑
i

ei⟨ei φ, φ′⟩ = div X,

where compatibility was used in the last identity and X ∈ X (M) is defined
by ⟨X, Y⟩ = ⟨∇Y φ, φ′⟩. Integrating this over M (assuming closedness) we see
that ∂/ is formally selfadjoint:

(∂/φ, φ′) = (φ, ∂/φ′).

However, in order to have an interesting index theory, one has to break
this symmetry, and this is accomplished by considering the half-spinor bundles

S±(M) = PSpin
M ×τ± Ψ±.

From (5.2.11), one clearly has S(M) = S+(M) ⊕ S−(M), a decomposition
preserved by ∇s and orthogonal with respect to ⟨ , ⟩. Coupled with (5.2.12),
this implies, in view of (6.2.8),

∂/
(
Γ(S±(M))

)
⊂ Γ(S∓(M))
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and this enables us to consider the Atiyah-Singer-Dirac operator

∂/+ = ∂/|Γ(S+(M)) : Γ(S+(M))→ Γ(S−(M)), (6.2.10)

whose formal adjoint3 is

∂/− = ∂/|Γ(S−(M)) : Γ(S−(M))→ Γ(S+(M)). (6.2.11)

We now define
ind ∂/+ = dim ker ∂/+ − dim ker ∂/−, (6.2.12)

the index of ∂/+. It is precisely this integer that the Atiyah-Singer formula
computes in terms of topological-geometric data.4

Let us derive a few preliminary consequences of the above constructions.
To this effect, we consider the Dirac Laplacian

∆ = ∂/2 : Γ(S(M))→ Γ(S(M)).

This a second order selfadjoint differential operator and a computation en-
tirely similar to the one leading to (4.2.10) gives

∆ = ∇s∗∇s +R, (6.2.13)

where ∇s∗∇s : Γ(S(M)) → Γ(S(M)) is the Bochner Laplacian on S(M)
(see (4.2.8)) and R : Γ(S(M)) → Γ(S(M)) is a selfadjoint algebraic operator
acting linearly on fibers by

R =
1
2

n

∑
i,j=1

eiejRs
ei ,ej

, (6.2.14)

and Rs is the curvature tensor of S(M) with respect to the spin connection
∇s. Thus, in order to determine the 0th-order in (6.2.13) one has to compute
Rs.

For this one has to express Ωs in terms of a local frame e = (e1, . . . , en) for
TM. We first observe that by (3.3.21) with ρ = µn we have RX,Y = Ω(X̃, Ỹ)
where π∗(X̃) = X and π∗(Ỹ) = Y (see the comment following Proposition
3.3.3). Moreover, we can assume that X̃ (respect. Ỹ) is an extension of e∗(X)

3This means of course that (∂/+ψ+, ψ−) = (ψ+, ∂/−ψ−) for ψ± ∈ Γ(S±(M)).
4The closedness of M implies, via elliptic theory, that both terms on the righthand side of

(6.2.12) are finite (see Section 9.2 below). It is clear furthermore that all the dimensions appearing
in the definition of the index should be computed over C.
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(respect. e∗(Y)) around the image of e. In terms of the standard basis for son,
all of this means that

Ω(X̃, Ỹ) = ∑
k<l
⟨RX,Yek, el⟩ek ∧ el = ∑

k<l
Θkl(X, Y)ek ∧ el

= ∑
k<l

e∗Ωkl(X, Y)ek ∧ el = ∑
k<l

Ωkl(e∗X, e∗Y)ek ∧ el

= ∑
k<l

Ωkl(X̃, Ỹ)ek ∧ el ,

which we rewrite simply as

Ω = ∑
k<l

Ωkl ⊗ ek ∧ el .

On the other hand, as for the curvature form Ωs on PSpin
M associated to ωs,

we have
Ωs = dωs + ωs ∧ωs = γ∗(dω + ω ∧ω) = γ∗(Ω),

and since γ = γn along the fibers, it follows from Proposition 5.1.7 that

Ωs =
1
2 ∑

k<l
Θkl ⊗ ekel .

We now apply again (3.3.21) with ρ = τ (recalling that the spin represen-
tation τ : Spinn → Aut(Ψ) is induced by left Clifford multiplication) to get
Rs

X,Y = Ωs(X̃, Ỹ).5 From this we obtain

Rs
X,Y =

1
2 ∑

k<l
Θk,l(X, Y)ekel

=
1
2 ∑

k<l
⟨Rek ,el X, Y⟩ekel

=
1
4 ∑

k,l
⟨Rek ,el X, Y⟩ekel ,

and inserting this in (6.2.14) (with X = ei and Y = ej),

R =
1
8 ∑

i,j,k,l
⟨Rei ,ej ek, el⟩eiejekel

=
1
8 ∑

l

{
1
3 ∑

i ̸=j ̸=k ̸=i
⟨Rei ,ej ek + Rej ,ek ei + Rek ,ei ej, el⟩eiejek

+∑
i,j
⟨Rei ,ej ei, el⟩eiejei + ∑

i,j
⟨Rei ,ej ej, el⟩eiejej

}
el .

5Here, for example, X̃ still denotes a local lifting of X̃ under γ.
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From (4.2.13), the first term in the l-sum above vanishes and the remaining
ones sum up to give

R =
1
4 ∑

i,j,l
⟨Rei ,ej ei, el⟩ejei

= −1
4 ∑

i,j,l
⟨Rej ,ei ei, el⟩ejei

= −1
4 ∑

j,l
⟨Ric(ej), el⟩ejel .

But for j ̸= l, the summand is skew-symmetric in j and l and the correspond-
ing sum vanishes. This leaves us with

R = −1
4 ∑

j
⟨Ric(ej), ej⟩ejej =

1
4 ∑

j
⟨Ric(ej), ej⟩

def.
=

1
4

κ,

where κ denotes the scalar curvature of M. Putting all the pieces of our com-
putation together we finally get a celebrated result by Lichnerowicz [L]:

Theorem 6.2.1 Let M be a (not necessarily closed) spin manifold of dimension n =
2k with a fixed spin structure and let ∂/ be the corresponding Dirac operator. Then
the action of the Dirac Laplacian ∆ = ∂/2 on spinors is given by

∆ = ∇s∗∇s +
1
4

κ. (6.2.15)

We now mention a far-reaching application of this formula, also due to
Lichnerowicz. A spinor ψ ∈ Γ(S(M)) is said to be harmonic if ∆ψ = 0.
Assuming that M is closed, this is equivalent to ∂/ψ = 0 since (∆ψ, ψ) =
∥∂/ψ∥2 in this case. Using the same argument as in the proof of Proposition
4.2.1 we obtain

Theorem 6.2.2 Under the conditions above, let κ be quasi-positive in the sense that
κ ≥ 0 everywhere and κ > 0 somewhere in M; here use assume that M is closed.
Then ker ∂/ = {0}, i.e. M does not carry any nontrivial harmonic spinor.

The importance of this vanishing theorem for Riemannian geometry should
not be overlooked. In effect, ker ∂/ = {0} certainly implies ker ∂/+ = ker ∂/− =
{0} and then ind ∂/+ = 0 by (6.2.12). Now, if we further restrict ourselves to
the case k = 2l, the Atiyah-Singer index formula (Theorem 8.1.2) expresses
ind ∂/+ as a certain topological invariant of the spin manifold M, the Â-genus,
which we denote by Â(M).6 So we have

6See Section 7.2 for the precise definition of this invariant.
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Theorem 6.2.3 ([L]) If M is a closed spin manifold of dimension 4l with quasi-
positive scalar curvature then Â(M) = 0.

One should think of this as an obstruction to the existence of metrics with
quasi-positive scalar curvature on certain spin manifolds. In fact, one can ex-
hibit rather explicit examples of spin manifolds with Â(M) ̸= 0. For instance,
a standard computation (see [Y], for example) shows that the quartic com-
plex surface M ⊂ P3, the complex projective 3-space, given in homogeneous
coordinates by z4

0 + z4
1 + z4

2 + z4
3 = 0 is spin and has Â(M) ̸= 0. For manifolds

like this one, the existence of metrics with quasi-positive scalar curvature is
definitely ruled out by the theorem above. Just to put this outstanding re-
sult in its proper perspective, we mention that, by using PDE techniques,
Kazdan and Warner [KW] were able to show that any smooth function on a
closed manifold M (not necessarily spin) which is negative somewhere is the
scalar curvature of some Riemannian metric on M. This probably will fur-
nish a rough idea on how subtle are the questions that the methods of Spin
Geometry are able to successfully approach.



Chapter 7

Characteristic classes

As we have already proclaimed, the theory of characteristic classes gives a
systematic approach to the fundamental question of how far from trivial a
given vector bundle is. Also, characteristic classes are basic in the formulation
of the Atiyah-Singer index theorem and its many extensions: for example, the
Â-genus Â(M) appearing in Theorem 6.2.3 is a rational linear combination of
certain products of the Pontrjagin characteristic classes of M. The most basic
characteristic classes appearing in Differential Geometry can be organized
into four types: the Stiefel-Whitney classes wi(E) ∈ Hi(M,Z2) for a real
vector bundle E over M, the Chern classes ci(E) ∈ H2i(M,Z) for a complex
vector bundle over M, the Pontrjagin classes pi(F ) ∈ H4i(M,Z) for a real
vector bundle F over M, and if F is further required to be oriented and
of even rank r = 2s we have the Euler class χ(F ) ∈ Hr(M,Z). We have
had some acquaintance with the Stiefel-Whitney classes in Section 6.1 and
in this chapter we approach the remaining three types by using Chern-Weil
theory which, as we shall see, is an offspring of the theory of connections as
developed in Chapter 3.

7.1 The concept of characteristic classes

A characteristic class is a rule that to each (real or complex) vector bundle E
over M assigns an element P(E) ∈ H∗(M, Λ), for some coefficient group Λ.
We also demand that the assignment E → P(E) is functorial in the sense that
P( f ∗E) = f ∗(P(E)), where f ∗E → M′ is the pulled back bundle under a
map f : M′ → M and f ∗ is the induced homomorphism in cohomology.

The Chern-Weil approach to characteristic classes is an elaboration of the

75
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ideas leading to Proposition 3.2.4, according to which the degree of nontriv-
iality of a vector bundle should be related to the total amount of curvature
of a suitable connection defined on it. More precisely, let E → M be a com-
plex vector bundle and let ∇ be a connection on E . Recall from Section 3.2
that, given a local frame e = (e1, . . . , er) we have the corresponding connec-
tion 1-form θ = {θij}, i, j = 1, . . . , r = rank E . We are not assuming that E is
equipped with a hermitian metric so that in principle θ takes values in glr(C),
the Lie algebra of GLr(C). Even though θ does not behave properly under a
change of frames, we have seen that the corresponding curvature 2-form

Θ = dθ + θ ∧ θ (7.1.1)

does it: if e = eξ, with ξ : U ⊂ M→ GLr(C), one has

Θ = ξ−1Θξ. (7.1.2)

Moreover, exterior derivation of (7.1.1) gives the second Bianchi identity

dΘ = Θ ∧ θ − θ ∧Θ,

which we rewrite simply as
dΘ = [Θ, θ]. (7.1.3)

As we shall see, the whole construction is based on formulas (7.1.2) and
(7.1.3). We start by exploring the former one.

Definition 7.1.1 Let P : glr(C) → C be a function which is polynomial in the
entries of A ∈ glr(C). We say that P is invariant if it satisfies

P(gAg−1) = P(A), (7.1.4)

for any g ∈ GLr(C) and A ∈ glr(C).

Assume for the moment that P is a complex homogeneous polynomial
function of degree k and let θ be as above with corresponding curvature
form Θ. Then, the assignment θ 7→ P(Θ) ∈ A2k(U,C) furnishes a locally
defined1 2k-form which, by (7.1.2) and (7.1.4), actually does not depend on the
local choice of frames and hence extends to a globally defined form P(Θ) ∈
A2k(M) which certainly depends on the choice of θ. We call P(Θ) the Chern-
Weil form associated to θ. We are going to prove that P(Θ) is closed indeed
(dP(Θ) = 0) and its de Rham cohomology class does not depend on the

1Recall that the wedge product is commutative on even forms so P(Θ) = P(Θij) is well
defined.
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choice of θ, but first we pose ourselves the following basic question: what is
the structure of the space Inv(glr(C)) of invariant functions as above?

First recall from elementary algebra that if A ∈ glr(C) then

det(I + A) =
r

∑
i=1

ϕk(A), (7.1.5)

where ϕk(A) is the kth elementary symmetric function of the eigenvalues of
A. Clearly, each ϕk ∈ Inv(glr(C)) is homogeneous of degree k.

Proposition 7.1.1 Inv(glr(C))) is a polynomial algebra generated by the ϕk’s.

Proof. Recall the following two well-known facts: i) the space of complex
matrices with distinct eigenvalues is dense in glr(C); ii) any complex matrix
with distinct eigenvalues is conjugate to a diagonal matrix. From this we see
that each P ∈ Inv(glr(C)) is fully determined by its restriction to the space of
diagonal matrices. Moreover, since we can arbitrarily exchange the position
of the eigenvalues of a diagonal matrix by suitable conjugations, P should be
a polynomial symmetric function of the eigenvalues. The result follows from
the fundamental theorem on symmetric polynomial functions [Wa].⌋

We can now present a version of the basic result in Chern-Weil theory.

Theorem 7.1.1 For any P ∈ Inv(glr(C)), P(Θ) is a closed differential form whose
de Rham cohomology class does not depend on the choice of the connection θ whose
curvature form is Θ.

Proof. It is convenient to assume that P is homogeneous of degree k and to
introduce a polarization2 P̃ for P . This is a k-linear map P̃ : glr(C)× . . . ×
glr(C) → C such that P(A) = P̃(A, . . . , A). Clearly, P̃ is also invariant in
the obvious way and we can assume, after a change of frames, that θ(x) = 0
for a given x ∈ M. Then we compute

dP(Θ) = dP̃(Θ, . . . , Θ)

= ∑ P̃(Θ, . . . , dΘ, . . . , Θ)

(7.1.3)
= ∑ P̃(Θ, . . . , [Θ, θ], . . . , Θ),

and this vanishes at x, showing that dP(Θ) = 0.
Now let θ0 and θ1 be connections with curvature forms Θ0 and Θ1, re-

spectively, so that, by the obvious variant of Proposition 3.2.1, η = θ1− θ0 is a

2Polarizations always exist.
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glr(C)-valued 1-form. Consider, for 0 ≤ t ≤ 1, the ‘homotopy’ of connections
θt = θ0 + tη, with the corresponding arc of curvature forms Θt. We have

dΘt

dt
= dη + [θt, η],

and hence

d
dt
P(Θt) =

d
dt
P̃ (Θt, . . . , Θt)

= kP̃
(

dΘt

dt
, Θt, . . . , Θt

)
= kP̃ (dη + [θt, η], Θt, . . . , Θt)

On the other hand, again by (7.1.3), now applied to Θt,

dP̃(η, Θt, . . . , Θt) = P̃(dη, Θt, . . . , Θt) + (k− 1)P̃ (η, [Θt, θt], Θt, . . . , Θt) ,

and further exploring (7.1.4) and a variant of the argument leading to (1.2.19),
we get

P̃ ([θt, η], Θt, . . . , Θt)− (k− 1)P̃ (η, [Θt, θt], Θt, . . . Θt) = 0.

It follows that
1
k

d
dt
P(Θt) = dP̃(η, Θt, . . . , Θt),

and integrating we finally have

1
k
(P(Θ1)−P(Θ0)) = d

(∫ 1

0
P̃(η, Θt, . . . , Θt) dt

)
,

showing that P(Θ0) and P(Θ1) are in the same cohomology class.⌋

7.2 The Chern and Pontrjagin classes

From Theorem 7.1.1 we have learned that for P ∈ Inv(glr(C)) and any con-
nection∇ on a complex vector bundle E → M the recipe θ 7→ P(Θ) furnishes
a de Rham cohomology class over M. Clearly, this assignment is a charac-
teristic class since, if f : M′ → M is any map, f ∗Θ is the curvature form
of the pulled back connection on f ∗E . Notice that if P is not homogeneous,
we can apply the construction to each of its homogeneous terms and eventu-
ally to get the characteristic class corresponding to P in the cohomology ring
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H∗(M;C). As a rule, we shall denote by [P(Θ)]k the component of P(Θ) of
degree k and if M is closed of dimension n we shall represent by

⟨P(Θ), M⟩ = ⟨[P(Θ)]n, M⟩ =
∫

M
[P(Θ)]n

the evaluation of P(Θ) over the fundamental cycle of M.

Definition 7.2.1 The characteristic classes associated to the invariant functions

ck(Θ) = ϕk

(
i

2π
Θ
)
∈ H2k(M,C), k = 0, 1, . . . , r,

are the Chern classes of E . We shall denote them by ck(E). The total Chern class of
E is given by

c(E) = det
(

I +
i

2π
Θ
)
= ∑

k
ck(E) ∈ H∗(M,C).

We list a few interesting properties of Chern classes.

Proposition 7.2.1 Given complex vector bundles E and E ′ over M we have:

1. ck(E) ∈ H2k(M,R) for any k;

2. If E is trivial then c(E) = 1;

3. c(E ⊕E ′) = c(E)c(E ′), where the product on the left is the one of the de Rham
cohomology ring;

4. If E = E ′ ⊕ E ′′ with E ′′ trivial then ci(E) = 0 for i ≥ rank(E ′) + 1;

5. Assume that E is the complexification of a real vector bundle, i.e. E = F ⊗C
with F → M real. Then ck(E) = 0 for k odd.

Proof. The assertions (2) and (3) are easy consequences of the definition. As
for (1), choose a hermitian metric on E compatible with a given connection
so that the corresponding curvature 2-form is skew-hermitian: Θij = −Θji.
We then have

c(E) = det
(

δij +
i
π

Θij

)
= det

(
δji −

i
π

Θji

)
= det

(
δji +

iΘji

2π

)
= det

(
δji +

i
π

Θji

)
= c(E).
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Clearly, (4) follows from (2) and (3). Finally, in (5) choose a Riemannian
metric on F compatible with a given connection so that the corresponding
curvature 2-form is skew-symmetric: Θij = −Θji. After complexification,
this gives the Chern-Weil data for E so that ϕk(Θ) = (−1)kϕk(Θ). The result
follows.⌋

Notice that (1) above justifies the use of the complex unit i in the nor-
malization of Θ. On the other hand, the factor 2π is due to the following
proposition, whose proof we omit.3

Proposition 7.2.2 The Chern classes are in fact integer cohomology classes, i.e.
ck(E) ∈ H2k(M,Z).

From (5) in Proposition 7.2.1 above we have

Definition 7.2.2 If F → M is a real vector bundle then its Pontrjagin classes are
given by

pk(F ) = (−1)kc2k(F ⊗C) ∈ H4k(M,Z). (7.2.6)

Now we shall concentrate on certain computational aspects of character-
istic classes. The crucial observation is the following splitting principle for
complex vector bundles.

Theorem 7.2.1 Let E → M be a complex vector bundle of rank r. Then there exist
a smooth map π : XE → M such that:

1. π∗ : H∗(M;C)→ H∗(XE ;C) is a monomorphism;

2. π∗E = E1 ⊕ . . .⊕ Er, where each Ei is a complex line bundle.

The proof of this (and of Theorem 7.2.2 below) can be found in [Sh].
The gist of this result is that in order to establish computational properties

of characteristic classes of complex vector bundles, it suffices to consider the
case in which E splits as a direct sum of line bundles. We shall use this
observation to define an important characteristic class that appears in our
formulation of the Atiyah-Singer index theorem. Assume as before that E =
E1 ⊕ . . .⊕ Er. From (3) in Proposition 7.2.1 we have

c(E) = C(E1) . . . c(Er) = (1 + x1) . . . (1 + xr),

after the introduction of the formal variables xi = c1(Ei). In particular,

ck(E) = σk(x1, . . . , xr),

3See [GH].
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the kth elementary symmetric function of the formal variables. We then define
the Chern character of E by the additive invariant formal power series

ch(E) = ∑
i

exi ∈ H∗(M;Q). (7.2.7)

One has the unique decomposition into homogeneous terms

ch(E) = ch0(E) + ch1(E) + ch2(E) + . . . ,

with chk(E) ∈ H2k(M;Q). More precisely,

ch0(E) = rank (E)1 ∈ H0(M;Z),
ch1(E) = ∑

i
xi = c1(E) ∈ H2(M;Q),

ch2(E) =
1
2 ∑

i
x2

i =
1
2

(
c1(E)2 − 2c2(E)

)
∈ H4(M;Q),

and, more generally, Proposition 7.1.1 assures that each chk(E) is a certain
universal homogeneous polynomial with rational coefficients in the Chern
classes of E since ch is a symmetric function of the xi’s. We remark the
following relations:

ch(E ⊕ E ′) = ch(E) + ch(E ′), ch(E ⊗ E ′) = ch(E)ch(E ′). (7.2.8)

We now turn to a version of the splitting principle for real vector bundles.

Theorem 7.2.2 Let F → M be a real oriented vector bundle of rank r = 2s. Then
there exists a smooth map π : XF → M such that:

1. π∗ : H∗(M;C)→ H∗(XF ;C) is a monomorphism;

2. π∗F = F1 ⊕ . . .⊕ Fs, with rank(Fi) = 2 and Fi ⊗C = Gi ⊕ G i, where
each Gi is a complex line bundle and G i is the dual bundle4 to Gi.

For computational purposes we can therefore assume that

F ⊗C = G1 ⊕ G1 ⊕ . . .⊕ Gs ⊕ Gs. (7.2.9)

Introducing the formal variables yi = c1(Gi) and noticing that c1(G i) =
−c1(Gi), we have

c(F ⊗C) =
s

∏
i=1

(1 + yi)(1− yi) =
s

∏
i=1

(1− y2
i ).

4This means that the transition functions of Gi and G i are conjugate to each other.
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It follows that

c2k(F ⊗C) = σk(−y2
1, . . . ,−y2

s )

= (−1)kσk(y2
1, . . . , y2

s ),

and comparing with (7.2.6),

pk(F ) = σk(y2
1, . . . , y2

s ).

Notice that this computation justifies the sign in the definition of pk.
We are now finally ready to define the other characteristic class appearing

in the formulation of the index theorem. Let F → M be a real vector bundle.
Using the formal variables introduced above, define the Â-class of F by the
multiplicative invariant formal power series

Â(F ) = ∏
i

yi/2
sinh(yi/2)

∈ H4∗(M;R). (7.2.10)

Using that
z/2

sinh(z/2)
= 1− 1

24
z2 +

7
27 · 32 · 5 z4 + . . . ,

we get the unique decomposition into homogeneous terms

Â(F ) = Â0(F ) + Â1(F ) + Â2(F ) + Â3(F ) + . . . ,

where

Â0(F ) = 1 ∈ H0(M;Z),

Â1(F ) = − 1
24

p1(F ) ∈ H4(M;Q),

Â2(F ) =
7

27 · 32 · 5

(
−4p2(F ) + 7p1(F )2

)
∈ H8(M;Q), etc.

Once again, the important point here is that each Âk(E) is a certain universal
homogeneous polynomial with rational coefficients in the Pontrjagin classes
of F .

There exists another important characteristic class closely related to Â.
This is the Todd class, defined for a complex vector bundle E as

Todd(E) = ∏
i

xi
1− e−xi

.

Proposition 7.2.3 If F is a real vector bundle then

Todd(F ⊗C) = Â(F )2. (7.2.11)
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Indeed, using (7.2.9),

Todd(F ⊗C) = ∏
i

yi
1− e−yi

−yi
1− eyi

= ∏
i

yi
1− e−yi

−yi
1− eyi

1
eyi/2e−yi/2

= ∏
i

[
yi/2

sinh(yi/2)

]2

= Â(F )2.

7.3 The Euler class

We now present the Euler characteristic class which appears in the formu-
lation of the Chern-Gauss-Bonnet theorem (see Theorem 10.1.1). Unlike the
characteristic classes considered so far, which have been defined by using the
Chern classes, and hence can be computed starting with any connection (not
necessarily compatible with any underlying metric!), the Euler class is de-
fined in terms of a connection which is compatible with a Riemannian metric
on an orientable real vector bundle F → M with rank(F ) = r = 2s, as the
following pointwise construction makes it clear.

Let V ∼= Rr be a real oriented vector space of dimension r = 2s endowed
with an inner product. Fix an orthonormal positive basis {e1, . . . , er} and
let ϑ = e1 ∧ . . . ∧ er be the corresponding volume element. Notice that ϑ
generates ΛrV. Now take α : V → V skew-symmetric and let α̃ ∈ Λ2V be its
image under the isomorphism (1.2.14). Hence, the s-fold product α̃∧ . . .∧ α̃ ∈
ΛrV is a multiple of ϑ and we define the Pfaffian of α by

α̃ ∧ . . . ∧ α̃ = s!Pf(α)ϑ. (7.3.12)

For example, if α = (aij) then in case r = 2 we have Pf(α) = a12 and in case
r = 4, Pf(α) = a12a34 − a13a24 + a14a23.

It is not hard to check that

det(α) = Pf(α)2, (7.3.13)

and, more importantly, Pf(gαg−1) = Pf(α) for any g ∈ SOr. In other words,
Pf is an invariant polynomial function on sor and, if F is as above, a variant
of the Chern-Weil argument gives the Euler characteristic class of F by

e(F ) = Pf
(

Θ
2π

)
∈ Hr(M,Z), (7.3.14)
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where Θ is the curvature form of the compatible connection on F . Notice
that, by (7.3.13), in terms of the variables {yi} introduced above,

e(F ) = y1 . . . ys. (7.3.15)

An important case occurs when F = TM, the tangent bundle of a closed
oriented manifold of dimension n = 2k. It is possible to show that the integer
⟨e(TM), M⟩ is the obstruction to the existence of a nowhere vanishing vector
field over M (see [S], for example). The famous Chern-Gauss-Bonnet theorem
says that

χ(M) = ⟨e(TM), M⟩, (7.3.16)

where χ(M), the Euler characteristic of M, is given by (1.1.10). By de Rham
theory, this establishes a profound link between the topology and geometry
of M.

We illustrate the theory by computing the Euler class of TS2, the tangent
bundle of the unit sphere S2 ⊂ R3. Choose a local frame {e1, e2} for U ⊂ S2

and let e0 be the position vector for S2 so that {e0, e1, e2} ⊂ R3 is a positive
orthonormal basis. We use the index ranges 0 ≤ α, β ≤ 2 and 1 ≤ i, j ≤ 2.
Thinking of each eα as a R3-valued function on U, there exist θαβ ∈ A1(U)
such that

deα = ∑
β

θαβeβ, θαβ = −θβα.

Setting θi = θi0 this can be rewritten as

de0 = −θ1e1 − θ2e2 (7.3.17)

de1 = θ1e0 + θ12e2 (7.3.18)

de2 = θ2e0 + θ21e1, (7.3.19)

where θ = (θij) is the Levi-Civita connection form on TS2 induced by the
embedding S2 ⊂ R3. Notice that θ1 ∧ θ2 is the standard area element in U.

Using that d2e0 = 0 in (7.3.17) we find that dθ1 = θ12 ∧ θ2 and combining
this with (7.3.18), (7.3.19) and the fact that d2e2 = 0, we get dθ12 = θ1 ∧ θ2.
Now, because θ ∧ θ = 0, Θ = (Θij) with Θij = dθij is the corresponding
curvature form and we finally compute

⟨e(TS2), S2⟩ = 1
2π

∫
S2

Pf (Θ) =
1

2π

∫
S2

Θ12 =
1

2π

∫
S2

θ1 ∧ θ2 =
4π

2π
= 2.

In particular, this gives a geometric proof that TS2 is not trivial. But notice
that if we use the connection with vector fields mentioned above a sharper
result pops out: any tangent vector field over S2 vanishes somewhere!



Chapter 8

The Atiyah-Singer index
theorem

In this chapter we finally present the Atiyah-Singer index theorem for Dirac
operators on spin manifolds. With an eye toward further applications to Rie-
mannian Geometry, besides the one leading to Theorem 6.2.3, we consider
in fact a more general situation than that described in Section 6.2. The idea
is to introduce a construction generating, at least locally, the most common
differential operators appearing in Riemannian Geometry. The crucial obser-
vation follows from the representation theory developed in Chapter 5: since
Cln is a full matrix algebra, any Cln-module is of the type Ψ⊗W with Cln
acting trivially on the second factor. This leads to the notion of twisted Dirac
operators, which we now pass to investigate.

8.1 Twisted Dirac operators and the index theorem

Let M be an oriented closed Riemannian manifold. Recall from (5.2.16) the
construction of the Clifford algebra bundle Cl(M). We note that no spin
structure is required there. Now let E → M be any complex vector bundle
whose typical fiber is a module over Cln. This implies of course that Γ(E)
is a module over Γ(Cl(M)). In particular, since X (M) ⊂ Γ(Cl(M)), Clifford
multiplication by tangent vectors is well defined. Assume further that E is
equipped with a hermitian metric ⟨ , ⟩ and a compatible connection ∇E such
that:

85
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1. Clifford multiplication by unit tangent vectors is an isometry:

⟨uφ, uφ′⟩ = ⟨φ, φ′⟩, u ∈ X (M), |u| = 1, φ, φ′ ∈ Γ(E). (8.1.1)

2. The natural connection ∇c on Cl(M) and ∇E are compatible with the
Γ(Cl(M))-module structure on Γ(E):

∇E (aφ) = ∇ca · φ + a∇E φ, a ∈ Γ(Cl(M)), φ ∈ Γ(E). (8.1.2)

If this is the case, we say that E is a Clifford bundle. Notice that the condi-
tions above constitute an obvious generalization of the properties (6.2.6) and
(6.2.7) holding for the spin bundle S(M) in case M is spin, and we shall see
in Chapter 10 that this abstraction, for suitable choices of E , actually encom-
passes many of the natural differential operators appearing in Riemannian
Geometry. In any case, in this general setting we can consider the corre-
sponding Dirac operator D : Γ(E)→ Γ(E), defined by the sequence of arrows

Γ(E) ∇
E
→ Γ(T∗M⊗ E) ⟨ , ⟩→ Γ(TM⊗ E) ·→ Γ(E),

where as usual the dot means Clifford product. Alternatively, in terms of a
local frame for TM,

D =
n

∑
i=1

ei · ∇Eei
(8.1.3)

As in the spin case, D is a selfadjoint first order differential operator and a
Weitzenböck type decomposition for the associated Dirac Laplacian ∆ = D2 :
Γ(E)→ Γ(E) holds:

∆ = ∇E ∗∇E +RE , (8.1.4)

where ∇E ∗∇E is the Bochner Laplacian of ∇E and

RE = 1
2

n

∑
i,j=1

ei · ej · REei ,ej
, (8.1.5)

with RE being the curvature tensor of E .
As in the case of the genuine Dirac operator ∂/ acting on the spinor bundle

of a spin manifold, one has to break the symmetry of D acting on Γ(E).

Definition 8.1.1 We say that a Clifford bundle E as above with Dirac operator
D : Γ(E)→ Γ(E) is graded if there exists a decomposition E = E+ ⊕ E− such that

D =

(
0 D−

D+ 0

)
with respect to this decomposition.
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Thus, in the presence of the grading, we have the operators

D± = D|Γ(E±) : Γ(E±)→ Γ(E∓),

which are formal adjoints to each other and have finite dimensional kernels.1

We now define
ind D+ = dim ker D+ − dim ker D−, (8.1.6)

the index of D+.
Notice that if E is a Clifford bundle as above and G is any hermitian vector

bundle over M with a compatible connection, we can form the tensor product
E ⊗ G and this is naturally a Clifford bundle (just let Clifford multiplication
act trivially on the second factor) and moreover the grading of E induces a
further grading

E ⊗ G = E+ ⊗ G ⊕ E− ⊗ G,

so that the constructions above apply and the corresponding Dirac operator

D : Γ(E ⊗ G)→ Γ(E ⊗ G)

is usually referred to as a twisted Dirac operator.
An important example in this setting is the following one. Let M be

a spin manifold of dimension n = 2k so that the spin bundle of M has a
natural grading

S(M) = S+(M)⊕ S−(M). (8.1.7)

It follows that, for any G as above, S(M)⊗ G is naturally a graded Clifford
bundle

S(M)⊗ G =
(
S+(M)⊗ G

)
⊕
(
S−(M)⊗ G

)
, (8.1.8)

and this allows us to consider the twisted Dirac operator ∂/G : Γ(S(M) ⊗
G)→ Γ(S(M)⊗ G). In this regard, one has

Proposition 8.1.1 If ∆ = ∂/2
G , there holds

∆ = ∇∗∇+
1
4

κ +R[G], (8.1.9)

where ∇∗∇ is the Bochner Laplacian of S(M)⊗ G, κ is the scalar curvature of M
and, for ψ⊗ η ∈ Γ(S(M)⊗ G),

R[G](ψ⊗ η) =
1
2 ∑

ij
eiejψ⊗ RGei ,ej

η, (8.1.10)

with RG being the curvature tensor of G.
1This also follows from the elliptic theory developed in Chapter 9.
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Proof. Notice that

∇S(M)⊗G(ψ⊗ η) = ∇sψ⊗ η + ψ⊗∇Gη,

thus yielding
RS(M)⊗G(ψ⊗ η) = Rsψ⊗ η + ψ⊗ RGη,

and the result follows from (8.1.5), with E replaced by S(M) ⊗ G, and the
computation leading to Theorem 6.2.1.⌋

As before, ∂/G breaks into pieces according to (8.1.8):

∂/±G = ∂/G |Γ(S±(M)⊗G) : Γ(S±(M)⊗ G)→ Γ(S∓(M)⊗ G), (8.1.11)

and we get a well-defined index by

ind ∂/+
G = dim ker ∂/+

G − dim ker ∂/−G . (8.1.12)

Many notable results in Differential Geometry follow from considerations
involving this integer invariant. The main ingredient here is the celebrated
Atiyah-Singer index theorem, which reads as follows.

Theorem 8.1.1 (Atiyah-Singer) Assuming that M is spin and using the notation
above,

ind ∂/+
G = ⟨ch(G)Â(TM), M⟩. (8.1.13)

Specializing to the case k = 2l (so that dim M = 4l) and G = C we get

Theorem 8.1.2 The index of the Atiyah-Singer-Dirac operator acting on the spinor
bundle of a closed spin manifold M with dim M = 4l is given by

ind ∂/+ = ⟨Â(TM), M⟩. (8.1.14)

Notice that by definition Â(TM) is a rational cohomology class and the
Â-genus Â(M) = ⟨Â(TM), M⟩ of M is a priori a rational number. However,
(8.1.14) immediately yields the following integrability result: if M is spin then
Â(M) is an integer! In particular, if dim M = 4 then we see from Chapter 7
that Â(M) = −⟨p1(TM), M⟩/24 and so we get ⟨p1(TM), M⟩ ∈ 24Z in case M
is spin. Another deep result following from theorem 8.1.2 and the vanishing
criterion in Theorem 6.2.2 is Theorem 6.2.3 to the effect that a closed spin
manifold of dimension 4k with Â(M) ̸= 0 can not carry a metric with quasi-
positive scalar curvature. In Chapter 10 we explore further this circle of
ideas in order to obtain some more interesting obstructions to the existence
of metrics of positive scalar curvature on certain manifolds.



Chapter 9

The heat equation and the
index theorem

The purpose of this chapter is to present the main steps in the so-called heat
equation proof of the Atiyah-Singer index formula for Dirac operators (The-
orem 8.1.1). This proof is the fortunate outcome of certain ‘fantastic cancel-
lations’ related to the structure of Clifford algebras. Since the proof requires
knowledge of certain aspects of the heat flow we include in Section 9.1 a
discussion of this analytical material on the unit circle S1. The general case
is treated in Section 9.2, where a discussion of Hodge theory is presented.
The cancellations are explained in Section 9.3 and here we have chosen not
to go into the details of the many computations involved but instead we con-
centrate on following the stream of ideas in order to make the presentation
less arid. In any case, the reader is referred to the many excellent accounts
(specially [BGV], [R] and [T]) for the details.

9.1 The heat equation on the circle

Let us consider the unit circle S1 = {(x, y) ∈ R2; x2 + y2 = 1} endowed with
the usual angular coordinate θ ∈ [0, 2π). The heat equation in this case is

ut = −∆u = uθθ , (9.1.1)

and we are interested in finding a solution u = u(t, θ) : [0,+∞)× S1 → R to
this equation. This should be thought of as an initial value problem, i.e. we
are given a function u0 : S1 → R and we want to find a function u as above
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satisfying (9.1.1) identically for (t, θ) ∈ (0,+∞)× S1 and such that

lim
t→0

u(t, θ) = u0(θ), θ ∈ S1, (9.1.2)

in some reasonable sense. Of course, this problem has a well-known physical
interpretation: u0 is the initial heat distribution on S1 and solving the prob-
lem amounts to understanding how the heat on the circle flows as time goes
by.

Fortunately this is a case in which we can give an explicit solution to
the problem by the honorable Fourier method, or method of separation of
variables, whose first step consists of finding solutions of the form u(t, θ) =
v(t)w(θ). Taking this to (9.1.1) we get

v′(t)w(θ) = v(t)w′′(θ)

and assuming for the time being that v and w are nowhere vanishing we find

v′(t)
v(t)

=
w′′(θ)
w(θ)

, (9.1.3)

and since the left (respect. right) hand side of (9.1.3) depends only on t
(respect. θ) it follows that both sides are constant, so we have

v′(t)
v(t)

=
w′′(θ)
w(θ)

= −λ (9.1.4)

and we are left with the problem of finding nonzero solutions to the equations

v′ + λv = 0 (9.1.5)

and
w′′ + λw = 0 (9.1.6)

for a constant λ to be determined.
Clearly, (9.1.5) poses no constraint on λ since its general solution is given

by
v(t) = Ce−λt.

On the other hand, as we shall see, equation (9.1.6) poses severe restrictions
on the possible values attained by λ. To see this, assume w is a nonzero
solution of (9.1.6), multiply (9.1.6) by w and use integration by parts to get∫

S1
w′2 dθ = λ

∫
S1

w2 dθ,
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where dθ is the length element in S1. This implies λ ≥ 0 (justifying the
minus sign in (9.1.4)) and λ = 0 if and only if u = const. For λ > 0 the
general solution of (9.1.6) is

w(θ) = C1ei
√

λθ + C2e−i
√

λθ

but we are assuming that w is periodic and this leaves us with a countable
family of solutions

wn(θ) = C1einθ + C2e−inθ , λn = n2.

For n ≥ 1 this generates a two-dimensional eigenpace Vn2 for the Laplacian
on S1 (the remaining eigenspace is V0, the space of constant functions asso-
ciated to λ0 = 0) and it is well-known that there are no further eigenspaces,
a fact which is a rephrasing of the completeness of the orthogonal system
{e±inθ} with respect to the L2 inner product

( f , g) =
∫

S1
f (θ)g(θ) dθ

on functions.1

Now, the heart of the Fourier method is to appeal to the linearity of (9.1.1)
(or to the superposition principle in physical language) in order to determine
the general solution by combining the special solutions above. So we are
naturally led to postulate that the general solution of (9.1.1) is

u(t, θ) =
+∞

∑
n=−∞

ane−n2teinθ (9.1.8)

where the sequence {an} is determined via the initial value condition (9.1.2):

u0(θ) = u(0, θ) =
+∞

∑
n=−∞

aneinθ . (9.1.9)

This means that the an’s are the Fourier coefficients of u0. In effect, multiply-
ing (9.1.9) by e−imθ , integrating over S1 and using (9.1.7) we get

am =
1

2π

∫
S1

u0(θ)e−imθ dθ, m ∈ Z. (9.1.10)

1To this effect, recall the classical orthogonality relations∫
S1

ei(n−m)θ dθ = 2πδnm. (9.1.7)
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Now we can finally explain how we can solve (9.1.1) for a given initial data
u0: first we compute the Fourier coefficients of u0 via (9.1.10) and then we
substitute the result in (9.1.8).

We can obtain information on the heat flow on S1 as t → +∞. Indeed,
the exponential terms e−n2t (for n ̸= 0) in (9.1.8) die out to zero very fastly so
that

u∞(θ)
def.
= lim

t→+∞
u(t, θ) = a0, (9.1.11)

that is, the long term behavior of the flow approaches, by (9.1.10) with m =
0, the mean value of the initial distribution of temperature u0. This is in
conformity with the general expectance (the heat flow is dissipative!) and
shows that the mathematical model is reliable as far as the long term behavior
is concerned.

And how about the behavior of the flow when t is close to zero? A better
grasping of this can be obtained if we rewrite (9.1.8) in a more convenient
manner. We simply substitute the expression (9.1.10) on (9.1.8) and inter-
change the integral and the summation2 in order to get

u(t, θ) =
∫

S1
K(t, θ, θ′)u0(θ

′) dθ′, (9.1.12)

where

K(t, θ, θ′) =
1

2π

+∞

∑
n=−∞

e−n2tein(θ−θ′) (9.1.13)

is the heat kernel of S1. In other words, the solution of (9.1.1) is obtained by
integrating the initial data u0 against the heat kernel K.

There are a few aspects of the solution (9.1.12)-(9.1.13) that should be
highlighted here.

1. From (9.1.13) it is clear that the heat flow is highly smoothing. More
precisely, even if we start with a very irregular initial data, say u0 ∈
L2(S1), then it follows that for t > 0 the corresponding solution u(t, .)
is smooth. This is due to the fact that K is smooth for t > 0 and
derivation under the integral sign.

2. It is also easy to use (9.1.13) to check that the heat flow is dissipative.
First,

Kt(t, θ, θ′) = − 1
2π ∑

n ̸=0
n2e−n2tein(θ−θ′)

and from this we see that Kt goes to zero as t goes to +∞. Thus, u∞ as
defined in (9.1.11) satisfies u∞

θθ = 0, i.e. u∞ = const.

2All these operations are legal if t > 0.
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3. The heat kernel can be rewritten as

K(t, θ, θ′) =
+∞

∑
n=−∞

e−n2ten(θ)en(θ′),

where {en(θ) = einθ/
√

2π}+∞
n=−∞ is an orthonormal basis for L2(S1)

given by the eigenfunctions of ∆. This means that the heat kernel (and
the heat flow) is determined by the spectral decomposition of the Lapla-
cian ∆ on L2(S1).

4. For each t > 0 we can define a linear operator e−t∆ : L2(S1) → L2(S1)
as follows. For u0 ∈ L2(S1) we take e−t∆u0 to be the righthand side of
(9.1.12). It is obvious that ∥e−t∆u0∥ ≤ ∥u0∥ (L2 norm) so e−t∆ is a one-
parameter family of uniformly bounded operators in L2(S1). Moreover,
e−(t+s)∆ = e−t∆e−s∆ so e−∆t is actually a semigroup. This is the heat flow
on S1. Also, e−t∆ is trace class, i.e. it has a trace (even though it acts on
an infinite dimensional space) which is given by

Tr e−t∆ =
+∞

∑
n=−∞

e−n2t.

Clearly, Tr e−t∆ is completely determined by the spectrum of ∆.

5. We have the asymptotic formula as t goes to 0:

Tr e−t∆ ∼
√

π

t
=

2π√
4πt

. (9.1.14)

If we look at properties (2) and (5) above, it follows that the long term
behaviour of the heat flow is determined by the topology of S1 (in the sense
that it takes arbitrary initial data into constant functions and the space of
such functions is a model for the de Rham comohology of S1) while the short
time behaviour is controlled by the geometry of S1, more precisely, by the fact
that locally S1 looks like R.3 This striking connection between geometry and
topology will manifest itself, as we shall see, in many other situations where
an appropriate elliptic operator like the Laplacian ∆ and a corresponding heat
flow are available. The basic idea is that if we are able to manufacture some
quantity invariant under the heat flow, then we can use it in order to establish
deep relationships between the underlying geometry and topology. It turns
out that the index of a twisted Dirac operator is such an invariant (here is the
first cancellation!) and this key idea happens to be the foundational principle
upon which the so-called heat equation proof of the Atiyah-Singer theorem
for Dirac type operators rely.

3Notice that the factor 1/
√

4πt comes from the heat flow in R; see [T].
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9.2 Dirac complexes and the heat flow

In Chapter 4 we have met the Hodge theorem according to which any de
Rham cohomology class on a closed orientable Riemannian manifold M car-
ries a unique harmonic representative. In this section, we shall sketch a proof
of this fundamental result based on heat equation methods. In fact we shall
deal with a version of the Hodge theory in the context of Dirac complexes, a
notion we now pass to describe.

Let M be a closed oriented Riemannian manifold of dimension n and let
{Ei} be a finite sequence of hermitian vector bundles over M equiped with
compatible connections. Assume the existence of first order linear differential
operators d = di : Γ(Ei) → Γ(Ei+1) such that d2 = 0. We then say that the
sequence

0→ . . . d→ Γ(Ei−1)
d→ Γ(Ei)

d→ Γ(Ei+1)
d→ . . .→ 0 (9.2.15)

is a differential complex. In this case we can consider the cohomology groups of
E = ⊕iEi,

Hi(E) =
ker

(
Γ(Ei)

d→ Γ(Ei+1)
)

im
(

Γ(Ei−1)
d→ Γ(Ei)

) , (9.2.16)

and one would like to have canonical representatives for the corresponding
cohomology classes, but for this some extra structure is required. First, recall
that we can define the adjoint operators d∗ = d∗i : Γ(Ei+1)→ Γ(Ei) for each i,
and clearly we can consider both d and d∗ as acting on Γ(E) = ⊕iΓ(Ei).

Definition 9.2.1 We say that a differential complex Γ(E) as above is a Dirac com-
plex if E = ⊕iEi is a Clifford bundle whose Dirac operator D equals d + d∗.

This allows us to consider the corresponding Dirac Laplacian ∆ : E → E by

∆ = D2 = dd∗ + d∗d. (9.2.17)

Obviously, ∆ preserves the natural grading of E , i.e. ∆(Γ(Ei)) ⊂ Γ(Ei).
We say that η ∈ Γ(E) is harmonic if ∆η = 0. The space of harmonic

sections is denoted byH∗(E). This is a graded vector space becauseH∗(E) =
⊕iHi(E), where Hi(E) is the space of ‘pure’ harmonic forms in Γ(Ei). Since

(∆η, η) = ∥dη∥2 + ∥d∗η∥2, (9.2.18)

η is harmonic if and only dη = 0 (in particular, η defines a cohomology class
in H∗(E) = ⊕i Hi(E)) and d∗η = 0. Conversely, we have
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Theorem 9.2.1 (Hodge) Any cohomology class in H∗(E) carries a unique harmonic
representative. In other words, in the presence of the various metrics, there exists a
canonical isomorphism

H∗(E) ∼= H∗(E). (9.2.19)

Equivalently, if we take the gradings into account,

Hi(E) ∼= Hi(E), (9.2.20)

for each i. Moreover, dimH∗(E) < +∞.

We remark that this applies notably in case E i = Λi(M) for M a Rie-
mannian manifold, thus justifying the use of Hodge theory in Chapter 4. In
particular, the obvious identity ∗∆ = ∆∗ easily yields an analytical proof of
Poincaré duality of Section 1.1. Moreover, the finiteness result above implies
that the indexes of the various Dirac type operators considered before are
well-defined indeed.

As mentioned in the Introduction, we approach this via heat equation
methods by following the pioneering work in [MR]. The method depends on
the existence of a nice spectral decomposition for ∆ and a crucial point here
is that D is a Dirac operator and then a Weitzenböck type formula holds:

∆ = ∇∗∇+R, (9.2.21)

where ∇∗∇ is the Bochner Laplacian of E and R is a selfadjoint map acting
linearly on fibers. But in order to explore this one has to recall a few basic
facts on Sobolev spaces.

Let u : Rn → Cr be a smooth map. We define its Fourier transform û :
Rn → Cr by

û(ξ) = (2π)−n/2
∫

e−i⟨x,ξ⟩u(x) dx, ξ ∈ Rn,

whenever the integrals4 above converge. A standard convention is to assume
that u is a Schwarz map (notation: u ∈ S(Rn)), which means that u is smooth
and for any multi-indice α and any k > 0 there exists Cα,k > 0 such that

|∂αu(x)| ≤ Cα,k

(
1 + |x|2

)−k
, x ∈ Rn.

The importance of this functional space is due to

4For simplicity, in what follows we write
∫
Rn =

∫
.
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Proposition 9.2.1 Fourier transform, if viewed as a map from S(Rn) to S(Rn), is
an isometry with respect to the L2 inner product induced by the inclusion S(Rn) ⊂
L2(Rn). More precisely,

(u, v) = (û, v̂), u, v ∈ S(Rn), (9.2.22)

and in fact the following inversion formula holds:

u(x) = (2π)−n/2
∫

ei⟨x,ξ⟩û(ξ) dξ, x ∈ Rn. (9.2.23)

Definition 9.2.2 Given s ∈ R and u ∈ S(Rn), define the Sobolev s-norm of u by

∥u∥2
s =

∫
(1 + |ξ|2)s|û(ξ)|2dξ.

The Sobolev space Ws(Rn) is the completion of S(Rn) with respect to the norm ∥ ∥s.

We note a few basic facts regarding Sobolev spaces.

1. Ws(Rn) is a Hilbert space for the inner product

(u, v)s =
∫
(1 + |ξ|2)sû(ξ)v̂(ξ)dξ.

2. W0(Rn) = L2(Rn).

3. Using (9.2.23) it is not hard to show that, for each s ∈ N, one can find
positive constants c(s) and d(s) such that

c(s) ∑
|α|≤s

∫
|∂αu(x)|2dx ≤ ∥u∥2

s ≤ d(s) ∑
|α|≤s

∫
|∂αu(x)|2dx, (9.2.24)

for any u ∈ S(Rn).

4. For each s, the natural pairing Ws(Rn)×W−s(Rn)→ C given by

(u, v) 7→
∫

û(ξ)v̂(ξ) dξ (9.2.25)

is nondegenerate and places Ws(Rn) and W−s(Rn) in duality.

Assume now that M is an n-dimensional closed oriented manifold and E
is a hermitian vector bundle over M with a compatible connection. Let

M =
N∪

α=1

Uα
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be a finite covering of M with each Uα being diffeomorphic to Rn. Pick open
sets Vα ⊂ Uα with each Vα, the closure of Vα, compact and such that we still
have

M =
N∪

α=1

Vα,

and finally let {φα} be a partition of unity subordinated to {Vα}. If η ∈ Γ(E)
we have

η = ∑
α

ηα, ηα = φαη.

We then define the Sobolev s-norm of η by

∥η∥2
s = ∑

α

∥ηα∥2
s , (9.2.26)

where ∥ηα∥s is given by Definition 9.2.2 using the identification Uα = Rn.
The corresponding Sobolev space Ws(E) is conceived by taking completion
with respect to (9.2.26). Clearly, Ws(E) is a Hilbert space with respect to the
obvious inner product.

We now collect without proof the basic facts concerning Sobolev spaces.
Recall that we are assuming M closed and this means that, via a partition of
unity argument, the proofs follow straightforwardly from the corresponding
ones in the ’flat’ situation (see [T], for example).

Theorem 9.2.2 For each s, Γ(E) is dense in Ws(E) with respect to the Sobolev
norm.

Theorem 9.2.3 (Sobolev embedding) If s > n/2 + k then we have a continuous
embedding

Ws(E) ↪→ Ck(E),

where Γk(E) ⊃ Γ(E) is the space of sections of class Ck. In particular,

Γ(E) =
+∞∩

s=−∞
Ws(E).

Theorem 9.2.4 (Rellich compactness) If s′ < s then the continuous embedding

Ws(E) ↪→Ws′(E)

is compact.

Theorem 9.2.5 The natural pairing Ws(E)×W−s(E)→ C induced by (9.2.25) is
nondegenerate, so that Ws(E)∗ = W−s(E).
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After these preliminaries, we present the basic estimate in the spectral
theory of ∆.

Theorem 9.2.6 (Gärding inequality) Let Γ(E) = ⊕iΓ(Ei) be a Dirac complex over
a closed oriented Riemannian manifold M with Dirac operator D = d + d∗ and
Dirac Laplacian ∆. Then there exist positive constants α and β such that

(∆η, η) ≥ α∥η∥2
1 − β∥η∥2

0, η ∈ Γ(E). (9.2.27)

Proof. We may assume that η is real and, by using a partition of unity, that
the support of η is contained in an open set U with E|U trivial. Also, we can
take U = Rn with coordinates x = (x1, . . . , xn). We denote by ∂i the partial
derivative with respect to xi. By (9.2.21), we have

(∆η, η) = ∥∇η∥2
0 + (Rη, η),

so that if −α1, α1 ≥ 0, is a lower bound for Rx as x varies over M, we get

(∆η, η) + α1∥η∥2
0 ≥ ∥∇η∥2

0.

Now,

∥∇η∥2
0 =

∫
M
⟨∇η,∇η⟩ dM

=
∫

M
⟨∑

i
∇iη ⊗ dxi, ∑

j
∇jη ⊗ dxj⟩ dM

=
∫

M
∑
ij

gij⟨∇iη,∇jη⟩ dM,

where gij = ⟨dxi, dxj⟩ and ∇i = ∇∂i
. We now use (3.2.8) in the form ∇i =

∂i + Ai, so that

∥∇η∥2
0 =

∫
M

(
∑
ij

gij⟨∂iη, ∂jη⟩
)

dM +
∫

M

(
∑
ij

gij⟨Aiη,
(
2∂j + Aj

)
η⟩
)

dM.

Again by (9.2.24) and Cauchy-Schwartz, the integrals above are respectively
bounded from below by

α2

(
∥η∥2

1 − ∥η∥2
0

)
, α2 > 0

and
−α3∥η∥0∥η∥1, α3 > 0.
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It follows that

(∆η, η) + α1∥η∥2
0 ≥ α2

(
∥η∥2

1 − ∥η∥2
0

)
− α3∥η∥0∥η∥1.

Now, given 0 < ε < α2, choose α4 > 0 such that

α3∥η∥0∥η∥1 ≤ ε∥η∥2
1 + α4∥η∥2

0,

and this gives

(∆η, η) + (α1 + α2 + α4)∥η∥2
0 ≥ (α2 − ε)∥η∥2

1,

as desired.⌋

In the light of Theorem 9.2.5, (9.2.27) can be rewritten as

∥Lη∥−1 ≥ α∥η∥1, (9.2.28)

so that L = ∆ + β : W1(E) → W−1(E) is continuos and injective with closed
range. Moreover, any element η orthogonal to the range of L defines by
duality an element in kerL ⊂ W1(E) which vanishes by (9.2.28). Thus, L is
surjective and admits an inverse

M : W−1(E)→W1(E).

Restricting this to W0(E) = L2(E) we get a selfadjoint map M : L2(E) →
W1(E) and composing this with the compact embedding W1(E) ↪→ L2(E)
given by Theorem 9.2.4, it follows that M : L2(E) → L2(E) is compact and
selfadjoint. Moreover,

0 < (Mη, η) ≤ β−1∥η∥2
0, η ̸= 0.

We are now in a position to apply the spectral theorem for compact selfad-
joint operators (cf. [Br]) to infer the existence of an orthogonal decomposition
into eigenspaces:

L2(E) = ⊕+∞
i=0 Ei, (9.2.29)

where dim Ei < +∞ and Mη = λiη for η ∈ Ei, where the real sequence of
eigenvalues satisfies 0 < λi ≤ β−1 and λi → 0 as i→ +∞. It follows that

∆η = µiη,

where µi = 1/λi− β ≥ 0 so that µi → +∞ as i→ +∞. We remark in addition
that, since M is closed, standard local elliptic regularity theory and Theorem
9.2.3 imply that Ei ⊂ Γ(E), i.e. each eigensection of ∆ is smooth. If we order
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the eigenvalues so that µi < µi+1 then E0 = ker ∆ = H∗(E), the space of
harmonic sections. In particular, dimH∗(E) < +∞ and this proves the last
assertion in Theorem 9.2.1.

For our purposes, the main consequence of the spectral decomposition
(9.2.29) for ∆ is the definition of the corresponding heat flow. For each t > 0
define e−t∆ : L2(E) → L2(E) by e−t∆η = e−tµi η if η ∈ Ei and extend by
linearity. Since |e−tµ| ≤ 1, this defines a semigroup of uniformly bounded
operators on L2(E), the so-called heat flow. The terminology of course comes
from the fact that, for η ∈ Γ(E), Υ(t, .) = e−t∆η satisfies the heat equation

∂tΥ + ∆Υ = 0. (9.2.30)

If we denote by {νj} the eigenvalues of ∆ taking the multiplicities into
account, and if {ψj} is a corresponding complete orthonormal basis (with
respect to the L2 product), it is not hard to check that

e−t∆η(x) =
∫

M
K(t, x, y)η(y) dMy, (9.2.31)

where the heat kernel is given by

K(t, x, y) = ∑
j

e−νjtψj(x)⊗ ψj(y), (9.2.32)

in complete analogy with (9.1.12)-(9.1.13). Here, one should recall the natural
isomorphism

E⊗ F = Hom(F, E), (9.2.33)

where E and F are finite dimensional hermitian vector spaces so that ψj(x)⊗
ψj(y) should be thought of as a homomorphism Ey → Ex. Notice that even if
η ∈ L2(E), e−t∆η is smooth so that, as in the case of the circle, the heat flow
is smoothing. However, much more is true in the sense that e−t∆ is trace class,
i.e. it has a trace given by

Tr e−t∆ =
∫

M
trK(t, x, x) dMx = ∑

j
e−νjt,

where tr is the usual trace of matrices. This can be easily seen from the fact
that, under (9.2.33) with E = F, one has tr

(
ψj(x)⊗ ψj(x)

)
= |ψj(x)|2.

Pursuing further the analogy with the circle, it follows from the represen-
tation above that

lim
t→+∞

Kt(t, x, y) = 0.
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In particular, if we put

η(x) = lim
t→+∞

e−t∆η(x), x ∈ M,

we get
∆η = 0,

and the long term behaviour of the heat flow is determined by harmonic sec-
tions.

We can even be a bit more explicit here. Observe that both d and d∗

commute with ∆ and thus with e−t∆, so we compute

η − e−t∆η = e−0∆η − e−t∆η

= −
∫ t

0
∂t(e−t∆η) dt

(9.2.30)
=

∫ t

0
∆e−t∆η dt

=
∫ t

0
dd∗e−t∆η dt +

∫ t

0
d∗de−t∆η dt

= d
[∫ t

0
e−t∆d∗η dt

]
+ d∗

[∫ t

0
e−t∆dη dt

]
.

Letting t→ +∞ we have
η = η + η1 + η2, (9.2.34)

where

η1 = d
[∫ +∞

0
e−t∆d∗η dt

]
∈ d(Γ(E))

and

η2 = d∗
[∫ +∞

0
e−t∆dη dt

]
∈ d∗(Γ(E)).

This is the famous Hodge decomposition. In particular, if η is closed in the sense
that dη = 0, the above calculation shows that

η − e−t∆η = d
[∫ t

0
e−t∆d∗η dt

]
.

This means that η and e−t∆η lie on the same de Rham cohomology class and
hence that the heat flow selects, as t → +∞, a unique harmonic representa-
tive in each cohomology class. We then get the following sharper version of
Theorem 9.2.1.
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Theorem 9.2.7 In the conditions of Theorem 9.2.1, one has5

Πker ∆ = lim
t→+∞

e−t∆, (9.2.36)

and this establishes the Hodge isomorphism (9.2.19).

Notice that this shows in particular that dim Hi(E) < +∞ for each i.

9.3 The cancellations

With the analytical preliminaries of the last section out of the way, we can
finally explain the cancellations leading to the Atiyah-Singer index theorem.
Assume that E is a graded Clifford bundle. It follows that

0→ Γ(E+) d→ Γ(E−)→ 0

is a Dirac complex if we take d = D+ and d∗ = D−. Also, since

D =

(
0 D−

D+ 0

)
,

we get

∆ = D2 =

(
D−D+ 0

0 D+D−

)
def.
=

(
∆+ 0
0 ∆−

)
,

where ∆± : Γ(E±)→ Γ(E±). As a consequence,

e−t∆ =

(
e−t∆+

0
0 e−t∆−

)
,

where e−t∆± : L2(E±)→ L2(E±) are trace class. Moreover, since

ker ∆± = ker D±, (9.3.37)

we have by Hodge theory (in the form of Theorem 9.2.7),

lim
t→+∞

e−t∆± = Πker ∆± = Πker D± .

5If W is a Hilbert space and V ⊂ W is a closed subspace, we denote by ΠV : W → W the
orthogonal projection over V. If dim V < +∞ then ΠV is trace class and

Tr ΠV = dim V. (9.2.35)

Moreover, the limit in (9.2.36) is in the Hilbert-Schmidt norm (cf. [RS]).
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On the other hand,

ind D+ = dim ker D+ − dim ker D−

(9.2.35)
= Tr Πker ∆+ − Tr Πker ∆− ,

so that
ind D+ = lim

t→+∞
Tr
(

e−t∆+ − e−t∆−
)

, (9.3.38)

and this suggests

Definition 9.3.1 If E = E+ ⊕ E− is a graded Clifford bundle, T : L2(E)→ L2(E)
is trace class and decomposes under the grading as

T =

(
T00 T01
T10 T11

)
,

then the supertrace of T is given by

Trs T = Tr T00 − Tr T11.

From this we rewrite (9.3.38) as

ind D+ = lim
t→+∞

Trs e−t∆. (9.3.39)

Now we observe that D− (respect. D+) carries eigensections of ∆+ (respect.
∆−) corresponding to a nonzero eigenvalue, say ν, to eigensections of ∆−

(respect. ∆+) with the same eigenvalue. Since D+D−ψ = νψ for any such
eigensection, it follows that ∆+ and ∆− have the same nonzero eigenvalues
(counted with multiplicities!), which means that Trs e−t∆ actually does not
depend on t, so we get

ind D+ = Trs e−t∆, t > 0. (9.3.40)

Now we pause to contemplate the situation. First, we have seen from
(9.3.39) that ind D+ can be computed in terms of the long term behavior
of heat flow of ∆, but then the cancellations leading to (9.3.40) show that
actually ind D+ is a quantity manifestly invariant under this same flow and
this suggests that one should try to compute Trs e−t∆ for t ∼ 0 as a final step
in the calculation of ind D+. That this can be carried out in a satisfactory
manner follows from the (highly nontrivial!) fact that the heat kernel (9.2.32)
has, along the diagonal, an asymptotical expansion as t ∼ 0 given by

K(t, x, x) ∼ 1
(4πt)n/2 ∑

m≥0
am(x)tm, (9.3.41)
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where am(x) : Ex → Ex is a certain endomorphism whose entries depend on
the underlying geometry in a sense to be explained below.6 Notice that with
respect to the decomposition Ex = E+x ⊕ E−x one has

am(x) =
(

a+m(x) 0
0 a−m(x)

)
,

and setting in this context trs am(x) = tr a+m(x)− tr a−m(x) we get

Trs e−t∆ =
∫

M
trsK(t, x, x) dM ∼ 1

(4πt)n/2 ∑
m≥0

âmtm,

where
âm =

∫
M

trs am(x) dM.

Combined with (9.3.40) this immediately implies that only the term ân/2 sur-
vives in the expression for the index:

ind D+ =
1

(4π)n/2

∫
M

trs an/2(x) dM. (9.3.42)

Thus we arrive at a point where the computation of ind D+ gets reduced to
determining the supertrace of the term an/2 in the asymptotic expansion of
K.

At this juncture, we restrict ourselves to the case of Theorem 8.1.2, so that
E = S(M), the spin bundle of a closed spin manifold of dimension n = 4l
with the natural grading given by (8.1.7), and D = ∂/, the classical Atiyah-
Singer-Dirac operator.7 Recalling the fundamental isomorphism (5.2.15), one
can show that in this case the coefficients in (9.3.41) satisfy

am(x) ∈ Cl(M)x ∼= Cln, (9.3.43)

and moreover, under the vector space isomorphism (5.1.3), each am defines
a (possibly non-homogeneous) differential form with top degree less that or equal
to 2m. On the other hand, the coefficients depend locally and universally
on the geometry of M, which means that, in terms of a local chart x =
(x1, . . . , xn), their entries are given by explicit universal formulas (i.e. the same
formulas hold for any such manifold of dimension n) involving algebraic
expressions in the derivatives up to a certain order (depending on m and n)
of the coefficients of the Riemannian metric of M. Hence, from now on we

6Naturally, (9.3.41) should be seen as a far-reaching generalization of (9.1.14).
7The more general situation considered in Theorem 8.1.1 can be treated by a similar argument.
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can work at a neighborhood U of 0 in Rn endowed with normal geodesic
coordinates with respect to the induced metric given by the local chart and
such that Cl(M)|U has been trivialized by the use of parallel transport.

The proposition below provides the key to the final step in the proof of
the Atiyah-Singer index formula. Recall that Cln has a Z-grading given by
(5.1.6) and notice that Cl(0)n ≡ C and Cl(n)n is generated by the volume element
e1 . . . en, so that if a ∈ Cln we represent by a ∈ C the projection of a onto Cl(0)n
and by ae1 . . . en, a ∈ C, the top degree part of a with respect to (5.1.6).

Proposition 9.3.1 If we think of a ∈ Cln as an element of End(Ψ) via (5.2.15),

trs a =

(
2
i

)n/2
a.

Proof. Since trs a = tr Γna one has to check that tr a = 2n/2a. But 1 ∈ Cln acts
as the identity on Ψ and hence tr 1 = 2n/2. Moreover, by (5.2.15), for each
eI with I ̸= ∅ there exists a constant cI such that tr eI = cItr Ξ(eI), where
Ξ is the regular representation from Section 5.2, and inspecting the action
of Ξ(eI) on the standard basis {eJ} of Cln one sees without difficulty that
tr Ξ(eI) = 0.⌋

This clearly represents a considerable improvement on the above empha-
sized statement regarding the coefficients am, meaning that only the top de-
gree term of an/2 contributes to the index, and of course it represents another
formidable cancellation in our calculation. The next major step is, by using
a clever scaling argument due to E. Getzler (cf. [BGV]), to deform ∆ into
another Laplace type second order elliptic operator ∆∞ defined in a neigh-
borhood of 0 and with the property that the corresponding heat equation
∂tΥ + ∆∞Υ = 0 has as heat kernel a t-dependent Cln-valued function K∞

such that, for t ∼ 0,

K∞(t, x, x) ∼ 1
(4πt)n/2 ∑

m≥0
a∞

m (x)tm, (9.3.44)

with
a∞

n/2(0) = an/2(0). (9.3.45)

Specifically,

∆∞ = −
n

∑
j=1

(
∂

∂xj
− 1

8

n

∑
l=1

Θjl xl

)2

,
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where Θ is the curvature 2-form associated to the Levi-Civita connection on
TM computed at x = 0 and acting on Cln by

Θkl =
n

∑
p,q=1
⟨Rek ,el ep, eq⟩epeq.

It turns out that ∆∞ is a sort of generalized harmonic oscillator operator
with a quadratic potential depending on the curvature of M, so that by a
classical formula due to Mehler we end up with

K∞(t, 0, 0) =
1

(4πt)n/2 Â (−2πitΘ) , (9.3.46)

where once again the isomorphism (5.1.3) has been used to identify elements
in Γ (Cl(M)|U) and differential forms.

Now, the Atiyah-Singer index formula can at last be checked as follows.
First, from (9.3.42) and Proposition 9.3.1 we have

ind ∂/+ =
1

(4π)n/2

(
2
i

)n/2 ∫
M

a∞
n/2 dM.

But from (9.3.44) and (9.3.46),

a∞
n/2(0) =

(n
2

)th
coefficient in t of Â (−2πitΘ)

= (2πi)n/2 ×
(n

2

)th
coefficient in t of Â (tΘ)

= (2πi)n/2[Â(Θ)]n,

so that

ind ∂/+ =
1

(4π)n/2

(
2
i

)n/2
(2πi)n/2

∫
M
[Â(Θ)]n dM

=
∫

M
[Â(Θ)]n dM

= ⟨Â(TM), M⟩,

and this completes our sketch of the proof of Theorem 8.1.14.
There are two points one would like to emphasize here. First, in the cal-

culation above no previous knowledge of characteristic classes is needed, as
the Â-class appears naturally in the end of the computation as a result of
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applying Mehler’s formula. This should be compared to the first generation
proofs of the index formula by heat equations methods [G], where the char-
acteristic integrand was determined by the heat asymptotics up to finitely
many universal constants (and for this a great deal of information on charac-
teristic classes was required!) and its final shape was only made precise after
evaluation on explicit examples. Second, if we examine the proof above in
hindsight, we see that (9.3.42) suggests that, if properly normalized, the local
density trs an/2 given by the heat flow and the Chern-Weil form Â(Θ) should
give the same result after integration over M, a point already confirmed by
the so-called topological proofs of the index formula. But that these quanti-
ties actually coincide pointwisely is certainly a sort of mathematical miracle,
specially because, by construction, trs an/2 depends apriori on high order
derivatives of the metric (with the order growing with n) while Â(Θ) surely
depends on derivatives only up to second order. This remarkable result and
its many generalizations, usually referred to in the literature as ‘local index
formulas’, illustrate the power of the ‘fantastic cancellations’ involved in the
arguments sketched above.





Chapter 10

Some applications of the
index formula

The Atiyah-Singer index formula for Dirac operators, proved in the early six-
ties, contains as particular cases some index results previously established
for certain ‘classical’ operators in Differential Geometry. In this chapter
we reverse the historical order of events and show how two of the classical
cases, namely the Hirzebruch signature and Chern-Gauss-Bonnet formulas,
can be obtained by a routine application of the index formula (8.1.13) to suit-
able twisted Dirac operators. There is still another result, the Hirzebruch-
Riemann-Roch formula for algebraic manifolds, which predated by some
years the Atiyah-Singer formula, and which can also be retrieved by the
same methods, but we shall not treat this here. We also present a beautiful
argument of Gromov and Lawson providing interesting topological-geometric
obstructions to the existence of metrics of positive scalar curvature on certain
Riemannian manifolds. As a final bonus, we give a brief introduction to spinc

structures and the Seiberg-Witten equations.

10.1 The Chern-Gauss-Bonnet formula

In this section we shall indicate how the index formula (8.1.13) can be use to
prove

Theorem 10.1.1 (Chern-Gauss-Bonnet) Let M be a closed oriented Riemannian
manifold of dimension n = 2k. Then the Euler characteristic χ(M) can be expressed

109
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in terms of the Euler class of TM as

χ(M) = ⟨e(TM), M⟩. (10.1.1)

We shall treat this by expressing χ(M) as the index of a certain twisted
Dirac operator. We assume for the moment that M is spin and introduce
some notation. Let Λeven(M) (respect. Λodd(M)) be the bundle of even (re-
spect. odd) degree complex differential forms over M so that Aeven(M) =
Γ(Λeven(M)) and Aodd(M) = Γ(Λodd(M)). Observe that if we consider
D = d + d∗ : Aeven(M) → Aodd(M) then Hodge-de Rham theory implies
that indD = χ(M), but the grading Λ(M) = Λeven(M) ⊕ Λodd(M) does
not make D into a twisted Dirac operator. To proceed, we note the identifica-
tions Cl0(M) = Λeven(M) and Cl1(M) = Λodd(M), where the decomposition
Cl(M) = Cl0(M)⊕Cl1(M) follows from (5.1.4) and (5.2.16). In terms of the
splitting (5.2.11), one clearly has

Cln = End(Ψ) = Ψ⊗Ψ =

(
End(Ψ+) Hom(Ψ−, Ψ+)

Hom(Ψ+, Ψ−) End(Ψ−)

)
.

Now, the diagonal terms correspond to the isomorphisms

Cl0n = End(Ψ+)⊕ End(Ψ−) =
(
Ψ+ ⊗Ψ+

)
⊕
(
Ψ− ⊗Ψ−

)
and the off-diagonal terms correspond to the isomorphisms

Cl1n = Hom(Ψ+, Ψ−)⊕Hom(Ψ−, Ψ+) =
(
Ψ+ ⊗Ψ−

)
⊕
(
Ψ− ⊗Ψ+

)
so that (assuming M spin) indD = ind ∂/+

(−1)kŜ(M)
, where ∂/+

(−1)kŜ(M)
is the

Atiyah-Singer-Dirac operator twisted by the ‘virtual’ bundle (−1)kŜ(M),
where Ŝ(M) = S+(M) − S−(M) is the spinor difference element. In terms
of the variables yi introduced soon after Theorem 7.2.2, with F = TM, it is
not hard to check that (see [LM]):

ch(Ŝ(M)) =
k

∏
i=1

(
e−yi/2 − e+yi/2

)
(10.1.2)

so that

ch(Ŝ(M)) = (−1)ky1 . . . yk + terms of higher degree
(7.3.15)
= (−1)ke(TM) + terms of higher degree.

Since
Â(TM) = 1 + terms of higher degree,
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from (8.1.13) we finally get

χ(M) = ⟨ch((−1)kŜ(M))Â(TM), M⟩ = ⟨e(TM), M⟩.

It remains to remove the spin condition on M. But we know from Section
9.3 that χ(M), as the index of a twisted Dirac operator, can be computed
by integrating over M the supertrace of the appropriate coefficient in the
asymptotic expansion of the corresponding heat kernel, and this is a local
invariant in the geometry of M. On the other hand, the argument above
has identified, in the presence of a spin structure, this invariant to the local
expression defining the Euler class via Chern-Weil theory. Since locally any
manifold is spin, this completes the proof of Theorem 10.1.1.

10.2 The Hirzebruch signature theorem

Let M be a closed oriented manifold of dimension n = 2k and let Hk
dR(M) be

the middle dimensional de Rham cohomology group of M. We can define a
bilinear form Q on Hk

dR(M) by

Q([η], [η′]) =
∫

M
η ∧ η′,

for closed forms η and η′. Clearly, this is well-defined in the sense that it does
not depend on the chosen representatives in each class. Moreover, one has
Q([η], [η′]) = (−1)k2

Q([η′], [η]) so that if we assume further that k = 2l so
that dim M = 2k = 4l, one sees that Q is symmetric. Poincaré duality implies
that Q is non-degenerate and hence the corresponding quadratic form has no
null eigenvalue. We then define the signature of M by

sign (M) = b+ − b−,

where b+ (respect. b−) is the number of positive (respect. negative) eigenval-
ues counted with multiplicities. By de Rham theory, this is an oriented homo-
topy invariant of M and, surprisingly enough, it can be computed in terms of
local geometric data in M by integration of a certain curvature dependent ex-
pression associated to a Riemannian metric on M. This was first discovered in
the fifties by Hirzebruch via topological methods (cobordism theory) and is
one of the classical index formulas predating the general Atiyah-Singer index
formula. In the following we show how the Hirzebruch signature formula
follows from Theorem 8.1.1. As in the Chern-Gauss-Bonnet theorem, the idea
is to identity sign (M) to the index of a certain twisted Dirac operator, as we
now pass to explain.
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First we remark that the grading condition in Definition 8.1.1 is equivalent
to the existence of a self-adjoint bundle map Γ : E → E satisfying the condi-
tions Γ2 = 1 and DΓ = −ΓD. By Proposition 5.2.3, it follows that if we take
Γ = Γn, the left multiplication by the complex volume element associated to
some Riemannian metric on M, then the conditions above are satisfied if

E = Cl(M) = Λ(M)⊗C, (10.2.3)

where Λ(M)⊗C is the bundle of complex valued differential forms over M,
and D = D = d + d∗, the Dirac type operator considered in Chapter 4. We
now claim that

sign (M) = indD+, (10.2.4)

where as usual the righthand side is defined by computing dimensions over
C.

To see this, notice that Γn(kerD) ⊂ kerD and Hodge theory imply that
Γn descends to an involution on H = H∗(M) ⊗ C, the space of complex
valued harmonic forms with respect to the chosen Riemannian metric. If we
set H = H+ ⊕H− with H± = {η ∈ H; Γnη = ±η}, it is immediate that

kerD± = H± ∩Hk ⊕
⊕

0≤i<k

H± ∩
(
Hi ⊕Hn−i

)
,

where we have set Hj = Hj(M)⊗C, 0 ≤ j ≤ n. Notice that, for 0 ≤ i < k,
there holds Γn = ik+i(i−1)∗ on Λi(M) ⊗ C, and hence if we consider φi ∈
End(Hi ⊕ Hn−i) given by φi(η + Γnη) = η − Γnη, this turns out to be an
isomorphism, so that in particular kerD+|Hi⊕Hn−i = kerD−|Hi⊕Hn−i and the
contributions of these subspaces to the index cancel out. As a result,

indD+ = dimH+ ∩Hk − dimH− ∩Hk.

Now, on Hk one has Γn = ∗ and from this we have first of all the direct sum
decomposition Hk = H+ ∩Hk ⊕H− ∩Hk and then that Q|H+∩Hk is positive
definite1 since, for η ̸= 0 in H+ ∩Hk,

Q(η, η) =
∫

M
η ∧ η =

∫
M

η ∧ ∗η = ∥η∥2 > 0,

and similarly Q|H−∩Hk is negative definite. This means that b± = dimH± ∩
Hk, which completes the proof of (10.2.4).

1In fact, here Q denotes the obvious hermitian extension of the previously defined quadratic
form.
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Now, recall from (6.2.5) that

Cl(M) = S(M)⊗ S(M), (10.2.5)

and combined with (10.2.3) this says that, in the notation of Chapter 8 (and
of course assuming that M is spin), we can take G = S(M) and the next step
is to check that

indD+ = ind ∂/+
S(M). (10.2.6)

In words, the Dirac operator D coming from the grading given by Γn has the
same index as the classical Atiyah-Singer-Dirac operator ∂/+ twisted by the
spinor bundle of M. Now, it is not hard to check that the index of a Dirac
type operator only depends on its first order term and on the corresponding
grading, which are clearly determined by Clifford multiplication. So we just
have to see that these data are preserved under the pointwise isomorphism
Cln = Ψ ⊗ Ψ underlying (10.2.5), and this is a direct checking left to the
reader.

So far we have noted that, for a spin manifold M as above, sign (M) =
ind ∂/+

S(M) and we are in a position to apply Theorem 8.1.1 to verify that

sign (M) = ⟨ch(S(M))Â(TM), M⟩. Similarly to (10.1.2), we have

ch(S(M)) =
k

∏
i=1

(
eyi/2 + e−yi/2

)
= 2k

k

∏
i=1

cosh
yi
2

,

so we compute using (7.2.10),

ch(S(M))Â(TM) = 2k
k

∏
i=1

cosh
yi
2

yi/2
sinh(yi/2)

=
k

∏
i=1

yi
tanh(yi/2)

.

At this point we use the recipe of Section 7.2 to define the Hirzebruch
L-class of M by the multiplicative invariant formal power series

L(TM) =
k

∏
i=1

yi/2
tanh(yi/2)

,

and we finally have

Theorem 10.2.1 (Hirzebruch) For a closed oriented manifold of dimension n = 4l,

sign (M) = ⟨L(TM), M⟩. (10.2.7)

Proof. There are two points that remain to be checked. First, when we com-
pare the expressions for ch(S(M))Â(TM) and L(TM) above, we see that
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they do not quite match due to an extra factor of 2. However, it is easy to
see that the degree n term in these characteristic classes agree, showing that
the computation is all right. The other point is to remove the spin condi-
tion in the analysis above and this uses the sane argument as in the proof of
Theorem 10.1.1.

The signature formula is a central result in Differential Topology. For
example, it has been used in Milnor’s celebrated argument [Mi] leading to
the existence of exotic differentiable structures on S7.

10.3 The Gromov-Lawson obstruction

We have already seen how, by combining the Atiyah-Singer formula (8.1.14)
with the vanishing criterion given by Theorem 6.2.2, Lichnerowicz was able
to detect the first obstruction result for the existence of metrics with quasi-
positive scalar curvature. The method proved to be very fruitful and in fact it
has been largely perfected by Hitchin [H], who proved for example a striking
theorem according to which half of the exotic spheres in dimension 1 and
2 (mod 8) can not carry a metric with positive scalar curvature. In this sec-
tion, we present still another variant of Lichnerowicz argument explored by
Gromov and Lawson in a remarkable series of articles ([GL1], [GL2], [GL3]).
The idea here is to bring the fundamental group (more precisely, the way the
fundamental group acts on covering spaces by deck transformations) to the
core of the discussion and a typical result obtained by their methods is

Theorem 10.3.1 The n-torus Tn = S1 × . . .× S1 does not carry any metric with
everywhere positive scalar curvature.

Before proceeding with the proof of this result, some comments are in
order. First, in fact a much sharper result holds: any metric with non-negative
scalar curvature on Tn is actually flat! Second, in the dimensional range
n ≤ 7, the obstruction was first proved by Schoen and Yau [SY] by using
minimal hypersurfaces methods. And third, the argument actually holds for
a large class of manifolds, the so-called enlargeable manifolds, from which
Tn seems to be a natural representative.

And what is so special about Tn? For each m ≥ 0, let Cn
m ⊂ Rn be

the n-cube given by 0 ≤ xi ≤ 2m, 1 ≤ i ≤ n. If we identify points in the
boundary of Cn

m in the usual way, we get a n-torus, say Tn
m, equipped with

the flat Euclidean metric and the map Cn
m → Cn

1 induced by the natural
Zn-action on Rn gives a (2mn)-sheeted Riemannian covering maps Tn

m →
Tn

0 = Tn. Moreover, if Cn
m is uniformly stretched over the standard unit
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sphere Sn ⊂ Rn+1 in such a way that the center Pm = (2m−1, . . . , 2m−1) of
the open ball Bn

m = {x ∈ Cn
m; |x− Pm| < 2m−1} goes into the north pole and

the complement of Bn
m in Cn

m is collapsed onto the south pole, this provides
a degree one map f : Tn

m → Sn satisfying | f∗v| ≤ (π/2m−1)|v| for any v
tangent to Tn

m. Thus we have been able to establish the following fundamental
property of Tn endowed with any Riemannian metric: for every ε > 0 there
exists a finite Riemannian covering space T̃ of Tn and a map f : T̃ → Sn

which is ε-contractible in the sense that | f∗v| ≤ ε|v|, for any v tangent to T̃,
and has deg f = 1. More generally, and taking Proposition 6.1.4 into account,
we have

Definition 10.3.1 A closed Riemannian manifold M of dimension n is said to be
compactly enlargeable if for every ε > 0 there exists a finite Riemannian covering
space M̃ of M which is spin and a map f : M̃ → Sn which is ε-contractible in the
sense that | f∗v| ≤ ε|v|, for any v tangent to M̃, and has deg f ̸= 0.

With this terminology at hand, we have the following extension of Theorem
10.3.1.

Theorem 10.3.2 A compactly enlargeable manifold M cannot carry a metric with
everywhere positive scalar curvature.

Proof. After possibly taking product with S1, we can assume n = 2k. Now
suppose for the sake of absurd that M carries a metric with κ > 0. For each
ε > 0 recall that we have a map f : M̃ → Sn meeting the conditions of
Definition 10.3.1. From results in [AH], we know the existence of a complex
vector bundle E → Sn (which we may assume endowed with a hermitian
metric and compatible connection) with ⟨ck(E), Sn⟩ ̸= 0 and we are thus led
to consider the twisted bundle S(M̃) ⊗ f ∗E → M̃, where the pulled back
bundle f ∗E → M̃ has the induced metric and connection. Since M̃ is closed
we can apply (8.1.13) to conclude that the index of the twisted Dirac operator

∂/+
f ∗E : Γ(S+(M̃)⊗ f ∗E)→ Γ(S−(M̃)⊗ f ∗E)

is given by
ind ∂/+

f ∗E = ⟨ch( f ∗E)Â(TM̃), M̃⟩. (10.3.8)

The proof is completed by computing this integer in two different ways and
showing that, under the assumption κ > 0, the outcomes are different indeed,
thus reaching a contradiction.

First, one recall from Propositon 8.1.1 that

∂/2
f ∗E = ∇∗∇+

κ̃

4
+R[ f ∗E ],
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where κ̃ is the scalar curvature of the metric on M̃ induced by the Riemannian
covering M̃ → M (so that in particular κ̃ > 0). An easy estimation using
(8.1.10) gives the pointwise bound |R[ f ∗E ]| ≤ ε2cn|RE | where cn > 0 is a
universal constant depending only on n, so that by taking ε small enough
we will have κ̃/4 +R[ f ∗E ] > 0 and a vanishing argument as in the proof of
Theorem 6.2.2 shows that ker ∂/ f ∗E = {0} and hence ind ∂/+

f ∗E = 0.

We now show that ind ∂/+
f ∗E ̸= 0 by using (10.3.8). First, one has ch( f ∗E) =

f ∗ (ch(E)) and since Sn has trivial cohomology in degree 1 ≤ i ≤ n− 1,

ch(E) = rank(E)1 + 1
(k− 1)!

ck(E).

This allows us to compute

⟨ch( f ∗E)Â(TM̃), M̃⟩ = rank(E)Â(M̃) +
1

(k− 1)!
⟨ f ∗(ck(E)), M̃⟩

=
1

(k− 1)!
⟨ f ∗(ck(E)), M̃⟩,

where we have applied Theorem 6.2.3 to M̃, so that finally

ind ∂/+
f ∗E =

1
(k− 1)!

⟨ f ∗(ck(E)), M̃⟩

=
1

(k− 1)!

∫
M̃

f ∗(ck(E))

(1.1.12)
=

1
(k− 1)!

deg f
∫

Sn
ck(E) ̸= 0,

as desired.⌋

This beautiful argument can actually be generalized to the case in which
some element in the tower of coverings of M is merely complete, but for
this one needs a sort of relative index theorem for pairs of Dirac operators
on a noncompact spin manifold ‘agreeing’ at infinity. The interested reader
should consult [GL3] and [LM] for the details.

10.4 The Seiberg-Witten equations

Spin geometry is particularly effective in low dimensions where, due to the
existence of certain ‘exceptional isomorphisms’, it usually admits a concrete
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description in terms of more familiar geometric data. In dimension four, a
fundamental breakthrough was achieved by Witten [Wi], where the moduli
space of solutions of a certain monopole type equation (the Seiberg-Witten
equation) was used to address many important questions on the topology
and geometry of smooth 4-manifolds. The purpose of this section is to sketch
some points of this recent development, notably because the index formula
(8.1.13) plays a prominent role in the theory.

In what follows, unless otherwise stated, M will denote a closed oriented
4-manifold with a fixed Riemannian metric. The relevance of dimension four
is that it is the only dimension for which the rotation group SOn is not a
simple Lie group. More precisely, recall from (1.2.14) that one has in general
the isomorphism son = Λ2Rn. However, if n = 4, the Hodge star operator
∗ : Λ2R4 → Λ2R4 satisfies ∗2 = Id, and this yields an orthogonal splitting

Λ2R4 = Λ2
+R4 ⊕Λ2

−R4, (10.4.9)

where Λ2
±R4 = {η ∈ Λ2R4; ∗η = ±η}. Notice that, in view of Propositions

5.1.6 and 5.1.7, spin4 has a similar splitting

spin4 = spin+4 ⊕ spin−4 .

Notice also the existence of homomorphisms ∧2µ±4 : SO4 → SO3 given by the
composition of the standard representation ∧2µ4 of SO4 on Λ2R4 with the
orthogonal projections over the factors of (10.4.9).

Now, since Spin4 is simply connected, one would expect a corresponding
direct product decomposition

Spin4 = Spin+
4 × Spin−4 , (10.4.10)

for certain 3-dimensional Lie groups Spin±4 . Fortunately, it is easy to provide
an explicit description of the factors entering in (10.4.10). Indeed, distinguish
two copies, say SU+

2 and SU−2 , of the special unitary group SU2, and let
(g+, g−) ∈ SU+

2 × SU−2 act on R4 by

(g+, g−)x = g+x(g−)−1, (10.4.11)

where

x = (x1, x2, x3, x4) =

(
x1 + ix4 −x2 + ix3
x2 + ix3 x1 − ix4

)
.

Since |x|2 = det x, this gives a Lie group homomorphism γ : SU+
2 × SU−2 →

SO4 with ker γ = Z2, meaning that Spin4 = SU+
2 × SU−2 and γ = γ4, the

standard covering map in Proposition 5.1.5. Incidentally, notice that if we
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restrict γ to SU2 via the diagonal embedding SU2 ⊂ SU+
2 × SU−2 , we get a

map γ̃ : SU2 → SO4. However, γ̃ fixes pointwisely the real axis x2 = x3 =
x4 = 0 and hence defines a homomorphism γ̃ : SU2 → SO3 with ker γ̃ = Z2,
so that Spin3 = SU2 and γ̃ = γ3.

The above computations show that a spin structure on a Riemannian 4-
manifold M amounts to the existence of a pair (S+,S−) of complex plane
bundles over M such that:

1. Both S+ and S− have SU2 as structural group or, equivalently, by
Chern-Weil theory, c1(S+) = c1(S−) = 0. Of course, S = S+ ⊕ S−
is the spinor bundle of Section 6.2.

2. Clifford multiplication defines a bundle isomorphism

TM⊗C = Hom(S+,S−) = S+ ⊗ S−.

We will now see that these are rather stringent conditions on M. First,
recall from Proposition 7.2.1 that c1(TM ⊗ C) = 0. In order to compute
c2(TM⊗C), which by (7.2.6) amounts to computing p1(M), one uses (7.2.8)
in the form ch(S+⊗S−) = ch(S+)ch(S−) to conclude that p1(M) = −c2(TM⊗
C) = −2 (c2(S+) + c2(S−)), so that a necessary condition for M to be spin is
the Pontrjagin number ⟨p1(M), M⟩ to be an even integer. On the other hand,
one knows from Theorem 10.2.1 that ⟨p1(M), M⟩ = 3 sign (M) and we end
up with the following criterion: if sign (M) is odd then M does not carry a spin
structure. This allows us to exhibit many examples of nonspin manifolds. For
example, if nP2 denotes the connected sum of n copies of P2, the complex
projective plane, then sign (nP2) = n so that nP2 is not spin for n odd. In
particular, the construction in Section 6.2 does not apply but, and this is cru-
cial in what follows, spinors can still be globally defined on those manifolds
(and, as a matter of fact, on any closed oriented 4-manifold). The relevant
point is that Spin4 lies inside the real Clifford algebra Cl4 while spinors have
been constructed in terms of representations of the complex Clifford algebra
Cl4, and the proper inclusion Cl4 ⊂ Cl4 leaves us some room to explore.
In terms of the concrete models above, we simply bring about a complex
parameter z ∈ S1 = SO2 = U1 and replace (10.4.11) by

(g+, g−, z)x = (zg+)x(zg−)−1;

this gives a representation γc
4 : Spinc

4 → SO4, γc
4([g+, g−, z]) = γ4(g+, g−),

where we have set
Spinc

4 = Spin4 ×U1/ ∼ . (10.4.12)
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Here, ∼ represents the identification induced by the obvious Z2-action. An-
other ‘exceptional’ isomorphism comes from the standard identification U2 =
SU2 ×U1/ ∼, which means that

Spinc
3

def.
= Spin3 ×U1/ ∼= U2.

From this we have well defined complex representations χ± : Spinc
4 →

Spinc
3 = U2, χ±([g+, g−, z]) = [g±, z], so that the whole discussion can be

summarized in the commutative diagram

Spinc
3 = U2

χ+←− Spinc
4

χ−−→ Spinc
3 = U2

ϕ ↓ γc
4 ↓ ↓ ϕ

SO3
∧2µ+

4←− SO4
∧2µ−4−→ SO3

with ϕ([g, z]) = γ3(g).
We can now mimic the definition of spin manifolds (cf. Proposition 6.1.3)

and say that an oriented Riemannian 4-manifold carries a spinc structure if
its orthonormal frame bundle PSpin lifts to a principal Spinc

4-bundle PSpinc
in

such a way that γc
4 is fiberwisely reproduced. An argument of Hirzebruch

and Hopf [HH] shows that any closed oriented 4-manifold carries a spinc

structure. Thus in this case we can form:

• A pair of complex plane bundles over M by

S c
± = PSpinc

×χ± C2.

These are the half-spinor bundles of the spinc structure.

• The complex line bundle

L = PSpinc
×ρ C,

with ρ : Spinc → U1, ρ([g+, g−, z]) = z2. Since L = Λ2S c
+ = Λ2S c

−, L is
said to be the determinant bundle of the given spinc structure.

Notice that these bundles come equipped with natural hermitian metrics.
Moreover, it is not hard to check that the integral cohomology class c1(L)
completely determines the spinc structure up to isomorphism.

As an example, assume that M is spin (with spin structure given by the
principal bundle PSpin) and fix a complex line bundle L over M with a Her-
mitian metric. If PL is the corresponding principal U1-bundle, form the prin-
cipal Spinc

4-bundle over M by the fibered product
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PSpinc
= PSpin ×M PL/ ∼ . (10.4.13)

This clearly defines a spinc structure over M with L = L ⊗ L and S c
± =

S± ⊗ L. Thus, in the presence of a spin structure, the determinant bundle
associated to a spinc structure admits a global square root L = L1/2. Now, in
general, we can cover M by a finite collection {Uα}N

α=1 of contractible open
subsets so that each Uα is spin (in a unique way!) with spinor bundle Sα =
S+α ⊕ S−α . Thus we get locally defined line bundles Lα such that Lα = L1/2

and S c
± = S±α ⊗ Lα over Uα. This validates the computation

TM⊗C|Uα = Hom
(
S+ff ,S−ff

)
= S+α ⊗ S−α
(∗)
=

(
S+α ⊗ Lα

)
⊗
(
S−α ⊗ Lα

)
= Hom

(
S+α ⊗ Lα,S−α ⊗ Lα

)
,

where (*) is perhaps best explained by the fact that the transitions functions
for Lα cancel out. If we assume further that the nonempty intersections Uα ∩
Uβ are contractible as well, this globalizes to

TM⊗C = Hom (S c
+,S c

−) ,

thus showing that Clifford multiplication is well defined in the spinc setting.
At this point one is tempted to define a Dirac operator but a word of

caution is in order. Recall that in the genuine spin case, the construction
in Section 6.2 yields a connection ∇s on S which depends canonically on
the metric on M, but in the more general spinc case no such connection is
available. To understand this, notice that the spinc condition can be rephrased
in terms of the existence of a 2-sheeted covering map

PSpinc

↓ γ̃c
4

PSpin × PL

which fiberwisely reproduces ξc = γc
4 × ρ : Spin4

c → SO4 × U1, and this
shows that in order to define a connection on PSpinc

one needs an extra piece
of data, namely, a compatible connection, say A, on L. By the standard
construction, this then leads to a connection ∇A : Γ(S c) → Γ(S c) which is
compatible with Clifford multiplication and the Hermitian metric, and more-
over preserves the orthogonal decomposition S c = S c

+ ⊕S c
−. We remark that
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even though this freedom to choose A may seem awkward at first sight, it
actually represents, as we shall see, a crucial input in Seiberg-Witten theory.
Anyway, we can define a Dirac operator (depending upon A) by the familiar
rule:

DA =
4

∑
i=1

ei · ∇A
ei

,

where as usual the dot means Clifford multiplication. Notice that, at least
locally, DA is a twisted Dirac operator: in the notation of Section 8.1, DA =
∂/L1/2 and this of course leads, via (8.1.9), to a Weitzenböck decomposition

D2
A = ∇A∗∇A +

κ

4
+

1
2

FA, (10.4.14)

where FA is the curvature2 of A and the factor 1/2 comes from the local
expression for DA above.

As before, DA is a formally selfadjoint operator and, in order to have an
interesting index, we consider D+

A : Γ(Sc
+) → Γ(S c

−), the restriction of DA to
positive half-spinors.

Theorem 10.4.1 In the notation above,

ind D+
A =

1
8

(
⟨c1(L)2, M⟩ − sign (M)

)
. (10.4.15)

Proof. By the argument in the proof of Theorem 10.2.1 and the comments
above, we can assume M spin so that (8.1.13) applies with G = L1/2. Now, it
follows from (7.2.8) (with E = E ′ = L1/2) that c1(L) = 2c1(L1/2), so that

ch(L1/2) = 1 +
1
2

c1(L) +
1
8

c1(L)2.

Moreover,

Â(TM) = 1− 1
24

p1(M),

and the result follows in view of the already mentioned identity ⟨p1(M), M⟩ =
3 sign (M)).⌋

Remark. We point out that γ̃c
4 above can be used to express the spinc con-

dition in terms of characteristic classes. First note that one has the natural
2One should stress that, since A is a compatible connection on a hermitian line bundle,

FA = dA is a genuine purely imaginary 2-form over M. This allows FA to act on spinors
by Clifford multiplication via the canonical isomorphim (5.1.3).
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commutative diagram

Spinc
4 ↪→ Spin6

γc
4 ↓ ↓ γ6

SO4 ×U1 ↪→ SO6

thus showing that M is spinc if and only if TM⊕ L is a spin bundle in the
sense of Definition 6.1.3. This means of course that 0 = w2(TM ⊕ L) =
w2(TM) + w2(L) + w1(TM)w1(L) or equivalently w2(TM) = w2(L) since
both TM and L are orientable. However, it follows from general princi-
ples that w2(L) is the so-called mod 2 reduction of an integral cohomol-
ogy class, namely, c1(L). This means that w2(TM) = j∗ (c1(L)), where
j∗ : H2 (M,Z) → H2 (M,Z2) is induced by the standard mod 2 reduction
j : Z → Z2. Since any integral cohomology class is the Chern class of some
line bundle, the conclusion is that M is spinc if and only if w2(TM) is the mod
2 reduction of some integral cohomology class. This should be compared to
the much stronger spin condition w2(TM) = 0.⌋

We proceed by noticing that the splitting (10.4.9) induces a decomposition

A2(M) = A2
+ ⊕A2

− (10.4.16)

of the space of real valued 2-forms into the subspaces of selfdual and antiself-
dual forms. Each closed η ∈ A2

± satisfies d∗η = 0 and hence is harmonic. On
the other hand, since ∗∆ = ∆∗, any harmonic 2-form uniquely decomposes
as η = η+ + η− with ∆η± = 0. It follows from Hodge-de Rham theory that
(10.4.16) induces a decomposition at the cohomology level:

H2
dR(M)⊗C = H2

+ ⊕ H2
−.

It is immediate that the quadratic form Q of Section 10.2 satisfies Q(η, η) > 0
(respect. Q(η, η) < 0) for η ̸= 0, η ∈ H2

+ (respect. η ∈ H2
−), so that if we set

b± = dim H2
±, these integers coincide with the invariants defined in Section

10.2 if n = 4. Finally, if ψ ∈ Γ(S c
+) is given, define

σ(ψ)(X, Y) = ⟨X ·Y · ψ, ψ⟩+ ⟨X, Y⟩|ψ|2.

It is easy to check that σ(ψ) is a purely imaginary valued 2-form such that
iσ(ψ) is selfdual.

Now we can at last to write down the famous Seiberg-Witten equations.
These are equations for a pair (ψ, A) ∈ Γ(S c

+) × C(L), where C(L) is the
space of compatible connections on the determinant bundle of a fixed spinc

structure over M:
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{
DAψ = 0

FA
+ = σ(ψ) + iη,

(10.4.17)

where the real selfdual 2-form η should be thought of as a deformation pa-
rameter. Notice that the above equations, and hence the corresponding space
of solutions ZL,g,η , depend essentially on the underlying metric, say g, on M.

From this point on the discussion becomes too technical to be included
here and we merely indicate the line of action. At least if b+ ≥ 2, the idea is
to show that after dividing out ZL,g,η by the natural action of the gauge group
of maps f : M→ S1 so as to obtain the Seiberg-Witten moduli spaceML,g,η , we
end up, for a generic choice of the pair (g, η), with a closed oriented smooth
manifold which, if not empty, satisfies3

dimRML,g,η =
1
4

(
⟨c1(L)2, M⟩ − (2χ(M) + 3 sign (M))

)
. (10.4.18)

Moreover, the oriented cobordism type of this moduli space is preserved un-
der generic variations of the data (g, η), thus providing an invariant of the
spinc structure depending only on the diffeomorphism type of M. The method
is particularly effective for manifolds supporting an almost complex struc-
ture, for then a canonical spinc structure exists for which dimML,g,η = 0, so
that the cobordism type furnishes an integer invariant obtained by counting
signs over a finite collection of points. With this invariant (and its many re-
fined forms) at hand, one can successfully address many profound questions
in the geometry and topology of 4-manifolds, including the construction of
many new examples of 4-manifolds carrying no metric with positive scalar
curvature (as evidenced by the occurrence of κ in (10.4.14)), the problem of
distinguishing smooth structures on the same topological 4-manifold (thus
simplifying and extending the previous technology introduced by Donald-
son [DK]), the problem of finding obstructions to the existence of symplectic
structures on certain 4-manifolds, among others. We strongly recommend
the excellent monograph [N] for anyone interested in pursuing this line of
study.

3Needless to say, (10.4.18) is obtained by a clever application of the index formula in the guise
(10.4.15).





Chapter 11

The index of general elliptic
operators

In this chapter we briefly indicate how the index formula for general elliptic
operators follows from the Dirac case described in Chapter 8. The essential
ingredient here is K-theory, an extraordinary cohomology theory based on
vector bundles whose central result, Bott’s periodicity theorem, provides the
link between the index of elliptic operators and the Clifford product acting
on the (half) spin representations.

11.1 Fredholm maps

Let H be a complex separable Hilbert space of infinite dimension. We shall
denote by B(H) the space of bounded linear operators on H and by K(H) ⊂
B(H) the two-sided ideal of compact operators. There exists the canonical
projection ϱ : B(H) → C(H) over C(H) = B(H)/K(H), the Calkin algebra,
and we define F (H) = ϱ−1(C(H)∗), the space of Fredholm maps, where C(H)∗

is the group of units in C(H). Thus, T ∈ F (H) if and only if there exists
T′ ∈ B(H) such that

TT′ = I + K, T′T = I + K′, (11.1.1)

where K, K′ ∈ K(H). T′ is called a parametrix for T and clearly T′ ∈ F (H) as
well.

Another way of characterizing T ∈ F (H) is to require that dim ker T <
+∞, im T is closed and dim coker T < +∞, where coker T = H/im T. Thus

125
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to each T ∈ F (H we can associate the integer

ind T = dim ker T− dim coker T,

the index of T.
Fredholm maps (and their indexes) have some nice properties that we

now recall:

1. F (H) is closed under composition and taking adjoints. Moreover,

ind TT′ = ind T + ind T′;

2. If K ∈ K(H) then I + K ∈ F (H) and ind(I + K) = 0. In particular,
ind T = −ind T′ if T′ is a parametrix for T;

3. F (H) ⊂ B(H) is open in the sup norm and ind : F (H) → Z is locally
constant.

The last item says that the index labels the connected components of
F (H). In words, the index is the topological invariant of Fredholm maps.

Example 11.1.1 Consider H = {x = (x0, x1, . . . , xn, . . .); xi ∈ C, ∑i |xi|2 <
+∞} and for n ≥ 1 define Tn : H → H by

Tnx = (0, . . . , 0︸ ︷︷ ︸, x0, x1, . . .),

with n zeros in the braces. Then ker Tn = {0} and coker Tn = [e0, . . . , en], where
ei = (0, . . . , 0, 1, 0, . . .), so that ind Tn = −(n + 1).

Example 11.1.2 This is a more sophisticated example that plays a key role in the
so-called analytical proof of the Bott periodicity theorem[A2]. Recall that each f ∈
L2(S1) can be expanded as

f =
+∞

∑
−∞

aneinθ ,

where an ∈ C is the nth Fourier coefficient of f . Let en = einθ and consider

H = [e0, e1, . . .].

Fix g : S1 → C∗ continuous and define the Toeplitz operator Tg : H → H by
Tg = Π+ ◦M f , whereMg is pointwise multiplication by g and Π+ : L2(S1)→ H
is orthogonal projection. Then Tg ∈ F (H) and a computation shows that

ind Tg = −winding number of g around 0.
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11.2 Elliptic operators as Fredholm maps

Let Mn be a smooth manifold and E , E ′ complex vector bundles over M. A
linear map P : Γ(E) → Γ(E ′) is a linear differential operator (l.d.o.) of order
m if locally it can be written as

(Pσ)i = ∑
|α|≤m

r=rank E
∑
j=1

aij
α (x)Dασj, i = 1, . . . , r′ = rank E ′,

where x is the coordinate relative to a coordinate patch U ⊂ M such that
both E and E ′ are trivial restricted to U, aij

α are smooth functions and Dα =
(−i)|α|∂α. The space of all l.d.o of order m is denoted by LDOm(E , E ′).

Given the local expansion for P as above we can define for x ∈ U and
ξ ∈ Rn the linear map σP(x, ξ) : Cr → Cr′ , by

(σP(x, ξ)(v))i = ∑
|α|=m

r=rank E
∑
j=1

aij
α (x)ξαvj, i = 1, . . . , r′.

If we view (x, ξ) as coordinates in T∗M this can be globalized to a bundle
morphism σP : π∗E → π∗E ′, where π : T∗M→ M is the standard projection.
We then say that P is elliptic if σP, the symbol, is a bundle isomorphism outside
of the zero section M ⊂ T∗M. The space of all elliptic l.d.o of order m is
denoted by Ellm(E, E′).

Given a Riemannian metric on M (assumed to be closed) and hermitian
metrics on E and E ′ we see that elliptic operators come in pairs. More pre-
cisely, if P ∈ Ellm(E , E ′) then there exists another P∗ ∈ Ellm(E ′, E) such that

(Pσ, σ) = (σ, P∗σ′), σ ∈ Γ(E), σ′ ∈ Γ(E ′),

where as usual ( , ) is the L2 inner product on sections induced by the metrics.
Moreover, there holds the pointwise identity σP∗ = σ∗P.

Remark. Given the choices above, P∗ is completely determined by P. More-
over, if E = E ′ and P = P∗ then P is said to be self-adjoint.

Example 11.2.1 Let E → M be a hermitian bundle and let ∇ : Γ(E)→ Γ(T∗M⊗
E) be a compatible connection. Then ∇ is a first order l.d.o with σ∇(x, ξ)(v) =
iξ ⊗ v. Thus, ∇ is not elliptic but notice that its symbol is injective. If M is given a
Riemannian metric we can consider the adjoint ∇∗ : Γ(T∗X ⊗ E) → Γ(E) and the
composition ∇∗∇ : Γ(E)→ Γ(E), the Bochner Laplacian associated to ∇. This is a
self-adjoint second order elliptic l.d.o because σ∇∗∇(x, ξ)(v) = −|ξ|2v.
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For each s ∈ R let Ws(E) be the sth Sobolev space of sections of E ; see
Section 9.2. Then each P ∈ LDOm(E , E ′) extends uniquely to a map

Ps : Ws(E)→Ws−m(E ′).

Moreover, if P is elliptic, we can use pseudo-differential operators to invert
each Ps up to smoothing operators [LM]. More precisely, say that P : Γ(E)→
Γ(E ′) is Sobolev of order k ∈ R (Notation: P ∈ Sobk(E , E ′)) if it extends con-
tinuously to Ps : Hs(E) → Hs−k(E ′) for any s. The inversion theorem re-
ferred to above says that for each P ∈ Ellm(E , E ′) ⊂ Sobm(E , E ′) there exists
Q ∈ Sob−m(E ′, E) such that

PQ = I + K′, QP = I + K,

where K ∈ ∩kSobk(E) and similarly K′ ∈ ∩kSobk(E ′).
By Theorem 9.2.4, K and K′ are compact operators and Ps is Fredholm for

each s. By Theorem 9.2.3, im K ⊂ Γ(E), so that if σ ∈ ker Ps then σ = −Kσ
and hence σ ∈ Γ(E). Thus, ker P|Ws is formed by smooth sections and does
not depend upon the parameter s. This common subspace will be denoted
simply by ker P. In the presence of metric structures we have an isomorphism
coker P = ker P∗ and so

ind P = dim ker P− dim ker P∗,

the index of P, is well defined (independently of s).
Standard arguments show that ind P is a rather stable object only depend-

ing upon the homotopy class of σP (as a bundle isomorphism) and hopefully
it would be expressed in terms of topological data associated to σP and M.
For P = ∂+E , the twisted Atiyah-Singer-Dirac operator, this is the case indeed
as we have shown in Chapter 8 how this integer is computed in terms of
characteristic classes associated to E and M. It turns out that in the spin case
the apparently special formula (8.1.13) is completely equivalent to the index
formula for a general elliptic operators. As remarked in the Introduction, the
key ingredient here is K-theory, a (generalized) cohomology theory that we
now pass to describe.

11.3 K-theory

Let X be a compact Hausdorff space (not necessarily connected) and let
Vect(X) be the abelian semigroup of complex vector bundles over X (the
addition is induced by Witney sum ⊕). We can build an abelian group
K(X) out of Vect(X) by considering formal differences E − F of elements



11.3. K-THEORY 129

in Vect(X) and identifying E − F to E ′ − F ′ if there exists G ∈ Vect(X)
such that E ⊕ F ′ ⊕ G = E ′ ⊕ F ⊕ G. There exists a natural homomorphism
ι : Vect(X) → K(X) and the pair (K(X), ι) admits the standard universal
characterization with respect to semigroup homomorphisms Vect(X) → A,
with A an abelian group. We shall denote [E ] = ι(E), E ∈ Vect(X). It is easy
to check that X → K(X) is functorial in the sense that any f : X → Y continu-
ous induces a homomorphism f ∗ : K(Y)→ K(X) which only depends on the
homotopy class of f . In particular, if i : {pt} ↪→ X is a base point inclusion
then i∗ : K(X)→ K({pt}) ∼= Z is surjective and

K(X) = K̃(X)⊕Z, (11.3.2)

where K̃(X) = ker i∗. Notice that the splitting above depends on the base
point. The contravariant functor K is a homotopy type invariant; details can
be found in [A].

The reduced group K̃(X) plays an important role in what follows and it
is convenient to rework its definition. For this define E ∼ E ′ if there exists
nonnegative integers m and n such that E ⊕Cm = E ′ ⊕Cn, and consider the
quotient space Vect(X)/ ∼. If ⟨E⟩ denotes the class of E , then Vect(X)/ ∼ is
an abelian group with identity C0 and −⟨E⟩ = ⟨E ′⟩, where E ⊕ E ′ is trivial.
By the same device of adding a bundle so as to reach triviality, we see that
any α ∈ K(X) can be written as α = E − Cn. Now consider the map β :
K(X) → Vect(X)/ ∼, α = E − Cn 7→ ⟨E⟩. This is a well-defined, surjective
homomorphism and α = E −Cn ∈ ker β iff ⟨E⟩ = ⟨C0⟩ iff there exist j and k
such that E ⊕Cj = Ck, and thus α = E ⊕Cj −Cn ⊕Cj = Ck −Cl , l = n + j.
This means that ker β = Z, so that

K̃(X) = Vect(X)/ ∼ .

Finally, if X is connected, the rank map rank : Vect(X) → Z+ induces a
homomorphism rank : K(X) → Z, rank(E − F ) = rank E − rankF . On the
other hand, ξ : Vect(X)→ K̃(X)⊕Z, ξ(E) = (E −Crank E , rank E) extends to
the isomorphism (11.3.2). Thus, in this case, K̃(X) = ker rank.

Example 11.3.1 Since any complex vector bundle over S1 is trivial we have K̃(S1) =
{0} and hence K(S1) = Z. Any vector bundle over S2 is of the form H(k) ⊕ Ck,
where H is the Hopf line bundle and H(k) = H ⊗ . . .⊗ H k times. Hence

K̃(S2) = {H(k) ⊕Ck′ − H(l) ⊕Cl′ ; rank(H(k) ⊕Ck′) = rank(H(l) ⊕Cl′)}
= {H(k) ⊕Ck′ − H(l) ⊕Cl′ ; k′ = l′}
= {(H(k) − H(l))⊕Cl′}
= Z,
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and K(S2) = Z⊕Z.

We remark that the tensor product ⊗ on bundles induces a ring structure
on K(X) with unit element given by the class of C.

Now, a version of the celebrated Bott periodicity theorem [A] asserts that
K̃(Sn+2) = K̃(Sn) for n ≥ 0. Using the computations above we then have

K̃(Sn) =

{
Z n even
0 n odd

(11.3.3)

or equivalently,

K(Sn) =

{
Z⊕Z n even
Z n odd

(11.3.4)

At this point an extension of the functor K to locally compact Hausdorff
spaces is needed: we set K(X) = K̃(X×), where X× is the one-point com-
pactification of X. This is called K-theory with compact supports, denoted
Kc(X). Notice that Bott periodicity can be rewritten as

Kc(Cn) = K̃(S2n) = Z = K(pt). (11.3.5)

In this form it relates the K-groups of the total and base space of the (rather
trivial) vector bundle Cn → {pt}.

We end up this section by remarking that there exists an equivalent, useful
way to define Kc(X). We consider triples [E ,F ; α] where E ,F ∈ Vect(X)
and α : E → F is a bundle homomorphism with compact support (Note:
supp α = {x ∈ X; αx : Ex → Fx is not an isomorphism}). Triples [E ,F ; α]
and [E ′,F ′; α′] are equivalent if there exists a compactly supported path of
triples [Et,Ft; αt] with α0 = α and α1 = α′. Then

Kc(X) =
{equivalence classes of triples}

{equivalence classes of elementary triples} ,

where a triple is elementary if its support is empty.

11.4 The general index formula

In this final section we briefly indicate how the index formula for Dirac op-
erators (8.1.13) yields, after a simple computation involving characteristic
classes, the general index formula for elliptic manifolds in a spin manifold.
As remarked in the Introduction, the key ingredient is a refined version of
Bott periodicity generalizing (11.3.5), which happens to relate the symbol of
a general eliptic operator to Clifford multiplication.
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Recall from (5.2.11) that if n = 2k the spin representation splits as a sum

Ψ = Ψ+ ⊕Ψ−

of two inequivalent representations of dimension 2k−1. Indeed, if 0 ̸= ξ ∈
Rn then Clifford multiplication by ξ, µξ : Ψ+ → Ψ−, µξ(φ) = ξ · φ, is an
isomorphism.

Now consider the diagram

Rn ×Ψ+
µ−→ Rn ×Ψ−

↘ ↙
Rn

with µ(ξ, φ) = (ξ, µξ(φ)). Then supp µ = {0} and the triple σ = [Ψ+, Ψ−; µ]
defines a nonzero element in Kc(Rn). In fact, this matches nicely with Bott
periodicity in the sense that Kc(Rn) = Z is generated by σ. More generally,
let U ⊂ Rn be a (closed) disk and consider

TU ×Ψ+ µU−→ TU ×Ψ−

↘ ↙
TU = U ×Rn

↓
U

with µU(x, ξ, φ) = (x, ξ, µξ(φ)). We see that supp µU = U× {0} = U and the
triple σU = [TU ×Ψ+, TU ×Ψ−; µU ] defines a nonzero element in Kc(TU).

The point now is that there exist topological obstructions to globalizing
the previous diagram (i.e. replacing U by a general manifold M). However,
the obstruction vanishes if Mn is spin and in this case we have the global
diagram

π∗S+(M)
µM−→ π∗S−(M)

↘ ↙
S+(M) TM S−(M)

↘ ↓ ↙
M

In particular, if M is closed, supp µM = M ⊂ TM is compact and the triple
σM = [π∗S+(M), π∗S−(M); µM], where π : TM → M is the standard pro-
jection, defines an element in Kc(TM). Moreover, it is clear that the Atiyah-
Singer-Dirac operator

∂/+ : Γ(S+(M))→ Γ(S−(M))
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is an elliptic operator with
σ∂/+ = σM. (11.4.6)

Now notice that the projection π : TM → M makes Kc(TM) into a K(M)-
module. In this setting, the following global version of Bott periodicity de-
scribes this K(M)-module structure.

Theorem 11.4.1 The triple σM = σ∂/+ generates Kc(TM) as a free K(M)-module.
Thus, if σ ∈ Kc(TM) then σ = σ∂/+π∗u for some u ∈ K(M).

Now, if P : Γ(E) → Γ(E ′) is a general elliptic operator on M, the index
construction in Section 11.2 yields the diagram

π∗E σP−→ π∗E ′
↘ ↙

E TM E ′
↘ ↓ ↙

M

Ellipticity means precisely that supp σP = M, so that the triple [π∗E , π∗E ′; σP],
still denoted by σp, defines an element in Kc(TM). By Theorem 11.4.1,
σP = σ∂/+π∗u, u ∈ K(M). On the other hand, the following obvious general-
ization of (11.4.6) holds: if E ∈ Vect(M) then the twisted Atiyah-Singer-Dirac
operator

∂/+
E : Γ(S+(M)⊗ E)→ Γ(S−(M)⊗ E)

is elliptic with
σ∂/+
E
= σ∂/+ [E ], [E ] ∈ K(M).

Recalling that K(M) is additively generated by Vect(M) we finally get

Theorem 11.4.2 If M is a closed even dimensional spin manifold of dimension n =
2k and P is an elliptic operator on M then

σP = σ∂/+
u

,

where u = [E ]− [E ′] ∈ K(X). Thus, at the symbolic level, any elliptic operator is a
difference of twisted Atiyah-Singer-Dirac operators.

Thus, using (8.1.13), (7.2.11) and the fact that the index of an elliptic oper-
ator only depends on its symbol,

ind P = ind σ∂/+
u

= ⟨ch(u)Â(TM), M⟩
= ⟨ch(u)Â(TM)−1 Â(TM)2, M⟩
= ⟨ch(u)Â(TM)−1Todd(TM⊗C), M⟩.
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To relate ch(u)Â(TM)−1 to the symbol σP, we recall that, given an ori-
ented manifold M of dimension n, there exists a class τ ∈ Hn

c (M; R) such
that, restrict to each fiber, τ reproduces the orientation class in compactly
supported cohomology. This is the so-called Thom class and in fact the inclu-
sion i : M → TM actually defines the Thom isomomorphism i! : Hk(M; R) →
Hn+k

c (TM; R), i!u = τπ∗u, whose inverse π! : Hn+k
c (TM; R) → Hk(M; R) is

induced by the projection π : TM→ M. Moreover, this is related to the Euler
class of TM by

i∗i!u = χ(M)u, u ∈ H∗(M). (11.4.7)

The details of the above constructions can be found in [MS].
Using (7.2.10), (7.3.15) and (10.1.2) one easily gets

ch(Ŝ(M)) = (−1)kχ(M)Â(TM)−1. (11.4.8)

Moreover, it is clear that the spinor difference element Ŝ(M) ∈ K(M) lifts
to σ∂/+ = σM = [π∗S+(M), π∗S−(M); µM] ∈ Kc(TM) so that i∗σ∂/+ = Ŝ(M)
and from this we get

χ(M)π!ch(σ∂/+) = i∗i!π!ch(σ∂/+)

= i∗ch(σ∂/+)

= ch(i∗σ∂/+)

= ch(Ŝ(M))

= (−1)kχ(M)Â(TM)−1.

Thus, at least if χ(M) ̸= 0,

π!ch(σ∂/+) = (−1)k Â(TM)−1.

More generally one verifies that for u ∈ K(M),

π!ch(σ∂/+π∗u) = (−1)kch(u)Â(TM)−1, (11.4.9)

since

π!ch
(

σ∂/+π∗u
)

= π!

(
ch(σ∂/+)ch(π∗u)

)
= π!

(
ch(σ∂/+)π∗ch(u)

)
=

(
π!ch(σ∂/+)

)
ch(u).

The computation above then yields the following fundamental result.
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Theorem 11.4.3 (Atiyah-Singer) If P is an elliptic operator on a closed spin mani-
fold of dimension n = 2k then

ind P = (−1)k⟨π! (ch(σP))Todd(TM⊗C), M⟩. (11.4.10)

The formula above holds true on any spin manifold M since there are
alternate ways of deriving (11.4.9) in case χ(M) = 0; see [LM]. Moreover,
even the spin assumption can be removed. In effect, in the general (non-spin)
case one similarly proves that at the symbolic level any elliptic operator is
a difference of twisted signature operators. The index formula then follows
from the obvious twisted signature formula generalizing (10.2.7).

Needless to say, formula (11.4.10) stands as one of the towering results
in twentieth century mathematics and one is immediately tempted to illus-
trate some of its many consequences. However, we refrain to do so since this
would take us far beyond the introductory character of these Notes. Nev-
ertheless, we shall demonstrate the versatility of (11.4.10) by merely stating
one of its most illustrious consequences, namely, the Hirzebruch-Riemann-Roch
formula, without even trying to explain in detail its ingredients.

Theorem 11.4.4 If M is a compact complex manifold and E is a holomorphic vector
bundle over M then

χ(M, E) = ⟨ch(E)Todd(M), M⟩. (11.4.11)

Here, χ(M, E) is the Euler characteristic of the Dolbeault complex of dif-
ferential (0, q)-forms with values in E and Todd(M) is the Todd class of the
(holomorphic) tangent bundle of M. An amazing consequence of (11.4.11) is
that χ(M, E), in spite of being defined in terms of the holomorphic structure
on E , only depends on the underlying complex structure since E enters the
righthand side through its Chern character.

The yoga of characteristic classes needed to derive (11.4.11) from (11.4.10)
is explained in [LM], Example 13.14, pg. 258.
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Â-genus, 88
algebra

representation of an, 58
irreducible, 58
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B
Betti numbers, 13
Bianchi identity

first, 50
second, 76

boundaries, 12
bundle map, 30

C
characteristic class(es)

Â-, 82
Chern, 79
Euler, 83
Stiefel-Whitney, 67
L-, 113
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Chern character, 81
Clifford algebra, 54

center of a, 55
complex, 58
even part of a, 54
odd part of a, 54
regular representation of the 62

Clifford algebra bundle, 63
Clifford bundle, 86

Clifford group, 59
Clifford multiplication, 47
Clifford relations, 47, 54
cocycle condition, 24
complex volume element, 60
connection 1-form, 32
contraction, 43
cotangent bundle, 11
curvature 2-form, 34
cycles, 12

D
degree of a map, 15
de Rham complex, 13
de Rham cohomology groups, 13
de Rham theorem, 13
derivative, 10

covariant, 32
exterior, 11

differential complex, 94
cohomology groups of a, 94

differential form, 11
Chern-Weil, 77
harmonic, 46
Maurer-Cartan, 20
parallel, 48
pullback of a, 12
selfdual, 122

Dirac operator 70, 86
Atiyah-Singer-, 71
index of a, 71, 87
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E
elliptic operator, 127

index of an, 128
equivalence of representations, 21
Euler characteristic, 14
exponential map, 18

F
Fourier transform, 95
frame, 32

normalized, 37
Fredholm map, 125

G
gauge potential, 37

H
heat flow, 93, 100
heat kernel, 92, 100
Hodge decomposition, 101
Hodge star operator, 44

I
infinitesimal representation, 21
invariant function, 76
isotropy group, 22

J
Jacobi identity, 10

L
Laplacian operator, 45

Bochner, 48
Dirac, 71, 94
Hodge, 46

Levi-Civita connection, 41
Lie algebra, 17
Lie bracket, 10
Lie group, 16

action of a, 20
orbits of an, 23
adjoint, 19

free, 21
representation of a, 21

adjoint, 19
unitary, 38

Lie group homomorphism, 17
Lie group isomorphism, 17
Lie subalgebra, 18
Lie subgroup, 16
line bundle, 30
L2 product, 31

M
manifold, 9

boundary of a, 9
closed, 12
compactly enlargeable, 115
dimension of a, 9
parallelizable, 30
signature of a, 113
smooth, 9
tangent space to a, 9

N
n-torus, 16

O
one-parameter subgroup, 16

P
parallel transport, 27, 36
parametrix, 125
Pfaffian, 83
Poincaré dual, 15
principal bundle(s), 23

connection on a, 25
equivalence of 24
frame, 32
reduction, 24
restriction of a, 24
structural group of a, 24
transition functions of a, 24
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Ricci tensor, 51
Riemannian metric, 30
rotation group, 16

S
scalar curvature, 73
Seiberg-Witten equations, 123
singular homology groups, 12
Sobolev norm, 96
spin bundle 68
spin connection, 69
spin manifold, 68
spinc manifold, 116
spinor bundle 69

half, 70
spin representation, 61

half, 62
spinor, 62, 69

harmonic, 73
splitting principle, 80, 81
Stokes theorem, 12
supertrace, 103
symbol, 127

V
vector bundle(s), 29
associated, 37

complex, 30
connection on a, 32

compatible, 32
curvature tensor of a, 35

determinant, 31, 119
direct sum of, 31
dual, 31
exterior, 31
flat, 36
forms with coefficients in a, 31
hermitian, 30
homomorphism, 31
isomorphic, 30

orientable, 30
pullback of a, 31
rank of a, 29
reduction of a, 30
Riemannian, 30
section of a, 30

parallel, 36
harmonic, 94

tensor product of, 31
trivial, 30

vector field, 10
horizontal, 36
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vertical, 25

canonical, 25
orbit of a, 10
complete, 10
left invariant, 17
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Weitzenböck formula, 49




