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INTRODUCTION

In this paper we deal with some striking statements
' concerning the congruence between a set and a proper subset of
it., We begin by presenting some simple examples in order to get

acquainted with this sort of ideas.

1) On the unit-ecircle we consider the set 4 of points
whose angles with the x-axis are na , n = 0,1;2,...,
where o is such that a/n is not a rational number. Let B
be the subset of na for which n = 1,23... . If we rotate the
seb A- by an angle « then it\will coincide with B . |

2) In the complex plane we consider the set A of points

given by polyncmials in et

iy _ iyn ' iyne~l i _
Pn( e ) - Cn( e ) +Cn""l( e ) +. [ o+Cle +OO .’ 3:1-0,1, LA B N ]

where the coefficients are non-negative integers.

Let A, be the subset of A consisting of all

1
points such that c_ =0 . et A, = A~A; . I% is easy %o see
that the set A coincides with Ay Dby rotation of one radian
around the origin (i.e. multiplication by e’ ). On the other
hand the set A colncides With A2 by translation of 1 in
the positive direction of the real axis (i.e. by addition of

+1 %o the points in A ).
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3) The set A is countable in both of the preceding
examples, Now we give an example in which the set A
is not countable. Again let us consider the complex plane and
to each complex number 2z we associate the set E(z) of
complex numbers of the following form
i i
Rl(e ez + Rg(e ) y (1)

where Rl(ei) and R2(ei) are rational functions of e+
with. integral coefficients and Rl(ei) #0 . We can easily

see that if 2z # z' , then either E(z) = E(z') or E(z)n
NE(z') = ¢ , Sb the complex plane is divided into equivalence
classes B , Let Eo be the cass that contains 0 . We form
a set B Dby choosing a point from each of the remaining .-
classes, In doing so we are using the Axiom of Choice, We
observe that the set B is not countéble.

Lef T be the function that associates z + 1 to
each point 2z of the complex plane, Let R be the funetion
that associates z.ei to =z . Fof each 2z we define a set
C(z) as the sét of the images of z by all the products of
T and R such that the last factor is T , A similar
definition for D{(z) , being R the last factor. Then the

following inclusions are true

H

P (et) .z + By(eh) , P,(0) # 0}
D(z) C{ws w=Py(e").z + Pz(ei) , P,(0) =0},

LN

VC(Z)C:{WS W
(2)

where Pl(ei) and Pz(ei) run through all 4he polynomials

with non-negative integral coefficients and Pl(el) £0 .,



Now we take

o~ Uty , 1= Uba)

zeB zEB
and let

A=B+C+D,

We claim that CND = @ ., According to (2), both G(z) and
D(z) are contained in ®E(z) , for each 2z . So we have only

to show that C(z)nD(z) :'ﬁ . Suppose not. Then
.where PE(O) £ 0 énd Q2(O) = 0 , This last condition implies

that Py(e’) £ Q(e’) . So -

Qy(eh) - Pyleh)

Py(et) - Qq(eh)

which implies that zeEo « This is not possible because =2eB .
It is easy to see thai

P(A) = C

1

R(A)

I

D .

& Summarizing we have presented an example in which
the set A is not countable and contains two diéjoint proper
subsets cach one being 6ongruent with A itself. Ve observe
that both sets G and D are not bownded in the usual
Rz—metric. |

A historic question ié'the so—éalled "measure

problem at large" , That is, whether it is possible or not to
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define a real function £ Ffor all bounded sets A of an

Euclidean space R™ such that:

i) f£(A)=0 for all A ,

ii) f(4,)>0 for some seb 'AO in R" .
iii) f(A+B) = f(4) + £(B) if ANB = 7 .
iv) f(A) = £(B) if A=B .

=~ - means congruence {*), Such a function f is called a

- finite measure, Property iii) is known as finite additivity.

In 1923 Banach [2] gave an affirmative answer to
the problem for the case n = 2 . |

In 1914 Hausdorff [6] obtained a decomposition of
the surface S of the sphere into four disjoint subseté A,

B, ¢, ané D such that

(I) S =A+B+C+0D
(II) A =B =C A=3B +( ,

where D 1s countable, Here the congruence =~ means only a
rotation about the center of the sphere.,
Hausdorff then gave a negative answer to the

measure problem for the spherical surface S , basing it on

s e st

(*) The concept of congruence will be made precise on pages
30 ¢ 38. For the time being we understaﬁd that A=B means that

A can be superimposed upon B by rotation and/or translation.
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the above decomposition, Indeed it 1s easy to see that if such
a function T exists then (D) must be equal to zero. This
follows from properties iii) and iv) -and from the fact that

D is countable., Now congruences. (II) implies that
£(s8) = 3£(4) , £(8) = 2£(4) .

Then £(8) is equal to 0 and so property ii) camnot be
fulfilled.

The impossibility of defining a measure (even
finitelyladditivé) for all the subsets of the surface S of
the sphere is c¢losely related to the existence of a free non-

~Abelian subgroup of the group of all rotations of the sphere.

The negative answer to the measure problem for S

implies a similar negative answer fox R y >2

The decomposition of the surface of the sphere
given by Hausdorff is known as the Hausdorff Paradox, It is
the sburce of subsequent amazing facts presented by Banach
and Tarski in 1924, Banach and Tarski [3] using Hausdorff
Paradox and an extension of the Schroder-Bernstein Theorem
for an equivalence relﬁtion that they introduced, i.e:, e-

guivalence by finite decomposition, showed that any two

bounded sets (*) in RS are equivalent by finite decomposition.,
N

C - et s i — ——

(#) With interior points. That is, there exists at least one
point of the get such that a neighhorhood of it is entirely

contained in the sed,
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That is, if A and B are bounded sets in R3 then there

exists an integer n such that

A= Al + A2 + aee ¥ An o B = By + 32 + e Bn

ANA. =@ , 1i#3j ; ByNB; = g ., i1#£3

A-,:—':B- :, i=l,2,..'.,l’l.

The. key point of the proof of the above statemént is the
following theorem: "If S1 and 82 are congruent spheres in
RS then Sl is equivalent by finite decomposition to Sl+82“.
In othef words,

Theorem DS': "There exist three decompositions of the three-

dimensional sphere S' into disjoint sets

1) 8¢ + Al

:-Ai Lo+ ae. + AL
2) St = By + B) + ... + B}
3) ST =Bl o4 ...+ Bé+£
such that
| Al B!, i=1,2,...,kel, 0"

In their papér Banach and Tarski did not say any-
thing about the values of the integers k and I, Sierpinski
9 in 1945 showed that Xk -equal to 3(or 2) and ¢ equal %o

5(or 6) are a solution of the problem, The guestion received
a complete answer in 1947 when Robinson [7]‘showed that k = 2

and { =3 are the smallest integers that solve the problem.
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_ The greatest part of our work is to establish the
Theorem DS: "There exist three decompositions of the surface

S of the three-dimensional sphere into disjoint sets:

2) S = By + B2 *oees + By
3) 8= Bryp +oeee + Bpyg

“such that
A_.gB. - » i=1,23‘o.gk+EA n

Then it will be quite easy to prove the theorem .DS' .

We follow Robinson?s paper [7] . In it congruence

| means superposition by rotations or t?anslations. Here we
admlt any rigid motion, that is, reflections are also possible.
Although some of our theorems are simpler than those of
~Robinson we do not improve his values k = 2 and { = 3 when

he admitted only rotations and transliations.



I, A FREE NON-ABELIAN SUBGROUP OF ROTATIONS

Let G be the group of all rotations about the
origin in the three-dimensional Euclidean space, Such a group
G can be represented by the multiplicative group of all
3-by~3 orthogonal matrices (*) with determinant equal to +1 .,
We will show that there exists a free non-Abhelian
subgroup H of the group G of rotations. (A4 group is said
to be free if it has a basis, i.e., a set of elements such +that
an& element of the group can be uniquely expressed as a product
of elements of the basis with integral exponents.) |

Let us consider the rotations ¢ and Y given by

[~cos@ 0 8in@ | %A_ —t O-
o =1 0 -1 0 : Vo= iu Ao,
sin® 0 cos8 | o 0 1]

where A = cos 271/3 = -1/2 , u=sin20/3 =/3/2 , ©=2,
Looking at these matrices we see that % is a rotation of

21/3 about the zmaxis- in the positive direction and ¢ is
a fotation of T around an axis & which is in the xz-plane

and makes an ahgle of ©/2 = 1 radian with the z-axis ,

e — s st ot e e et e S B -t S i it

(#) A real matrix A is orthogonal if AA* = A¥A = 1, where A*

is the transpose matrix of A ,



[

the relations @2 =“¥3 =1,
&
Proof: We want to prove that for every positive integer n  the

following exXpressions afe different from 1

@ = ol Yoty 2ol

6 - mym1@§ym2."¢mymn'¢

Y = m%ﬁhmyﬁgd;@wmn@

S - mymlmiymz‘..wﬂpmn ,

where My sMnyeesyi, , are equal to 1 or é. (Observe that

(PW:L =9 . r\{,—l =‘|\i_1-2 ) '\1“—2 = M.)) .

We need only to show that the products of the «
form are different from 1, Because, if a § was equal to 1,
then an  a would be equal to 1, namely . ofp » If & O was
equal to 1 we can easily see that an < should be equal to 1,
Finally if a vy was equal to 1, then a d would be equal to
1. |

Let N be the point (0,0,1) in the surface of
the unit-sphere. If we show that for every a , Na # N, we
ﬁill be through. In order to prove that, we begin by showing

that N is transformed by a into a point P with coordinates

s R LN
X = 8in® (ancos 8 + ses *+ al)
(1) v = usin® (bncosn—l®  oees ¥+ bl)
z c.cos™e + ves + C ’

n 0
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where x/5in® and vy/usin® are polynomials of degree n-1
in cos® with rational coefficients, and 2z is a similar

polynomial of degfee n . The proof of this will be by

induction over the number n of double factors in « which

are of the form o 'w(or ¢ﬂy2_).
The statement is true for n=1 , because the point

N will go into ‘NQNH (or N@iyz ) with coordinates

0 rhsin®} [d Asin®
\yx @ x | 0] = {psin® , sz by % x 10t = |-psin® | (%)
1] | cos@ | _ 1 L cos®

Let us suppose now that after n steps the point N goes-
into a point P = (x,y,2) where X,&,z are given by (I).

Thén it is easy to verify thét P@“V or Pm1V2 have coor=-

dinates |

x! 8in® cos™O + ... + ai)

t
(an+l
! Wsin® (b£+lcosﬂ® + vea + bJ)
| +1

@ + o0 + C!

hal
H 1
Z Cn+lCOS o)

where x!/sin® and vy'/psin®@ are polynomials of degree n
and have rational coefficients and 2! is a similar poly-
nomial of degree n+l .

Then the point N is transformed dy a into a

(#) Observe that L

kPg = - A 0

4
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point P with coordinates given by (I).

- Now we prove that Cy is.different from zero for

each integer n . The coefficients a£+l and cﬂ+1 are
given by
al, = Ae, - Aa, = AMe, - an) )
T
This implies
Chet T Ppal T (1 - k)(cn - an) .

Since for n=1 Cymay = i~§, we see that c.~a = (1-2)2 |
and so |

o, = (1 - 0™ = (3/2)"F

Then, for each n , the coordinate 2z is given

_ n-l_ _ N, n-l, -
z = (1-A) cos @+c, ;008" TO+,..4C

where C,.jse++s C, 8are rational numbers. Since <¢o0s2 1is a
transcendental number it cannot be a root of an equation with
rational coefficients

A)n—lxn 111

. (l"‘ +Cn_1X +pda+co—l = O a

Then N ig always different from N i.e.,lno a 1s the

identity rotation of the group G . QED

Lemna 2 ~ Let ¢ and ‘¢ be the two rotations defined before,

Then the rotations | = oyoly and p = @ipgquz
are independent,

Proofs Let us suppose by contradiction that
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i, i T
11 1o -1 _
T T - T

where il, 12,..., ir’ are integers.% We assume without loss
of generality that i2,.;.3 ir—l’ are different from zero.
Now we replace | and ¢ by their eXpressions in terms of\
¢ and ¢ , We observe that p-l :ky2¢ty2¢ and p"l =WYoo .

Then we effect all the possible simplifications in terms of

¢ and Y , It is clear thatlthere is no simplifications of

© 's and ‘Ry's in the following double products: pp, pe,
ko, ou, wpTh, oL, e, ol weth

The other ones have the following simplifications:
2 2 2 2 2
= (WP wZe) (o yPey®) =Py oy?

(wove)(oyew) = Yooy
ou™ (Q{VEQKV2)(H’2@RP2@) = @ﬂy2m\y@\92¢“.

=
D
1

s
=
I

So wersee that in.every case the first two factors (&ye is
counted as a single factor) and the last two factors remain
untouched. Then, if 'i; # O , the first two factors in ull'
remain untouched, If i, =0, the first two factors in pi2
remain untouched. The same reasoning for the‘last term. So

we obtain an expression in one of the forms a«, B, Y or 6
(see p,9), But such an expression cannot be equal to 1 as we

have already proved (lemma 1). QED

Observation: Lemma 2 assures us that there exist at least

two independent rotations in G .,

ks bt et v B S e Sl T e i e ol B s Mt et B

(*) Some of them being different from zero,
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¢ Tet p and p be two independent rotations., Then

2 2
S0 are Ny = PP , Ay, = BPTRET, ..., Ap = pelup”

THEORER

]

for any positive integer m .

Proof: The proof is similar +to the proof of lemma 2, We do

not give it here. |

CONCLUSIOH: Given any integer m we can find m indepéndent
rotations, namely, {fl P VEDS ,.;.,%Pm . Such

rotations generate a free non-Abelian subgroup of the group

G of rotations.

APPLICATION:
THE HAUSDORFF PARADOX.

Let us consider the subgroup F'  of G spanned
by ¢ and Y . According to lemma 1 ¢ and 4 are independent
- except for . @2 = QVB = 1 , Therefore every element (#1) of
G' is in one of the four forms o, @3, ¥y or & . We note that
 the number of elements in G' is cgunfable.
Lemma - It ig possible to divide‘ ¢! into three disjoint
subsets A', B’,.and C' such that _
i)_given two rotations « and ap (*) one belongs o
A' and the other to B' + C' ;
ii) given three rotations a, afy , and aiyz (*%). one

and only one belongs to each of the sets A', B! and C',

(*) In this product, « cannot simplify with ¢ .

(#*) In this product, a cannot simplify with Y or iPQ .
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Proof: Tet us sfart by alloting 1 to A' , ¢ %o B', v Ho
Bt lpg to €' , and so on, using the two above rules
1) and ii). We proceed by induction, Let us assume we have done
this for any -element with n factors or less._(’L{-’2 is counted
as a single factor). An element of n1 factors is in one of
the forms aq (¥), afpy, aﬂy2 (#%), where a is an element
of n factors. Then,
if aeA',B' or C', ap will be alloted to BF,A' or A'(resp.);
if aeh',B' or C', a«tp (or a'y?) will be alloted to
| B',C' or A' (or G', A' or B')(resp.). QED

Proof or Haugdorff Paradox:

Bach rotation around the origin is equivalent to
a rotation about an axis through the origin. So in each
rotation two vpoints of the surface S of the sphere remain
fixed. et D be the set of such points for rotations (#1)
in G' . The set D is countable. |

Now for each =xeS-D we define the set

BE(x) = {ya v o= X0 aaG'}

[

It is easy to see that if x,yeS-D then either E(x) = E(y)
or B(x)NE(y) =¢ . Then S-D is divided into equivalence
classes, By choosing a point from each class (axiom of choice)

we form a set M , It is obvious that

S-D = _J Ma .
aeG!

- -

(*),(**} BSee foot-notes, p.13
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s P L 00 e A S ol Rl P o P B LS e i SRS b S for e AR A B ) et e e P ek vt Wi

Let us consider the following three sets

A = L_} Ma , B = Lw} Ve , ¢ = L_) Mo .

acd’ aeB! aeC?t
It is easy to see that the three sets are pairwise disjoint
and that
A+B+C=258-D,
It also follows from the construction of A',B' and O
that

Ap = B+C
AW=B , AW

Therefore

I

A=B +C , A=B=~C ., QED

Essentielly the division of G' was done in such
a way .as to obtain the desired congruences. The process was
simplifieh extremely by Robinson. He introduced certain
relafions corresponding to the given congruences and showed
how to obtain a decomposition of the surface of the sphere
in parts satisfying thoée congruences, We will return to

this later.



IT, A FREE GROUP OF MAPPINGS IN THE SPHERE

1., A free group pf mappings in %the sphere.

So far we have been concerned only with rotations.
Now we introduce reflections ¢of the surface S of the sphere.
A reflection of S with respect to its center is the mapping
(W that transforms each point of S dinto its diametrically
_opposite point. It is obvious that W commutes with any
rotation of G . In this paper we use the term "mapping +o
mean any finite pfoduct of rotations and reflections in S .,
These mappings are isometric. That is, if x and ¥y belong
to S aﬁd their images, by a mapping o , are xX¢ and Yo ,

then da(x,y) = d{xo,ye) .

We have proved in the preceding section that the
J : %{_
group G contains any finite number of independent rotationsg)
So let %%,ﬁyl,.,,,&ym s be lndependent rotations of G ,
They generate a free subgroup H .

We define the following mappings:

Cpo = w,WO

1

f B -
(Pi \})i 9 1 '-"_l,noo,m »

(#) Dekker and De CGroot recently showed that there exist Y
independent rotations in G . N is the cardinal number of

~

the resl numbers.
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generators of a free group § of mappings.

Proofs Let us assume by contradection that

jl js
©:7 eww @i =1
1 s
where Os<iq,ees, i cm, and Jyseeey Jg 2Te egual to £ 1,

Since w commutes with each 'y, 1% follows that

3
T 1 "
LA . P P = l []
ORIT

This implies that r 1is even. Therefore qF = 1 -, Bub

J’l jd
/L{". ¢ 9 r -‘J = 1

islnot‘possible because we have assumed that 4y0,1y1,-..,1ym

are independent rotations. QED

'._2. Classesg of egulvalence on the sphere.

.t e S o s e e St St it S A A P T WADY: i it B S WO M A G et B Koy v s Tt e e e o

In this paragraph we show how the group @

determines a partition of S into eguivalence classes.

DEFINITION 1 - Two points X and v in S -are equivalent

WA s b bt ek it e et bt

if there exists some mapping ¢e@ such that

This defines an equivalence relation between the points of
s . |

'Indeed:‘



| equivalence classes

- Y Ghaf i nad tarna

voint of

Proof - Tiet x Dbe

also in E
such that ¢ = x

y(¢~lap) = y . qmp

—r et t S g s

et g s . g gy i

Bt ey s 4t e

X

to z, (z =

equivalent %o

equivalent to

™
£

e e e sy
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i) x 1is equivalent to x , (x = x1).

ii) if x is equivalent to y , (v = xX¢), then y is

Ly (X‘Z Y@hl)-

ii1) if x is equivalent to y , (y = Xp), and vy is

z , (g = ya), then x is equivalent

X(@Q)).

S0 the sphericai surfface S 1is divided into -

5

DEFINITION 2 - A point xeS is called a fixed point if

there exists a mapping e  such that x¢ = X,

is also fixed,

a fixed'point in ®B and y other point

. So there exist mappings « and ¢ in §

arl

il

d y = x9 . Now we see that @"la@a@ and

Remark: Lemma 1 says that a class B consists either entirely

of fixed points or-entirely of non-fixed points.

Lemna 2 ~ If ¢ed has a fixed point then ¢ contains P

an even number of times.

Proof - Let us suppose that ¢ contains v, an odd number
of times. Then ¢ =w¥, where Y is a rotation of H

So if x  is a fixed point of ¢ then

xp = (W) = (zw) Yy,
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o — et it ot B bk —r—

If a point coincides with its diametrically opposite point by
a rotation W then % = 1 . This is impossible because Yel,

QED

to a rotation “YeH , That is,
@ ':"Wrrkl') ’

where r 18 an even number and WeH .

T v Y o S S S A L Pyl Wt i et et (et Sl bt St el demk v v

a) Non~fixzed points, If E is a class of non-fixed
~points and x 1is any element of E , then any
point of E may be represented. by =xa , where ae® , This
representation is unique. TFor let us suppose that y = xa =
= %8 -, Then‘ X = x(aﬂ_l) , which contradicts the fact that
X 18 not a fixed point,
b) Fixed peints. Let EB be a class of fixed points,
We determine a mapping © which has the smallest
possible number cof factors mil and has a fixed point x in

B, 6 has the form

0 jl js
’ = (P - s e Cp_-
1 1g ’
where K
J1 ”js
0, £ ops

...j- :
must hold, Otherwise, ¢, + © cpil would be shorter than @

1 .
- J

and would have a fixed point in E , nanmely xmil .
R
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S it e st k- e

just described. If =xa = x then « = 6% y Where n
is an integer.
Proof — If a =1, then n = 0. Let us suppose that o £ 1 ,

pince @ and © are equivalent to rotations around
the same axis then a8 = 8a
If" Ba does not simplify in terms of the ¢, we may write

a = @a@‘l

and we conclude « must begin with the bloe @ . That is,
@ = 8a' . This implies that a'® = 8a't .,

-l
If 6o does simplify then © ¢ does not -

-3 3 ' ~1 -
because . 1 £ %, So we conciude from @ < = a® 1
Q5 @ls

that

« = 671go .

Then & begins with the bloc 6L, we proceed on

“|that way a finite number of times and we get a = o™ . QED

THEOREM 2 — Any point of a class E of fixed points can be

A ek ke S S0 el et et

represented as y = xa , where a does not begin
- ‘
elther with the bloc © or with ¢; 5 . That representation
_ s
is unigue.

Proof: Let us suppose that a point yeE is represented as

y = Xa , where o begins with o™ (n>0). Then ¥y can

[

be represented as y = xa' , where ot = 0% , It is obvious
|that «' begins neither with @ nor with @_JS .
_ lg

Now we assume Vv = Xa where o  begins with
8 _ )
on « Then y = xa' , where o' = 8a and o' does not begin
s : , s ke !
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either with the bloc @ {(observe thait 6« simplifies) or

-J
with 4 S , In order to see that such a representation is
o ,

vnique, let us assume xo = xXf . Then x(as"l)

= %X , According

lemma 3 i% follows that
and so

If n>0 , since er does not simplify because [ does not
’ Ll .

begin with ¢, $ we conclude that « beging with the bloc
g
® , which is impossible.

If n<0 , since 6°B does not simplify because
g does not with the bloc 8 , we conclude that « Dbegins

. = d s . . .
with o4 s , which is also impossible,
‘ S ;

Therefore n = 0 , which implies that o = B . QED

Remark: In each class I of fixed points having chosen the

— et i g o i

napping © we have a closed cycle

iy 31 j
Ky XQ3 g 200 9 b S (p‘is = X .
L 8

The theorem 2 implies that there exists no other closed

cycle in I .
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III. DECOMPOSITION OF S ACCORDING TO RELATIONS

1. Relations,

DEF;NITION_} -~ TLet I be a set of elements. A relationn R is

a function defined in the Cartesian product
IxT with values in a set of two elements, say 0 and 1 .
If kel and LleI are such that R(k, L) = 1 , then we say
that k and { are related., If R(k,-ﬁ) = 0 , they are not
related,
set of real numbers. We have R(5,3) =1, i.e., 5
isgreater thar 3. But R(3,5) = 0 because 3 is not greater
.than De
From now on we considef only cases in wﬁieh I is
the set of integers 1,2,...,n . Let K and I Dbe two
non-empty proper subsets of I ., We denote by X the

complement of K with respect to I .

DEFINITIOK 2 - Given a pair (X,L) we define a canonical

relation, RKL , a8 bheing the ﬁollowing
relation: |
Rpp(k, £) =1, if keX and el
or kek and E;L

RKL(k,'R) =0, otherwise.
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" Remark: RKL = REE .

DEFINITIQN 3 —~ The inverse of a relation R is the

i

relation R~ defined as follows:

R %) = Rk, 4) .

M ess than®,
2) The inverse- of a canonical relation RKL is

the canonical relationA RLK .

DEFINITION 4 - The product of two relations R and R' is
| the relation RR' such that

BRR'(k, {) = 1, if there exists seI such that
R(k,s) =1 and R'(s, L) = 1;

O, otherwicge .

I

RR;(k,ﬁ)

Remark: 1) The product of relations is not in generai
commutative, .
2) The product of relations is assdciative. This
will allow us to talk about products of more than

two factors.

" e e — o f——r o = e —

there exists keI such that R(k,k) =1 .

ke skt . . st it b e et et bk

DEFINITION 6 - A relation includes a conmstant 1 if R(k, 1) =
=1 for all keIl . |
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- p— — s Pt it it et e e P e A Bt e e S A A i i it

Lemma 1 ~ The product of two canonical relations is either a

canonical relation or a relation including a constant,

~Proof —_Let- R = Rpy and S = Rype Dbe two canonical relations.

We have the following five cases:

R

1

i) L =¥ , Then RS XN

my
[}

ii) M . Then RS = Ryy .
3ii) LCM , L #M , Then RS includes a constant, namely
any point of N .
iv) LCE , L # ¥ . Then RS includes a constant; namely

Fal

any point of XN .

v) LNMAF , LNE £ . Then RS includes a constant,

namely any point of I . QED

ot o o et o s By

that ineludes a2 constant is a relation that includes

a constant.

Proof - Let R =R be a canonical relation, and S be a

————— KL
) relatlon that includes the constant s . So RS
ineludes the constant s . And SR includes any element of

I (or Z;) as a constant if sek (ox seK ) « QED

ot e, ot .t st 30,

is g reletion that also includes a constant.

Proof -~ Obvious.

Riy eve Rm s are canonical relations
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then RORl"'Rm is either a canonicel relation or a relation:

including a constant.

“Proof - It is the .successive application of the preceding

e s o s

three lemmas, QED

Let us consider a partition of the set of all
proper non-empty subsets of I into classes, C; and '62 '
such that if a subset K of I belongs to a class, then X

belongs to the other class,

Let R; =R y, (i =1,2,.0.,m), be the m

K. L.
i7i .
different canonical relations that are formed with couples

K’_E{ Y

of sets in €y . Let Ry = Ryp for some KeCy . We define -
'corresponding to each element |

O = Q. ten (P-
‘ 1 ts
of & (see p.16) +the following relation:
Jq J
R ——:Rll re e Ris .

1 8

e e ] et W i

3399§\~ According-to lerma 4, R is either a canoniéal
rélatibn or jncludes a constant. If R includes a

constant, then.we will be throuéh becavse it follows that R

has & fixed point. Now let us suppose that R is a canonical

relation, Then we must have
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3
MR rerer g = Ry ooy e

d
R. = R ’ . -
Mo 12 172 8 8178

11 o1

If 1, # 0 , then M., and M are in the same class
(Cl or C2)¢

If 0 , then Mk-l and M} are in different classes,

i, =
k
Since ¢ has an even number of 90 (according to lemna

2,11), it follows that My and M, must be in the same class.

o

Thus I, # K, . Therefore .RM M = R has a Tixed point., QED
, Cs

2. A theorem of decomposition,

DEFINITION 1 — A mapping Qs@ is said to be compatible with

a relation R , for the subdivision of § into

the parts Ayyena,d, , if

by O 8 E 0 == Rk, 1) =1.
‘In short we say: v is compatible with R .

Lema 1 — If ¢ is compatible with R , then ¢"l is

compatible with R T ,

s e s

4 o toa, ;é g .

hen
g # (AE @FlfﬁAk)@(ZAkmfﬁAa .

Since © is-compatible with R it follows that



IIT Decomposition of S __according to relations 27

et el e e o e st e sl 2T et ek e e ek vl

R(x, 1) =1,
S0 , |
R4 ) =1 ., QED

L et Bt e s i B

then ¢ = g;° +.. ¢, 15 compatible with
. . i f=! ‘
J J
R = Ril s ey Ris , where the j's are equal to * 1 and the
1 s '

i's are integers between © and =nm .,

- factors in ¢ . For s =1 , the statement is
precisely lemma 1, |
’ Let us assume that it is.true ¢ with s factors.
We claim that W@f is compatible with RRE . Indeed, let us
suppose | |
AK(QQE)F1A£ £ g
Then |
(Ak@)cp:-fﬁA{ # 7
which means that there exists an x in some Ap ‘such fhat'
xcpgsﬁ% . Therefore R3(p,{) =1 . | '
On the other hand, since XEAP and XEAk¢ s 1% follbws
that R(k,p) = 1 . |
Then FERI(k, ) =1 . QD

H q ¢ the m + 1 canonical relations

defined on page 25 and Pareers P o be the m + 1

independent mappings that were introduced in ¢ II. (See page
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16), Then we can decompose the surface 8 of the sphere into

n disjoint parts Al,...,A » i such a way that each mapping

n
?5 is compatible with Ri , for such a decomposition,

decomposition'of the surface S of the sphere into
equivalence classes X . Now we ha%e to prove that we can
allot the points of each class to sets Aj,...,A , in such
a way that the mappings oy (i.z 0,l,.e0,m) -are compatible
with R, (4 = 0,1,,..,m) , for the decomposition of S into
these sets.
| Classes of non-fixed points: From each class of
non-fixed points choose a point x (axiom of choice), As it
was proved in éiII, 21l the elements of a class of . non-fixed
points can he represented as xa , where a runs through all
the mappings of § . Let us start by allot x 1o any A .
By‘inducﬁion we suppose that xo wasg assigned to A . Then
-xa¢£ (where @3 does not simplify with « ) would be put in
Ay sb that Ri(k,-ﬁ) = 1 , Classes of fixed points: Iet &
be a class of fixed points. Let @ be a shortest mapping of
& which has a fixed point x in the class E . As before
we denote © Dby
J J
8 = ¢ii fes @iz
and the only closed cycle in E will be
X, X@ji, seey Xgii e @iz = X .

We have no trouble with the points of E which do not belong
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'tb the cvele. They can be alloted to the classes Al,...;An y
in the same way as we did for the non-fixed points., But

we must be careful with the points in the cycle. They cannot
be put arbitrarily in the sets A, . et us see why., Suppose

we put x in a class Ak_ and X@ii voe ¢i5*1 inaclass A{

Se-1
so that .
. 3 i -
(Rll RN Rls 1)(1{,8) - 1 a
1 g1 ,
Now (X@il cos Q?s"l)@is = x must be in 4, . But if we have
1 ol s i

Is o : Ja : : s
R.°( {,k) = 0 , then ¢;® is not compatible with R.” . We
1y - g Tg
avoid this by proceeding as follows. '
' ) Ig
The relation R = R.” ... R,
11 ‘g

it is a relation corresponding to a mapping with a fixed

has a fixed point Xk , because

pqint (lemma 5, p.25). Then there exist integers ko =k,

Kyy.eesky =k , between 1 and n such that
j ‘ 3 J
T o 1 T

R: (kr_l,kr) =1 . If we allot x to.4  and X(pil...cpi to
r : : T

Ay (r = 1,44.;8-1) we will be through. QEP‘

r
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IV, DECOMPOSITION OF S ACCORDING TO CONGRUENCES

DEFINITION: Two sets A and B on the surfacs ’S of the

it e i et e 0k Wt i St

sphere are sald to be congruent if there exists

a mapping o (in the sense of p.l6) Which transforms A
onto B .
We write A~B for Ap = B .
The following properties are obvious:

i} A~A,

ii) A~B then B~4 .

iii) A=B, B=xC then A=C ., . |

So =~ defines an equivalehce relation between the subsets of
S . Such a relation is called congruence.

Let Aj,...,h, , be 2 decomposition of S into

bel ¥
n disjoint parts., A congruence

A + e +A_':-"-’A -coaA
kl kr 1 ﬂs
(where Llslky <...<k,<n, 1=l <,..<{ <n) is denoted

by

where K = (kl""'kr), and I = (*El,...,ﬁs)-.

It is clear that AK zfAL is equivalent to AK ﬁ-AE .

Our aim in this chapter is to prove the following
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the sphere into n disjoint parts Al,...,An '
in such a way that they satisfy any system of congruences of
the form

A=Ay (1)

K

where X and I are proper non-empty subsets of I .

2 - Moreover, the sets Ajyeue,A , can be connected and

locally connected., (*)

Remark: Any system (1) of congruences is a part of the

. drie W Bl

1 72 11
(2)
Alq-Az + A3-h...._An_2 + gn o~

Ay ¥8, o+ Ay + a0l 4+ Anﬂlzf...::A2+A3+A4+...+An .

1f the sets A; satisfy the general system (2), then they
obviouély satisfy any given system (1),

Yet, in the system (2) there are some superfluous congruences,
Indeed, by using transitivity of congruences and complementat-
ions of congruences we can easily see that the system (3) is
‘equivalent %o (2). ‘

(*) The second part of this theorem as well as the proof of

it is from Dekker and De Groot [5] .
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A

w A where K,Lacl

(3)

A

o s . : ,
K_nAK , vnere X is a fixed set in €, .

Reeall that Cl and 02 are the two classes of the partition
of all proper non-empty subsets of I 1in such a way that if

Kel then K882 .

1 .
Therefore if we prove the theorem for the system (3), it will

be true for any system (1) ,

_____ o+ bea decomposition of S , A congruence

AK:zAL holds if and only if there existe a mapping ¢

compatible with the canonical relation RKL .

Proofi 1 - Necessary condition. Le® us suppose that Ay =A; .
Then there exists a mapping o such that |

Ao = Ay o We claim. ¢ is compatible with Ryr » In fact

ho NAy £ 8 |
implies that either keK and {el , or keK and LeT
So Ry (%, 1) = 1. |

2 - Sufficient condition, Let us assume there exists o

compatible with Ry . We claim Apg = Ay o

AthiAL . We suppose there exists an x such that xeApo and

xfA . So xehy o for scme keK , and XEAE for e,

I
Then Ay NAy ##, vhich implies that R (k0 4) = 1

This is not possible because keK and bem .

' Ago DA Tollows similarly, QFED
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Proof of the Theorem:

l — Given the congruences (3) we obtain.the corres@onding
canonical relations RO, Rl"“’Rm . Let Qor PpeseerPp s
be the independent mappings (see p.l6) that gencrate @ .
Now weé apply the theorem'of section ITI and obtain the desired
decomposgition, Using the above lemma We are through.
2 ~ We consider all the uncountable compact sets in S +o bé
well ordered
Myy Moyeony¥yppoees My yues . Yy <e (*) .
Tet D be the set of fixed points for some mapping (#l).of'@ .

The points of S-D are considered well ordered
(X) Xl, X2-,Ii',Xw_’l.l’ X)) ,!I. , ))<e L

By BE(x) we denote the equivalence class determined by 0
that contains x .,

By transfinite induction we define for every M a sequence of
n points from (X) . |

The sequence in Ml is defined by induction as follows: Pqq

is the first point of (X) that belongs to My 5 ppy is
the first point of (X) +that belongs to M.~ UI[E(p. )] .
| . 1 g T3

It is obvious that the sets M~ !gj[ﬁ(plj)] are not empty
. -J <L :

because each class E has a countable number of points,

Let us suppose is defined for all E<Yand i=l,...,0 .

- —— st g

(#*) ¢ ig the ordinal number of the set of real numbers.

is'the ordinal number of the set of integers.
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Now we define Dy; 88 followss py, 1is the first point of (X)
that belongs to

My~ (S [E(PZJ)] ;

lsjgn
Z <y

ig the first point of (X) that belongs to

- 1 l [E(Paa U [E(p .

l&gcn lgxd
Z <y

Now we make a sliéht modification in the way of allotting the

Py4

non-fixed ﬁoints to the sets Al""'An . The change is the

" following: if a class E -contains a point p,; Then such a
point is put in the set Ai . This is possible because a class
E contains at most one p § and moreover, as we have seen, any
arbitrary pointrof a class of non~fixed points can be allotted
to any set 4, .

So A, (1 =1,...yn) does not contain any uncouhtable compact
set, Then each Ai is totally imperfect. Similarly, S—Ai is

-also totally imperfect. According to a theorem of Sierpinski

A, is commected and locally connected. QED



V. APPLICATIORS

Using the theorem of $IV we can eliminate the set
D that appears in the Hausdorff Paradox (see Introduction).
That is, the surface S of the sphere can be decomposed in

three disjoint sets A, B and € such that

.

J

A~B =(
A =B + C

This was possible because we have also allowed
reflections, As Robinscn [7] observed the set D can not
be dropped if by congruece we understand superposition only

by rotations around the center of the sphere,

A g s St ot Pt B Bk e

We can decompose é into four disjoint parts
A3 and A4 such that
Alz-’ A2 ::Al + A2

A3xA4fA + A

3 4
Then there exist four indepsndent meppings P1s Pos Py and

g such that

)

= Al 9y +_A3 @B
S = Az'mz + A4 @4

[ ——— i P o v S S m——— .
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e T e e e

Let us call Bi = Ai@i y 1 =1,2,3,4, Then we

have found three decompositions of 5 into disjoint parts
S = Al + A2 + A3 +.A4
8 =38, + B

S

li
3]
+
td
0
~—

such that

Aig Bi ', 1 = 1,2,3,4‘ .

In this case the numbers k and 1 are both
egual to 2. Thése arerthe minimum values for k and 1 .
Otherwise a proper subset of S would be cpngruent to the
whole of S', which is impossible.

3 - é_gﬁrtigulag_geoomposition of S .

Now we show that it is possible to decompose S
into five disjoint sets Ay, 4y, Ay, 4, and P (a single

point) such that

Morecover we can meke this decomposiition in such & way that
the four independent mappings Py Por P35 Py s preéénted in

application 2) are such that

— L e ] oo L] .-

(*) Indeed, the two last decompositions are the'same._
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N
-
o
1}
b
(i)
+
b
N

All we have to do is slightly o change the way of
constructing the sets Aq, AQ’-A3 and ’A4'. The change will
be only in one ciass of non-fixed points, Any peint (u) of

such a class will be assigned to P . Then we assign

Uy to Ay or A, , 'uézl to 4 ,

uw, to Ay or A uqél t0 Ay

Upy  to Ay or A, , u¢§l'to Ay As or Ay s
ug, to Ay or A, , u@Zl to Al,-AZ- or A; .

The other points of this class will be allotted to the sets 4

as we did in the theorem of p.27 .

4 ~ Theorem DS' , (%)

We will prove the theorem for the sphere -
x2 + y2 + 2°<1 , We denote by S{r) +the surface of the

sphere x% 4 y2 + 25 ° y for ¢ r 1 .

2

According to applications 2) and 3) we can write

S(r) = Al(r) + A2(r) + A3(r) + A4(r), 0 xr <1,
8(1) = Al(l) + A2(1) + A3(l) + A4(l),+ F,
iet‘us call |

Al = L_JA(I') ' 0<I"$1. .
ER _




Then the sphere S!' is decomposed into six disjoint sets

S1 = AL+ A+ AL+ Al

(where O is the set containing just the center of the splhere),

+ P +0 ,

such that
8191 = Ah0p = AL ¥ AL+ Py Moy = Ajgy = AL AL
Observe that . ' .
(Aé'+ O)q;3 = Al + Al +0 ,

3 4

Tet us call . . . _ _

Bi = Bé’: Al + A) 4P, By = Ay + &) =0

T - Al 1 | —

B4 = A3 + A4 ’ 35 .

Then
| St = A + AS +\(Aé + 0) + gi +P ,
St = B} +‘B§ , S' =B + By + BL . (%)

are three decompositions of S' such that

Sl G Mol Sl S W} Sl fit] Sy Vel It T W Sk S s St S S W W L S B Wi e ‘ulrre b

(#) As yet we have not defined congruence of sets in B3, Ve
say that two sets A and B in R3 are congruent if there exists
-an isometric trangformation f:R3-~>R3 such that f(A) =B .,
S0 f can be a translation, a rotation (as definead in 58I), a
reflection (f(x,y,z) = (~-x,~y,-z)) or any product of these

three transformations,
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——— — - -

It
b> .

!
Bj ~ AL +0
Bé Z-Aé

T o~ Al
34 *-A4

I ~
B5 ~ P |,

The last congruence is morely a itranslation.

So we have proved the theorem DS' and even _
exhibited the values of k and { as 2 and 3, It is possible
to prove that these are the smallest values fqr k and { .

A very short proof of this fact is presented by Robinson [7].

I want to express my gratitude to Prof, W,M. Hirsch
for the advices he gave me during the reading of several

papers comnected with this subject.
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