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" INTRODUCTION

These are notes for a course on PDE's which I gave at IMPA
in the spring semester 1978. They suppose the reader is already
familiar with functional analysis and in the part on evolution
equations with specffél theory. I also suppose the reader has had
some contact with PDE's before. This accounts for some of the

major omissions such as the maximum principle.

The notes are divided into four sections. The first
section covers the Cauchy Xowaleskva theorem using the abstract
approach of Oscianikov-Nirenberg. The second section is a rapid
introduction to the theory of distributions. The thifd section
constitutes the core of the noteg; We cover the elliptic ‘theory
using Hilbert space methods. We give in particular detailed
proofs of the regularity thecrems for boundary value problems. The

final section covers evolution equations.
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SECTION 1

THE CAUCHY KOWALESKVA THEOREM

Ordinarv and Partial Differential Eguations.

There is a formal similarity between ordinary differential
equations and certain partial differential equations (PDE's)
which single out a certain variable with ﬁhe appelative implicit
or explicit of time. The well known equations

2

olu = du [wavel
b, u = bzu [Heatl '
t X
o.u = —ibiu [Schrédinger]
- _ w3 - :
U = —ud u - ;U TKorteweg ~ de vriesl

a1l have the formal structure of an ODE with unknown funtion

taking values in a function space:
et (t) = £(e(t))

If we-pursue this idea,that is viewa PDE as a Jazzed up
ODE we will not get very far because the operator f in all the
above equations is discontinous in any natural topology one can
think of.There is a sense however in which derivation is a
continous operator in the uniform topolegy of holomorphic functions
on an open set. This is the content of Cauchy's inequalities

which we now briefly review.
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1.1 Analytic Functions

et Ws ¢t be an open set; f£: W+ E where E is a
Banach space. £ is an analytic function iff f has a convergent
power series expansion f(z) = {Z cu(z-zo)a: e €EN"} arocund each
Z € W. |

We will assume Ffamiliarity with Banach space valued
analytic functions; This theory is not much different from the
scalar valued theory, and in fact follows frém it via the Hahn

Bznach theorem. We will not dwell on this here; however we do

recall the following

1.1.1 Let f be an analytic function W + E; Let

2, = (20,.++,2%) €W and et r >0 be such that if
|y—zg| < r then (zé,...,zigyy,z$+l,...,zg) € W, Then
1 . . .
|2, £(z )] = 1/r sup{{f(zo,...,zg l,y,zg+1,...,zg)]:[y~z$| =rl.
i

.
Proof. By the Hahn Banach theorem it suffies to consider scalar

valued f, and since only one variabi. (i.e.y) is
involved this reduces to a well known thecrem about ordinary
holomorphic functions.

This is a particular case of Cauchy's inequalities,

1.2 The Cauchy Kowaleskva Theoren

In general differentiation is not continuous; However the

sense of Cauchy's inegualities is that in some sense for complex
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analytic functions they are continuous: Specifically if U,V

are open sets U & V and d(U,CV) > r then 2, is a continuous
i

linear operator from the Banach gpace of hounded holomorphic

functions on V <o the Banach space of bounded holomorphic

functions on U, [Both with the supremum norml. The norm of this
operator furthermore is = 1/r. In order to apply an iteration
process we must have an infinite sequence of decreasing open sets
U, such that bei is a continuous operator Hb(Um) -+ Hb(Un),
n * m., The notion that we will use to realize this idea is that

of a scale of Banach spaces. This is a very general concept

which we illustrate first with complex analytic functions.

Let A & ¢® be a compact set, Ué=={xECn:d(x,A)< {1-s)rl.
let Es = Hb(US), that is bounded holomorphic functions on US
with the uniform norm, If s' > s, then be‘ is a continuous

bR
linear map E_ » E_, , of norm 1/r(s'-s) as follows readily by

S‘
Cauchy's inequalities. This family {ES} of vector spaces, can
be congidered as an increasing family of subspaces of a fixed
vector space. In fact, restriction is a contractive injective

linear map E_ + E,, for s' > s,

This example motivates the formal definition in the

following section.

1.3 The Abstract Cauchy Kowaleskva Theorem

We begin with the basic concept of a scale of Banach

spaceg:
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1.3.1 Let E be a vector space, ES a family of subspaces of

E parametrized by s € [a,bl such that:
(i) E, ocarries the structure of a Banach space.

(ii) E & E,, whenever s' =z s as vector spaces, and the

inclusicn is contrative.

(iii) E=1U E, .

We now extend the existence theorems of ODE's valid for
Banach spaces te the context of scales of Banach spaces. This
will permit us to handle certain PDE's which formally are like

ODE's.

l.3.2 Let I R be some interval, V € E a get such that

VN Es is open for all g, f: IXV -+ E a function

satisfying

(1) £: Ix{(v N ES) » E;y is continuous whenever s' > s = a.

{(2) There is some C > O such that

leCt,x) - £0t,y)l . = Le/st=s] lx-yl
whenever s' > s and x,y 8 VN E.

The theorem on existence is as follows:

€ Jla,pl

1.3.3 If t, €I, X, Evn E,, then for each s,

there is a function g defined on some interval around

taking values in Vv N Es » is C1 in the normof ES and

Q 0

td,

satigfies



(a) glt,)

XD_

(b) g'(t) = £(t,g(t))

Before proving the theorem we observe the following:
Conditions (1), (2) above are invariant under linear

regcaling of the parameter s. Thus if Fs = E for

as+B
s € [a',p'[ then (1), (2) are still valid. We may thus assume

la,nl = Lo,11 .,
Obviously we may take to = 0 in the above theorem.

If s, > sy > a then te f(t,xo) is continuous I » Eg

1
as follows by (1). By rescaling [sl{b[ so s8] *0, b1 we
may assume in addition t - f(t,xo) is continuous I ~+ W, ,

5o >‘0.
We first prove the theorem when V = E. The methed of
proof is by succesive approximations, We define by induction a
sequence of functions g;°* I *E as follows
g (t) = x,
t
81 () = x, + [ £(hg (3))ar (.1)
o

We must check this makes sense., In facth:

If for all s € 10,1L g  maps I into E_ continuously
then the integral (.1l) makes sense as a (Riemann) vector valued
integral for any ES with g » 0 and in fact the value of the
integral does not depend on s. Furthermore 8,1 SO defined
maps I into Es for all s.

To verify the first assertion suppose s > s' > 0. Then
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by hypothesis gt I By is continuocus, f:I X E E5 is
continuous by (1) and sa A f(l,gn(h)) is continuous I + E_.

If s,s" >0 and s" > s then E, £ E,, is conbtinuous and
t t
tf £ g (Marly - tjo 08, (M)A

The second assertion is immediate: X+ f(l;gn(h)) is
continuous I — E for any s, so as a function of t, +the
integral (.1) is continuous.

Next we prove there is an interval IS around QO such that
{gn | IS} is a uniform Cauchy sequence Is-ﬂ Es' In. fact there

igs an M > Q such that for alX s > 0 and all +
n
len, (8) = g ()1 = mlce|t]/s]

Here e = exp 1. We prove this by induction on n. Let
M= j T£(xa,x ) dr. This makes sense as * +— £(r,x_) is
I o "0 o

continuous I ~ E,. Now if t €1
llg1 (1) - g (), = ugl(t) - g, (0, = J beth,x Ml ax = m

In general, let s' » g > 0. Then
lgpe1 (B) =g (0] —dj te(r,g, (M) - f(?»,gn_l(x)):ldxl! =

t
% jo le(h,8,(M) = £(hg, (N an =

' I/ 1 d]h =

2 C/(s'~s) MiCe/s 1™ L[ t|%/n (.2)

Take s = s'-s'/n. Then {(.2) is =
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s [g/s'Inmice/s' 1% Tn/u-102"Lie|®m
s Mc/st 1® ™ n/n-177"1 |1 |P

= M[Ce/s']nltln

1)1,

since e = (n/n-

Thus if t € I_ = ] -s/Ce, s/Celn I, {g (t)] is a Cauchy
sequence and in faci {gn} is Cauchy on any compact subinterval
of I_. Thus if [-a,als I, there is a continuous function
g: [-a,al » E, such that g = lim g, uniformly on [-a,al . If
8 < s5', then

£ (e, (M) = £,e0))l,, < C/s'=s « lg, (M) - eI,
80 f(k,gn(h)) + £f(A,g(X)) uniformly (in the nom of Es‘) and
t %
f (0, (M)ah » [ £(h,g(M))an
0 o
in E

g1 for any t € [-a,al. Thus

g(t)

fl

t
lim gn(t) = 1im [xo + Io f(l,gn(h))dk]

N
%o + [ 2One(r))an

where all the limits are in E_,. A4s * = £f(x,g(x)) is
continuous [-a,a] - E,r it follows g is ¢t as a function
f-a,al= E_, and g'(t) = £(t,g(t)) by the fundamental theorem
of calculus. We can obviously arrange matters so s' = s and

o
this proves the theorem for the case V = E

1.3.4 In the general case, we observe there is no loss of

generality in assuming E1=E is a Banach space and
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(1)-{2) are satisfied for 1= s' >s 2 0. Lle.g.,, let s, <
< 89 < 1 and consider the spaces ES, C=g3= 8q and rescale
[C,s71]. Now let Vv, = {x: ﬂx—xoﬂl <r} &V and let

w: R » [0,1] be a Lipschitz function supported in J-r,rl which
is 1 en [-r/2, r/21. Define M=z) = w(ux-xoﬂ)x +

+ (1 - m(ﬂx—xoul))xos A maps E into V, and is the identity

on {x: ﬁx—xoﬂl = r/2}. To zee this observe that if x £ V, ‘then

=

Mx) =x, €V . If x €V  ‘thenas 0= w(ﬂx—xoﬂl)s

o and VO

is convex Ai(x) € V,. "If ux_xo“l < /2, w(“x—xoul}
Mx) = x.

1 S0

Next set h(t,x) = £f{t,Mx})., h satisfies (1) and (2):
First A maps E_ » E_ continuously: Note x - w(“x—xoﬂl) is
continuous Es 2R so » is the sum of continuous functions
Es - ES. Since h 1s the composition

IxES—i—ll—LvaEs—f—»IxEs, (s!'>s)

it is continuous. Thig proves (1). To show (2) observe

In(t,x) - n(t, )iy s ¢/(s'=8) In(x) - My, -

if both x,y £V, then Mx) = A(y) = x,- In estimating
Ian(x) - k(y)ﬂs we may therefore assume say y € V.. In this

i) - Al = leClmsg 1) (xxg) = wCly=x 1) (y=x ) =

It

o (= ) (x=x ) = 0 (= 19 ) (=) + (= ) (y=x, ) -

o(lly-x, 11 (y-x )l = @llz=xly) Tyl + [@Clx=x M)

p(ly-x 01 ly-x il = ﬂx—yﬂs+K|llX—xolll— ly-zx N lr =

"

eyl + rlx-ylly = K lx=ylg
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Applying the previous result to h we see that for any

8, > 0 +there is a norm C1 function g: I, = Eg satisfying
o
g(0) = x, and gt(t) = h(t,g(t)). For t in some small interval

I, &I, ug(t)—xoul < r/2 and so g'(t) = n{t,g5(%)) =

= f(t’g(t))- ]

1.4 Unigueness of the Solution

The solution to the initial value problem is also unique:

1.4.1 If g,g; are norm C' functions J VN E; such that
c
(a}, (b) of 1.3.3 hold for g,g; then g =g; on J.

Here J is any interval = I,

Proof. By connectivity it suffices to show {t: g(t) = g;(t)} is
an cpen set. To prove this in turn it suffices to show

that if g(tl) = gl(tl) then g,g; coincide in some interval

around fl‘ Evidéntly we may take tl = to = 0, and so we are

reduced to showing g,;g, agree On an interval around Q.

Rescale [so,b[ so s,*0,b?1L. We then prove that there

isan M > 0 such that for all s' > 0 and 2ll n € N:
le(t) - g ()l , = MlCielt|/s' 1" (.1)
The proof of (.1) is by induction. TLet M=supi{llg(t)-g (£l :tedl
M < @ by continuity of g,8q¢ J = Eo'
In general if s" > s' then A - £(’g(d)), rr £(2,g,(0)
are continuous functions J » E_, . By (b) and the fundamental

theorem of Calculus
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t t
g(t) = x, + [ £(hg(A))ah; gy(t) = x  + [ Ehe D
(o]

Thus

T
le(t) - g1 (0l s [ 1eh,e () - 0,8y (A)]_,an
o

t n-1
< jo Cl/(s"—s')-M[Clelkl/s'] dr

= C;/(sh-s" ) Mlc e/s! %74 P/ (.2)

Taking as in the proof of existence the particular choice
§' = 8" -~ s"/n  we have (.2) is = MECle/s"lnltln.

From {.1) we deduce that for all s' > 0 and all t such
that [CleltI/S'l < 1, “g(t) - gl(t)\\s‘ = 0. Thus g(t) =gl(t')
for |t| small, W

1.5 Extensior to Holemorphic Eguations

1.5.1 Let E,F be Banach spaces, U S E an open set. A
function f: U -+ F is analytic iff for any open set
W & £ and every analytic function &: W ~» U, .2~ composition

foewp: W F is analytic.

We may extend the preceding theorem to the complex domain.

1.5.2 let D= {z € ¢€: |z—zO| <r}ec, {ES}, s € [a,bl a

scale of complex Banach spsces, V & E a set such that

v N ES is open for all s gnd f: DxV » E a function such that

(1)' maps Dx(V N Es) analytically into E whenever

SI

s' > gz a,
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(2) There is a constant C > O _such that

ez, x) - 2(z,y)l . = [C/s'-s]"lx-yllg

whenever s' » s =z a and x,y € V1 Es‘

It x, € VN E  then for each s, € Ja,bl ihere is

function g defined on some disc Dl = {z € G:lz—zo| < rl3

taking values in V N E, is analytic in the morm of E_ and

o o)
satisfies
(a) glz,) = xg
(b) g'(z) = £(z,g(z}).

The function is uﬁique.

Proof. The proof is the sgme as the previous theorem; Merely
interpret Jz h{r)ar Ffor a function h +to be the line

integral along the s%raight line segment [0,z]. As a function

of =z, this integral is analytic whenever h is. The remainder

of the proof is carried out almost verbatim. ®B

Actually the same idea permits a Banach scale version of the

Frobenius integrability theorem.

1,6 Higher Order Equations

Let B, s € La,bl be a scale of Banach spaces; Then we
may consider Eg = E_X...XEg (m times), s € [a,bl as a scale
of Banach spaces. Now suppose V & E! is such that V 0 Ez is

open for all s and f: IxV » E [I 8 R an intervall] a function
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satisfying

(L)' f: I x(UN Ez) » B, is continuous whenever s!'>s=za
(2)' There is some constant C > O such that

nf(t,xo,xl,...,xn_l) - f(t,yo,...,yn_lﬂs, =

£ C/s'=s Max{lx;-y, 1.7,
1
We then have the following:

. m
L.6.1 If t €I, (xo,xl,...,xn_l) €V NE , then for each
s, € Ja,bl  there is an interval I, and a unique
. o

function g: I + E which is C1 in the norm of E and
S, 84 84

satisfies

(@) &(ty) = xgpens™ V(e ) = x

() g™ (e) = £(t,8(8), &' (£),..,e (1)),

Proof. To prove this, let Fr IXV » ET be the function
F(t,xo,xl,...,xn_l) = (xl’xl""’xn—l-’ f(tsxo!xll""!}%l'_l»“

Then F satisfies conditions (1), (2) of the abstract Cauchy

Kowaleskva theorem. This is trivial. Thus there exists an

interval I and G: I + E s such that,
5 5o 5o

(@) G(t) = (xXg5eeesx, 1)

(b) &' (%) = F($,6(t))
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1.7 Cauchy Kowalesiva Theorem

To apply the preceding abstract theory,let AsC™ be a compact
set, X a finite dimensional Banach space, ES the gpace of
¥ valued bounded holomorphic functions defined on the open set

U = {x € c®: d(x,A) < (1-s)r} with the uniform norm.

The following is a substitute for continuity of b, :
i

S 1.7.1 If f € ES then for s' > 8

sup{!beif(x)l : x € Us,}'s 1/r(st-s) ﬂf“é

Proof. For if x € U,, then B(x,(s'~s)r) & U, so that by

Cauchy's inequalities

|beif(x)| s 1/r{s'=s) Supf.lf(xj_,---:Xi_l,Y,Xi_,_l,---,xnﬂ=|Y~Xi|5

% |g'-s|r}

s 1/r(st-s) lsl, @

Note that any bound on higher order derivatives would
involve higher powers of 1/(s'-s). This iﬁposes a serious
limitation bn this general Cauchy XKowaleskva existence theorem as
we shall see.

To complete the data for the abstract theory, let E = U Es‘
Observe that we may regard Es = Es' whénever s' = s. In fact
restriction is an injective map Es -+ Es,. Elements of E are
thus germs of analytic functions at A.

Let us assume P: IXE # E 1is a local operator, that is there

iz a function G: IXU, X x(™3) 4% such that
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P(t,u)(x) = G{t,x,ulx), &

elu(x),...,benu(x))

1.7.2 It is very easy to translate conditions 1.3.2 on P
which guarantee the initial value problem g'(t) =

= P{t,g(t)) 4is solvable to conditions on G. In fact: Supvose

(a) @: IxU, x X(n+l) + X is continuous

(b) For fixed %, G(t, ,) &s analytic U, x x(n+l) |y
(¢) G is Lipschitgzian: If {t,x) €I x U,

gl .

ﬂG(tyx,gl,---,gml) - G(‘t,X, ﬁi,---,§'+1)ll = K sup “51 - %y

o 1=j=n+1l

Then if U, € E, and 1> s >0 there is an interval I,

depending on s and a norm C1 function «: I1 -+ Es with the
properties
(1) e(0) = ug

(ii) o' (t)(x) = G(t,x,ul(x),...,0_ ul(x))

®n

If in addition

(d) G is analytic in all its variables, where I is now

some disc in €, +there is an analytic funttion

w: I, » B, satisfying (i), (ii).

Proof. To begin with (a), (b) imply that P actually maps

Ix E, into Egy for any s' > s and that it does so

continuously: If u E'ES then all the functions u, be U, ey
1
%, U are analytic on U5 and by Cauchy's inequalites are also

1
bounded on Us' for s' > s. From this and the fact G(%, ) is
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continuous ﬁs‘ X X(n+1) + X follows that x — G(t,x,u(x),...,

o, u{x),...) is bounded on Ugre This map is obviously analytic
i

as 1t is the composition of analytic maps. To show P maps

Ix E, into E,+ continuously let wuy # u uniformly on US s

tk + t. By Cauchy's inequalities be u, - be u  uniformly on
i i

By uniform continuity of G on relatively compact subsets

(n+l)

Ugye

of Ix Uj %X it follows G(tk,k,...,beiuk(x),...) -+
-+ G(t,x,...,be u(x),+s.) uniformly on Ugre
i

By (c) and Cauchy's inequalities:

lp{t,u) - P(t,u')ﬂsl £ K lﬁgﬁn{Uu—u'ﬂs,, Hbei(u~u')ﬂs,} %

s K 1/r(s'-s)[u-u'l,

so P is Lipschitzian.

If (d) holds we show P: I x E, * E;, is analytic. This
means that for any analytic function @ = (ml,wz): W+ IxE
defined on an open set W £ €, the composition z ~ P(¢l(z),m2(z)
is analytic W -+ E,v. By Morera's theorem in complex variables it

suffices to prove:
IY P(e(z), #,(z))dz = 0
for any closed curve y. Now for 2ll x € Us

tf P(wl(Z),¢2(z))d210xﬁ=IYP(ml(Z), w,(2))(x)dz =
v

= [ 6(91(2),x,25(2) (), 0 #(2)(x), .2,
v

d ; 0.
; ¢, (2)(x))dz



16—

We thus have the following theorem for first order

equations:

1.7.3 Let A= €7 be a compact set, X a2 finite dimensional

complex space G: I X Ub b3 X(n+l) + X a function

satisfying conditions (a}, (b), (c) above where U, =

= {x € ¢¥: d(x,A) < {1-s)r}. Givem u. a bounded analytic
— Q

function con U0 there is for each 1 > s > ¢ an interval I1 & 1

containing 0O and a function ¢: leus + X such that:

(1) PFor fixed +t, z -+ w(t,z}) is bounded analytic

(2) t = (t, ) is uniformly cT

(3) ® satisfies the partisl differential equation

2.0(t,z) = G(t,z,%(%,2), belm(t,z),...,aen¢(t,z))

for ?ll (t,z) € IlXUS

(4) o satisfies the initial condition

GP(O,Z) = U‘o(z)
for all =z € Us'

if {(d) holds, we have the following: There is a function

©w IJXUS + X where Il is_some disc around 0O, such that

(1) ®» is bounded analytic

{(2) w satisfies the partial differential equation

o, #(t,2))

v, 0(t,2) = G(t,2z,9(t,2), d_ w(t,2),...,0
€1 n
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(3) & sgatisfies w(0,z) = uo(z) for 211 =z € U

This is true under weaker hypotheses on G:

n .
1.7.4 Suppose G: IXUO x 7 Vi + X is an analytic function
b’ hndd 20

where Vi & X are open sets. Let u, be an anaglytic

function defined on U, and such that uo(x) €V, beiuo(x) € vy

for all i and all x € Uo' Then if 1 > s > 0 +there is a

bounded analytic function ®: I XU, = X satisfying (1), (2) and

(3} of 1.7.3 above.

Proof. Aside from the fact that the domain of @ 1is allowed to
be smaller the only novelty in the above statement is that
the Lipschitz condition is not explicit. To rprove the statement

observe ﬁs = U0 is a compact set; Thus for a compact disc

I, 20, ‘the set
1,x0_xu (U} x cel u (T) x..ux ﬁen(US)

n T1
is compact. Let J x A x [T B; 81 x Uy x T V; be a compact
i=0 i=0

neighborhood of this set. G and all its derivatives are bounded
n

on JxAx J| By andso G is Lipschitzian (in all its
i=0

variables) there.

1.8 Higher Order Systems

The previous existence theory for first order equations
can be transformed into an existence theorem for higher order

equations in much the same way as is done ordinary differential
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egquations.

Consider a differentiai equation of order m

DIl'l Q"1 & )
+ ult,x) = P(t,x,...,bt o ult,x), e.. (.1)

where the derivatives which enter on the right are of order = m
ie. o; + | £ m for every tem OZI c; u and derivatives in

t have order <m i.e. @, <m for every such term. Let us
ignore momentarily the initial conditions. Now introduce hew
variables so as to obtain an equation of order m-1 which satisfies

the same condition on the orders of the derivatives in t. We do

this as follows

Uy = U, uy o= ceju {(1=jsn) and u .5 = d.u
The left hand side of (.1l) becomes é?“l un+l(x) whereas
the right hand side is a function of derivatives of u,uj,un+1.

Obviously there is no unique way of cerrying this out and many of -

these ways will be of no use to us. To be specific rewrite the
o

typical term btl 8% u(t,x) as:
e, -1
1 o .
o, Oy Uy,q if @ £ 0.
C—e.
o J Uy if w; =0 and o £ 0 [say j is the smallest

index for which mj £ 07,

It is clear that the order of the resulting equation is =
< m-1 and all derivatives in t have order < m-1. To complete
the reduction we have the supplementary equations

ﬁm—l

_ Nm=2 _ =2
£ Yo T ¥y U= T u .
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£ YT % O T % bej Ul

The resulting equation in the vector [uo,...,u

n+l] is obviously

of the type (.1).

Eventually we reduce this to a first order equation to

which the Cauchy Kowaleskva theorem directly applies.

As far as side conditions go, we adjoin to (.1) the

initial wvalues

bz u(0,x) = vk(x) 0 <k s mn-1

These get transformed into the initial values:

k _

o uo(O,x) = vk(x)

k k .

oy uJ.(O,x) = b, vy ul(0,x) = bx_-vk(x) 1=jsn
J J

bg un+l(0,x) = b¥+1 u(0,x) = vk(x) .

The range of k is 0,...,,m-2. When we reach a first order
equation the rahge of k 1is the single value 0O, which is what

it should be if Cauchy Kowaleskva to be applied.

1.9 ¢Cauchy Kowaleskva Real Analytic Case

If f ig an analytic function defined on an open set
W s R® with values in a complex Bamach space E, then f
extends to a holomorphic function f: W' » E where W= W' NR"

1

and W' s ¢ is an open set.
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1.9.1 Thug let E bhe a real finite dimensional vector space;

Let us consider thé partial differential equation for R

valued functions:

[
1
aﬂ u(t,x) = P(£,X,...,0, b‘; u(t, %), vu.)

where P is an analytic function

— B

P: I x U xﬂv(ql’n)

where I &R 1is an interval, U £ R™ an open get and V(u ) &
l’
€ E for o + jw] = m and a; < m are open

Given analytic functions wv;: U-E 0% i % m-1  such

o4 . .
€ -
that o v; V(ij,o) for ism-1 and i+ o] sm and x €U

there is an analytic function : Il X Ul + E defined on a

neighborhood of (O,xo) satisfying the initial conditions

b% v(0,x) = Vi(x)- 0=ismp-l

for x € U1 and the partial differential eguation

@
o u(t,x) = P(t,%, 000,00 2% u(t,%),.00,)
Proof, To prove this extend P +to a holeomorphic function in a
. @ .
neighborhood of (O,xo,vo(xo),...,bx vi(xg)yeee,) with
values in the complexification of E. Then apply the complex
analytic Cauchy Kowaleskva theorem and restrict the solutiorn to

the real domain.
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SECTTON 2

RUDIMENTS OF DISTRIBUTION THEORY

2.1 Review of Basic Facts

2.1.1 A topological vector space is a vector space E with a

topology such that the maps (x,y) ™ x+y, (%, x) > hex
are continuous. We will consider exclusively topologies defined
by a family {px3XEA of function E +R" (called seminorms)
satisfying the conditions

(a) " Py(x+y) s py(x) + py(y)
(b) PL(P-X) = |r|pk(x) r€K (=Ror ¢)
(¢} If x# 0 there iz a X» €A a.t. pk(x) £0

The asgociated topology is defined as follows: V & E is
open iff for all X, €V there iz an T > 0 and a finite set

L, & M such that pk(x—ko) <r for k€A implies X € V.

Convérgence of a nmet x; * x means thatl pk(xi—x) + 0 for
every seminorm D, » € A, It follows from this that the
operations {(x,y) = x+y, (A,x) +* Ax are continuous, so that
E is a topological vector space. Condition {¢) furthemore

implies the topology is Hausdorff.

We will use repeatedly the following characterization of

continuity for linear maps between spaces E,F equipped with
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seminorms {pk}XGA » la }weg .

W

2.1.2 Suppose T: E~+ F is a linear map, T is continuous iff

for every ® € 0 there are A pervash_ €A and C >0
==L eVery kdere are Aq n and
such that for all x € E

q,(Tx) = C Max{pli(x): i=1,...,n} (.1)

Proof, If T is continuous, it is continuous at O and hence
there is an open neighborhood V of 0O in E which is
mapped by T into the open neighborhood {y: q,(y) < 1} of 0O
in F. By the definition of open set this implies there are
Msesoyh €A and r >0 such that p, (x) < r for all A,
1 rn . A i 1
implies q,(Tx} < 1. If x € E then r Max(p, (x)}"1x € v ir
i
max{pl_(x)i #0 orelse tx €V for all t > 0. In the first
i

instance
q(Tx) < r~1 Max, {p, (x)]
i
whereas in the second
a{Ttx) = tq(Tx) < 1
for all t > 0. Then q{(Tx) = 0 < r"lMax{px (x)} in this case
i
also,
If condition (.1) is eatisfied it is éasy to see T is

continuous at 0 and this implies by lincarity, continuity at

very point X, € E.

For more background the reader should consult the texts

€71, 9],

We will assume the reader is familiar with calculus on
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manifolds. Our notation is standard: ¢“(M) is the space of C°
functions on M, CZ(M} the functions in C (M) with compact
support. If U is an open subset of R™, Then C;(U) is the
space of C° functions f on U st for every multiindex

o €N" , D%f is a bounded function on U, Note that we use the

standard multiindex notation and the convention:

2.1.3 Let M bea C manifold. A partition of unity on M

is a family {g;} of functions in c”(M), such that

Supp 8, is lecally finite, P z2 0 and Epk = 1.

The fundamental result on partitions of unit is as follows:

2.1.4 'Letque a &-compact [or more generally, paracompact] c”

manifold {Vi} a cover of M by open gsets. Then there

exists a partition of unity {pi} of functions in CZ(M)

subordinate to the cover {Vi}. In other words for each pj there

ig a Vi such that Supp Bj o Vi.

For a proof, consult (41 p. 85.

As & corocllary

2.1.5 Let M be a ©-compact € manifold, {Vi} a cover of

M. Then there exists a partition of unity f{w,} of

functions in C*(M) such thst Supp w. & V.
————r—— e L 1

Proof. Let {pj} be a partition of unity subordirate to {V,}.
Partition the functions {pi} into families {pé} such

i i .
.8 V,., w, =- M. . :
that Sgpp £ Vi. Let i g pJ Then evidently, Supp wiE V;
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and Wy is C . 0O

2.2 Formal Adjoints

let w=R" be an open set. The space CUOQ(W) of

infinitely differentiable functions with compact support is a

prehilbert space with the inner product (&,y) = I p(x) 4(x) dul(xh

2.2.1 If P=135c¢, D* is a differential operator with

coefficients in C (W) there is a unique operator

P°: cz(w) + Co(W) with the property:

(Po, 4> = {8,P%4)

for all ¢,§ € C:(W‘. P° is also a differential operator of the

same order as P.

Proof. Observe (D% ¢,¢) = (¢,D*4) for ¢,v € C_(W) and all

o €%, To see this note

0= D, (#+4)d = j[Dei¢ 7 - 9D, 43 =0

and apply inducticn. Thus

¢z ¢ D%,4) = {¢, £ D% G,

§7

Let P = £ D¥(c, ). Tt is casy to see P° is a differential
operator [Apply for example Leibniz' product formulal. To show
uniqueness, if @ is another operator satisfying the above
condition then (¢, P°y - Qy) = 0 for all §, ¢ € cs and so
P® = q. O
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o . e : .
2.2.2 P is rulled the formal adjeint of F. The adjectiv

Fr

"formal"  distinguishes it from the adjoint given by
spectral theory; This is an operator P acting on D < Lz(w)
consisting of u gL sl ¢ 1— {P 2,17 is 2 bounded linear
fuastional oa  Co(W); M is the element which vepresents this

linear functional,

Obvicusly P~ is an extension of P°. One of the major
problems of the theory is to Tfind suitable extensions of P to
which techniques of spectral theory are applicable. Now 1if
Hilbert space methods should be applicable to any space of
generalized functions it seems reasonable to require that any

u € Lz(w) should be a generalized function.

Next let T Dbe any locally convex topolegy on C;(W)
coavser than the G(C;(W), Lz(w)) topology and such that all
differential operators are continuous in this topology. Let

t [N
Cg(w},r be the space of conjugate linear 7 continuous
c5
the linear functionals A4 § =7 (o, b0 for o & Lz(W). If

functionals on (W). This is a complex vector space and includes

@ 1
u € ¢ (W), we define Pu by
pu(g) = ul@s)

for any differential operator P.. Fu is also in c:(w); and
evidently exfends P acting on functions [we identify u € L2
to the linear functiional hu].

Among the various topologies T which satisfy the above
conditions we will only consider two, which we now describe. We

observe however that the tcopologies T have only marginal
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1
interest for us; Our main concern is with the dusl space C:(W)T.

2.3 Distributions

2.3.1 Let WeR" be an open set, X € W a compact set. Then
C;(W) is the vestor space [¢ € CZ(W): Supp ¢ E K} C;(W) has the
seminorms

P, (9 = SupL[D® o(x)|: x € X, [a] = m)
- o
Note ck(w) # {0} iff X # ¢. Also if K = X' +then
C;(W) = C;,(W) and the inclusion map is continuous. Finally

'CZ(W) = U£C;(W)= K& W compact}

2.3.2 Definition. A distribution on W is a conjugate linear
map u: C:(W) + € such that for each compact K 8 W

u ! C;(w) is continucus. We say u € C:(W)'.

In other words a conjugate linear functional u 1is a
distribution iff for every compact set XK & Wl there existe

m €N and €C>0 s.t.  |w(®)] = Cpy 1 (#) for all ¢ € C (W),

2.3.3 fhere exist non trivial distributions. In fact we

explicitly exhibit large classes of distributions.

- P
If p €[1,=], 1§ _

f+ W ¢ s.t. feXg € IP(W) for every compact set K & W.

(W) is the space of measurable functions

Define
Me(8) = [ 20x) 300 au(x)

@ '
Then Ao € CO(W) .

First Af iz well defined. If Supp % K, K compact then
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|ﬁf(¢)l = | J’Kf(x) ¢(x) aulx)| = ||i‘-XKup'ﬂ¢l|q

as follows from HBlders inequality, where p—l + 49 = 1.
Evidently
loll, = w(8) M sup{la(x)]:x € K

50 u 1is a distribution

Suppose M 1is a countably additive measure on the Borel

subsets of W, such that X(X) < » for K & W compact., Then

M) = [ oG anx)

is a distribution on W. This is obvious.

We will generally not distinguish between a function f and

the distribution A, , using the same symbol f for both.

It is an immedia‘te consequence of the above, that if ¢ # O
in CZ(W) then there is a distribution u € c:(w), such that
u(e) # o.

From this it follow distributions separate functions in

cz(w) .

2.3.4 Next we show the formula Pu(¢) = u(P°¢) defines a

distribution for any differential operator P. By an

inductive argument the proof reduces to showing this for P = De
' i

and P & multiplication operator c¢ € Cw(W). Suppose K &€ W is

compact. Then there is an m €N and C > 0 such that

[u(e)| = CP, k(¢) for all ¢ € C (W), Thus
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IDe u(e)l = Eu(De $)| = C'Sup{|Dg*(De p(x)|: |=| = mx €K}
i i i

= Cpm+1,k(¢)

lcu(¢)| = |u(és}} = c. Supl{D*(ee(x)

: fo| = m,x EXK} s

= ¢ supliz fag,(0) DPalx): (2] = |al: [a] =M, x €K
3

where daB are €~ functions. {Apply Leibniz! rulel. This is

s ¢ sup{|D” #(x)

: 3] = m, x €K} :'Clpm,k(¢),

Both linear functionals De u, cu are therefore
i
distributions.

2.4 Differential opérators on Manifolds

We define the concept of differential operator on a manifold.
As usual we reduce everything +to coordinate charts., In order to

do this we must show invariance under change of coordinates.

2.4.1  Thus let V &R" be an open set P: C:(V) - C;(V) a

linear operator. We show that the property of being a

differential operator is unchanged under coordinate

trangformgtions, This meansg that if T: V - V! is a

giffeomorphism (T‘l)* PT* (g) = P(moT)oT_l is a differential

operator on V!,

Proof, To prove this it is enough to consider the special cases
P=c, c €C (V) and P = D, . The first case is clear.
i
Now
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Dei(qu)(T"lx) = I Dekw(x)wteiTk(T’lx) (.1)

which is evidently a differential operator with c” coefficients.
It is also easy to deduce from (.1) that the order of P on V

is invariant.

2.4.2 Now let M be a C° manifold, P:QS(M}-% C;(M) a € linear

operator. P 'is a differential operator of order s m iff
for every coordinate chart V, P(C:(V)) = C;(V) and PICS(V) ig
a differential operator of order = m, We define the order of P

to be Suplorder P!CS(V}: V a coordinate chartl.

We associate to P another invariant, the symbol of P.
Intuitively this is the polynomial of highest degree in P. If

P is a differential operator oan |V csR%and P=¢%¢ Cq D% then

symb 2(x,8) = | ¥ g () % (x,8) €R" xR" .

| =m
In general the symbol of a differential operator is a
functicn on the cotangent bundle. We will discuss this in more

generality later.

2.5 Distributions on Manifold

2.5.1 Let M bea C” manifold. Distributions on M are
defined in exactly the same way as for open sets in R".
First we define the topclogy on C;{M) for K & M compact. This

is defined by the family of seminorms

P, k(#) = suwptla(e)(x)], x € Kl

L
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where Q is a differential operator on M. One can show that
C;(M) with this topology is a Fréchet space. We will not use

this however,

2.5.2 A distribution on M 1is a conjugate linear functional

u: Cz(M) + € guch that u | C;(M) is continuous for
every compact K & M., This means that for every compact K & M
and every linear differential operator @ there isa C > 0 such

that for all ¢ € C;{M)
lu(e)| s Cpg 1 (¢) (1)

Actually it suffices to congider compact sets K

contained in coordinate charts V. To see this, let {wm] be a

C® partition of unity subordinate to an atlas {Vm}. Given

K &M compact let Ka = Supp W ﬂ'K, which is contained in some
Vﬁ' Now

Supi{|a{e)|(x): x € K}

. pQ’K(¢)
= 2 {lu, a(e)](x): x € K =
&
=T )
o pqu’ Ka(

where the sum is over a finite set of indices &, since the sets
{Ssupp w_ } are locally finite. Thus an estimate of the type {.1)
for compact sets contained in charts implies a similar estimate

for all compact sets. Thus

2.5.3 A conjugate linear functional u on CE(M) is a

distribution iff for every compact set K ccntained in
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a coordinate neighborhood u | C;(M) is continuous.

Alternatively

2.5.4 u is a distribution iff u | cz(w) is a distribution

for every coordinate chart W.

This reduces everything down to charts.

on a C°” manifold without additional structure there isg
ne natural inner product on the vector space ‘C;(M). Consgquently
there is ne way of associating a distribution to a function. To

this one must have a measure * on M. We now consider this.

2.6 Formal Adjoints con Manifolds

2.6.1 Let M be a C” mznifold with a distinguished measure A
which in a coordinate chart V has a non vanishing C¢* Radm

Nikodym derivative w.r. to the Lebesgue megsure dg = dxl,...,dxr

induced by the coordinates (xl,...,xn) of the chart V., 1In

other words

[ £(s) an(w) = j 2(x) plx) aw(x)
v v

for any measurable function £, with ¢ € CT(V) and p(x) » C

every where. We say the pair (M,A) is a manifold with ¢

density.

The space C:(M) ig a prehilbert space with inner product

(o,4) = j T dr .

2.6.2 Let P: C:(M) + C:(M) be a differential operator. Then

there is a unigue operator P°: C;(M) - C:(M) which
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satisties
(Pe, > = ¢o,P%y)

for all ¢, ¢ € C (M), P° is also a differential operator.

Proof. The uniqueness is as in the case of W s R a simple
consequence of the non degeneracy ¢f the 1lmner product

{, ). To show its existence, let {Vi} be an atlas for M,

{wi} a partition of unity subordinate to {Vi]. It suffices to

show each operator wiP has a formal adjoint Qi for then
(Pe,4) = = (w;Po, ) = B, {e,Q;4)

where the above sum is actually finite. It is easy to see T Qi

is a differential operator.

Now as Supp w, is contained in some chart we use local

coordinates and write

[wPeTar = | w () P oG TGO p(x) aulx)

for some non vanishing ¢® function g, Now R = pwiP a
differential operator on an open zet in JRn, g0 has a formal

adjoint in the sense defined previously. Thus

[o0x) P 8(x) T(x) o(x) aulx) = [ #(0)RTYI(x) aulx) =

= [o(x) MRS Y1) #(x) au(x) = [ 8(x) § §(x) dh(x)

for some differential operator S.

2.6.3 We may thus extend the action of linear differential
operators on CS(M) to C;(M)' in the same way as

before. If u € ¢7(M)'
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Pu(e) = u(P® ¢) .

It is clear that if ¢ € C:(M), then PA¢ = th where

Ay  is the distribution ¢ - {¢, §7.

2.7 Integration on Semiriemannian Manifolds

Any semiriemannian manifold carries a cancnical C¢® density.
To see this we first review the change of variables formula, If

0,0' ¢« R® are open sets T: QF + 0 =a diffeomorphism then

f E(Tx)ax = jnf(y) tdet JT (y)|dy
0
for any f € C:(ﬂ). In this formula JT is the Jacobian matrix

belTl sos By 1

Clearly then if M 1is a ¢° manifold there is ho nmatural
way of defining the integral of a function by integrating in local

coordinate systems

Suppose now M is 2 semiriemannian manifold and V is a
coordinate chart on M. We may suppose V 1is an open subset of

RY. Now for f € C°(V) consider the integral

[ £(x) laet g(x) | 2ax
v

where f{g..} are the componenis of the metric tensor expressed in
1]

the coordinates of V, If T: V'—= V is any diffeomorphism then

the metric tensor pulls back to V' and its expression there is:



gij(x)

s¢ that

g!

Bl

(ei,ej)(x) = g(JT(e, ), JT(ej))(Tx) =

L I, teiTk(x) tejTL(x) gkL(Tx)

g (x) = (JT)(x) g(Tx)(IT)¥(x)

ang hence |det g!'(x

Thus

112 = Jaet or(x)| ldet g(7(x) |22,

J £{Tx) |det g,"(x)ll/2 dx =
'VT

= f £(Tx) [det JT(x)| |det g(Tx))|l/2 dx

VI
= IV £(g) laet IT(T™! y)| {det g(y) (Y2 Jact 317 (y)|ay =
- [, 20 Jeet s)IV2 ay

The integral
coordinate changes.
clear we may define

. Lre]
in C_ .
o]

2.8.1 The space

which

Sup -

*x€RT

is therefore invariant under arbitrary c”
Using a c” partition ¢f unity it is now

in an invariant way the integral of a functicn

2.8 The Schwartz Space

8MR") consists of C° functions ¢ for

% 0 a(x)] <o gor au, e, 8.
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n . . 2 . s
5(R"') is obviously a seminormed space with the seminorms

p_ L() = supix® D° o(x)|

Uds

5 As $(R™) is defined by a countable family of seminorms it

is metrisable. In fact

2.8.2 S(R™) is a Fréchet space which contains CSGRn) as a

denge subspace.

Proof. Suppose {¢i) is a Cauchy sequence in S(@R"). TFor every

o, e m" , The sequence of continuocus functions

o B

x D wi(x) converges uniformly to a continuous and bounded

function wa,B' Now

o B 4. o B
r.pa,a(x) = 1im x%D° p,(x) = x° D lime.(x) =x D csao,o(x)
so that is ¢° and x* DB @ € 8(R™). Evidently
0,0 c,0
& pf v, (x) x* o ?, o(x) uniformly, so @, * % in the
b

topology of s(®RY).

2.8.3 Obviously Co@®") & s@®"). If = €s@®"), Let
¢ €C_(R") be such that ¢ = 1 on {x €R™: |x| = 13.
Then if
w.(x) = @(x) ¥(rx)
w_ =+ in S@®"®) as r » 0. To see this observe

r

&

x> DB[¢(X) - mr(x)] =x I C By w(x}-r]YI DT(1-y)(rx).

D
v<B ¥, B

A1l terms in 'the sum are bounded. Ifﬂvy # 0, furthermore

rIYl +0 as r + 0. As r -+ 0 therefore all the terms
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corresponding to v # 0 go to zero uniformly in the above sum.

When v =0 (1-¢) (rx)=C as soon as r < |x|_l. Conseqguently,

as ©ny g Daw vanishes at =, +the term corresponding to vy = 0
1

also goes to 0 uniformly. 0O

By the density of C(R") in S$(R") it follows that any
continuous linear functional on CZGRH) [lwith the topology induced
from SGRn)j extends uniguely to a continuous linear functional

o 8(RT).

2.8.4 Definition. A tempered distribution is a conjugate

linear functional u: C:GRH)-+ € continuous in the

topology induced from S@R™).

A tempered distribution is a distribution in the previous

sense., The converse is false.

To see this obgerve u is a tempered distribution iff

there isa C >0 and an m > 0 such that
lu(e)| = ¢ sul|s* D ¢(x)}|: x €R®, o], [8] = u) .
Thus if K & R™ is compact and ¢ € c;(]Rn)

fu{e)| = ¢ supf|x*

: x €K, |a| < m) sup{iD®e(x)

: x €K, |B|] 5 m}
= Cl pm,k(Q)'
u is thus a distribution.

The function f(x) = ¢F ‘is locally integrable so he is a

distribution, but is not tempered.

2.8.5 Examples. Suppose f is a measurable function on RY

such that (1 + |x|2)_N f(x) € IP®™) for N> 0 and



some 1 < p < =, Then ﬁf(¢) :j o T{x) e(x) du(x) is a
R

tempered distribution. For
[h-(8)] =

i/p 1
s [ an|(1+lxi2)"Nf(x>|P du(x{l [LRnl(1+ix|2>N¢(x}|qu¢x{

s Lﬁn (1+1x12)N ¢ p(e)(2+1x12)™ qu(x) =

< ooy p(@) [ (13l 2T aulx) = ¢pp()

. . . . n N
where p 1is a continuous seminorm 1in $(R"), and M is chosen

so that the last integral is finite.

Ir £ €@ or L7(R®) then R is also 2 tempered
distribution. The proof is actually simpler in these cases.

Distributions u € C (R™)' with compact support are
tempered. For if supp u =K, then X.u = u for some
X € CC®™). There are m €N and C > O such that for
K, = Supp X

. . © . n
|lu(s)] s C pm,K1(¢) for ¢ € CKlGR ).

In particular for any ¢ € C:Gﬂn)

1t

[u(a) | lu(x3)| s ¢ supl|D™:#(x): ja| = m,x € Kll

In

Cq sup{|D¥s(x)|: |a] s m, x € Kl]

< Cy sup{|D%s(x)}|: |a] = m, x e R}

which is a continuous seminorm in s(@®™")
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2.9 The Fourier Transform

From row on we assume Lebesgue measure w4 on R® is
normalized so that w([0,11") = (2ﬁ)—n/2. This simplifieg the

formulze.

2.9.1 If t ¢ LiGRn) we define the Fourier transform 3f of

¥ as follows:

Bx) = (F0)(x) = I]Rn £(6) exp - i4x,8) du(0)

Obviously this is well defined since |f£(8) exp - i{x,0)]| =
N .

= [f(e)| € L™,
2.9.2 For f € Ll, Ff is_a continuous Ffunction and |Ff(x)|s
= Ul .

Proof. The fact 3Ff is continuous follows from the Lebesgue

dominated convergence theorem., O

2.9.3 If f, x,f €L, then 3, 3f exists and
. i '
1 .
bei Ff(x) = 36[1 5, £1.

Proof. The hypotheses enable us to differentiate under the
integral sign and obtain the above result. Thig is in virtue of

the following:

2.9.4 Lemma. Let (X,M) be a measure space, I €R an
interval, g: I ¥ X R a function such that:
1
x — g(t,x) € L, (X) for each +t € I, btg(t,x) exists for all

(tyx) €T x X and !btg(t,x)l s ¢(x) for all (+,x) €I x X
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where ¢ € L%. Then the function £
£(8) = [ elt,x) ai(x)
X
is differentiable and

£ () = Ix 2,.8(t,x) dr(x)

This follows by the mean value theorem and dominated

convergence, O

In other words D &f = -#%_,[e.£(0)].
ei 9" 71

2.9.5 If ¢ € S(R®) then %¢ € 8(R™), Furthermore

(a) D* 3 ¢ = (-1}° 39[9“ ¢(8)1

(b) =PLFel(x) = F(D° 6)(x)

Finally the map &: S(®™) — 8(R™) is continuous

Proof, If ¢ € 3(R™) then x” ¢(x) € s(R") s LlGRn) for all
Thus ¢ is infinitely differentiable and (a) is

satisfied. To show {b) note
<P I¢(8) exp - ilx,0) au(e) = I@(B) Dg[exp-(x,8>1 du(?)
B . . 8
= f D" #(0) exp-1i€x,08) au(6) = F(D" ¢)(x)
We have used the integration by parts formula

0% ey au = f ¢.0%¢du

valid for functions ¢ € $(R™) and ¢ € c;GRn). This proves
statement (b). (a) & {b) +together with the fact that the
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Fourier transform of an Ll function is bounded imply 3¢ es@m™),

To show %: S(R") + 8(R™) is continuous, note for W
large

|x% 0P Fe(x)] = f1p* 8 8(6)] du(e) =

-M
= Sup[(1+|912)MID“ eB ¢(8): & €ER™}: Jk1+|a|2) du(e) s

< Cp(¢).

- . . n .
where p is a continuous seminorm on &(R"). Thus for every
. . : . A n
seminorm p, g there is a continuous seminorm p in 8(R™)
*

such that p, 5(3¢) < p(¢), ¥ is therefore continucus, O
H

2.9.6 Example. The function ¢ (x) = exp(—l/zlxlz) belongs

to 8(R") and ¥ = ¢ . It is elementary that
¢, € 8(R™); Next observe ¢n(xl,...,xn) = ¢l(xl)...¢1(xn) and
50 Bn(xl,...,xn) = &1(x1)... al(xn). Thus it suffices to
congider the case n = 1. In this case ¢; satisfies the
ordinary differential equation ¢i(x) + X¢1(x) = 0, From this and

the formulas (a) and (b) above it follows &1 satigfies the same

differential equation. As- ¢1(0) =1 and

31(0) = Jexp(—l/Zxa) du(x) = (Zn)“l/%f exp(-1/2 X2)dx =1

it follows ¢1 = ¢l
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2.10 The Fourier Inversion Formula

2.10.1 If ¢ € $(R™®) then

#(x) = [6(0) exp i(x,0) au(d) = 374(~x)

Proof. To prove thig fundamental formula, observe first that for

f,g €Lt

CJex) B(x) an(x) = [F(x) g(x) am(x)

To see this apply Fubinits theorem. Thus if ¢, ¢ € s(®R™M)

n

[ 6(7Ix) Fo(x) an(x) = (13, 6 7T0)1(x) ¥(x) awlx)
= [A" 3800x) (k) dulx) = [ Fo(x) $(x7Hx) dm(x) .

Now letting A + =, o¢(A"1x) » ¢(0), ¥(» ™ x) » ¥(0) for
all x. Furthermore the family of functions ¢(A‘lx),¢(x‘1x) is

uniformly bounded, so that by dominated convergence it follows
5(0) [ B (x) dulx) = $(0) [ F6(x) dulx)
for all ¢,y € 8@®M). Taking ¥(x) = exp{~1/2|x|%), we have
9(0) = [ Fo(x) du(x) .
Thus
[ exp 1¢x,0) To(0) an(s) = f (3 e(y+x)1(e) an(e) = o(x) .

as asserted. DO

gl

As a corollary to this it follows = id and in

particular ¥ is a homeomorphism with continuous inverse 33.




By

We now extend the Fourier transform to all tempered
distributions in much the same way as differential operators were

extended to distributions. Note that for ¢, ¢ € SGRH)

@o, ) = [ Fo(x) V0 am(x) = [ #(x) BY(x) dulx)

[ 6(x) 34(=x) d (x) = (o, 339 (.1)

If

fl

where J¢{x) = ¥(=x). Thus JF is the adjoint of 7,

ny! .
2,10.2 If u € 3(R") then define ¥u by the formula
Fu(v) = u(J3y) .

It is clear from this definition that & on tempered
distributions extends & acting on SGRn), that is 3A¢ = A3¢
for ¢ € $(R"). This is in fact true for ¢ € L'®R™) as (.1)
is valid for ¢ € L1(®R®).

The Fourier inversion formula ¢ = J32¢ for ¢ € SGRn)

extends immediately to tempered distributions:

2.10,3 If u € 8(R™' then u = JFu. In thi. formula, the

¥
operator J: 8(R™) -+ 3(R™)' is defined by Ju(¢) =

= u(J¢)

Proof. To see this note J° = id and J% = 37 on S@®RY). Thus
J¥u(8) = u((J8)2 J¢) = u(IF°8) = u(e)
for all ¢ € s@®R™). O

Finally as it is sometimes convenient to have a symbol for

the inverse Fourier transform, we set u = J({1) = J¥u.
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2.11 The Planchere! Theorem

By the formula (.1) of the proceding section and the

Fourier inversion formula we have for all ¢,y € s(w™)

(Fp, 3Y) = 6,T5°¢ ) = (B,4)

The map F is thus lsometric on the subspace g(R?) of
Lzﬂﬂn)- ¥ thus extends to an isometry U on LZGRn). U is in
fact unitary as its image contains $(R™) which is dense in
LZGRn). The content of the Plancherel theorem is that U is in
fact the restriction to LZGRn) of the Fourier transform on
s(R™) &,

To see this suppose u € L20Rn), ¢ € 3R™)

Uu(e) = (Uu,8d = {Uu, U2T¢) = {u, JFp)

Il

u(J%e) = Fu(e)
proving ‘the assertion. Thus

2.11.1 The Fourier transform ¥ is a bijective isometric map

P@®?Y) » 12@®Y) .

2.12 TFourier Transforms of Products and Convolutions

2.12.1 Suppose ®,4 € S(®™). Then

(a) (wei)" = o * "

() (¢ * M=o 4"
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Proof. For by Fubini:

(o * )"(x)

J exp - i<x,y>[]¢(y—2) w(z)d;]dy =

II[?(y—z) §(z) exp - id{x,y? dzdy =

ff[@(y—z) 4(z) exp - i{x,y-z) exp - ilx,z)dzdy

i

I[W(Z) exp-i{x,z) j w{y-z) exp—i(x,y—z)dﬁ]dz

J[@(Z) exp-i{x,z? j w(y) exp—i(x,y)dy] dz =

§(x) d(x).

i

This proves (b). {(a) Follows almost immediately:

- Ay ~n -

(2 % §) =& o0 =Jp . Jy

A A
so J(e" * ¢™ = S )", and thus ®" * ¢V = (e.)". O

2.13 The Sobolev Spaces

2.13,1 Let m EZZ+, neRr® an open set. H"(Q) is the space
of u €c”(Q)! such that D € 12(A) for |a| % m.

H"(Q) is an inner product space with the following immer product.

@ G
{u,vi = z|a[5m {D™u, D"V

2.13.2 HYQ) for m €zx' is a Hilbert space

Proof. Suppose {un] is Cauchy in H™(Q). For each w, |a|S m
ui = Dq'un is a Cauchy sequence in L2(0) and hence there
isa u* € L2(Q) guch that u; +u¥ in Lz(n). Now for all

0 € C
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Sud, @) = {u , 0%y — WD) = (d*u°, 9,

s

so that u* = D*u°. Thus u® € H(q) and uw, «® in H™N). O

2.13.3 Next we define for m > O the space H ™(Q), This is
the space of u € C(Q)' such that the functional
¢ — {u,¢) 1is continuous on C:(Q) in the topology of H". In
other words u € E™™(Q) iff there iz a C > 0 such that for all
6 € co(a)
| u, 03 < Clol

H™(q) is in a nstural way a Hilbert space, To see this,

let Hg(ﬂ) be the closure of cg(n) in H™Q). We then have:

There is a unigue map R: H 2(Q) - Hg(n) such that for
all ¢ € Co ’

(Ru, ) = (u,¢)o (.1}

If u € H™(Q) then the Riesz representation theorem
implies the existence of a unique Ru € H? satisfying (.1).
Next, if w € Hg then (u,?) = {w,¢)  ~defines an element
u € C:(ﬂ)'. In fact [¢u,e)| = lwl lall so u € H™(n).
Furthermore (Ru, ¢) = (u,¢) = (w,#) for all ¢ € ¢”(a) so

m*?

that Ru = w, 0O

We thus give H ™ the Hilbert space structure it inherits
via the mapping R. In this manner we have a sequence of Hilbert
spaces

B(Q) &...s HY(Q) & BE%(Q) 8 H2(Q) &,..8 HT(Q)
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It is obvious the inclusions HY & H® for r = s are continuous.

The verification of these facts is trivial.

The H® spaces, m €Z have natural restriction

properties, viz:

2.13.4  Suppose Q,04 & R® are open sets and 0, & Q. [Then

u ulnl maps H*(Q) continuously into Hm(ﬂl) for

all m €% .

Proof. If m = 0 +this is trivial: Essentially, because the

2

restriction of an L function is in L2° For -m,m > O

[ alay, o), ] = [<u,0) | = hul_, fol

Thus  Jujog il = full_ . 00

This raises the guestion whether HEMR™) -+ BM(a) is
surjective, An open set { for which this occurs is said to

have the m-extension property. We will return to this later on,

2.14 Differential Operators and the Sobolev épaces

2.14,1 For any m €Z c;(n) acts on HY(N) boundedly. In

fact if |l a ||| ig the norm |l alﬂr =

T
= Max{ID%ll .: |a| = r} for a € Ch{R), then there isa C >0

such that

ol = cill a Il Yul,

Proof. To see this suppose firgt m = O. Then



47~

la.ull =

|
]

Pa.ul2 =% |l g ¢,  DPad™Puj? <
B Wl - Lo Par il

' 2 pp%—-B. 2
£C% I C <
> gz B,GIH a [[I5 107 ull]

2
= ¢ [l a i

m 2] Y | Sm“DYuug

'

2
¢y It a i ﬂuﬁi .
For -m, we have for any ¢ € C‘;(Q)

| Cau, ) | = idu,3e) | s Tull_ Waell_

A

colll a i, el Ml
so that '.1aull_ms c il = illm llu'ﬂ_m . O

Next we observe how derivatives behave:

[+

2.14.2 For any m €Z and any & E]Nn, D” is a continudus

linear map H™(N)— real LINO N

Proof. It suffices to prove this for |w| = 1. This is almost

vacugus If r = O

ﬂ%ﬁﬁ=lﬁﬂu%f“ﬂ§sHgﬂﬂﬂd§=hhﬂ-

Thus D, : Hr+l(ﬂ)—l H'(R) is continuous for r = 0. In general
i

the result follows by duality: If m = -r = G, +then for

u € HM(n)
[0, wsdgl= [¢w,D, 00 = lul, 10, ol = lul ol

so that D, u € F P () = #™4(a) and
i
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“De.u“m_l = “u“m O

As a Corolliary,

2.,14,3 If L is an operator of order m with coefficients in

C;(Q), then L meps HY(Q) continuously into H' (Q).

2.14,4  This result may be stated without recurring to the
negative spaces H_m(ﬂ). In fact, let m = r+s with

r,s = 0. Then there is a C > 0 such that for u € H (Q),

¢$ € CO(Q)

| {Lu,8¥) = Cﬂu]lrugblls

For this means exactly {Lull, = C“u“r

2.15 = Spaces under Coordinate Change

2.15.1 Suppose R, 1" are open sets in ZRn, T: G+ 0' a
diffeomorphism. If u € C:(Q)‘ , then we define
Ty € CZ(Q‘)' by the formula
T u(s) = ul(eT) . .

Assume first u = A

o €.07(0):

¢ » for f € L%o (). Thus for

u(g) = J@?;S f{x}dx

Consequently

(Tu)(¢) = u(eT)

I

j o(Tx) flx)dx = [ #(Tx) £T 1(Tx)dx =
o,

) 2T Hy) |det JT‘l(y)ldy
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T'u is thus at least formally A, , for f'(y)
= fT—l(y) | det JT"l(y)l. In fact

[Cler7 ()| laot sy )2 ay =

flf(x)12 l[det JT™H(Tx)|% |det JT(x)|dx

]

[1£(x)% laet JTH(Tx) | dx

if Jdet JT‘l(y)| £ M +then f' € Lioc(n'). Furthermore,
if u € HO(Q) then f'e L2() and thus T u € HO(Q'). It is

*
also clear |7 uuo 5 M“uﬂo. In summary:

2.15.2 Suppose T: {1 = Q' is a diffeomorphism guch that

fdet JT_l(y)l is uniformly bounded on Q. Then ¥

maps H°(Q') into H®(0') boundelly.

We next consider invariance under diffeomorphisms of the

distribution spaces H®™Q). First note that for any u € C_(0)!

EDei T*u1(¢) = T*u{Dei¢) = ul:(Dei )T

By the chain rule
(61)(x) = T (Tx) (x)
D T )(x) = D ¢{Tx) ® T.(x
ey 51 ©j e; J
where T{x) = (Tl(x),...,Tn(x)). Thus

D, #(Tx) =
i 3=1

L =]

Aij(x) De-(¢T)(x)
3

-1
where A(x) = [JT(x)]t . From this we deduce
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* n
[Dei T ul(¢) 351 [Aiju](Dej(¢T))

I
= £ .
& Dej[AlJu](¢T)

*
) T (Dej[Aiju])(¢)

i
M3

J
With this formula it is easy to prove the following

2.15.3 Suppose O, Q' are open sets in R© , T: Q =+ Q' a

diffeomorphism such that the components Ti(l =i =sn)
-1 . -] R @ *
of T gnd (T )i (L=isn) of T are in C,. Then T

is_a bijective linear homeomorphism H"(0) - H°(Q'), for all

mz= 0,

Proof. 3ince T" is functorial in T it evidently suffices to

prove " maps HY(Q) contirucusly into H*(Q'). Now
JT(x)—l = JT_l(Tx) so that the functions Aij are in C;. [To
see this note

Agy0) = ITHEN )5 = vy (17)4(Tx)

and by hypothesis (T_l)j € C;(Q'). As the T, are also in CE

the chain rule implies the Aij are in C;(G)].

The proof is now by induction. Obviously T* maps
*
H°(n) » H°(Q')., If T  maps H™(Q) into H™(Q!') continuously,
*
then for u € H™(a), T'u € B™n') ana [T7ul_ = clu]_ <clul
Also A;ju € #"*(), so D Aj5u € H'(Q) and thus by the
J
induction hypothesis T*(De [a;5ud) € H(Q'). Therefore

m+1*

* dJ
D, T'u € H'(2). In additioh
1
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o, Tuly < c 2 ip, Ta;gully

i J J
w
< ¢! §nAijumn+1 ¢l ;-
- * m+l
In conclusion T u € B (Q) and
* * T L3 it
Iroul ;= z HDeiT ul, + Irtel o= ¢l .

One can show that if Q ig open then the definition of
Hm(n) does depend on the coordinates used on @, that is on the
particular imbedding Q < R, Howeyer the preceding result shows
the dependence is fairly mild in the sense that if the coordinates

are changed in '"bounded" way then 2" does not change.

2.15.4 In particular, suppose K € Q1 is compact and let
Hﬁ(ﬂ) consist of distributions u € H'(N) such that

Supp u E K, We have the following:

2.15.5 If , O' are open sets in RY and T: Q ~+Q' is any

diffeomorphism then T maps H?(Q) bicontinuously onto

H$(K)(Q) for any compact K € Q

2.16 H" Spaces for Manifolds

Let M he a compact ¢® manifold. We define the spaces

Hm, m €Z essentially by localizing to coordinate neighborhoods.

Thus let {Vi}, 1 <isn beanatlas for M and {s;l,

l1sis=n apartition of unity on M such that K; = Supp piF,Vi
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is a compact set., Note that if u € C:(M)' then Supp e;u & X, .

2.16.1 E™(M) is defined to consist of those u € CZ(M)' such

that

Byu € HE_(Vi). lor equivalently, s u € Hm(Vi)J.
i

Cbviously the definition is independent of the coordinates

used on Vi . 1t is also independent of +the atlas {Vi} and

the partition {p;} .

To see this let {Vi}, {Wj] l1=i<n 1=Jsm be
atlasses for M; {pi}, {Tj] corresponding partitions of unity.
m il
If pyu | v, € HY(V;) then Ty R bvyn W € H'(v; N wj) 50
m - _
that '5 p U | W, €H (wj) for all i,j. Therefore Tju | W, =

=TT putw e H (W, ).

There is no natural Hilbert space structure on B2 (M)
although it carries a Hilbertizable locally cenvex structure. In
fact if u € HP(M) set Huﬂ%l= _g “piuﬂi. The topology is
independent of {V,], {p;}. To ;:i this suppose ug * 0 in the
norm (Eﬂpiuﬂi)l/z Then T HT. piug UE » 0 and so Tiu =

= I Ty PiUg +0 in the #H™ (W ) norm. Thus (T HT U, u2)1/2 = Q.

By symmetry if this last term + O +then so does (2 upiusu 2y1/2 o

2,16.2 We can reduce most questions about i spaces on
manifelds to guestions on open sets in R by the
following device: Let 1Iv;}; o, .y e an open cover for M,
{p;] a partition of unity in C” such that Supp p; & V;. Now
consider the maps ' l

™) = ]T c (v, y s e
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given by i:u - (slu,...,pnu), h: (ul,...,un) + T u;. Evidently

hei = id _ , and for m €Z we have
¢ (M)

N
Hon - T B™(v,) - ()
r=

are coniinuous maps. This is immediate from the definitions.

Furthermore, i¥ L is a differential operator with c”
coefficients on M and Li(V) = L({v) for Vv & C;(M) supported
in V,, then L; is an operator on V, and

o

(V)————-’C(M)

c

i
l L
C

“(v, ) e ()

=5

==

1

is commutative. With this observation, it is easy tc prove.

2.16.3 L is a continuous operator HP(M) - HP™™(M) for any b,

where m = deg L.

Proof. Suppose u € HP(M). fThen

N
ol o= WL(he i)l = uho};fllLkoi(u)up_m

< C'.lszflch'i(u)ﬂp_m = Cli(Loqu,Ley wyene, Logdll,

N 1/2
< cl[ki:lupkuuﬂ = lull
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2,17 The Spaces HU(R®)

In case O =R +the Sobolev spaces H'(R®), m €Z have

elegant interpretations in terms of the Fourier transform:

2.17.1 u € BH(®™) iff u is tempered and the function
(1 + |§|2)m/2 a(z) is in E2@RM).

Proof., Suppose m =z 0, If u € H'@®™), then u € LZGRH) 50 U
is tempered. Now (D*uw)™(8) = &% (¢) and the Fourier

transform carries L° onto 12 so g® 4(g) is in 12 for

la| = m. Thus (1 + 15]2)™2 §(8) is in L2. Conversely if u

. 2\m/2 ~ P 2 o oA :

is tempered and (1+8]%) 2(g) is in L=, then &~ #(g) is

in L7 for |a} s m and thus by the Plancherel theorem p%u € 12

for |«| = m.

Before proving the result for m < 0, let us make some

observations on the norm of Hm. Note that

]

tup2 (*u, D*wy, = T (g%, g%,

|o|=m | a|<m

ok jRn 13(5) 1% 5°% ag
o n

[1a@12 (= §%ae
R |a|=m

Thus it is clear this norm is equivalent to the norm

WS = [1)12 @+ 1512)" ag

For technical purposes this norm is often more convenient than

the equivalent norm [ U . We will use thesé norms
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interchangeably.

. We now prove the result for m < 0. If u € E™RY) then
the inegquality |(u,¢)ol s Cﬂuﬂm “@“_m shows u is tempered.

On the other hand ¢ - (u,;) is a continuous linear functional
on L1 + [5!2)_n1d5) so by the Riesz representation theorem,
there is a unique w € L2((1 + |§]2)™ d€) such that for

¢ € s(R")

¢y = [ () 9(5) (1:151%)™ a5

This means exactly that 1 is the function w(%)(1+|€|2)-m
and so (1 + [512)™2 @(g) = w(g)(1 + [£]2)™2 is in 12@M).

Conversely, if u is tempered and (L + |2]|2)™2%(g) e L2,

then
[ 9d, | = 1¢6,8), | =
= [Ja@12 @+ 1027w - 13612 @+ 1619 ag
= clsl_,,

The Spaces H™(R"®) [cont'd]

One of the fundamental reasons'fbr studying the spaces

HY(®™) is the following proposition: .

2.17.2 The operator (1-A) is an isometry HT(R™)- Hm-zﬂﬂn) for

n
all values of m. LA is the Laplacian - & Dg =
‘ i=1 &1
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Proof. In fact Fourier transformation transforms the statement

of *the proposition into  the following: .

Multiplication by the function {1 + l§|2) transforms the
space L2(l + 15|2)m dg) isometrically into L2(1 + |§i2)m—2 dg ).

However this is easy to prove., 0O :

2.17.3 Another relevant feature about the family of spaces
{Hm(ERnﬂmE]R is that there is a unique continuous
pairing

H'R™) x HHRP) — ¢

which extends the pairing (u,¢) (u,¢>0

w™) x s@mP) — ¢

2.18 Sobolev's Lemma

If u € I}GRn) then @ € C(®R™). More generally if
(L + |x|)® ulx) € Ll

£ p. By the Fourier inversion formula thisg provides a criterion

then 1 has continuous derivatives of order

for determining when a tempered distribution u is of the form

P
Af for £ €C-,

2.18.1 If u € 8'(R™) is such that (1 + |x|)P &(x) € L1, then

there ig an f € ¢P(R®) such that u = Af. Furthemore

if |a| £p and x €R® D% £(x)| sj(l + =P ulx)|dx.

Proof. The proof is immediate from the formula u = 5. a
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In terms of the Hilbert spaces HY (R®) we can give a

criterion as follows:

2.18.2° Suppose u € H'P(R") with m >n/2. Then u = A, for

t € CP(®™). 1In addition there isa C > O such that

for |a] = p

ID%£(x)| = Cuu“m+p Cuniformly in x1

so that H""P@®R™) imbeds continuously into CPRD).

Proof. We reduce this to the result 2.18,1, First consider the

case p = 0.
If u € H'®R™) and v = 4 we have by Cauchy Schwartz:
[lv(x)|ax =

‘ 2 2\m 11/2 { 2y-m,_ |
s{flxlscgv(x)l 1+ 119" ax) jlxlsc(“ |%12) ]

) 1/2
+ J | v(x) %1 + |x]|%)™ ax {f (1 + Ix]2)Max
|x|>c |x|>c

The first summand is finite no matter what m dis by the

1/2

1/2

assumption that u € H"@™).

The second summand will be finite if

@ > J (11 + |x]1%) Max = f (1 + )™ P lgran .
|x] >c e

This quantity is =

o
J S O J 40 J e N N Ar—2m+ﬁ]
- n~-1
r>c S o]

This will be finite if -2min < O, that is m > nr/2.
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Evidently both summands are = CUu\m for some constant C. Ry

the previous result |u(x)| = Cﬂuﬂm

In the general case, note that if wu € HY'P (R™), then
w(x) = (1 + lxlz)p/2 U(x) is integrable (same proof as before)
and an estimate Ilw(x)ldx < CHuHm+p holds. Thus by the previous

result u = A, with f € cP®?) and with

D%t ()| = ¢yl

for |a| s p x €R". O

2.19 Rellichs Lemma

2.19.]1 Suppose s > t >0, 0 SR" a Borel set of finite

measure, and K° & H°@®") a closed subspace whose

elements, as functions in LE(Q) vanish off 0. Then the

inclugion HBS -+ HtGRn) is compact.

Proof. Notice k5 & L2(n) & I (n) & LL(R®) where we identify a
function which is zero off 1 with one on Q. The
inclusions are alsc all continuous. This follows either from the

definitions and from the fact (Q is finite and Cauchy Schwartz.
In particular u - 4(x) are continuous functions a L2(n) , for
all x € R".

Let {ui} be & sequence in EKsjl. By weak compactness
it has a subsequence {wil which converges weakly in [Ksll
(and hence in 12(Q)), to a w € KS. In particular i (%) - W(x)

for all x. We have, in fact w; *w in the norm of HtGRn). For
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ease of notation assume w = 0, as this invelves no loss in

generality. Then

J 1a GO + 1x1%)%ax Sfi o T EO12 121D ax ¢

Xisc
+J

If ¥ is sufficiently large, ie. > c(e) ‘then

i ()12 (2 + 12195 (1 + |x12)*S ax
lx|>c %

(1 + |Xi2)t—s < ¢, The second term is thus dominated by e.

[Uwius £ 13, Now &i 4 0 pointwise, so that by dominated

convergence the first term + 0 regard less of c¢. Thus for all

¢ >0

’ 2
lim s1.113“1:\riﬂ_t < e

and thus w; > 0 in HY@®RD). O

A Stronger Form of Rellich's Lemma

From the Sobolev inequalities it follows that for m > n/2
and |o| £ p there is a constant C > O such that [D*u(x)|s
< Cuuﬂm+p for all x € R®. The following is a strong form of
Rellich's lemma:

2.19.2 Suppose 0 8R" is Borel of finite measure, m > n/2

K = Hp+mCRn) a closed subspace whose elementg vanigh of

Q. Then the inclusion XK “ HP(R™) is a Hilbert Schmidt map.

Here p = 0.



~60=-

Proof, To prove this, let {ei} be any orthonormal basis for
the space K. By Sobolev'!'s theorem there exists for each

x €0 and |a] £ p a vector T x € K such that D¥u(x) =

H

(u’fu,x>m+p' It is also clear that “fm,xum+p s ¢ for all

€0, |ol sp. Thus if x €qa, |af sp

[

o, 2 _ 2 _ 2 2
Z, ID% e  GOE = 5 I(ei,fa,x>| = “fu,x“m+p sC

By Lebesgue dominated convergence and the fact u{(Q) < =
- & 2 _ o 2 _
> JQ {Za,iin e; (%)} } dx = Ea,i Jn |D%e; (¥)[© ax =

=5, eyl o
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SECTION 3

ELLIPTIC EQUATIONS

3.0 The Dirichlet Probhlem

Intuitively a function belongs to H_(R) iff all its
derivatives of order = m-1 wvanigsh on i, We will Justify this
subsequently . Presently we show how this leads to a functional
analytic treatment of the Dirichlet bhoundary,;value problem, This
problem {roughly) consists in the following: Let L Tbe an
elliptic operator {for example -A4) of order 2m on an open set
0 eR% let £ €1%(0) and {g,}, la|l < m-1 be functions on
o0. Fird u € C°™(Q) so that Lu=f and D% | a0 = g_ [That
is, p*u  extends continously to 0 so that its restriction 4o Q
is g .

Evidently, the functions g, cannot he arbitrary, bgcause
relations between derivatives of D¥u will imply relations
between the derivatives of g,- Let us suppose there ig a
g € c®(H) so that D*g | »0 = g, » for |a| s m-1, The original
problem then becomes

Lu=1¢f, D*(ug) =0 on o0, for |a| s m-1
Arguing heuristilly this becomes
Iu=1£f, u-g€ Hg(n)

Obviously if we put w = u-g +then the above problem becomes

Lw = f-Lg, w € H (Q) .
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We will solve the Dirichlet problem in this way. The
regularity theorems we will prove will show that the solution
" obtained in this way is in fact a "classical" solution to the

Dirichiet problem.

3.1 The Spaces Hg‘(n)

In the study of the Dirichlet problem via Hilhert space
method s, the spaces Hg(ﬂ), m2 0 play a crucial role. Recall
that H?(Q) is the closure of CZ(Q) in  H™(Q)

3.1.1  H®") = E®"). In fact for any s €R, C_®R") is

dense in HS@®D).

Proof. $(R®) is dense ih HS@®P). To see this, note S@®M" =
= S(R™) = C:(Q) 50 S(]Rn)A is dense in LZ((1+[§|2)SdE)

and A is an isometry HS@®R®) - LZ((Il + |§[2)S dg§). Furthemore

C:GRn)“ = 8(R™) in the topology of 8(R™) which is stronger than

the H® topology.

3.1.2 If u€E Hm(O) has compact support in @, then u € Hg(ﬂ)

Procf, ILet K = supp u. Now u may be extended %o a

distribution U on R" so that & |R™K = 0. [lLet

o

€ Co(R") be s.t. p | K=1 and Supp € 0, Then u(¢) =

u(pp) extends u and U is O on R® - KJ]. Thus there is
& sequence £¢i} in C;GRn) s.t. @y - 4 on HM®RD®). Thus

$¢; ~» eli on E'®RY), and so pe. {0 el | @ =u in H'., O



_65_

3,1.3 It is convenient to view Hg(n) as a subspace of

HY®R™). 1In fact, let U: c:(o) + Co(R") be the mep s.t.

for ¢ € C:(Q) Up | Q=¢, Up |R" -0Q=0, U is an igometric

map _in the resgpective H™ norms. Therefors U extends in a

unique way to an isometry V: Hg(ﬂ) -+ g™R™y,

Proof. Note that (u,) = (Vu, Usd  for u € HI(Q), ¢ € C (n).
Thus Vu | Q@ = u: For this equality is satisfied for u,
¢ € CZ(Q) and both sides are continuous in u with the topology

m
of H0 .

3.1.4 One of the notable features of the space Hg(n) ‘is the

pairing

which extends the canonical pairing ¢ , >0: H ™ x CZ -~ C .
This exists in virtue of the definition of H ™ [distributions
u s.t. [¢u,ed | sclel, for ¢ €cl()] and the fact C(Q)

is dense in HE(Q). Obviously, if u EH ™ , v € Hg

)yl = Tul_y vl -

We also have have the following consequence of Rellich'sg

lemma (2.19.1 and 2.19.2) and 3.1.3.

3.1.5 Suppoge 0 eR® is an open set of finite measure,

m
m; > m > 0. Then the inclugion Hol(n) -+ Hﬁ(ﬂ) is a

compact mapping. 4if furthermore My =m > n/2 then the inclugion

is a Hilbert Schmidt map.
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1.
Proof. That Hol(ﬂ) = Hg(n) is ¢lear. To show the mapping is

compact consider the commutative diagram
v

my 1
H, () ———m H

i(Q) l

H(0) 2 PEY

@™

i@®%)

Vi, V are isometries and iR™) is compact on the subspace
m
v, (E 1)), Thus i(Q) is compact. Similarly if m-m > n/2

we deduce i{Q) is Hilbert Schmidt.

3.2 Interpretation of Hﬂ(n)

%3.2,1 Let 0 =RTL xm* Tlx,x") er™! yRm: x' > 0}; Suppose

u is a function with continuous bounded derivatives of

order = m which vanighes outside a bounded set and such that if
@] ¢ m-1 and x EjRnrl, D*u(x,x') » 0 as x' + 0. Then I

€ pit
u HO(Q).

Proof. For ez 0 let u/(x,x') = u(x,x'-¢) if x' > ¢ while
ulx,x') = 0 if x' £ ¢, u, has bounded continuous
derivatives of order = m-1 and L? derivatives of order = m. In
fact the distributional derivative D> u, for Ja| s m is the
function w, given by wa(x,x') = p* u(x,x') if x' > ¢ and
wo(x,%x') = 0 if x' $ e. This follows from the definitions.

Therefore u,_ € H(Q) for e = 0. In addition if e>0, u

€ ]

has compact support in Q so u, € Hg(ﬂ). Finally as ¢ ~» 0,
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D*u_ » D"u pointwise; The family {D® uJ, O0<e <1 is

uniformly bounded and vanishes outside a bounded set for |a| £ m.

2

Therefore by dominated convergence, p* u, D*u in L for

la] = m and thus u, *u is H"(0). In conclusion u € Hg(ﬂ).

Interpretation of HE(Q)-(Cont‘d).

n-1

3.2.2 Let 0@ =R*' xR" = [(x,x') eR™! x®R: x' > 0}, Then

if u € H?(Q) and |a| € m-1 are such that D™u extends

to a continuous function w, on @, then w, | o0 = O,

We will first prove ‘the following:

3.2.3 Suppose u is a continuous  such that as a

distribution on 0, u and De u €12 and there is a
n

sequence ¢, € C_(A) _such that #, »u and Do By * D U in 12,
Then u | 0 = 0.
Proof. To prove this observe that for ¢ € C_(Q):
x!
#(x,x') = [ b, 8(x,5)ds
o n
so that by the Cauchy Schwartz inequality:
2 x! 2
lé(x,x')|° s xt j ID. @(x,s)]%ds
e
) n
Therefore for any measurable set E GIRn"l
x"
J I |¢(x,x')|2 dxdx' = [ I lD ¢(x s)i ds df}dx' =
o E

n
s 1/ xn@ Jx I D, o(x,s)|% ax ds .
o E n
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Substituing‘.¢ = ¢k and letting k - = we obtain

]

y ,
"t J J iu(x,x')|2 dxdx'! s x"/2 JX" JE |De U(K:S)iz dx ds .
o ‘E ° n

Therefore if E 1is a bounded set so that

X! — J ]u(x,x')}2 dx %' € Rtu{0}
E .

is continuous, then letting =x"— 0 in the above inequality we

/

¢btain
J {u(x,0)]? dx = 0
B

So that u(x,0) = 0,

To prove the main proposition, observe that under the

hypothesis "u  and De p*u € Lz; Furthermore there is a
- n
sequence ¢, € C () such that D&¢k + 0®u  and De Du¢k—* D, D%
n n
in 12, By the previous result therefore w_ | 20 = O.

*
The above proposition is true for meore gensral open sets 0Q.
We will prove this for a class of open sets which have a smooth

boundary.

3.3 Smooth Open Sets

We now deal with some technicalities concerning the boundary

of an open set 0 s R™,

3.3.1 An open set @ has a smooth boundary {(or is smooth) iff

the following is satisfied for any X € dQ: There is a

neighborhood V of X in R" and a diffeomorphiasm T:VN 0 = Bl=

= {x e R xm*: |x| <2} such that

K 3t e - [ i
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1) The components Ti(l £i=n)of T and (T_l)i (1 =51 = n)

1 -]

of T - are functions in Cy

2) By the previous condition T is Lipschitzian and therefore

uniformly continuous. . From this fellows T has & unigque

extengion to a continuous map Tl: v0a- El' We require T
map ¥V N 80 onto {x € El: x, = 0}.
3) This unique extension maps x, onto O.
The importance of condition 1) 1lies in the fact that T
will the transport the spaces H (V N Q), HE(V n Q) onto

Hr(Bl), Hg(Bl) resp.

Hg(o) for smooth open sets

3.3.2 Let Q @R® be an open set with a smooth boundary. Then

if u € HYQ) and |a| = m~1 are such that p*u  extends
if a and extends

] .
to a continuous function w, on QO then w, | s = 0.

Proof. Suppose X, € 80, Let V ©be a neighborhood of X, @as
in the previous definition, T a diffeomorphism

V0o -+B satisfying 1)-3). Let p € CO(R") be s.t.

1
Supp p 8 V and p is identically l in a viciniiy of Xoe Then the
the distribution u, = plo.u € HE(Q) and Supp u; % VN Q.
Evidently w |V N o € H) (VN @), Now T maps H(V n a) onto
Hg(Bl) g0 T*(ullv nQ)e H?(Bl). Applying 3.3.1 (in the case

Q is a half space) one concludes the desired result. To seé this
explicitly, extend T*(ullV N Q) +to a distribution v on

n-1 +
R ¥R in such a way that v = 0 outside the support of -
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T*(u |V N 8). v is in HYR® 1 x RY) and if |« % m-1 is suwh
that D™u extends continuously to & the same is true of D%v.
On the boundary this must be zero, and therefore on X, this
extengion is 0. Thus Duulﬂx) -0 as x * x,. But Drulx) =

= Daul(x) near x,. This proves it.

One can prove a converse: If u vanishes along with its
derivatives of order %, J|a| = m~1 on 30 then u € HS(O). We

will not need this so will leave it as an exercige.

3.4 Lax Milgram Lemma

3.4,1 Suppose H is a Hilbert space, B a bounded sesquilinear

form on H. Then there is a unigque bounded linear

operator T € B(H) such that B(§,m) = {(T§,n’. Furthermore if

B is bounded away from O in the sense that there is a C > 0

such that |B(5,5)}| = cﬂsu2 for all § €H then T is

invertible.

Proof, Given B, the existence of T is immediate from the
Riesz representation theorem., If |B(%,8)| = CHEH2 then

| <Tg,8>] = CH€“2 ,» so obviously [Tgll = cllglll for all g € H.

From thig it follows T is injective and the image of T is

closed. To show T is surjective, suppose nd-Ran T.

Then in particular {Tn,7) = O which implies [nl = O. Therefore

Ran T =H. D

We will use this theorem in the following form:
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3.4.2 Suppose L is a differential operator of order 2m with

coefficients in c;(n). If there is a constant C > O

such that for all ¢ € czin)

|<Lg,8) |= cliall (.1)

Then there ig a bijective bicontinuous linear map S: HE(Q) -+
+ Hg(ﬂ) such that (Lu,¢) = (Su,¢), for all u € Hg(n),
¢ € Co(ﬂ):

Proof, To prove this note

B(u,v) = (Lu,v)o

is a bounded sesguilinear form Hg(n) * HE(Q) + €. As CZ(Q) is
dense in Hﬁ(n) (.1) extends to all ¢ € Hg(ﬂ). The result then

follows by the abstract Lax Milgram Lemms [3.4.1] above.

It is evident the same theqrem is true for compact c”

manifolds with a density.

3.4.3 Thege apparently trivial considerations are central to the
Hilbert space approach to elliptic equaftions. In fact

Gardings inequality states the fellowing: If L is a strictly

elliptic operator [we will define this subsequently] then there

are constants C,, CZ such that

Re{lL + cq1¢,0) = C, lol, (.2)
for ¢ € C:(Q). In other words L; =L + C; satisfies (.1).

If L satisfies (.1) then L is a bijective map
H%(Q) + H™(Q)., If £ € H ™), let Rf € Hg(ﬂ) be such that
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for all ¢ € C:(ﬂ).

(f,¢>o = (Rf,¢)m

On the other hand there is an coperator 8: Hg(n) - Hﬁ(ﬂ)
such that (Lu,¢) = (Su,¢) , for al ¢ € c:. S 1is bijective.

Now Lu=f iff for all ¢ € C5(0)

(Lu, 8, = (£,8),
i.e. Iff _(Su,¢)m = (Rf,¢)m for all ¢ € C:(Q}. As €T is
dense in Hg this is equivalent to Su =Rf or u=5 " Rf,

whence L is bijective.
The solution of Lu = f is a distribution solution: Even

if £ € C; there is nething in the above proof which implies u
1s even continuous. There are however strong regularity theorems:
Our main objective is to prove that if u € Hg(o) and Lu € HP(n)

then u € Hp+deg(L)(M)

3.5 Approximation of Operators

The Fourier transform essentially diagonalizes partial
differential operators with constant coefficient: If P(D) is a

constant coefficient operator then for u € §'(RM)

3'P(D) 3u = P(x)u
Now for many reasons counstant coefficient operators are

insufficient for any comprehensive theory. For example if the

theory is to apply to operators on manifolds, then of necessity
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we must consider ones with variable ccefficients as there is no
coordinate invariant meaning one can attach to the adjective
"constant coefficient". The probiem that arises in dealing with
general operators P(x,D) via the Fourier transform is that
multiplication operators get transformed into convolution

opgrators which from our standpoint are unpleasant to handle.

One way out of this difficulty is to suitably approximate
each variable coefficient operator L by an operator Ll which
almost has constant coefficients. This is made precise in the

following.

3.5.1 let L be a differentigl operator of order m with

CE(Q) coefficients, L= = a_  D*. Subpose
_ |a|=m
{Vi}lSiSn is_an open cover of @, f{w;} a ¢, partition of

unity such that Supp w, ¢ vi and }aa(x) - au(x‘)[ s M for all
la! =m, and x%,x' in the same vi. Let x;, €V, Dbe arbitrary
and

L.-u =X

1 au(xi) Da(wiu)

1 a)=m

Then if O = p s m there is an operator L2 of order =

=m-1 with coefficients in C;(Q} such that for all u € HP

ML LY s i clm) bl (.1)

Proof. To prove this we may write

L.u = 5.1 =

-y{a) (o) - _
1 A . (xi) pioYie [UiiDY %7401 L3u = (P + LB)U

a
[+

where |y(a)] =p and o = y(x). Alse order (L3) = m-1,
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8imilarly,

lu = Ei{ T DG_Y(“) [acL w; p¥ul + Lyu = (@ + L&)u

a|=m

where order (L&) S‘m—l.

1 1] -
L {p-ql =z, v(a) - Y(a)
l{ ] ullp_m IEl U.sz D {ac‘ am(xl)} LUi D ullp_m =

< Ic,zl":m H‘Ei{aq - au(xi)i w, DT(Q) uuo =

< oz o) W s c(m)ul
|| =m o iy
where C{m) is the number of multindices o such that |a] = m.
Now (L—Ll_(LA"LB)) = Q-P and L, = LQ_LB has Cy coefficients
and order = m=1, O
Notice that in the hypothesis of the preceding proposition

o
.

we sssume the partition of unity {wi} is in Cb This is an

extra assumption as partitions of unity are not generally in C;.
[ They are bounded, obviously, but their derivatives may be

unbounded l.

3.5.2 Let f € C(a). Then w(f) = inf{r > O: There.1is a
bounded open set 01 £ 0 s.t. the oscisiation of f on

Q-—nlis = I‘].

3.5,3 Suppose £ € c;(n) and w(f) < r. Then there is a finite

open cover (V.} of 0 anda partition of unity {w;}

in CE such that 1. Oscililation of f on V; = 7Tj 2. Bupp W€

8 V..

Proof. Let 0 &0 be as in the definition. £ is uniformly
continucug and so extends to a uniformly continuous

function on . There are open sets {Wil;., in R® such that
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Uw, 2 @, and oscillation of £ on W, N0 is € r [compactness

_ ®.n
of “11 and p; € CO(R ) such that Supp p; £ W, @

i z 0,

T 9; =1 on T with equality on ﬁl' Evidently ei] O € CE(Q).
Furthermore 7 =1 ~ ¥ pi[Q € C;, mz20 and n is 0 on ﬁl'

Therefore Supp m * (ﬂpﬁl) .

From this we deduce {pi|03 n is a partition of 1 on

ism i
Q, Supp pilﬂ =W, ntq, supnEs (Q—ﬁl)_ and the oscillation of

f on each of the open sets Wi n Q, Q—ﬁl is=zr, O

3.6 OQOrder Structure for Operators

3.6.1 let L be an operator of order m with coefficients in

C:(n) and such that

(1) wley) <d for |ezf = m

(2) symb (L)(x,8) = 0 for all (x,5) € @ xR" .

~Then given +,s =2 0 such that m = r+s, there is an operator P

of order £ m-l with C; coefficients and such that for u € CZ(Q)

Re((1~P)u,ud_z~a C(m) full, lull

Proof. Let {Vi} be a cover of O on which the oscillation of

all a, for [a] = m is s 4; {wi} a partition of

unitﬁ in CZ(Q) such that Supp Wy < Vi. We may arrange matters

so that e, = /UL is also in c;. Finally let L,, L, be

operators as in proposition 3.5.1. Thus
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L,u = ? E a (x;) D*(wu) [x; €V, arbitrary]

has ¢” coefficients is of order = m-1 and
| {(1-Ty =T Ju,uy i< ac(m) fulf Mali

for a11 u € CZ(Q).
Now

Du(pi® + Leu = (R + L5)u

5

where order (L5) < m-1. Next

(Ru,u)o =

|
Ll ]

~

g ]

a&(xi) Pi Da(Eiu)’u>O

(41
ST agln) B, e

m

This quantity is = 0. We prove each summand is = O, The simplest
way of doing this is by the Fourier transform. Note first that
B U is of compact support in 8, s0 we may view it as a function

in C:GRn). Thus for each i

G R -
<luf=m a,(x;) D (pyu)y o ud = <|G?=m ag(x;) ~ {pyw), 0, =

[+ S A8 ~
g a0 ¥ S g0
Here %“ is the operator multiplication by su. Now by

1~ L, =L-R-Lg -1,

| Gra,ud o] % d Cn) full,

3.5,1 if M =L - L for all u € C:(n)

Thus for all u € C;(Q)
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Re (L - L, - L5)u,u)0 z Re(Mu,ud) = ~ dC(m) “uﬂr ﬂu“s ;

Evidently L2, L5 have C; coefficients, so taking P = L2 + L5

completes the proof. O

3.7 Gardings Inequality

3.7.1 let L be a differential operator of order 2m with

coefficients in CZ(Q). Suppose there is a constant

¢ > 0 such that w(aa) < ¢/¢(2m) for all J|a| = 2m and

Symb L (x,§) = c|g|?™

for all (x,§) € N xR™, Then there are ¢y, €, » O such that
Re{Lu,u) 2 cqlul? - o, lullZ
for all u € C_(0)

Proof. Let S be the constant coefficient operator

2m _ 2 Nm o _ 2%
| _c(zne') =¢ T C,D

8 = ¢|D
i |a|=m

Since Symb(L-S)(x,%5) = Symb L(x,i)—cléizm 20 by 3.6.1 there is

-3

an operator P of order 2m-1 with Cb coefficients such that

2
Re ((L-S-Plu,ud = —d“uﬂm
where C(2m)-Max w(au) <d<¢, Nowif u € Cz(n):

<Pu,w), | = clul, ol

m-1
I¢su,uw) | = elzic, D** w,ud | = clz ¢ D%, 0"w | =
2cl ®  ID%?| = olllulf - BulZ_, |

& =m
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Thus for ali u € CZ(Q)

Re (Lu,u) = —alul? - clul, tul,_; + cltul? - Wi 1 .

We also have the following inequalities
| 2 -1 2
Tl g = el + e M2 g

hal_) = ehul? + c(e) ul2 (1)

The latter inequality we prove below. Granting this we obtain

Re(Lu,ud, = —allulZ - celul2 + e Huh2 o) + o(lullZ - w2 ;) =

1

2 (~a-Cec) 2 ~ (ce™d 4 o)l =

z (-a-Ce+c) lullZ - (ce™ + o) (e lull + c(ep)ul?)

2 (-da-Ce+o- (Celro)e ) ul2 - (cemhee)c(ep)lul .

To complete the proof determine e,, e, so the coefficient of

lut2 s =0, O

3.7.2 Definition. An operator L of order 2m with C;(Q)
coefficients such that fhere iz a ¢ > 0 such that for
all (x,8) € 0 xR"

Symb L(x,g) = ofg]Zl

and ®(a,) = 0 for all la] = 2m is said to be strictly elliptic.

If this condition is satisfied locally then we say L has

a positive symbol or is positive. BEvidently this means L{x,§}>0

for all (x,E) € O x RE.

It remains to prove the inequality (.1}:



3.7.3 Lemma. Suppose r > s so thal H@®YHe B5®™). Then

for ¢ > O therse is a Cfe) > 0 such that for
u € H'(RY)
haliZ < elul? + cle) BulZ

Proof., Let w = 1. Then

fuil2

=)

fax+ 18125 1v(@)? ag =

[ alai®® ve)l%as + [ (1ls1%)%IvE) | Pas
lg|=R lg|>R

gl

th

j 1v(5)1%4% - max (1+]3]%)% +
lg]sR |5]sR

EX

j|6|>R<1+1a|2)S'r V()12 (11+151%)"as

W

W12 (1r2)® + [1v(e)12(12+]81%)7ag + (1+8%)57T

Tul2(248%)5 + lul2 (148257,

As (1+R2)s—r +0 as R = = this proves the result. [And

in fact gives an estimate for C(e}}. O

%.8 Ellintic Regularity

%.8.1 let L be a sirictly elliptic operator of order 2Z2m on

R". Then if p €Z there are d;, d, > O such that

2
for all u € EP@®")
dlﬂuﬂp s (L + K)UHp_zm (.1)

if = d2 .
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Frogf. We apply GHrdings inequality to the strictly elliptic
operators L(1-4)°%, (1-3)°L of order 2m+2s. Thus there
are constants. Cqs Cp (depending on s) such that for all

u € HS+1'1'1(]R1’1)
Re{(1-4)8 Lu,u), = clﬂuu§+m - czﬂuﬂg

- c,llul?

Re{L(1~a)8 u,u) = clﬂuu§+m

(1) &8uppose p-m =g 2 0. Then if » = O
H(L+k)UHS_m Huﬂs+m = u(l—ﬂ}s(L+h)u"_S_m HUUS+m z

z Re{(1-8)% (L+M)u,u), = cluuu§+

. czﬂuﬂg + 2{(1-8)"° u,ud =

= clﬂuﬂg + (l—cz)ﬂuﬂg

+m

This will be = clnuﬂ§+m whenever A = Coe We thus obtain

WLl o= eqlinll

whenever \ =z Cos 0. Note s4m = p, s-m = p-2n

(2) Suppose m-p = s & 0. Then if A 2 0

§(Lemul = Wl 1(1-8)75

14t
Y_g-m |l11|1__s+m = S-+m

2z Re{({L+N)u, (1-a)"S ud
= Re{L(1-2)%(1~8)"% u + My, (1-a)7S u),

z cl'.'l(l—-A)_Su".l2

com = CoH(1-0)7% W2+ Ay, (1-2)7Bw)

n 02 _ o ne 111,12 o2
z cpaulls cotulZ,  + MulZ = Clﬁud~s+m
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whenever L z Coe We thus obtain whenever A 2 0, s

ICLnMull_ o= eqflull_
Note —s+m =p, -s5-m = p~2m. O

As a corollary, under the same assumptions on L:

3.8.2 For p €Z, there isa c(p) # 0 such that (I+\) is a

bijective map HP(RD) - Hp_szRn) whenever A z c(p).

Proof. If » = dz(p) then (.1) implies L+h is injective and

has a closed image in Hp_szRn). Cne must thus show that
for A 1large (L+A) EP@®R™) is dense in Hp"szRn). If not there
isa v#£0, v €BF"P®R' such that for all u € HP®R™):

((Lﬂ.)u,v}0 =0

Thus (u,(L°+l)v)o =0 for all u € HPMR™), where L° is the
formal adjoint of L. This implies (L°+A)v = 0. However L®
is strictly elliptic, and thus for A large L° + A  is

injective. Thus for such A, v = 0. For such A, therefore

L+ XA is bijective. &

3.8.§ let ,L be a strictly elliptic operator of order 2m

|3

R, If u€H M) and ILu € ®P@®™ with p €Z , the
u € Hp+2m(]Rn)'

Proof. For each q €%, 1let c{g) be such that I+M is a
bijection HHRD) — Hq"EmGRn) for A %= c{q). Now let
u,f = Lu € H°®™). Suppose * = max {c(s)y, c(s+2m)), Then as

Hs+2m + HS

I+A  is surjective , there isa w € HS+2mCRn) such
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that

(LedYw = £ + 2 = (L+*)u .

On the other hand w,u € H®(R®) and L+*» is injective there.
Thus w=u and u € HS+2mGRn). If p = s+2m so that £ € P e

HS+2mGRn) we may repeat the argument. Eventually we arive at

e

u € ”R®) with r = p. Then u € #(R"Y) so repeating the

argument once more it follows u € Hp+2mGRn).

3.9 Regularity of Solutions in the Interior

The moat convenient way of dealing with intericr regularity
of solutions from ocur viewpoint is by the distribution spaces
P . P ; i
Hloc(ﬂ). u € Hloc(n) iff any x € Q has a neighborhood V such

that u | V is the restriction of a u € HP(R™)

3.9.1 Suppose L is a differential operator of order m with

¢”(n) coefficients and with a positlve symbol. Then if

u & CO(0)' is such that ILu=f € B

Po(0) then u € 7)),

loc

Proof., Let x €0, K, = ﬁl =Ky @ ﬁo & Kooﬁ 0 co:pact
neighborhoods of x, so that f | K, =g | K, with

g €-HP@®™) and p,¢ € C;GRn) such that pIKl =1, Supp p & K_

and ¢ is 1 on some neighborhcood of x while Supp ¢ & K2. Let

L, be the constant coefficient operator obtained from L by

evaluating the coefficients of L at x. Now (1-p) L + pl. is

an operator whose coefficients are constant outside a compact set:

Furthemore if K0 is sufficiently small it is strictly elliptic.
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Now

(1-9) Liow + pLéw = p¢lw + pPw = oLw + pPw

where order P < m-1. Thus as distributions on R"

{1-p) Ly¢u + pléu = ¢f + pPu .

We prove that if u € H (0) for r s pm-l then ¢u € HFI(RD):
Evidently ¢Pu € H _m+lGRn); On the other hand ¢f € HP(RD) by
hypothesis. Therefore ¢f + pPu € HO-™I@®RY), By the global

regularity theorem of the previcus section it follows that
i gu € yr-mrlimpny | prelen)

As ¢ is 1 near x, and x is arbitrary u € HiI (0),

From this it follows by induction that u € HYTU(q),

If u € C:(O)’, then for any relatively compact Q! & (O ,
u | Qt € HiOC(Q‘) for some 1r. To prove this we need the easy
half of the Paley Wiener theorem: If v is a distribution of
compact support on JRn, then v is a function of at most
pelynomial growth. In'par%icular any distribution v of compact
support belongs to some Sobolev space H (R™). Thus if
fe C;(ﬂ) then fu | Q' is obviously the restriction of a

distribution of compact support on R™. Therefore by relative

compactness of Q', u | Q' € Hioc{ﬂ') for some r.

Applying the result for the case u € H™ (Q'), we obtain

u € Hggg (nt). As 0! & Q is an arbitrary relatively compact set

u € ngz(ﬂ).



-82—

3,10 Elliptic Equations on Compact Manifolds

At this point we pause in our proofs of the regularity
theorems for elliptic equationg. In fact for compact manifolds
without boundary the theorgm we have already proved is sufficient
to prove a global regularity theorem. We will also show that
symmetric elliptic operators on a compact manifold with a density
(and of course without a boundary) have an orthonormal basis of

@ -
c eigenvectors.

Probably the most significant example of an elliptic
operator is the haplace Beltrami operator on a Riemannian
manifold. The ordinary Laplacian A is an example of this., We
begin this section by defining the Laplace Beltraml operator A
for an arbitrary Riemannian manifold M. For generalities on

Riemannian geometry we refer to $4]

\

3.11 The Laplace Beltrami Operator

We consider a Riemannian manifold M. Then M has an
associated invariant connexion ¥. If X is a vector field, then

the general govariant derivative of X is the tensor

bX(w,Y) = w(va)

(This obviously is C”(M) linear in % and Y so is in fact a
tensor). The contraction of this tensor is a functioﬁ called the ‘

divergencé of X, div X. In local coordinates (xl,...,xn) the
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contraction of AX with X =% Xiei is calculated as foilows:

div X = I; dxy Vei X =T dxy Vei(E Xj ej) =

=, . dx.(® X. .+ X. v L) o=
1,5 T3, Xy 05+ X5 Vo o)
X
=%. 0 X, + £ dx, X.Ti. e
ie; "1 1,3,k i 73 "ji "k

.0 X, + ¢ x.7Ti
S N e

The lLaplace Beltrami operator (on functions) is defined by

Af = div grad f

In local coordinates grad £ is the vector field I Xiei

f. Therefore the principal part of

) _ -1
with the X; = Ej(g )

.. B
ij ej .
& is the operator I (g“l)ij 3, By -

i,J i J

From this follows that -4 is an elliptic operator, For

we have Jjust shown that on any coordinate chart its symbol is the

function S(x,§) = = (g‘l)ij 8 8y

3.12 Elliptic Equations on Compact Manifolds

3.12,1 Let M be a compact C° manifold with demsity, L an

elliptic differential operator of order 2m on M. Then

there are constants cq, s > 0 such that

Re(Lu,u), = o fulls - c,lul2 (.1)

for all u € H™(M).
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Proof. As Cw(M) is dense in HY(M) it suffices to prove this
for w €C%. Let (V,} ..y be a finite atlas for M,

lp;d cieq @ partition of unity such that Supp Py & Vy. Assume
also ﬂ& = JE; € ¢”. DNow P__.L = Lu& - u&L is an operator of
order 2m-1 with coefficients supported in Vie If u€ Cm(M),

then

(Lu,u)o =
i

Il =

1(&? Lu,u)O =

(.2)

N N
= El(Lwi, wjud - iEl(Piu, w v

1

By GArdings inequality for open sets in R" we have that
there exist constants CysCy such that
N N 2 2
Re iil (Lw; u, wiu)o = izl Eclﬂwiuﬂm - czﬂuiuﬂo]

On the other hand the § §_ nom on EP(M) for all p is

p
N 2.1/2
equivalent to the norm [ T lw uupl . Thus we have constants
i=1
Sz Cy such that
o lat2 2
Re izl(Luau,“ku)o = °3‘u“m ~ cyllully

_ N .
On the other hand the term | T (P,u, wud | may be
i=1

estimated as follows

N
; Piu, wowd | 5 g E ipjull_p Bwall ) <

N
| ©

=1 i=1

2 LT e 2
Huhm_l Uwiuﬂm s ¢ Zle Uuﬂm_l + eﬂwi uﬂm] s,

N
s C z
6 ;2 im1

1

5 oo HulZ ) + ellul?l .
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Thus by equation (.2)

RedLu,w) = o lul? - o lul? - o (e Mul2 | + eul?]

3 °7
We complete the proof of (.1) exactly as in the proof of

Girding's inequality 3.6.1.

3.12.2 By Gardings inequality for manifolds, it follows that it
L is an elliptic operator on the compact manifold M

with density . L+c is a bijective map H"(M) ~» H™™M) for -

c 2 c,. To prove this apply the Lax-Milgram Lemma to the

sesquilinear form (u,v) +— (Lu,v)_  defined on H"(M) x H™(M).
O

We now consider in detail the inverse T, .= (L+c)—l, cZo .
Now if v € H'(M) and {(L+c)u = v elliptic regularity implies
u € H2m+r(M), Ags M is compact however, 1OC(M) =HP(M) for

any value of p. In particular:

3.12.3 If ec¢=zc,, and r = -m then T  maps H (M) onto
Hr+2m(M)

3.12.4 Now it is natural to consider the mapping TCIHO(M) as
an cperator on .HO(M). It is evdently a bounded cperator,
ahd in fact some power of it is Hilbert Schmidt. To prove this
note that for s > dim M/2 +the inclusion map HS(M) - H°(M) is
Hilbert Schmidt. Now (TO)p maps maps H°(M) into Hzmp(M) 80
that considered as a map HO(M) - HO(M), (Tc)p will be Hilbert

Schmidt if 2mp > dim M/2.
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3.13 Eigenfunction Expansions

Suppose M is a compact C° manifold with density and L
an elliptic differential operator which is formally self adjoint.
We have seen that for ¢ large, L' = (Lsc) | Hgm(M) has an
inverse T: H°(M) = Hzm(M).

3.13.1 T 4is a compact self adjoint operator on H9(M).

Proof. First we show that (L'u,v)O = (u,L‘v)o for all

u,v € Hzm(M). Clearly the twc sides of the eguation are

will defined and are continuous H2m X H2m + €. The equation
holds for u,v € C°(M) by hypothesis and thus extends by

continuity., If Uy, vy € H°(M) therefore

(Tup,vyd, = (Tu,, L'Tvl)0 = (L'Tu,, Tv1>o = (uy, Tvl>0 m|

o

By the structure theory for compact self adjoint operators
there is an orthonormal basis {ei} of LE(M} and real numbers
»; such that Te; = Me,. The numbers {%] form a set with at
most one cluster O, Thus e; = LiL'ei or e, = Ri(L+c)éi, 50
that M\ Le; = (1-cAi)ei. Now A. # 0, for otherwise O = &
Henhce -

’ a1
Lei = }"1'. (l—cki)ei

Thus L is diagonalized by {ei} with corresponding
eigenvalues lzl-c.This sequence is discrete and converges to

o, In fact we show it must converge te +=, To see this note

{Tu,ul, = (Tu, L'Tu) = clﬂTuﬂi >0
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for all u € H°(M) [as L' is symmetric the gquantity
{Tu, L'Tu)O is automatically real so GHrding's inequality applies
with no Re in frontl).This implies T is a non-negative operator

and so its eigenvalues li are = 0,

3.15.2 By elliptic regularity one can show all the distribution

eigenvectors of L are actually in C (M). To see this

suppose u € C”(M)' is such that ILu = M. As M is compact
u € HEDC(M) for some r €R. By elliptic regularity it follows
immediately u € HI*2™S(M) for all k €N and thus u € C7(M)
as asserted.

In particular any eigenvector of L is one of T, and the

map A = h"l—c is & bijJection between eigenvalues of T and

those of L,

3.13.3 As T' is Hilbert-Schmidt for r > dim M/4m, it
follows that if {Ki3 is the sequence of eigenvalues of

T, counted with multiplicity,

ar -
I ki <

Now %, = (ui + c)"1 where u; 1is the eigenvalue sequence of L

-

Furthermore #; 2 C for all but finitely many i, so0 that for

~1

such i 2 uzl < (ui + c)-l. It follows therefore that

by H;Zr < w®
by #0
We have proven this only for integral r, but it can be

shown the same result holds true for any real r,

-
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3.14 Flat Tori

The simplest examples of compact Riemennian manifolds are
£lat tori: Let T £8R® be a lattice, that is a discrete
subgroup such that R™/I is compact. The space RY/T with the
quotient metric is called a flat torus.

It is not difficult-to prove that tori R™/T, RU/I' are

n

iscmetric iff there is an iscmetry V: R +R? which carries T

onto r'.

3.14.1 The map m,: CT(R?/T) — C"@®"), which is composition

with the canonical map R° +RY/I" commutes with the
laplacians i.e. Am.f = mA'f where &, 5! denote the Laplacions
on R", R"/"" resp. From this it is immediate that the

eigenvectors of A' are quotientes of eigenvector of &.

3,14,2 The eigenvectors of &' are the quotients f? of

the functions £, = exp 2nidlx,y? with x €T =

= {y €eR%{y,w> €Z for all w €T}. All these functions are

linearly independent.

Proof, Observe that Of, = —hﬂlx{z.fx. Now £, passés to the
gquotient 1ff exp 2milx,y) = exp 2milx,y'> for y-y' €T
ice. exp 2milx,y) = 0 for all y € T. Equivalently, (x,y? €Z
for all y € I'. This means exactly that =x € kil
~ * - .
Next the functions [fx}’ x €' are linearly independent.

This is a trivial consequence of the fact that the functions

{fx}, x €ER™  are linearly independent. | v
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To show that the %X are all the eigenvectors of A'!' it
is enough to show (f ) is total in LZ(R"/C). This will follow-
if the (¥} are closed under multiplication, involution and

separate points. In fact by the Stone Weierstrauss theorem the

~ . . n . ~ . ~ ~ -~ _
{f,] will be total in C(R’/I'). However Teay = T By 0 T8y

and if %X(z+r) = }x(z‘+r) for all x € T*, then

Y

exp 2ni{(z-2z'),x? = O for all =x € t*. Therefore z-z' €T ~ = -

=T

|

As a Corollary:

3.14,3  The eigenvalues of 4! are the numbers Aﬂzlxlz with

x €T,

3.15 The Fredholm Alternative

%.15,1 Let {0 be an open set in s of finite lLebesgue measure

or a compact C” manifold with density, L a strictly

elliptic operator on O [or simply elliptic in the case of a

manifeldl and L° its formal adjoint. Let 2m = order L. If

£ € H™(q) then Lu=f has a solution u € HE(Q) iff.

£ € [ker 191", that is iff.
(f,u)o =0 for all u € HE s.t. Lou=0 (.1)
Furthermore
Codim Ran L = dim ker L = Codim Ran L° = dim ker L7 <=  (.2)

Codim is codimension in H Q). If these numbers are zero then
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the solution of Lu = f is unique in HE(Q}.

Proof. By GHrding's inequality and the Lax-Milgram Lemma applied
to L and L° there is a c¢ such that L+e, L°+c are
invertible operators HE(Q) + ™), Their inverses are bounded

operators S,S,: H 7(Q) - HE(Q)-

1
Next note the equation Lu = f for u € HQ(Q), £ € 5™q)

is equivalent to the equation {[1-cS8lu = Sf with f£,u € H °(Q).

To see this, note that Iu=f, u € Hg(ﬂ), £ € H™Q) is

equivalent to (I+c)u = f+eu (with u € Hg(n), £ € H™Q)) iff

u = S(f+cu) (with u,f € H(0)) iff [1-c¢Slu = Sf with

f,u € HMp), -

similarly L°u = f with u € HJ(Q), f € H"(Q) is

equivalent to [1-¢S Ju = s;f with f € H™(Q), u € HE(Q).

Now let us consider § as an operator H™™ » H™. 35 is
compact for it is the composition of the operator g-H ™ o Hg

with the inclusion Hﬂ(n) + B ™(n) which is compact.

Cn the other hand let us view S1 as an ~rator Hg -+ H?.

It thus is the composition of the inclusion HJ(C) = H'(Q) with

the map $,: H ®(Q) - H?(Q). S, is also compact.

1
The relevant thing zbout §,5; is that S =5 if we

identity H" with the dual of HJ wvia the pairing ¢ , Do

To see this, suppose g € H ™, v € Hg. Then

{g,81v), = ((L+c) sg, 8;v), = {(Sg, (L°+c)$1v)0 = (sg,v),

We now apply the Riesz theory of compact operators. To
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bhegin with Lu = £ has a soiution u € Hg(ﬂ) iff. &f € Ran(l-c9.
This is equivalent to Sf € [ker(l—csl)ll i.e. {8f,v) =0 for
all v € Hg(ﬂ) s.t. (1—CSI)V = 0, This is equivalent to

(f,8,v), = 0 for all v € HO(0) s.t. (l-c8;)v = O, This means
(f,v}o =0 for all v € Hg(n) s.t. L% = 0. This proves {(.1).

To prove (.2), notice (.1) implies
Codim Ran L = dim ker L° .
On the other hand the Riesz theory gives

dim ker(1-cS,) = Codim Ran(l-cS;) Lin Hg(ﬂ)]

and this implies dim ker L° = Codim Ran 1°.

%.16 The m—-extension property

It is intuitively obvious that for an open set 0 the

m~extension property is a property of the boundary. In fact:

3.,16,1 Suppese O eR" has a compact boundary. If everv

x € 0 has a neighborhood U in R"™ guch that UM Q

hag the m—extension property, then Q has this property.

Proof. Let VX be an open neighborhood of Xy EIRn(i=1,...,M)
i _
such that Vx N Q@ has the m-extension property and

l [--]
U v 2020 Let p; € c (R"), i=1,...,M be such that

Supp ¢y € V., O =p;, 1 and I p;=1 in a compact neighborhood
i .

neighborhocd of #fl in Q. Thus

1=(1-2p;) +8p; =6+ Tp;
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with supp ¢ 0 W= ¢, where W is a neighborhoecd of &0, If

u € H'(Q), then pyu € H'(0), ¢u € H'(Q), By the m-extension
property for Q N V., there is a distribution v, € H"(2) which
extends w | @0 V;. Thus p;u = p,vy | 03 Next ¢u can be

extended to z distribution w on R" by setting it equal to O

on Re-0; w € H'MR™). Therefore
u = du+ Bpju = w0 o+ E?ivil 0= (w+ Epivi)lﬂ. o
For open sets O with 30 sufficiently regular the
m—extension property is a consequence of the m-extension property

for a half-space. We now consider this; The proof is highly

technical and our argument is a modification of one due to Lions

Lef U571,

%3.17 The m—extension Property for a Half-space

We now investigate the m-extension property ‘for the half

n-1

space 0 =R *RY, 1Tn the following discussion s €I is

fixed as is a seguence S IR, of positive real numbers.

5

For a sequence M = (kl,...,KS), let £(\) be ‘the operator

Kk¢(x',- akxn) + o{x", x_)

(8(x)62xt,x ) = - 2 .
- k':

1
for (xlxn) € 0., We consider £(X) as a mapping C:GR?) - ().

‘We have the following basic proposition:

3.17.1 1. For any p 2 C, £(*) maps C:GRH) into HP(Q).
Furthermore if C:Gﬂn) has the topology induced from

HpGRn), £(X) is continucus.
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2, If in addition the egquations

S
> xk(_ak)r -1 0% s p-1 (.1)
k=1 :

hold, then £(X) maps C;GRH) into Hg(ﬂ).

%, If A_ is the sequernce {Xk(—&k)_m}l < g s 5 We have
1 t
(') (B8

5(3) D (hg )

n

E;égi. The first part of the proposition is easy to see as £ 1is
the composition of the restriction map ¢ - ¢|0 with

one that is obviously continuous, To verify the second statement,

observe that if (.1) is satisfied then for 8§ =P -1

8 3B 8
DS £(») ¢(x',0)=~-Zxr (-0, ) " D" ¢(x',0) + D" #(x',0) =
n n

8 B
- T a(-a ) T+ 1) Den p(x',0) = C
n

so £(M¢ €Hb(a), vy [(3.2.11,
The final assertion is a stréightforward computation:
Note that if Sn = 0 then
g0 P00 p(8'0) g (n)

Thus consider

e () DZ ¢](x',xn)_= - ;

m . m : -
) 2 kk[Den¢](x . akxn) + D o(x ,xn)

n

P A (ea)™ DM Co(x,-ax )] ¢ D7 o(x',x ) =
- L » -
kel k k en ] kK e, n

- gnE-E kk(—uk)_m o(x* —ax )] + ¢(x',xn)] = [D2n£(hm)¢1(x‘,xn)
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This proves the proposition.

We can now define the extension operators e(A}. In fact if
A satisfies (.1) then <(A): HP@®M) - Hg(ﬂ) is continuous; We
define e(A): HP(n) » K PM®™) +to be the adjoint map. Thus
{e(™)u,¢) = {u,&(A)¢). We have

[fe(M)u, @] = [{u,2(0)9)] = ful le(el,

\

< clul_ ol

0=<m=p from which follows ¢(A)u €H ™ 4if u € E™ ang

e(M: H ™) - HfmGRn) is continuous.

We regard <(A) as a mapping defined on H2(0) for the
largest value of p satisfying (.1). Obviously dom e(A) 2 H°(q)
for any value of A. ¢{A) are in fact extension operators: If
u €dom e{*}, then e(M)u|Q = u. To see this note that if
Supp ¢ 5 0, then £(2)¢ = ¢]|0. For such ¢ therefore,
te(Mu, ) = {u,9|0) proving the result:.

Next we see how (%) intertwines with derivatives.

Suppose u € H°(Q) & dom e(X), and Ay satisfies (.1) for
, n
Osr s [B'] + 8, 1. Then

8',8.) 87,8
¢(hg ) D( 'y = D( N e(a)u (.2)
n

~CI8]+8)] o
Notice  dom e(la }) =2 H (0) 8o that as u € H ,
a
(8',8,) -
D u € doem S(AB ). Next suppose ¢ € C (R"). Then:
n
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(B',B.) (B',B 2
elrg ) D 7 ue) = 0 TR we(rg )8
n n
(81,8 ) '
= {u,D n £(hg ) (.3)
n f
|8'|+8
[This is the case because u € H°(Q) and £(XB Jo € H Doy,
7
Now (.3) equals:
(B',B._) g',8 )
{u, £(A) D N0 8) = {e(Mu, D( 7y =
(B',8. )
= (D n e(l)u"b)

This proves (.2)

Notice that the assumption L satisfy (.1) for 0O =< r
n .
< |8'] + B, means exactly

Tl )T =1 0osr< (B 48

S )
T kk(—uk)

k=1
In other words

s r-8_
kfl M (—a) =1 O=r< [B'] + B, (&)
3.17.2 Suppose A = (11,...,13) satisfies
3 Q
W Ml-@ )= =1, ~-p<qg<p, p>0 (.5)

Then &(r) maps HT(Q) continuously into HT(R™) for -p =m =

“

Sp‘

Proof. This has already been established for O ¥ m = ~-p.

Now if EB'|+SnSIn$;h then we claim hg_ satisfies condition
) n
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{.4) of paragraph 3.17.1. To see this, note r-B  satisfies
-p=< -8, sr-B < |8'] <p, whenever O st < |B'| + 8 . Thus

we may deduce that for all u € H(Q)

{8',8 ) (B*,8_)
¢ ) D ™Mu=D 17 e (A
n
8',8,) .
In particular, if u € H'(Q) ‘then D u € E%(0) and so
T
e(AB YD % e B°(R®)., As this is true of all I(B',Bn)l =m
n

e(A)u € H'Y(R™). Furthermore

(8
1D

,8.) (8',8,)

e(Mull = cip ufl, = cllull

so u - e(A)u is continuous H'(R) - @Yy, for msp. O

3.17.3 It is a corollary of the proof that under the above
assumptions if u € H°(n) and }(B‘,Bn)l < p then

8',8 8',8
( n)u D( n)e(k)u .

a(AB YD
n

it remains to show thet there exist s'{“k}lskss and
{lk} = » satisfying the above equalities,However, let s = 2p.

It is well known [and easy to check] the determinant

1 (-1) (-1)s+
det | 1 (=2) -y [ £ 0
1 (-s) (-s)81

Letting @ = k we have that {.5) above has a solution
(A ).
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3174 As a corollary, O has the m-extension property, for

all m,

The m-exitension property for a half space has many important
consequences, among them being an extension of the Sobolev

inequalities to open sets with a compact and smooth boundary.

3.17.5 Let O 8 R be an open set with a compact smooth boundary.

Suppose u € H''P(Q) with m > n/2. Then u= A, for f € cP ().

In addition there isa € >0 s.t. for all |a| = p

D% (x)| = clul Tuniformly in xJ.

m+p

The proof is a straightforward application of partitions of
unity, the inveriance of the spaces involved under C;

giffeomorphisms and the m-extension property.

3.18 Regularity at the Boundary

We apply the results of the preceding section to prove the

following technical result: Still Q =1Rn_l x RY.

3.18.1 Suppose u € H(Q), D, u € #5(n) for 1=1is=n-1 and

1
ol u € H ™10y, Then u € #7t(a).
n
Proof. Let & = (Al,...,xs) be such that
s
T X («uk)q =1, —(m+r+1) = g < (m+r+l)
k=1 & :

kgl xk(-o.k)“m (—otk)q =1 =(p+m) 5 g < p+m
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where p = |r-m+l|. Then &(A) maps HI(Q) continuously into
HqGRn), q s.t. -r=gq=<7r, while E(Km) maps Hr—m+1(0)

continuously into Hr"m+1@Rn).

By assumption and 3.17.3

]

D, e{Au = e{i) D, u 1=1=n-1
i i

m m
and D e(Mu=c¢e(r ) D u
ey m’ e

&0 Dz e{M)u € Hr_m+lGRn), D, e(Alu € H'(Q). If we manage to
n i
show e{A)u € Hr+1(n) then as u = e(A)uln € Hr+1(0) the result

will follow.

This is a general result which we state as a lemma.

3.18.2 Suppose w € H O(R®) is such that D, w & 1T (R™)
1

1sis=n1 and DI w € E ™R, Then we v™ @),
i

Proof., Applying the Fourier transform, we reduce this to showing:

If v € L%OCGRH) satisfies the conditions
jixi v(x)l2 (1+|x12)r dx < w 1<i=n-1
flxﬁ v(x)!2 (1+|>':i2)r_m+l ax < =

Then
Jlv(x) 1% e]x[®)™ ax < =,

Proof. To prove this we state the following ineguality: For some

>0
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n-1
2 I+
Ix, 1% = e, [P™ (1 4+ |x|2)" L =1
1=

Thus’

[ G2 %12 (1 + [x]?)Tax < o

and therefore:

1
le(x)l2(1+|x|2)r+ dx = [l 1|V(X)|2(2|x]2)(l+|x|2)r dx +

x|z

- 2Ty (x) % < @ .
x|=1

3.18.3 Suppose O is the half space {(x',xn) € R™Ixm: x, > Ok

Let L be a differential operator of order m with coefficients

in C;(Q) and such that the coefficient a of DE satisfies

n
inf{la(x)|:x € 2}> 0. Then for any integer p 2 0, u € HP(q),

D, u€H(q), 1=isnl and Lu € 8P ™ 1(a) imply u € EPtl(ny
i =

u € Hp+1(ﬂ).

Proof. L = angn + Ly + L, where
Ly =%{ja| = m, @, < m: oa 0%}
L, = z{|a| < m: a_ D%

To show u € Hp+l(ﬂ) it suffices to show Dg u € Hp_m+1(0)
n
and as D0 = a“l(L-Ll—Lz) this will follow from
n

Liu, Lyu € BP7™1(0). Now each term of L, 1is of the form

ag D% D, with 1si<n-1, Ja'[ =m-1. Thus as D, u € H'(n)
i i
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for 1% 3i s n-1 evidently L,u € P~™L(0), On the other hand
deg L, £ m-1 and u € B°(Q) by hypothesis so Lu € Hp_m+1(ﬂ).
This proves the assertion., O

Note that if L is a stricitly elliptic operator then it

satisfies the above condition on a: For by strict ellipticity

there is a ¢ > 0. s.t.
2m1 2m1
a(x) 3~ =c§, ~ [2m = order L]

for all x € (.

3.18.4 Suppose L 1is a differential operator of order m = 2m1

with coefficients in c;(n) such that Gdrding's

inequality is valid and inf{|a(x)|: x € Q} > 0. [a_is as before

- m D My
the coefficient of D . If u €EB{(Q)nN H, (1) and
n

m
Lu € ®™™1(0) then u € HP*l(a) n Hol(ﬂ),

Proof. To begin with the result is vacuous unless p *= my. We
then prove this by induction starting with p = m;. By

the previous proposition we have to show De u € Hp(n) isisn-1
i

[By hypothesis Iu € HP™™l(0) and u e #P(a)].
We require the following lemma which we prove in the next
section.
my —m1+1 )
3.18.5 Suppose u € H (R) and Lu € H (@), Then (Assuming
m
I, is a differential operator as above) D, u € Hol(ﬂ)

i
for all 1 = i = n-1,
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it is easily seen this is stronger than the induction
starter corresponding to P =my. Granting 3.18.5 it remains
only to prove the induction step. Thus assume the statement true
for p-1l = m . Now LDeiu = DeiLu + Llu with order

< m-1., As u € HP(Q) by hypothesis, it follows L,u €

L 1

1
€ Hp~m+l(n) and as Iu € Hp"m+l(n), D, Lu € B?P™™(q), Thus
i,

m
LD, u e gP~™(q), By the above lemma D_ u € Hol(ﬂ) for l=is=n-1
i i

while De u € Hp_l(ﬂ). Apllying the induction hypothesis to
i N

D, u we conclude D  u € ?(n) for 1<isn-1, But this is what
€1 i
we sSaw was hecessary to establish u € Hp+1(ﬂ).

Ag a corollary:

3.18.6 Let L Dbe a differential operator of order 2m, as

m
above. If u € H '(0) and Lu € H’(Q) then
ml p+2m1
uentnd .

1t remains only to prove the lemma. To do so requires some

results on difference quotients which we now develop.

3.19 Difference Quotients

_ + —_
-l Bemr . If x €R™L x [0} then define the

Let Q=R
operator R_: C:(Q) 4'02(0) by (Rx¢)(y) = ¢{y-x). R, has an

extension C:(ﬂ)' -+ cz(n)‘ given by

<qu,¢) = (u,R_x¢)
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3.19.,1 If 1= JjJ=n-1 and hER define the operator

Ah,e. as follows:
J
Loy—1
A u = (ih) {Rhe u - ul

h.ey 3

Suppose u,v & L2(Q) and & g U * Vv as h »+ 0 in the
petc it = ,e. as Lo e
J

weak topology of Lz(ﬂ). Then v = D, u.
J

Proof. Assume éh e UV weakly. In particular for all
—_ , €.
J .

o € C2(0)

e = (i)t (Rye u-),07,

= (in)7t W (R 3-807 * €0, 80

g2s h + 0, On the other hand as h =+ 0O
~(in)™F (R, 4-8) » D_ o
J J
in the sense of C:(Q). It follows that as h -+ C

=G, (10) ™ (R g8 o (u,De, #)
3

so that (D, u,#) = (u,DeJ- ¢ = {v,9) for all ¢ € c‘;(n).
B

We will also require the following inequality
3.19.2 If p €Z" and u € HP(Q) then

I ! i
th,e.ud—p—l = flull

3 -p
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Proof. To see this note

e gar#ol = Ty = oy o 001 = Il lo, _ ol

g P

New to estimate "A—h o ¢Hp we may use the Fourier
2 €

transform

?

ih{e., 6 .
by o ®82 = Nl 9 10 §(0) 120040 2)Pas
*73

< [on 16,9(0)12(241012)Pas = fel 60021201122 ag g2

Thus |(Ah,eju’¢>o, = Hu“_p “¢up+l which proves (.1). O

3.19.3 We now prove the Lemma 3.18.5 conserving the notations

used there,

We suppose only that I satisfies Gdrdings inequality and
that it has C_(Q) coefficients. If 1 & i = p_1 and h €R ,
then .o
La = A L + Li’h | (.2)

L is an operator of order m, Furthermore the coefficients

i,k

au,i,h of Li,h have the follqwing property: For each r the

derivatives of order r of the 84,i,nh ©&re uniformly bounded in
y-L

h.

From this follows that there is a C > 0 independent of i

m
and h such that for all v € H ()

uli,hvﬂ_ml = clvl, .
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Thus by (.2) and 3.19.2

N e A I I

i 1 i
s {[Lul + Cllull
—ml+1 mq
so lra, _ ul £C. uniformly in h €R, In particular
,€5 O 1
v
HLAh,eiu’ Ah,eiu>o] = Cl“‘Ah,eiu“ml

\ 0 .
"which makes sense as & u € Hol(ﬂ)]. By Glrding's inequality

h,el
Kea, o by wl = ogly o w2 el ulg
184 h,e; 0 1" h,e; "'my 2" "h,e; "o
for appropriate constants cqi,c, ¥ 0. Hence for 211 h €R.
2 2
_{:l“‘}'h,eiuu'm:L = c2“Ah,eiuuo + Cluéh;ei“m1 ‘

i.e. clﬂah,'eiullml < Cl+c2lléh’eiu1lo = Cq+epllully «

[That “Ah o uﬂc = "uul follows also from the proof of 3.19.21.
*Ti

In particular the family {Ah o W h €R} is neorm bounded in
e
i
m
Hol(ﬂ). By weak compactness there is a hy - 0 such that
m . m
8, . u converges weakly in Hol(ﬂ) to some v € Hol(ﬂ). As the
k?*~i .
- .
inclusion Hol(ﬂ) *_LZ(Q) is continuous it follows

A u v
hk’ei

m
weskly in 12(8) and by 3.19.1 v =D, uF B, (0).
1
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3,20 Global Regularity

v

3.20,1 Suppose 0 e " is a smooth open set with compact

boundary, and L is s strictly elliptic operator of

order 2m on . Then if u € Hg(ﬂ) is such that Iu € HP(Q) ,
u € EPHam(q),

Propf. The proof is a direct application of the result for

Q = wro1 xRY, 1t proceeds in a series of bootstrap
steps analogous to these used in proving interior regularity,
Evidently it suffices to prove that if Lu = f with £ € H'(Q)

and u € H' () N Hg(n) with r < p+em then u € H'PL1(Q). we

first prove that any X, € 0t has a neighborhood U in R such

that u 0 € HPN(U N o). By the smoothness assumption there
is a neighborhood V of x, in R™ and a diffeomorphism
T: VNQ B = {x eR™L x RY: x| < 1}, s.t.:

1 are functions in C; .

2) The unique extension of T to V N Q (which exists in

1) The compchents of T and T

virtue of 1) which guarantees T ig Lipschitzian and hence
uniformly continuous) maps 7V N 20 onto {x € By x, = 0L

3) This unique extension maps X, onto 0,

There is a function ¢ € Cb(Bl) which ig 1 on Bl/3 and

n—-1

0 on B; - B2/3 fGenerally, B, = {x €R x RY: x| < r}l. Let

g = poT, W, = T"l(Br)° Then § € C;(V N Q) and clearly

supp p E w3/4' 8 has a canonical extension El to 0 by
setting ﬁl(x) =0 if x €0-V. Now 3, ¢ c;(m). To show this
it suffices to show 51 is 0 in a neighborhood of any point
y €N d. As T extends to a homeomorphism V 0 QO - B, it
follows there is a neighborhood W of v in R"  such' that
WNVAQ N WB/Q==¢, i.e. Wn Wy = 6. Thus e|Wn a-=o,
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. Thig also proves Supp 51 negviaq,
Now Elu fvnae Hﬁ(v N @), Furthermore

L ﬁlu ﬁlLu + Pu=g .

1l

[--]

where P is an operator with coefficients iﬁ Cb and order =

s om-1. Also Pu € E'2™1(0) and §Iu € B 2™1N(0), so that
glvnnenu2™(y nq), since T satisfies condition 2) above
the induced map on distributions preserves the Sobolev spaces

Hr, H'. Whence we ma consider, by transport of structure
o y

L§1u|VﬂQ=g|Vﬂﬂ

as an equation on By, with fqu|vn Q€ HO(V R @) n H (Vv 0 a)
and givnagoé€ Hr—2m+l(v na.

Applying the regularity theorem for a half space we may
conclude Elulv naeH (Vv 0a). To see this explicitly, let
uy = ﬁlu considered as a distribution on B;. Evidently,

Supp wy € Wy, let % € COR"™ xR') with Supp ¢ € B; and
such that # 1is identically 1 on WZ/A' If L, 1is any
strictly elliptic constant coefficient operator then (1—¢)Ll+wL
isa strictly elliptic operator on,ZRn’1 x RT, In addition

regarding u; as a distribution on L« RmY

[(1-9)}L; + 9L1(u;) = oLy, = Luy € pr-2m+lpn-1 , gty
_Whence wuq € Hr+lGRn“l x RY).

Thus Eluiv‘n a € T (v n Q), and as B, 1is identically

1 .
1 on Wy /30 then ?le/B € gt (W1/3)- This completely proves
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the assertion that any X, € %0 bhas a neigborhood U such that
ul Una isin ®E'(una).

The next step in the proof is to show that if Q' & Q is
open and 0' N »Q = ¢, then ular € Hr+l(0'). This is proved
along the same lines: An easy compactness argument shows there is
a p € CE(Q) which is 1 on Q' and vanishes in a heighborhood

of 20. Then gu € Hg(nf) N H(Q') and
Lpu = plu + Pu € gr2m+l )

order P = 2m-1., Consider as before an operator (1—qp)Ll + %L,
in this case on R™, where L, is strictly elliptic, ¢ € C;GRH)
with supp o & Q and %=1 on supp p. By global regularity
for elliptic operators on R® it follows pu € Hr+10Rn). As
p=1 onQt ujore Hr+l(ﬂf).

To complete the proof that u € Hr+1(ﬂ), use a’partition of
unify: Specifically, let [Vi] be a finite family of open sets
in R" such that UV, 2 52 and ulv; 0 aew*(y, n o).

Let ¢ be a function on C;(ﬂ) supported in U V; and which is

1 on a neighberhood of »0Q. By the first step one has {u € Hr+1
€ Hr+1(ﬁ), whereas by the second (1-y)u € Hr+1(n). Therefore

u € Hr+1(0)- This completely proves the theorem

3.21 Green's Functions for the Dirichlet Problem

3.21.1 let 0 & RP be an open set of finite Lebesgue measure,

L a_strictly elliptic operator of order 2m with

coefficients in C; . Then there is a constante co such that
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L+c | Hg(n) has a unigue continuous inverse T ! ™) Hg(n)

i = .
for c¢ C,

We have already shown this; Recall the proof is a simple
application of the Lax Milgram Lemmza and GBrding's inequality.

Suppose now ( 1is a smooth bounded open set; If u € Hg

2m+p

and Lu € B then u €H From this follows immediately

that T, maps P into HOMP n Hg . Thus (Tc}? meps HP

inte H2mr+p N Hg. We then conclude in exactly the same way as

for compact manifolds without houndary:

3,21.2 If Q is = smooth bounded open set and 2mr > n/2 +then

(TC)r for ¢ ® c. is a Hilbert Schmidi operator

o}

H°(n) + #H°(0). In particular there is a function k € LE(Q % 0)

such that for u € E°(Q)

(Tc)r u(x) = IQ k(x,y) u(yldy

%.21.3 As a corollary if 4m>mn then T, 1s an integral

2

operator with an L kernel. This kernel is called the

Green's function of the boundary vealue problem.

%.,22 Coercivity

We have seen that if L ia elliptic of order 2m, Q s R"
a smooth open set, then for ¢ > 0 large L+c is a bijective
map Hg(ﬂ) n Hzm(ﬂ) + E°(0); More generally L+c is a bijective
map Hg(n) n Hp+2m(n) + HP(Q). Furthermore L+c is continuous

between these two spaces: HE(O) n Hp+2m(0) is here considered
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with the topology induced from Hp+2m(ﬂ). Hg(m) n HP+2m(Q) is
closed in Hp+2m(n) and is therefore & Banach space. We may
apply the open mapping theorem to conclude I+c is a
homeomorphism Hg(Q) n H?+2m(n) » P (a)., In particular there is

a constant cq such ‘that for u € Hg N Hp+2m

lul, g = oy l(Tre)ul

s clHLUHp + ¢y full

Now “u“p < eflull + C(ﬁ)uuuo s, S0 we can deduce from

p+2m
this that for some constant C > O,

3.22.1 lally, o = CCITAL, + Mull),

p+2m

This type of ineguality is usually refered to as a coercive

estimate: ﬂLqu , Huﬂo small ‘"eoerce" lull to be small,

p+2m
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TCTION &4

EQUATIONS GF EVOLUTION

4,1 Self Adjoint Extensions

Suppose L is a formally self adjoint differential operator
on a manifold with density or on an open set 0 eR® . As an
operator on LZ(Q) L is symmetric; To determine the self
adjoint extensions of L we first determine Ran(i+L)'L ; The self

adjoint extensions will then correspond to the partial isometries
i L L
¥: Ran(i+L) — Ran(-i+L)
XL
Now f € Ran(i+L) iff. for all % € C_(0N)
0 = {(f,(i+L)e)> = {(-1+L)£, >

i.e. f € Lg(n) and {(-i+L)f = 0, in the sense of distributions.
As  (-i+L) is elliptic, this implies f € C*(R)., Similarly

A
Ran(-i+L) consists £ € C°(Q) N 12(Q) such that {i+L)f = O

in the sense of distributions. It is now very easy +to prove:

4,1,1 Suppose 1 is a compact manifold with density. Then any

formally self adjoint operator has exactly one self

adjoint extension,

£
Proof., To prove this we show Ran(xi+L) = {0}. Now if

£ €cT(n) is such that Lf = if then i{f,£) = {Lf,f) =



~111~

= (£,Lf) = -i{f,f? so that {f,f).= 0 and hence £ = O,
imilarly, f €C (Q) end Lf = -if imply f = 0, O

4.2 The Dirichlet Extension

4.2.1 Suppose L is a formally self adjoint strictly operator

of crder 2m., Then the distribution extension of L

restricted to the space V = fu € Hg(ﬁ}: Lu € H°(Q)1 is self

adjoint

Proof. We know there is a ¢ > 0 and a bounded S: B°(Q) - Hg(ﬂ)
such that Sf = u iff (L+c)u=f, u € HE(Q).(L+C)|V is

evidently S_l. If 8§ is a bounded self adjoint operator, then

(L+c) will be self adjoint and so L itself will be selfadjoint.

mn

There is a unigue sesquilinear form B: Ho b Hg = € such that

{(I4c)u,¢? = Blu,¢)
By continuity, B(u,u) 2 0 for all u € Hg. Similarly one can

show

B{(sf,v) = (f,v>o

for f € H® and v € H'. Thus (f,Sf) = B(Sf,Sf) is real

valued for all f € H° , and sc § is self adjoint, O

By a similar argument we may show:

4,2.2 If L is a before and formally positive,'then the

distribution extengion of L restricted to V is

positive in the operator sense.
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Proof. One must show (I+c)|V ® ¢, In terms of S this means
512 ¢ or 1zcS. Now by the fact L is positive on
C: and continuity it follows that B{v,v) = cuvﬂg for v € Hz.

Thus for all f € H°

(£,8£), = B(SL,SE) = clstl? = c(s’st, 1),

Whence S = 082 from which follows 1 = ¢3S, by the fact 5 1is

injective., B

4.2.3 Tn case O ERY is an open set with 50 smooth and

compact, the subspace V above is precisely the space
H2m{0) n Hﬂ(ﬂ). This follows immediately from the theorem on
elliptic regularity. For this reason we call the distribution
extension of L restricted to V +the Dirichlet extension of the
strictly elliptic operator L.

In the following sections we will consider strictly elliptic
operators L under Mgtandard" regularity assumptions on the
coafficients of L and on 0. These assumptions are exactly
the above hypotheses which insure the validity of the global

elliptic regularity theorem.

4,% The Cauchy Problem for Linear Ordinary Differential Equations

The following theorem is an immediate cohsequence of the

general existence theory for ODE's.

£,5,1 Let E be a Banach_space, t+ Ai(t) 0si<s

continuous Ffunctions from an interval I into B(E). .
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Then if 1, €I and KqseeraXg € E there is one and only one

solution to the equation

¢(S)(t) + oA (%) ¢(i)(t)=o
i<s

and
¢(i)(t0) = X541

for 0 =i < s,

Even 1f we can regard evolution eguations as ordinary
differential equations with wvalues in Banach spaces, this theorem
is of 1little wvalue since the operators Ai(t) are unbounded.

Using spectral theory howesver, we can prove a similar theorem when
the Ai(t) are simultaneously diagonalisable operators. We now
consider this although we restrict ourselves to a special case <for

simplicity of notation.

4,4 Solutions by Eigenfunction Expansions

Let A be a self adjoint operator on a Hilbert space

H,{Bi} complex ¢ functions on the interval la,bl. 1In

osi<g
this section we consider the differential equation

20y« = s (e) o (e = 8 (1) an(t) (.1)
0<i<s
We consider this equation in the obvious sense: ¢ is a

norm C% function I - dom A which satisfies (.1)

4,4,1  Applying the spectral theorem to A, we may assume
H = J’e H(A) du(r) where H(A)} is a u-measurable family
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of Hilbert spaces and A is multiplicatien by a measurable real
valued function g on X. The domain of g consists of

g :j@ £(2) du(A) € H such that ng(k)g(k)duQ) €H,

This simplifies theoretically the solution of (.1)., Let us

dispese first of uniquness.

Loh,2 Suppose #, ¢, are solutions of (.1) such that for some

(i) _ oli) : -
) (to) = ¢ (to) for 0 =1i<s, Then ¢ =2¢; , onlI.

Proof, Let P, = X[—n,n](A)' P_'is a projection, P_ = P

n n n+l

and 1im Pn = 1. DNow PnA is a bounded operator and if
¢ satisfies (.1), P ¢ also satisfies

(Pn¢)(§)(t) + 0<§<s ﬁi(t)(Pn¢)(i)(t) = B (t)AP_#(t) (.2)

This is an ordinary differential eguation of order n, with
continuous coefficients. As P, 4, is also a solution of (.2)
and (Pn¢}(l)(to) = (Pn¢1)(l)(to) we conclude that P_g(t) =
= Pnﬁl(t) for all t. Therefore ¢, = ¢.

To solve (.1) we proceed formally; Using the spectral

representation of 4, (.1) becomes

of #(t,u) + ot Pa®) oy B(t,w) = B_(t) Ae(t) (-3)

For a fixed w this is a homogeneous differential equation
(with unknown function taking values in H(w)) but with scalar
coefficients. Let {wi(t,c)}lsi<s be a basic system of solutions

of the scalar ODE

(s) ‘
vi8) () 4 ooy P W) L s (t) ov(t) (.4
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In other words the functions iwi(t,c)} each solve

(.4) and take the initial values wé“)(a,c) = B,

i k1! 1siss,

O=k=s-1. By the continuous dependence on parameters Oi wi(t,c)
is a continuous function I xR - € for k = s. In particular

1 = w(t,e) isin ¢®(la,nl).

Let us write following formal solution to {.3)

8(5,9) = T w(t,e(w) x(w) (.5)
i=] -

where Xpse-e,X,  are p—measurable families of vectors. It
remains to see when (.5) actually expresses a solution to (.1).
To do this we need the following Hilbert spaces version of

differentiating under the integral sign

[£¢] ,
4,4,3  Suppose x{t) = J x(t,w) du(w) €H and & € Li(x) are

such that for each w € X, t+— x(t,u) is in C"(I),

Ibi x(%,w)] s p(w) =z,e. for gll +, and k <m. Then I =+ H

is in €™ (normwise) and
() = 1% ok x(t,0) au(w)

Proof. By induction it suffices to prove this for m= 1, In
this case it is a consequence of the mean value theorem

and the Lebesgue dominated convergence theorem.

Therefore to show the ¢ given by (.5) is actually a
solution to (.1) we must verify (a) that for each ¥ as a
function of t it satisfies (.3) and (b) the functions

bi ¢{t,w) are dominated by an 1% function p independent of
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t, (c) glw) ¢(t,w) € H.
The condition (a) is obviously satisfied as the functims

w , lsiss as functions of +t satisfy (.4).

To satisfy conditions (b) and {c¢) consider the function

£,(c) = supflewy(t,e)ls [of w(t,0)]: oOskss, t & la,b1]  (.6)

fi being the supremum of a family of continuous function

{continuous dependence on parameters) is itself upper
semicontinuous and in particular Borel, We then have the

following:

If Xq,...;X, are such that fi(g(W))xi(W) is sguare

integrable then ¢ satisfies conditions (b} and (cJ.

For k=< s
ok o(t,u)l = 1205 () o, (t,g(w))l = 2l ()1 2 (6(w)=p ()

where p{®) is an 12 function, Similarly

lg(w) e(t,0)l = I £ g(w) w(,8() x; (W)l =
1
s Tl (W1 2, (5(w) = p(w)

so that the family g(w} ¢(t,w) is square integrable.

This essentially proves:

Loh b Suppose A is a self adjoint on H. Then the H wvalued

differential equation

60e) + = s (w) o1 (x) =B () Ao
0<i<g
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with initial conditions #1)(a) = x,,,, 0= 1 %s-1 has at

most one solution ¢: I -+ H. If in addition X4 € dom fi(A)

where the f; are given by (.6) then the solution exists,

For to say fi(g,(w)) xi(w) is square integrable means

precisely that x; € dom £;{4), Furthermore
bk¢(a w) = B ok o {a,g(w)) %.(w) =T & S ox.(w) = x, o (w)
g = t Wil%s8 i = ikl Fi = *k+1

go that ¢(k)(a) =X .7+

4.5 Evolution Equations

We now apply the preceding theory to formally self adjoint
strictly elliptic operators L. These operators are, under certain
regularity assumptions on,the domain 0 and the coefficients of
L actually self adjoint when considered on the domain

B2(a) n HXQ), where deg L =2m (cf. 4.2.3).

This leads to the following theorem

4.5.1 Let {#;} be C' complex functionms, {fi}, 1=iss as defined

in (.6) of varagraph 4.4.3, and Uy € dom fi(L). Then the

Cauchy problem

o)) + = s (r) o)ty = B (%) Le(e)
0<i<s

¢(i)(a) =uy,

(.1)
1

has a unigue solution ¢: [a,b] - La(ﬂ)

It is worth emphasizing that the above solution ¢ is

differentisble as a mapping into Lz(ﬂ). This obviously does not
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mean that ¢ is every where differentiable as a function of ¢t;

4.6 Reguilarity of Solutions

As is customary we will analyze regularity of soclutions
uaing the higher Sobolev spaces. L is a strictly elliptic

operator on  with the standing assumptions [4.2.3]

4.6,1 Let as a; = by b, and define the function:

x;(e) = Sup{lc}j lwi(t,c)ﬁ: 1s3=r, tE€ [al,bl]}.

If uy € dom fi(L) for 1 £1i=s and uy € dom ki(L) then

the solution tc the Cauchy problem (.1) of 4.5.1 satisfies

a(t) € P (q) .
for all t € Eal,bl].
Proof. To prove this consider the spectral representation of L
with the domain H2"(0) n EI().
&
HO(Q) = [¥ H(Mdu(r)
and L 1is multiplication by a real valued measurable function g.
In the spectral representation the solution to the Cauchy problem
is '
¢(t,lﬂ) =z Wi(t:g(m))ui(w)
Thus for Jj =r and t € [a;,b;]
lg(w)d s(t,0)iszg(w) ¥ [y (£,8(w))] fu; ()]

< £k (g(®)) luy (W)l = v(w)
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The hypothesis € dom ki(L) means precisely ¥y € 12, By

hypothesis therefore g(w)j p(t,®) is a function in dom L =

2 m

= BN H
3+1 o 2m . I . )

g¥TTe(t) = LgYs(t) € H Applying elliptic regularity [which we

for j = r-1, In particular if Jj = r-2,

can do as gY¢(t) € Hg] we deduce that for all j = r-2,
gde(t) € gm,

Evidently this argument can be repeated and thus we
conclude that ¢(t) € e all % € [al,bll{

The preceding result says nothing about regularity of
time dependence., We now consider this; Let us assume for
simplicity that the functions w,(t,c) are jointly €~ (which

will be the case if the B, are BT

4.6.2 Let r,r' be_integers > 0 and consider the function

1
0=k =rt, t¢€Tlay,b}. If u; € dom hy(L) N dom £,(L) for

: 3ok .
hy = h,(r,r') hi(c) = supllelY {of w,(t,0)]: 05 3 =r,

l= i = g then the Cauchy problem 4.5.1. has a (unigque) solution

t
¢ which in the interval [a;,b;) isin C (la,bl, H*™()).

Remark. The condition u; € dom hi(IJ implies wu € dom ki(L) 50

s(t) € BEOT(a) for + € fay,b; 1.

37]
Proof, Consider the space XK of =x =.J x(w) de(w) € B° such

that g9x € H° for J = r. For § = r-1 it is clear that
x € K implies gjx € g n Hg L= domain of g]. By induction it
follows easily that x € K implies x € H™" 0 H'., [This is the
same fact we used in the previous proposition]. Furthermore by

coercivity of L
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Ml = Clllg-xilyy gy + Ixlgd = c tlg™=l, + Ixl Y .

It thus suffices to show that ¢(t) € K for t € [a;,bql
and thet ¢ is differentiable as a function inte X with the norm
norm x - Ugrxlo + llxl . This we prove using the Hilbert space
version of differentiation under the integral sign. The solution

¢ hasg the representation
¢(t,W) =X wl('t,g(w))ui(w)

Now

lg(@)? ket w) < Slg(e) I o} w (ta(@)] lu (@)l =

= 2 by (5(0)) luy (0)] = v()

whenever j=<r, k <!, and £ € [al,bl]. By the assumption
1
uy € dom hi(L) y € I?. Therefore ¢(t) is in ¢ as a
function from [al,blj into the Hilbert space IQ H(A) dg(M)Yu(r)
\ \

for j € r. This implies ¢ is C' as a function into K with

the norm ﬂgrxno + Izl , priving our result.

0,
We can specialize the preceding result: 1 existence and

regularity when the data are C;.

4.6,5 Suppose the basic solutions {w;(t,c)} gatisfy the

following growth conditions. For each k €N there are

- N .
constants My, N, such that lb% wi(t,c)l = Mk(lcl k1) for

lsi=s and c € sp(l). If u € CZ(Q) then the Cauchy
problem (.1} of 4.5.1 has a unique solution ¢(t) such that

#(t) € H(Q) and ¢ is in C° as a function [a,b) -+ HP(Q) for

every p > 0.
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Proof. The hypotheses imply that u, € Ho"(a) N H'(Q) and

ijui € Hzm(n) n Hﬁ(n) for all Jj. In the spectral
representation of L therefore gjui € H°(a) for all j € WN.
Now for ¢ € Sp{L)

n

£ile) = supl fow, (%,0) |5 o w;(%,0)|: Oskss, t & [a,bl]
= (e + 1)
for appropriate M,N. Thus fi(g(w)) < M(lg(w)IN + 1) and so
Wb fi(g(m)) ui(w) is square integrable. It thus follows that

u; € dom fi(L). Similarly we can show that no matter what r,r’

are u; € dom hi(L). This proves the result.

in particular spplying the Spbolev imbedding theorem we

" obtain under the aboﬁe assumpitions:
o(t) € c"(0) and ¢ is in C as a function [a,b] = Cg(ﬁ)

for every p > 0. All derivatives of order s m-1 of #{t) are

zerc on o,

4,7 The Heat Equation

4L,7.1 Let L be a strictly elliptic formally gelf adjoint and

formally positive operator. The heat eguation is the

FDE

o' (t) = -La(t)

il

#0) = uy € HN(0) (.1)

Under the standard assumptions on L and 0 there is a



~122-

unigue mapping  ¢: [0,=[ -+ gem

nH, cl as a mapping
[0, + 12(Q) and satisfyine the conditions (.1).

Furthermore for any t > 0, @(t) € E'(Q) and as a

function 10,0 » H°(R), ¢ is cC".

Proof. To prove this we apply the preceding theory. VNote that

the corresponding cordinary differential equation is

v'(t) = -ev(t) which has a basic solution w(t,c) = ™%, Thus

. f(c) = Sup{lcie"Ct: tz 0} sc
provided c¢c 2 0. As L is positive it following that u € dom L
implies u € dom f(L).

The regularity follows from the following observation:

Iet 0 <a<b and

plc)

swilel9 2% w(t,c)

: Jsr, ksr', t€Ila,bl}

suwpllc|d lel® et 351, xsr', t€Lla,bl)

]

(1+|C[)r+r' e~Ca

for ¢ # 0. Furthermore p is bounded on [0,=[, Thus the
operators k(L), h(L) (no matter what r,r' are)  are bounded

and so u € dom k(L) u € dom h(L) follows immediately.

4,8 The Wave Fguation

4.8.1 Let L be strictly elliptic formally positive differental

Operator.
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" (t) = ~Lo(t)
#(0) = uy (1)

$1(0) = uo

Under the standard assumptions (.1) has a unigue solution

(with the Dirichlet boundary conditions #(t) € HZ™ n HE) if

1/2
Uy € dom L u, € dom L .

Proof. The ordinary differential equation corresponding to (.1)

is v"(t) = —cv(t) which has basic solutions
Wi(t,C) = Cos 01/2t
W, (t,c) = 2 gin Y24 ir o £ 0
=t if ¢=0

Thus by differentiating we obtain the following inequality for

c 2 03

£,(e) s swpllel, 1, lel™2, |c|} = Max(1,c)

Max(l,cl/z)

f,(c) = Sup{icll/g, 1, 1, ]t:ll/2

If uy € ¢om L, then u; € dom fl(L) and similarly if
u, € dom Ll/2 us € dom fz(L). This proves the existence of the
solution.

Note that in the spectral representation of L the

solution has the form
6(t,0) = Cos ()12t uy(w) + g(w)7/2 sin g(w)H/25 ~uy(w)

for w, when g(w) # 0.
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Inhomogeneous Eguations

We now treat the abstract inhomogeneous wave equation

8" (t) = - Lo(t) + £(t) (.1)

where L is a positive self adjoint operator on H and £(t}) an
H wvalued function Again we consider the spectral representation

of L

=]
L= g)awd), &) <r’

The uniqueness'of solutions is treated in the same way as
for the homogenecus equation, The solution is determined by the

value of ¢ and ¢' at a point.

Next we consider existence. In the spectral representation

(.1) becomes

22 6(t,w) = ~g(w) B(t,w) + £(t,u)
We can give a formal solution to this by the variation of
parameters formula

Cos g(W)l/ze sin g(w)l/ZG

¢(t,w) g;(m)_l/2 ae

t
: f{8,w)det
Jo (8,w)ae Cos g(w)l/zt Sin g(w)l/2t

£
= g(w)L/2 gin g(w)t/2 jo £(s,v) Cos g(w)*/2g ap

_ t
- g(m)72 cos g(w)1/2¢ [ 2(s,) sin g()M20
o
provided g(w) £ 0; If g{w) = 0 the formula is

t
¢(t,w) = j £(e,w)(t-0) de
o]
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This will be a solution in the abstract sense if the
functions bi ¢(t,w} k= 0,1,2 are dominated by an 12 function
s independent of t and if w - g(w) ¢(t,w) € H, Now if £ is
continuous in the variable § and g(w} # O:

2, 8(t,w) = Jt [Cos g(w)l/z(tme)] £(0,u) de
0

t
220(t,w) = [ ~g(®)1/2 [sin g(u)2(t-6)1 £(o,w)d0 + £(t,0)
c

We thus obtain the following estimates

|2, o(t,w)| = ¢ sup{|f(a,w)|: O <6 s t}

t

1/2

102 #(t,0)] = t lg(w) |2 suptlz(o,0)]: 056 5 t] + [£(%,0)]

besides the estimate

|¢(t,w}| = t Supl|£f(e,w)|: O 0 = £} .

[These are walid whether or not g(w) #£ 0] .
Thus:
Suppose f is continuous in 8§ for almost all w and

y(w) sup{|f(e,w)|: O =8 = &}

i

¢l(w) sup{|g(w)||f(8,w)]: 0 =8 = £}

are in L2. Then the formal solutioen te the inhomogeneous prdblem

is a true solution. .
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4,9 The Schrédinger Eguation

4,9.1 This is the equation ¢'(t) = -ile(t) together with the
initial condition @{0) = u;. Here L is a formally

symmetric strictly elliptic operator.

If uy € H2m n Hg then the Cauchy problem for the

Schridinger ecuation has a unique solytion.

Proof. The corresponding differential equation v'(t) = -icv(t)
has the basic solution e *°%. fThus flc) =

= Sup{lcl]e"iCt[: t 20} = |e] so0 u € dom L implies

u € dom f{L). The result then follows by the general theory.

Notice that the solution ¢ can be extended to negative

times t alse, as is possible for the wave equation

4,10 EBEguations with Constant Coefficients

We have obtained gemeral theorems of existence and
uniqueness for evolution equations and even a formula for the '
solution in the so called spectral representation of L. 1In the
case L 1s a constant coefficient operator the spectral
representation is particularly simple and of course is implemencad
by the Fourir transform. Also we can obtain the sclution itself
by Fourier transforming the solution in the speciral representation.

This we do now.

First we evaluate expressions of the form

3E1[a(i)[39u(6)1(€)](x) where a is a bounded measurable function
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and u € 8'(R™). Thus

¥(x)

[ exp idx,5) a(g)L] exp-1¢g,0) u(6)dolag =

J a(g}[j exp i¢g,x-6> u(e)deldg =

1]

f a(%)lr-f exp~i¢-£,8) u(f+xyde 1dg =

f a(8)(F u(e+x)] (-g) dg

ha[Jﬁeu(8+x)] = EAa[R_XE]

RX ﬁf\a(u}

With this we may calculate explicit formulas for the so
solutions to the heat, the wave and the Schrgdinger equations on

Rn

4.10.1 The Heat Equation

btu = Au, u(0,x) = ul(x) (.2)

has solution in the Fourier transform representation
Y= L 213
¢(t,8)= expl-t|g["1 u (§)

To find the solution itself it suffices to find 3g[exp—t[§[2].
However )
5 lexp-t1512100) = (20)2 Blexp-|812/2] ((21)H2 o) -

~(28)™2 exp(-|012/ut)
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The solution to the Cauchy problem (.1) is thus
a(t,x) = (26)" V2 [ exp(-]o-x|?/6t) up(e)ae
4,10.2 The Schrddinger equation
bpu = -ibu, u(0,x) = ul(X)

is treated similarly. In the Fourier representation (.2) has the

solution
9(+,8) = expl-1t|21%1 & (5)

Now to find 3%[exp—it|%|2] is some what more complicated. The
answer is E%Eexp—itlglzl(e) = (2'1;)_11/2 a" exp i{Biz/ht
a = exp- iT/4, Granting this we can write the sclution to (.2}

as

u(t,x) = (2t)‘n/2 all jfexp[i\e—xlz/tml u, (6)de
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APPENDIX

SPECTRAI THECRY OF. UNBOUNDED OPERATORS ON A HILBERT SPACE

A,1 Symmetric Cperators

A1.1 Let H be a Hilbert space, A an operator with dom 4 € H.

A is symmetric iff (Ax,y> = {x,Ay) for all x,y € dom A.

A.1.2 Tet J € B(H ® H) be given by J(x,y) = (-y,x). Then an
operator A is symmetric iff . G(A)} . JG(A)LG{A) is the

graph of Al .

Proof. For G(A) . JG(A) iff for all (x,y) € Dom A
((x,4%), J(y,Ay)) = {(x,Ax), (-Ay,y)) =

= ~{x,4y) + (Ax,y) = 0

4.1.3 Given an operator A, we define its adjoint A¥ in the
following way: Its domain D(A*) = {y € H: y - {Ay,x) is
o bounded linear functional} and A¥y is an element in H such
that ({Ay,x) = {y,A*,x) for all y € Dom (4). In order for this
to define a function it is necessary and sufficient A Dbe densely
defined and this will always be an explicit assumption on A

whenever A% is refered to.

A 1.4 If A is a densely defined operator on H, then

a(a®) = (Ja(a))”
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Proof. For (x,y) € G(A*) irff {Az,x) = {z,y) for all
z € Dom{A) 1iff {(-Az,z), (x,y)? = 0 for all =z € dom(A)
L
iff (J(z,Az), (x,y) = 0 for all =z € Dom(A) 1iff (x,y) € JG(A)

-

4.1.5 An operator A is gelf adjeint iff A = A*. In particular

A must be densely defined.

A,2 The Cayley Transform

Let H be a Hilbert space. J is the transformation on

H®H given by (x,y) = (-y,x) and & by {x,y) + (ix+y,-ix+y).

A partial isometry on H ig an isometric operator U

whose domain and range are subspaces of H. In particular any

isometry H - H- is a partial isometry.

A.2,1 Lemma 1. Let G € H®H be such that G - J(G). Then

#(G) is the graph of a partial isometry on H,

2. Suppose U is a partial isometry. Then the set

THe(U)) = ¢! satisfies G'L J(G') &1 is given by
-1 .
¥(x,y) = (/21 (x-y), 1/2(x+y))
Proof, 1. 2(G) is the graph of a partial isometry means that

for all x,y € G, |ixsyl® = [|2 = H—ix+yu2. Expanding,

this means

2(166,y) = idy,xd) = 2(-i4x,y) + i{y,x))

i.e. x,y? = {y,x} for (x,y) € ¢. This is (x,y) L J(x,7)

for all (x,y) € G. This is actually weaker tHan our hypothesis
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2. Let (x,y); (x',¥y') € G. How

((1/2i(x-y), 1/2(x+y)), J(1/2i(xt=y'), L/2{x'+y'))) =

((L/2i{x~y), 1/2(x+y)), (-1/2(x'+y'), 1/2i(x'-y')} =

~1/43i(x-y), (x'+y')) — L/4id(x+y), {x'=y')> .

This quantity will be zero iff we have for {x,y), (x',y') € G

- Ax-y, xf+y') = {(x+y),(x'-y' )}

This comes down to <{x,x'? = {y,y'?, that is {x,x") = {(Ux,Ux!)
for =x,x' € Dom(U). Howsver this is just the definition of partial

igometry., 0O

A.,2.2 This establishes a bijection between isometries (with not
necessarily closed demains} and certain subsets of

H @ H, The subset é‘l(G(U)) will be the graph of a function iff

for all (x,y) € G{U) x-y = 0 implies x+y = 0. i.e. iff x=Ux

implies x = Ux implies x = Ux = Q. Thus:

A.2.%5  #73(G(U)) is the graph of a function iff ker(1-U)={0].

Furthermore the domain of Q"l(G(U)) is evidently Im{1-U).
It is also clear that U is closed iff ﬁ_l(G(U)) is closed. The
mspping gL preserves inclusion; +this means W is an

extension of U iff Q_l(G(w}) ig an extension of @_l{G(U)).

A2 I @_l(G(U)) is the graph of a densely defined operator

A, then A is self adjoint iff U is unitary.
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Proof. The mapping S el e B(H @ H) is a unitary operator;

For

he~L(x, )12 = 1/6lx-yl12 + 1/80x+y12
= 172 (k1P + Wiy = 1720 (x, 7)1

The operator A is self adjoint iff G{A) = G(A*). In other
words iff ¢"1(G(U)) = (Jé_l G(U))L. As J and ¥ preserve
orthogonality, it follows that A is self adjoint iff G{U) =
= ¢J¢"1(G(U)). Now we always have:

rbJ‘?_l(x,y) = 8J(1/2i(x~y)}, 1/2{x+y}) =
= #(-1/2(x+y), L/2i(x-y)) = (i(-1/2(x+y)) + 1/2i{x~y)) »
-i(-1/2i(x-y)) = {-ix,iy) = i(-x,y).

Thus suppose A is sgelf adjoint. We prove U is a
unitary; To show this, it suffices to show Dom{U) = Ran(U) = H.
A is clesed so G(U) is closed. Thus it suffices to show
Dom U, Ran U are dense. Suppose x' € Dom(U)L . Thus
(x',0) + (x,Ux} for all =x € dom(U) or in other words,
(x',0) L G(U). Thersfore (x',0) = i(-x,y) for some (x,y) €
€ G(U) and so y = 0. It follows x =0 and hence x' = 0,

Similarly we show Ran U = H,.

L
Suppose U is unitary. Then ({x',y') € G(U) iff for
all x € H

{x',x? + (y',Ux) =0 .
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*
This means {x'+U y',x? = 0 for all x € H or equivalently
x'+U%y! = 0. This is turn is equivalent to y' = ~Ux'. It is

easy to show this is equivalent to (x',y') € 232 L (a(u)).

This proves the following:

A.2.5 U»— @'1(G(U)) iz a bijective order preserving map from

the get of partial isometries U € B(H) s.t. 1-U is

injective into the set of graphs of gymmetric {unot necessarily

densely defined] operators. U is closed iff s~ a(u)) is

closed; U is unitary iff @_1(GU)) iz the graph of a self

adjoint operator.

A.2.6 The mapping which assigns to a symmetric operator A the

partial isometry @&(G(A)) is called the Cayley transform.

In terms of operators (rather than graphs) the Cayley transform of

A is the operater U = (A—i)(A+i)-l whose domain is the space
Ran(A+i). The inverse of the Cayley transform asscicates to a
partial isomeiry U such that 1-U is injective an operator

A= i(l+U)(l—U)_1 whose domain is Ran(1-U).

In general A is a symmetric operator. It will have a
dense domain iff Ran{(1-U) is dense. This condition on the other

hand implies 1-U injective.
To see this, suppose x~Ux = 0. Then for all y € dom U

C = {x-Uxy-Uy) = {x,»—{x, Uy - (Ux,y? + (Ux,Uy} = (x,y-Uy>

As Ran{1-U) is dense, it follows x = O.



-134—

A.2.7 This gives us criteria for determining when a symmetric
operator T . has self adjoint extensions. If &(T) =10
is the Cayley transform of T then the symmeiric extensions of
T are in bijective correspondence with partial isometries which
extend U, There is a unitary which extends U iff the initial
and final projections E;, E;, of U have equal codimensions
ny,1,. In particular T has a self adjoint extension iff, The

numbers ny,n, are equal,

A.2.8 These numbers n;, n, are called the deficiency induces
<

of T,

" Observe that the domain of U is Ran{i+T) and its

codomain is Ran(-i+T). Thus the integers n; are given by

ny = dim{y: {ix+Tx,y> = 0 for all x € Dom(T)}

n, = din{y: (-ix+Tx,y) = o for all x € Dom(T)}

Furthermore if both i+T,-i+T are surjective (resp. have
dense image)} then T is self adjeint (resp. has a unique self

adjoint extension).

4.2.9 In case T dooes have a unigue seif adjoint extension wes

say T is essentially self adjoint.

A.3 Structure of Self adjoint Operators

If T is & self adjoint operator and U its Cayley
transform, then

? = 1(14U)(1-U)"1
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in the sense that dom T = Im(1-U) and on this domain T is
given by the above formula. This makes sense because 1-U is

injective.

As U is unitary the complete spectral theorem is
applicable. In particular U is unitarily equivalent to g
multiplication operator. 'More precisely there is a measuré space
(X,4) and u-measurable partition X = UX, and u-measurable
function f£:X - J[ such that U is unitarily equivalent to the

i1}
. 2
operator mf acting on H = nil Lu(Xn, Hn) by: If § = {¢n} € H

then M, = {mfn ¢n} where for x € X .

dG) = 1,(x) 4 ()

Now g(x) = i(1+f(x»(l—f(x)fl is a real wvalued measurable
function. It is clear that on the domain of T, T is Jjust
multiplication by g. Further the domain of T is the image of
1-U: ¢ € dom{®) iff., =x *(l—f(x))_1¢(x) is in H. As

£(x) = (glx) - i)(glx) + 1)1, ¢ € gom(T) iff the function

[1-(a(x)-1) (g(x)+1) 2T () = [24(eCoei)11"T ()

= (2i) Ha(x)+1)) #(x)

ks

is in H. But this is so iff x = g(x) ¢(x) is in H.

This proves the complete spectral theorem for self

adjoint operators,

A3,1 Let T be a self adjoint operator on a separable Hilbert

space. Then T is unitarily equivalent to an operator
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T for a real valued measurable function g. mg acts on

w
= 2 i
H = nfl Lu(Xn’Hn) where X ,# are as above. The domain of mg
consists of ¢ = {wn} such that {mé] € H where w;(x) =

= g(x) y(x) if x € X, » In more direct but imprecise language

dom T consists of ¢ € H such that mg Y € H.
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