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PREFACE

These notes are based on a course of lectures given at
IMPA in the summer of 1977. The central theme is the solution,
by Quilleﬁ and Suslin, of the so called Serre Conjecture, affirm-
ing that projective A-modules are free when A is a polyngmial
ring over a field, Guillen's techniques have been further
exploited to yield structure theorems for algebras which are
locally iscmorphic to polynomial algebras. These applications

are presented in the last portiom of the notes.

T.~Y. Lam has prepared a splendid exposition of work on
the Serre Conjecture, to appear shortly in the Springer Lecture
Notes. Lam generously made an early draft of his manuscript
available to me. The réader will easily discern my extensive
indebtedness to Lam's exposition. It is a pleasure here to
express my gratitude to him. The principal novelty in these
lectures is the treatment of symmetric algebras, a topic not

pursued by Lam.

These otes owe their existence to the generous and pain-
staking efforts of my colleague and friend, T.M, Viswanathan,
to whom I am deeply grateful. I wish alsoc to thank Wilson Gdes
for the excellent job of typing. Finally I am pleased to thank

the staff of IMPA for the kind hospitality I received in Rio.

Hyman Bass
University of Utah
February, 1978
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In the first five sections of these notes R will
denote a possibly non-commutative ring with an identity element
1R' while A will denote a commutative ring with an identity
element. In sections 6 and 7, we work over a commutative ground
ring K and we explicitly state it, when the algebras and rings
involved are not commutative. All modules and ring homomorphisms

are unitary. ®(R) will denote the category of finitely generat-

ed projective R-modules,

l. Serre's Problem

{1.1) Unimodular rows.

Consider an nxXn matrix

over the ring A. Then a is an invertible matrix if and only
if its determinant det ¢ dis an invertible element of A, Since

det a4 = alai + agaé teeot a_al where the a’'-s are appropriate

n n’

minors of the natrix, we see that o invertible implies that the

ideal Aal + Aa, +te.et Aan is the whole ring A. It is natural

2
to ask whether the converse holds. We may view the first row of
the matrix o as an n-tuple a = (al,az,...,an) ¢ A" and the

condition Aal + Aa2 +eawet Aan = A is equivalent to saying that

there exist ecleoments bl'b b in A such that b_a, +

2" n 1
+ b2a2 +oeat bnan = l. In this case, we call a a unimodular
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row; sSo our question can be stated as:

Unimodular row problem: Given a unimodular row a € A, is a the

first row of an invertible matrix

a € GL (&) 2

It is clear that if ﬂ:l, the answer to this question
is affirmative; if n=2, the answer continues to be affirmative:
For, if a = (al,az) is a unimodular row, there exist elements

in A such that + boa, = 1, Clearly then a is the

P12y 2%2
first row of the invertible matrix a = ( 1 2)
-by by

example shows that the answer may be negative, when n=3.

b].’b2

. The following

Example 1 - Let A = R[X’Y’gj = Blx,v,2z], where R[X,Y,Z] is
(X"+x 42 -1)
the pol¥ynomial ring in three variables X; Y, Z over

2

the field R of real numbers, The ideal (X2+Y +Zz-1) defines

the sphere 82 in R3 as an algebraic set. We view A as the
ring of polynomial functions on 82. The row a = (x,y,z) is

clearly unimodular in A3, since x2+v2+z2 = 1, We claim that

a2 can not be the first row of any 93x3 idinvertible matrix

X v =z
a=|f g h
* * *

i

with f,g,h,*,... in A. If t € S2, we consider v(t)
= (x{t),y(t),z(¢)) and o(t) = (£(t),e(t),h(t)). since v(t) is
merely given by the coordinates of +, we may view it as the unit

normal vector to 52 at t. The invertibility‘of the matrix o
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implies that the vectors determined by the rows of a(t) ecan be
taken as coordinate axes at + in RB. Thus @(t) 1is not normal

2 .
to 5 at t. If 7(t) denotes the projection of the wvector

@{t}) on the tangent plane to 8°  at t, then 7T(t) £ 0. This
means that the functioen t+= 7(t) is a continuous non.vanishing
tangent vector field on 82. But by a well known theorem in
topology, this is impossible*. Thus the invertible matrix a
can not exist. |

The example above shows that the answer to the unimodular
row problem depends very much on the ring A.
We now want to‘feformulate the problem algebraically: Let
a = (al’a2""’ar) e A", It el,ez,...,ér is the canonical basis

of the free A-module Ar, then any A-linear map £ of AY  into

A dis completely determined by its values at the basis elements

r
©11€54 00050 o Since a = T a;e;, we notice that f(a) =
i=1
r
= I a, f(ei). It is now easy to see that a is unimodular if

i=1
and only if, there exists an A-linear map £ of AT into A

such that f{a) = 1.

Let ©(a) = {f(a): £: AT 4 A being an A-linear map}.
Tt is easily seen that O0(a) dis an ideal of A, called the
order ideal o1 a, Then a is unimodular in AT if and only if
0(a) = A, This is an intrinsic description of unimodularity, not
depending on the coordinate system. If a € AY  is unimodular and
£f: AY 3 A 4is an A-linear map with f{a) = 1, then A being a

free A-module, and f being an epimorphism, we have a splitting

*
No purely algebraic proof of this example seems to be known.See
Theorem (16,5) in "Lectures on Algebraic Topology" by M.J.
Greenberg.
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Ar = ker f@Aa, as A-module; here Aa is a free A~-module with a
as a basis element., Conversely, if AT = PoAa as A-module with
Aa free having a as a basic element, then a is a unimodular
element of AY: For define f: AT + 4 by f|P = 0 and ffa) =1

" and extend f +to an A-linear map.

To sum up, we have the following result:

Proposition 1 - Let a = (al,az,...,ar}_e AY, Then the following

conditions are equivalent:

. . . . r
1) a dis unimodular in A .

ii) There exists an A-linear map f: A” 4+ A such that f£(a)=1.

iii) The order ideal 0(a) = A,

iv) The A-submodule Aa is a free direct summand of Ar,

having a as a basis element.

Recall that P is a projective A-module, if there

exists an A-module @ such that P®Q is a free A-module F,

If P is finitely generated, we can choose F +to be finitely
genérated, say F = A" for some n 2 1. In this case the
complement direct summand Q 4is finitely generated. . If a is
unimodular in Ar, we get a direct sum AT = PAa, with Aa
free. Thus Ar = PpA. It is natural 4o ask whether the
projective module P idis isomorphic to the free module Ar-l. It
turns out that this is the module theoretic formulation of the

unimodular row problem:

Propesition 2 - Let a € AT be a unimodular element with

a = (al,aa,...,ar). Write AT = PasAa, Then the

follewing conditions are equivalent:
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i} P is isomorphic to the free module Ar-l.

ii) The unimodular row (al,az,...,ar) is the first row of a

matrix o € GLr(A).

iii} The element a can be oxtended to a basis of AT,

Proofs (i) « (iii), because P = Ar/Aa.
(ii) « (4i1), because the rows of invertible matrices

correspdnd to bases of AT.

We are thus led to consider the foliowing "cancellations
pProperty"

C Ppa = aT*l o p oo AT
- (s3] [

which we have just seen is equivalent to completability of uni-
modular rows of length (r+1). More generally we can consider
the property

(¢, . PpA® = ATHS o p o AT,
£

Note that, by cancelling one copy of A at a time in (C)r ot
N E]
we conclude that: (C)r for all = = some r, implies (C)r s
]
for all r= r_  and all s 2 0. Modules P as in (C)r s are
t

said to be stably free {(of rank r).

Remark: The above considerations also hold for rings R which
may be non-commutative; the reader is referred to Bass [1]

and Swan [7]. To avoid, pathologles one usually assumes that R

has the "invariant basis property" (IBP) i.e. that Rn = R" S N=m

This property is very mild. For example fields obviously have it

and any R +that admits a homomorphism into a ring B with IBP
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also has IBP. In fact R"=R"=38"-Bg R =1Bg R - 8",
whence n=m. It follows that any commatative ring A has IBP.

(1.2) When are projective modules free?

Lot 4 = K[tl,tz,...,tn} be a polynomial ring in n

variables t.,t

1 yessrk over a field K. Serre's Problem

2 n

was the following: Are the finitely generated projective A~modudes

free? Notice that an affirmative answer to this question would
sebtle positivel& the unimodular row problemxand all its equival-
ent Tormulations, for the ring A = K[tl,tz,...,tn]. Serre's
problem has a long and interesting history, since 1955 when it
first appeared in FAC. If the number of variables n 4is O or
1, the affirmative answer is trivially proved. The case n=2 was
settled in the affirmative by Seshadri in 1958. In the same year
in dealing with the Generalized Riemann-Roch Theorem, Grothendieck
and Serre showed that the projective A-modules are stably free.
In the early sixties, two stability theorems were proved for
projective modules of large rank over arbitrary commuatative

rings ([B2]'). We now recall their statements.

Lot A be a commutative ring, and write Spec (A) for
the set of prime ideals ot A, with the Zariski topelogy, in
which closed sets are of the form V¥ = [p: p§ = ¥, P. prime} for
any subset % of A, We write dim A = dim Spec(A) which is called the
Krull dimension of A3 for example, if A is Noetherian, then
dim Al ¢] = dim A + 1,

, We write Max (A) for the set of maximal ideals of A,
viewed as a subspace of Spec (A).

Let P %be a finitely generated projective A-module.
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If P € Spec(A), then the localized module PEp is free over the
local ring A$ ((2.3)‘Theorem 1).

Let r(P) = rP($) denote its ranis, Then 1r: Spec A & is a
locally constant function, which we call the rank of P. These
ranks are always constant if and only if Spec{A} is connected,
which is equivalent to A containing no idempotents other than

0 and 1, This is the case for example when A is an integral

domain.

Theorem 1=-Let A he a commutative Noetherian ring, and let P

be a projective module of rank > dim max(A). Then

I

1) {Serre) P = P'gA for some TP,

2) {cancellation) PeA® = g@a® = p = g,

It must be remarked that stably free modules of rank 1
over any commutative ‘ring are free, permitting cancellation.
This can be seen using the determinant of a projective module,
Let P be a projective module of constant rank . Then the
exterior poﬁer AP is a projective module of rank (;), as we
see by localizing. In particular, det{P) = ATP ig a projective
module of rank 13 note that det{P) = P if r=1. Moreover for
any module P', there is a natural isomorphism of graded anti-
commutative algebras A(POP’) = A(P) g A(P’). It follows that if
P’ is projective of constant rank o', then" det(PO®P’') = det(p)
S...9 Pr where each P, has

2
rank 1, then we see that det P = P

@ det(P'), Suppose P = P,®P
A

@...& P_. Now we can ghow
1 r

that stably free modules of rank 1 are free.
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Proposition 1L - If a projective module P is stably free of

rank r, then det P = A. In particular, if

r =1 then P = A,

r+s

Proof: In fact suppose that P @ A° = A . Then A = det(Ar+S)

= det(P) ® det(A®) = det(P) ® 4 = det(P).

Further progress on Serre's problem waited for about ten
Years. In 1974, Murthy and Towber aff'irmed Serre's conjecture for
n=3 with X algebraically closed. Then Reoitman improved upon
Theorem 1 by showing that P is free, if rank P = n. Then
Suslin showed that P 4is free for rk P = %-+ 1. There followed
results of Suslin and Vaéergtein, confirming the conjecture for
n< 5, Finally, Quillen at MIT and Suslin in Leningrad
independently obtained affirmative solution to Serre's conjecture
for all n, Their methods are substantially different. For a

historical note on Serre's problem, the reader is referred to

[B4], [Bs], anda [E2].

2. The Local Theory

Recall that R denotes a possibly non-commutative ring.
We prove in this section that all P € P{(R) are free, when R

is local. R¥* denotes the group of invertible elements of R.

(2.1) The Jacobson Radical and Nakayama's Lemma.

Definition 1 - A left (or risght) R-module §

is a simple R-module if S £ O and if S is the




only non-zero submodule of S,

If § dis a simple R-module, then every non-zero element x of
5 generates S; that is, Rx = S. The mapping f: R4 8§
defined by a++ax is R-linear, whose kernel is a maximal left
ideal of R. We first define the Jacobson radical of a left

R-module M,

Definition 2 - Let M be any left R-module. Then the Jacobson
radical of" M =1 ker £, f wvarying over all
R-homorphisms M -+ S, S Dbeing any simple R-module. We shall

simply refer to the radical of M, denoted by rad(M),

Lemma 1 - The radical of M is the intersection of all maximal

- (proper) submodules of M.

M, .
Proof: If Nc M is maximal, then w is simple, If f: M > S
with S simple, then either f = 0 and Ker(f) = M or
£f{M) = 8 and Ker(f) is maximal. The lemma results from these

observations.

Remark: If f: M+ N 1is any R-homomorphism of M dinte a left
module N, then f (rad M) € rad N, since every
R-homomorphis™ g: N+ S of N into a simple module §, gives

by composition gef: M+ § and geof (rad M) = O,

Definition 3 - The left Jacobson radical of the ring R is the

radical of the left R-module R and will be

denoted by rad R. The right Jacobson radical of R is similar-

ly defined.

We shall show that the two radicals are equal; hence we simply
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speak of the radical of R. This is done by obtaining an

intrinsic description of the radical of R.

Proposition 1 - In the ring R, the following sets are equal:

1} The left Jacobson radical of R.

2} The intersection of the maximal left ideals of R,

3) The intersection of the annihilators of all simple left

modules S (i.e., the primitive ideals of R).

n

4) The set of all elements a in R for which 1+Ra S R*.

5) The set of all elements a in R for which 1+aR € R*.

6) The right Jacobson radical of R.

Proof: The equality of the sets 1) and 2) is given by Lemmg 1.
The sets 1)} and 3) are equal: If § dis any simple module,
pick x £0 in S8, Then f: R+ § defined by f(1) = x is an
R-homomorphism onto S; ker f = Ann(x), annihilator of the
element x, Clearly, Ann 5§ € Ann{(x) = ker f; hence Q Ann S &
& rad R. Alse rad Re (] Ann(x) = Ann S, whence rad R €
s g Ann 8. The sets 1) aﬁgsh) are equal. We first claim that,
if a € rad R, then 1-a € R', For this, if R(l-a) £ R, then,
R(1-a) will be contained in a maximal left ideal L. By 2),
a€ rad R L. and so beth a, and 1l-a belong to L; that is
1¢ L, a contradiction, Thus R{1-a) = R and (1-a) has a
left inverse. So there exists u € R such that u(l-a) = 1.
This means u = l1+ua; but =ua € rad R gnd the same argument
applied to «ua implies that wu = 1-(-ua) has a left inverse
v with wvu = 1. Hence {i-a)u = vu(l-a)u = v:l.u = vu = 1.

Thus l-a is invertible. To show the equality of 1) and 4), we
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see that the argument above shows that 1+Ra & R*, whenever

a € rad R, Conversely, suppose 1l+Ra & R*._ If a f rad R, it
follows by 2) that there would exist a maximal left ideal L,
with a ¢ .. So Ra+L = R, which means 1 = ba+u with b € R
and u € L. But u = l-ba € 1+Ra £ R¥. This contradicts the
fact that u € L. Thus a has to belong to rad R.

The equality of the sets 5) and 6) is just the right-handed
version of the equality of 1) and 4},

Finally 1) and 6) are equal: For this, we notice that the set 3)
is a two~sided ideal of R. Hence rad R is a two sided ideal.
If a ¢ Rad R, then aR & rad R and so Il+aR & R*. Hence a
blongs to the set 5), which is equal to the right Jacobson

radical rad’ R. Thus rad R ¢ radf R and by symmetry rad’ R <

¢ rad R, Therefore, the left and the right radicals are equal.

Corollary 1 - The radical of R 1s a two-sided ideal of R.

Proposition 2 (Nakayama's Lemma) -~ Let J be a two ideal

contained in the radical of R. Then the following
hold:

First form: If M is a finitely generated R-module, and JM = M,

thzn M = (0).

Second form: Tf N 4is a submodule of an R-module M such that

%% is finitely generated, and if M = N+JM, then

M = N,

Third form: Let f: N + M be an R-homomorphism of R-modules such

M
that coker f = 165 is finitely generated. Suppose

the induced map f: ;%-» T%i is surjective. Then £ is surjective.
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Priof: 1) Let X1sXgseee,X generate. M with n minimal. We
claim that n=0. If n = 1, then Xy € JM3; say,

Xy = 89%) + a,X, +...t+ ayX,, with a; € J. Then (1-al)x1 =

= a,X, +...+ a x . But (1-al) is invertible, by Proposition 1.

Hence xl € sz taaot Rxn, giving M = sz +ewet Rxn. This

contradicts the minimality of n.

2) The second form is proved by applying 1) to the finitely

generated module % .

3) The third statement follows, if we apply 2) to the module M
and the submodule f(N); the surjectivity of ¥ is precisely
the statement: M = £(N)} + JM.

(2.2) Projective modules.

Recall that the funcior HomR(P,—) is a left exact
functor from the category of left R-modules and R-homomorphisms to
the category of abelian groups and group homomorphisms. This
means that, whemever 0O + M’—E* M —fibhq is an exact sequence

of R-modules and R-homomorphisms, O —= Hom(P,M’) Hom{P,M)

Ty

v Hom(P,M") is an exact sequence of abelian groups; here if
A: P M, then £.{A) = feh. The functor Hom(P,-}, may not
be exact. It is easily checked that projective modules as
defined in (1.1) are precisely those modules P for which
Hom(P,+) is exact. To see this, just observe that exactness of
Hom(P,') is equivalent to the following property of P: Given
R-modules M and M, an epimorphism 8: M = M, and a
homomorphism h: P 4+ M”, there exists a homomorphism 'lz P+ M

such that 6¢X = h or equivalently if the following diagram of
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R-modules and R~homomorphisms can be completed +to be commutative:

)\_ ’
(*) ,// l L.
¥
Meoe M —= 0

(]

If P idis a free module or a direct summand of a free module, then
P clearly has the desired property. The converse also holds,
since we always have an epimorphism F -+ P+ O with P free,

and we can take h = lP above. These resulis are simmed up in
the following:

Proposition 1 - For an R-module P the following conditions are

equivalent:

1) P is projective; that is, a direct summand of a free

module.

2) Any diagram (*) as_above can be completed.

3) Any surjec%ive R-homomorphism M-Jl*-P + 0 splits; that‘

is T admits a sectior s: P+ M such that Teg = 1

P

4) The functor Hom(P,-) is exact. .

(2.3) Reduction modulo the radical and projective modules.

Let J be a two-sided ideal, contained in rad R, If

M is an R-module, then M = Ei-a B-@ M is an E'- module., We
JM J R J
consider commutative diagrams of R-modules:
i
P — =g
| B
- f -
P—q
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Remarks:

i} If P € P(R), then every R-homomorphism A: P+ Q comes
from some f: P + Q3 that is, X = f, for some f. We

say that X admits a lifting £f: P =+ Q.

ii)} Suppose Q is finitely generated. If f is surjective,
then f is surjective. This follows from the third form
of Nakayama's Lemma.
iii) If Q€ P(R), and f is surjective, then f is surjective

and moreover, f splits.

Proposition 1 - Suppose P,Q € #(R) and f: B+ Q@ is an R-isomor-

phism, Then [ admits a 1lifting f: P + Q, and

any such f dis an R-isomorphism.

Proof: By Remarks above, we know that there exists a lifting f
of T and that f is a split surjection. Write P =
=kerf® P . Now Yor f = ker T = (0), since f 4is injective.
Since ker £ is a direct summand of the finitely gemerated
module P, and ker £ = 0, Nakayama's Lemma implies that

ker f = 0. Thus f is an isomorphism.
The following corollaries are now immediate:

Corollary 1 - Let P,Q GAP(R). Ir P and a are isomorphic as

R-modules, then P and @ are R-isomorphic,

Corollary 2 - If P € £{R), then the canonical map AutR(P) -+

+ Aut_{P) is a surjection. In particular taking
R

P +o0 be free, we see thal the canonical map GLn(R) - GLn(ﬁ) is

. .
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Corollary 3 - Let P € P(R) and €17€55000,e,  din P, If

91’52""’6n is an R-basis of P, them P is

free with basis

{el,ez,...,en].

Recall that R is a loecal ring if ;Eg—ﬁ is a division ring.

We can now state the principal result of this section.

Theorem 1 - Every finitely generated projective module over a

local ring is free.

= R
: . h = i
Proof: Let R be local and P € P(R). Then R i is a
division ring; hence P is free as an R-module. Then

by Coroliary 3 P is R-free.

3. Localigzation and Flat Base Change

The material of this section is mostly quite standard.
We assemble it here mainly for reference, and to fix some
notational conventions, The informed reader is advised to
proceed directly to §4,
A, Localization.

(3.1) Review,

Let A be a commutative ring and S a multiplicative

set in A; d.e., 1€ S and s 1S, € § implies that the product

1
Slsz € 5., If M is an A-module, we introduce a relation in MXS
as follows: (x,s) ~ (y,t) if Z u € S such that u(tx-sy) = O,

This is an equivalence relation; the equivalence class of (x,s)

will be denoted by é.; Ms will denote the set of all equival ence
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classes, Sometimes we shall alsoc write S-lM or M[S-l] for

MS‘ Then Ag obtained from the ring A is again a ring, if we
add and multiply the "fractions" in a natural way, MS is
isomorphic to AS &M as As—modules.

A
We have a canonical map 6: M - MS given by 8(x) = %—; ker O =

={x€M: T te€ S tx = 0}.

There are two special cases of multiplicative sets of
great interest: 1) If s € A, let S = {sn: n=0,1,2,...}. In
this case, we write M_ .instead of Mg. 2 If P dis a prime
ideal of A, then S = A\B is a multiplicative set. We write
Msp instead of MS and call M|13 the localization of M with

respect to the prime ideal TP. A is a loecal ring with radical

i
Bhy -

Localization is an exact functor: If O -+ M 4+ Ma M 20 is

an exact sequence of A-modules,

then O - Mé + M_ - M% 4+ 0 is an exact sequence of AS-modules.

3

Notice that this is equivalent to saying that AS ® - is an exact

functor,

N
One important result we use is the permutability of

residue class ring and localization: If § d4is any multiplicative

set, and U any ideal of A then

S

_fs__ )
WA

0 where §' denotes the image of S in %—.

Finally we must remark that the above considerations
hold for any ring R, if S dis a cemntral multiplicative set;
that is, if 8 & center of R. Hence we shall freely talk of RS

in this case.
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We now define the dimension or Krull dimension dim A

of a commutative ring A: A chain of prime ijideals of A4 of
length n is a strietly descending sequence P0 o Pl DLW Pn

of (n+l) prime ideals. We defime dim A +o be the supremum of
the lengths of all chains of prime ideals of 4. If A #£ (0),
dim A =2 O or. =,

B. Flat Base Change.

{3.2) Extended modules.

Let ©: R =+ R’ be a ring homomorphism. We say that an

R’ -module E is extended, if E = R’ §,M for some R-module M.

In general, E does not determine M wup to isomorphism. Howeven
if there is a retraction {§: R'» R such that (e = 1y, them M
is deterwined upto isomorphism. Indeed, M = R 4 M= R %, (R’%:M)

= R %;E. Notice that free R’ -modules are extended from R.

If+ P 1is a projective R-module, then the extended module R° @ P

is a projective R’ ~module. 8
Suppose A + B is a homomorphism of commutative rings,

and ©: R+ R a homomorphism of A-algebras, If the R -module

E is extended from R, +then the B E R’ -module B % E is

extended from B g R (via B® ¢). ZIndeed if E = R’ gM then

B ® E=~ (B @ 2" Bgﬂ (Be M), by commutativity of the base change

A+ B with tensor products.

{3.3) Schanuel's Lemma; faithful flatness.

M.
i
Schanuel's Lemma - Let R be any ring and O-—rKi—sPi——*Mﬂ

—0 be two. exact sequences of R-modules,

with P, projective (i=1,2). Then K, ® P, ~K, ® P,
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Proof: Consider the direct sum Pl © P and the submodule

2
Q = {(xl,xz) ¢ P1 [ Pp: TiXy = FoXaj. Consider the follow-
ing diagram:
0 o
’ |
kZ K2
I P2 i
G ----- +Kl —————— 9& P2 O
i |
o] Ki Pl — M 0
|
0 0]

The bottom row and the extreme right column are the given exact

sequences; pl and p2 are the natural projection maps. The
kernel of Q-——EE—iPl is precisely {0} X% K? and similarly
Pa )

ker Q-————)—P2 is Kl. Moreover, the projections Pq and Py
are ontoe. These cbservations turn the top row and the left hand

column to be exact sequences. Since Pl and P2 are projective,

the last two sequences are split; that is, P1 [43] K2 =Q=P, @Ki.

Corollary 1 - Let K,y and K, be as above, Then K, is

projective'if and only if K2 is projetive.

Let R, R’ be rings and F and additive functor from

the category R-mod of R-modules and R-homomorphisms to R'-mod;
that is F preserves direct sums.

f i
To the sequence (e): M — M i»l‘-lj of R-modules, there

corresponds a sequence (Fe): ' —EL, mm-FE, py’ or R’ «modules.

We say that the functor F is exact, if the sequence (Fe) is
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exact, whenever f{e) is exact. We say that F is faithfally
exact if F is exact and FM = ¢ dimplies M = 0 for R-modules

M.

Proposition 1 - The following conditions are equivalent for a

functor F

1} I 4is faithfully exact.

2) F is exact and FS £ O for all simple modules S.

3) For every seguence (¢) of R-modules, {€) is exact if

and only if (Fe) is exact.

Proof: Tt is obvious that 1) = 2), We prove 2) = 1). We must

show that for any R-module M, M £ 0 = TM £ 0, We. pick
a finitely generated submodule N of M such that N £ 0. Since
N dis finitely generated there exist gquotient modules S5 of N

which are simple. We have the following diagrams:

M O M

Qo —=

O ] S—— &
A P |
==y =

Since F 1is exact, the rows and the columns are exact. Moreover

FS £ 0 dimplies that FN £ 0 and hence FM #£ 0.

1) = 3): We need only show that (Fg) exact implies that (e) is
exact. Notice that F exact implies that F preserves
kernels, images, cokernels etc, ; similarly, F faithfully exact

implies that the map HomR(M,N) -+ Hom#(FM,FN) is injective:
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For Ff = 0 d4mplies O = Im(Ff) = F(Im(f)) = Im(f) = 0= f = O,

Let (6): M'—f-avM —g~*>M” ke a sequence, such that

T
(Fe): PM' _TL. gy TE_py  is exact. From O = FgePf = Flgof),

ker g‘) _ker Fg
im T ~ im Ff

we get gof = 0. Hence im f € ker g. 'We have T(

= 0, whence im f = ker g. Thus (€) is an exact seguence.

3) » 1): F is trivially exact. Suppose FM = 0 for some
R-medule M, From the exact sequence 0—=FM— 0, we

see that O -~~M —0 is exact. Hence done.

A right R-module M 1is flat (faithfully flat) if the functor

M % + is exact (faithfully exact).

Examples

(1) R itself is a faithfully flat R-module.

{2) A direct sum @M, is flat if and only if each summand M,
is flat.

(3} A direct 1limit lim M, of flat dodules is flat; this is
because J;}_Frr;_ is exact and commutes with ® ; that is,

® preserves direct limits,

(4) Let s be an element in the center of R, Then

R, = lim (R—=2»>R 25R—... ) and so R, is a flat
module,
(5} If S is a central multiplicative set, them R_ = lim R ,
S T
s€
where S is ordered by divisibility; s0 RS is flat.

{6) Let A be a commutative Noetherian ring, and J an dideal

of A. Let A = 1im 2.
-— I

be the completion of A with respect
3 .
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to the J-adic topology. Then A is flat., A dis faithfully flat
if and only if J € rad(a).

(3.4) Finite presentability; descent.

Let @®: A+ A" be a homomorphism of commutative rings.

If M is an A-module, we write M’ = a° @& M. Let R be a
A

possibly non-~commutative A-algebra. Then R’

=aA"®R is an
A
A’ _algebra. Tf M is an R-module, then M’ is an R'-module,
since M = A" ®M=4'" 9 ReM=R @M, Let P,M,... be
A A R R

R-modulea. Then the natural map Ppt [HomR(P,M)]' -+ HomR,(P',M')
is an A’ -homomorphism for each P,

Recall that an R-module M is said to be finitely
presented if there exists an exact sequence R" 4 R" o M = 0 for

some natural numbers m and n. It is clear that finitely

generated projective modules are finitely presented.

Remarks:

1) If P=R, © is an isomorphism. Hence g is an

R
isomorphism for every finitely generated free R-module F,
Since both Hom and @ are additive functors, it follows

that %, is_an isomorphism for every P € P(R).

2) I 4’ is flat over A, then $p is an isomorphism for

every finitely presented R-module P.

Proof: Fix a module M, .Since P is finitely presented, choose
an exact sequence R"— R™—+P-—0. Since Hom( * ,M)} is
a right exact contravariant functor and A’ is flat, we get the

following commutative diagram with exact rows:
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0— [HomR.(P,M)]'—+ [HomR (Rm,M)]'—*-fHomR (r",m)1’

? © nE:

p I® R Bl R

0 —» Homys (P*,M") — Hom, ("™, M") —> Hom_. (R'™,M")

R R
By l) above, the two extreme right maps are isomorphisms.

Hence, by the Five Lemma, Pp is an isomorphism.

L

Proposition 1 (Descent properties) - Let A + & be a homomor-

phism of commutative rings such that A’ is a

faithfully flat A-module. Let R be an A-algebra, P an

R-module, and P’ = A‘@ P, a module over R = A'® R. Then
ettt Lttt A o = = ry ———

1) P is finitely gemerated & P’ is finitely generated.

2) P is finitely presented < p’ is finitely presented.

3) Pepr{(r) P ¢p(R).

Proof: We need only to prove <.,

1) Suppose P’ = A" ® P is finitely generated as an R’ -module.
A

Then there exists a finitely generated R-submodule Q S P

such that Q' = P'; +hat is, (P/Q) = 0. Faithful flatness

implies that P/Q = O, So P = and P is finitely generated.

2) Suppose P’ is finitely presented, Let 0+ K=+ R" 2 P40
be an exact sequence., Then O =+ ¥ + R4 P 4 0 is an
exact sequence. By (3.3) Schanuel's Lemma, K is finitely
generated, since p’ is finitely presented. By (1) then K is

finjitely generated.
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3) Suppose P’ is finitelyv generated and projective., Then
by (2), I is finitely presented. By (3.4), Remark 2,
Pp: [HomR (r,.}1 4+ Hole(P',') -8 an isomorphism., Since P’ is
projective, HomR:(P',') is an exact functor. Hence so is

HomR(P,') by faithful flatness of A, Thus P is projective.

Proposition 2 - Let S be a central maltiplicative set in a

ring R, ordered by divisibility. It M is

finitely presented, the canonical map

;im_HomRs (MS,NS).a HomRS (MS,NS)

s&S
is bijecﬁizg. If N ds also finjtely pPresented, the canonical
map

gég_IsomRs (MS,NS) -+ IsomRS (MS,NS)
is bijective, where "Isom" denotes the set of isomorphisms,

Proof: By Remark 2 above, HomRS (MS,NS) = HomR (M,N)S = -

~ 1z 1 .

= 1im (HomR (M,N))s = lim Homp (Ms’Ns)' The second assertion
14 s€S s

fellows Trom this, once we show that if u: MS -+ NS and if

Ui MS - NS 15 an isomorphism, then u, s Mst ~» Nét is an

isomorphism for some +t. Since N is also assumed finitely

Presented, we may after "enlarging” s +t¢ some ss’ if

necessary, assuma there is a homomorphism v NS -» Ms such that
-1 AL

g« Then (1MS- vu)S = 0 and (le— uov)s = 0; so these

equations hold already with 8 replaced by some % € S, whence

Ve = U
S

the claim,
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C. Affine Patching.

(3.5) Affine Patching.

In any category C, a commutative sgquare

=

Py %y

M

2 xo

is said to be cartesian if it has the following universal property:

For every commutative square

a
1
X Ml
(*} 9 %y
M,——= M
2 o
in C, there exists a unigue morphism f£: X + M such that
piof = Q4 i=1,2. A cartesian square is sometimes also called

a pullback diagram, and we call M '"the" fibre product of Ml
and M2 over M. When ¢ = R - mod, the category of R-modules,

we can construct M as

M

{{my,m,) € Myx¥,: o (my) = ay(m, )]

and take Pys Py to be coordinate projections. Hence the

cartesian property of the square (*) can be expressed as an exact

sequences
Py
) (P ) . (u'l’ 'G‘z)
00— M —Ea M, @M, — M.

1 2

We also notice that Py is a monomorphism if and only if o, is.
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Lemma 1 ~ Let A be a commutative ring and Si’ i=0,1 pairwise
comaximal multiplicative sets; this means the follow-

ing condition is satisfied:

At (so,sl) € 5. x8,, As_ + As) = A.

-

Write S = S§.S; = {sosl.| o € Sgs 5, € 8;]. Let M be an

A-module, Then the following square DA of localizations with

the natural maps 1is cartesian:

M

o, 1
MS

1

= o =

o]

Proof: If B = A X A then B dis a faithfully flat A-algebra

3

5o Sl

B is A-flat, because each one of the factors is. We muct

show that the functor B @ . is faithfully exact. By (3.3) Proposition
) A

1, item 2)it is enough to show that for every maximal ideal WM of

A, B® ﬁLg (0). By comaximality W N SO =¢ or AN = @

"

A
and so olther WA, # Ag  or MA, # A, . Thus B e 2 -
s, s; 7 sy m
A D
= mi—_ ﬁr_“ # (O) The square is cartesian if and only if the
O
sequence
() O—bM—-MSD@Mslh—a-MS

is exact and by faithful flatness, this is so if and only if the
seguence obtained by tensoring with B is exact; this in turn
holds if and only if the two sequences obtained by tensoring with
ASO and Asl are exact, In other wbrds, we have to prove that

the squares DA and DAS are cartesian., Thus we may assume,
5 .
o 1
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say, that S_& A¥, the set of units of A, so that S = S
It is obvious that the. sguare
M ——sM

|0
M MS

is cartesian.

Remark: The proocf shows that the sequence ( ) is exact, even

with a zero added on the right.

The above lemma shows that the module M can be

reconstructed as the fibre product of the two localizations MS
o

and M In fact, we can go one more step.

5,

Lemma 2 - Let Mi - be two AS -modules, i=0,1 zand let there be
i

. _i . . N ] .
given an AS isomorphism a: MOS MlS Define the

A-module M by the carftesian sguarc below. Then the natural maps

M + M. are A, ~isomorphisms for i = 0,1.
Si 1 Si

Proof: We are given the cartesian square

T Ml
Mo MOS'H [+ 1s

As in the previous lemma, we can make base change A -+ B = AS XASl
o

and reduce to the case, where So = {1}, say. In this case, the

cartesian square diagram reads:

R e R
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Thé assertion is now obvious,

It is convenient +tc¢ think of the content of the above

lemma as a statement of equivalence between categories:

Proposition 1 - Let A, A A and S as in Lemma 1. The

So’ S1

category of A.modules is equivalent to the

category of triples (M M ,2), where M and M are A and
0’1 o 1 5, —

Asl modules respectively and a: MoS -+ MIS is an As-lsomorphlsm.

If M corresponds to (Mo,Ml,a) then

1) M is finitely generated if and only if Mo and M1 are.

2) M is finitely presented if and only if M0 and Ml are.

3) M€ P{A) if and only if M, € P(As ), i = 0,1.
i

L, Serre's Conjecture

A. The Main Theorems

In this section, we shall state without proof the main
theorems that yield a proof of Serre's conjecture: Throughout

t:tl,tz,...,t- etc. will denote indeterminates.

(4.1) Local Horrocks' Theorem (Algebraic Form) - Let Alt] be a

polynomial ring in + over a local ring A and P a

finitely generated projective module over Alt]. If there exists

a monic polynomial f in A[t] such that the localization P

is free as an A[t}f-module, then P is already free over Alt].
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It was in the following geometric form that the above
theorem was originally proved by Horrocks in 1964. In this
geometric form, it gives a criterion for a vector bundle over

the affine line Al to be trivial; A Dbeing a comnutative ring.

A
As we do mot use this geometric form, we do not explain the terms

involved,

Local Horrocks'! Theorem (Geometric form) - Let Al+]  be a poly-

nomial ring in t over a local ring A and let P be a

finkely generated projective Al t]-module, Write Spec al t] =

= Ai and let P be the locally free sheaf corresponding to P.

If P eoxtends to a locally free sheafl on the projective line

Pi, then P dis a free A[t]-module.

Serre’s conjecture is solved by an affine version of
Horrocks' Theorem, where the local ring A dis replaced by any

commutative ring A. This affine version, sometimes called the

Affine Horrocks! Theorem is made possible by a localization

theorem due to Quillen:
(4.2):

Quillen's Localization Theorem - Let A be a commutative ring

and - P a finitely presented Al t]-module. If for every

B € Spec A, the localized module P,  over the polynomial ring

b
Aﬁft] is extended from A@’ then P is extended from A.

In other words, Quillen's Localization Theorem says that

the preblem of extending is local with respect to the base ring A,

{4.3) Affine Horrocks' Theorem (First form), (Quillen-Suslin)

Let A be a commutative ring and P a finitely generated
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projective Al t]omodule. Suppose there exists a monic Polynomial

f € Al+] such that the AL t] -module Pp is_extended from a

* .
brojective module over A ( ), ther. P dtself is extended from

A,

Proof: By Quilien's Localization Theorem, it is enough to show
that for every P € Spec A, the localized module P$ is
extended from the local ring A$. Fix D € Spec A, P‘;3 is a
finitely generated projective A$[t]-module. Clearly, f can be
identified with a monic polynomial in Am[t]. The rings A$[t]f

and (A[t%ly are isomorphic and so are the modules (7 and

)
pr
(Pf)$. By hypothesis Pf is extended from a projective module Q

=

: th i P o= A P
over Aj that is, £ A[t]f i Q over [t]f and so ﬁf
~(a [£] )@ as [+])) modules. Since is a local ring

( B fJAﬁ QB (A$ 39 A$ ’
the projective module QB is free by (2.3) Theorem 1. Thus(Plp)f
is free over [+] with local. By Loecal Horrocks'

(4L 4] ), By
Theorem then, the Projective module P,p is Aﬁft]-free and so

extended from A$. This proves the result.

Let A be a commutative ring and T +the set of monic

polynomials of A[t], We denote by A{t) the loecalization A[t}T.

Affine Horrocks' Theorem (Second form) ~ Let P be a finitely

generated projective Al t]-module, and let ¢ be any

intermediate ring between A[t] and A(t)., If ¢ A?t]P is

extended from A, then P is already extended from A,

(+)

The hypothesis that the base module indicated be projective

is redundant; see Remark 1 below,



~30-

Proof: If we take C = Altl., we get the first form from the

second. We shall deduce the second form from the first.
If C@® P is extended from A, then so is A(t) ® _FP. Hence

Al €] Al t]
it is enough to prove the result for C = A(%). Assume then that
A(t) @ P is extended from an A-module Q. DBy Remark 1 below,
Q isAgzijective. By (3.4) Proposition 2, there exists a monic
polynomial f € T such that Pg = Ql t]f as Al 1] p-modules;
that is, Pf is extended from A. By the first form, we conclude
that P 1is extended from A,
Remark 1. If Q dis an A-module and the extended module
aA(t) 3 Q is in ©{A(t)), then Q € P(A). This

follows from the fact that A(t) is a faithfully flat A-algebra
(vide (5.7) Proposition 2}.

The above forms can be slightly sharpened as follows:

Affine Horrocks' Theorem (Strong form) - Let A Dbe a commubative

ring, P € P(al¢]), and P_ € P(4). Suppose the extended

A(t)-modules A(t) @ P and A(t) ® P_ are isomorphic, then
Al t] A °
== = -]
P Po[t] = Al t] @ P

Proof: The strong form is clearly a consequence of the sécond

form above and the fellowing supplement.

We use the following notation: If M dis an A-module,

MLt] = ALt] ® M, and M(t) = a{t) @ M.
A A

Suppilement. Let P~ and = Q, € P(A) and suppose the extended
modules Po(t) and Qo(t) are A{t)-isomorphic.

Then PO =] QO.
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Proof: Write s = t-l, and consider the affine patching diagram

{see (3.5)):

Al's] als], ="alt,+71

l l

B=Als] 1+sal s] - Als] s(1esals]) = A(£)
For the last equality, see (5.9) Proposition 3.

The comaximality conditions on the multiplicative sets are
clearly satisfied,

Define V&€ @ ( Als]) by the cartesian square:

-1
v _— PO[t,t ]

l

Bi Q, = Qo[S](1+sAEs]) —— Q_(t) o

2, (%)

where o is a given isomorphism of Q,(t) and P _(t). By (3.5)

-1
Lemma 2, V_ = P [t,£™7] anda V1,s8E] = Qo[s]1+sA[s]' Also,

A(t) ® v e p(A(t)) and so by Affine Horrocks! Theorem V is
Al s]
extended from an A-module VO € P(a). Moreover,

vd = sV h-nggj A?s} V= sB A?s] v= (B i Qo)/s (B i Qo) =
Q o[ s]

B ga—rET—E Qo {on putting 5=0). But since V is extended,
0

Als]
v Al s . -~ s .
Vb = (s-1)v ™ is—l)Als] A?s] v (S-l)A[S]S A?s] v o=
' Poft,t'l] ( A )
V=~ =~ P n tting t=1).
(t='-1)p [ ,71) o 107 PHtLing

_ ALs,57Y ®
(s-1)al +,5711  als]

Thus P0 and QO are both isomorphic to Vo.
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B, The proof of Serre's conjecture.

(4.4) Quillen Classes; conjecture (B—Qd).

Before we take up the proof of Serre's conjecture, a Tew
rema~ks on extended modules are in order., Suppeose E is an

Al ] wmodule that is extended from A, +then clearly E &= EO[tL

Al €]
where FE_ = %% . By using the retraction Alt] + A given by
A
=~ T £
ti=a for a € A, we see that E0 E& = T?:::ﬁf . More

A
generally, these remarks hold for any ring R, provided we take

a € R to be a central element. We also see that if

E ¢ p(R[t]), then E_ € P(R) for all central elements a.

Following Lam's formulation, we shall call a class QC of
commutative rings a Quillen class if the following conditions are

satisfied:

Ql: A€ QC = the localization A$ £ QC, for every prime

T € Spec A.
Qp: A€ QC = A(t) € q¢.  (Vide §5).

Q. A€ QC, A local = all finitely generated projective

A[t]-mndnles are free.

Theorem 1 - Let QC be a Quillen class of commutative rings.

If A€ QC and n =z 0, then every finitely generat-

ed projective module P over the polynomial ring A[trtzv..,tng

is extended from A,

Proof: The result follows from the Affifieg Horrocks!' Theorem by

induction on n, If n=0, there is nothing to prove.
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If n=1, let P be a finitely generated projective Al t]-module.

For every prime P € Spec A, the localization P13 € P(A$[t]) and
so by conditions Ql and Qs, Pm is free.over Aﬁtt] and so
is extended from a (free) module over A$. Hence by Quillent's
Localization Theorem P is extended from A, Assume now that

n 2z 2 and that the result is true for n.l, for all rings
belonging to the given QC. Let there be given a finitely

generated projective A[tl,t tn]-module P. Put t = t

areees
and B = Attz,...,tn]. Hence A[tl,tz,....tn] = B[4].

1

If we can show that P is extended from a finitely generated
projective module Q' over B, then we will be done, on imvoking

the induction hypothesis over Q .

By Affine Horrocks' Theorem (Second form), it is enough to show

that the projective module ¢ & P is extended from a

B[ t]

Projective module over B, for some intermediate ring ¢ such
that B[t] = ¢ € B{(t). We choose C = A(t)[tz,tj,...,tn} and

in fact show that ¢C % ] P is even extended from a projective
BLt
module over A and so a fortiori from B,

P

p _ -
1 (ﬁz,tj,...,tn)P

o™ (tl't2""’tn)

Write P

7 € P(A) and P

€ P{alt]). By the case n=l, which we have already proved, Pl

is extended from A and by remark above, Pl ™ ?6[t]. Since

a(t) € Q¢, +the induction hypothesis for the case n-l1 implies

that C @ : P, belonging to P(A(t)[tz,...,tn]) is extended
Bl ¢
from A(t}; +that is, C ? P~ Q[tz,...,tn] for some
BLt
Qe rP(a(t)). But c= A(t) ? 1 Bl t] as Alt]-algebras and so
Al

¢ ® P> A(t) ® P as C-modules, From the remark at the
B[ t] Al +)



-3h-

beginning of (4.4), we conclude that

A(t)g?t}P P
T D &
? A(t) (tzi""tn)(A(Kh?jp) A(t) A[t] (tzyn--’tn)P

=~ a(t) ® P, =~ a{t) ©® P[t]. Thus Al(%)}) © P =
(+) 3]t ()A[t1° ()A[t]

=~ Po(t)[tz,...,tn] as A(t)[tz,t tn]-modules. This shows

grecey

that A(t) © P is extended from the projective A-module P,
al %]
to € = A(t)[tz,...,tnj. By induction, the theorem is true for

all n.

Serre's conjeclbure is now an easy corollary.

Corollary 1 - If ¥ is a field, then all finitely generated

projective modules over the polynomial ring

F[tl,tz,...,tn] (n 2 0) are free.

Proof: All we have to do is t¢ show that the class of fields is
a Quilien class: Condition Ql is trivial; Q2 is also
trivial since F($) is nothing but the field of rational
functions over F in.one indeterminate.- For QB’ just observe
that F is already local and that FL+] 4ds a principal ideal
domain. From Theorem 1, we conclude that every finitely

generated projective F[tl,tz,...,tnj-module P is extended from

F and so is free, being the extension of a free module over F.

Corollary 2 -~ Let A be a principal ideal domain, Then every

Pe P(A[tl,tz,...,tn]) is free.

Proof: Sinceevery Q € P(A) is free, all we have to do is to
show that the class of PID-s is a Quillen class. Ql is

trivial. Q, follows from the fact that A(t) dis a UFD (unique
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factorization domain) and that dim A(t) = dim &4 = 1 ((5.9)
Proposition 1). Q3 follows from Affine Horrocks' Theorem (Second
form with € = A{%t))}, 1if we observe that a{t) is a PID and so
every P € P(A(t)) is free and extended from A.

Recall that the Noetherian domain A is a Dedekind domain if the

localization Am is a principal ideal domain for each P € Spec A.
This is equivalent to saying that the domain A dis Noetherian,

integrally closed, and is of Krull dimension 0 or 1,

Corollary 3 - Let A be a Dedekind domain. Then every

P € P(A[tl,tz,...,tn]) is extended from A,

Proof:. Once again we must verify axioms Ql’ Q. and Q3 for the

2
class of Dedekind domains. Ql follows from the definition
above, Q2 holds because A(t) = A[t]T is Noetherian, integrgl—
1y closed, and dim A(t) = dim A < 1 ({5.9) Proposition 1).
Q3 hoids, since A local and Dedekind implies that A is a PID
and dorollary 2 guarantees that in this case P € P(A[t]) is
free.
We now indicate some of the open questions that arise in
this situation. Recall that é local ring A is regular if A
is Noetherian nnd the maximal ideal of A c¢an be generated by
d elements, where d = Kr dim (A) < «», A commutative ring A
is called regular if A dis Noetherian and &m is a regular
local ring for all WM € Max(A). Then AS is regular for any

multiplicative set S, and the polynomial ring Al+) is also

regular; hence A{t) is regular as well,.

Conjecture., If A is regular, then every P ¢ P(A[tl,tzﬁ.gtnj)
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is extended from A.

For each integer d 2 0 let Regd denote the class of
regular rings of dimension =d. The conjecture above would
follow for all A € Regd if one knew that Regd is a Quillen
class. Property Ql follows from the remarks above, as does Qz,
since dim A(t) = dim A, Thus the conjecture above for all

A€ Regd is equivalent tos

Conjecture (B"Qd)' If A dis regular local of dimension =d

then a1l P ¢ P{alt]) are free.

The conjecture follows for d=0 (respectively d=1) from
Corollary 1 (resp. Corollary 2) above. If d=2, the affirmative
answer is given by a theorem due to Horrocks and Murthy (see
(5.12) Theorem 1}. At the time of giving these lectures, the
case d= 3 is still open. The conjecture is also proved, when
A is the formal power series ring in d +variables over a field
(see (5.13) Corollary 1). The conjecture~is also valid, when A
is the ring of convergent power series in d variables over a

field with a non-trivialabsolute value {(5.13) Remark 1, p.81).
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5. Local Horrocks! Theorem

We now take up the proof of Horrocks' Theorem for local
rings. We shall present two Proofs. The first one by Swan uses

the so called Towber presentation of an R[+]-module P ¢ P(rRLET).

A, The Towber Presentation,

(5.1) Characteristic sequence of an endomorphism,

As usual let R be a possibly non-commutative ring
and M a left R-module. Given an R-endomorphism ¢ 6f M,
there is a natural way in which we can associate an R[ t] -module
sfructure M, to the pair. {(M,a): M, is the R-module M with
t action given by tem = a(m), for all m € M. Thus, for every
polynomial p(t} € RLt], we have p(t)'m = p(a){m) for all
m € M. The R-module structure of M is obtained from the R[t]-

module structure of Ma by restrictdon of the scalars tc R,

Given the pair (M,a), we consider M[t] = R[t] & M;
A
M[t] is an R[ %] -module obtained by base change. We define an
R-linear map 9: M(t] 2 M by o€ t' e m) =% oi(m). 1t is
24 i 1 i 1
easily checked that ¢ 4is an R[t]-homomorphism. Op the other
hand, the endomorphism ¢ defines an endomorphism lR[t] @ q
by base change. We denote this extended endomorphism alsc by a3
thus a(Z @ mi) =z t'e a(mi). In this set up, we have the
i i

following characteristic sequence associated to the endomoxrphism

¢ of M,
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Proposition 1 - The sequence of R[ t]-module homorphisms

t=0
0 — [ t] ML £] —2s M —— 0

is exact.

Proof: The map -4 in the statement is multiplication by t
minus the extended endomorphish o. First, notice that
@wo (t-n) = 0, since mn(t-a)(ti ® mi) = m(ti+¥9mi - t*@m(mi)) =
ai+l(mi) - aioa(mi)= 0. Clearly ¢ is surjective. Also the map t-a
is injectdve: To see this, observe that M[t] as an R-module is
a direct sum & t%SM; maltiplication by t dncreases the
"degree", pres:iging "leading coefficients". Finally, we show

that ker © & Im(t-a): Suppose x = I tl@mi € ker @} d.e.,
: izQ

T ai(m.) =0, then x = x-0= I (t®m,) - 1@ T ai(m.) =
i20 * iz0 * iz0 *
= £ (t™®m - ®Wa'm) = T (t+'-a)(1® m) =

iz0 * + ix1 i

1

(t-a}(Z (ti'l r 72 g st e m;)) € Im(t-a).

) izl
(5.2) The Towber presentation.
Theorem 1 (Towber Presentation) - Let R be any ring.

Given P € P(Rl¢t]) anda F_ € #(R), let

F = FO[t]. Suppose f dis a monic pelynomial in the center of

R[+] such that P, = F. over R[t]f. Then, there exist

M,N € P(R), and linear maps u,v € HomR(M,N) and split exact
sequencess

v
O——:-M—»N—-—Fo——-ro, over R

u+vt

0 —M[ £] > N[ t] —= P —= O, over R[t]}.

Proof: The maps u and v 1in the second sequence are the

extended homomorphisms which restrict to mu and v
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respectively on M. By (3.4) Remark 2, there exists an R[] -
homomorphism A: P 2+ F such that lf: Pf -+ Ff is an R[t]f-iso-
morphism, Since f is monic, ii is a nonwezero divisor on free
modules and so also on P. Thus the natural maps P -+ Pf and

F » Ff are inclusions. From the commutative diagram

A

0 P F F/P —— 0
] 1
) > P ;“: P, 0 —0
£

we see that X is injectiwve and that (F/P)f = (0). Since ¥/P

is finitely generated, this implies that U ¢ P, for some

n

integer n = 0, Since f is still monic, and is an isow

b

we may replace f by fn and assume

morphism of P n>F n?

£ f
that f¥ £ pc F,

d-1
Let d = deg f and put Fd = FO + tFO Feaat t Fo. Then

F=F[t] = .;eo tiFo = F@fF, by the Buclidean division algorithm,
and this is 2 direct sum as R-modules. Since P <. F, we may
write P = MOfF, where M = Fd N P, and P £ P. The R-module
M is isomorphic to P/fF. The t-action on the R[ t] ~module »/fF
induces an endomorphism a € HomR (M,M); if x € M. then

tx = ¢(x) + £8(x), with a{x) € M and g(x) € F. In this way,

we get an R-homomorphism B: M+ F, and in fact f: M =+ Fo’ by

degree considerations.

Consider the following diagram of R[ t]-modules;
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0 —— M[t] —tma Ml +) @ Ma_..o
B a =~

0 —= P=F [ ] P il o
o £r

The rows are exact, the top row being the characteristic sequence

of the endomorphism @, The map B is Jjust the extended homo-
morphism of B:M -+ Fo; the map ¢ is the unigue Rl t] -1inear map,

such that o(x) = x for all x € M. It is easily verified that the
diagram is commutative.
We claim that the left hand square is cartesian: For suppose the

associated cartesian diagram is given by

M[t] t-a
Q c:;______, ML +]
a
g
F=FO[ t] f P

Then f dinjective implies that Q —Ea-M[t] is injetive. By
definition of a cartesian diagram, we have a map 0: Mlt] » @
such that teq = ae. Clearly B is injective. Using (5.1)

Propesition 1, we have
(t-a) M[t] € Im a = M( ¢} = M (t-a) M[ €]

as R-modules; so Ima = (M0 Ima) & (t-a) M[t]. Now
MnN Ima= (0), since x € MN Ima implies that x = Ox €

¢ fF n M

(0}, Therefore, Ima = (t-a) M[t]; d.e.

adM[ t] = (t-a)M[t], which means & is onto and hence an iso-
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morphism. We may then take @ = M[t]. Thus the left hand
square is indeed cartesian.

As remarked in (3.5), the statement of a Cartesian
square can be written as an exact sequence. Combining this with

P=Me&g fF, we get an exact, seqguence:

(*=%)
, B ML t] fo,-1)
0 —= Mt] — @& P 0.
[ ]
o
- LIy
If we write N = M®F_, u = { B): M+ N and v = (0 Y: M+ N,

we get the following exact sequences:

0 M N iy Q
. o

u+vt
0 +—aM1t] ——— N ¢] ~sP —a 0.

This proves half of the theorem.

It remains to show that M and N are finitely generated
projective R-modules. Since N = M$FO, clearly it is enough to
show that M € P(R). Now P € #(R[t]) and R[t] is R-free so
that P idis R-projective; hence 50 is M, since P = MBIF as
R-modules. Now M =‘£L is a finitely generated ;Eiﬁl

o  fF RL+]T

and f-monic implies that _%%%%- is a finitely generated.R-module.
R

Hence M& =M 1is a finitely generated R-module.

-module

The Towber presentation has an application to the
functor Ko of K-theory. It seems appropriate to present it

here. For the definition of Ko’ the reader is referred to

(7.4).
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Corollary 1 - Let R, t, P, and F = Fo[t] be as in the

statement of the theorem, Then in KO(R[tj), we

have [Pl = [F] and se [P] belongs to Im K (R) + K_(R[t]).

Proof: From the split exact sequences of the Towber presentation,
we get [P] + [M{t]] = [N[+]] = [Fo[t]$M[t]] = EFoit]] +

« [M[£]], whence [P] = [Foft]]-

B. Swén's preof,

(3.3) Swan's proof.

Theorem 1 (Horrocks) - Let R be a local ring, and P a

finitely generated projective R[ t]-module. If

there exists a monic polynomial £ 1in the center of R[t] such

that P, is R[t]f-free, then P is already R[ t]-free.

Proof: The proof uses an induction argument on the Tower
presentation of P. Let F0 be a finitely generated
free module over R such that Fo[t]f is_isomorphic to Pg.

Choose a Towber presentation as in (5.2):

. 0———..M——-Y-+N-—-FO———>0 and
u+vt ’
0 —=M1t] ——N[t]—P —=0 , where

1 t-0 o
N = MOF _, v=(0), u+vt=(B) and u=(;). If M is the

radical of the local ring R, then R = RAR is a division ring,

M and Fb are free R-modules. We induct on r = rank of M.

v
v

If 1r=0, then N = FO and so P ='F°[t] is free.
So assume that r = 1 and that @ € P(R{t}) is free, whenever

there is a Towber presentation of Q, in which the corresponding
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M" dis of rank < r-1,

Denoting passage modulo the radical M by bar, our

first eclaim is that F: § - FO is not mero: otherwise, from

the split exact sequence

g
0 ﬁ[t]—()—~+ﬁ[t]$f‘0[t]—-5———+0,
we get P o= mlj_?_[i m M. @ Fof t] y since
(t-a)H t]s0
0 — N[ t] t-a M{t) —= M_ —= 0 is an exact sSequence.
v 4

Now P is a finitely generated projective R[+]~module and so
free. Hence M. is a free Rl ] -module, Tt is a finitely
generated R-module. Hence ﬁa = (0); +that is, M = (0) and by
Nakayama's Lemma M = (0), a contradiction. Thus E # 0.

Hence there exists x € M\MM ?u0h that ¥y = B{x) ¢ FO\ﬂFO. In
particular . v £ O and so by{2.3), Corollary 3, Fo = Ry & F;.
Since x gme we appeal once again to (2.3) Corollary 3, to see
that Rx generates a free submadule of M. We can complete {x}
to a basis of M, in a suitable way such that M = Rx @ M, and
BM’ s FL.

Now, consider the following diagram of exact rows:

o) o ker(C+P)

l t-a /M ) i i

( B/M’

0 — M[t] ———us Mft]eaF;[t] — +»Coker = C ——— = 0
q (t-a) q l
0 — M[t] — B ", M[t]eFo[ +] P 0
| }

O-«—-——bRx[t] —_— Ry[t:l ———— —_—— 0




BT 8

Using the Smake Lemma (p.26[1]) or the 3x3 Lemma (p.io [4a]),
one sees readily that € = P,
We want to use the top row for a new Towber present-

ation of €. TFor this, we need an endomcrphism a’ of M and

a corresponding map B'. We define o' as the composition map
1
r a M’ (O) ’ #” !
M — M= o M, this defines a map B : M -+ Rx so

Rx
that a/M = (%,). Let 8': M + Rx@® F_ be given by the sum

B
"
of P ,). If we observe that M[t] & F/[t] = M’ [ tle(rxsr’ )[ +]
B/M o] )
=M[t] @ Fl[ t] say, then the top row reads
tea’
r ( 4 ) ) Cp’
0—>M[t]——_ﬂﬁM[t]EBF1[t] s 0.
- Is
If we write u; = (0) and v, = ( B,), then we get a Tower
presentation of € & P (R[t])
Vi
0 — M —= » N =M’aaFl—- F, —= O
1
u., tev

1 1

0 —-Mlt] —Nlt] — ¢ —= 0,

with rank of M’ = r=1. The induction hypothesis implies that
C is R[t]—free. Since € and P are isomorphic as R[t]—module&
it sollows that P dis free,

(5.4) Lindel's matrix version.

We now give another poof of Local Horrocks' Theorem
using matrices. This proof due to Lindel again uses thé Towber
presentation (5.2). The hypothesis in (5.3) stands and we want
to show that P € P(R[t]) dis free. Using the Towber presentation

(5.2)
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0 —= Mt] —o Mt @ FLt] —= P —= o0,

we see that P is the cokernel of the R[t]-homomorphism u+vht =
= (tga)’ where q: M+ M and 8: M -+ Fo are R-homomorphisms,
Since R is local, these last R-modules are free. Thus if o
and s are the ranks of M and FO fespectively, the R=linear
maps o and B can be represented by rxr and. SXTI matrices
a = (aij) and B = (bij) respectively over R. Since the
extended R[t]-homomprphisms a and B are represented by the
same matrices over R[t]., the matrix of wusvt over R[+] is

given by the (r+s)xr matrix

t-all -84, PR -a,
-a,, tna22 . . -2,
u 4+ tv = ; e
“fr1 . ~fry e
bll b12 blr
bsl s2 bqr

If by means of elementary operations, we can take u+tv over

I
RLt] to a matrix of the form %), where I is the identity
I .
matrix, then coker (u+tv) = coker(ﬁz) ~ M tler L] F [t] and
M[ t] °
so P will be free. Accordingly, we proceed by induction on

r to show that this can be achieved,

The case =0 dis trivial. So assume = 2 1, ¥We

tI-a’
assume as induction hypothesis that a matrix of the Fform ( 3’ )

]
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can be taken by elementary operations to the form G;EJ, when-
ever rank @' = m<€ r-1, and where o' and B8’ are matrices
of constants over R. Given (t;m) with rank & = », Wwe pass
module M as in Swan's proof to see that B = (Eij) # 0. Hence
some bij ¢ . By permuting the rows and clolumns of B, we

may assume that bll € R*¥ 4is a unit. The required reduction is

indicated below:

t-a -a ves mA

11 12 ir
u o+ tv =
“8py teBp, e =85
-ar -a vae =2 )
1 ra rr a..€ R
1]
b b [P b
11 12 1r b..€R
ij
bsl bs2 e bs
elem, row
operations 1 A e Ar
B} th ’ '
using (r+l1) 0 teany, .ee mB5
Tow .
- . . . A_€R + Rt
1
t I
0 “8p2 *** "Bop -
ij
b € R
bll b12 “en blr . }R
' bij € R
7
0 b22 e bzr
0 . ... 1



elem row
operation
using 1St
row on

(r+1)th row

(r-1) row

operations one

at a time on the
(r+l)th row

using an,jrd,n"
th

r TOows

respecﬁively

(r-1) column
operations
using the

lst column

“hyo

2 " T
i s
tragy - e
r I
Ao s "arr AiER + Rt
15 € R
B2 .“w r
» ; BiGR + Rt
22 .t
2r b, € R
. - lJ
.bl . /
s2 bsr
A2 .e Ar
r Fi
t_a22 . ~or
.. AiER + Rt
! ' !
A s e L - aij € R
2
b’ B bi € R
2 v r +
’ s 6 R
22 v b2 *d
r
! t
bsz - bsr
0 . 2}
I 4
t-a22 . —a,
a’ -a’
e * O
’ ’
b2 . br
4 F
sz * bsr
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which is a matrix of the form

! 0 ... O
o ?
é tIr—l - a
o] B’

with a’, B' matrices over R. The induction hypothesis implies
I
-0 :
that the matrix ( B, ) can be taken by elementary operations

I
-1
).

t
o S

Hence the same is true of u+vit, and we are done.

¢. Elementary Matrices.

We wish to present a second proof of Horrocks' Thecorem
due to Paul Roberts. We will be presenting an axiomatiged
version whose formulation is due to T.-Y. Lam. With this in

view, we prepare saome preliminary ground.
(5.5) The group E,(A).

et R be a ring and Mn(R) the ring of nxn
matrices over R. As usual eij is the matrix having 1 as
its (i,j) th entry and O elsewhere. We recall that the
matrices e j form a {standard) basis for the free R-module

Mn(R). We alsc recall the following rules, governing their

maltiplication:
ei& if j=k
e, . e
13 kb o if jAKk
In particular, if ifj, then eij_= 0. If a € R, consider
formally the exponential function eij =1 4+ a eij (the higher
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: . s a s . .
terms in the exponential series are 0). eij is an invertible

matrix, the inverse being el?. Left multiplication of a matrix

A by e?j corresponds to an elementary row operation on A:

that of replacing the ith rbw of A by ith row plus a times

the jth row, Right multiplication by e?j corresponds

similarly to an elementary column operation on A,

As usual GLn(R) is the group of mnxn invertible matrices over

R. The mapping aF—>eij is a group homomorphism of the additive
group (R,+) of R dinto the multiplicative group GLn(R). The

subgroup of GLn(R) generated by all e?j with i#€j and ac¢F

is denoted by En(R) and is called the elementary subgroup of

6L (R). Notice E (R) = (1}. The matrices e:d are called

elementary matrices.

If €: R+ R is a ring homomorphism, then the
+
correspondence e?jk_}eij induces a group homomorphism of

E (R) » E_(R").

Lemma 1 - If §: R+ R’ is a surjective ring homomorphism then

the induced homomorphism En(R) -+ En(R') is also

surjective.

In other words, an elementary matrix over R’ can be
lifted to one over R, if B8 is surjective. Notice that such
a lifting of matrices in GLn(R') to matrices in GLn(R) is not
in general possible: For example consider n.= 1 and

8t Z2 =+ z/(5).

(5.6) Action on unimodular elements.,

We shall identify GLn_l(R) with a subgroup. of GLn(R)

as follows: To © € GLn_l(R), there corresponds
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og|©O
(O l) € GLn(R). For the next lemma, we see that the definition

of unimodular elements in A" made in Section 1 for commutative

R n .
rings A also makes sense for elements of R over any ring R.

Lemma 1 - Let n 2 2. Suppose En(R) acts transitively on uni-

1
modular elements of R . Then GLn(R) = En(R)GLn_l(RL

Proof: Let o € GLn(R). Then o ta = 1. Hence columns of g
are unimodular. From the hypothesis, we get a matrix

e, € En(R) such that the last column of ¢,a is the transpose
8
Y

is easily verified. VWe write this as
( I 0)(3 o) G o)
g,0 = = € ’
1 yg"1tl1/\o 1 2\o 1

I 0
e, = say. Then
a A, o & 1

0
of {0,0,...,0,1). Write €0 = ( 1) with 8 ¢ GLn_l(R), as

where

€, = (1 + alenl)(l + azenz) aee (104 a1 en’n_l) € En(R)-

-1

B O .
Thus & = ¢ 32(0 1 € En(R) GLn_l(R). This proves the lemma.

Corollary 1 - If for all n =z 2, EH(R) acts transitively on

unimodular elements of Rn, then GLn(R) =

= En(R)GLl(R). In particular, if A is a commutative ring,

then the inclusion En(A) c SLn(A) is an eguality for all n=2.

Proof: We have only to prove the last statement of the corollary.

If n= 2 and a € SLn(A), we can write



‘-51-

with ¢ € En(A) and u, € A¥, Taking determinants, we get

whence u, = 1, Hence & =g € En(A).

1 =det o =deteg. u 1

l!

Proposition 1 - Let A be an Fuclidean domain. Then E_(4)

acts transitively on unimodular elements'of An

for all n =z 2.

Proof: I a = (al,az,...,an)T is a unimodular column (T denob-
ing transpose), we pick € € En(R)sathat one of the non-

zero entries, say bi = d of ga = (bl,b bn) is such that

v

m(bi) is the least possible nom-zero integer, wm being the

Buclidean function. We claim that all the other bj are
multiples of dj 4if bj = qjd + rj, with 0 < rj < d, then
:i:q_ &

ejiJ €a will have rj as its j b entry contradicting the

choice of ¢. Hence all the other bj are multiplies of d.

A series of elementary row operations will take (bl'bz""'bn)T

th

to (o,o,...,d,o,o)T with d in the i entry. By using

(1.1) Proposition 1, item ii) or directly, one sees that a uni-
modular element goes into an unimodular element under an inverthle
matrix. Hence d -is a unit. Because of this and n = 2, we

can send (0,0,...,d,...,O)T to (1,0,0,...,d,...,0)T

)T

and then
to (1,0,0,...,0 by elementary row operations. We have thus
proved that there exists an elementary matrix g' taking the

unimodular column a = (al,az,...,an)T to (1,0,0,...,0)T. The

conclusion of the proposition is now immediate.

Corollary 2 - If A is an Euclidean domain, then SLn(A) = En(Ak

hence SL_ (A) is generated by elementary matrices.

Proof: The result follows from Corellary 1 and Proposition 1,
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Lemma 2 - Let R be-a ring satisfying the following condition:

If a€ R and L is a left ideal of R such that RailL = R,

(%)

then there exists b in L such that a+b is invertible.

Then En(R) acts transitively on unimodular elements of R~ for

all n=z2 2,

Proof: Let a = (al,az,...,an)T be a unimodular column, Clearly
it is enough to show that a can be taken by elementary

operations to (l,O,...,O)T.

Case 1. Suppose aq is invertible in R. Then

'a1 al 1 1
—_— —_— s,
8]
a2 1 1
. 0 0 -
. ’
. - F
a 0 o] 0
. n -

In the general case, take L = Ra2 +en ek Ran. The unimodularity

condition implies that Ra1+L = R. By condition (%), there

exists b 4in L such that +b € R¥*, Now

a3

1 al+b
—— —in
2 22
. 0
-n s

Lemma 3 - Let R be a semilocal ring; i.é. RfArad(R) is a seomisimple

o
[

see D
“« % 0O

g
»

by Case 1.

(Artin) ring, Thon R satisfies the condition (*) of

Lemma 2. In particular, this holds when R is local.
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Proof: In these notes, the applications concern the case, when

| R dis local. Hence it is instructive to give a simple
proof in this case; if a € R ond L 4is a left ideal such that
Ra + L= R, them a and 1L are not hoth contained in rad R,
In either case, we can find & € L, possibly zero such that

a + L € rad R. Passing module rad R and using (2.1) Propesition
1, we see that a + & 4is a unit of R,

Assume now that R is semilocal and that Ra + L = R.
Denoting by bar passage modulo rad R, we see that Ra '+ L = Ea
with R semisimple. If & + £ 4is a unit of R, with £ € L,
then a + 4 is a unit of R by {2.1), Proposition 1. Hence it
is enough to prove the lemma, when R is a semisimple ring.
Since every R-module is pProjective, these exists a left ideal
Mc L such that L = (RafN L) @ M, Hence R = Ra & M, Again,
the map R 4+ Ra given by r h—é——ra is onto the projective
module Ra, whence it splits, Denoting by K, the kernel, we
get an exact sequence:

a

0 — =K —™m—> R > Ra 0.
£

Let f: R4 K be a splitting., We note that K is R-isomorphic
to M. If we denote such an isomorphism by g, we get

= g(f{1)) € M € L. Now, the composition j of the isomorphisms

&

R —{8:f) ook £1:8) pio m_=.p sends 1 to a + £. If

denotes the inverse of this compoesition, then 1 = hej{1) =

=2

h(a+t) = (a+t) h(1l). Hence a + 4 is a right unit, so also a

unit, since A dis Artinian,
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Corollary 3 - If A is a commutative semilocal ring, then

E (A) = sL (A) for all =n = 2.

Proof: Using Lemmas 2 and 3, the result follows from the proof of
Corollary 1.

Proposition 2 ~ Let R be a semilocal ring or an Euclidean

domain. Let R+ R’ be a surjective ring

homomorphism such fhat R¥* 2 R'* is surjective. Then for every

n = 1, the induced map GLn(R) 4 GLn(R') is surjective.

Proof: Using Lemmas 1, 2, 3, and Proposition 1, we see that the
hypotheses in Coroellary 1 are satisfied for the ring R’ .
Hence the conclusion of that corollary helds. The proposition

now follows, if we observe that GLl(R') = R'*, via (5.5) Lemma 1.

D. The Ring A(t).

We recall that A(f) = A[t]T is the ring of fractions
of the polynomial ring Alt] with respeé£ to the mualtiplicative
set T of monic polynomials in A[t]; here, as always, A
denotes a commutative ring. The ring A(t) plays a important
role in the solution of Serre’s problem. It first seems to occur
explicitly in the 1965 paper of Claborn.

{5.7) First properties..
i

Suppose A—"wp is a ring homomorphism, If we denote

by T the multiplicative set of monic polynomials in A', we

get the following commutative diagrams:
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ale) — 08 ariyy - AL,

A" ® A(t) = A'[t]cp(,r)

The map Jj 4is an inclusion, In special cases J may be an
equality as happens for example, when Iy is integral over A.

We shall need only the following special case of this.

Proposition 1 - If ¢ is a éurjeotive ring homomorphism then

@(t) is surjective and j is an equality. In

particular, if 9 is an ideal of A, +then %(t) = ;‘At}; .

Proof: The first statement is obvious, since 1T° = ¢(T}. For
the second statement, we apply the functor A(t) @ » to
A

the right exact sequence

Q]——:-A——-i———a-o.

bY

Proposition 2 -~ The ring A(t) is a faithfully flat A-algebra.

Proof: The polynomial ring A[t] is flat over A and A(f) is
flat over Alt]. We observe that A(t) ® . = A(t) @
A al £]

Alt] ® +  Hence A(t) ® * is an exact functor, and so
A A
4(t) dis flat over A. To show that A(t) is faithfully flat,
it 1s enough to show by (3.3), Propesition 1, ditem 2) %hat
A{t) © ﬁ-# 0 for every maximal ideal M of A. By Proposition
A

1, this last object is é% (t), which is a field and not =mero.
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(5.8) Units of A(t). We denote by G the multiplicative
group generated by T in A(%).

Lemma 1 - A(8)* = A*.q, if A is an integral domain.

*

Proof: We only have to show that A(£)Y® < AT.G, Suppose

fie € A(t)* with g monic. Then there exist f,s8, €
gl® £ 1’71

€ aAl+]l with g monic such that £ 1_ 1. Hence ff; = gg

g 8¢
is a monic polynomial, 'Since A is an integral domain, this

implies that the leading coeficient of £ ds a unit u and

f ~
£ = auf! with f° monic in Al t]. We then have E-: u"gw € a*.G
Proposition 1 - If A’ is an integral domain, and A-2.4 a

surjective ring homomorphism inducing a surject-

x
ive group homomorphism A¥ 4 A", then the induced map A(t) -+

+ A" (+)* is surjective.

Proof: If @ denotes the multiplicative group generated by i
in A'(t), then it is enough +to observe that @ induces
a surjective group hemomorphism G <+ ¢’ and apply Lemma 1 to

the integral domain A’.

Remark: If we take A = Z and Al =-é%— and consider the

natural map A + A’, then the induced map A(E)* 4 AR
is not surjective: For, the element §t - 2 is a unit of
A’ (¢) as (3t-2) (3t-3) = =t; but 3t - 2 does not 1ift to a unit

of a(t), even though A* 4 A"* is surjective.

(5.9) A(+) and A{[+t7113.

Proposition 1 ~ Let A be a commutative Noeiherian ring of di-

mension d. Then 1) dim ALt) = dim A+1, and 2) dim A(t) = dim 4,
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Proof: 1) is well-known. For 2): If B 1is a prime ideal of A4,
then PA(t) dis prime in A(%t). Hence dim A(t) = d. If
d = », then equality clearly holds. So assume d < . Since
A(t) is a localization of A[t], it is enough if we loock at
the contracted primes of A[+)., Let § € sﬁec Alt], and p =
=P N A, So htPs<d and htf = ht B + 1., If ht T < d,
then ht# s d. If ht B =4, then B d1s maximal in A and
so -%%%%) E~%—(t), a field, showing that PA(t) is maximal in
A(t). Thus if P 4is a conbracted prime of A[¢], +then
# =P Alt]l. So in all cases, contracted primes of A[t] Thave

height < d. So dim a({%) = 4.

Proposition 2 = Let s € A and consider the multiplicative set

M=1+sA of A and the ring of fractions

AM = A1+sA' Then the following hold:

1) % € rad AM

=

A
2} Sh =k

sy
£

H

3)

A . .
i is local, so also is AM'

Proof: 1) By {(2.1) Proposition 1, it is enough to show that

LS B , ;
1 - T I € Ay for all a din A and +t € M. Fix a
in A, and +t = 1 4+ sb in M =1 + sA, with b din A,
sa 1 i lysc
Therefore, 1 + - = E-(t+sa) = E—(l+(b+a)s) = Iren Y-

This last element is a unit of AM'

2) This follows from (3.1) permﬁtability..., on observing that

A
the image of M = 1l+sA under the natural map A =+ 2 is {1k

3) Clearly, this follows from 1) and 2).
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In Propeosition 2, take A = A[+] and s = t; we obtain
the ring we shall denote A{[%]} = A[t](l+tA[t])' One can
roughly think of A{[t]} as a rational power series ring. We
conclude from Proposition 2 that t € vad A{[t]} and that

a{l+1} _ . . _ .
E%Tf¥%7 =~ A, Tf A is local with rad A.=M, then A{[%]} is

local with radical equal to (M,t). In what follows, B2f denotes

the degree of a polynomial £,

Proposition 3 - Let s = £ ana B = a{(s]}. Then the follow-

ing hold:
it ’ .

1) B = {é{;% € a(+): g monic and 3f £ 3gl.
2) B, = a(t) = al+] + B
3) Al+In B = A.

it . . ;

Proof: 1) Let E%E%-E A(+) with g monic and 3f £ 3g = n.
Dividing by t™, we can write g = £ gl(t—l) =

= tn gl(s), where gl(s) is a polynomial in s with constant

term 1; d.e., gl(s) € 1 + sAls]. Since 3f £ n, we can write

f
£(t) = " fl(s). Hence g{%% = “;%E% € A[5]1+SAESJ = B

z. (s
1
This proves that the right set of the equality in 1) is contained
£ s
in B. For the other inclusion, take ] (S) € B, with
1

g, €1+ sAls]. Choose n =2 3f,, 3g (degree in s). Since

f.is i
B ¢ A{T), we write 1(s) = jLiﬁ_=-£%3%- with g monic and
g8 n t
1 tgl
3af < 3g., This proves the equality in 1),
2) since B & A(t) and A[t] € B, the equality B = A(t)
follows from A{t) = A[t] + B. To prove this last equality,

we employ the division algorithm:
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Ir g{%% € A(t) with g monic of degree mn, then there exist
polynomials q{t) and =x{t) such that r(t) = q(t)lg(t) + r(+),
where &r < n., Now 3% = gf{t) + g(z with E%—% so A(t) =
= Al t] + B.
3) Let L =.§ € Alt] N B, with. h e alt], f,z¢ altl, g
monic and 3f £ d8g. From hg =1, we get 3f = 3h + 3g,

since g is monic, Hence 8h = 0 and h € A,

E. Robert's proof of Horrocks' Theorem.

We present an axiomatized version of Robert's proof of
Horrocks' Theorem, whose formulation is due teo T.-Y. Lam., In
this section (AM) will denote a commutative local ring with

rad A = I, Bar will denote passage modulo .

(5.10) Statement and proof.

Theorem 1 - Let R be a possibly non-commutative

A-algebra over the commutative local ring

(A,), 1let T be a central multiplicative set of non-zero

divisors of R, and let n be an integer =1. Assume that the

following conditions hold:

1) The natural map GLn(RT) -+ GLn(ﬁT) is surjective.

2+ £ ET, %%— is a finite A-algebra; i.e., a finitely

generated A-module,

3) There exists a sub A-algebra B of Rn such that MB €

€ rad B and RT = R+B.
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T
Let P be a finitely generated R-module such that P —=P is

injective, for all £ € T. Further, suppose that P =~ ﬁn. and

PT Bl Rg. Under these conditions P = Rn.

Before we take up the proof of Theorem 1, we want to use

it to derive Local Horrocks' Theorem for commutative rings.

Corollary 1 - Let A be a commutative local ring, and

pep(alt]l). Tf A(t) ® P is A{t)-free, then
Al €]
P is already Al t]-free.

Proof: In Theorem 1, we put R = a[t], T = the set of monic poly-
T A{t) and R. =

= éAtt E-%%(t) = A(t), which is a field. The hypothesis on the

nomials in t, B = A{EHJJ}. Then R

multiplicative set T d4s clearly satisfied. We now check the
three conditions of Theorem 1. For condition 1)}, we see that
GL_(A(t)) = D, (A(t)) E_{&(t)), where D (A(t)) is the group of
invertible diagonal matrices,

Combining (5.5) Lemma 1 and (5.7), Proposition 1, we
see that En(A(%)) -+ En(ﬁ(t)) is surjective. Since A4 1is local,
the surjectivity of A(t)¥ 2 A(%)* is guaranteed by (5.8),
Proposition 1, This shows that invertible diagonal matrices over
A{t) can be lifted to invertible matrices over A(%t)}. Thus
condition 1} is satisfied. It is easily seen that condition 2)
holds., The validity of condition 3) is the content of (5.9).
Proposition 3, and the remark preceding that proposition. Assume
now that P € p(alt]) and let P{t) = aA(+t)™. It follows that
P = A[t]™, since Alt] is a PID. By Theorem 1, P = aAl+]"

and so is A[t]-free.
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Proof of Theorem l: The hypotheses on the multiplicative set

guarantee the inclusions in the following diagrams:

o
1.1 | S RT Y3 I’ S R P‘l‘ x,
M _ M M 5 — M
R C:___*'RT ¥, P — PT ,

Pick elements ¥,;¥o,ssssy. € P such that [F.:¥areee,7 is an -
172 n 172 ek

R-basis of P. Pick an RT—basis {xl,xz,...,xn} of P In thia

e
way, we get two R bases {ayl,aig,...,uyn}, and [El,...,in}

of P.. Hence there exists a matrix B € GLn(RT) = Au#ﬁ;.(PT)

such that B ii = Q ?i, for all i4i=1,2,...,n., By hypothesis,
we can 1lift B +to B € GLn(RT) = AutRT(PT),- so that Bx; = &y,

for all 4., Thus replacing x5 by Bxi, we may assume that

xi = ayi for all 4i.

n
We have P, = iz_l Ry x, =Z Rx; + I Bx, (vy condition 3)

= P’+Q say. Then P =% Rx, and Q =1 Bx; are free R- and

B-modules respectively. We notice that P and P’ have the same

image in ﬁT' We claim that P, = P+Q: We already have Py =
=Im P + Im Q =Im P + Im §. Hence by the third form of
Nakayama's Lemma, it is enough to show that C = ifQ is a
finitely generated A-module., Since P = P'+Q, P’ maps onto c,

T
r
and se C is a quotient of -§q¥§—. Now, P’ is a finitely

generated R-submodule of P and so, there exists f € T such

T’
ri
that £P° € P, This implies that C is a quotient of %r =

> (EL " since P’ is R-free. But by condition 2) R isa
R ? ’ R

finitely generated A-module, whence so is C.
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In P we have x,-y. 3 WPT = MP + MQ, say x;-¥, =

T’
#” rl . i y A I
= = - . S = X, ¥
X +Vso with x5 € MP, and ¥y ¢ Mo Thus x x
# . - 4 s = - -—
+ X, equals ¥ = yi+y;, and {yl,yé,...,yn} is an R-hasis of P
Similarly, {xi,xé,...,x;} is an Ry-basis of Pgr To see this,

observe that the x; form a B-basis of Q, and UB £ rad B,

and ;z = ii in §. By (2.3}, Corollary 3), the x; form a
B-basis of Q. Since B <.R,, it follows that the x, form an

RT—basis of PT‘ Hence we canh start all over, replacing the xy

by the x;, and the y; by the v;. Moreover, after the

replacement, we have Xy =¥ for all i. Seo x, € P and

P =T Rx; & P. Since Ei = ¥,, we also have P’ = P, Thus

Mmp + P = P, and so for the R-module D =-§r, we have D = (0).

Since P is a finitely generated R-module, so is D. Since

PU‘\
1t

o = Pn we see, as above, that fPc P’ for some f € T, so

fD = 0, and D is finitely generated over R/fR, hence over A

by condition 2) of the theorem. By Nakayama's Lemma, we conclude
n
that D = (0); di.e., P = P whence P = Rx;, a free

i=1

R-module,

F. Regular Local Rings.

(5.11) Special PID's.

Recall the conjecture from {4.4) pp.36:

Conjecture (B-Qd): Let A be a regular local ring of dimension

< d. Then every P € P(al+]) is_free.

In this section, we establish the validity of the

conjecture for d=2. The result is due to Horrocks in the
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geometric case, and to Murthy in the general case. The Murthy-
Horrocks Theorem relies on facts for a special class of PID-s,
the so called special PID-s. The method gives yet another proof

that P € P(B[$]) 4is free, when B is a PID (Corollary 1).

Definition 1 - We say that an integral domain A is an n-special
" PID, if A is a PID and SLn(A) = En(A). ¥e say

that A is a special PID, if it is an n-special PID for all n=2.

We say that an element p € A 4is n-special (or special), if Eﬁf

is an n-special (or special)} PID. Notice that an n-special
elment p € A dis prime in the sense that Ap dis a prime ideal,

i,e., if =a,b € A and pl|ab, then pla or plb.

Lemma 1 - Let $l,$2,...,$k be invertible primes of the integral

domain A. Suppose U and f# are ideals of A and

Ty T, Ty
TysTpsees oy Dositive integers such that P, P, «.. P~ = UB.
51. %2 Sk
Then U = $l $2 "'_$k with O = Sy 5 T i=1,2,...,k.
k
Proof: By induction on the sum n = X Ty. If n=1, then
i=1

A = ?1 or A. BSo assume that n > 1 and that the lemma
holds for I r; < n. Since U = P,, we have Y < By oT
!
B < $1. If 9 < By then 9 = ﬂlm , whence Py Po® ees Py
=u'8. Hence A’ is a product of these priﬁes; so is 9 = $lﬁﬁ

I‘l—l h rk

If B P,, then B = P,8° and so ;7 p,° ... p = u'.

Hence % 4is a product of the required form,

Theorem 1 = Let A be an integral domain and S a multiplicative

set generated by n-special elements. Let P € P(A),

If Py~ Ag

5 g+ then P = A",
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Proofs Choose elements xl,xz.....,xn € P such that

n
{xl,xz,...,xn} is an Asubasis of PS' Put L = iil Axi.
' We have L= A", and Lg = Pg. Consider the exterior powers

a®P, and A™L, and let det(P,L) = Anncégg), which is an ideal
of A, Locaily, that is at each maximal ngal M of A, this

ideal det{P,L) is generated by the determinant of a matrix and
so is principal. Hence by Kaplansky[3] Theorem 62, det(P,L) is an
invertible ideal of A, Since LS = PS’ - .
sn det(P,L) £ ¢. Let s € SN det(P,L), where s = pll...pk

we must have

Ik

for some primes p; € S. Since det(P,L) is invertible, there

exists an ideal U such that As = det(P,L)-U. Since the

elements p; are prime, it follows from Lemma 1 that det(P,L) =

n 1 u uk . \

= At for some t = Py Py - Py with ug < T i=1,2,..0k.
We induct on the number 4 =Z u, of prime factors of +t.

If £ =0, t=1 and so L =P, So assume £ 2 1, and pick

an n-special divisor p of t. Denoting by bar reduction module

p, we have the following diagram

g

@ is injective, while § is not, since it is given locally by

c ®
P

Wt=— Hd

amatrix. of determinant O. Since A is a PID, P is free and
so is the submodule &L. We have a splitting L = 9L @ ker g.
We can choose o € SL_(A) = E_(R) so that g%, € Ker §. since
E (4) - En(K) is surjective, we can lift 5 +to o € SL_(4).

If we write y; = 0xg, then {yl,yz,...,yn} is a new basis of L.
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From &il = 0, we get vy, € PPN L. If ¥, = p%,, with z; € P,

then L L' = Az) © Ay, ®...8 Ay, € P and det(P,L) =

= det(P,L') det(L’,L). Hence aet(P,L') = 4 -;- , which has fewer

a

than 4 factors., By induction P is free.

Corollary 1 (Seshadri) - Let B be a PID and P € (Bl +]). - Then

P is free. ) .

'Proof: Let A = Blt], and S ‘the multiplicative sot genérdted

by all primes of B. If p€ S is a prime of B, ‘then
A
pa , _
field. Hence p is a special prime. We have AS = BS[t] = F[ +],

= 'fl?ﬁ [t] 4is an Euclidean domain of the form X[]; with. K

F heing a field. Since PS is free, we deduce that P is free.
It is worthwhile +to mention a generalization of this

argument (see [1], Ch. IV, Th, (6.1)).

Definition 2 - Let A be a domain. ¢all a prime ideal }
n-speeial if P is invertible and A/P is an

n-special PID,

Theorem 2 - Let S be a multiplicative set of invertible ideals

generated by n-special primes. We have 'AS = U m‘%
‘ Ues
Suppose P € P(A} and that Pg=P &P, &...6 P, with P, of

rank 1 for all i = 1,2,+..,n. Then

1) There exist rank 1 projective A-modules L such that

LiS = Pi’ i=1,2,...,n,.

2) For any Ll,...,Ln as in 1), there exists an invertible

ideal ¥ in S such that P = YL, & L, ©...8 L.

2

Corollary 2 = Let A be a Dedekind domain., Then eveby
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PerP(alt]) 4is extended from A,
(5.12) The Murthy-Horrocks' Theorem (B-Q,).

We now proceed to give some examples of special PID-s.
First some useful formulas, involving elementary matrices.

Let R be a ring and let u € R¥. Define

u wl oy
w, . (u) = e,. e e
13 i3 a1 1]
hij(u) = w. {u) wij(—l);
for example, in Ez(R), we have
o u
wyp(u) = 1
-u” o
u 0
hlz(u) = 1
o u”
If u,v € R*, then
-uv-1 0
le(u) wlz(v) - -1 ¥
0 T eV
and
h12(u) = le(u) wlz(—l).
We have

u o} uv 0 v~1 0 ‘ uv 0
= € EE(R)
8] v o 1 8] v 0 1

"If ne 3 and Ugslyseessy € R* then
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diag(ul,ug,...,u ) = diag(uluz...un,l,l,...,l)

n
-1 -1 =1
h12(un L R u2 )
-1 -1 -1~
h23(un Wiy oeee u3T) e

-1 .
(u ") € diag(uju ceen 1,100, 1)8 (R)

hn-l,n 2

Summing up, we have the following important result,

Whitehead Lemma - Let R Dbe a ring and let Wy sty eee, ¢ R*

with n 2 2. Then the diagonal matrix

diag(ul,ug,...,un) is congruent modulo En(R) to

diag(u1 S 1yl,0ea51).

Y2
Remark: Let Dn(R) denote the group of diagonal matrices in

GLn(R) and let n = 2., Then D _(R) normalizes

. . a -1
En(R):-lFor, if & = dlag(dl’d2""’dn)’ then & eij & =
diad.
= e J. If R=A is commutative, then D,(4) n sL (4) <
c En(A). This is an immediate consequence of Whitehead Lemma,

Proposition 1 - Let A be an integral domain and s an n-special

element of A, Then SL (A_) = sL (4) E (4 ).
R EEEE— ——— n =] n n =)

Proof: On taking determinants, one sees with the aid of the

remark above that it suffices to show that SLn(As) c
g - LE ) s =

SLn(A) Dn(As) Dn(AS). Choose 4o € SLn(As). Multiplying by a
suitable power sN, we may assume that o has entries in Aj;
so o € M (4), and det ¢ = s', say. We claim that if g €
m

€ M (A) and det{a) = s, then a € SLn(A) Dn(As) En(AS). For
this, we induct on m. If m = 0, then gq € SLn(A). Suppose

m> 0, write A = é% . Now

j=]]

€ M (A), and det(g) = 0. Since
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A is an n-special PID, by elementary divisor theory, there exist

2 is diagonal with last

entry 0. We 1ift £, to €, in E_(4), by (5.5) Lemma 1. If

€1.€, € SLh(E).= E (&) such that &, & £
g = €, 0 €5, then the entries of 8 din the last column are in
As, 'We let . & = diag{1,1,...,s) and consider Y = Bé-l € Mn(A);
: -1 -1 m-1 . .
det Y = det B det & = det o det & = s . By induction,
¢
Y = c§’e for some ¢ €& SL _(4), 5'¢ Dn(AE), e'c En(AS). Hence
=1 -1 -1 -1 -1 ’ ¢ =1

a=e7"Bey =e7 vYo6e, = (e 0)(8 ){e'6e;7), where the
first matrix in the parenthesis is in SLn(A), and the second

in Dn(AS) -and the third in En(As)' This proves the proposition,

Corollary 1 - If A is an n-special PID, then so is Ag for

every multiplicative set S of A,

£

Proof: If q € SLn(AS) then ¢ € SLn(AS) for some s € 5. We

can assume s = PP, +e¢ D with each p. a prime
172 k

i
element of - A. Since A/Api is a field, each P; is special,.
Arguing by.dinduction on k, we further reduce to the case k=1,

so s ds itself speical. Now the corollary follows from

Proposition 1.

Corollary 2 - Let (A, ®) be a regular local ring of dimension 2,

. and s € m\mz. Then A is a special PID,

A

Proof: A is a UFD and so is A . Also dim(AS) £ 1. Thus Al

is a P;D; By (5.6) Corollay 3, SL_(4) = E_(4). The
quotiént ringl.gir is also a regular local ring of dimension 1,
and so is a discrete valuation ring. Once again by (5.6),

Corollary 3 we conclude that 5% is a special PID. Thus s is
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a special element. The coroilary now follows from Proposition 1.

Finally, we have the following result

Proposition 2 -~ If A is an n-sjpecial PID, then so is _A(t).'

.

The proof of the proposition depends upon the foiloWing
two lemmas, Let B be a commutative ring, and % an ideal of
B. Then the natural homomorphism B < g- induces a group homoT
morphism GLn(B) -+ GLn(B/&I), whose kernel is denoted by

GLn(B,ﬂ); the corresponding kernel in case of SL;(') is

denoted by SL_(B,Y) = sL_(B) n GL_(B,4).

Lemma 1 -~ Suppose J is an ideal of the commutativé ring B

such that J & rad B. Them SL (B,J) ¢ E (B) for all

n== 1,

Proof: We start with ¢ = (aij) € GLn(B,J). We claim that there

exist matrices &, €' in En(B), and a diagonal matrix’
6 = diag(d,1,1,...,1) such that o = ese’. If this can be done,’
lwe would be finished, since ¢ £ SLn(B) would imply that

1 =deta =d, so that o = e¢’ & E_(B).
By definition of GLn(B,J) a;; = 1 {mod J) and
2,450 (med D), if ifj. From (2.), Proposition 1, we sce that a), € B¥, The

proof is by induction onm n. If n = l, a dis already diagonal

with all € B¥, So assume n = 2. If we left multiply "a by~
n —@..aT : .
the elementary matrix €, = TT- eill; ll, we get

5]
o
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*
211
0
0’,’: o *
)

Similarly right multiplying af by 2 suitable elementary matrix

e we get

2!
a1l o

c-ﬂ' —
V.0 B !

where B € Gl l(B,J). By induction, these exist elementary

matrices 63, €y such that e3 8 eu = 8’ is a diagonal matrix.
- . -1 =1
If we write & = dlag(all,l,l,...,l), then o = &4 85" B g, =
=1 -1 ===y . i . Y
1 €4 e, = ebe’, with €,e°¢€ En(B) and & a

diagonal matrix in GLn(B,J). By an observation at the beginning

= ¢ 5 5"ey,
of this proof, the diagonal entries of 5 are in B¥., If we
write & = diag(ul,uz,...,un) with u; € B¥*, then by Whitehead
Lemma, & = diag(d,l,...,l).e5, for some d € B¥ and some

€y € En(B). Thus o = e€be’, with & = diag(d,1,...,1), and

e,e’ ¢ En(B). The claim is now established.

Lemma 2 - Let B be a commatative ring and J & rad B an ideal.

e su (3 = £ (3), then sr (B) = £ (B).

- B
Proof: Let o € SLn(B), and g its image under SLn(B)—*SLn(%J.
By hypothesis & = &€ for some ¢ € En(%). By- (5.5) Lemma
1, we can 1ift € +to €& in En(B). Hence § = e—la € ker B =

= SLn(B,J) c En(B), by Lemma 1. Thus o = €8§ € En(B), whence



E_(B).

sL_(B)
We can now finish the proof of Proposition 2.- Consider
the ring B = A{[s]}, with s = 4 L. By (5.9), Proposition 3, we
have B, = A{t). By Proposition 1, it suffices to show that
SL_(B) = E (B), and that g%- is an n-special PID. Again by
(5.9) Propoesition 2, we have J = sB £ rad{B) and é%—ﬁ A, an

n-special PID by hypothesis; so SLH(%Q = En(?q. By Lemma 2,

we conclude that sL,(B) = E_(B).

We are now ready for the principal result of this

section:

Theorem 1 (Murthy—Horrocks) - Let (A,m) be a regular local ring

of dimension 2. Then every P € f(al+]) 4is free.

Proof: By Local Horrocks' Theorem, it is enough to show that

Q = A(%) A?t] P is free. Let g ¢ ﬂvmz. Now s dis a

special element of A(t): For g%%%%—% é%—(t); but ‘§I is a
regular local ring of dimension 1 and so is a discrete valuation
ring. From (5.6), Corollary 3 and (5.12), Proposition 2, i%
follows that éi (t} 4s a special PID. By (5.11), Theorem 1,

it is enough, if we show that Q, is A(t)s-free. But A(t)s =
= A(t) and Q, is extended from P, which is an 4 [+]-

3

module. Now A, is a PID and so by (4.4} Corollary 2, P, is

free. Hence the extended module QS is free,



G. Formal Power Series Rings over Fields.

{3.13) Mohan Kumar's Theorem (8-q,) for power series).

In this section, we deal with the (B-Qd) conjecture,
_ when the base ring ' A = k[[Xl,Xz,...,Xd]] is the power series
ring in-d_indeterminates over a field k. The result will be

~deduced from the following more general result:

Theorem 1 {Mchan Kumar) - Let A = k[[Xl,...,Xd]] be the power

_ series ving over a field k, and K the field of

fractiéns of - A. Let B be any commutative k-algebra. Let

Pep(A® B) and Q€ P(B), If K® P and K® Q are isomor.
: X —_ — A —

©

phic as K ® B-modules, then P =~ A& Q.

Corollary 1 - Let A be as above. Then every

. Pc p(AEtl,tz,...,th) is free.

o

Proof: Take B = k[tl,tz,...,tnj and Q te be a free B-module

. : oflsuitabie rank, and apply (4.4) Corollary 1.

.

© .Before we take up the proof of Theorem 1, we need some

basic facks about formal power series. Recall that if

- * - @ )

£ e x[[X1], we write f = T aixl, with a; € k. If £ £ 0,
T . i=0

there exists a first non-vanishing coeffficient a .y and we

E

.write Ord (f) = v, If f =0, Ordy(f) =w=. We also rocall

that the degree of the zerc polynomial is -=,

Définitidn 1 - Let f(Xl,Xz,...,Xd) € A. We say that £ is

regular of order m< » in X if Ord

. . a? Xa
hf(O;O,;;,}QO,Xd) = m. 1In other words, a regular element in Xg

has a térm axg, a # 0, bit no term bXé with b0, 0 € i < m,
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Ve write A’ = K[[X;,X,,...,X, ;1]

Proposition 1 - Let f € A be regular of ord m in Xd. Then

given g € A, there exist unigue elements g

in A and r in the polynomial ring A'[Xd] such that g

= gf + r, where degxd r < m,

Proof: We induct on the number of wvariables d. If 4 = 0, the
result is trivially valid.

If d =1, then A is a discrete valuation ring, and
every non-zerc element g can be writteﬁ as g = eX?, with €
a unit, and n = 0. ‘We proceed by induction when d = 2. We
show that the coefficients of g and r can be inductively

. . i i i
determined; write f = Z fi X, g =1 ey Xl, q =L qi Xl, and

r==x r; X where - fi,gi,qi € B = k[[Xz,X Xd]], and

i

1! 31t
r, € B’[xd], the ring B’ being k[[Xz,...,Xd_l]]. We want
g = qf+r, with 1 =0 or deng r < m, Comparing the

coefficients of Xi we have the following equations:

.

quO + rO

0]
i

fl e e d qofi + T

P T etc,

We notice that fO(O,O,...,O,X = f(0,0,...,O,Xd) and so f_

a) = A
in B is regular of ord m in Xd. Since (238 is also in B
and B has fewer than d wvariables, the induction hypothesis

- guarantees the unigue existence of q, € B and r, € B'fXd]



T

such that deng r, < m. We repeat ithe process with gl-qofl £B

to get and T as desired and uniquely.

91 1

Proceeding in this way at the ith stage, we apply the division
algorithm to g, - (qofi +apfigteeet ay fl) to find ¢q; and
Ty Thus all the coefficients qay and r, are determinable

~umniquely. At each stage we have degXd ry < m so that degxdr<nu

where r =% 1, Xl.
i i 71

Corollary 2 - Let 4, £, and A’ as above. Then {%— is an

A’ -free module with basis the image of

[1,xd,x§,...,xg‘l}.

Definition 2 - Let (B,M1}) be a commutative local ring. We say
that a polynomial w dn 3B[X] 4is a Weierstrass -

polynomial of (degree m) if w = Xm + am—l Xm-l L a,s with

ai eEM Ffor i =0,1,.,..,,m=1,

Theorem 2 (Weierstrass Preparation' Theorem) - If f € 4 is

regular of order m in Xd’ then there exist a unit

q € A* and a Weierstrass polynomial w in A'[Xd] of degree

m in Xd such that qf = wy 4in other words f and w

generate the same ideal in A,

Proof: By Proposition 1, there exist unique elements q &€ A and

r € A'[x,] such that X, = qf+r, with degy, T < m.

d
If m=0, then r =0, and if m2 1, then r(0,0,...,0) = 0
and so r € M, the maximal ideal of A, If r = a 1 Xg-l oot

+oa € A’[Xd], then we have

(1) X: = q(0,0,...,Xd)f(O,...,O,Xd) + r(0,0,...,Xd).
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Here f£(0,...,0,X4) is of the form a X, + higier terms, with

a £ 0 and so q(0,0,...,Xd)f(0,0,...,Xd) has only terms of

deg =z m, This means for 4i = 0,1,24,4.,m1, a_(0,0,..,,O) = 0
a

and so ai e m of A'. Hence Xg ~ r=w 1is a Weiersirass

polynomial of degree m in Xd over A', Comparing the

coefficient of Xg on both sides of (1), we see that

q(0,0,...,% has a non-zero constant term, i.,e., q{0,0,...,0)40

a)

and so q d4is a unit of A%, If w = Xg + v with degx rem
d

the uniqueness of w follows from Proposition 1 via the equation

m ’ ’
Xd=qi‘-r.

Lemma 1 - Let f(Xl,Xz,...,Xd) # 0 in A, There exists a changs

of variables X.+—=Y., with Y. = X such that
—_ T i i? L Td d

d*

f(Yl.Yz,...,Yd) is regular in X

Proof: We first give a proof which works when X is an infinite

field. Put Y. = X, % a, X for i = 1,2,.4.,d-1 and
i i I T d
Y, = ;. Write g(xl,xz,...,xd) = f(Yl,...,Yd). Then
g(0,0,...,Xd) = f(alxd, azxd,...,xd); write f = E £y, with £,

homogeneous of degree i. We have g(0,0,...,Xd) =
: i . " ;
= ? fi(al,az,...,ad_l,l)xd. Since f £ 0, there exists fﬁ £ 0.

Since k dis infinite, we can choose such that

BprfgrneraByy
fj(al,az,...,ad 1,1) £ 0. Hencé the change of variables can be

effected such that f(Yl,...,Yd) is regular in X

ar
s s
ohd proof; If £ =31 a ! .. x d, we write
- - 51’52""’Sd 1 d
s 1 .,°2 - _%a
5 = (51,52,...,sd) and X~ = Xl X2 “en Xd . We

write f iditself as f = aSXS, s running through all d-tuples.
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We consider the lexicographic ordering on these d-tuples:

v I
s = (51’52""’sd) < s’ = (si,sé,...,sa) if s, < s8] or s, =
= si and s, < s;, etc. Llet support f = [s: a_ # 0}. Let a be
minimal in the lexicographic ordering of supp £f. If

a = (al,az,...,ad) choose v > all a;. We now make the follow-
d=-i

ing change of variables: Yi = Xi + Xg , 1 =1,2,...,,d=1 and
Y, = X4+ VWrite as before g(xl,xz,...,xd) = f‘(Yl,...,Yd); there=
Rd-1 0 d-2 r '
fore g(0,0,...,Xd) = f(Xd y XT TS S Xd). If we write
S Ar(s)
£ =3 aX, then g(0,0,...,Xd) =Z a, X, where kr(s) =
=84 % Sq 1 T Feeet slrd-l. We claim that if £ # 0, +the above
choice of 1 guarantees that g(0,0,...,Xd) # 0, In Tact the
(o
texrm Xd can not get cancelled with the other terms. This

follows from the following two observations:

(1) lr(q) < rd, and

(ii) for every s 4in the supp f, o < s = Ar(a) < Ar(s),

. - d-=1
To see (i), we have Ar(a) = Qg F Ug_q T +esst O T <

€ (r=1) (L ¢+ £ +...% rd_l)z r’-1. To see (ii), first suppose

d-1 d-1 .
@y < s;; then kr(s) =T s, 2 r (a1+1), while kr(a) =
i d-2 L4-1 _ _dal d-1 _
= d + L‘)‘.d_l I 4esst+ 0‘.2 I +. al r + (xl =
de=
= o7t (1+al). Thus A (a) < Ar(s). If oy = s8;, we éettle

the question in a similar way,., Finite induction then
establishes {ii).

The following theorem provides a means of descent from
power seriles rings to polynomial rings; the element w should

be thought of as a Welersitrass polynomial.



-77-

Descent Theorem = Let T0 =T be commutative rings, w ¢ Tb

not a zero-diviser in T such that

T
(%) = . I
WT0 wT

Let P be a T-module, on which w is not a zero-divisor, and

w

W a T ~module such that P = TH? W. Then there exists a
ow o

T,-module V such that (i) P = T® V and (ii) v, = W
module such that . and

. o
Moreover, if T is faithfully flat over TO, then V & p(T)

implies that V_ € P(T,).

Ead
Proof: From the hypothesis on w, we get P C,Pw—:ga-T ® W,
jleledheied : T

o
Form the exact sequence of To-modulese

g

(%) 0O — P __E;_, T® W

To

C 0.

Localizing we get C_ = 0. Since (*) implies that T = T +vT =

= To + w2T, etc., we can ddentify T @ C with € and g with
o

s where g} W=+ C-> 0. Now form the exact sequences,

o
o -

0 ——a V — oW — % _ o _~o0
and
o g
Tor, (r,c¢) ——» T? V—aT@® W —— = T@ € — =0
o I
4] P T@W——g———-—bc—-—;—o

and compare with (¥¥),
If we show TorlO(T,C) = 0, then we can conclude that T @ V =
T
o

= ker g = P and moreover Vﬁ = W, since CW = 0.

: T
To prove Torlo(T,C) = O: From the exact sequence of
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TD—moduleS:

O —-» T —s T —
O

Hki
i

a]

we get for all i = 1

To To To T
0 = Tor; (TO,C) “r—> Tor, “(T,¢) —= Tor; (?;,G).

Assume tﬁat C dis finitely generated as a To-module. Since
w = 0, we can find an integer =r =2 1 such that w'e = 0,
Hence w' annihilates Torzo(f,c). On the other hand, the
condition (*) implies that multiplication by w 1is an automor-
phism of %; , and so also of Tori(%;,-). These two observalims
together enable us conclude that Tori(%—,c) = 0, if C is
finitely generated. 1In the general case? it is enough Lo obseave

that € is the direct limit of its finitely generated To-sub-

modules, so that Tori(%;,c) = 0, always.
o .

Let (¢M) be a commutative local ring, + an inde-
terminate, and 8 = 1 + tc[t]. We have C[t]s_= c(l 11 =

= C[tjﬁm,t)’ by remark preceding (5.9) Proposition 3.

Lemma 2 = Let w & CLt] be a Weierstrass polynomial of degree m.

Then CLtls + cltlw = c[+}, for all s € S.

.. _ cl ] ' . o
Proof:; Let B = eTETs 5 el B dis a fl;ltely generated
clt] .

Cemodule, since w 1is meonic, and -ET;TE is. Hence by

Nakayama's Lemma, it is enough to show that é%i = (0}. But

t™ - 0 in oo Thus it suffices to show that S S (o)
WE - ' © WB + tB ’

since B =MB + tB would imply B =TB 4+ B £ MB + tzB E...C

CMB + t"B = MB. Now

B = cl ¢ i we use
mB+tB ~ mclt)] + sclt] + scl+]
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if we use the natural mapping from cft] » B and 1irt mB + tB,

P \ B
If we now use the specialization t+=0, we seo that WELH
C .
~ WIGsToT = (0}, since s(0) = 1.
Proposition 2 - Let (c,m) be a commutative local ring, and w

a Weierstrass polynomial of degree m. Let

A

‘¢f[t])}, and B any commuitative C-algebra, Write

T = A% B. Suppose there be given P € @(T), and g ¢ ?(B)

such that Pw = AW % Q, then P = 4 % Q.

Proof: To start with we have the following diagram:

faithfully
C —=cltl —~cltlg— flat " 4 - ¢[[¢])

() 1 »[

cl +] wclt] ws T = 4

From this we form (4A) % B:

faithiully

B — = H ] *.;..B[tls__—fl-_at*__,z&% B

g s | |« ] r |

Ble] —— Bt o —— o A ® B
c

Putting T = B[t]s and T = A % B, we can rewrite

square II:

faithfullf
T f1lat P
0 1
ow Tw
To T
Since w is a Weierstrass polynomial, we get T ='7FF . Let

[a]
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W o= Q[t]ws € P(TOW). We have P_ =~ A % Q. We can thus apply
the Descent Theorem, which implies that there exists V € P(To)

such that (i) P =~ T ® V, and {idi) v, = W.
T
o

Lemma 2 guarantees that square I is an affine patching
square, since the comaximality property there is preserved under
base extensions of €. Hence we can define U € p(B[t]) by the

Cartesian square

u v

| l

alt], — o] g ==V,

so that (a) U, = qlt] ,, and (b) Ug= V. We conciude from {a)
by the strong form of Affine Horrocks Theorem that U=~ @[%].
Thus, we have from (i) and {(b) that P =~ T8 Ve T® al t] g =~

o o
= ﬁn? (To % Q) = A.% ¢, which is what we wanted to prove.
o

Theorem 1 can now be deduced easily.

rProof of Theorem 1: We are given that K % P and K @ Q are
’ k
isomorphic as K ® B modules. By (3.4) Proposition 2,
k
there exists w £ 0 in A such that P_= A ® g as A @B
w W o W o
modules., After a change of variables {Lemma 1) and multiplication
by a unit (Theorem 2) we may assume that w is a Welerstrass
polynomial in X = X; with coefficients in -
A = K[[X.,XnseeesX, .11, Write D = A’ ® B, an A'-algebra, *
172 a-1 b
and 9 = A" @ @ € P{D}). We have P = A @& Q'. We can apply
k w LY

Proposition 2 with C = A’, and Q = Q. We conclude that
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P=~a® Q' =~ a8 q, -getting what we wanted.
A . k :

Remark i: Let k -be a field with a non—triVial‘absolute'value
and let A = k{{xl,xé,...,kd}} be the ring of
-convergent power series over &k (Sée Artin [03). Then the proof

of Thearem 1 may be modified to show that .

Per(alt ,t,,...,t.7) is rree.

6. Quillen's Localization Theorems

We shall present a somewhat axiomatized version of the
theorem from which we can deduce a number of further important

applications, notably the following: If a finitely presented

algebra is locally a polynomial algebra, then it is the symmetr&

algebra of a finitely generated prejective module. This material

is taken from [BCW].
All rings and algebras are commutative, unless indicat-

ed otherwises.

A. Quillen Induction.

{5.1) Formulation.

We fix a commutative ring K._ Roughly speaking, the
localization theorems we present say that two objects A and B
over K which are locally isomorphic (i.e., Ap = By over L,
for all maximal ideals € ~of K) are isomorphic over K. The
following proposition formulates a useful argument called

Quillen Induction,
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Let Loc(K) denote the category of X-algebras of the

form L = K where S i1s a multiplicative set in K.

S’

Proposition 1 - Let P(L) be a proposition about K-algebras

L € Loc(K). In order that P(L)} hold for all

L € Loc(X), and in particular for L = K, it suffices that the

following conditions be satisfied:

1) Local validity: P(Km) holds for all maximal ideals M of K.

2) Specialigation: If L,L € Loc(X), and if there is a K-algebm

homomorphism 1L <+ L', then P(L} dimplies P(L').

3) Finiteness: If S is a multiplicative set in K, then
P(KS) implies P(Ks) for some s € S.

4} Sheaf condition: If L € Loc(K) and if s_,s; in L gene-

)

rate the unit ideal in L, then P(L_ } and P(le
(o]

together imply P(L).

Proof: Let I = {s € K: P(K ) holds}. By specialization, it
suffices to show that 1 € I. By-local validity and
finiteness, it follows that for é given maximal ideal M of K,
there exists s ¢ M for which Ks holds. Hence I is contain-
ed in no maximal ideal of K, and so we will be done, if we
show that I is an ideal. Let to’tl €I and.Let t € Kto +

+ Kt,. We want to prove that P(K,) holds. Write L = K; and

8, = image of ti in L, i = 0,l. Then we have L = Ls0 + le.

Moreover L i=0,1 and so the L are localizations

8,
1

of Kti. Since t; € I, it follows by specialization that

sS4 = Ktit’

i
P(LS_) hold for i = 0,1, The sheaf condition now implies that
i .

P(L) tholds.
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(6.2} Strategy of applications.
Without being specific we shall present a typical

application of the argument., We shall assume that A, B, ete,,
are some K-linear strucitures belonging to some "K—lingar category"
C{K); for example, they may be K-modules, K—algebras,'Kfiﬂqmaddms
etc, We want a criterion permitting us to pass from local iso-

morphisms to isomorphisms din C(K):

Local criterion for isomovphisms: If Ay = Xy in C(Km) for all

M ¢ Max(K), then A= B in C(K).

We now outline our approach to this result., This will '
help to motivate the subsequent development of this section.

Apply Quillen induction to the proposition about
K-algebras L € Loc(K): P(L): L % A= 1 % B in ¢(L); . i.e.,
P(KS): Ao = By in C(KS). We must check the four conditions
of (6.1) Proposition 1. Local validity is given as hypothesis.
Specialization is obvious, since base change is a functor.

For finiteness, it suffices to show that
IsomC(Ks)(AS,BS) = lim IsomC(KS)(AS,BS) (%)

SES .

where the directed system on the right side is given by
divisibility: Ks -+ Kst for s,t € 8. We claim that if A and
B  are finitely presented objects, then =« is wvalid, guaranteeing
finiteness.

In fact we will show the following:

(1) If A is finitely presented, then
FP(a): ¥ ¢ € ¢(x), HomC(KS)(AS,CS)=122 Homc(KS)(AS;CS).
=]

(ii) FP(4) and FP(B) together imply ().



f,(a) = 0,0, (a) = 0, where £ (x) = £, (XX

=8

To prove (i), suppose A is {initely preéented in

IR of

C(K). Then A is presented by a finite sei al,az n

generators, and a finite set of definiﬁg‘relations fl(a) = 0,
90X )} and

a = (aluaz,...,an). Here the fi(X) are some-K—mglfilinear
expressions for K-linear structures of the type under
consideration. So if € € C(K), we have a canonical identifice
ation

H(C) = HomC(K)(A,C) = {c = (cl,cé,...,cn) € c™s fi(?) = 0,

i=1,2,...,m}.

Since base change will preserve such presentations, we qbtéin an
analogous description of HomC(KS)(AS,CS) (= Hom{c(K)(A,CS)) as

H(Cg) = {e = (egsep,0nus0 ) € Cg £.(e) = 0, i = 1,2,...,n].

Moreover this identfication is functorial in I = KS. Now
C. = 1lim C and since n is finte o = tim ¢V, From this
—= E] 5 s
s€8 7 sE§
(i) follows, since c € H(Cg) = @ s € S and ¢ € C. such that
¢1g = ¢+ Then fi(c) = 0= fi(cl)s =0 so that T t€ 8 3
3 fi(cl)t = 0 = fi(clt), i=1,2,...,m, Hence H(CS) = Llim H(CS).

sES
To prove (ii): Assume that FP(A) and FP(B) hold,

and let u: A_ 4 B_. be an isomorphism. From FP(A), we have

S 5
= i i H I
u g for a lifting uy Asl le for some 54 € 3,
A -1
Similarly from FP(B), we get u = U,g for some. u,: 352 -+ Asz,
it] . i = H A H
with s, € 5 Write v u251°u152 Aslsz -+ 5152, then
Vg = IAS. We conclude from FP;A! again that there exists t € 8§
for which Vi = lA ;q Similarly, if we write v = u152°u2$l=
s1s8p , ,
lesz -+ lesz’ we have vs = lBS, whence Vo = lleszt' for
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F N
seme t € S, Then u 3 A r =+ B ' is a K
lsztt sls2tt slsztt

isomorphism with inverse Use t¢f+ Thus (ii) holds,
' . 1 .

’ -
slsztt

In practice thus, we can deduce fhe finiteness conditkn-
by the "finite presentability" of the objects in c(K){-

Finally, we turn to the sheaf condition. To simplify
notation assume L = X and that Ks + K, =K. We are given

[} 1
isomorphisms u; By * Ay din C(Kg ), i = 0,1. We want to
i

S .
i i .
prove that A and B are isomorphic in ¢(X). We have an
affine patching square: 7
K — K

|

K., — K
So So%1

Hence by affine patching, using the fibre product, we think of
objects in C(K) as a pair of objects in C{Kg ) and C(Ksl)
(o]
respectively, together with an isomorphism in C(KS 51) of the
‘ o _

last two objects localized. We have a diagram as below:
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We see that if u = u , then by the remark above, the fibre
0sq 1s,

product gives the sought for isomorphism wu: B <+ A such that

u = u,, i = 0,1, and we are done.

Of course, there is no a priori reason why we should

have
(*) 1 = u -
08y 150
Next, we ask if we can replace u and u,; by dsomorphisms

which satisfy (*). The freedom of choice we have is to replace

r

uy by u, = uinvi, where the v; are automorphisms of Bsi,
i = 0,1. Then the relation u’ = ul is equivalent to
os, -lso
i -1 ~1
{*x) v v =1 u = u € Aut(B ).
lso 054 lso os; 8,57

Let us introduce the following motation: For any

commutative K-algebra L, let 6(L) = Aut (L @ B). Then we

C(L)

have u € G(X_ ). The relation (**) means that we wish %o have

sosl

uwe ek ), «G(K_)_ . If we can ahieve this, then we would
51’8, So'Sq
succeed, since then we can appeal to (6.1) Proposition 1.

In general however, this is unattainable, However in
the setting of Quillen's Localization Theorem as well as others,

there is a naturally defined subgroup GO(L) of G(L) to which

we can make wu belong, and we will be able to show that

(***) G (K

o s 8 ) = Go(Ks )s 'Go(Ks )g.
0 1l "o o

1 %1
Thus in what follows, we aim for the local criterion

for isomorphism in C(K)) imposing some finite presentability

in the category, and choosing Go adequately to guarantee (***).
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The strength of Quillen Induction is in the sheaf
condition, which enables us to pass from local isomorphisms to
global omes, and as such it should be thought of as gluing of

isomorphisms,

B, Axiom Q and Scalar Operations on Group Functors.

(5.3) The formula GO(LSOSI) = G (Lg )Sl-GO(le)SD.

o
We now look for formulas of the type (***) indicated
in {6.2) and want to interpret Go' First some notation:
G will denote a functor from the category C(K) of
commutative K~algebras to groups; a K-algebra homomorphism
f: L+ L' yields a group homomorphism G{f): G(L) » o{L'). 1In
special cases, we use a more suggestive notation, Localizatiom:
If f: L % Ly with S a multiplicative set of L, and G(f);:
G(L) = G(LS), we write wug for the image of u € G(L) under
G(f); we also write G(L)S(E G(LS)) for the image of G{L)

under G(f)}. Similarly, if & = {l,s,sz,...}, we write u, ete.

If B € Spec K, we write HB etc,

Polynomials: Let T be an indeterminate and
f: LI1] 4+ L', write £(T) =t € L', Here L’ is an L-algebra.

If u € 6(L{T])), we write u(T) = u, and 6(f): u(T)— ul(t).

Example (i): If s € L, and f: L[T] + L[T] is defined by

f|L = I; and £(T) = sT. Then for wu € G(L[T]),

G(f)(u) = ulsT).

Example (ii): Let f: L[®] 4 L be defined by f|L = 1, and

L
£(T)

0. We write u(0) = ¢(f)(u), and
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g(TLLT]) = {u(T)'§ g(ltl}) | u(o) = 1}. We have an exact
sequence ‘

1 +,G(iL{Iﬂ) + G(L{ T) G(r), c(L).

With these notations, we make two definitions. Examples

will be given in the next two subsections.

Definition 1 - Let G be a group functor from commutative
. K=algebras to groups. We say that G satisfies
axiom Q, if given a commutative XK-algebra L, an element s af..
L and an element u(T) bf G(TLS[T]), there is an integer
‘r=2 0 and an element v(T) in G(TL[T]) such that u{s'7T) =

- V(T)S,.

Definition 2 - Let G be a group functor as above, A gcalar_

operation on G consists of an action LxG(L) =
+ G{L) for each commutative K-algebra L, denoted (s,u)r — Su,
. satisfying the following:

1 8.t st s s s
u = u, {"a) = ", uv = us v

for s,t € L, u,v e &L). Fﬁrther these actions are to be natural),
in the sense that if f: L=+ L' is a K-algebré homdmorphism and
if the.corresponding map G(f): G{L) » G(L') sends u ¢ &(L)
to u € G(L'), +then it sends °u to £(e)yr for s € L.

The action of L on G{L) amounts to a multiplicative
monoid homomorphism -L <+ End (G(L)). In particular u+=u is
an idempotent emdomorphism of G(L). If we denote the image of

this endomorphism by °6(L} and the kermel by GO(L), ‘then

¢, (L).= {uee(L): ®m=1}. Thus G(L) 4is the semi-direct
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product G_(L) x OG(L), and this decomposition is functoriai
in L,
The relevance of these definitions is brought out by

the following result:

Theorem 1 - Let G be a funchor from commutative K-algebras to

groups. Assume that G satisfies axiom Q and that

G admits a scalar operation. For any commutative K~algebra L,

let GO(L) = {ue€ e(L): u = 1} . Suppose s,05; € L and
L = LsO + le. Then we have

Go(Lsosl) = Go(Lso)él : Go(le)so'

The proof of the theorem depends on the following lemma.

Lemma 1 - Let G be as in Theorem 1. Let L be a K-algebra,

5 €L, uct G(Ls)' Then there exists an integer

r = 0 such that if a,b € L and a = b (mod Ls¥), -then

(bu)(au)-l = v, for some v ¢ G (L).

Proof: Let Y, T be indeterminates. We identify G(LS) with a

subgroup of G(LS[Y,TQ). Put w = w(Y,T) = ((Y+T)u)(Yufde

m

G(LSEY,T]). Clearly °w = 1. For, °w = (0(Y+T)u)-o((Yurl) =

ou 0((Yu)-l) = 0(Yu(Yu)-l) = 01 = 1. Also W(Y,O) = 1, sp

5

)

€ G(TLSEY,T]). By axiom Q conclude that there exists T = 0
and  v(Y,T) € G(TLLY,T]) such that v(¥,t), = w(¥,s"T). Since
% = l, we can replace v by (Ov)-l-v without affecting the
above conditions and so we may further arrange that % = 1.

Now suppose a,b € L and that a=b (mod Ls¥), Write

b=as+ st, with t € L. Then wv(a,t) ¢ ¢ (L), and v(a,t) =
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= wia,s"t) = (a+srt)u (a;)_l = bu(au)_1 = bu(au)"1

, Aas we

wanted.

Proof of Theorem 1 (Quillen): Given u € GO(LS Sl), we apply
o

Lemma 1 to the localizations L_ =+ L = (Lg) )
Si 5051 i sl_i
i =0,1. As a result, we can choose 1 Ilarge enough to work
for both i = 0 and i = }. For such an r, whenever X,y ELSi

satisfy x =y (med Ls_-si i)’ then there exist v, € Go(Lsi)
i S1-

such that (vi)S o= (yu)(xu)-l'

Now we are given that Ls0 + le =L, say 1 = a+b

-1 -
with a € Lsg and b € Lsi. We write wu = [1u(au) ][au(ou) l],

since lu =u and %u = 1. We see that if we take ¥=1, x=a

r
1}

. ' 1 ra y=1
and there exists v € GO(LSO) such that (Vo)sl = u("u)".

and i = O above, then y-x = b € Ls so x = y (mod Lg si)
)

Similarly by taking v=a, x=0 and i=l we get ¥-x = a € Lsg
- ™ ’ .
so that x = y (mod leso)' In this case we get v, € Go(le)

. -1
such that (vl)so = ®u(®u)" 7. Thus

v = (vo)sl'(vl)so € Go(Lso)sl'Go(le)so'

¢. Scalar Operations on Polynomial Extensions.

We begin with examples of scalar operations of interest
to us. FROM NOW ON WE MAKE THE CONVENTION THAT THE SYMBOL -&-

INDICATES @ OVER THE BASE RING K,
(6.4) The functor G'(a) = e(alT]).

Example 1 - Let G Dbe any functor from commutative
K-algebras to groups, and le* T be an in-

. determinate. Define a new functor G’ by &' (L) = G¢(L{T]).



-91-

If u =u(T) ¢ (L) and if s € L, we can define Su = u(sT).
It is easily checked that this defines a scalar opefation on @&
The map u+—=“1 is the retraction n(T) u{0) Ffrom a(LiTl)

onto G(L) = %@’ (L) with kernel ¢’ (L) = a(ril]).

We next verify that the functor e satisfies axiom Q,
if G does. Let there be given an element s of L and an
element u(Y) of &' (YL [Y]), Y being an indeterminate. Now
G’(YLSEY]) = G(YLS[Y,T]). But G satisfies axiom Q. So there
is an v 2 0 and a v(Y) € ¢(YE[Y,T]) such that wu(s’Y) = V(Y)S;
that is, v{(¥) € &' (YL[Y]) such that u{s'Y) = v(Y)_, which

shows that @' indeed satisfies axiom Q.

Theorem 1 - Let G be a functor from commutative K~algebras to

groups, satisfying axiom Q. Let L be a commutative

-K-algebra, and 8,381 € L such that Ls0 + le = L. Then

- G(TLsosl[T]) = G(TLSOET])Sl-G(Tle[T])Sc;-

Proof: Let G’ (L) = ¢(iLT]I). Ve verified above that G’ satisfies
axiom Q and that it admits a scalar operation, Moreover
G;(L) = G(TLLT]). The result thereupon follows from (6.3)

Theorem 1.

Example 2 - We can generalize Example 1 as follews, Let H =

= Ho d H, &... be any commutative graded K-algebra

1

with HO = K. We put i= HfBHd%... We have an exact sequence

- -——

O —H —H

K — 0, £ Ybeing the retraction. If G
is any functor as before from commatative K-algebras to groups,

we define a new fumnctor G’ by G'(L) = G(I8H). If s € L,
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let ﬂss el + L®H be the graded L-algebra endomorphism defined

by es(x) = s, if x ¢ I®H . The following properties are

easily verified:

o (1) ei = Tdentity

ii E &€ =g for s,t ¢ L
s t st

(iii) If f: L+ L' is a K-algebra homomorphism sending s

4

to s', then the following diagram commutes:
fe 1H
Le H L eH
€ e’
s s
7
L ®H ) 1H L' @ H

Thus G’ admits the scalar operation defined by “u = G(es)(u)

for s € L and u¢ 6' (L), since G(es)= ¢' (L) » ¢'(L). The
5 ' G(1; 8¢)

map ui—= "  is the retraction G(L8H) — "% G(L) with

kernel G;(L) = G(I®H), If we put H= U[T], we get Example 1.

We again verify that the functer G’ satisfies axiom
Q, if G does, If we are given an element s of L and an
element u{T) of G'(TLSET]), we note that G'(LS[T]) =
= o(r [T]en) = G({L[’I‘]@H)sal and that & (L [1]) = ¢(r r_[1]en)
= G(T(L{TJ@H)SQl). Since G satisfies axiom Q, there is
an r > 0 and a v(T) € G{T(L[TI®H)) such that V(T)Sal =
= u{(s"®1)T). Hence G’ satisfies axiom Q.

This leéads to the generalization of Theorem 1.

Theorem 2 - Let G be a functor from commutative K-algehras to
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groups satisfying axiom Q. Let H = HO & H1 B.e. be a graded

K-algebra with H0 =X, and let €; H+ K be the retraction

with kernel H = Hl @ H2 @ess «» For any commutative K-algebra L,
G(1,@¢)
—_———

put G{LeH) = Ker(G(igH) G(L)). 1f S,18; € L are_such

that Ls_  + Ls; = L, then a(L, _ ®f) = 6(L, ®f) (L, ®H)_ .
071 [} 1 1 o

Proof: Write G'(L) = G(I®H). We have just seen that @'

satisfies axiom Q and that it admits a scalar operétion;
Also G;(L) = G(1®f). The result follows from (6.3) Theorem 1,
if we use the commutativity of tensor product formation and

a4

localization.

B, Scalar Operations on Fiitration Preserving Homomorphisms of

Graded Algebras.

(6.5) Definition,
We consider graded NOT NECESSARILY COMMUTATIVE K-algebras

A = AD & Al @eas . We eqguip A with the descending filtration

defined by A(n) = An B An+1 @Bess; n=0,1,2,... . Let

B = Bo @ Bl €... Dbe another such graded K-algebra, and u: A + B
a K.algebra homomorphism preserving filtrations; that is,

u(A(n)) € B(n) for all n = 0,1,... . As a K-linear map u can
be decomposed into homogeneous components u = u0+ul+u2+...,
where up: A+ B is homogeneous of degree p for all‘

p: up(An) = Bn+p for all n, and where for a given a € A,

up(a) = 0 for all but finitely many p. The fact that u is a

ring homomorphism is expressed by the conditions: uo(l) = 1 and

* . u (ab) = % u_(a)u_(b),
(*) n( p+g=n P q
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for a,b £ A and all n = O. Also, it suffices to know {*} for
homogeneoﬁs elements of A,

s .
 Now, if s € K, define ‘u: A=+ B by “u = u_ + su, +

52u
+ 1y
(*u)_(ab) = stz u_{a)u (b) = L (Pu) (a)(Pu) (b), for
n - P q - P q
p+g=n . p+g=n
all n and a,b £ A, Hence Su  4is again a homomorphism of

+eea 3 that is, (su)n = snun. We have —u(1) = 1, and

filtered algebras from A to B,

We want to speak of scalar operations admitted by a

suitable functor . For this we see that lu = u and that

s
t st o
("u) = ®%u, for s,t € K. Moreover u = u,. Suppose

v: B4 C 4is a filtration preserving algebra homomorphism, the

(Vou)n = ¥ ~wvmu_, so (s(vou))n = Sn(Vou)n = I s™v sug =
p+g=n1 pd P+a=n
= I (5+)_ o Pu) = (®ve®un)_. Hence S(vou) = (%v)o (Pu).
p+g=n P a n L

It follows from this that if u dis an isomorphism and if u
is also filtration preserving, then the same is true of Su.

lLet L be a K-algebra, Then I®A and I®B are
graded L=algebras, Thus the scalars- s € L. operate as above on
the filtration preserving L-algebra homomorphisms u:I®A -+ 18B.
If f: L+ L' is a K-algebra homomorphism, then one sees easily

that for s € L, the following diagram is commutative:

s
s — 2 = 18B

@i i Nl

r ?

L'@a ——(—T—ﬂ_—'—*'L @B
fis (1L1@u)
L

Now for a fixed graded algebra A as above, let

A .
G (L) = Filtered L-algebra autmorphisms of L®A, ~Ffor any
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commuetative Kealgebra I.. Then GA is a functor from
commutative K~algebras to groups. The discussion above shows
that the maps u-+ “u (s € L, u¢ GA(L)) define a scalar
operation én the functor GA. Netice that passing from u  to
°n = u, o= gr(u) is passing to the associated graded homomorphism
induced by u, providing the retraction GA(L) -+ oGA(L), where
0GA(L) is the group of automorphisms of the graded L-algebra LoA.
If we denote by Gi(L) the kernel of this retraction, then

Gﬁ(L) = {uc GA(L): gr(u) = l,gx} - In this way GA(L) is the
semidirect product GA(L) = Gi(L) b oGA(L).

It is a fact that the functor GA satisfies axiom Q,

when A is a finitely presented K~algebra, We refer the reader

to [BCW] for the proof.

(6.6) Axiom @ for ct.

Recall that a finitely presented K-algebra A is a

not necessarily commutative K-algebra of the form
‘K[XI’XE""F ,Xn} ,
(T, (X) e e 2, (X))

K-algebra on non-commuting indeterminates and (fl(X),...,fn(X))

where R =.K{X1,X2,...,Xn] is the free

is a finitely generated ideal of R generated by some finite
set fl(X) = fl(xl,Xz,...,Xn), fz(X),,..,fn(X). Hence we can
write A = fol,xz,...,xn], x5 denoting the class of Xi. Thus
X = (xl,...,xn) € A" is a sequence of elements generating A

as K~algebra. If B is a K-algebra, and u: A+ B a K-algebra
homomorphism, then wu is determined by ufx) = (u(leu@%)”",u@%»

€ B". We thus obtain a bijection wur=u(x) from Hom,__. (4,B)

alg
to H(A,B) = {y € B™: fj(y) =0, j=1,2,...,n}.

Let S be a multiplicative set in XK. TFinite
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presentability of A dimplies by (6.2) the validity of
FP(A): ¥ K-algebras C,

HomKS (AS,CS) = lim Homg (As,cs),
s€3 s
and if both A and B are finitely presented algebras, then

IsomKS (AS,BS) = lim Isomy (AS,BS).
S€S 8

Proposition 1 - Let A be a possibly non-commutative finitely

presented K-algebra. For any commutative

K-algebra L, 1let GA(L) = Autp 0. (1®a), i.e., the group of

ﬁ—algebra autqmorphisms of L1@A. Then the functor GA attaching

to each L <the group GA(L) satisfies axiom Q.

Proof: Clearly it is enough fto treat the case when L =K, In
this case I®A = A. Let there be given an element s of

K and an element u(?) of GA{TAS[T]). This means u(0) is

KS[ ] -a.l,g(ﬁ's[‘:Ij ’As[ ]} =

= HomK-alg (A,AS[T)) = H(A,As[Tﬂ), by the remark and notation

the identity automorphism of AS. Now Hom

above. Hence we can identify u{T) with the element ¥(T) =
= u(T)(x) in H(A,AS[TQ) € AS[T]n, where x = (xl,...,xn) is
a sequence of generators of A as a K-algebra3 notice that x
generates A_ as a K_-algebra, and so the condition u(0) = lAs
.implies that modulo TASETQ we get the identity map, Hence
v(T) = x + Ty,(T), for some yl(T) € AS[T]n.

We can clear denominators by choosing ry large

. r r

enough so that s 1 yl(s 1T) = wl(T)s for some wl(T) e AlmTI™.
i ; r

If we put w(T) = x + Twl(T), then w(T)S = y(s lT). We have

f {(w(T))_ = 0, which means there is an v, 2 0 such that
J s 2
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- :
¢ 2 fj(w(T)) = 0, Expanding formally, fj(w(T)) = fj(x+Twl(T)) =

= fj(x) + Tf}(w(T)) =0 3 Tfa(w(T)). On substitution, this

. ra ' - Ta ' To
gives s Tfj(w(T)) = 0. B8imilarly we get s Tfj(w(s T))= 0,

Moreover we can choose one T, to work for all j = J,....,0.

T
If we now replace w(T) by w(s 2T), we get fj(w(T)) = 0,

for all j; di.e., w(T) € H(4,aA[T]). With this replacement, we
r.+4+r
1 2 = I, +r

3= Fatrar

Analogously, if we work with the inverse automorphism u(T)-l,

also have w(T)5 = y(s T) = y(srBT), where v
we get a y' (T} = u(T)—l(x) € H(A,ASET]), a w (F) = x+Tw1(T) €
€ H(a,al1]) and an 1, such that w’(T)s) = y'(sruT).
Replacing T suitably, we can further arrange r3 = Ty The
endomoxrphisms w(T) and w (T) of 4[T] have composites
corresponding to elements of H(A,A[T]). We shall denote these
composites in H(A,A[T]) by w(T)ew' (T) and ' (Tlew(T).

Since w(0) = w'(0) = x, we can write w(T)ew'{T) =
= x + Tz(T) and ' (T)ew(T) = x + T2 (T}. On localizing to

As[T]’ w(T)S and w'(T)S correspond to inverse automorphisms,

which in turn correspond to x. Hence (Z(T)s = (Z'(T))s =0
from which, we can get an m =2 0 such that smz(smT) =0 =
= smz’(smT). Hence w(smT)aw'(smT) = X = w'(smT)ow(smT). This

means that W(smT) defines an automrphism V(T) of aAlT].
Clearly +v{0} = 1, and v(T)s = w(smT)s = y(sr3+mT) = v{s*T) =
= u(s™T), with = = Tq+m. This proves Proposifion 1.

(6.7) Asiom o for oLy

We will devote the rest of the section to verification

of Axiom Q for some important functors.

If E is any ring @ot necessarily commutativeL we
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denote by E¥ its group of units., If J is a two-sided ideal,

we put -
(l+J)* = Ker(E* =+ (%ﬂ ).

Proposition 1 (Quillen) -~ Let E be a ring(not necessarily

commutative), & an element in the center of E,

and T an indeterminate. Given u(T) ¢ (1+TEs[T])*, there is an

rz=0 and a v(T) in (1+TE[T]}* such that u(srT) V(T)S.

Proof: Write u(T) = 1+Tu1(T) and u(T)‘l = l+Tu1(T). For r;

1"1 rl
sufficiently large, the elements s ul(s T) = wl(T)s
r
1

s T1 _ ’ ¢ _
and s ul(s T) = wl(’.[‘)S for some w,,w; € ElT)]. Put w(T) =

1+ Twl(T) and w (T) = 1 + Twi(T); we then have w(T)S =

ry ¢ Ty -1 f
= u{s "T) and w (1), = u(s "T) . Thus w(T)w' {T) = 1+TX(T)
and w' (T)w(T) = 1 + X' (T), with X(T)S =0 = X'(T)S. Hence

r T r r

z 0 such that s 2X(s ) = 0 and s 2X'(s 2

r
2

there exists r,

r
= 0, Put (T} = w(s'zT) and v’ (T} = w' (s
T +r,

T). Then v(T)5 =

; T2 T2
T} and v(T)v {T) = 1 + s “TX(s “T) = 1

T2
w(s “T) = u(s
s
?

1‘2 I‘2
and v' (T)v(T) = 1 + 8 T X’ (s “T) = 1. Thus +(T) is a unit

and’ we are done,

Corollary 1 - Let E ‘e a K-algebfa(not necessarily commutativel

‘'Let G be the functor attaching to each commutatie.

K-algebra I the group G(L) = {L %‘E)* of units of L ® E,
™ K
Then G satisfies axiom Q.

Proof: The result is immediate from Proposition 1.

Corollary 2 - Let P be a finitely presented Kamodule and lei

GLP(L) = Aut, . (IeP), for each commutative
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Kealgebra L. Then the functor GLP satisfies axiom q,

Proof: Let E = EndA(M). The natural homomorphism ISE -+

+ End . (I#M) is an isomorphism, when L is flat over
K, since P 4is finitely presented., Hence on Flat K-algebras 1,
GLp{L) coincides with (I8E)*™ of Corollary 1. This shows that
axiom Q helds, when L = K, The general case follows by base

change, replacing X, P by L, 18P respectively.

F. Localization Theorems for Finitely Presented Algebras.

(6.8) Localization for KX[T]-algebras.

Theorem 1 - Let H = Ho 5] H1 €B... bhe a commutative graded

K-algebra with H_ = K. Put H = H LM, ..,
A

and let A be a finitely presented H-algebra. Write ®a = —
HA

=He® %, ; = s H -algeb f
and let B H > A If %m Qm as ﬁm algebras for all

M € Max(K), then A = B.

Proof: Apply Quillen Induction ((6.1) Proposition 1) to the
proposition: P(L): I®A = I®B as I®H algebras, for

L g Loc(K). Local wvalidity is just the hypothesis.Spécializ&ﬁpn

is obvious. The finiteness condition is guaranteeed by the

finite presentability of A and B (see (6.2) and (6.6)), It

remains to verify the sheaf conditon, Modulo notation, we may

assume L = K. Suppose 8,18, € K such that Ks_+ Ks; = K, We

1
want to show that the validity of P(KSO) and P(Ksl) imply

the validity of P(K).

We want to apply (6.4) Theorem 2. We take for G the
o o,
functor & * of (6.6) Proposition 1: ¢ “(L) = AutL_alg(D®°A),
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Q

for each commutative K-algebra L. It is clear that A ds a

finitely presented K-algebra, since ~ A= A % K. From {6.6)
Proposition 1, the funcior GoA satisfies Axiom Q. As in (6.%4)
Example 2, we define G (L) = GOA(LEH), for any commutative
K-algebra Lj; then the functor G’ also satisfies axiom Q and
admits a natural scalar operation, Specifically, GOA(L) =
(12°4) ana ¢’ (L) = AutnaH_alg(L @ H® °A) =

(18B). In view of this, we write G' (L) = a®(L).

AutL—alg

AUutioH alg
If ug GB(L), then Cu is the canonical map obtained by

passage modulo H. Hence GE(L) = {u € GB(L)= u =1} dis the

kernel of reduction modulo H.

We are given Hg -algebra isomorphisms u,: Bg, = Az »
i 1 L a
i=0,1, Passing modulo ﬁs_, we get
1
Bg A
i 5
oul = KS ® 'IJ.:L- 1 - — = *
iH B, B H, A
53 i 0% 53 8y
These two last objects are OAE . Since As -+ OAS is a
i - i i
-1
M (o] 0
retraction of Asi + A, , we replace u; by ui(HS_ @ ui)
i i Ksi
and arrange %u, =1 , i = 0,1,
i o
A,
i

Now we try to make our gluing of jisomorphisms, We have

the following diagram:

Bg B -~ . B
o 8,57 51
™ uosl uls0 ul
A A
Sg ‘ 8,51 54
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=1 B A
u=nu u € Aut (B } =6 (K ) =6 “(H ).
08, ls0 o8, -alg 5551 8,5, 5,51
Modulo H, we have 'K s ® u=1, « Thus u ¢ G%(Kg sf'
oL H A ©
SOSI _Sos]_
we can write
-1 =1
u = u u = Vv v
084 1s0 08, 1s
for some v, € Gg(Ks ), i=0,1 ((6.4) Theorem 2).
i
. : -1 s
Replac;ng u by u; o= uev,, we cet uOSl ulso =
-1 -1
= = * 1
= vosl uos1 ulso vlso = 1 from (*). By the affine patching

argument in (6.2) we conclude that there exists a H-algebra homo-
morphism w: B + A such that Wsi = u;, i =0,1. Thus w is
the sought for isomorphism implying the validity of P(K).

We want to deduce Quillen's Localization Theorem as a

Corollary to Theorem 1, For this we need a passage from algebras

to modules:

Lemma 1 - Let M and N be K-modules. Suppese the symmetric

algebras S5(M) and S(N) are iscomorphic as K-algebras,

then M and N are isomorphic as K-modules.

Proof: Let s: S(M) + s(N) be an isomorphism. TFor x € M,
write s8(x) = v(x) - t(x), with t(x) ¢ X and +(x) in
the augmentation ideal S _(N). Let % be the automorphism of
(M) defined by %(x) = x + t(x) for x € M. Put w = sot.
Then w(x) = v(x) for x € M, So w is an.isomorphism of
augmented K-algebras, We thus have K-module isomoerphisms
S+(M) S+(N)

M= = >~ N
(s,())* (s, (")*
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Corollary 1L - Let H = HO 5] Hl ©..,. be a commutative graded

K-algebra with H_ = K. Put H=H &H, &... .
Let P be a finitely presented H-module, °p - él-, and Q =
. HP
o
= H® "P, Suppose By > Q, 2as Hj-modules for all M € Max(K},

then P = Q as H-modules.

Proof: In Theorem 1, we take A = SK(P), the symmetric algebra

of P over K, Then A is a [initely presented

H-algebra, since P is a finitely presented H-module. We have
0 A . P [s] .
B=H® "A=H ®-§X. The module homomorphism P 4-ﬁ5-= P gives

an algebra homomorphism SK(P) = SK(OP) whose kernel is

generated by HP; i.e., the ideal sK(ﬁP) =HEe s(

A= H SK(OP) = s (He °p) = si(a).

Ky © A sK(gm) and By = SK(gm).

Thus the hypothesis dimplies Am = ﬂm as qm—algebras. From

P}. Hence

[¢] 2} O
sK( P) = "A. Alse B =H %

n=e

Alsc for M € Max(K), Ay

Theorem 1, we conclude that A = B as H-algebras. By Lemma 1,

P=Q as H-modules.

Corollary 2 {Quillents Localigation Theorem) - Let K[T] Dbe the

polynomial ring in one variable T over a commutative

ring K., and P a finitely presented K[ T] -module. Put
P p . R
P =75 and Q= POETﬂ. If B, and Q, are isomorphic

gm[Tl-modules for all T € Max(K), then P = Q@ as K-modules,

Proof: In Corollary 1, take H = K[ T] with the natural grading.
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7. Symmetric and Invertible Algebras

A. The Automorphism Group of the Symmetric Algebra,

(7.1) Ga,(K) = GA;(K)-GLP(K)-E*.

Let P be a K-module and let B = SK(P) be the symmetric
algebra of P over K. We have a grading B = BJSBfB..., with
Bo = K and Bl = P, An algebra heomomorphism u: B =+ ¢ where ¢
is any commutative algebra is determined by its restriction to P,
i.e., by u|P: P+ C. On the other hand any K-linear map v:iP + C
can be extended %o an algebra homomorphism wu: SK(P) + C. We
write B = BfﬁBéﬁ... which is the augmentation ideal of B. Ve
have a descehnding filtrgtion on B given by B™.

Let GAL(K) = AutK_alg (SK(P)) be the group of K-algdwn
automorphisms of SK(P). Three subgroups of this group are of

interest to us:

(i) GLP(K) = {u ¢ GAP(K): u(P) € P}; these automorphisms are
graded algebra automorphisms of B,
(ii) GAE(K) = fu ¢ GAP(K): u(?) ¢ B} ; +these are automorphisms
preserving augmentation; they also preserve the descend-

ing filtration on B defined by ﬁn.

Given wu € GAB(K) the associated graded map gr(u) ¢
€ GLP(K) is extended from the automorphism P —2e B 4 ﬁ/ﬁz =P
of P. Then u -+ gr{u) is a retraction of GA;(K) onto GLP(K)

Denoting its kernel GA;(K), we have the split exact sequence
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1. GA;(K) C_GA;(K) —”52—5 6L, (K) » 1.

jQ... for

all x € P. We have a semidirect product GA;(K) = Gal (K)nGLy (K).

u € GA%(K) if and only if u(x) = x+y with vy € B,®B

The map &r 1s sometimes called the Jacobian at O.

(iii) Let AfP(K) = {u ¢ GAP(K): u(P) = KoP}; these are the
automorphisms preserving the ascending filtration:
B, ;(BO®B1)E...E(BJBB£®...®BH),... . The notation Af is
suggestive of the affine group, where the maps consist of a
K.linear map and a translation. Again grade defines a map

A, (K) —&T > aL,(K) + 1

by uir— gr(u). To find the corresponding kernel, we see that
if +: P+ K is a linear map, then the map t: P+ KEP defined
by t(x) = x+t(x) belongs to ker(AfK(P) -+ GLP(K)). Conversely,
if u is in the kernmel, then u{x) = x+t (x), with t,(x) € K
for all x € P. Hence u = %u. Thus if we write

P* = [t € GA (K : t(P) € K, then we have an exact seguence
P

1+ P* 4 Arg(K) - T, oL, (K) + 1-
t—t )
If we denote the image of P* by Ei, we have a semidirect

product Af,(K) = P* % GLP(K);
s ) ¥ o %
Proposition 1 = GAP(K) = GAP(K)'GLP(K)-P = GAL(K)-P" =
2
= GAP(K)-AfP(K).

Proof: Let u € GAP(K). Then for x € P, we have u(x) = t{x) +

+ v(x), with t(x) € ¥ and v{x) € B. The map t
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defined thus is in P* and so we may consider ¢t € AfP(K).

Write u, = uo(fz). Then for x ¢ P, ul(x) = u((t;)(x))

u(x-t(x)) = u(x) - t{x), since +{x) ¢ K. Thus u, (x) =

vix) € B i.e., u; € GA;(K). Notice that the inverse of (-t)

Jxet(x)) = (F8)(x) +

= 1, and similarly

is t, asince for x £ P, (:¥)°E(x) =

-t
+ {x) x-t(x) + t(x) = x, Hence (~t)ol

to{(-t) = 1. From uy = w (=t), we get u = u.o% ¢ GA;(K)'P*.

o] ) _ ’
Hence GAL(K) = GAL(K)-P* = @A

1
(K)*GLP(K)-E¥, from {ii) above.,

The third equality follows from {iii) above,

For any commutative algebra L, put GAP(L) = GA L)=

L@P(

I®2P) = Aut L® SK(P).
X .

L-alg SL( L-alg

We obtain a decomposition as in Proposition 1,

Proposition 2 - Let L ©be a commutative K~algebra. Then

GAL{L) = GAL(L)*GL,(L)-(18P)" = GAZ(L): (Ler)* =

= 6AL(L)-Af (1),

Theorem 1 - Suppose P dis a finitely presented K-module, and L

a_commutative K-algebra. Ir so,sl € L. such that

Lso + le = I.,, then N

ca_(L ) = eal{L_ ) -Af (L Yeaa (L ) .
P 85,8 P 8,'81 P 8.5, P 81785,

We first abbreviate our notation and write GA(L) = GAp(L),
G(L) = GA;(L) and G_{L) = GALIL). (See proof of Theorem 1 for

the choice of the motation.) Similarly, we write H(L) = Af (L),

(18P)*. With these notations, we have

1}

H_(L)

ga(L)

a{L)-H_(L) = G (L)*H(L). We shall first prove some

lemmas.
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Lemma 1 - The functor G satisfies axjom Q.

EEEEE‘ Given s € L, u € G(TLSET]), we want to show that there
exists r= 0 and v € G{TL[T]) such that V(T)S =

= u(s™™). By (6.6) Proposition 1, the functor GA satisfies

axiom Q, since SL(UEP) is a finitely presented L-algebra;

Since G(L) £ GA(L), we get an r; 2 0 and v {(T) € Ga(TL[ T1)

such that vl(T)s = u(srlT). By Proposition 2, we can write

v, (T) = VG(T}-VHO(T), with v {(T) € G(TL[T]) and vHO(T) €

¢ HQ(?L[T]). Localizing we get v,(T)_ = VG(T)S~VHO(T)S. But

v (T}, = uls 1) € 6(1L_[T]1); hence vy (T)_ € ¢(TLLT]) n

n H (TL [T]). We conclude that vHO(T)SO= 1. Now vHO(T) €

€ HO(TL[T]) and so vy (T)s = 1 dimplies that there exists

2 . 1, Take r = ry+r, and v(T) =

= vl(srzT) = VG(srzT) ¢ e(rlTl). Wow w(T)_ = vl(srzT)s =

r, = 0 such that vy (s¥3T)

= u(s'T), and we are done.

Since GA;(L) is the group of filtration preserving
automorphisms of B, we know from (6.5) that the functor G
admits scalar operations, Hence if u € G(L) and a € L then

%u € a(L).

”

Lemma‘2 - Let L be a commutative K-algebra, u € GO(L5 s ) and
o~ 1

w € H(L Then there exists r 2 0 such that

sosl)'

: r -1,a
whenever a € Ls_, we have W 1( u)w = A for some
Thenever we have g~ =of some

Y.

v, € GA(L51

Proof: Let. L' = Lg and s’ = s . Hence L’y = L . We have
T ————— l o 8 slso

-1T
w

~lo uwC GA(TL;;[T]L

w "% w € 6A(LL,) which means that

Axiom @ for GA dimplies that there exists r =2 0 and +(T) €
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r
€ GA{TL'[T]) such that V(T)5 = w_l'SOTu w. Now if a ¢ Lsz
T
' st
put a = sit. Then w-; Mwewl % nwa v(t)s with
o
v(t) € GA(L') = GA(LSI). I v, = v(t), we are done.

Proof of Theorem l: As remarked in the beginning, G(L)} is the

group of filtration preserving automorphisms of the L-algelna
D@SK(P). Hence by (6.5), the functor & admits scalar
operations, Moreover GO(L) is . precisely GA;(L). By Lemma 1,

G satisfies Axiom Q. Hence the conditions of (6.3) Lemma 1 are

satisfied. In that lemma, we take L = Ly s s = Sy According-
o

ly, we get an integer ry = 0 satisfying the conclusion of that
lemma.

We want to prove that GA(LSOSl) - GO(LSO)SI-H(LSOSl).
GA(L_ }_ . Let g€ Ga(L ). By Proposition 2, we can write

CRET 5,571

g = uwv with u ¢ Go(Lsosl) and w € H(Lsosl).

For this choice of u and w, we get an Ty = 0 as
in Lemma 2. Choose r = max(rl,ra). From Ls°+le =1, we get

Ls” + Lsi = 1. Hence there exists x ¢ Lsz and ¥ € Lsi such

that 1 = x+v.

We write g = uw = [lu(xu)_1] [wﬂ[w-l%ﬁ w]. In {6.3)

Lemma 1, take a=1l, b=x; we see that l-x € L si (after
o
taking images in L. ); so lu(xu)—l = v for some
o 084
Ve € GO(LS ). Now, if we take in Lemma 2, a=x, we see that
S50
x € LsT € Lsr2 and so w la.  wev for some v, € GA(Lg ).
o o’ u 1s, 1 81

Also w € H(L

Sosl). Thus g = vosl-w-vlso € GO(LSO)Sl-H(Lsosl)-

GA(LB ). , which proves the result.
"Bq SO
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B. Locally Polynomial Algebras are Symmetric.

(7.2) The proof

We now come to one of the principal results of these

lectures:

Theorem 1 - Let A be a finitg;y presented K-algebra.

Suppose for every M & Max(K), Ay = SKm(M)

for some finitely presented Km-module- M depending on T, then

there exists a finitely presented K-module P, unique upto iso-

morphism, such that A = SK(P)'

Proof: We apply Quillen Induction to the following proposition

defined for every L € Loc(K):

P(L): The L-algebra I8A 1s isomorphic to the symmetric algebra

S{M} of some finitely presented L-module M.

We must verify the four conditions of (6.i) Proposition 1.

Local validity is just the hypothesis, and specialization is
obvious., Teo check finiteness: If S is a multiplicative set in
K, and if Ag= SKS(M) for some finitely presented Kg-module M,

then we will have an exact sequence Kg -+ Kg + M4+ 0, If

KP o Kq + N+ O, then NS = M and N is finitely presented,

If now B = SK(N), then B Since both

g = K@®B = SKS(NS) = A,
A and B are finitely presented, we conclude by remarks at the
beginning of {6.6) that there exists s € § such that A_ = B_.
Now B_ = SKS(NS).

We now proceed to verify the sheaf condition, After

change of notation, we may assume L = K., We are given that
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Ks, + Ks; = K with s _,s, € K, and we must prove that r(x, )
o 1 0’71 So

and ‘P(Ksl) together imply P(K). Under these assumptions, we
are given finitely presented K. -modules Mi and K, -algebra
i i

isomorphisms from A, onto SKS (Mi)’ i=0,1. From this we get
i i
. that . the Ksosl-élgebras, Sk (Mos } and Sk (Mls ) are
SpS1 1 S8 [}
isomorphic. From (6,8) Lemma 1, we conclude that the Ks .~
o 1

modules MOSl and Mls are isomorphic. We now use affine

patching to get a K-module P such that Ps- = Mi’ i=0,1:
i

Write B = SK(P); P is finitely presented by {3.5) Proposition L
Then there exist isomorphisms u, B+ A_, i= 0,1, We form

the usual diagram:

B _—— -“— B

s, 8,51 1

u0 uosl uls ul

A -— . A

So Sosl 1

=1
Now u = u ° u € Aut (B ) = Ga_(x ). From (7.1)
084 lso K8051 5,94 P Sg8q
-1

I
Theorem 1, we can write u = voslw Y1a, with v _ € GAP(LSO),

s
W E AfP(Ksosl) and v, € GAP(KSl). If we put u’ = u *v,, then

i i
-1 =1 -1
’ 4 £
u; € @A (K, ), 1=0,1 and (v’ ) u =v u u v =
i Prrsy 0sq ls0 087 087 lso lsD

=w € AfP(Ks s )y which is the group of automorphisms of
01 :
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The example above justifies the following definition.

Definition 1 - Let C be a commutative augmented K-algebra and
¢ the augmentation ideal. We have an exact

- >3
sequerice 0O = C C*C-—_ﬂﬁ.K 4 0., A tensor decomposition of C 1is

a pair (a,B) of endomorphisms of the augmented Kealgebra C

such that
(%) «2=a, B2=6, aB =c¢c,=Ba

where we consider €, as an endomorphism of €, and such that
the homomorphism T : aO2BC + C induced by the inclusions of aC
and AC dis an isomorphism. Thus, to say that a K-algebra A 1is
a polynomial tensor factor is to say that A = aC for some

[n]_

tensor decomposition («,8) of some C = K We then call
(C;0,6) = fulfillment of A.

We notice that A = aqC and B = BC are augmented
algebras, and that € = K@C. Also C = A8B = (xod) @ (kKeB) =
K® A® B ® (A@B). If K= K is a base change, and €’ = K'% c,
al = K’Gu, g’ = K'@8, then (a',ﬁ') is a tensor decomposition

of the augmented K’ -algebra ¢’ with a'C’ = K'g@at and B'C =

=x'®BC.

Proposition 1 - Let € be a finitely presented K-algebra, 5 a

multiplicative set in K, and (a,B) a tensor

decomposition of the Ks-algebra C Then there exist s € B

5"

and a tensor decomposition (a’,8’) of C_ such that ag = o

and . Bé =B.

Proof: By finite presentability of C, there exists s; € s,
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and @, ,8; € EndKSl_alg (csl) such that «, o =0 and 8, = 8.
. . 2 2

The desired equations e, = al, By = Bqs “191 = ecs = ﬁlal

hold after localizing at S, hence also at 8g for %ome So € 8.

Hence replacing sl by 5152 we can assume that the above

equations hold at Sy Consider T's alcsl ® slcsl - CSl induc-

ed by the inclusions.

Localizing at S, PS becomes an isomorphism. Hence there exists
t. € S such that Ft is an isomorphism of K -algebras,

1 1 : s1ty

since the algebras in question are finitely presented. If we now
replace sy by sltl we are done.

Corollarxy 1 - Let 5 be a multiplicative set in K, and let A
be a polynomial factor over KS of some polynomial
Ks-algebra. Then there exists s € S and a polynomial factor B

over Ks such that B_, = A,

g =
Proof': If A ® A’ is a polynomial algebra Kgn], we take
roo- Kg .

C K[n] in Proposition 1, The result is now immediate.

Theorem 1 - Let A be a finitely presented K-algebra, If Ay is

a polynomial tensor factor over Km for every

m e Max(K), then A 1is a polynomial tensor factor over K.

Proof: Once again we apply Quillen Induction to the following

proposition:

P(L): If 'L € Loc(X), +hen L % A is a polynomial factor over

L of some polynomial L-algebra,.

We must once again verify the four conditions of (6.1)

Proposition 1.
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3) J(s(P)) 4is canomically isomorphic to P.

Proof: 1} and 3) are obvious. For 2), we notice that if
A= K®A and Bz KOB as K-modules, then ASB = KoA®Do

®ME, Hence the augmentation ideal ABB is isomorphic to .APK &
® K95 & 8. Thus J(4@p) = ZXO WSO MO ox ©
' AoxoreBE” @ A®E I ekoKed
Second Isomorphism Theorem, whence J(A@B) 'EE ® EE = J(A)&J(B).
A B

by the

¥

Recall that the Kemodules M and N are stably iso-
morphic if there exists a positive integer n such that MEK™ o

>~ MpK", If A and B are commutative augmented K-.algebras, we

say that A and B are stably isomorphic if there exists a

I'n]

positive integer n such that A @ K[n] and B ® X are iso-
morphic as augmented K-algebras, The following is a Corollary

to (7.3) Theorem 1.

Corollary 1 - Let A and B bhe polynomial tensor factors over

K. Suppose that JA and JB are stably isomor-

phic_as K-modnles, and that for all M ¢ Max(K), 4y and By are

stably isomorphic as Km—algebras, then A and B are stably

isomorphic as K-algebras.

n n
Proof: It is given that JA @ K 1 = JB & K 1 for some n,; = 0.
Also for each I ¢ Max(K), there]is a positive integer
g

Oy such that %m such that Am %; gm =] qm K; %mqm . Since

A and B are finitely presented K-algebras, the above isomoxrphisits

1ift to isomorphisms over K  for some agll, (s depending on M) giv-

[y, ] [ngl
ing A, §SK5 o BB % K, . We can take ng = I for all €Nt

s
which do not centain 8, Since Max(K) i1s compact, the integers
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n are bounded. Choose an integer n = ny and all the Tne

s
[n] and B’ = B ® KEHE, then A’ and B

If we write A’ = A ® X
are isomorphic over Qm for all maximal ideals T of K. More-
over JA' == JB', since n =z Ty . Choose a K-algebra B’ so that
B'®B" = K[m] for some m 2 0, Write € = A'®B”. Then Gy =

= %ﬁ ® %& £ ﬁ& ® ﬁ& =S gém). Hence € 4is locally a polynomial
algebﬁg. By (7.2? Corollary 1, C = S(P) for some P ¢ P(x).

We have P = JS(P) & JA'@JB' = JB'@JB” = J(B'®B') = k™. Hence
C= s(x™) = K[m]; that is, A'9B"®B' = B’@K[m]. This gives

A'@K[m] = B'@KEmJ, from where A@Kfn+m] = B@I’([n"'m:|

s  Proving
the corollary,

We proceed now to formulate the above result in terms
of the Grothendieck groups of K-theory. Recall that if ¢ is a
category equipped with a coherently associative and commutative
product 4, then the Grothendieck group of @G is an abelian
group Ko(a) defined as follows:
Consider the free abelian group F generated by [A] where A
runs over isomorphism classes of objects of G and the subgroup
T of ¥ generated by elemeﬁts of the form [AtB) - [a] - [B]
for A,B € G. Then KO(G) =-§-. We observe that any map f
from the objects of @ dinto an abelian group -G factors through
ob G —Lmla-Ko(G), provided f satisfies the following:
1) If A= B in G then f(A) = £{B); 2) f£(aALB) =. £(A)+f(B),
for A,Bc Q.

If G = P(R) is the category of finitely generated
projective modules over a ring R, then the direct sum operation

@ defines a product in (. In this case it is- eustomary to
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denote K _(G) by KO(R).

If G = G(K) 4is the category of polypomial temsor
factors over a commutative ring X, then @ defines a product
in G. The corrvesponding Grothendieck group will be denoted by

KAO{K) .

Proposition - 1) Let P,Q € P(R). Then [P} = (ol in K _(R)

if and only if P and Q are stably isomorphic

in P(R).

2) Let A,B € G(K). Then [a] =(B] in KA (K) if and only if

A and B are stably isomorphic in G(K}.

Proof: We shall only prove 2); the proocf of 1) is similar.

since [a] = [B] in K& (x) = Y there exist suitable

algebras C;, D,, c’j, D:'j ¢ G(X) such that [a]-[B] =

= ® - - _ ’ I'I . !'i ~ r I
z(lce@n,] - [c,] - [p;]) - z(lc @0y el [p%3).

Transposing all negative terms to the opposite side of the

equation, and observing that ¥ is free abelian, we get
A8 ((® c.Ye (8 pD,) & (@ ¢'8D.)} =
((® c;) @ (3 1)@ (2 ciny))
B® ((® c.epn.) @ (8 ¢’y ® (¢ D)),
((® co0,) ® (@ o) ® (@ D))

The algebras inside the long parentheses are clearly isomorphici
Hence, we may write ASF = B®E. Now if F is a K-algebra such
that BE®F == K[n], then AEK[nj == B®K[n]. S0 A and B are
stably isomorphic. ‘

Since the functors S: P{K) » G(K) and J: G(K) + ¢ (K}

respect isomorphisms and products {Lomma 1), we have induced

homomorphisms S: K_(K) - K_AO(K) and J: KAO(K) + E_(X) such
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that the composition map JeS = lK (K)' Hence we have a split-
<]

ting KA (K) = KD(K) ® KA;(K), say.

Confession. We do not know a single commutative ring K #£ 0 for
which KA;(K) is known to be zero or non-zero.
It seems very likely that these groups are non-trivial in general,
though it may be conjectured that they vanish when K is a field.
With these notations, we can restate Corallary 1 as

follows:

Corollary 2 - The canonical homomorphism

KA (K) -+ TT KA’(gm)

MeMax (K) °

is injective.
bl hided ol

(7.5) Some classical open Problems.

. [n] s o
Write GA (K) = AutK_alg(K ). This is sometimes called

the integral Cremona group. As in (7.1) we have a decomposition

[v] =11
GA (X) = Ga (K):K
where E" denotes the group of translations, and
o _ ¢
GAn(K) = GAn(K) xﬂGLn(K).

If K[n] = K[tl,...,tn] an endomorphism of K[n:l can be
identified with the image f = (fl,...,fn) of t = (tl,...,tn).
This is the nonlinear analogue of the matrix representation of a
linear map., We call f a {non linear) transvection if, for some

i, fj = ti for j £ i and £, = t; + h where h depends only

~

on to,...,t,

1 l,...,tn. Such an f is clearly invertible., Let
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EAH(K)' denote the group generated by all such transveciions.

The tame generation problem, Assume that K is a field. Is

6A(K) = (6L (K), BA (K))?

This is currently known to be so only for n = 2., Letiing n 4 =

we have the. stable form of the problem: Is

ca®(x) = (GL{K), FA(K)) ?

if f = (f.,...,f ) dis an endomorphism of K[n] as ahove its
1 n :
Jacobian is
oo ot [n]
J(£) = GG¢7) € M (K 7).

j 1=i,3dsn

Tf f 4is invertible then so also is the matrix J(f}{(t) for all

t € X%, so that det{J(f)) € ™ 3¢ a polynomial with only

invertible values in any K-algebra, hence it is a unit u of K.
-1

Replacing say fl by u fl we can make u = 1. ¥We can ask,

conversely, whether the condition
(71) det (J(f)) =1

implies that £ is invertible. There are easy counterexamples

in characteristic p > 0.

Jacobian 1 Problem. If K is a field of characteristic zero,

does condition {J1) imply that f is invertible?

This is unknown even for mn = 2. See Vitushkin,..., Manifolds,

Tokyo, for a good discussion of this problem,
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