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Introduction

Artins solution of the 17th

problem of Hilbert is based

on the theory of formally real fields which he and

O.Schreier created [ 4 ]1-[4 ]. One essential idea of his

proof consists of a new characterization of sums of

squares. Let k be a field, Q(k) the subset of all sums of

squares., If char k = 2, then Q(k) = k2, if char k # 2

but -1 € Q(k), then Q(X) = X since we have an identity

-a+l z a-1 2 . . . .
= (—5~) -(—5—) Fields in which ~1 is not a sum of
squares were called formally real (real for short) by

E.Artin and C.Schreier, and for these fields they developed

a theory. Every real field has (in a fixed algebraic

closure) maximal real algebraic extensjons called its real

closures. The follohing fundamental results were proved by

Artin and Schreier where k is a real field, & its algebraic

closure and R an intermediate field of 0lk:

1) R is a real closure of k iff the absolute Galoisgroup
G(R/R) is a nontrivial finite group. If R is a real
closure, then & = R(V=T).

2) If R is a real closure of k, then P := R2 is an
ordering, i.e. satisfies the following conditions;

i) P+Pc P ii) PPc P 3iii) R=P U -F, {0} =P n ~P,

3) k admits orderings, and every ordering P of k is induced

by a real closure R of k: P = R2 N k. Two real closures .
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of k are isomorphic over k iff they induce the same

ordering on k.

Based on these results Artin was able to prove that
Q(k) is the intersection of all orderings of k and finally
to answer Hilbert's problem in the affirmative.

Besides these applications the results 1) - 3) are
significant from a different point of view. Thex are
examples of some general principles in field theory; for
the base field k which is the proper object of investiga-
tion is investigated only via certain field-extensions.
These extensions admit some structures - orderings in this
case - which in a wider sense can be regarded as arithme-
tical ones. The problem to characterize these extensions
up to isomorphy can be solved by the induced structures in
the base field k. One sees a clear analogy with the local-
global-principle in algebraic number theory as well as with

the classfield theory of global or loecal fields.

Tﬁe present work is founded on these aspects of the
Artin-Schreier theory. Hence we proceed in the following
way :

we shall single out real algebraic extensions by proper-
ties of their absolute Galoisgroup, investigate such exten-
sions especially with respect to arithmetical structures,

characterize isomorphic extensions by the induced arithme-



ITI

tical structures in the base field.

One starting point was a result of W.D. Geyer. He inve-
stigated in [2%] all algebraic number fields whose absolute
Galois groups are not only pro-solvable but even sclvable
as an abstraot group. A real number field of this type has
a4 rather special absolute Galois group: it is a semi-direct
product of an abelian group with an involution operating on

the abelian group by taking the inverse.

The second starting boint was the observation that there
exist relative versions of the original Artin-Schreier
theory. Besides the algebraic closure @ of the real field k
one can find further extensions 2k such that the results
1) - 3) remain valid: one has only to replace the real
closures by the relative real closures of k in 2. The
.smallest extension is Q = kz, the maximal 2-extension of
k. A further example is given by the maximal solvable ex-

tension.

In chapter II we introduce these suitable extensions
k. These extensions are to be regarded as the universe for
the theory to be developed. The results of chapter III and
IV refer to the real intermediate fields K of a fixed ex-
tension Qlk. In §1 of chapt. III we prove the following

main theorem:
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K is hereditarily-pythagorean in £ {(i.e. every real
extension of K in @ is pythagorean) iff the Galois group

G(RIKCiIY) i = ¥=1, is abelian.

This theorem extends the result of W.D. Geyer mentioned
above, In view of the pesult 1) it furthermore shows that
the hereditarily-pythagorean fields (= h.p. fields) can be

viewed as generalized real-closed fields.

1

The h.p. fields have many remarkable field-theoretical
properties,as will be proved in chap. III. It is not only
possible to describe the eonstruction of the algebraic ex-
tensions (in Q) but one can explicitely compute the Galois
group G(N1K) and the Brauer group Br(Q|K) in terms of simple
invariants. Furthermore they admit a nontrivial Q-henselian
valuation (L.Brdcker). In addition to our main theorem the
h.p. fields can be characterized by the Haar-measure of fhe
set of involutions in G{(Q|K) (L.Br&cker), by the existence
of a Kummer Theory for the intermediate extensions of QIK
(F.P, Halter-Xoch) or by torsion-properties of the Wittring
of K(X) (in case © = algebraic elosure).

The investigation of h.p. fields has led to the discovery
of the orderings of higher level of a field. Orderings of
higher level are new examples of infinite Harrison-primes
and are generalizations of orderings. In chap. I we initi-

ate a theory of orderings of higher level, This is done by



an extensive use of the theory of Krull-valuation. Based on
the extension-theory for orderings of higher level we prove
the following theorem.

Let K be an infinite field, char K # 2, let n,m be

natural numbers, then for arbitrary elements

Xqs wees X € K there exist Yqs =v-s ¥g € K such

that the following holds:

n n ,m n+m n+m

2 PN LU 2

(x1 oo box ) = v ,+ ses b Y

This theorém extends in a certain sense an identity of

D.Hilbert used in his solution of the Waring-problem.

In the last chapter we deal with h.p. extensions of a
given real field. The extension theory for orderings of

- higher level leads to a solution of the problem of iso-
morphy. In particular we succeeded in characterizing the
isomorphyclasses of the real closures for an ordering of
higher level. As opposed to the case of ordinary orderings

there exist infinitely many classes in general.

These notes are based on the author's Habilitationsschrift,
K&1ln (Federal Republic of Germany), 1976. I would like to
express my gratitude to the Instituto de Matheméticé Pura et
Aplicada, eSpécially to Prof.Dr. 0. Endler, that it was ren-
dered possible to publish the results in the IMPA lecture

notes series. K&in, 1977.






Chapter I  Orderings of Higher Level

§1 Basic notions

Let K be a (commutative) field, n € N. A subset T c K
is called a preordering. of level n of X if it satisfies
bs!
2 c T

(P1) X
(P2 -T+T < T v

(P3) T T .

For any t € T .= T~{0} the inverse t - = (t “)° t
belongs to T as follows from (P1), (P3). T is therefore a
subgroup of K*. Set

Q,(K) = Q = {a €K llé; . e a = % v 3.
. 420 sby

Q, is obviously a preordering of level n, and in view of
(P1}), (P27, Qn is contained in any preordering of level n.
Let T be a preordering of level n. Sifhce T* is a group it
follows that

T = =T or T n -T = {0} .
We have T = ~T iff T is a subfieid of K, but we shall not-

be concerned about this case here. T ¢ K is called a

proper preordering of level n if it satisfies (P1), (P2},
(P3) and

(P4) T n -T = {0} .



Condition (P4) is egquivaelent to
(Pu') -1 €& T

If char (k) = p >0 then -1 = (p-1)x1 € Q  holds.
Consequently, proper preorderings only exist in fields of
characteristic 0. In §2 we shall even prove that they can

occur in real fields only.

LEMMA 1. Let K be an infinite field with char (k) * 2,

T <« K a precrdering of level n, then

T =T = K.

Proof. F := T - T is a subfield of k, because of
—_ n

alzaH? a2 for a + 0. In case K # F, we find

n
a € KNF with a2 € P since K’ < F holds. In K[X] there
is an identity

n n .
x+ a2 - x-a? = 2™ gm0

where g(X) is a monic polynomial of degree 2"-1, From a2€ F
it follows that g(X) € F[X]. Hence g{a)=0 for a€F. This

implies that F is finite, and hence K must be finite too.

I.R. Joly [%38; S.u46] proved a general theorem about the
subfield which is generated by the powers xd, d a fixed
exponent. If char(K) = 0 the proof could have been
carried out by means of the following identiy, too

[323 8.235]:

é-1 P
dix = ¥ (-1)d-1-h (d-Iyr(x + n)d - n9
h=o h



As a consequence of Lemma 1 we have:

i) char (K) > 2, IKl = » T Q =K,
n
ii) char (K) = 2 2 Q= k¥ L,y
b4l
ii1) X <o , X =D coo, =Fo ™,

where r 1is the smallest divisor of r such that
r
(p* - 1)/(p © - 1) divides 2.

LEMMA 2. For a pbeordering T of level n of K the following
statements are equivalent: -

i) T is proper , ii) 14T ,
iii) char (X) = 0, T % K.

The proof follows from the definition and Lemma 1.

Using (P4'), an easy application of Zorn's Lemma shows
that any proper preordering is contained in a maximal pro-
per one. The maximal proper preorderings of level n are

called orderings of level n denoted in general by P, P'....

For a more convenient manner of speaking we introduce
the notion "ordéring (preordering) of higher level" to
name. orderings (preorderings) of some level; as already
done fhe attributes "higher level","level n" will often be
dropped. In the same way we shall deal with the subgroup

and semiorderings of type n to be introduced later.

Of course,orderings of higher level can only exist in
field of characteristic zero; by Lemma 2 they are characte-

rized in such fields as the maximal preorderings T # K.



Furthermore we deduce from Lemma 2:

COROLLARY. For any field X the following statements are

equivalent:

i) K has orderings of level n ,

ii) -1€Q

iii) char K = 0, Q #* K.

In particular (n = 1), a field is real iff it admits
orderings of level i. This result is due to 5rtin— Schreier
since the orderings of level 1 are just the usual or-
derings as we shall see in a moment. .

Until the end of 81 we assumé all fields to be of cha-

racteristic zero.

Let T be a preordering of level .n and set

TO= . = P .
P ordering, TcP

e want to show T = To' To this end assume the contrary.

n : T
Pick a € TO\T; gince a2 €T we find r €W with
' 2r-1 or : 2r-1
a ¢ T but a“ € T. Set T' :=T - Ta ; then T' is

preordering of level n. If T'! were proper, there would

exist an ordering P with T « T' < P. P would vontain a

1
cand -a " and we would get the contradiction -1 € P.
Therefore T' = K, and we get a representation
2r-1 2r-1 2r—1

a =t - t' a , t.,t! € Ty hence a €T.



We have proved:

THEOREM 1 i) Every proper preordering is contained in an

ofdering of level n.

ii) Every preordering is the intersection of all orderings

in which it is contained.

A preordering T of level n is likewise of level m for

m>n. We call T of exact level .n if

o 2n—1

K T , K° - &1,

THEOREM 2. The orderings of exact level n are precisely the

subsets of K with the following properties:

O€P , PrtPc P , P* is a subgroup of K",

K*/P* is eyclic, [K*:P*] = 27,

If P is an ordering of exact level n then K*/P*  is genera-
, ] _
ted by every class @P"  where w2 € -F,.

Proof. Let P be an ordering of exact level n, We first show

2

for a €K' : a’ € Pem a €EP U -P, For if a € P then

P+Pa 1is a preordering properly containing P, and hence

P+Pa = K. Therefore -1 = u + va for some u,v € P, and we
B n=-1
see a € -P., By assumption we_ have K2 ¢ P. Let w be an
. o 2n--1 2n-1
element with o €EP, ¢ P, hence w € -P. As al-

, . r

ready remarkedst is a group. For a € K", a2 € P* we

prove by induction on r: a € Py is U w'P*, In case r = 0
1



r-1
we have a € P,. If r > 1, then (a2 )2 € P implies
2r-1 2r—1
that a € PU ~-P and further that a €P or
oh-r  ,r-1 x
(w a) € P'. In either case it follows that a€P_ .

Le)
For the converse we take a subset P « K satisf&ing the
quoted conditions. P is obviously a proper preordering of
level n for Kzn = P, XK % P, therefore
P=nP'

where P' ranges over all orderings containing P. Suppose
PgP' for all P' > P. Then we conclude [K*:pt*}127"2
implying K2n-{= P' and finally Kzn-%c\ P: a contradic~
tion. Thus P has to be an ordering, obviously of exact

level n.

In view of Lemma 2 one concludes from theorem 2:

orderings of level 1 are those subsets P of K satisfying:

P+P e P, PPc P, PU-P =K, Pn =P = {0},
i.e. they are just the usual crderings. It is rather con-
venient to have a special name for orderings of level 1 and

we call them orders.
With help of the orders of a field E.Artin [ ; Satz 1]

characterized the sums of quares, and this characterization

was an important step toward his solution of the 17th pro-

blem of Hilbert. Pfister [#5; Satz 21] extendedthis charac-
i i

terization tec sums of the type = x? . a 1... a X with

ITgeedy 1 k

given Agaserdy € K. We shall obtain an analogous result

A3



replacing the sums of squares by sums of 2" -th powers, For

a generalization to semilocal rings see [U1].
For a preordering T « K, CORTRREL € K, we define
T[ai,...,ak] to be the set of all polynomial expressions

in Bysceeady with coefficients from T:

a = I ti

- SR
100y 1 A

Tl{ays...sa, ] dis the smallest preordering containing T
and Agsneesdy. Theoerem 1, ii) implies that T[al,...,ak]
is the intersection of all orderings P where T < P,

- PRLREL € P. Restricting to T = Qn we obtain:

THEQREM 3. gnléi"“’ak] is the set of all elements which

lie precisely in those orderings of level n which contain

E&i;;;iﬂﬁ;

2 . .
X.a can be characterized

Elements of the form a = ;44

in a similar manner (%61, {421, [ 8], [¥Y1]. In order to ex~

H
It

R s MO

tend this result to sums I X

a, we make use of the noti-
1

on of "T-module” [ 8],

Let T be a proper preordering of higher level of K. We
call every non-empty subset M a T-module if the following
conditions hold
(M1) M+Mc M (M2) TM < M.,

M= {0}, M=T, M=K are the most simple examples of

T-modules,



Suppose M is a T-module and M is not additively closed.
Pick m € M with m, -m € M'. Since Km = K we obtain
from lemma 1: K = KM = (T - Tdm = Tm + T(-m) « M, hence

M = K.
We have proved

LEMMA 3. For a T-module M, M % 0, the following state-

ments are equivalent:

M+ M en ii) M # K ,

iii) M n -M = {0}].

Zorn's lemma shows the existence of maximal elements
among all T-modules different from K; they are called maxi-
mal T-modules. Every T-module is contained in a maximal
T-module. Let M be a maximal T-module and a € K~M. Since
M + Ta is a T-meodule properly containing M we have |

M+ Ta K. In particular there is an m € M with

B

m+ ta = -a and hence K = M' U -M"., Then M must be maxi-

mal (lemma 3). Therefore we obtain (compare [ & , Satz 11):

THEOREM 4. Let T be a proper preordering of higher level.
Then

i) every T-module M # K is contained in a maximal

T-module,

ii) every T-module is the intersection of the maximal

© T-modules in whigh it is contained,




iii) the maximal T-modules are precisely those subsets M

of X satisfying

MM e M, TM e M, K= MU (-M), M n (-M) = {0}.

It is a remarkable consequenée of this theorem that an
ordering of exact level n > 2 has indeed no oversets
which are additively and multiplicatively closed but admits
additively élosed overgets having, in contrast to Px, the
"index" 2. Here, for the first time,we find out a diffe-
rence between orders and orderings of exact level n 3.2.

We adopt the terminology of (461 (rot of [47]) and call

a maximal T-module S a T-semiordering; S shall be called

normed if 1 € 5, In case T = Qn we say semiordering of
level n.

Let T be a preordering, Bqsesendy € K, then
k

T(al,...,ak) HE {zi tya; I tys-aenty € T}
i=

is the smallest T-module containing T U {ai,...,ak}. By

theorem 4 it is the intersection of all T-modules M with

Aqseeerdy € M. In particular we get in the case of T = Qn

THEOREM 5. gnigl,...,a,) is the set of all elements which

lie precisely in those semiorderings of level n which con-

tain LYRRRRET:- 00
o~ £

Let P be an ordering of level n. Since K*/P* is a cyc-

lic group every subgroup U of K*, for which P* < U holds,



contains =-1. P* is therefore maximal among the subgroups

of K* not containing -1. In short, P* is a maximal sub-

group without -1.

More generally,lét U be an arbitrary maximal subgroup
without =~1. One easily sees that K*/U is 2-primary and
that every finitely generated subgroup of K*/U is eyclic.
I1f [K":Ul is assumed to be finite , K*/U must therefore

be a cyclic group of order say 2n,and it follows that

Kzncu,xzn-lrtu.

We call a subgroup U of K* a subgroup of level n if
-1 ¢ U and szn c U holds; U has the exact level n if
furthermore 1("211“1 < U. |

The following theorem is valid for char(K) % 2; its

proof is analogous to those of theorems 1, 2.

THEOREM 6, i) Every subgroup of level n is contained in

such a maximal subgroup.

ii) a subgroup of level n is the intersection of all maxi-

mal subgroups in which it is contained,

iii) if U is a maximal subgroup of exact level n, then

K'/U is cyclic of order 2", and K*/U = <wU> for every w
n-1 '
with w2 € -U.

Now let T be a proper preordering of level n of the

field K, char (K) = 0, For every ordering P > T y P* is a
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maximal subgroup of level n. The converse does not hold in
general. In fact, there may exist maximal subgroups U
(without -1) over T such that P := U U {0} 4is not an or-
dering of level n. But there are preorderings for which the
converse holds. They seem to play an important role in the
theory of real fields [ §1], [431], in particular, they
occur. in the investigation of hereditarily-pythagorean
fields. According to [ & la preordering T of higher level is
called a fan (in German: F&cher) if for every maximal sub-
group U over T* the set U U {0} is an ordering. In view
of the theorems 2 and 6 one has only to require that every

maximal subgroup over T is additively closed.

THEOREM 7. For a proper preordering of level n the follow-

ing statements are equivalent:

i) T is a fan
n
27-1 .
i) /N Tla] = v Tal
X .
a € K 1=
a*¢-T for i€l
Proof. i) = ii) Obviously Ta® < Tlal. Since =~1¢V:= uTat,
the subgroup V is the intersection of maximal subgroups by
theorem 6. These subgroups contain Tx, and, since T is a
fan, V U {0} = U Ta* turns out to be a preordering. Hence
Tla] € U Ta®, ii) = i) Let U be a maximal subgroup, U o T*,
For a € U we obtain a- € -T for i €N since -1 ¢ U.

Therefore 1+a = ta’ € U, and U is additively closed.
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Every preordering above a fan T is again a fan. Further-
more,for every subgroup U without ~1 and U > T* it fol-
lows from theorem 6 that U U {0} is likewise a preor-

dering,hence a fan.

§2, Orderings of higher level and valuation rings

' The connection between orders and valuation rings has
been known since Baer and Krull [51, [42]. It was already
implicitly contained in the fundamental paper of Artin and
Schreier [¥ 1. Some years ago Prestel [46] discovered that
semiorderings of level 1 lead to valuation rings, tco. Now
we are golng to investigate the analogous relations between
orderings of higher level and valuation rings. Then we shall

give some applications of Prestel's result.

For valuation theory we refer to [241, [QQ]..Let A be a
valuationring of a field K. We denote by I,U or AX,U(l),k its
maximal ideal, group of units, group 1+I of 1-units, the
residue field A/I » respectively. For a € A we often
write a for a + I € k. The group K /U =: ' is called the
valuegroup of A and wv: K = TU &, v(ga) = aU if a € K*,

v(0) = =, its valuation. In order to avoid ambiquities con-
cerning value groups we only deal with valuation arising in

this way. If we start with a valuation v: K = Fv wWe denote
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. . ' 1
the corresponding objects by Av’ IV, Uv’ UV, kv (or often

by A, I,...) and assume r, = KX/UV. A valuation ring A of K

is called a real valuation ring if k = A/fI is a real

field. The real valuation rings are just the valuation
rings of real places, i.e. the places A: K + FU = where
F is a real field. If K admits a real valuation ring, then

K must be real itself.

Let P be an ordering of level n of the valued field

(Kyv). We already know char (K) = 0. Set Pv = {a + IV J

n
. ces 2
a € PnAv} = kv' One easily verifies: kv c P PV+Pv P

v? v?

PvPv Lt Pv‘ P is called compatible with v, denoted by P ~ v
or P ~ Av’ if Pv is a proper preordering of kv‘ In this

case we must have char(kv) = 0.

LEMMA 4, The following statements are equivalent:

i) P ~ v, ii) P, dis an ordering, iii) g& c P,

iv) /\ o Lv(a) > v(b), a €EP = a-b € P],
a,beK

Proof. 1iii) and iv) are obviously equivalent. i) = iii)

k
Take a € I and assume € = 1+a € I, then —52 € P for

some k € N. But this implies -1 = 2 ¢ P,. iii) w ii)
The valuation v induces an epimorphism _Kx/Px -+ T/v(P™)
with ker(v) = P*U/P* = U/U n P*, Since Ul e p* we get an
_ isomorphism U/U n P* = kx/P: and an exact sequence

1 = kx/P: -+ K*/P* & I/w(P") - 1.
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Hence kx/Pz is seen to be cyclié, and we have P; % k*,

Now apply theorem 2. ii) = i) is obvious.

COROLLARY. If P is compatible with v, then

[(K*:p] = [kx:P;][P:v(Px)].

If P ~v we call P, the ordering induced by P. We of-
ten write P for P,. The exact level of P is related to P by
the index formula of the corollary. In particular the exact
level of P is less than,or equal to the exact level of P.
Later we shall see, that all values compatible with the
index-formula can occur for the exact level of P.

We now want to prove that every ordering of higher level
is compatible with a real valuation ring. For this purpocse
we make use of a representation theorem for "Stone-rings"
proved by Dubois [24]. A partially ordered ring (R,P) is an
associative ring with unity together with the positive cone
of an order-relation: |
(a) P+Pc P, PPc P, 0,1 € P, -1¢&P.

(R,P) is called a Stone-ring [21] if furthermore the follo-
wing holds:
() P n-p = {0},

v A V n1-aep,
a€R néEN

(8) /\ ( /\ 1+na € P = a € PJ,
a€R nenN
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Typical examples are given by compact Hausdorff spaces X

. if one takes R = C(X) = C(X,R) and P = C(X)' =

t
1}

= {f € C(X) | /\ f(x) > O}, Dubois proved in [21] that
xeX
every Stone-ring admits an embedding «: R - C(X) with
P = cp-lc(x)+ for some compact Hauscdorff space X. The repre-

sentation theorem has the important consequence:

in every Stone-ring the squares are positive;

a Stone-ring has no nilpotent elements .

Now let P be an ordering of K, because of char(K) 0
we have @ < K. Set Q+ = {reQ | r>0}; then from N cp”
we deduce Q+ c P, Assume P ~ v, v a valuation of K. Since
char (kv) = 0 we have 0 < Av' From Q+ < P, 1+Iv c P we
see for a € Iv’ T E Q+: r+az=pr(lz r—ia) € P, Therefore,

the ideal I is contained in the following set.

I(P) = {a € K | /\+ r + a € P},
rel

Av is a valuation ring, hence Av encloses any ring A < K

in which I(P) is an ideal. Set

{a € K | \/

red
{a€a®y | N 14+ nacePp}
néN )

Considering Q+ = P , one verifies that A(P) is a ring and

A(P) r +a€ P},

+

Arch(P)

I(P) an ideal of A(P)., To look for valuations v with P ~ v
therefore leads to the investigation of A(P) and I(P). For

Arch(P) < A(P) the conditions (a), (¥), (6) are easily
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checked, and since Arch(P) n -Arch(P) = I(P) we get [221,
(231 _
(A(P)/I(P), Arch(P)/I(P)} is a Stone-ring,

and consequently:

(%) N\ /\

acAa(P) neN
(*¥*) I(P) = VI(P) .

+a" €p,

Sl

New all is prepared for the proof that A(P) is a Qalua—
tion ring with maximal ideal I(P) and that P is moreover an
order of A(P)/I(P). The proof has three parts: .

I. a€ A(P), a € PU-P =» ac¢€ I(P), II. A(P) is a
lecal ring with maximal ideal I(P), III. A{(P) is a valua-

tion ring, P an order.

k
ad I.) For a € A(P) with a € P U -P we have a’ € -P
k
for some k > 1 and hence % -a? €P for nem. (*)
k k

shows % +a? € P; thervefore a? ¢ I{(P). Finally a € I(P)

because of (¥%),

ad II.} For a € A(P), a € I(P) we have to show a-ieA(P)a
By I. we know a € P U -P, say a € P, Since a & I(P)
there is an m € N with % - a ¢ P; hence %ﬁ - agPb.

1 1 \ '
Suppose 5T A &€ -P, then o5 T a € I(P), and finally
R
m T 2m 2m

by -%ﬁ vields 2m - % € P which proves a_1 € A(P)

(%ﬁ - a) € P. Therefore Eq. a € -P. Division

(Zm + é € P is obvious).

ad III.) For a € P* we first show: a ¢ A(P) or a'ieI(P),
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a 1 a
T+ea® Trg € F we have 1 #9433, Tra

1 a 1 . i s
Ti3 * 133 © A(P)., In case Tha 15 @ unit in A{(P), then

a € A(P), otherwise 'i'%é' € I(P) by II. The identity
1

a a . . .
= 53 * Tis shows Tz € I(P) in this case. By II we

get 153 € A(P) and hence a ! € A(P).

1

Since 1 £ —2— € P, i.,e,.

By A?;) we denote the integral closure of A(P) in K.

Taking a € Kx, we have a2n € P. Therefore a2n € A(P) or
-2 . o~ -1

a € A(P) which proves a € A(P) or a
that é?%) is a valuation ring and denote its maximal ideal
by M. Since A?;) is integral over A(P) we have I(P) v,
Assume a € A?;) but a2n § A(P), then, as already proved,
aﬂzn € I(P) which implies the contradiction 1 € #v . Hence
a2n € A(P) holds for every a € A?;). With help of the

£
€ A(P). We see

identity

(2" X =

#tM o
H
-~
N
= |
[N
N’
5
+
jag
L
[ &)
1
0

Fan
we conclude A(P) = A(P). It remains to prove that the in-
Guced ordering P (P is compatible with A{P)) in
k = A{(P)/I(P) is an order. But Xk = P U -P is a direct

consequence of I. P is moreover an archimedean order.

Taking into account that the overrings of a valuation

ring are totally ordered by inclusion we have just proved:
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THEOREM 8. Let P be an ordering of higher level of the

field K and A(P), I(P) be defined as above. Then

il A(P) is a real valuation ring with maximal ideal I(P),

ii) b induces an archimedean order in A(P)}/I(P),

iii) a valuation ring A is compatible with P iff A(P) < A.

This theorem immediately yields

THEQOREM 9, For n € N and a field K., the following are

equivalent:

i) K admits orderings of level n,

ii) -1 is not a sum of 2"-th pOWers,

iii) -1'is not a sum of squares, i.e. K is real.

Proof., 1) and ii} are equivalent by the corollary to
lemma 2, iii) = ii) obvious. i) = iii) K has by theorem 8

a real valuation ring and hence is real itself.

This result also shows that proper preorderings of
higher level can only exist in a real field because every
one is contained in an ordering.

Let K be an infinite field, char (K) # 2; if K is not a

real field, then K = Qn holds for any n € N. This follows
from lemma 1 and the l;;t theorem. A more comprehensive re-
sult is due to Joly [3%; Théoréme 6.15].

A valuation v of K is called 2-henselian, [20], [43] or

chapt. II, if it has a unique extension to the quadratic



closure of K. An equivalent property i1s the validity of
Hensel's lemma for quadratic polynomials [20; §1]. By the

result of [20] we see that a non-dyadic valuation is 2-hen-

(1

v is 2=divisible, i.e. iff we have

selian iff the group U
n

1+I=(1+I)2 for all n € N.

COROLLARY 1. An ordering is compatible with any 2- hense-

lian valuation.

Proof. By theorem 9 K must be a real field and therefore
k, too {203 Satz 4]. v is seen to be non-dyadic; furthermore

U(l) c P because of the 2-divisibility of U(l)

v v Now apply

lemma 4.

COROLLARY 2. If a waluation ring is compatibie with an

ordering it must be real.

Proof. The residue field admits an crdering.

So far, we have obtained an explicite description for
the smallest valuation ring A(P) compatible with a given
crdering P. We are now going to derive an analogous result
for all valuation rings A, A~P.This is known in the case of

orders, i.e, of orderings of level 1 [46], [401, [¥F; 571.

Let P be an ordering of higher level of K, F a subfield
of K; we set

A(P,T) := {a € X | \/ , T tact P},
r € FnP
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I(P,F) := {a € K | /\ , T tac P}.
r € FnP

Then A(P}) = A(P,Q), TI(P) I(P,0) hold.

LEMMA 5. A(P,F) is a valuation ring compatible with P;

I(P,F) is its maximal ideal, and F < A(P,F) holds.

Proof. A(P,F) aqd I(P,F) are additively closed. To prove
that A(P,F) is a ring with ideal I(P,F) we use the fact
1/2 € P and the identity 2(rs + xy) = (r + x)(s +x} +

+ (pr - x)(s - y). A(P,F) is surely an overring of A(P),
hence a valuation ring with maximal ideal , say,#. Since
I(P,F) is a proper ideal, I(P,F) =#y. To show I(pP,F) =MV
we first prove e A(P,F) ~ g¥. For it holds that

PNF < A(P,F), hence F = PNF - PNF < A(P,F) since PRF is
an ordering of F. Pick a € v, r € Fan; then v * a =
= r(1 ¢ 1 ta) € P(1 +4y). But 1 +4# <1+ I(P) = P.

Therefore r * a € P proving #v < I(P,F).

Let k = k(P,F) be the residue field of A(P,F). k
is an extension of F = {a + I(P,F)> | a € A(P,F)} and
carries the ordering P = {a + I(P,F) | a € P A(P,F)}.

Moreover
A 2 ™/
\/ r+*at€?P holds. !

This gives rise to the following definition: Let LIM be

a field extension, P an ordering of L, LIM is called
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archimedean relative to P if

/\ \/  rtac€p

a e L r € MnP"

helds or,equivalent,if A(P,M) = L.

LEMMA 6., Algebraic extensions are archimedean relative to

any ordering.

Proof. Assume LIM is an algebraic extension, P an orde-
ring of L. Since M c'A(P,M) we have A(P,M) n M = M and

therefore A(P,M) = L by [26; (9.8) Corollary].

Let v be a valuation of the field L. For any sﬁbgroup

ZqI‘:I‘v set

= {a €T | \/ Y<a<y'} .
Y,v'€Z

Mt

I is the convex (= isolated) subgroup generated by X.
We ifurther set:

A

si={a€kK | a=o0v \/ v(a) < v}

YEZ
where A = A, is the valuation ring of v. Az is a valuation

overring of A and we have Ay = Agz, v(Ug) = £, Every (va-
luation) overring Ai of A is of this type; for instance,

A1 = Az where ¥ = v(Ul). Hence the correspondence T b Az
yields a bijection between the set of all overrings of A
and the set of all convex subgroﬁps of T [d6; §7]. In case

Ay = Ay, I convex, we say: I belongs to Ay
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LEMMA 7. Let P be an ordering of K, I, F, _two subfields,

and v the valuation associated with A(P,Fi). Then A(P,Fl)

c A(P,FQ), and A(P,FQ) belongs to the convex subgroup ge-

nerated by v(sz).

Proof. (bviocusly, A(P,Fi) < A(P,Fz). Put I = V(sz),

Ay = AP,F ). If a € Ry, 2% 0 we find b € sz with
v(a) < vib), i.e. ab_1 € A(P,Fi). Let P be of level n,
then it follows with 1 := b2n €F,n P that Staznr_l €EP
for some s € F1 n P*. Since 1 € Px5 we see rs % aan P
and a2n € A(P’FZ)' But A(P,Fz) ig integrally closed so

a € A(P,FQ), i.e, Al c A(P,Fz). Now take a € A(P,Fz),
n n

then a2 €P and 1 - a2 €EP for some ©r E F2 n p*.
n
Part iv) of lemma 4 shows v(a2 )} < vir) since v ~ P.
n
This means a2 € A1 and, as beforeJ a & Ai'

. Now let P be an ordering, A a valuation ring of K compa-
tible with P, and k its residue field. The valuation
of A(P) = A(P,9) will be denoted by Vg Let ¥ be the con-
vex subgroup of vQ(Kx) belonging to A o A(P). Furthermore

we
let F be a subfield of R. Under this assumptiéhV;hall prove

THEOREM lo. If F is a maximal subfield of A, then AzA(P,T).

More generally, the following statements are equivalent:

i) A = A(P,F),

ii) k/T is archimedean relative to P,
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iiiy ¥ = VQ(F ).

From & <« A the existence of maximal subfields follows

by Zorn's lemma. Therefore

COROLLARY. Every valuation ring compatible with P is of the

type A(P,F) for some subfield F.

Proof of theorem lo. Because of § « F +the statements i)

and 1ii) are equivalent. That i) implies ii) has already
been observed. ii) = i) Let I be the maximal ideal of A
and a € I. For an element r € F n P° it follows from
F* <A, 1+ I <P that v *a=r(l +1 a) € P, i.e.

I c I{P,I'Y holds. Hence I < A(P,F) <« A. For an element

a € A there exists an element r € F N P* withr ¢t a € P,

If P =3 or v =-3, say T =a, we see that a = v + u,

u € I holds, which implies a € A(P,F). We now assume

r ¢+ ac Ax; in this case the result »r ¢ a € P, i.e.

a € A(P,F) follows from * *a€P and the compatibility
of P and A. If F iz a maximal subfield of A, then for any

a € A~F F(a) ¢ A holds; hence we find a polynomial

f € FIXl, f #+ 0 with f£(a) € I. This shows that kIF is

an algebraic extension, in particular archimedean relative

to P by lemma 6.

So far we have investigated those wvaluation rings which
are compatible with a given ordering of higher level. Now

- - . . -~ -
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we fix a valuation v with real valuation ring A and we con-

struct all orderings of an exact level n which are compa-
tible with this valuation.

The value group T of v is torsion-free, from which one
n
deduces (for example by induction) that I'/I‘2 is a free
n
Z/2n7—module; we have dim 0 (I‘/I‘2 ) = dim (P/TZJ. The
n #/2°%2 n x4/2%

epimorphism  v: K*/K%?2 = T/TI'* , induced by the valu-
b P

ation v: K* o I'y therefore admits a homomorhpic section u.
For the subgroup {7.= u(F/TQn) = Kx/szn we choose a system
of representatives Of c K, assuming 1 €0[, without loss of
generality,. For a,b € Ol there exists x € K* with
an2n EO[; each ¢ € T has a unique representation:
a = viap?, per, acll '

The construction (relativé to &) depends on some data
subject to certain conditons. We start with

a subgroup TOCF, an ordering P of k and a character

x: I, = k78"

satisfying the following conditions:
I/T, is a cyclic group of order 2%, [k :B*]) == 25,
. n-1
pi

n=r+s and if r > 0 : (T Y % 1.

n-1
Note that P2 = FO holds, since s > 1 and r < n-i,.
n ,

For Cﬁo 1= u(FD/P2 ) we denote by CRO = A the according

set of representatives, If a € 0&9 we write

Mg = {e € A% | P*E = y(v(a)}.

-



Then we set

n
P = &“_) aM K2 .

a & qv a )

THEOREM 1i. (See {#1; & 12] for n = 1) 1) P is an ordering

of exact level n, P is compatible with v and induces the

given ordering P on k,

ii) every ordering of exact level n results in this way

from the induced ordering of the residue field.

Proof. The cosets P 'R are additively closed, therefore
n

. - =% 2
Ma+MacMa.M1={seA"|sEP}=1+I,hence K < P,

moreover, this yields P ~ v, once P will have been proved

to be an ordering. For a,b deo,e € Ma,n € Mb, X,y € Kx, we

on T ol
have to show: t := a&Ex + bny € P, s :1= aben(xy) e P,
oh . oh oh ol .
If wvlaex™ ) # vi{bny® J,say v(aex” ) > v(bny”~ ), then it
n .
follows that t = age'x’ , €' € 1+I, hence t € P, since

21’! n

ee! € My holds. If w(agx™ ) = v(bny2 }, then a = Db -and

_ n n n _ n n
{yx 1)2 € (Ax)2 . Thus, t = ax2 (e + niyx 1)2 Y € aMaK2 s
because M+ Ma < Ma' In order to prove s € P, one first

n
notices that there are c € OL z € K with ab = 022 . It
: n

remains to show:en € Mc; from wv(a)v(b) = v(c)v(z)2 it

follows that x(v(al))x{(v{(b)) = x{(v(c)), as we have

21]

S
r? e )’ K:E) = 2°

; therefore ¢&n € y(v(ec)) and
bo Be
en € Mc holds and P is proveEYE/preordering. By the choice

of ﬁ%, v(P*) = Po holds. Using 1+I = P and P = 1P,



one cbtains, as in the proof of lemma 3, the following exact

sequence

1 - x/B* o k*/P* o r/r, - 1.

n

Obviously [K*:P"] = 2 follows. Now we are going to show

that the following statements are equivalent:

1) P is not an ordering,
2n—1

2) n> 1 and K c P,

2n-1

3) >0 and x(T )y = 1,

With this we have also proved theorem 11 i}; this equiva-

lence will be used in the proof of ii), too. We shall make

use of the following fact, which is a consequence of
n-s) n-1

2 : for a € 0 there is a EOZO,

[ﬁ’{.:czo] = [T:T,] = 2
% . 27 2h
X € K', with a = ax (*).

1) = 2)., Obvicusly n > 1. P is the intersection of all
orderings P' with P < P'. If P is not an ordering, then
each P' must be of level n - 1, since [K :P*] = 2" holds.

) n-1
In this case K° < P follows. 2) = 3) In addition to

(*) we find for a € 0] elements a, € GQP EEM ,y € K
1

with azn-1 = aey’ . Then it must follow that a, = a, and
£ € (A“)2n, yielding B* = ? = x(v(a )) = x(v(a n_1)>.
From T = v(@T? we deduce r = v(0(2 and
x(rzn-l) = 1. If r = 0, the above sequence would shéw thatl
K*/P" were cyclic of order 27, 3) = 1) We have n = r+s

> s>1; therefore & nd € P* and an—l € My = P for any



e € A . By (¥) there is an element y € K* with
2n—l oh 2n-1
a ¥ (—:Ulo for every a € A, Because of y{(v(a =1,
- - n-1
we conclude 1 €M ., _={el €€ P*1, hence a? ep.
2 2
a v .
Each x € K 1is representable by x = aayz, where € € Ax,
. n-1
v € K. Therefore K2 < P holds, and in view of

n, K*/P* cannot be cyclic,

[K*:P*] = 2
Now we prove ii). Denote T, := v(P*y, P := A 1 P; the
character x: I - k*/B* is to be defined as follows:
for u € P get x(v(u)) := P, where u = acx2n, ael,
¢ € A" holds. That ¥ proves to be a character is due to
the above mentioned property: for a,b € 0l there exists
y € K* with aby2n €fl. As the proof of lemma 3 shows, the
first three of the required conditions are satified by FO,
P, x. One obtains CRO = {aefii v(ia) € Po}. For a ECEO
set M, := {¢ | e € x(v(a))}. There is u € P with v(u) =
= v(a), hence an = u, where n € A". By definition of X,
—x -

we have 1P = y(v(u)) = x(v(a)). If & = n mod P , then

€ = ni + 2 holds, where A € P* n Ax, z € I. The equations

1"

£ nxt, A' € P, and aMm c P follow from 1+I < P. There-
fore the inclusion L5J aMaK2n c P is proved. Conversely,
for u € P, we find eisggnts a € OQ), €e EA, x € K with

u = a&xzn. Becaﬁse of €P = y(v(a)) one gets u € aMakzn,
hence P = LJ aMaKQn. Since P is an ordering, the equiva-

. n-1
lence 1) @ 3) yields that if r > 0, then x(P2 )+ 1
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holds.

REMARK. The proof just given seems to suggest the conclu-
sion that the assumption on the structure of F/Po is not
necessary at all. But it is easy %o see that any character
x satisfies x(an-l) =1, if r > 0 holds and P/FO is

not cyelic.

We shall now attend to the compatibility of preorderings
of higher level and valuation rings. Let T be a proper pre-
ordering of higher level of the real Field K, A a valuation
ring of K with maximal ideal I, residue field k, and let
m: A > k Dbe the canonical epimorphism. T induces the pre-
ordering T := ANT = w(ANT) of k. We define as with

orderings: A is compatible with T, A~ T, if T is a proper

preordering. In that case k is necessarily a real field,

and coﬁsequently A a real valuation ring.

LEMMA 8. The following statements are equivalent:

i) A~T i1y T[1 + 1] % K

iii) A ~P for some ordering PoT,

Proof. 1) = ii) We have -1 ¢ T, which shows T 0 S(1+T)
= @, We shall prove T[1 + I] = T-(1 + I), which obviously
implies T[1 + I] # K. To this end we demonstrate that

T (1 + I) is a preordering. Only the proof that T (1 + I)
is additivei§iclosed is not trivial. Let v be the valuation

associated to A, let +t,t' € T, &,n € 1+I; we have to show
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X i1z te + t'n € T-(1 +”I).7If .v(ts) £ v(t'n), say.-v(ta)
>‘v(t'n), then one gets: x = tew, where w € 1¥I, hence

x € T-(1 + I). If wv(te) = v(t'n), then t' = tw, w € A*nrT,
and x = t(e + nw). We see € *+ nw = 1 + & + Ps P E I,
Assume 1 + 0w € I, then w© = -[1 - (1 +. 3| é T n -(1+1)
follows which is a copfradiction. Therefofe E + nw =

= (1 + @1+ (1+w) YpleTd+1I) and x ¢ T(1 + I)
holds, i1ii) :Iiii)r“Since T[1 + I] is a proper preorde-
ring, there exists an ordering P with T c T[1 + I] P, in
particular A ~ P, iii) » i) From A ~P it follows that

P # k., But we have T c ? implying T # k.

If A ~ T, then there exist by iii) orderings P o T
which are compatible with'P. Such orderings are characteri-
zed by P o 1+I, PoT, Tﬁerefore the orderings over T[1 + I}
are ﬁrecisely those orderings P o T compatible with R. In
general, there may exist orderings P T which are not

compatible with A; this is the case iff TI[1 + I]1 +T

holds. A and T are called fully compatible, if 1+I < T
holds; Because of |

TNEH = aramas D,
the full compatibility can be characterized as follows:

n-i(Tx) e T,
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Fully compatible preorderings are obtained by a lifting

procedure for preorderings of the residue field:

n

LEMMA 9. Let T be a proper preordering of level n of k, V

a subgroup of K" of level n gatisfying w(V N A*) © T. Then

T 1= V » n-j(gx) u {0}

is a proper preordering of level n in K with T =T which

is fully compatible with A.

Proof. TFrom wu(V n A" < % follows T = T. Obviously
KzncT, TT<T hold. Take a,b € V, ¢€,n € “—1(%x); let v be
the valuation associated to A, If v(a) % v(b), then

ag + bn € T follows as in the proof of lemma 8. But if

a = bu, wE€E vna* holds, the result as + bn = blwe + n)ET

~

igs implied by e + n = @€ n € T". Since we have 1+I c T,

T is fully ccmpatible with A.

LEMMA 10. If the preordering T is fully compatible with A,

then the following statements‘hold:

i)  for every ordering P > T P is an ordering over T,

ii) evervy ordering P » T is induced by an ordering PoT:

P o= P,

1ii) nY(A(B)) = A(P) for every ordering P o T.

Proof. i) Of course we have A ~ P. ii) By lemma 9
T, =T ey s a proper preordering with Tl =P,

Let P be an ordering, P o T,» then P ¢ P holds. Since
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P # k, we see P = P. 1ii) This follows by direct calcu-
lations, taking into account that A(P) < A, ﬂ-l(ﬁx) c P
hold.
Among the valuation rings fully compatible with a preorde-

ring T there exists a smallest one. lLet

A = < L_J A(PY >

T pP=T

be the valuation ring generated by all valuation rings A(P),

P ordering over T.

THEOREM 11. —éT is the smallest valuation ring which is

fuliy compatible with T. The preordering T of the residue

field induced‘by T satisfies

H

= kT.

ll
Proof. Let I be the maximal ideal of AT' We have I < I(P)
for every ordering P > T, hence 1+l < (ﬂ\ 1+I(P) < ’ﬁ\ P=T.
PoT P=T
This means that Ag is fully compatible with T. By definition
and theorem 8, any valuation ring which is fully compatible

with T has to enclose AT. Let m: AT - kT be the canonical

epimorphism. Lemma 10 yields n_l(AT) = AT, therefore

Besides Ag, there exists a further ring which

has great importance for T. We write

A(TY = f{a €K | \/ , rtact T,
req



The following theorem was first proved by Pejas [§#4;

Satz 4] for the case T = Qi'

THEOREM 12. A(T) is a ring with K as its fields of fracti-

ons. Moreover it holds:

A(TY = A(P) .
PoT, P preordering

Proof. We have A(T) <« A(P) for T « P, hence A(T)cnA(P).
Obviously @ < A(T) holds. Take a C nA(P). If a € @,

then a € A(T) holds. Assume a € Q; for every P o T we
then find rp € Q+ with rp - a € P. We assert:
T[{a-rPlPDT}] = K. For, otherwise, some ordering PO would
lie over this preordering, and it would hold simultaneously:
a-rp,,ry, -act Po' In view of a ¢ @, this yields a
contragictign. In particular we see =1 € T[{a—rPIP:T}].

But -1 1is already contained in some subpreordering finite-
ly generated over T, say -1 € T[a—ri,...,a-rn]. Choose

r € Q+ with »r > max {rl,...,rn}. We claim that r-a € T
holds. Let P © T be any ordering. Since -1€T[a—r1,..,a—rn]
there must exist i with 'a-ri ¢ P, Now note that a‘E A(P)
holds, hence a-r; € A(P). Since P induces an order (first
level) in the residue field (theorem 8}, it follows

A(P) e Py -P, If a-r; € A(P)", then a-r; € -P follows,

equivalently r;-a € P. But this implies r - a = (r - ri) +

(ri - a)e P, If a - r, € I(P), then r; - a also holds.



In this case, r - a = (r - ri) + (ri - a) € P follows from
the definition of I(P) and r - r. € Q+. These arguments
are valid for any P o T, therefore r - a € T. Correspon-
dingly, we find s € Q+ with s +a € T, T%us we obtain

a € A(T), and finally A(T) = NA(P). In particular, A(T)
proves to be a subring_of X. For every +t € T we conclude
T%?’ T§¥ € A(T) %rom the identity 1 - T%f = T§?' A fur-
ther consequence states that T lies in the field of frac-

tions of A(T). Because of T - T = K +this field must coin-

cide with K.

( B

.

In general, A(T) 1s not a valuation ring; however, there
exists an important class of fans of level 1 for which A(T)
and Ag coincide, as we will see later on.

As announced at the beginning .of this section, we shall
now attend to the relation between semiorderings of level 1
and valuation rings, discovered by A. Prestel.

Let 8 be a normed semiorderiﬂg of level 1. We set

as) :={aex |l V, rsaes),
rEQ

I{S) := {a € K | /\+ r ta€S}.
e

THEOREM 13 (Prestel, [H&; (1.8) and (1.5)1, [%¥; p. 112£f]).

A(S) is a valuation ring with maximal ideal XI(8). ‘The semi=~

" ordering S := S pn A(S) .induced by S,is even an order of

the residue field A(S8)/I(S). Moreover, it holds that



SN AS = {e | ¢ € A(SYY, & €5},

Only the last statement is not covered by the gquoted re-
ferences. Assume & € §°; if & € 8 then -¢& € S and
-% € 3% would follow. This would imply the contradiction
§ = A(S)/I(S). It seems to be a reasonable conjecture that
an analogous statement remains valid for semiorderings of

higher level,

LEMMA 11. Let T be a preordering of level 1 of the field

K. If T admits a normed T-semiordering which is not an

order, then there exists a valuation wvi K* -« T with a

real valuation ring satisfying v(T*) * T.

Proof. Let v be the valuation associated to A{(S). Suppose
v(T") = T holds. For any a,b € S* there must consequent-
ly exist +t,t' € T, ¢&,n € A(S)® with a = te, b = t'n .
We see E,n € AH)™ n s, By thecrem 13, the set A(S) n S
is a subgroup of Kx, hence . ab = tt'en € S, But S is not an

order by assumption.

Those preorderings of level 1, above which are at the
most twoc orders, are easily ildentified as fans. They are

called trivial fans [8 1. Let A be a real valuationh ring,

T a fan of the residue field. The condition of theorem 7
n -
immediately shows that the lifted preordering k% n 1(Tx)

is a fan again, see [ 83 Lemma 7]. In particular, this
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procedure enables us to construct non-trivial fans from tri-
vial ones. The following thecrem by L. Bré&cker states that

all fans can be obtained in this manner.

THEOREM 14 (L. Brdcker, [43; (2.7)]) Let T be a non-tri-

vial fan of K. Then,

1) A
ii) T is a trivial fan of K-

* K,

Proof.(E. Képping). Choose an order P > T and set

S :=T U {-a | a € P~T}. S turns out to-be a normed T-semi-
ordering which is not an order, see [ & ;(11)). By lemma
11 there is a valuation v with real valuation ring A satis-
fying v(T*) # T. Let I be the greatest convex subgroup of

I contained in v(T"). The corresponding valuation

x

ve: Koo r/z , aw v(a) belongs to the valuation ring AZ’

which, being a coarsening of A, is itself a real valuation
ring. By [43; (2.9)1, Ay is fully compatible with T, hence
A, < A_. Because of £ c v(T ) ¢ T, we have A_ *#K ang, a
T z * 3
forteriori, Ap # K. That T induces a fan in the residue

field k., of AT is a special case of the fellowing general

T
result: fans induce fans again in the residue fields of all
valuation rings which are compatible. By thecrem 11, we see
for the fan T kT’ that AT = kT holds. But by the argu-

ments just given, T has to be trivial.
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COROLLARY (See [49; Theor. 1] in the case of ,T=Q1). A pre-

ordering T of level 1 is a fan iff T is a trivial fan of kg .

n
Proof., T lies above the fan K2 n_l(Tx), gsince T is fully

compatible with Ar.
This theorem has striking consequences for the valuaticn
rings A(P), P o T. Since T is a trivial fan, one learns by

lemma 10:

if T is a fan of level 1, then there are at the most

two different rings among the valuation rings A(P),

P o T. There are two different rings iff T admits two

~ ~ ~

orders Py, P, with i,_Pzzt‘r and A(_ll)_':l: A(P,).

— i

For convenient speaking we agree that a preordering T of
higher level is called homogeneous 1iff all valuation rings
A(P), P o T, coincide or, equivalently, iff A(T)§= Ag
holds., If T is homogenous, then all orderings E > T of K

are archimedean orders by theorem 7 (note A(P) = kT). We

call T strongly-homogenecus iff there is only one order

above T, i.e. iff T is itself an order.
According to theorem 14 there are three possibilitieé,
which in fact all occur:
i) T is homogeneous,
ii) A(T) is a valuation ring, A(T) # Aq, for P2 T it
holds that A(P) = A(T) or A(P) = Aq,

1ii) there are two incomparable valuation rings AtP1),
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A(Pz), Pl’ P2 o T; moreover, A(T) = A(Ei) n A(Pz) is not a
valuation ring.

In [451 R. Brown has given a f%rther characterization N
for the preordering T = Q1 being a fan. This result is de-
ducible from theorem 14, as E. K8pping has observed. At the
same time it can be exténded to the case of arbitrary pre-
orderings T of level 1. To this end one has to make use of
the fact that any place i: K » RU{=} with M(T) c Rzu{m}
belongs to a valuation ring A(P) where P o T holds. We
nave the following result ( see [45];corollary 6 ): _a

proper preordering T of level 1 is a fan iff there are at

the most two places A: K - RU{w} with A(T) < Rzu{m}',

and if additionally for two such places T-kzl(Rx)=T-A51(Rx)

holds.

53. The existence of orderings of higher level

THEOREM 15. Let K be a real field, either every ordering

ef higher level of K is an order, or there exist orderings

of exact level n for any rn € W.

Proof. Let P be an ordering of exact level m > 2. By

theorem 8, P induces an order P in the residue field k of

A(P). The formula in the corollary to lemma 4 shows
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1 2

[F:V(Px)] = 2™ > 2, therefore T % T (v the‘valuation
associated to A(P), T its value-group). Our construction
of an ordering P' of exact level n shall be based on the
order P of k. Therefore v = n-1 hblds. A subgroup and
a character y satisfying the required conditions may be

n
found, since I‘/I‘2 ig a non-trivial free & /2P% -module.

We shall now characterize those fields which have only

orders as orderings of higher level.

THEOREM 16. For a real field K the following statements

are equivalent:

i) every ordering of higher level ig an order,

ii) every normed semiordering of higher level is an order,

iii) every real valuation ring has a 2-divisible value-

group,

iv) Q. _= Q_ _ holds for every n,

L

v) Q= Q.4 holds for some n € IN.

Proof. i) = iv} We have Qn = ‘ \ P = (ﬁ\

P ordering P order
of level n

u
L
Py

v) = iii) For a real valuation ring A with value group T,
n
V(Qn) = 12 always holds. By assumption, in this case
o 2n+1 2
r = T follows for some n, hence T =T%.

iv) = v) Obviously.



iii) = 1) Let P be an ordering of exact level n > 2, let
A be a valuation ring compatible with P, such that P is an
order. As already observed in the proof of theorem 15, we
must have T # P2.

i) » ii) Now we may apply iii) and iv). Since Q, = Q,
holds for any n € IN, a normed semiordering of higher
level has already to be normed quadratic one. It has even
to be an order by [H¢;(2.2)].

ii) = i) By theorem 4 the ordering P is enclosed by a

normed semiordering. Since $ is an order, P = S follows.

REMARKS. 1) The equivalence of v) and i) can also be seen
from theorem 15. For by assuming v), there are no orderings

of exact level n+1.

2) The statement v) is to be stressed once again because

~of its peculiarity: if for some n € IN every sum of

20-th powers is already a sum of 2™ _tn powers, then it
follows that for arbitrary r,s € N the sums of 2F-th

powers coincide with the sums of 25-th powers.

If v is a valuation of K with 2-divisible value group,
and V an extension of v to an algebraic extension L|K, then,
as valuation theory shows [26], the value group of ¥V is also
2-divisible. If Q1 = Q2 = ... holds in K, then this must
hold in any algebraic extension L|K, too. If L is real this

follows from theorem 16, observing the aforesaid property
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of the value group; if L is not real, we have L = Qn in

any case by lemma 2, corollary and theorem 9.

Real fields with a single order satisfy the condition

1ii), hence we conclude:

COROLLARY 1. Let L be an algebraic, not necessarily real

extension of a field with a single order. Then holds in L:

Q = Qp = v = Q= Queq---
The corollary applies particularly to algebraic exten-

sions of Q.

COROLLARY 2. If every order of K is archimedean, then

Qy = Qy = Q3'= ... holds.
Proof. ﬁithout loss of generality assume that L is real.
The trivial one is the only real valuation ring of L, as
a non-trivial real valuation ring would yield a non-archi-
medean order by the prﬁcedure quoted above (T = FO,

ns=s-=1J.

Theorem 16 shows the way how the class of Pasch-fields

can be further subdivided. Recall that a real field is

called a Pasch~field (= SAP~field = WAP-field, see [H4],
[25]) if every normed semiordering of level 1 (= quadratic
semiordering) is an order. By {H4{;(2.2)], a real field

is a Pasch-field if for every valuation v with real valuation

ring and non 2-divisible value group (I # r?) it holds that
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{P:F21 = 2 and the residue field has a unique order,

For further investigation of Pasch-fields, we require
the following reflection on real valuation rings. Zorn's
lemma shows that every real valuation fing contains a
minimum real one. Let A be a minimal real valuation ring,
P an ordering that is compatible with A. Because of
A(P) ¢ A, we see A = A(P). In general, the rings A(P) are
not minimal real valuation rings. For example, let k be
a field with an archimedean order ?1, and a non-archimedean
order ?2. Now consider the rational function field K = k(X).
The valuation ring A = k[X](X) yields an order P with

A(P) = A, P = P,. But A is not minimal, because A can be

1
properly refined by the valuation ring A(%z) of k.

THEOREM 17. Let K be a Pasch-field and n € W, n > 2. Then

the following statements hold:

i) for every real valuation ring A with a non-2-divisible

value group, there exists a unigue ordering P of

exact level n which satisfies A ~ P,

ii) the mapping P » A(P) induces a bijection between

the set of all orderings of exact level n and the set

of all minimal real valuation rings with non-2-divi-

sible value group.

Proof. i) The residue field k of A has a unique order by

the result [%4;(2.2)] already mentioned. This order may be
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denoted by P, . Let A ~ P, then P = P, follows by theorem

k
)
16 and its corollary, From LF:PZ] = 2 one gets

2K k

[T:T" 1 = 2™ ;moreover, [r:rz] = 2 implies the existence

of an element a € ' with the property

k-t x n-1
re =T U a I'" . Because of [T:v(P )] = 2

n-1
(lemma 4, corollary), the equation v(P*) = F2 follows.

The character y: v(P*) o k"/P;, which belongs to P, is

n-1 n-1

fixed by x(a2 )y = -P;, since r = n-1 > 0, x(F2 Y £ 1,

n .
x(I‘2 ) = 1 hold. Therefore the data of P are independent

of P. Consequently, P is uniquely.determined by A and n.
ii) Since P is an order, we get [F:P2] from the index-
formula applied to A(P). Assume A < A(P) for a real
valuation ring A. The value group of A is likewise non-
2-divisible. Hehce one can construct an ordering P' of
exact level n compatible with A. Obviously P! ~ A(P),
because of A = A(P). But by i), we see P' = P, implying
A(P) = A(P') c A, The remaining statements of ii) follow

from i) and the previous reflections.

COROLLARY 1. If K admits at the most 3 orders, then there

exists for every n 2 2 at the most one ordering of exact

level n.

Proof. A real valuation ring with non-2-divisible value

group yields at least two orders of K for every order of
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the residue field. This shows that K is a Pasch-field.
Moreover, thire exists at the most one minimal real valua-

tion ring A with T # F2.

A field K is called pythagorean if it is real and

satisfies K2 = Ql'
P

COROLﬂARY 2, If K admits 2 orders precisely, and if

x

Q.2 Qy = ... does not hold, then there exists a € K
satisfying:
i) P¥ .= Q U aQy, P = Qq U -aQ; are the orders of K,
on-1
ii) P, 1= QU -a Q, is for n 2 2 the unigue

ordering of exact level n,
n-1

iii) Q _; = Q U a’

iv) Q_is a fan for n 2 1. .
If, in addition, K is pythagorean, then Q = K2 even

1l

holds.

Proof. Since Q1 = Q2 = ... does not hold, K admits a
real valuation ring A with nén—Z—divisibie value group TI.
Let Pk denote the unique order of the residue field of A,

My = {e € AY | € P, }. Choose an element & € K* where

r=r2y v(u)P? holds. The previous arguments show that
P* = k? u ayk?, P o= k2 U -ai kK ave the two orders
! N1 ,n '

K U -a K is the ‘unique

of K, and that Pn = M
] )

1

ordering of exact level n, n > 2. The set M K is con-
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: n
tained in all orderings of level n, hence M1K2 o Qn'
o7
The converse inclusion Q, € M K follows from
n n
_ Rl Lo 2 . %X X, _ o0
v(Qn) = T“ ; therefore Qﬁ = MlK . Since [X 'Pn] = 2
n+1 n-1

x x
holds, we see [K 'Qn] = 2 and Qn—l = Qn Ua Q_.

P; is the sole maximal subgroup of exact level n over Q;,
hence Q_ turns out to be a fan. If K is additionally

x2]

pythagorean, we get from [K*:K = 4 wvia

n n

[K*:k*2 1 = 9"+l ihe desired conclusion k2 - Q. .
‘ n

Examples for corollary 2 are easy to find. For example,
consider the power-series field K = Q((X)). K has two
orders and the canonical valuation ring is a real one
with value-group I = Z . This shows Q1 + Q2 * Q3 00 o
K = TR((X)) is a pythagorean field and satisfies
K2n = Qn' An example of a field with 3 orders and orderings

of exact level n > 2 will be given after theorem 2y,

§4, Extension theoxry

Assume that LiK is a field extension, and L and K are
equipped with orderings of higher level ¥ and P respec-
tively. ¥ is called an extension of P, if Pnk=rp

holds. We shall denote this fact by FIP. The phenomenons,
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which ocecur at the extension of orderings, can already bhe
demonstrated by a simple example.

Consider the fields K = R ((X)), L = K(VK) = R ((x1/2)).
The order P, with P, 32X admits two extensions to orders

2 2
to an order of L, but P2 is in fact extendable to the

of L. The second order P, with P, 2 =X 1is not extendable

unique ordering of exact level 2 of L. More generally
speaking, the ordering Pn of K, n > 2, has a unique ex~-
tension to L, namely the unique ordering of exact level
n+l of L. This example shows that in the wider frame of
all orderings of higher level orders may become extendable
without being extendable to others, Secondly it shows

that the exaet level may change under extension ( in fact
it 'can only increase). For our purpose, we shall only be
concerned with faithful extensions (L,F) of (K,P), i.e.
such extensions which preserve the exact level:

[L*:P*] = [K":P*]. But the following method seems to work
for other extension problems, too. The basic idea of this
method consists in using the extension theory for valuations.
The transfer from the latter theory will be carried out

with help of the theorems 8 and 11.

We associate the valuation ring A(P) to every ordering P.
Relative to a system of representatives 0{, which is kept

fixed, P may be constructed from P, a subgroup I, and a
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character x on I'_. If P is an extension of P on L, then we
have the corresponding valuation ring A(P) extending A(P).

Besides A(¥), one has to investigate the new data §, P, T

09

X. Conversely, if an extension & of A on L is given, then
an extension ¥ may possibly be constructed by suitable
data ﬁ, ﬁ, ?o’ %.

Adopting the usual notétioﬁs of the‘valuation theory,
we denote ramification index, residue degree and the number
of extensions by e, f and g respectively. Since the valua-
tions under consideration admit real residue fields, which

means fields of characteristic zero, they are always defect-

less [16;§818,20,(20.23)]. In parficular, we have the
. g _ L
equations I eifi=[L:K] and - in the case of a Galois exten-
1

[L:K] at our'disp05a1. Moreover, we shall use

i1

sion - efg
the fact that the decomposition of a valuation v in a

finite extension L = K(a) is determined by the
decomposition of the irreducible polynomial of a over the

henselian closure of (K,v) {2b;(17.17)1].

LEMMA 12, Let P be an ordering of higher level of K,

compatible with the valuation v; let P be the induced

ordering in the residue field. Further, let (L,V) be an

extension of (K,v) with residue field 1, If

et

i) e(¥lv) is odd, and

ii) P! is a faithful extension of P to 1,
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then P admits a faithful extension P to L with ¥ = B'

Procf. From [T:T'] = e = 1 mod 2 we get isomorphisms
L. i o1

r/r* o T/, I/T = T/FO? , which are induced by the

natural embedding T - T. The first isomorphism enables us

to use the system of representatives U for the field L,

n - -
too. The second shows {?:Po?z ¥ = [P:FO] = [K*:P*}/[k":P"].
Let P be a faithful extension of P to L, satisfying ¥ ~ ¥,
- n
P = P'. From T(F*) o Fo?z , where n is the exact level of
P, and the index-formula (lemma.u, corollary), we conclude
~ 21’1 X =X o X . X . .

() = FOT . Let t: k'/P" =+ 17/P be the isomorphism
which is induced by the inclusion-map k" -+ 1%. Let

X: v(P*) = I'y = k*/P* be the character belonging to P
n

(relative toOl), Assume o € V(") , say a = uow2 where
a, € Fo, w € T, We have a, = v(u) for some u € P and

2h . x
u = aex where a ECR, € unit of v, x € K, By definition

n
of X, X(a)) = t € x/B° follows, therefore a = v(asy2 )i

y € L, and finally, X(a) = eB'™, i.e. (o) = Gx)a).

With thaf we have shown that all data of ¥ are uniquely

determined by Fo’ F' and y. Hence the extending ordering ?

is unique. Conversely, we choose for the construction of

the desired extension: ‘
on

n :
fo 1=z Fo?z » X(w) = 1x(a ) where a = a w° , & € ré,

weT.
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Then we construct an ordering P on L of the same exact level
as P, according to theorem 11, using O, P', ?o’ ¥. P turns

out to be an extension of P, and T~ ¥, ¥ = B' hold.

An extension (L,V)I(K,v) of valued fields is called
immediate, if the residue fields and the value groups
coincide:

1=k and T =T, i.e. e = £ = 1,

COROLLARY. Let (L,V)|(K,v) be an immediate extension, P

an ordering of K, compatible with v. Then there exists a

unique ordering P of L, which extends P and is compatible

with V. F|{P is a faithful extension.

Proof. The existence and unigqueness of a faithful extension
follows from lemma 12. Let ¥ be an ordering with PFIP,

¥ ~ ¥. Using the index-formula, we get [K*:P"] < [L*:F*)
from % = B, I o ¥(F") > v(P"). Because of the embedding
K*/p* 5 L*/P*, the other inequality holds trivially, hence

FIP is faithful.

THEOREM 18. Let v be a valuation, P an ordering of K,

(KX,¥) the henselian closure of (K,v). Then the following

statements hold:

i) P ~ v w P is extendable to (K,V),

ii) if P ~ v, then P admits a unique extension to

(K,¥), and this one is faithful. .
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Proof. By theorem 9, corollary 1, every ordering of K is
compatible with V. Since (K,¥)I(K,v) is an immediate
extension [26;(17.13)], all statements follow from the

preceding lemma and its corollary now.

Prior to the proof of the next statements, we want to
give a remark about faithful extensions. Let P be an or-
dering of exact level n, LIK an arbitrary extension. We
elaim that P is faithfully extendable to L, iff the pre-

ordering of level n of K, which is generated by P, is

proper; this preordering T consists of the gpecial sums:

oh
T={ Z a;xy [ a;
finite

€ P, x; € L}.
The necessity is obvious. Conversely. let T be proper, then
every ordering P, where T « P holds, is a faithful
extension because of the embedding K P* o L/F*. It
follows from this criterion, with the help of the corollary
of lemma 1, that there exists a faithful extension to an
arbitrary algebraic extension LIK iff faithful extensions
to all finite subextensions exist.

In the following, the degree [L:K] of an arbitrary
algebraic field extension will be understood as a

Steinitz-number or "supernatural” number. The concept of

the pythagorean closure may be found in [431.




THEOREM 19, Let P be an ordering of K, and LIK an algebraic

extension. Then there exists a faithful extension to L in

K}

the following cases:

i) [L:K] is odd,

ii) L is contained in the pythagorean closure.

Proof. Due to the preliminary remark we may assume that L[K
is finite. Let v be the valuation associated to A(P). We
know that P is an order. The extensions ?i of v to L sa-
tisff re f; = [L:K] = 1 mod 2. Hence we can find an ex-
tension ¥ with odd numbers e,f. Now (L,V) satisfies the
conditions of lemma 12,.since P is extendable to an order

of the odd extension 1 [9 ;52, no.u4]. ii)lBy the construéF
tion of the pythagorean closure [ 6 ; p.u46], it is suffi-~
cient to consider the case L = K( 1+a2). The valuation v
may be chosen as before, let k be its residue field, and
(K,¥) its henselian closure. If 1+a% € Rz, then v is

fully decomposed in L [26;(17.17)),i.e. e = 1, £ = 1,

g=2. Otherwiéécthen a has to be a unit of ¥,and 1+3% ¢ kz.
must hold. In fQis case, L is an unramified extension

where 1 = k( 1+§? holds. It is easy to see now, that the

Y

conditions of lemﬁa 12 are satisfied.

We shall now determine the number of faithful extensions

of a given ordering.



THEOREM 20. Let L|K be a finite extension, P an ordering

of K. Then the number of faithful extensions of P to L is

less than or equal to the degree [L:K].

Proof. Let P be an extension of P to L. Then A(D) is a
real valuation ring, and, in fact, an extension of A(P)

because of A(P) n X = A(F n X) = A(P). Because of

% eifi = [L:K], it is sufficient to show: if»ﬁ'is a real
extension of A with ramification index e, residue.degrge £,
then AF{¥IP faithful extension of P, & ~ ¥} < ef; Let
(K,ﬁ?ﬁ)) be the henselian closure of (K,A(P)), P' the
unique (faithful) extension of P to ¥ (theorem 18). Since
A??) is henselian, we see that P' ~ A?E) and :

A?E) > A(P'), But from ‘A?;) N K =A(P) = A(P') n K we

get A?E) = A(P') in view of [26:;(13.4)]. Let & be a real
extension of A(P) to L. Let T be a henseli;n closure of
(L,A) with valuation ring A'; T is assumed to extend K
[263(17.17)). Then A' is an extension of A(P{), and we have
[T:X] = ef [265(2§.23)]. By theorem 18, the §rderings

of T cérrespond bijectively with those orderings of L
which are compatible with &; the correspondence.is'givgn
by Pw» B0 L. One sees- from theorem 18 that P is a Faith-
ful extension of P' iff ﬁ L is a faithful extension

of P. Therefore, the further discussion may be restricted

to the following case:



P an ordering of K, A(P) a henselian valuation ring.

Let B be the unique extension of A(P) to L. % is henselian
again. Let k,1 be their residue fields, T, T their value-

groups, respectively. We have a decomposition

k .

I/t = @ %; into cyclic subgroups Z; of order, say t,.
i=1

Choose for each 1 a generator aiF of Z;. Due to

char k = 0, LIK is tamely ramified. Therefore there are
‘ ] A5
elements a;,...,3 € K with L = T( Vai,..., Vak),

V(Eivaz) = ai, T being the inertia field of LIK. This shows
the existence of the following tower of field extensions:
K e FO cfye ... € F% = L

where T < T, e(FoiK) odd, [Fi+1:Fi] = 2 holds.

All fields Fi have the same residue field, namely 1.
The extension F; ,I1F; is purely ramified. Now let T be
an extension of P to an intermediate F of LIK, Obviously
XnTF o AP, since A n F is henselian. But from
(EnF)ynK=AaA(P) = AP nX we again obtain
A(?) = A n F. Hence, ¥ induces an archimedean order in the
residue field of F. Therefore, lemma 12 yields: the number
of faithful extensions of P to FO equals the number of ex-
tensions of P to orders of 1. But this latter number is

' that of -embeddings of 1 in R, extending the embedding
X - TR., which is induced by P, hence r < f. It remains to

show that an ordering of FO admits at the most 2% faithful
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extensions tc L. The considerations above allow us to con-
fine curselves to the case t = 1, To be more precise, we
shall study the following case:

[L:K} = 2, LIK purely ramified, A(P) henselian.

Let be L = K(va), P a faithful extension of P to L and
wF*, w € K", a generator of K*/P*. Then oBF* is a gener-
ator of L*/P*. Because of a = (VE)z, a cannot have the
maximal order in L*/P*. Hence there exists i € N, u€ec?
with a = wZiu. It necessarily follows that u € P. Since
K(Va) = K(Vu) we may assume a € P, A(P) is the unique
extension of A(P), moreover F-p holds. We want to show
that there are only two possibilities for the character X
associated to P, with which we would have established the
proof. From a = (Vi e p Va € P U -P and

Viva) € ?O = v(P) follow. From T = T U I'v(va) (T value
group of V) one concludes ?o =T v POV(VE) where

x . . 211 x x2n
Fo = v(P )., We find a section u: /T -+ K" /K

n-1 n

%20 2

n
satisfying u(v(a)I‘2 ) = ak , since v(a)? €T
holds. Moreover we may assume a ECE. Computations show
that V induces an isomorphism

n n n n
(Uﬂfz UCFLLK2 VE)/sz 3 ®/7%? . We choose a system of

n X x2h x2n .
representatives el for DL UL © va, and define
o~
¥ relative to0l. Then ‘flro = ¥y holds. Consequently there

are only the possibilities Y(V(va)) = #1.
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We can gain better estimates in the case of faithful
extensions of orders. Let P be an order of K, LIK a
finite extension,.A a Qaluation ring, compatible with P,
and T its value group. Let Ays...,A, De all real valua-
tion rings extending A to L, Fl,...,Pt their value groups
respectively. By ri; we denote the number of the faithful
extensions of P to the residue field of A;. Then the

following statement holds:

LEMMA 14, The numbef of faithful extensions is less than

or egual to

Mt

r.[T.:T3
1 1

i=1

Proof. Let P be an order'extending P. By the corollary of

theorem 10, we find a subfield F of K with A

A(P,F).

A hold.

1

Clearly ¥ ~ A(¥,F) and A(F,F) n K = A(P,F)
This means P ~ A; for some i = 1,...,t. Pick one exten-
sioﬁ‘ Xe {Kl,...,Kt}. Let P be an order on the residue
field of A which extends P. In order to prove this lemma,
it is sufficient to show the following result (compare
with the proof of theorem 20): the number of orders P
extending P and satisfying ¥ ~ &, % = B equals

[(¥:¥r). If FnKXx=P, F~X&, % - B hold, then ¥ encloses
the preordering T := L?pie € & | € € B*1. Conversely,

if ¥ is an order containing T, then we get P < ¥, F~1],
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w®

> P first, which finally implies B n K = P, P ~ &,

v g

The preordering T turns out to be a fan of level 1.
From v(T") = ?ZFQ X < 1" v -7 one obtains

[L*:7*3 = 2[?:?2F] { see [ 8§ ;lemma 7]). But over a
fan of index [Lx:Tx] = 2n+1 there lie 2" orders, see

[ 8;5atz 20} e.g..

COROLLARY. Assumptions as in lemma 13. If P admits [L:K]

extensions to orders of L, then every valuation ring

lying over A is real, and, moreover, the value groups

T, T satisfy

2 o r.

In particular, the ramification index is a power of 2.

Proof. As usual, g dencotes the number of valuation rings

. 2
lying over A, From t < g, r. < £;, [Fi.PiP] <egs

g
[L:K] = £ eifi’ and lemma 13 follows the conclusion.
1 .

The next result is stated as an independent theorem,
although it is a further consequence of lemma 13, We do

not assume L|K to be finite.

THEOREM 21. Let LIK be a Galois extension., For every real

valuation ring of L, the inertia group relative to L|K is

an_abelian group of exponent 2.

Proof. We may confine ourselves to the case of finite

Galois extensions. Let X be a real valuation ring of L, ¥
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be an order compatible with A, set P := B n K. By theorem
20, P admits at the most [L:K] extensions to orders of
L. Given o € G(LIK), then o(¥) is an order again, and
an extension of P. Assume L = K(a), f(x)l=‘Irr(a,K) and
o(¥F) = P for o € G(LIK). o permutes the roots of f(x),.
but does not change their order relative to P because of
o(F) = P. This shows o(a) = a, i.e. o = id. Hence, P has
exactly [L:K] extensions to orders. By the corollary,
T/T is a group of exponent 2, and the inertia grbup

is isomorphic to the character group of T/I' (there is no

wild ramification in our case)[26;520].

The exact number of faithful extensions of orders to
Galois extensions has just been determined in the fore-
going proof. This partial result can be extended to all

orderings of higher type.

THEOREM 22. Let LIK be a Galois extension, P, P orderings

of K, L respectively., Assume P is a faithful extension of

P to L. Then, by

o m o(E),

a _bijection is given of the Galois group -G(LIK) onto the

set of all faithful extensions of P to L.

Proof., In view of theorem 20, it is sufficient to show the
following statement for finite Galois extensions LIK: if

o(F) = ¥, 0 € 6(LIK), then o = id follows. For its proof,
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we may even assume that L|K is a cyclic extension, with

¢ as a generator of G(L|K). In the case of P being an
order, we refer to the proof of theorem 21, If P is not

an order, then A(P) is a proper real valuation ring of L.
Denote the decomposition field and the inertia field of
L|K relative to A(F) by 2 and T respectively [24{;52C].
Since L|K is abelian, the extension ZiK is Galois, There-
fore, for T := GIZ the following holds: (¥ n z) = F n Z,
AP n 2Z) is a valuation ring lying over A(F n K), the
other extensions of A(F N K) to Z are conjugate to

AP 0 Z). From 1CA(F n 2)) = AP n 2)) = A(F n 2), we
obtain Z = K. o induces, on the residue field of A(F),

an automorphism o, satisfying 5(%) = %. Since % is an
order, we get ¢ = id. This means ¢ = id on T, and ¢ is
contained in the inertia group . As just proved,c2 = id
and [L:K] = 2 follow. At the end of the proof of theorem
20, it was shown that one may assume L = K(Va), a € F n K
and va € P in the case of ¢ # id. But then

-va = o(va) € o(F), anda o(F) + F follows.

So far the extension theorems yield consequences concer-
ning the behaviour of sums of 2%-th powers. One obtains

directly from theorems 3,19 the following result.
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THEOREM 23. Let LK be an odd extension, or L be contained

in the pythagorean closure of K, Then

Q. (L) n K = Q (K) holds.

Of course, the set of all sums of 2"-th powers in a field

F is denoted by Qn(F).

For the next application, we need the concépt of the
real closure. Let P be an ordering of higher level of K.
On applying Zorn's lemma it is easily shown that there
exists a maximal real algebraic extension of K admitting
a faithful extension of P. Let R be such extension, ¥ a

faithful extension of P to R: we call (R,F) a real

closure of (K,P). If P is an order, then R is real-closed,

and ¥ - ®r? holds, as is known [# ;Satz 1]. In this case

R is called a real closure of K.

THEOREM 24. Let (R,P) be a real closure of (K,P).

Assume P to be of exact level n 2> 2. Then the following

statements hold:

i) R _admits exactly 2 orders, and, for every m 2 2,

a unique ordering of exact level m,

ii) R is the intersection of two real closures of K

and has no odd algebraic extensions,

iii) R carries a henselian valuation with real-closed

residue field.

T
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Proof. (R,?) has no more faithful algebraic extensions.
Let v be the valuation assocciated to A(?).-By theorem 18,

v is henselian. Let r be its residue field. v carries

the order P. Let 1lir be a finite real extension contained
in the real closure of (r,%). According to [26;(27.1)],
there is a (real) finite unramified extension L|R with
residue field 1. P is faithfully extendable to L (lemma 12).
Hence 1 = r follows; and r turns out to be real-closed
already.

Let LIR be a real algebraic extension. The unique exten-
sion V of v to L has a real residue field by [#63¢2.10)]

ocr theorem 9, corcllaries 1,2, consequently the field ».
m ‘
This shows that the set L2 is a fan for every mé€ N,

. m

for pick a € L and assume that a* ¢ -L? holds for all
.M m

i€ N. If V(a) + 1, then 1+a € 1.2 v L? a follows,

since the group 1 + I(F) is divisible. If v(a) = i,
- v 2 2 2 v
we first conclude a € r using r = r° U -r°, v = p° ,
m m .
Finally one gets 1+a € L2, L2 turns out to be a pre-
ordering and, by theorem 7, even a fan.

We are now going to prove [R*:R*?] £ 4. For that purpose
M=l x 2 2
we show « € -F where @ € R, o € R° U -R*. From

this result one deduces the assertion. Assume L = R(VE)

2 holds. L is a real extension. Suppose

where o ¢ R2 U -R
I

2" 2 27
-1 ¢ L.° P. Since L is a fan, the set L° ¥ would turn

- e e -
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out to be a preordering. We would find faithful extensions
n n
of ¥ taking the orderings over L2 B. Therefore -1 € L% B,
n .
i.e. -1 = x° u, x € L, u € ¥. From
n 2n-1 o7l 2n—1
L R =R U a R one gets «a € -P. It is

impossible that {RX:RXQ] = 2 holds, since otherwise R

could not carry an ordering of level s > 2 Dbecause of

23

1t

Since R is pythagorean and [Rx:Rx 4 holds, R
admits exactly 2 orders. Now the corollary 2 of theorem 14
yields statement i).

In view of the definition and theorem 19 R can only
~ have extensions of degrees Zt, t € I . The absolute Galois
group G(RIR) is therefore a pro-2-group. For F := R(V-T)
one deduces [Fx:szl = 2, for instance from [ 4 ;lemma 1].
Hence, F has exactly one quadratic extension. Carrying
over this result to the Galois group G(RIF), we see that
G(RIF) is pro-cyclic by [30 ;Theorem 12.5.3]1. Choose
@ € G(RIF), let ¢ be an involution in G(RIR). We want to
show that ow is an involution again. Since G(RIF) is
ébelian, we see that ocwow = wiwd and (0m)20 = c(ou)z.
We now apply [# 3Satz 8] to the fixed field of ¢, and ob-
tain (dm)2 ; i or (cm)2 = o, which finally implies

(cm)2 = 1, gw # 1. This argument is valid for an arbitrary

element ¢ € G(R|F). Now take a generator w of G(RIF).
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Then we see that G(RIR) is generated by two involutions,

hence, R is the intersection of two real-closed fields.

Two real closures related to the same order are known
to be isomorphic. The analogous problem of isomo. phy for

the orderings of higher level will be solved in chapter IV,

We would now like to present an example of a field with
three orders having orderings of any exact level. The ra-
tional function field Q(X) admits orderings of any level,
since its real valuation rings have value groupsﬁisomorphic
to Z . Let P, be an ordering of exact level n > 2 of QX),
and (Ri,?l) be a real closure of (Q(X),P;). Let P, be

2

an archimedean order of @(X) and Ré a real clesure of
R ‘

(Q(X),Pz). The pythagorean field K := R; 0 R, _is the
intersection of 3 real-closed fields by theorem 24%. In
particular, we have [K*:K*?] < 8. K is equipped with

at least three orders, namely one archimedean extension of
P2 and at least 2 others which may be constructed by means
of A(P’1 n K) and ?1 N K. Because of [K*:k*?) < 8,-K
can carry at the most 4 orders. But in tﬁis case, K2 has
to be fan, and consequently all orders have to be non-

archimedean by [ § ;3rd section]. This is a contradiction,

and everything is proved.
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5

2 2

+ R = R2

As remarked in the proof, the relations R
are valid for every s € IN in the real closures <{R,P).
' This fact yields astonishing consequences for the 2™-th
powers of sums of 2"-th powers. In the following theorem X
need not be assumed to be real. Generally, the statement

fails to be true for finite fields, e.g. K = T (9),

THEOREM 25. Let K be an infinite field, let n.,m € N .

For arbitrary XizeersX, € K there exist Yqaee-a¥e € K
satisfying
n n _.m n+m n+m
iﬁi + ...+ xi )2 = yi + ...t yg .

Proof. We may assume char K # 2., If K is not real, then
K = Qt holds for every t € IN by lemma 1 and theorem 9. -
If X is real, then Qn+m = NP where P ranges over all

orderings of level n+m. Therefore we only need show

n ,m
(ng )2 € P for every such P. Let (R,P) be a real closure
' oh ! ont oM SN+m
of (K,P). We have Ix; € R . Hence (Zx: ) € R
M LI S
holds. Because of R e P we obtain (£x{ 1° €Fnx=P.

We like to specialize the result of theorem 25 to the
case of the rational function field K = Q(Xi,;..,xr).

Theorem 25 states the existence of a "generic" identity:
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n m n+m +
2t 2 n+m

_ 2 - 2
= fi(x) ... * fS(X)

where fi(X),...,fs(X)_E Q(Xl,...,Xr) are rational funec-
tions. Such identities are explicitly known only in
special cases. D, Hilbert proved in [3%] that the fi’
i=1,...,8, may be chosen as linearforms if n = 1.
Moreover, ﬁe considered arbitrary exponents instead of the

Z~-powers 20 only.

§5 n-pythagorean fields

As already stated, a field is called pythagorean, if

it is real and satisfies - K2 + K2 = K?. We call K

El

n-pythagoreén, n € W, if K is real and satisfies

zn 2]’1 n

K + K = K2 Pythagorean fields coincide with 1~pytha-.

gorean fields. X is called w-pythagorean, if it is n—pytha—

goredn for every n € N.

THEOREM 28, Every n-pythagorean field is m-pythagorean for

all m £ n.

Proof. We have the equality (a® + b

for some d € K by assumption and theorem 25. Since K is
m T oM

N N

feal, we cobtain a
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A real field K is called strictly-n-pythagorean, if
n
2

the set K is a fan or, equivalently, if every maximal
subgroup of level n is additively closed. A strictly-n-
pythagorean field is obviously n-pythagorean, the converse

does not hold. If K is strictly n-pythagorean for every n,

then K is called strictly-e-pythagorean. Strictly=-e-pythago-

rean fields are equivalently characterized by the property
that altogether every maximal subgroup of a higher level
is additively closed. A strictly-n-pythagorean field is
easily seen to be strictly-m-pythagorean for m £ n, too.
Strictly-1-pythagorean fields are called strictly-pythago-
rean in this work, see (411, [43], in [24] they are

called superpythagorean.

n
That the set K? is a fan ecan be checked by the

following conditions which simplify the test of theorem 7:
n n 2T-q n .
(*) /\ n K? +K2acU K? at.
a €‘—K2 i=0

The proof is a simple application of theorem 7.

We shall now study n-pythagorean and strictly-n-pythago-
rean fields. Our interest applies mainly to strictly-n-
pythagorean fields because these fields naturally occur in

the study of hereditarily-pythagorean fields.
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LEMMA 14. Given a pythagorean field, the following state-

ments hold:

i) A , is the smallest 2-henselian valuation ring of K,
KE

ii) A 2 AQ for every n € W, .

K= =n

i1i) 1if K? is homogeneous (strongly-homogeneous), then

the same holds for Q , n € IN.

Proof. i) Let I be the maximal ideal of A g Trom
K

1+ 1 cX*? we obtain that 1 + I is 2-divisible and,

finally, that A , is a 2-henselian valuation ring. Every
K

2-henselian valuation ring is fully compatible with Kz,

hence it has to enclose A 2
K

holds. But A

c A
Qn K

ii) Obviously A

is 2-henselian,
K2

2

which implies AQ c A
n K

iii) In the case of K2 being homogenecus, the residue

2°

field k of A
K

ordering P > Q , the induced ordering P« kx has to be

2 carries only archimedean orders. Given .an

an archimedean order by theorem 16, corollary 2. Therefore

A(P) = x holds, from which we deduce A(P) = A , = AQ .
K n

In the case of K2 being strongly-homogeneous, then Qn

turns out to be the unique ordering of k.
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COROLLARY. A real field is n-pythagorean (strictly-n-

pythagorean), iff it admits a 2-henselian valuation ring

with an n-pythagorean (strictly-n-pythagorean) residue

*

field.
Proof. The existence of such a valuation ring follows from
lemma 14 and direct calculation. Conversely, let A be a

2-henselian valuation ring with an n-pythagorean residue

field k. For Bgseerr, € k wé obtain

o on én 1 ,n
ti=a; +...+ta, =Db (Zei + p) where b € K,
1
x 1 -oh _oh x
s €A, p€ I. We have I €; =1 for some n € A",
2, 2" ' : s
hence, t = b° (n + p') where p' € I, too, Since 1 #+ I

. oh én
is 2-divisible, we get t = b @ € K

o7
s, as required. In
order to prove that K is strictly—n-pythégorean; one may

apply the condition (*) abowve.

This criterion applies to the generalized power-series-
fields

K((P)) = {f = £ o XY"[ supp(f) well-ordered},
yer ¥

where k is a field, T' a totally ordered abelian grouplug],
k((Ir)) is naturally eguipped with an hemselian valuation
which has the residue field k and the value group I'. If

' = Z, we write k((X)) instead of kx((Z)), this is a

common usage.
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L. Brdcker [43] and, independently, R. Brown [415] recognized
that strictly-pythagorean fields can be characterized by

ks
means of their valuations.

THEQREM 27. A pythagorean field is strictly-pythagorean

iff the residue field of A 5 admits at the most two orders.
K= .

Proof. If K is strictly-pythagorean, then the set k% is a
fan., The assertion now follows by theorem 14%. The residue
field k of A 2 is pythagorean again. If it carvies at the
most two ordgrs, then k2 turns.éut to be a trivial fan.

Lemma 14, corecllary , yvields the required result.

COROLLARY 1. A strictly—pyfhagprean field is either

strictly=-e-pythagorean, or K% = Q. ~holds for every ¢

n € N. .

Proof. A ? is 2-henselian. Therefore it is sufficient to
— " ¢
consider this alternative only for the residue field k

of A o k admits at the most 2 érders, hence theorem 17, .
K . -’
corollary, applies.

-

A field K is called euclidean, if K is real and K2 is
an order. Euclidean fields are precisely the pythagorean
fields with a unique order. Euclidean fields turn out to
be strictly-w=-pythagorean, we have the relations

n
kK2 =k ,heN.
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COROLLARY 2. If K is a real field, then the following

statements are equivalent:

i) K is strictly-«-pythagorean,

ii) X is strietly-pythagorean and 2-pythagorean,

iii) K is pythagorean, and.the residue field of A , has
KE

a unique order,

iv) K2 is a strongly-homogeneous fan.

Proof. i) = ii) Clearly. ii) = iii) Let k be the residue

field of A g K is pythagorean. Suppose k has two orders,
% .

2

P1, P2. Then k

there exists an ordering P of k of exact level 2. The

% kq must hold. Because of " kq = kq,

valuation ring A(P) of k has a non-2-divisible value group.

Therefore, one may obtain from the induced P at least

2 orders, hence P1 and P2. This shows A(P) ~ Pi; P2 and
)

1+ I(P) = P, AP, = k5. A(P) turns out to be a non-trivial
2—henselian valuation ring. Using A(P), one might properly
refine the ring A 2 getting a 2-henselian valuation ring
again. This resulg contradicts lemma 14, 1i). iii) = iv)
Since A 2 is 2-henselian, K2 is a fan, eQen strongly-
homogengous as foliows directly from the definition.

iv) = i) In particular, k% has to be a preordering. Hence,
K must be pythagorean. The residue field of A-2 is a py-
thagorean field with a unique order, i.e. an‘iuclidean

field. Now apply the corollary of lemma 1b.
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It is an astonishing consequence that a strictly-2-
pythagorean field is in.fact strictly-e-pythagorean. Whether
this holds for n-pythagorean fields is not known. But we
would like to mention the following partial result. Let K
be a real field with the property, that every ordering
of higher level is already an order. For example, see §3.

If K is n-pythagorean for some n > 2, then K has to be
n
even euclidean, for K is pythagorean and K2 = Qn-= K2

2

holds. But this implies K = K“ U -Kz, as required.
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Chapter II The Relative Theory

g1 f~henselian valuation rings

Let R,R',... be valuation rings of the field K., As
hitherto we denote their residue fields by kok',.. or
i,ﬁ',...; If{ R « R', then R induces a valuation ring
RIR! := w(R) of R', where mn: R' - R' is the canonical
epimorphism. In this way, one obtains a bijection between
the valuation rings contained in R' -~ these are the re-

finements of R' .~ and the valuation rings of R'.

LEMMA 1. Let LIK be an algebraic extension, let R < R!

be valuation rings of K. Then the following statements

hold:

i) every valuation ring R' of L extending R'encloses

an extension K of R to L,

ii) over every extension R of R to L there lies a unique

extension R' of R' to L.

Proof. i) Choose an extension of R/R' to %'. It has a pre-
sentation R#K'. R turns out to be an extension of R.
ii) Let T be the value group of R, T the value group of R.
For a convex subgroup L of T we write IXi for its

convex closure in T. Thus, |Z{ n T = £ . Conversely, let

¥ be a convex subgroup of F. Since T/T is a torsion-group,-
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~ we have ¥ = 1¥nrl. Assume now R' = Ry (compare with

chapt. I, §2). Given any convex subgroup ¥ of F¥, we conclude

(ﬁf) N K = Rynn. This proves that R

overring of ¥ which extends R'.

(51 is the unique

As already explained in the introduction, the theory
of hereditarily-pythagorean fields is based on a certain
class of Galois extensions of a real field k. Accordingly,
we also need a relative version of the henselian property
of valuation rings. To this end, we first only make the
hypothesis that 21K is a normal (possibly infinite) al-
gebraic extension of the field K. A valuation ring R
(or the valuation associated to R) of K is called
fi-henselian, if R admits a unique extension to &, [431.
Thus, the fi-henselian valuation rings are precisely those
which are indecomposed in §. *

In the case of Q = K, the algebraic closure of K, we
prefer the term "henselian" instead of "K-henselian".

The familiar results on henselian valuations are trans-
ferred to the relative case by Brdcker [43] . In parti-
cular, the following holds:

R is Q-henselian iff Hensel's lemma appl’es to every

monic polynomial f € R[X] which spili:. lnto factors

of degree 1 over Q. -



There always exist minimal Q-henselian extensions
(X,B) of (K,R) in{)l. These are pairwise conjugate under

Aut(QIK), and are called the §l~henselian closures of

(K,R). They are immediate extensions of (K,R). In the
special case of char R = 0, the %gbepselian closures are
characterized as the maximal immeélate extensions of (K,R)
in @ [26;814FF], [431].

kY

LEMMA 2. i) Every valuation ring R of K has a smallest

Q-henselian valuation overring,

;. hn"‘-—u'

ii) every overring of an Q-henselian valuation ring is

again f-henselian.

Proof. ii) féllows directly from lemma 1. i) Let R be an
extension of R to 2. By [2{£3;514], the set

{c¥ | o € Aut(QIK)} consists of all extensions of R to %.
Let ﬁ“be the valuation ring generated by all rings OR,

A

A
R = R for any o0 € Aut(QlK),

¢ € Aut(QlK), Because of o
we see that ﬁ 1= % A X 1is an f-henselian valuation -
ring of K. Obviously R « ﬁ. Let R' be an {i-henselian
valuation overring of R, and ' its unique extension to
Q. By lemma 1 we may assume R < X', which implies

A A
ReR' and R < R'.

We are mainly interested in the following situation:

K real, g o K,, where K, denotes the maximal (Galois)



- 73 =

?-extension of K.

THEOREM 1. Let X be real and QK a Galois exterision "\

satisfying Q o Kz. Then K has a smallest {i~henselian

valuation ring.

Proof. In particular, any Q-henselian valuation ring is
2-henselian. Thus,.it is overring of every valuation ring
R(P).;y where P is an order of K, This shows that the‘family
-{Ra} of all Q-henselian valuation rings is totally ordered
by inclusion. Therefore, R := nRu is a valuation ring. Let
ﬁ be the smallest Q-henselian valuation overring of R.

A A A
Then R < R, holds for any «. Thus; R < nRu = R, 1.e. R = R,

The smallest $i-henselian valuation ring is called the

fi~henselian valuation ring of K.

§2, Prime-closed extensions and Artin-Schreier theory

The Artin-Schreier theory of the real closure of a
field K refers to its algebraic closure. As already ex-
plained in the introduction, the results remain valid
for certain other extension fields. A first ekample is

given in [ & 1.

We recall that for arbitrary algebraic extension LIK

the degree [L:K] will be understood as a Steinitz-number
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or a "supernatural” number. Given a prime nhumber P, the
maximal (Galois)Fextension of a field K is denoted by

KPIK. If Kp = K, then K is called p-closed. Moreover, we

set .
P(LIK) = {p | p prime number, p | [L:KI}.

IP(LIK) 1is called the set of prime numbers of LIK,

We shall study the following pairs (Q,k) of fields:

k a real field, 22lk a Galois extension,

2 € P(alk), &8 =8 for every p € P (Qlk).
P

An extension Ok of this type will be called prime-closed,

4

compare with [13]. For every real intermediate field X of a

prime-closed extension of 2|k the extension Q|K is also
prime~closed,

Let 21k be prime-closed, then 9 contains the maximal
2-extension kzlk. On the other hand, £ is contained in
the algebraic closure klk. Therefore, kzlk and klk present
‘the two extreme cases. The latter one is on the basis of
the Artin-Schreier theory, whereas the exteﬁsion k2|k has

been studied in [ & ]. -

A prime-closed extension 01k does not always contain the
p-th roots.of unity for a pllf:kl. An example will be
given later. An extension - -Qlk is calied saturated if it is
prime-closed, and if for every pllR:k], p a prime number,
the p-th roots of unity lie in Q. In.fact, a saturated ex-

tension contains all p™-th roots of unity, where pl[f:k]
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and n € IN. kzlk, kik and M|k are examples of saturated
extensions, where M denoctes the maximal solvable extension

of k.

In order to construct further examnples, take a class C
of finite groups, which is closed as to the formation
of subgroups, factorgroups, finite products, and group-
extensions with kernel and factorgroup from C; moreover, C
is assumed to contain all finite 2-groups and all finite
p-groups for those prime numbers p, which divide the order
of some group in C. Now take the maximal C-extension §
of k, i.e. the maximal Galois extension QIk having a pro-
C-Galois group, compare [30], Qlk turns out to be a prime-
closed extension, since the Galois group G(Qplk) is a
pro-C-group for ‘évery p € P (Rlk).

For example, in the case of kzlk,We take the class of
all finite 2-groups, in the case of Mlk we consider all
solvable finite groups.

Now let TP denote some set of prime numbers, assume
2 € IP. The class C of all IP-groups, i.e. of all finite
groups,the orders of which have only prime factors of TP,
satisfies the aforesaid conditions. Let 2 be the maximal
IP -extension (=maximal C-extension) of the real field k.

@

Obviously IP (Qlk) « TP, Equality holds, if k admits

proper p-extensions for every p € IP. Since k = §§ has
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this property, we have proved:

THEQREM 2. Given any set P of prime numbers, where

2 € TP, there exists a prime-closed extension Qlk with

P(Qlk) = TP.

For example, consider the maximal {2,7}-extension 21@.
Q@ does not contain the 7-th roots of unity, and therefore
presents an example of a prime-closed, but not saturateéed
extension of 0.

Now assume 2|k to be prime-closed. Due to Zorn's lemma
there are maximal real extensions of k in i, These exten-

sions are called the real closures of k in &, for short,

the real fi-closures of k. According to the characterization

of the real closure in the absolute case, the following

theorem holds:

THEOREM 3. Let R be an intermediate field of §filk, Then

the following statements are equivalent:

i) R is a real closure of k in 0,

ii) ROV = @, @ # R,

iii) 1 < [Q:R] < =,

Proof. i) = ii) Let F be a 2-Sylow-field of fIR. FIR is an
odd extension, hence F is real again [9 ;8§2, no.41. But
this implies T = R, and 2[R proves to be a 2-extension.

By assumption on flk, every quadratic extension of R is
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contained in ©. Thus, R admits no real quadratic extensions,
which implies that R is euclidean and Q = R{Y~T)

[ 6 ;58tze 1,3]. 1ii) = iii) Clearly, iii) = i) Let p be a
prime divisor of [Q:R], and F a pP-Sylow-field of QIR.

We shall show thatm Q = Fp. Obviously R c FP holds.
But, on the other hand, Fp < 22, since @ is p-closed. The
maximal p=-extension FPIF therefore turns out to be a
proper, but finite extension. A theorem of Whaples, as
stated in [ 6 ;8atz 3] or [S#; Theorem 2], now says p = 2,
F is euclidean. Because of [F:R] < «, R is also euclidean

[ 6 3lemma 2]. @ is a non-real 2-extension of R, hence

Q@ = R(WV-T1) by [6 ;Satz 3]. This finishs the proof.

COROLLARY. The non-trivial elements of finite order of

G(Qlk) are precisely the involutions of G(Qlk).

By the proof of the last theorem, the real Q-closures
of k are euclidean fields. The real closures of k in
Q = k2 coincide with the minimal euclidean extensions,
i.e. the euclidean closures of k [ § ;Satz 6. The real

closures of k in @ = k are plainly the real closures

of k [ 6].

Let R'be a real closure of k in Q. Since R is euclidean,

"the set P := R2 N k turns out to be an order of k. If

R, and R, are real Qi-closures of k, which are isomorphic
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over k, then they induce the same order in k. The converse
“is valid, toc. First choose real closures ﬁi of R,, with

respect to the algebraic closure k of k. Since Ri carries
2 =2

a single order, we obtain Ri = Ri n Ri’ thus
ﬁi nk = Eg N k. But it is well known ({4 ] or [¥ 1],

[291, [39] for different proofs) that there exists a
k-isomorphism o: Ry N EZ' As 2lk is normal and
R: =@ N Ri‘ holds, ¢ induces a k-isomorphism between R,

and R2.

A real §-closure of k has been proved to be euclidean.

In view of [ 6 ;Satz 21, this implies Aut(Rlk) = 1.

Every order P of k is induced by a real {i-closure R,
i.e. P = R2

in Q.

We summarize:

THEOREM 4. Let @1k be prime-closed, and let R, R,, R,

be real f-closures of k. Then the following holds:

2. .
, * R{Nk=RynNk,

iy R, % R
1 x

ii) Aut(RIk) = 1,

iii) every order of k is induced by some real {-closure

of k.

N k, since the real field k(V¥P) is contained

COROLLARY, Every involution in G(fik) is self-normalizing.

&
L
£
e

AT
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This last statement follows from the theorem 3 and U4,

See [27;(1.1131].

We shall now consider orderings of higher level in our
relative situation. According to the absolute case - 2 = k,
dealt with in chapt. I, §% - we define: let P be an ordering
of higher level of k, then a maximal extension (R,P)
of (k,P) in @, where P is a faithful extension, is

called a real Q-closure of (k,P). The case of level 1,

i.e. of orders, has just been settled by theorem 4. Theorem
24, from chapter I, which refers to the case of exact
level > 2 and @ = k, can also be transferred to our re-

lative situation.

THEOREM 5. Let Qlk be prime-closed, and (R,F) a real

@-closure of (k,P). Assume that P has exact level n > 2,

Then the following holds:

i) R admits precisely two orders and a unique ordering

of exact level m for every m 2 2,

-

ii) R is the intersection of two real f-closures of k

and has no odd algebraic extensions,

iii) if A is the Q-henselian valuation ring of R, and &

its extension to Q, then the following holds:

-~

X = A(V=1), A euclidean, A 2-closed.
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Vs 8 .l\‘,,J\ e {
Proof. "Let " (R,P)*" “be''d PEAL K=¢losupe ‘GF (R ?) “From
A R . .‘; W \ ! —:‘zAEV'
Rn @ =R we cobtain that G(QIR) is“a“shbgrbuP of G(kIR).

'
According to the proof of theorem 24, .the following holds:

- A -
GEkIR). = <0>-U  where Uff;.ia,ﬂHG‘ifuxl.lﬁonsﬂuaﬁ LAV

PTQPZZ (-Eaddltlve group. of the dyadlc 1ntegers) ?h%s“.
-ylelds‘;%)m 81993.“3-5_9?@ﬂ;9_a;62_F;Tz 1 holds, R hasﬁi
to be py@hagegeegﬁgithifgﬁﬁgR 1= W R carrles the orderlng
P, the exact level of which is n > 2. 'Thus | [R R 2y = a4,
agq?qum ehapﬁ,; theorem 17, corollary 2, we derlve 1)
Moreover, R is even strictly-«=-pythagorean. By chapt. ,I,
therem_Z?,_eorpllapyfg, the 2-heneelianeyaluation1ring,_,_
AR2 of R has a euclidean residue field. But_AR2 is Q-‘-Vheln_se—
lian; too, as 2IR is a 2-extension. We even have Q = 32.

Since R(i) is 2-closed, we conclude that R = R(i).

53 The relative pyvthagorean closufe

Given a prime-closed extension Qlk, it is quite natural
to consider the intersection of all real Q-closures. of k.
This intersection 'is, of ‘course, a field which is called

the pythagorean.closure of k in:Q. We denote this field by

(R1k)*. By theorem 2, corollary, (ﬂlk)* is -the-fixed field
of that subgroup of G(Qlk) whlch is generated by the
torsion-elements. Hence (lk)*lk is a Galois extension.

Moreover, (Qlk)* is pythagorean, being the intersection
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of pythagorean (even euclidean) fields. If ke 1 < (Q1k)*,,

we have = (@}1)* = (gll)*x. = -

In the special case . { =.ké,4(kilk)* ‘is by :[.6:38dtz 10]: :

the smallest ‘pythagorean’ extension:field k of k at-all.

pyth
Furthermore, (szk)* ~can Be constructed : by successive::
adjoining square roots of sums of squares. The extension.: .

(KIkY* was also investigated in [28], but from a different

point of view. In [28], it is called "Galois order closure”.
In the sequel, Qlk 1is always assumed to be prime-

closed.

THEOREM 6. ( See [6; Satz 10. Korollar 3], [28;811).

(Q1k)* is the largest Galois extension of k in @, to which

every order of k can be (faithfully) extended,

Proof. Evidently every order of k is extendable to. (Qik)*.
Conversely, let LIK be any such Galois extension of k in §.
Assume further that R is a réal'ﬁ-closure of k, inducing
the order P on k. P admits an extension ¥ to L, and there
is a real Q-closure R, where ¥ oL, %2 AL = ¥ nolds.

~s

Thus, by theorem 4: ¥ 3 R. Since LIK is a Galois exten-
k

sion, we conclude L < R. This shows L < AR = (Qlk)*.

THEOREM 7. ({comp. with [6 ;Satz 10,Korollar 4],[28;Co-

rollary 161). (RI1k)* is the largest Galois extension of k

in @ with a torsion-free Galcis group.
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Proof. If ke L c @, and LIK is a torsion-free Galois
extension, then L has to be contained in the fixed field

of any involution of G(Qlk). This means: L « (Qik)*.

For the converse, we have to show that G((Qlk)*|k) is
torsion-free. If otherwise, there is an intermediate field
L with 1 < [(Q]k)*:L] < . 3uppose the odd prime number

p divides this degree. By assumption, the maximal p-exten-
sion of (QIk)* is contained in 2. But, in view of

[@:R] = 2 for every real Q~closure R, it is even contained
in every real Q-closure. Thus, (Qlk); = (&lk)*. However,
this result contradicts the theorem of Whaples [5H%;Satz 31.
Therefore (QlkJ}* is a 2-extension of L. Since

[(Q1k)*:L] < e and (Qlk)* is pythagorean, L proves also
to be pythagorean [1%;p.149]. Moreover, every order of L

is (faithfully ) extendable to (R1k)*, because of

(Q1k)* = (RILY*. We have (LQIL)* = L, since L is pythago-
rean. Now theorem 6, applied to the extension LZIL, yields

the desired contradiction.

COROLLARY. Either k = (Qlk)*, or [(Qlk)*:k] = = holds.

If a real Q-closure R has finite degree over (QIlk)*,
then (flk)* has to be euclidean as well. Furthermore,
(21k3}* must have a trivial group of automorphism over k,
being an euclidean algebraic extension of k. This implies

k = (@1k)* and [Q:k] < =. But considering the theorem of
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Whaples, the degree [Q:k] can be divided only by the
prime number p = 2, thus, @ = k(i). Consequently, as in
[ ], we obtain the following diagram concerning the

structure of the extension &lk:

2
//// l\\\\ } degree 2
R" ... R ... R" ..
degree infinite, or k
euclidean and @ = k(i)
(Qlk)*
l degree infinite, or
K k = (Rlk)*.

It is well known that the quadratic extension K(i),
i = V=1, of a.pythagorean field K contains all roots of
unity of order a power of two [10 ;iemma #]. This fact
remains valid in a more general way. In order to derive
the proper result, we need the following statement: let K
be a real field, ¢ a recot of unity in K(i}, then
z +;_1 € K, for the norm NK(i)lK(;) is a root of unity
and a sum of squares in K at the same time. Thus,

N(z) = 1,and 2-1 is conjugate to r over k.



THEQOREM 8. (Qlk)¥(i) contains all roots of unity which
lie in Q.
Proof. According to the fqregoing remark, for every root .

of unity ¢z € @ , and for every real fi-closure R of k the

i

element ¢ + c_l lies in R. Hence, £ + ¢ ~ € (QIKk)*.

Therefore, ¢ satisfies a quadratic equation over (Q[k)¥*,

2 (g + ;_1)c + 1 = 0. But (QIKk)*, being pytha-

namely &
gorean, has only one non-real quadratic extension, that is

(Qlky*(i).

We obtain the special consequence that (M|k}*(i) contains

all roots of unity.

&4 Generalizations

A détailed analysis of the proofs in the last two sec-
tions shows that some results hold under weaker conditions
on the Galois extension Qlk. In favour of a homogeneous
presentation, Qe have renounced giving the differentiated
statements. However, many results on hereditarily-pythago-
rean fields can be proved on weaker assumptions, Therefore,

we would now like to quote the more general versions of

the required statements.
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THEOREM 3'. :iliet Qrbe-a;2-closed Galdis extensidn of the

real field K, R an intermediate field. Then the following

statements arecequivalentir.. o meoioa

i) R is a real fi-closure of Ik,

WS SR S

i) RO = @, 2 % R,

iii) [0:R] = 2°

‘.fdf éome' t wai.
In the.proof:, -one may use -the:part i) = ii) of the proof

of theorem 3 and the result [ f ;Satz 3T on a characterization

of euclidean fields.*®

If Qlk is a 2-closed Galois extension, then the real
fi-closures are likewise euclidean fields. Thus, they induce

2 N k all crders of k. Hence, the theorems

via R # R
%,5,6,8 remain valid on the assumption that @ is a 2-closed

Galois extension of k (k real). With theorem 7, it is to

be modified as follows:

THEOREM 7'. Let & be a 2-closed Galois extension of the

real field k. Then (Qlk)* is the largest Galois extension

of k in f with a 2-torsion-free Galois group.




Chapter III Hereditarily-Pythagorean Fields

81, Theorems of characterization

In this section we start off with a 2-eclosed Galois

extension @1k of the real field k. We shall study those

real intermediate fields K, which are hereditarily-pythago-

rean (hereditarily-euclidean) - abbreviated by h.p. and

h.e. - with respect to f, i.e. for which every real exten-
sion in § is pythagorean (euclidean). We shall characterize

these fields in several ways.

THEOREM 1. Given a real intermediate field K of Qlk,

then the following statements are equivalent:

i) K is heveditarily-pythagorean field with respect to

2,

ii) g(RIK(V=T)) is abelian,

iii) every non-real extension of K in § contains V-1,

iv) every real extension L of K in O is the intersection

of its real Q-closures, i.e. L = (QIL)*,

In chapt. IV, 81, we shéll sharpen this result and
prove that a real intermediate field K of Qlk is h.p. 1iff
the Galois group G(R!K) is meta-abelian.

Fields which are hereditarily-pythagorean, regarding

their algebraic closure, are called absolutely hereditarily-



pythagorean. If no confusion is to be expected, we drop the
reference to the 2-closed extension Rk, and simply use the

term "hereditarily-pythagorean fields™.

The proof will result from a series of lemmas. We always

denote i=y=1. Given a 2~closed extension 2]k and a real in-
termediate field X, then the extension QK is again 2-clo-

sed. Hence, the results of chapter II, § 4 can be applied.

LEMMA 1. Let V be an abelian subgroup of G(RIK) with Ffixed

field F = @'. Then either 4V = 2, or T is . not real.

Prooi. If F is real, then choose a real Q-closure of F.
RIF is then an abelian extension. Because of Aut(R|F) = 1,

chapt. II, theor. 4, we obtain R = F and V = 2.

LEMMA 2. Let U = G(QIK(i)) be abelian and ¢ an involution

in G(RIK). Then the following holds:

/\ gudg = u_l
€

U

u

Proof. We set W = {ouou | u € U}. W is a subgroup of U,

as U is abelian. Denote F' := 2%, We have o(F') = F' and

G(QIF) = <o>+W, where F = (F")°. G(RIF) is abelian because
of ow = wo, for w € W. But F is real, and we may apply

lemma 1.

Before we come to the next lemma we would like to remark

that a real field K is pythagorean iff K(i) 'is the only



non-real quadratic extension.

LEMMA 3. The following statements are equivalent:

i} K is h.p. relative to Kz,

ii) every non-real extension in K, contains V-1,

iii) G(K,IK(V=1)) is_abelian.

Proof. i) = ii) We may assume that LIK is a finite ex-
tension, L < K2' Then there exists a chain of field exten-

sions K = Lo o L1 R Lr = L, where [Lj:Lj_il = 2

holds. Moreover, we find k such that Lk is real, hence
pyvthagorean, but Lk+1 is not real. By the foregoing remark,

‘we see 1 € L c L. 1ii) = III) Set U = G(KZIK(i)).

k+1
Thus, G(KZIK) = <0>'U with some involution . Given u€U,

1= Kgu. Because of ogu(i) = -i, F is a real field.
Now lemma 1 shows (gu)? = 1. This implies ouo = u_i,,and

we set F

that U is abelian. iii) » i) By lemma 2 we have & = <g>.U,
where gug = u—1 holds, Hence, G is generated by the. in-
volutions eu, u € U, which implies that k is pythagorean

[ £; Satz 10, Korollar 2]. These arguments are still valid

for every real extension of K in K2.

Now we interrupt the proof of theorem 1, and demonstrate
how it can be determined in the base field X itself, whether
K is N.p. relative to Kz. This statement can be found in

[41] without proof.



THEQOREM 2, A real field is hereditarily-pythagorean rela-

tive to its maximal 2-extension iff it is strictly-pytha-

gorean. ' . ’

Proof. If,K is h.p. rélative to KZ’ then every real quadra-
‘tic extension of K is also pythagorean. From [A9; S&tze 2,41]
we obtain that K2 is a fan. Owing to the construction of

the intermediate fields of KQIK, we need only prove that
any real quadratie extension L = Kéﬁg) is likewise strict=-

ly-pythagorean. From the exact sequence

x 2

1 - {K*%, ak*?} & K*/K*? o DX/ o NS Y/K*? a1,

[6; page 43], we obtain L° = X*L*2 U vaK*1*?, taking into

x2 2

acqoﬁnt the relation N(L™) K U -aK*“, Let U be a sub-

groﬁp of Lx, -1 € U, [L*:U] = 2. For P := K" N U we see
-1 ¢ P, [¥°:P] = 2; Thus, P is additively closed, since K?
is a fan. The order P U {0} has two faithful extensions
?1, ?2 on L, because of a = (Va2 e un K = P, Observing

PL? < . and [£*:pp*2

} = 4, we conclude PL2 = ?1 n ?2.
Hence, PL2 is a fan, and its overset U U {0} has to be an

order.

LEMMA 4. Let LIK be an arbitrary finite extension, where

L is strictly-pythagorean. Then there exists t € N, satis-

fying the following conditions:

: 2
i) [L*:x*L*?) = 2%,
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ii} an order of K, which is faithfully extendable to L,

has precisely 2* faithful extensions.

COROLLARY 1. If, in addition, [L:K] is odd, then an order

has a unique extension to L, namely PLZ.

Proof. Generally, the number of faithful extensions is fi-
nite and congruent to [L:K] module2, [3%9; Prop. 5.2] or
[37 ; page 289, Exc. 2].

COROLLARY 2. If, in additicon, LIK is a Galols extension,
t

then [L:K] = 2 follows.

Procf. Given a real Galois extension, the number of faith-
ful extensions equals zero or [L:K], [3§; Coroll. 5.1] or

chapt. I, theoremdd.

Proof of lemma 4. Let P be an order of K, faithfully ex-

tendable to L. Then -1 € PL® holds, and PL’ has to be
a peer dering of L, as L2 is a fan. The orders of L enclo-
‘sing PL2 are precisely the faithful extensions of P to L.

They are of finite number, and correspond to the maximal

subgroups of L, which contain Pxsz. This correspondence

is due to the fact that L2 is a fan. Thus, [Lx:PXLx2j=2t+1 ,

x_ x2 t
]

(L x*L

= 2°, and there are 2# faithfyl extensions,

LEMMA 5. If K is euclidean and k.p. relative to R, then K

is even h.e. relative to {, and G(Q/X{i)) is abelian of

odd order.
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.

Proof. Let L be a 2-Sylow-field of QJK. L is real again,
being an odd extension of K. Thus, L is h.p. relative to Q.
In particular, L turns out to be striectly-pythagorean be-
cause of L2 < § and theorem 2. By lemma 4, corocllary 1, L
admits a single order. Hence, L is euclidean. But Q|L is a
2-extension, which implies @ = L{(i) [é ; Satz 3]. Conse-
guently, [Q:K(i)] 1is odd. Set U = G(QIX{(i)} and choocse
an involution o € GWLIX) and an element u € U, Consider

4. Either (Gu)2 = 1 holds, or F is not real by

F =@
lemma 1. In the latter case, [F:K] has to be even, which
implies i € F. For, if i & F, we would obtain 4| [F(i):K]
contradicting the fact I[0:K] = 2r, r odd. But i € F is
also a contradiction, as ocu(i) = -i shows. Thus, (0u)2=1,
or eguivalently oug = u—i must hold for every u € U.
This implies that U is abelian. Every real Q-closure of K
is an odd extension of K. Since every real extension L of K

in @ is contained in some real fi~closure, L is likewise euy-

clidean, by, say, lemma 4, corollary 1.

In order to prove a succeeding eriterion, which will be
formulated in theorem 3, i), we shall only assume in the
sequel that K is h.p. relative to Kz, i.e. G(KéfK(i)) is
abélian, and that G(QIKz) is abelian, As just proved,

every. h.p. field fulfils these assumptions, for we have

K2 < @, and lemma 5 can be applied to every euclidean



closure E (= real K,-closure) of K. Note that K, = E(1)

holds.
First, we observe that [ﬂ:K2] must be odd. Now choose a
2-Sylow-field L of QIK. Then L{i) turns out to be a 2-Sy low-

field of QI1K(i). We have & = L,. Hence [R:Kg] and [R:LK2]

2
are relatively prime, implying & = LK,. Thus, we are pre-

sented with the following situation:

LK. =G
'L(i)————"”_ 2
[ " .

Being an odd extension of K, L ﬁas to be real. Moreover,
G(RIL(1)) = 6(K,IK(i)) is avelian, and, by lemma 3, L is
shown to be h.p. relative to @ = L,. Set V = a(QIL(i)),
W= G(lez). On account of L{(i} n K, = K{i) (note
[L(i):K(1)] is odd), G(QR[K(i}) is generated by V and W. In
order to prove that G(Q|K(i)) is abelian, we only need
show that V and W are commutable. Let ¢ be an arbitrary
involution of G(2IL) and set E = Kg. E is an euclidean

field where X, = E(i) holds. By assumption, G(RIE(i)) is

abelian. From Lemma 2, we now derive gwg = wt for an

/



arbitrary w € W. Now pick v € V, w € W and an involution
o € 6dlIL), By lemma 2, ov is likewise an involution. Thus,

as just remarked, we have UW_1U = W, (ov)wfov)_l = w-i.

i

these two equations imply wvw = wv.

So far, we have established the implication i) = ii) of
theorem 1. ii) = iii). By lemma?, we have G(QIK) = <o».U,
U = G{(RIK(L)), o? = 1, cug = "l where u € U, If LIK is
a non-real extension in @, then G(QIL) has to be 2-torsion-
free by chapt.II, theorem 3'. This proves G(RIL) =« U and
Lo K({(i)., iii) @ i) Let LIK be a real extension in §,

FIL be a non-real extension. Being non-real, F has to con-~
tain the element V=i. By the remark before lemma 3, L
turns to be pythagorean. ii) = iv) 8See the proof of

iii) = i) in the proof of lemma 3. iv) = i) follows from

the fact that the real f-closures are euclidean.

Thus, the proof of thecrem 1 has been concluded. As an-
nounced, statement i) of the following theorem has been pro-

ved, too.

THEOREM 3 Tor a real intermediate field K of Qilk, the fol-

lowing statements hold:

i) K hereditarily-pythagorean relative to § « G(KZIK(i)),

G(RIK,) abelian,

ii) K hereditarily-euclidean relative to {I & G(QIKZ) abe-

lian, K, = K(i) ,
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iii) K hereditarily-euclidean relative to o [0:K] = 2u,

u odd.

Proof. FEuclidean fields are characterized by K, = K(i)
among all real fields [ 6 ; Satz 3]. From this result, from
lemma 5 and i) one proves ii). Due to lemma 5, we need only
prove the implication "e" of iii), A real extension L of
K in € has to be pythagorean, for, if otherwise, the pytha-
gorean closure of L, which 1lies in @, would have the degree
2%, implying the contradiction 2 I[Q:K]. Hence,.K is h.p.
But K is likewise euclidean, since [Q:K] =z 2u enforces
[K,:K] = 2 and K, = K(i). Applying lemma 5, one obtains

the assertion.

The statements ii), iii} of theorem 3 can alsc be found
in [#8; (1.2) and (3.1)] for the absclute case & = k, com-

pare with [27; 5.1] too.

REMARK. The proof of theorem’] suggests a new formulation,
stating in which cases the base field k, and not an inter-
mediate field, is hereditarily-pythagorean. However, we pre-
fer the‘formulation just given, since the extensions of k

in 2, which are hereditarily- pythagerean relative to @, may
. be regarded as generalizations of the real Q-closures of k.

this has already been explained in the introduction.

-
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We shall now prove an entirely different characterization
of h.p. fields. This one results from the investigation of
sums of squares in the rational function field K(X). Since
K(X) is not pythagorean, there are sums of squares in K(X),

which are not squares.

THEOREM 4. A real field K is absolutely hereditarily-pytha-

gorean iff evervy sum of squares of K(X) is a sum of 2

SqUAres.

Proof. By [43; p. 314], every sum of squares of K(X) is a
sum of 2 squares iff the level of every finite non-real
extension equals one, i.e. iff all these fields contain

V=1. Now theorem 1 yields the assertion.

This theorem enables us to show that every torsion-ele-
ment of the Wittring W(K(X)) has an order at the most 2,
if K is absolutely h.p. We would like to state, without
proof, that over such constant fields the following state-
ments, concerning the fundamental ideal I of W(K(X)) [#3;

p. 37}, can be proved:

+1 X x2}

is torsion-free & [K :K n

ek <2

For the proof, one may use Milnor's segquence for the
Wittring of K(X) [#3 ; p. 265 ff], furthermore some state-
ments on the number of square classes in extensions of h.p.

fields, which will be proved in §6, énd, finally, the fol-
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lowing vesult W(L) =~ 2/2Z[L*/L*?] where L = X(i), K
strictly-pythagorean, This last statement can be deduced
from the following theorem [53; Theor, 11, [8 3 Satz 21]:

A field XK is strictly-pythagorean iff the Wittring W(XK)

is isomorphic to a group~ring Z[G]. If X is strictly-py-

thagorean, then the canonical epimorphism Z[Kx/sz] -» WK},

induces an isomorphism Z[Px/kxz] -+ W(X), where P is any

order of K.

§2. The f-henselian valuation ring and examples

Hereditarily-pythagorean fields show remarkable valuation-
theoretical properties, as was first discovered by L. Brok-

xer [43]. Qlk is assumed to be a 2-~closed Galois~ extension

ef a real field k in this section,‘too. According tec chapt.
IT, theorem 1, k admité a smallest Q-henselian valuation
ring, its Q~henselian valuation ring. This valuation ring

is real. Now consider any real valuation ring A of k and an
extension A of A to £, then zlﬁ is a 2-closed Galois exten-

sion of the real field A.

LEMMA 6. Let K be a real intermediate field of filk, A a

fi-henselian valuation ring of K, and A its extension to §.

Then the following statements are equivalent:

R
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s

i) K is h.p. relative to R,

ii) A is h.p. relative to A.

Proof. Consider a real intermediate field L of o K. Set A
For the extension of A to L., Since AL is 2-henselian, be-
cause of Q = 92, we know by chapt.I, 8% +that L is pythago-
rean 4iff AL is pythagorean. From this, and the fact that
every real intermediate field of Z]A occurs'as the residue

field of a (even unramified) real intermediate field of

21k, the assertion follows,

The following statement is a spécial case of a theorem

of L. Brécker [13; (1.5)].

LEMMA 7., Let x'be a set of pairwise incomparable, 2-hense-

lian, non-dyadic valuation rings of the field F. If '%1“3 2

and F is generated by the valuation rings A Eﬂb, then F is

?2-closed.

Proof. We have to prove: K = K2, First, assume thatab is

finite and, without loss of generality, even %b = {Al’ AZ}‘
Take a € K'. Since A1 and A2 are independent, there is an
element b by the approximation theorem [26; § 11] satis~
fying: a = be , 1 =Dbn , & € 1 + Il’ nel+ 12. The

groups 1 + A, are 2-divisible, hence a € KQ.

Now consider the general case. Let A # K be an arbitra-

ry non dyadic, 2-henselian valuation ring of K. From the
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hypothesis onqb, the existence of a ring A' € T’ follows
such that A and A' are incomparable. Let A = A.A' be the
valuation ring generated by A and A'. Then A//A and

A'//K are two independent, 2-henselian, non-dyadic valua=

tion rings of the residue field A. Thus, A turns out to be

2-closed, hence A = A//A is also 2-closed. Since A is
2-henselian, one obtains AT = (Ax)z, i.e. every unit is a
square., The prings of‘T’generate F. Due to the first part of
the proof, we may assume that this is not true for any fi-
nitely many rings off’. Now choose a E.Kx, A1 ET'. If

a € A; then a € K2 follows, If a € AZ ; We may assume

a ¢ Ai' There are AZ"f‘iAn E]h, such that a € Ai""'An
=3 :\ holds. ;’L is a non-dyadie, 2 henselian valuation ring

# F. Because of a € ANA , We obtain a € A* < k2.

THEOREM 5. (L. Br&cker, [433 (3.5)]) Let £ be an interme-

diate field of ftik, which is hereditarily-pythagorean rela-

tive to fi. Then the residue field of the f-henselian valua-

tion ring of K admits at the most two orders,

Proof. Let A be the f~henselian ring of K, A its extension
to Q4 As already seen (lemma 6), A is h.p. relative to the
2-closed Galois extension i/ﬁ. From chapt. II, lemma 1,
one concludes that the R-henselian valuation ring of A is

trivial. From the outset, we may therefore assume, that K

has a trivial Q-henselian valuation ring. Denote by Z a



2-8ylow-field of & K. Thus, 2 is strictly-pythagorean. By
chapt.I, lemma 14, A 2 is the {-henselian valuation ring

(R = Z,) of Z. Its iesidue field carries at the most 2
orders (chapt. I., theorem 27). Let A be the extension of
A, to (i), and set P = {0A | o € G(Z(i)) K}. Z(i) K is
aZGalois extension as can be derived from lemma 1. Denote

by R the valuation ring of Z(i), whighlis generated by the
rings ofﬁ”. Then A N X is a Z{i)~henselian valuation ring.
But, furthermore, R, being an overring of E, is Q-henselian.
Putting both statements together, we see that R nx is
even Q-henselian, By assumption on K, we must have ANK = K
implying R = Z(i). If #‘%L = 1, then A = 2(i) follows.

In this case we get A 5 = Z, and 2 has at the most 2 or-
ders. Since every ordei of K is extendable to the cdd exten-
sion Z[K, K itself has at the most 2 orders. If -#‘-'3"3 2,

then Z(i) is 2-closed by lemma 7. Thus, Z is euclidean,

and we see ‘that K has only one order.

In view of lemma 6, this theorem states that the valuati-
on theory renders the reduction possible ontc the class of
n.p. fields with at the most 2 orders. Such fields can be
constructed as follows. Assume that a 2-closed extension
Qik is given. Let R,> R, be two real Q-closures of k. Then
the field K := R, N R, is h.p., relative to 8, since

G(2|K(1)) 1is a procyclic group. Because of [K* k2] < 4,
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K carries at the most 2 orders. So far, it is unknown
whether, conversely, every h.p. field having at most two

orders is the intersection of two real Q-closures.

In general, the intersection of more than two real
g-closures is no longer h.p. relative to Q. If, for instance,
k is not pythagorean, then thé relative pythagorean closure
(plk)* 1is not even stricfly-pythagorean, as will be proved

in chapt. IV, §1.

In the case k' = §, we have the following result.

THEOREM 6. Assume k = ® and @ = k,, or £ = M, or

Q = k., Then every intermediate field, which is hereditarily-

pythagorean relative to @, is the intersection of two real

Q-closures,

Proof. Let K be h.p. relative to Q. Since K admits archime-

dean orders only, and Kzlis a fan, X 1s seen to have at the
most two orders by [#41 or [ ; Satz 21] . In the

‘case Q = k,, the results of'§6 now yield that G(RIK(i))
is cyelie. In order to show that G(M]K(i}) is cyclic, we
make use of a theorem of Iwasawa [34 ;Theorem 6], which
gtates that G(M|Qab) igs free-solvable (Qab denotes the

maximal abelian of §). Because of K = (MIK*), K(i) contains

all roots of unity by chap. II, theorem 5. Thus K(i) o Qab,

-

since the latter extension is generated by the roots of
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unity due to the classical result of Kronecker-Weber.
Hence, G(MIK(1)) is a subgroup of a free-solvable pro;
finite group. Being abelian, G(M|K(i)} has to be cyclic.
The remaining group G(J|K(i)) is cyclic due to a theorem
of Geyer [4F:;2.3], in which all abelian subgroups of
G{(Gl @) are proved to be cyclic. In all the three cases,
G(RIK) is generated by two involutions, which implies the

assertion.

It is a well-known fact that a relatively algebraically
closed subfield of a real-closed field is real-closed

again. Accordingly, the following result holds.

LEMMA 8. Let K be -an absolutely hereditarily-pythagorean

field, and assume that k is algebraically closed in K.

Then k is itself an absolutely hereditarily-pythagorean
L

field.

Praof. By the Galois theory,=G(EIk(i)5 is a subgroup of

G(EIK(i}), thus abelian.

The lemmas 6 and B8 yield the construction of many
examples of absoiutely h.;. fields. One starts off‘with
an h.p. field K which is real-closed, or is the intersec-
tion of two real closures of some field. Secondly, one

takes the generalized power-series fields K((T}) - see

chapt. I, 84, for example K = Ii((Xi))a..((Xn)) o R(Ex...xZ).
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Finally, one considers relatively algebraically closed
subfields. Due to theorem 5, one may regard the fields
obtained in this manner as prototypes of absolutely here-

ditarily-pythagorean fields.

§3 Extension of maximal subgroups

As before, we assume 21k to be a 2-closed Galois
extension. Let us recall some concepts and facts of the
first chapter. By definition, subgroups of level n are
those subgroups V of K , such that -1 €& V, szn oV
holds. The maximal subgroups of level n are characterized
by the properties: -1 & U, K*/U cyclic of order 2™ where
m < n. In this case, U is called of exact level m. Every

subgroup of the level n is the intersection of the maximal

subgroups of the level n in which it is contained.

Let K be h.p. relative to # and FIK a field-extension
(in Q, tacitly assumed). If U and U are maximal subgroups
of a higher level of K and F resepectively, then U is
called an extension of U, if ¥ n X = U holds. Because
of the embedding K*/U - F*/U, the exact level of U is
greater than or equal to the exact level of U. If F is
not real, then F contains K(i) and is therefore a Galois

extension of K. This statement can easily be deduced from
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_the structure of G(R|X), see lemma 2. It is well known

that a non-real Galois extension M of a real field N is

a quadratic extension of g real intermediate field. Hence,
in the present case, F = F (i} for some real field Fo' By
chapt. 1I, theoremIB, all roots of unity of order a 2-power
are contained in F. Thus, there are no subgroups of a higher
level in F. Maximal subgroups are extendable to real

extensions of K in @ only.

For the following basic lemma we need only assume K
to be a strictly-pythagorean field. Note that every maximal

subgroup U of a level n, and every element a € K" satisfy

2n—1 2n-i

the following alternative: a €EU or a € -U.

LEMMA 9. Let L = K(VE) be a real quadratic extension

of the strictly-pythagofean field K, let U be a maximal

"subgroup of K of the exact level n. Then the following

holds: .
2n-—1
i) If a € U, then U has precisely two extensions

to L, and these extensions are also of the exact level

n. Furthermore, there exists Yy € K , such that

Yza € U holds, and the extensions are given by:

— -'xzn — x2n
U, = <yva>uL » U, = <~yva>UL .

n-1
ii) If ~a2 € -U, then U has a unigue extension, namely

o xoDtl .
= UL , and this one has the exact level n+l.
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Proof. In the proof of theorem 2, it has been shown that

t-1 -2 t-1
. This implies (*) 1*? = <a2 >1* 2 Lx2

x - X 2 t
L = <ya>K'L*

for t > 2. Suppose U is an extension U with [L*:U] = 2t

Obviously t > n. Assume t » n+2, then from (*)} we derive

t-1 T
‘the contradiction L*?2 c UL*? < U. Choose a generator

wU, w € K, for K*/U. i) The coset alU has not the maximal
order in X*/U., Thus, a = (w2)Tu for some u € U. Because

of L = K(Vam_zr), we may assume a € U, We have

n
-1 ¢ ULx2 s Since, if otherwise, we would obtain

x2n 2n-1 x20 ]
-1 € UK U a K ) = U. Therefore U admits extensions
U, having the exact level n. Since a = wnleu helds,

we see Va €U or -va €U for UIU. Assume va € U. We
C = x2n X x_x2 x x2n

have U o <va> UL . From L™ = </@»K' L™ ° = <Va>K'L

x21 n

we derive [L”:<Va>UL 1i2". Thus, we obtain

i
U= <¢E>ULX2‘. Hence, U has precisely two extensions to
subgroups of a level n. Taking into account the fact
(o" L
- L < UL , we see that U is not extendable to a
maximal subgroup of ,the exact lewvel n+l1l, 1i) Since

2n—1 x x2n+1
-a € U, we obtain L= = <Va»UL . Because of

2n+1

-1 ¢ UL” , U has an extension to a maximal subgroup U

of the level n+i. The level of ¥ cannot be n as

2n+1

n
(v@)? ¢ U holds. Obviously U o uL® . Computing the
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) n+l
index, we get U = pr? .

Before we turn to the next theorem, we want to premise
some general remarks on extensions of a h.p. field K in Q.
1) Let FIK be a real finite extension, say [F:K] = 2t-u,

u odd. Choose an invelution ¢ € G(RI[F). Denoting the Galois

group G(F(i)|K(i)) by V, the Galois group G(F(i)IK) has

the following structure: G(F(i)iK) = <o>-V, where

ove = v I for v € V holds. This follows easily from

the known structure of G(RIK). Set Vo for the odd part

of V in the primary decomposition of V. Then the fixed

field Fo of <o>.V, is contained in F and of degree 2%,

2) Assume, in addition to 1), that FIK is a Galois exten-

sion. Then <g> has to be a normal subgroup of G(F(L)IK).

This implies v2 - 1 in virtue of ovg = v T for v € V.

Hence, G(F|K) is abelian of exponent 2.

3) Now start off from any odd extension FIF _, both fields

being strictly-pythagorean. One derives, from the

corollary of lemma 4, that the embedding F; » F* yields
x?2

an isomorphism F:;/]?o“2 S P*/F*°. Consequently, we get

n n
isomorphisms F;/FSZ S F*/F*?  for every n € IN.



- 106 -

THEOREM 7. Let K be hereditarily-pythagorean relative to

2, and FIK a real extension in @ of degree [F:K] = 2t-u,

u odd. Then the following statements hold:

i) Every maximal subgroup of a higher level of K is

extendable to F. Thereby, the exact level increases

by t at the most.

ii) The number of extensions 1s at the most 2t.

iii) If FPIK is a Galois extension (then necessarily

[F:x] = 2t), then a maximal subgroup has either no

extengsion or precisely 2% faithful extensions. In

the latter case, the extensions are conjugate under

the Galois group. 1

Proof. i), ii). Let F, be the above-mentioned intermediate
field of degree 2%, Since Fo(i)lK is a Galois 2-extension,
Fo can be reached from K after some succesive quadratic
extensions. Therefore, lemma 9 applies, and we obtain the
statements i}, ii) for the extension F_IK. As remarked
above, there is an isomorphism F;/F;2 3 Fx/szn for !
n € W. Hence, all maximal subgroups of FO are extendable

to F in a unique way, and the exact.level remains un-

changed. iii) Let U be a faithful extension of U. Given

¢ € G(FIK), the set off is obviously a faitﬁful extension

of U again. Assume oU = U, ¢ % id. Since @&(FIK) 1is abelian

of exponent 2, the fixed field F, of ¢ satisfies TF = Fl(VE)
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for some a € F. On Fl’ we have U n F1 = ol n Fl' Hence,
U and o are both faithful extensions of U N Fl‘ However,

lemma 9 then yields U * off.

This last result shows that the totality of maximal

subgroups of a higher level obeys an extension theory

over h.p. base fields, as it is known for extendable orders.

However, on the one hand, one gains extensions without
restriction, but, on the other hand, the exact level and
the "arithmetical™ character of the maximal subgroups
are not preserved underlextension. For example, given an
order P, the maximal subgroup P* is always extendable,
but the extending subgroup is not necessarily the multi-
plicative group of an order. This fact was one of the
reasons to introduce and to investigate orderings of a
higher level. In the case of hereditarily-e=-pythagorean
fields, which are to be studied in the next section, the

extensions do not leave the scope of orderings.

4. Hereditarily-w-pythagorean fields

2" 2™ _ 2"
A real field K, for which X + K = K holds, has
been called n-pythagorean, chapt. I, §5. If all real

extensions of K in f are n-pythagorean, then K is called

hereditarily-n-pythagorean relative to . Analogically,
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one should understand the terms hereditarily-«-pythagorean,

hereditarily-strictly-n-pythagorean, hereditarily-strictly-

«-pythagorean.

From § 5 of chapter I one obtains the result
that every henselian field with hereditarily-strictly-
w-pythagorean residue field is itself of this type. In
particular, ﬂa((xl))...((xn)) or.the real closures of
orderings of a higher type prove to be hereditarily-

strictly-w-pythagorean relative to their algebraic closure.

We continue to assume that Q|k is a 2-closed Galois
extension. From theorem 2 in 51, we know that h.p. fields
are even hereditarily-strictly-pythagorean fields. In this

connection we can even prove

THEOREM 8. Given a real intermediate fieldKof &1k the

following statements are equivalent:

i) K is hereditarily-pythagorean relative to &,

ii) K is hereditarily-strictly-pythagorean relative to @,

iii) Q. ¢L) is a fan for every real extension of K in @.

Proof. It remains to prove iii) = i). We shall show in
chapt. IV, §1, theorem that the pythagorean closure of
a non-pythagorean field is not even strictly-pythagorean.

Thus, every real extension of K in @ has to be pythagorean

2. - - g R

T TR T v s O T
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It has been noted at the end of chapt. I, &5, that a
2-pythagorean number-field is even euclidean. Let k be a

1 and E2 two different euclidean

closures of k. Then the field E := E1 n E2 is no longer

. euclidean because of [f ;Satz 3]. E must carry two orders

real number-~field, ©

Pl’ P2. Denote by Ri a real closure of Pi’ i= 1,2, and

set K := R1 nR K has precisely two orders, namely

2 2
1 2

hereditarily-2-pythagorean according to the foregoing

e

RZ n K, RS n X. It is true that X is h.p., but net

remark. However, the following is valid.

THEOREM 9. For an intermediate field K of $f1lk the following

statements are equivalent:

i) K is hereditarily-n-pythagorean relative to f for

gome n > 2,
1

ii) K is hereditarily-«-pythagorean relative to {i,

iii) X is hereditarily-strictly-e«-pythagorean relative

to f,

iv) K is hereditarily-pythagorean in & and the residue

field of its f-henselian valuation ring has a uniqué

order.

Proof. iii) = ii) = i) Obvious. i) = iv) Since lemma 6
holds in accordance for the characterization of heredita-
rily-n-pythagorean fields, we may assume, as in the proof

of theorem 5, that K has a trivial Q-henselian valuation



- 110 -

ring. Let Z be a 2-Syloufield of QIK. Z is strictly-pytha-

gorean and 2-pythagorean. If A
Z

(chapt. I, theorem 27, coroll, 2)., If,on the other hand,

, * %, then Z is euclidean

A g * Z holds, then the same statements on Z follow from
A

the proof of theorem 5. Since Z|K is an odd extension,

K is euclidean, too. iv) = iii) The residue field has to

be euclidean. By lemma 5, it is even hereditarily—guclidean,
in particular hereditarily-strictly-«-pythagorean. Now the

corollary of chapt. I, lemma 1%, yields the conclusion.

In the case of 2-extension we have the analogue of

a2,

theorem 2.

THEOREM 10. A real field is hereditarily-=-pythagorean

relative to its maximal 2-extension iff it is strictly-

==pythagorean.

Proof. Let K be strictly-e-pythagorean. By chapt. I, theorem
27, corollary 2, K admits a 2-henselian valuation with
euclidean residue field e. e is also the residue field of all
real extensions of K in Kz.Thus,”these extensioﬁs are agéin
strictly-w-pythagorean. The remaining statement which has

not been proved yet, follows from theorem 8.

A simple extension theory exists for orderings of higher

level of hereditarily-=-pythagorean fields. Thereby, it is
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essential, not only to consider faithful extensions. In
such fields, the sets U U {0} are orderings of higher
level, where U is any maximal subgroup of higher level.
This follows from the fact that they are even strictly-
w-pythagorean. In §3 we have ﬁroved an extensiocn theorem

for maximal. subgroups. Usihg this theorem we obtain

THEOREM 11. Let K be hereditarily-~-pythagorean relative

to 2, and FIK a real extension, contained in Q, of degree

[F:X] = 2%-u, u odd. Then the following holds:

i) Every ordering of higher level is extendable to F.

4

Thereby, the exact level increases by t at the most.

ii) The number of extensions is at the most Zt.

iii) If FIK is a Galois extensich (then necessarily

[F:x] = Zt),'%hen an ordering has either none, or

precisely 2t extensions. In the latter case, the

extensions are conjugate under the Galois-group.

The statement iii) also results from chapt. I, theorem 22.

The intermediate.fields of 2|k, which are hereditarily-
"ew-pythagorean relative to §, seem to fully replace the real
fi-closures in a certain sense, for they have not only the
particular structure of the Galois group (theorem 1}, but
the isomorphy-problem is solvable for them by structures

in the base field k, as will be proved in chapt. IV.
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§5, Algebraic extensions

So far, we only needed the assumption that 2k is a
2-glosed extension. But in this section we make the stron-
ger hypothesis that @1k is a saturated extension of the
real field k, see chapt; II, §2. By assumption, given any
m|{2:K], the extension field § contains all m-th roots
of unity. Indeed, they even lie in the quadratic extension
K(i) of every h.p. intermediate field K of €lk. This last
statement, to be used in the sequel, follows from chapt.Il,

theorem 8, in view of K = (RIK)}* (theorem 1).

THEOREM 12, Let XK be a hereditarily-pythagerean inter=-

mediate field of @Ik, Set L = K(i). Then, given any

nl[8:X]), the embedding induces an isomorphism

~

K*/(x*™ v k™ 3 L, i

t
Proof. We first show: K' n L™® = ¥"™ u ™™, Obviously

K*? y -k*? ¢ L*P, since L contains a primitive 2n-th

root of unity. Assume xn_= a, where x € Lx, « € K*.

2 2n

= N(x)™" = 8 s, B € K* holds because of
x2

Then o

N(L*) = K*“. We see that a« € K*? v ~-K*®. In order to

x X

prove K*L*D = L*, it is sufficient to prove K*L*P = L
for all prime divisors p of n. If p = 2, the result
follows from the following exact sequence already used

in the proof of theorem 2:
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=20

K*/k*2 & 1*/1*? NL*y /%2 S 1,

and the fact N(L*) = kK*2. Assume now that p # 2. Take
any a € L". Then N(a) = 02, & € K* holds. Thus, we
assume N{a) = 1. Set F := L(pVE). We are going to show
that F|K is a cyclic extension of degree 2r where rip.
To this end, consider a monomorphism o: F = K, where

K is the algebraic closure of K, whieh is nen-trivial on
L. From o(a)a = 1 we derive o(Pva) = C-(PVE)_i, where
gp = 1. Since ¢ € L, the extension FlK turns out to be
alGalois extension. Let T be a generating.automorphism
of FIL. We have t(®va) = n®va, nP = 1. Thus,

tolPVa) = T(C(PVE)—i I
hand, ot(PVE) = o(n®V@ = n 1t(Pva)~! because of

gln) = n-l (see chapt. II, proof of theorem 8). Hence,

) = n-lc(PVE)nl, and, on the other

G(F|K) proves to be abelian. Noting that p is odd, we even
conclude that F!X is cyecliec of degree 2r, rlp. The hypothe-
sis on 91k now yields F < 9. This implies that K admits

an odd cyclic extension of degree r in F,Vhence in §. But
every odd extension is real, and, if r-> 1, we get a

contradiction to the result proved before theorem 7, that

a real Galois extension of K in @ has exponent 2.

In order to formulate the next statement smoothly we
make the following definition: a field-extension MIN is

called a radical extension, if every element of M is con-
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tained in the composition Ml""Mr of some pure sub-

extension M: 17 1,...,r, i.e. Moo= N(ai), where

1
o € M, uil €N for some n, € W . We do not assume that

N contains any root of unity.

THEOREM 13. A real intermediate field K of |k is here-

ditarily-pythagorean relative to § iff every extension

of K in @ is a radical extension.

Proof. First assume that K is h.p. relative to Q. The .
proof will be based on theorem 12: given m[[f:K], we have

X

L* = K*L™™, where L = K(i). Now take any finite extension
FIK in.ﬂ of degree, say, [F:K] = n..By the assumption

on ik and the remark at the beginning of this section,
F(L)IL is a Kummer extension. Thus, there are

dq9000sd, € Lx, because of Lx_z Kxth even aj,...,a, € Kx,
such that F(i) = L(tVEI,...,tVE;), t = [F(i):L], holds. If
F is not real, then 2t = n and i", (tVE;)h € K. Hence,
in this case, F = F(i) = K(nvgq,...,nvgg:z) follows. If F
is real, then t = n. Choose an order P of F and a corres-
ponding real Q-closure R of P. Thus, T = F(i) N R. Since
suitable roots of unity exist in F(i), we ﬁay assume

a, € P. By assuﬁption on 21k, we have Q" = o for-

ml[Q:k]. This shows P = ¥ for the extension ¥ of P

to R, taking theorem 12 into account. S0, for some choice
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of the root we obtain “vE; € R and, finally,

nv;; € F(i) n R-= F. Thus, we have proved

F = k(™ ai,...,“vsg). It remains to show the converse.

K is now assumed to be a real intermediate field, having
only radical extensions in Q. Adjoin all roots of unity,
which lie in Q, to K. Denote the resulting field by-M.
Being an extension of K in £, the field M is easily seen
to have only radicgl extensicns in 2, too. Take any

n

@ € Q, such that «° € M for some n € N . We want to show

that M(x)IM is seen to be an abelian extension. Once -
this has been proved, QIM is seen to be an abelian

extension. Choose n minimal, such that o € M. From

. Capelli's theorem on the pure equatich we deduce that

a” € MP  for some prime number pln, or a® € ~upt and

n., If o = pP g € M, n = mp,

we conclude (amB—l)P =1, hénce a1 e M and o € M,
If n = 4m, we get [a?M(2ip?)"112 - 1, hence «?® ¢ y,
In either case, we arrive at a contradiction. Now
[M(@):M] = n implies that @, hence M, contains the n-th
roots of unity. Thus M(a)}IM is abelian. M itself is

an abelian extension of K. Hepce, Q21K has a meta-abelian
Galois group. The theorem & of chapt. IV, §4 applies,

and yields that K has to be h.p. relative to Q.
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REMARK. The statement that a real field with only radiecal
extensions must be hereditarily-pythagorean is essentially
due to F. Halter-Koch. Using his results of [31], he

was the first who proved a rather similar statement under

some stronger assumptions on the radical extensions.

If FIK is a finite extension in @, where K is a h.p.
intermediate field of Rk, then F = K(C) for some sub-
group C of F* with X® € ¢ and Cc" < K. Moreover, the
proof of the foregoing theorem has shown that we may
choose n = [F:K]. In the sequel we shall study this in
a more detailed manner assuming only tﬁat f contains all
n-th roots of unity. It is rather surprising that it is
possible to™Fstablish such relations between the degree
[F:X] and the orders of the groups c/k* and cV/K'™ as
they are known from Kummer theory. We shall base the proofs
on our previous results. However, it should be menticned
that they can be derived from general thecorems concerning

the degree of radical extensions [31], [52].

THEQREM 14. Let X be a hereditarily-pythagorean intermediate

field of flk. Assume T|K to be a finite extension contained

in @, such that F = K({), where C is a subgroup of Fr,

¢ c K for some n € W, such that @ centaing all n-th

roots of unity. Set f = (aer" | a® €K'},

2n

Wy = {c eF* | ¢ = 1}, Then the foellowing statements
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hold:

A .
i) If F is real, then C = C, [F:K] = [c™:x*?] = [C:Kx],

.. . - A
ii) If T is non-real, then C =’CW2nL

[F:k] = (€%:k*P = (E:x*).2.

Proof. By assumption, Q contains the n-th roots of unity,
which lie in fact in K(i) =: L and, hence, in every
non-real extension of K in @. The extension F(i)}|L is a
Kummer extension generated by the subgroup C. By the

Kummer theory, we first cobtain T n cLX = {a€TF | a"€ L'},
From Cc T we see Fn CL* = C(Fn L*). Thus, if F is
real, then F n CL¥ = C, otherwise F n CL" = CL". Take

any a € F, such that a € XK. If F is real, we get a € C,
i.e. C = 6. If F is non-real, then a = cy, where ¢ € C,

y € L*. Using c" ¢ K we see yn € Kn L™, But

n_ .n n . . . A
KnL®" =K U-K" by theorem 12. This implies C = CW

2n’
The Kummer theory applied to 3, instead of C, further
yields the relations [F(i):L] = [CL*:L*] = [EPL*P.L*P],

We have [OL¥:L*] = [C:& n L*1, [8PLXDL*P) = [E0:80 o L*M),
If K is real, then [F:K] = [E(i):L], € = C, ¢ n L* = K*,
™ q L = K*! (note K n L™ = x® y -k™). If K is non-real,
we see 6 nkz=(n L)W2n = KxWZn’ .

e g LM - XDy -K*T, Because of F = F(i), [F:Kl = 2[FiL]

and [wazn:Kx] = n the assertion follows.
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§6. The Galois group G(f#1K) and invariants

Assume K to be a hereditafily“PYthagorean intermediate
field of the 2-closed Galois-externsion QIk._By theorem 1
and lemma 2, the structure of théﬂ"aﬁsolutef Galois group
G(RIK) is completely determined by the Galois group
G(RIK(i)). By ZZP, we denote the compact,:additive group

of the p-adic integers.

THECREM 15. Let Q|k be a prime-closed Galois extension,

K a hereditarily-pythagorean intermediate field. Then

there exists & unigquely determined sequence of cardinal

numbers {g“}, where p ranges over the set of primé numbers
D -

such that
o
Glalk(in Tz P
) D D
holds. Moreover,

%9

G(KZYK(i)) = 7,

» G(RIK,) = zz:P.
p*2
Proof. G(RIK(i)) is a torsion-fr;e (chapt. II, theorem 3)
and abelian pro-finite group (theorem 1). The topological
character group char(G(Q!K(i))) dis thus a discrete,
divisible, abelian torsion-group. The structure of these -
latter groups are known, e.g. [33;(A.14)]; they are direct
sums of the Priifer-groups QP/ZZP. From the duality-theorem

o
of Pontrjagin, we obtain G(QRIK(i)) =1 ZZPP. Set
b

¢
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o
U := G(RIK(i)), then U/UP « (mpz) P.

Thus, up = dimB% char(U/UP), The remaining statements

result from the fact that G(QIKZ) has an odd order, which

has been proved in §i.

The cardinal numbers ap are called the invariants
of the hereditarily-pythagorean field K. We are going

to prove that they can be arbitrarily prescribed.

Given any totally ordered abelian group I'y; the henselian
power-series field k = IK(T')) is absolutely h.p. Dby
lemma 6. The field 1 := k(i) = €((I')) admits only tamely
ramified extensions, énd is its own inertia field
[2b;p.171,table]. Using [2(;(20.12)], we obtain
G(ki1 = char(T 1T, where Pd denotes the divisible closure
of T.
Now assume a sequence of cardinal numbers {GP} is given.

Set «

sup {a_}. Choose a set I of cardinality a, and
set T := ZZ(I) (direct sum). T can have the structure of
a totally ordered group given, by first well-ordering I

and then imposing the lexicographical order on I [4#§].

(D

We have Pd = Q' ", thus

A
char'(I'd/I'} = char{§/Z )(I) = ZZI = M ZZI .
P p

The set I contains subsets Ip of cardinality a_. Hence,

P
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o
2, P as a subgroup of G(kl|2). The

U, o an involution, is the required

we may regard U := 11
P
fixed field K of <o>-

h.p. field, having the invariants *p.

We are now going to interpret the invariants by terms of

the base field K. To this end, we shall make use of theorem

12 in the following way. If p = 2, then P*/K*2 3 L*/L*%

if p is an odd prime number, then K*/k® 3 1*/LU°P, where

L = K(i) and P is an order of K.

THEOREM 16. Assume &k|k is saturated, and K is a heredita-

rily-pythagorean intermediate field with invariants ap._Then

the following statements shold.

i) If p 1 [Q:K], then oy = 0,

ii) if p# 2, p | ;%K]’ then . = dim[E.p K*/K*P

b

iiid G, = dimF P*/K where P is an order of K.
2 .
Proof. If up # 0, then obviocusIy p | [R:K]. The state-

ments 1i), iii) result from the relation

a, = dimg char (U/UP) proved in theorem 15, where

U = G(RIK%i)). Since K(i) contains the suitable roots of
unity, the Kummer theory yields char(U/UP) ~ L*/L*P .and
finally, ir view of the foregoing remark, the desired con-

clusion.

The theorems 15 and 16 present a remarkable example of

how a field détermines its absolute Galois group.
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From G{(QIK(1i)) = g a5 one obtains G(LplL) = Z, )
where L = K(i). Thus, ap is the rank of the Galois group
of the maximal p-extension Lo of L [50; Chapt. IV, 8§6].
Compared to it, K is p-closed, for p # 2. By the invariant
%y the algebraic theory of gquadratic forms over K is deter-
mined. Since K is strictly-pythagoreah, we obtain an iso-
morphism W{K) = Z[Px/KxZ] as already observed. Moreover,
there is a homeomorphism X(K) = {O,i}az, for the topeologi-
cal embedding X(K) €— char (Px/Kx2), given by P B ¥p »
(xp(asz) = sgnP(a)) is a homeomorphism, because of the

2

fact that K® is a fan.

THEOREM 17. Suppose ik is saturated and K is a hereditari-

ly-pythagorean intermediate field of flk. Moreover, assume

[x*:k*P] < «» for the prime divisor p | [2:K]. Then, for
LV S

every extension F of K in @ the following inequality holds:

[F*:F*P1 < [K:K'P1.

Tf F|K is finite, then even [F :F*P] = [K":K'P] holds

for p = 2.

Proof. Due to theorem 12, it suffices to investigate the
fields K(i)} and F(i). In view of the theorems 15 and 16, one
has to consider the Galeois groups .G{QIK(i}) =1 2PGP and
GLRIF(i)) = g ZPGP.The exact sequence of abeliin groups

1 - G(QRIF()) - 6(RIK(L)) - G6(FIK(E))Y - 1
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N

induces an exact sequence of the corresponding p—SyloQ-
groups: 1 - ZPBP - ZPGP - G(F(L) KN, 5 1; The morphisms
occuring herein are continuous. Hence, in virtue of the den-
sity of Z in 255 the sequence under consideration is an
exact sequence of Zp;modules. Since 7y is aprincipal ideal
domain, we conclude BP < Op. If, in addition, FIK is

finite, then G(F(i)lK(i))P is a torsion-module, and the

equality BP = o results.

P

The behaviocur of the number of square classes under field
extensions are even characteristic for h.p. fields. We set
qp = [Fx:PxQ} for every field F. If F is strictly-pythago-
rean, then ‘gf(i) = %qr hoids, as was proved in tﬂeorem 2.
Concerning the proof (not the statement) of the next thec-
rem, we may fhus restrict ourselﬁes to real extensions, for
every non-real extension of a h.p. field is a quadratic ex-

tension of a suitable real intermediate field.

THEOREM 18, Let flk be a real 2-closed Galcois extension,

and K a real intermediate field with a finite number of

square classes. Then the following statements are equiva- L

lent:

i) K is hereditarily-~pythagorean relative to §,

ii)} for every finite real extension FlK, T' € fi, we have

qQF = Qg

iii) for every finite extension F|K, F « Q, we have Qp<dy >
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iv) for every extension FIK, F ¢ Q, we have Qp < =.

Proof. 1) = ii) As remarked before theorem 7, and in its
proof, there exists an intermgdiate field Po of F|X, such
that FOiK is an odd extension, and that one arrives at F
starting from F_» after some successive guadratic exten-
sions. Lemma 4%, corcllary 1 Statgs FOx = KxFoxz. Because

of K° n I:"O"‘2 = sz, we see Qp = Q. Analyzing the exact
sequence used in the proof of tgeorem 2, we see that the
number of square classes does not change from a strﬁctly—
pythagorean field to a real quadratic extension. Thus, alto-
gether, dp = Qp = Q- ii) = iii) Obvious by the foregoing
remark, iii) =Oiv) We shall even show 9 2 Ay Suppose,
on the contrary, 4y > Qg for some extension F of K in £.
This implies the existence of elements Qgperesd g € Fx,

where = 2" such that they are independent modulo F*2,

I
However, in the finite subextension K(al,...,an+1), they
have to be quadratically dependent. That ig a contradiction.
iv) = i) Let F' be a real extension of K in £, and F be
the pythagofean‘closure of F'. T is contained in 2. Suppose

F' # F holds. Then F|F' is an infinite Galois extension,

and F is seen to carry infinitely many orders, particularly

implying qQp * =.

-

As a constrast to the last result, we would like to men-

tion the fact proved in [#3; p. 219], that the maximal
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s-extension of @ has indeed only one square class, but that
every proper finite extension has an infinite number of

square classes.

Analogous to theorem 18, hereditarily-pythagorean fields
can be characterized among the real intermediate fields
having only finitely many orders, see {433 (3.9)]. In the
statements of theorem 18, one has only to replace Qg by
JFX(F). In order to carry out the proof, one may note

02+1 xy
qp = 2 R AFX(F) = 2

At the end of this section we want to present a result of

L. Brdcker with his kind permission. Hé proved that h.p.
fields can be characterized by the Haar-measure of the set
of invelutions. Consider a real intermediate field K of a
7-closed extension Qlk. As we know from chapt. IIL, B4, the
orders of K corrvespond bijectively to the conjugate classes
of the involutions in G(RIK). We denote the set of involu-
tions of G(QIK) by I(K). It is easy to see that I(K) is
closed in the Krull-topology. Being a compact group, G(RIK)
carries a unique Haar-measure Uy, normalized by uK(G(QlKD=

= 1, If F|K is a finite real extension contained in R, then
bp = TFeRT "Mk ecg|p) Dolds:

I(K) is obviously contained in the coset G(RIX{(1))+0o,
where ¢ is any involution. Thus, we obtain OguK(I(K)lﬁ% .

If K is h.p. relative to @, then the coset G(QlKi» -0
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consists entirely of involutions. Hence, in this case,

1

UK(I(K)) = 5.

THECREM 19. (L. Brdcker) A real intermediate field K of a

?2-closed Galois extension |k is hereditarily-pythagorean

relative to & iff uK(I(K)) > 0, If K is hereditarily-py-

thagorean, then p, (I(K)) = 1 .
K 2

Proof. Assume uK(I(K)) > 0, We are firstsgoing to show
that K has to be pythagorean. The Galois group G(Q|(Q[K)*)}
=:‘H is generated by the set I(K) of positive measure,
hence it has also positive measure as a subgroup of G(Q[K).
" Being the fixed field of H, the field (Q|K)* is a finite ex-
tension of K. (Q|K)* is pythagorean, hence K, too, in virtue

of [49; Korollar 1)]. Next assume that a family {Fa} of

aES
finite real extensions of K in 9 is given, such that every
order of Krextends to some of the fields Fa' We want to

show that some of these fields have to be pythagorean. Using
the generalization of chapt. III, theorem 4, to 2-closed ex-
tensions, we obtain that I(K) is covered by the set of all
conjugates mG(QfFa)w_i where o € S5, w € G(QIK). But I(K)
is compact, so I(K) can already be covered by a finite num-
ber of them. This implies 0 < uK(I(K) n mG(QlFu)w-l) =

= uK(I(K) n'G(RIFa)), since mIm_jL = I and py is an invari-
ant measure. We get W (I(Fa)) > 0 and, finally, that Fa

: o

] -
is pythagorean. For a first application, we choose an odd

.
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finite extension FIK, F ¢ Q. We obtain that F has to be py-
thagorean. For a further application we need the following

general result.

LEMMA 10. Let T be a preordering of level 1 of a real field

M, and P any order, such that T < P. If T+aT =T U aT

holds for every a € P, then T is a fan.

Proof. Consider a maximal subgroup U, such that U= T"
holds. We have to show that U is the multiplicative

group of an order.Since T+aT = T U aT for a € P, we see
that P N U =: U is additively closed. Therefore‘Uo is the
intersection of the mﬁltiplicative groups of some orders. If
[K“:Uo] = 2, then U = P*, If otherwise, then [K :U ] =4
must hold. Over U, there are only Zmsubgroups of K* of index
2 relative to K*. These are Px, U and a certain group V,
which has to contain -1. Hence, < is seen_to be the multi-

plicative group of an order.

We shall make use of lemma i0 to prove that K is strict-

ly-pythagorean. Suppose K2 is not a fan. Then we can choose

an element a{P) for every order P, such that K? + a(PIK? +
# K2 U a(P)Kz. The real quadratic extension PP 1= K(va(P))

is therefore not pythagorean by [49; Satz 2]. But, applying
our previous result to the family {FP}, P pranging over all
.orders of K, we see (on the contrary) that some FP has to

be pythagorean.
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So far, we have proved that every finite odd extension
of K in © is strictly-pythagorean. Now take any real
finite extension FIK, F < Q. Chosse a Balois extensioq;
?IK such that Fe< ? < Q. ? itself is real, or a quadratic
extension of a real intermediate field of %IF. By the
Galois theory,F is in either case contained in a real
finite extension Fys which can be attained aftér an odd
extension, followed, if necessary, by successive
quadratic extensions. FO must be pythagorean as strictly-
pythagorean fields are h.p. relative to their maximal
2-extension. Since FOIF is finite, I has to be pythagorean,

too.

§7 The Brauer group Br(Q|K)

Let FlK be any field extension. We denote the group of
all classes of central simple algebras over K, which
split over F, by Br(F|K). Moreover, Br(l—"lK)q denotes
the subgroup of the elements of exponent q. Our knowledge
on the "absolute" Galois group G(QIK) makes it possible
te compute the Brauer group Br(Q|X). One has only to

exploit the pelation Br(QlK) = H2(a(QIK),a%).



- 128 -

THEOREM 20. Let §lk be a saturated Galois extension,

and K a hereditarily-pythagorean intermediate field. Set

o
L = K(i), 6(RIL} = n“galp. Then the following statements

P
hold:

i) The scalar extension Br(QIiK) -» Br(QlL) induces a

split-exact sequence

0 - Br(LIK) -» Br(QIK) - Br(QIL)2 - 0.

. _ ' ) _ (%2
ii) Br(QiK) = Br(ﬂIK)z, cI:Lm]I_,2 Br(QIK) = a, +\2 + 1.

iii) Br(f2iK) and Br(SB'IL)2 are generated by the classes .

of quaternion algebras.

Proof. i) From the group extension 1 - G(RIL) - G(QIK) -
-+ G(L|X) » 1, one obtains the Hochschil-Serre-sequence
[35 ;Chapt.III,5.]: '

0 =+ Br(LIK) » Br(21K) » Br(alL)® O | wdgenind L.
G(LIK) is eyclic, hence H3( ) = HY( ) = 1 by Hilbert 90.
Thus, we have an exact sequence

0 -+ Br(RIK) - Br(a|L)SLIO

-+ 0. Let A be a central-
simple algebra over L which is split by Q. Then A is simi-
lar to a crossed product [P,G(FIL),fd’T], where FlL is

a finite Galois extension, and F « § holds. The order

of A in the Brauer group is a divisor of [F:K] by

[48;V,83]. Thus, the class of A belongs to a éubgroup

Br(ﬁlL)n, where nl[{{:K]. For such n we shall show that
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Br(n]L)n o H2(G,W(n)), where G = G{(QIL), and W{n) denotes
the group of the n-th roots of unity. Due to our assump-
tion on Qlk, we know W{n) € 8 and, by chapt. III, theorem
8, even that W{(n) =« L holds. Because of o' = 0 we get
an exact sequence 1 - W(n) - @ 391 of G-modules.

The cofresponding cohomology-sequence yields

Br(QIL), - H2(G3W(n)). Being a torsion-group, Br(Q[L)

is the sum of the subgroups Br(QIL)qs where g is any
prime-power. So far, we have shown: if Br(QiL)q # 0, then

Qi [R:K] ‘and Br(QIL), = H2(g,W(q)). Note that

o
G =T Z&)p holds, and that G operates trivially on
P

W(q) = L. Hence, Scharlau's considerations in {54 ;section 3]
apply. Thus, observing Hl(G,W(q)) = L"/L*%, we obtain

the result that Br(QiL) is generated by the classes

of algebras which have a cyclic splitting field. Let ©

be an involution in G(QIK). Then <G > = G(LIX) holds.A
We shall show that o operates on Br{(QIL) by taking the
inverse. To prove this, it is sufficient to consider
cyclic algebras only. Suppose the cyclic algebra (b,FIL,w)
is given, where L < F e @, b € L, w generator of G(FIL).
Because of L = KL" for every nl[Q:K] (theorem 12), we
may assume b € K. Thus, computing in Br(L), we obtain:

1 1

o(b,F{L,w) = {b,FlL,owc) = (b,FlL,w ~) = (b ~,FiL,w) =

= -(b,FIL,w), [43;V,85]. Hence we have proved
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Be(e1L) ¢ M%) < preaiL),. By [S1;lemna 3.31, Br(L), is
generated by quaternion algebras. To be more precise:
given any totally ordered basis {aisz}iEI of Lx/sz,

then {a; U ay = (ai’aj)}i<j is a basis of |
Br(L), = H2(Q,Z /2% ). Let P be an order of K. By theorem 12,
2
each aiL 2 corresponds uniquely to a class BiKx ’
2 2

Bi € Px, such that aiLx = BiLx holds. Therefore, we can

define a section Br(QIL)2 = Br(Q1K) by (Gi,dj) = (ﬁi,Bj).
This proves i). Because of [L:Kl] = 2, Br{(LiK) consists
only of quaternion algebras, Moreover, we have

Br(LIK) =~ HZ(G(LIK),L*) & HO(G(LIK),L*) = K*/K*?, for

N(LY) = sz holds. Now the whole assertion follows ob-

. . x X . x x2
seprving dim.. K /K = a, + 1 and dim, L°/L = o,.
Eé 2 Eb 2
REMARK, The proof of the fact Br(QIL)G(LIK) = Br(QIL)2

‘shows that theorem 4.1 of [§4] fails to be true. Take as

an example for this an absolutely h.p. field, such that the
residue field of its henselian valuation ring is real-closed.
In this case, L = K(i) turns out to be the inertia field

of K. By theorem—ZO, only the map Br(KIiX) - Br(}_(iL)2

is surjective, but not the map Br(KIK) -+ Br(KIL), since in
general Br(KIL) * Br(1_<IL)2 holds. To make this more evi-
den%, take K =z IR((Z x Z ) = R{(X))((Y})). Then a double
appiication of Witt's sequence [5{;p.243] yields the result

Br(RIK) = (@ /2. This corresponds to theorem 20, whereas
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[$1;S8atz 4.1] implies for instance the existence of non-

trivial elements of odd orders.

As already remarked, the field K = m.((xi))...((xn))

is absolutely h.p.. We have Qg = 2n+1, hence oy n

_ %(n2+n+2)
and Br(KIK) = (ZZ /2% )
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Chapter IV Hereditarily-Pythagorean Extensions of Fields

§1. Hereditarily-pythagorean extensions

We continue to assume that a 2-closed extension |k is
given. Let K be an intermediate field of @ik, which is here-
ditarily-pythagorean relative to Q. In this chapter, we
_shall study the extension K|k, whereas we have been concer-
ned with the extgnsion Q|X in the last chapter. By ¢hap.IlI,
theorem 1, fhe field K is the intersection of real @-closu-
res. However, given an arbitrary family {Ru} of real §-clo-
sures Ra’ its intersection K := Q Ra need not be heredita-

rily-pythagorean relative to f. This will be shown, among

other results, in this sectTion.

THEOREM 1. i) Let T be a family of involutions of G(alk).

Set K := (P\ 9. Then X is hereditarily-pythagorean rela-
c€T

tive to 0 iff the product otw is again an involution for

any three involutions g,7T,w € T.

ii) The intersection of a family of real Q-closures is he-

reditarily-pythagorean relative to © iff this holds for the

intérsection of any three of them.

Proof. It is sufficient to prove i). If K is h.p., ther the
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involutions o € T'- operate on G(Q!K(i)) by taking the in-
verse. Hence, (Ufw)2 = ge(tw)-o-tw = 1. Conversely, assume
that I' satisfies the quoted condition. G(Q|K(i)) is genera-
ted by the products o1 where o,7 € ' holds. From this, it
follows that gro't' = (g10").1' = (g'toltr' = g'(roT') =
= ¢'t'otr. But this means that G(Q{K(i)) is abelian, hence,

K is h.p. relative to f.

It is interesting to rephrase the last result in terms

of generators and relations. An intermediate field K of Qlk

is h.p. relative to 2|k iff G(R]|K), as a topological group,
is generated by a subset I' subject to the relationso?=1,0#1,

(Urw)2 =1 for g,t,w € T.

LEMMA 1. Let {Ku}ael be a family of intermediate fields

of Qlk, each of them hereditarily-n-pythagorean relative to

2. Assume that there exists, for anv two fields Ka’ KB’ a

field KY’ such that Ka n KB e’ KY' Then the field K := 2 Ka

is again hereditarily-n-pythagorean relative to Q.

Proof. In view of chapt.III, theorem 8, we only need consi-
der the cases n = 1, n = «. But there is no advantage in

doing so, and n may be an arbitrary natural number. Given
n

n
an element x € K, we find Vg € Ka’ such that 1+x2 =y

2
a
for every « € I, Fix a_ € I. For a € I, we find by as-

sumption v € I with KY IS Ka n l(Ol . Hence, the equation

o
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2 ot ot o
Yo = Yy holds in Ka’ and, accordingly, Vg =V in Ka .
o v o
Since Ku and Kuo are real, it follows that yao= tyT = 2y s
and, from this, Y € NK, = K. Therefore, K is n-pythago-
o o

rean. Let L be a real extension of K in 1. We have to show
that L iswpythagorean. It is sufficient to assume L[K to
be finite, say L = K{(a). We derive L = 2 Ku(a), as the
degrees of the irreducible polynomials fu(X) of a over Ku
are bounded from above by [L:K]. Hence, we find a field K,
and m € N, such that [Kc(a):K] = m holds for every fielg
Ka c Ka . Considering solely such fields Ka’ one easily
proves 02 K,(a) = K(a) = L. Supposing that all the exten-
sions Ka(a) were not real, they would all have to contain

the element V=1 € L. By the first part of this prof, L is

seen to be pythagorean.

The following result is, using Zorn's lemma, an immediate

consequence of lemma 1.

THEQREM 2. Every hereditarilyv-n-pythagorean {(n=1,=) inter-

mediate field of f1ik contains minimal hereditarily-n-pytha-

gorean extensions of k.

If LIK is a finite extension, and L pythagorean, then K
-is also pythagorean [49; p. 149]. This has already been
applied on several occasions. The corresponding statement

is valid for h.p. fields, as we shall now prove.
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THEOREM 3. Assume that K, L are intermediate fields of ft|k,

and that L|IK is a finite extension. If L is hereditarily-n-

| pythagorean (n=1,=) relative to f, then the same holds for

K.

Proof. Denote the Galois ciosure of LIK by ilK. First we
assume that L is real. Being a strictly-pythagorean Galois
extension of K, iIK has to be a 2-extension, by chapt.III,
lemma Y4, corollary 2. Consequently, L can be attained from
K b} successive quadratic extensions. We may assume L=K(Va)
We have K(V=a) € 9. Since K is pythagorean, K(v-a) is real.
K(v-a) is again h.p. relative to £, because G(RIL(i)) =

= B(RIK(WVa,i)) = 6(RIK(v=a,i)) is abelian. Now consider a

real extension F|K, F < §. If F{Va) is real, then F(Va),

being an extension of L, is pythagorean. Hence, in this case,
F must be real too. If F(Va) is not real, then i € F(va)
follows, and a = -5 for some b € F. Hence, K(vV-a) ¢ F,
and F is shown to be pythagérean. It remains to study the
case of i being non-real. Then L{i) < i, and G(Q[i) has to
be abelian. Let T be a real extension of K. Consider the

diagramm

e

LF

P



G
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EF is a non-real Galois extension of F. Consequently there
is a real intermediate field FY¥ of iF]F, such that [EF:F?:z.
Because of i E,Z, we get £F = F'(i). Being a subgroup of
G(Q]i), G(Q|F'(i)) has to be abelian. Hence, F' and, final-
ly, F is seen to be pythagorean. With this, we hdve proved
that K is h.p. We now attend to the case that L is even he-
reditarily-w=~pythagorean. Let A be the Q-henselian valuation
ring of L, A its extensien on L(i). By E, we denote that va-
luation ring of L(i) which is generated by the conjugates .
UR, ¢ € G(L{i)]K). Then B := B n K is the f-henselian va-
luation ring of K. If A = oA holds for all o € G(L(1)|X),
then B = AN K follows, In this case, A|B is a finite ex-
tension. A is euclidean by chapt.III, theorem 9, hence, B
is also euclidean. A second application of this:theorem
shows that K is hereditarily---pythagorean relative to §. If
A # GA holds for some o € G(L K{i)), then E is 2-closed
by chapt.III, lemma 7. Since ;|§ is finite, B must also be
euclidean in this case [ b ; Satz 6]. As before, we see that
XK is hereditarily-e-pythagorean. ’

““t

4

In the following corollary, we do not assume L to be con-

tained in some 2-closed extension QK.

COROLLARY. Let LIK be a finite field extension. If L is

strictly-n-pythagorean (n=1,=}, then the same holds for K,
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Proof. Set F := L n Ké. F is quadratically closed in L,
From this, one derives that an = Fn LG is a fan of level
ﬁ. We may therefore assume that F is contained in Q‘= KZ'
But now theorem 3 applies.

Statements similar to those of theorem 3 and its corolla-

ry have been proved in (131, too.

For further reflexions we require a result on the exten-
sions of fans of the first level. Let T denote a preordering
(1. level) of K. Given a € T, we set L = K(Va). We denote

a faithful extension to L of an order P of K by P. Set

2 (V3
PiP
PoT ¢

-~ -

T is clearly a preordering. We assert,
(*) T ={x €L | N(x), Tr{x) € T}.

Let 0: L =+ L <be the non-trivial XK-automorphism of L. Given

an order 5 of L, then G(E) is again an order, lying over

P = E n K. Hence, q(%) = %. For x € %, it follows that

x + o(x), x-o(x) € % n K. We have 5 N K=T, as every order
over T is extendable to L because of a € T. Conversely, as-
gsume x € L i1s given, such that x + o(x}, xl-c(x) €T
holds. Consider an order E over E. If x ¢ 5, then U(X)QE
and, consequently, x + o(x) ¢ E which contradiets the as-

sumption x + o(x) € T « P,
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~

LEMMA 2, T is a fan iff T is a fan and N(L} « T-U -T

holds.

Proof. Assume T to be a fan, Consider = o + Byz € L*.

X
If «pva € -T, then the contradiction a232 € -T follows,

since T is invariant under G(L|X). Hence, we obtain

o + Bva = t-(apva)®, t € T, ¢ = 0,1 , which shows N(x)ETU-T,

~

T is a fan because of T = T N K. Now we prove the converse.
From (*) one derives L* = <Va>K'T". Let U be a subgroup of

L, such that =1 ¢ U, [L*:U} = 2, U> T and va € U without

logss of generality., Set U = U n K. It follows that U =
= <ya>UT”. Since T is a fan and T* @ U holds, there exists

an order P o T, such that U = P*. Let P be the extension
of P to L, with Va € P. We have P > T and P = <Va»KT,

~ ~

hence U = P*, Therefore, T is a fan.

THEOREM 4, If k # (f2lk)*, then (Qlk)* is not strictly-

pythagorean.

Proof. We set k* = (f[k)* and suppose that k* is strict-
ly-pythagorean. If [k*:k] is odd, then every intermediate
field is also strictly=-pythagorean, and of odd degree over k
(compare with the proof of the corollary of theorem 3). But
among these intermediate fields there are finite Galois ex-
tensions, which, according to ﬁhapt.III, lemma 4, corollary
2 have to be of degree 2t over k. Hence, in the case of

k # k*, the degree [k*:k] 1is even. Let K be a 2-Sylow

o~
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field of Kk*Ik. k* is a proper 2-extension of K, to which
every order of K is faithfully extendable. Therefore, k*
equals the pythagorean closure of the non-pythagorean field
K relative to K2 (chapt.II, theorem 6 and §4). Given any
intermediate field L of k*[K, the set Q(L) is a fah because
of Q(L) = L n (k*)z. We find an element a € K* with

1+ a.2 ¢ sz. By [19], the extension L = K( 1+a2+ 1+a“ )

is contained in k*. L is a guadratic extension of K, =

1
= K( 1+32). We have

Nk (V1+a? + Vital+vi+a? ) = -V1ea?
1

+
But neither - 1+a2 nor 1+a2 is a sum of squares in Ki‘

By'lemma 2, Q(L) cannot be a fan: contradiction.
REMARK. Theorem 4 yields a series of examples of fields,
which are intersections of real fi-closures, but are not he-

reditarily-pythagorean: namely the fields (Qlk)*, where k

is not strictly-pythagorean.

THEOREM 5. If K is a hereditarily-pythagorean intermediate

field of @[k, then the group of automorphism. Aut(K|k) is

abelian of exponent 2.

Proof. It is sufficient to show that every o € Aut(X|k)

has the order 2. Let U be the closed subgroup which is gene-
rated by o. Let V be the odd part of U, and Ko the fixed

field of V. Since {K:KO] is odd, Ko is striéfly—pythagorean.
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But KIK, is a Galois extension, hence a 2-extension. We
get K = Ko, and U must be a 2-group. Suppose 0 were of
{;finite order. In this case, KI-K0 ig a 2-extension with
a torsion-free Galois group. We get K = (Kc)pyth =

= ((Kg)leU)*} contradicting theorem 4. Hence, ¢ is of
finite order, and ¥% is h.p.. by theorem 3. KIK® is then
a finite Galois extension of n.p. fields. A closer exami-
‘nation of the normal subgroups of a(0!x%) shows that

G(kIk®) is abelian of exponent 2.

. ‘ . . )
COROLLARY 1. Let K be an intermediate field of 21k,

which is hereditarily—n-pythagOreéh {nz1,») , and H be a

subgroup of Auwt(X!k). Then the fixed field K is again

hereditarily-n-pythagorean.

Proof. H has only elements of order 2., The fixed field
of finitely many elements of H has finite index relative

to K. Combining theorem 3 and lemma 1, we obtain the

desired conclusion.

COROLLARY 2. If K is a minimal hereditarily-n-pythagorean

(n=1,=) extension of kX in f, then Aut(Klk) = 1.

The following result has already been used in

chapter III, §5.

THEQOREM 6, A real intermediate field K of Qlk is heredi-
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tarily-pythagorean relative to @ iff G(RIK) is meta-

abelian.

Proof. It remains to show that K must be h.p., if
6(R1K) is meta-abelian. Let T be the maximal abelian
extension of K in Q. By assumption, G(QIF) is abelian,

[l

moreover i € g.,Choose a maximal real intermediate field
F of %IK. Then ; = F(i), G{QlF(i}) abelian. This means
that F is h.p. relative to f. Now the first corollary
'above says that K is also h.ﬁ. reiative to §, since

FIK is a Galois extension. B

§2, Applicatignsto stability index and fans

In this section, we shall only consider preorderings
of the first level. Let T be such a preordering of the

real field k. We denote the reduced Wittring belonging

to T by Wy, in the sense of [8'], (13 ;82]. By the defi-
nition of [ 8 ],W, is a subring of C(Xp,Z ) where Xg
is the topological space of all orders which lie over T.
It is known that C(XT,ZS)/WT is a 2-primary torsion
group. ILf this group has a finite exponent, we set

st(T) = min {n | ZnC(XT,ZS) c WT},.

otherwise we set $t{T)-= o. This number st(T) is called

the stability. index of T, see [12], [ &]. In the case
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of T = Q(k), we write st(k) instead of st(Q(k)). If T
is a fan with a finite index [K":T"1 = 2", then
st(T) = n-1 [® ;Satz 28,Korollar]. L,Brdcker has proved
the following result in [433;(2.1001]..
st(kx) = sup {st(T) | T a fan of k}.

SAP-fields are characterized by st(k) <1 [¥#],
(421, [ 81. In [4¥;p.151], Prestel has raised the following
problem. Let FilF be a finite extension, and assume that
F, is a SAP-field. Is it true that F must be a SAP-field
too? We would like to supply the negative énswer. For
this purpos;, we shall first study the precise relation
between fans and strictly-pythagorean fields, because,
if X is a strictly-pythagorean extension of k, then the

set T := Q(K) N k 1is easily seen to be a fan. We shall

prove that every fan arises in this way.

Let K]k be a real extension, T be a fan of k. T is
called extendable to K, if there is a fan T of K, such

that T N k = T,

LEMMA 3. If T is an extension of T, then the restriction

map Res: X%(K) - XT(K), Peo PN k is surjective. More-

over, we have PT = f:h\ P for every P € XT(K).
-~ PIP ok
PEXT(K) :
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Proof. Given P € Xp we see -1 & PT. Hence, PT is a pre-
ordering. From chapt. I, theorem 1 PT = ~(’—\\~ P

PIP,P>T
follows.

A fan T is called a faithful extension of T, if

T 0 K=T holds and the map Res: Xp(K) » X, (k) 1is
bijective. In the case of a faithful extension, PT is

~

the unique extension of P € XT which lies over T,

Moreover, the restriction map Res: X% =+ Xy is a homeo-

~

morphism between the topological spaces XT and XT;

THEOREM 7. Let Qlk be a 2-closed Galois extension of

the real field k, and T be a fan of k. Then there exists

a hereditarily-pythagorean intermediate field K (relative

to @) satisfying @ = K,, K = kk?, such that the fan
- 2

K® is a faithful extension of T.

COROLLARY. st(k) = sup fst(K)} where K ranges over all

hereditarily-pythagorean intermediate field K which

satisfy K = kK2.

2

Proof. From K = kK? follows [k*:k* n K*?]

= [K*:x"%,
Using this, the quoted result of L. Brécker yields
st(k) > sup {st(K)}. But from theorem 7 one derives the

inequality st(k) < sup {st(K)}.

Theorem 8 presents an analogon to a theorem of Th.

Graven [47 jCorollary 3]. The proof is essentially based on
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the following extension lemma. Let T be a fan and A a
valuation ring, which is compatible with T, see chapt. I,
§2. The induced preordering T := AN T is again a fan

of A.

LEMMA 4. Assume that T is a fan of k, and that A is a

valuation ring of k, which is fully compatible with T.

Let (K,A) be an extension of (k,A). If the ramification

index e(A[A) is finite and odd, and if, moreover, the

induced fan T is faithfully extendable from A to A, then

T admits a faithful extension to X, which is fully com-

patible with A.

Proof. Let W, : A - A denote the canonical epimorphism,

X
and T be a faithful extension of T to A. We set

T = TKzﬂil(%x). By chapt. I, lemma 9, T is a proper
preordering, which is fully compatible with R. We have

; = %, for one concludes TK2 n Rx = (T N Ax)gxz’ as the
ramification index is odd. Being an overpreordering of
the fan K2n£1(%x), T is a fan itself. From T N A = T
and the full compatibility of T with A,

nil(%‘) Nk=TnA" follows. Observing that the rami-
fication index is odd, we get KZnz™(T*) a x = x%(T n A%

and, finally, T n k = T. Given an order P o T, the set

-~

PT is a preordering in any case. We have

T APT N A) = BT = PT. Since T is a faithful extension
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of T, m(PT N A) is the unique extension of P to an

~

order over %. PT is also fully compatible with R; Hence,

the following index-formula is valid: |
[K*: (PTY*] = [R*:Wl[rK:vK((PE)")]Q

where v, is the valuation belonging to R, and FK its

value group. For the proof, compare with chapt. I,

lemma 4%, corollary. As remarked, it holds that
X o X . Xy x, 2 _ 2 _
[A":(PT)"] = 2. We obtain v, ((PT)") -~VK(P T 'FKFK = Ty,

since Pk has odd index in T_. Hence, PT is an order,

K
and T a faithful extension of T.

COROLLARY. Faithful extensions exist in the following

Ccases:

i) Kik is an odd algebraic extension,

ii) (K,A) is the henselian closure of (k,A),

iii) X is the pythagorean closure of k.

Proof. i) It is sufficient to study only finite odd
&
extensions Klk, Because of [K:k] = £ eifi’ there is at
i

least one extension A of AT, which has odd numbers e, f.
Choose such an extension A. By chapt. I, theorem 14, T is

" a trivial fan of RT‘ The trivial fan T is faithfully

‘extendable to A, since every order of AT is extendable

~

to an order of the odd extension A. ii) (K,A) is an imme-

diate extension of (k,A). iii) As in the proof of
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theorem 19, chapt. I, we may confine ourselves to the

case of K = k(V1+a2 ). One sees that AT is fully decom-

posed or inert relative to K. In the second case, one

further finds that A = KT(V1+32) for some unit &, which
implies that the trivial fan T is faithfully extendable.

Now apply lemma 4.

Proof of theorem 8. By Zorn's lemma, we find a maximal

faithful extension (K,T) of (k,T) in . The corollary

of lemma Y% says that § = K, holds, and that A% is an

2
fi-henselian valuation ring of K. Suppose there is

g € A%, such that ¢ € ; ~ (EE)Q. In this case, the
trivial fan ; may be faithfully extended to ETCVE).
Consequently, T itself must admit a faithful extension
to K(ve) = Q. Hence, ; z (ﬁ%)z. Moreover, the residue
field of A% is strietly-pythagorean. Since A% is
f1-henselian, K itself has to be striclty-pythagorean.
Because of Q = K,, we see that K is even h.p. relative
to @. Suppose that % 3 KQ, then we find a € i ~ k2.

Consider the strictly-pythagorean extension

K(va) = Q. It is true that T admits a faithful extension

-~ ~

T' to K(VA), for example T' = /. .Y P. Hence, T = KZ.-
PoT,P3va
The result kK2 = K follows from the fact that, for

every P € X;, the preordering PK2 is already an order.
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For further reflections we need two lemmata.

LEMMA 5. Let T be a preordering of k, and assume that

Tla] =T U Ta « T holds., If Tla] is a fan, the same holds

for T[-al.

Proof. * Let U be a maximal -subgroup, witﬁ;ut -1 over T[-a].
We shall show U + U< U. Pick b € U, If Db €:-T[a] =

= -T U -Ta, then b € -Ta follows, thus 1 + b € T[-a]*. If
b ¢ -Tlal, then 1 + b € T[al U T{alb =T U Ta U Tb U Tab.
1+ Db €& Ta cannot hold, as this would imply b=-(1+t(-a)) €
€ -T[-a]” < -U, a contradiction. The same argument applies

to the case of 1 + b € Tab. Hence, 1 + b € T* U T*b  U.

LEMMA 6.- Assume that T is a fan and P an archimedean order

of k. Set T0 := T 0 P, and choose a € T~P. Then the follo-

wing holds:

T = To U Toa s P = To[—a].

Proof. By lemma 5 T [-al is a fan. T, [-al must be a tri-
vial one, as there is an archimedean order over it [8 H
Satz 22]. Among the orders over To’ the orders over TO[—a]
are precisely those, which can be extended to orders of

K := k(v=a). Because of NKIk(K) c To[-a] u —TOF—a], we ob-
tain by lemma 2 that TOI-a] is a fan. The two extensions
of P lie over To[—a]. Since they are archimedean once more,

T,l-al has to be trivial. But this implies T, [-al = P.
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Now we are able to give some examples for the behaviour
of the stability index under algebraic field extensions. Let
I, be a real algebraic extension of K. By [Md; (4.3)], we
know that st(L) < st(K) + 1 j using our concepts that can
be proved as follows. Let T be a fan of L, AT the associated

valuation ring, and T the induced fan of RT' Because of the

full compatibility, we know that T, := L2n£1 (T*) & T,
[
To =T, ATo = Ar. Since st(To) > st(T) holds, we need only
consider fans of the type T = Lgnil(Tx). Set A = Ap N K,
= .- 3 5 s ' ‘ ve w271 =Xy s
T1 := T N A, then T1 ig a fan, hence T1 i= K Ty (Tl) is a
fan of K. We have 148t (T) [L*:T"] = [TL:FZ]{E;:TXJ,
1+st(T) _ pdq X B rl2y 2
2 7 = [TK.TK][A :T,1. Cbserve that [PL.FL} = [Ty TK],

and [A:T"] < [A":T]1.2 holds (T, may be an order). The
relation between fans and stability index implies st(L) <

< st{K) + 1.

The relation, considering lemma 4, corollary, also yields

the following result.

THEOREM 8. Let L be a real algebraic extension of K, Tt

follows that st(L) » st(K) in either of the following

cdses

1) LIK is an odd extension,

ii) L is contained in the henselian closure of some (real)

valuation ring of X,

iii) L is contained in the pythagorean closure of X.
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However, we shall now prove

THEQREM 9. Given 1 € n <o , 0 g r» <n , there exists a

‘

pythagorean field with the follo&ing properties:

i) there is a € K\KQ, such that T := K2 y k%2 isa fan
and st(T) = n holds,
i) Xy = 2", X, = 2"
. K[=~al
iii) L := K(V-&) is not pythagorean, Q(L) is a fan,

iv) st(K) = n, st(L) =»r + 1 ,

Proof. First we construct a field with = = 0, where n is
arbitrary. ﬁet k = Q(xi’XZ""') be the rational function
field in countably many indeterminates over Q. k admits a
valuation ring with residue field § and value group

F = @® Z, Because of dimF T/F2 =% s there are fans of ar-
N 2
bitrary index o©ver that preordering, which is lifted from

the order of Q. Choose a fan T of k of index [x":T*1 = 27*1

There are only non-archimedean orders over T. Let L be a

strictly-pythagorean extension field of k in k2, such that

L2 is a faithful extension of T (see theorem 7). We have

x2 n+1l

L:0%) = 2™, Bx(L) s fxp(0 = 2", s(T) = st(L) = n.
k can be embedded into B, hence, there is at least one
archimedean order P on k. Let E be a euclidean closure of P.
Set K := L nE.We have K2 = (X n 1%) n (x n E%). More-

over, K n L? is a fan, and X n E2  an archimedean order.

hence, there is a ¢ K\Kz, such that K n L2 = x? ] Kza is



- 150 -
a fan. By lemma 6, we see that X n E? = k%[-al. If an ar-
chimedean order lies over some fan of K, then this fan has

to be trivial. Otherwise it encloses the fan K N0 Lz. Over

K n 12 there are precisely 2" orders, because their restric-
tion remains distinect on k. st(K) = st(K n Lz) = n follows
from all this, and furthermore, we check the statements i),

ii) for K.

Now assume that we have constructed a field K, belonging
to the data (n,r), which satisfies the first two statements
of our theorem.Then a field ¥ with the data%(n+1, r+l) can
be constructed as follows. We set [ = K{X)). Using the re-
lation between the orders of K and F (consider the canonical

valuation ring of F), one checks that F has the data {(n+i,

r+1). F is pythagorean again

Assume next, that a field K with the properties i), ii)
is given. By lemma 5, we see that k%[~a] is a fan. Using
the method of the proof of lemma 6, it follows that Q(L) =

= K’[-a] holds and that Q(L) is a fan, where L = K(V-a). We

have 4FX(L) = 2r+1, as an order of K has none or two exten~-

sions to an order of L. Hence, st(L) = r+l1. If L is pythago-

rean, then K2[~a] =12 n K=k u -ka follows, which is a

contradiction to 4FX 2 = 20 < 27,
K°[-al

We would like to remark, that it is quite certain that

fields with the properties given in theorem 10 can be con-
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structed by the methods of [4§1].

L

§3. Conjugacy of hereditarily-pythagorean extensions

\

It is well known that two real closures R1 and R2 of a

2
2

compare with chapt. II, theorem 4. This theorem says how it

real field k are k-isomorphic 1ff Ri Ak =R, Nk holds,
can be determined as early as in the base field, whether

two extensions'R1 and R2 are.conjugate or k-isomoyphic. We
shall prove analogous criteria for hereditarily-pythagorean
- fields in this section. The fact that it is possible to pro-
ve such eriteria supports, for the second time, our concep-
tion of considering h.p. fields to be generalized real-clo-
sed fields. The structure of the Galois group G(RIK) has

been the basic motivation for this view.

We shall study extensions LIK which have the property
L = KLZ. This can be checked, for example, for the real clo-
sures of a real field. For such extensions, we first prove
three lemmata, concerning subgroups and preorderings of a
higher level fSee chapt.I, §1, chapt. II, §&5),

2

LEMMA 7. Let LIX be an extension, such that L = KL holds.

Then the following statements hold:
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i) A maximal subgroup of K, which extends to L, has a uni-

que extension, which is even a faithful extension.

n
ii) A subgroup U of level n extends to L iff U o K anZ

holds.

Proof. 1) Assume that U is extendable tc L. Let V denote

n n
an extension: U =V n K'. If Vo L*® , then Vo uL*? .
n
From L = Kxsz, it follows that L* = Kxsz » and, further-
n
2

more, that the homomorphism K » L*/uL” is surjective,

Its kernel is U. Hence, there is an isomorphism
K70 - L*/UL*2. This shows that L*/UL*% is cyclic,

thus ULxZn ~is a maximal subgroup. This implies V = Uszn.
Moreover, one sees that the exact levels of U and V coincide.

ii) Assume that U is extendable, say, U = Vv n K". By i},
n n
V has also the level n, hence sz eV and X' n sz < U.
n o n
Conversely, assume that K" N L*?2 & U holds. Then -1¢UL*?

follows, which implies the existence of an extension.

In the procf of the theorems 10 and 11 we shall have to

solve the following problem. Assume that KIE is an exten-

2

sion, such that K = EK”, let M be an intermediate field.

n
Assuming that the subsets ENKZ are known, the problem is
n
to cbtain informations from this about M 0 K2 .
® x2:n
By lemma 7, we have E™ 0 K = r\U, where U ranges over

d4ll subgroups of level n of K, which are extendable to E.
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Such a subgroup has a unique extension T to L. We have the

n
result: sz =n D » where U is a subgroup of level n of K,

21’1 % 21’1

such that U > K* n E., Hence, M' n K =n " n . The

subgroup M* n ¥ is a faithful extension of U to M. Because

of K = MKz, lemma 1 applies and says that M N ¥=:0T is

n
the unique faithful extension of U, which encloses M* n Kz.

n n
Thus we have: E* n K*2 =nu, M n k% = n 0.

Assume next, in addition, that K is strictly-éfpythago—
rean. This means that, for every subgroup U of a higher le-
vel, the set P := U U {0} is an ordering of higher level,
In this case Kzn is a preordering of level n. Hence, we may
restrict oufselves to orderings of level n in order to give
presentations for E N Kzn and M n Kzn. Let P be an orde-
ring of level n of K, such that P > E N k2", Then P has,by
lemma 7, a unique faithful extension ?, where B is an orde-
ring of higher level of E, and a unique faithful extension
to an ordering ¥ of higher level of M, such that B 5 MAKZ
nolds. As before, we have: E o K2 =nP, Mn k2 =n¥,
where P ranges over all orderings P of level n of E, which

extends to K.

In the following two lemmata, the extensions U and P

will be described in a special case.

LEMMA 8. Let K be a real extension of the strictly-pytha-

gorean field E, such that K = EK? holds. Assume that
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n
M = E{Va) is a proper quadratic extension, where Va € K2 .

Then the following statements hold,
on
i) A maximal subgroup U o E* n K? has precisely two

faithful extensions to M.

ii) U is that faithful extension which contains the element

VA .

Proof. By chapt. III, §3 , lemma 9, U has precisely two

faithful extensions to M. They can be distinguished by not-
n

ing whether they contain Va or not. From U o M on K2

n
and Va € K2 , ii) follows.

Using chapt.l, §4, theorem 22, this time, instead of
chapt. IITI, §3 ,lemma 9,one proves the following lemma in a

similar manner, observing that a € P implies (vl er

and va € Fu -F,

LEMMA 9. Let K be a strictly-=-pythagorean extension of the

real field E, such that K = EK2 holds. Assume that

n
M = E{ya) is a proper guadratic extension, where Va € K2

Then the following statements hold.

i) An ordering P of level n of K, which satisfies
n

2 . : .
PoENK , has precisely two faithful extensions to M.

ii) P is that faithful extension, which contains the element

Va .

The following theorem 10 yields our first eriterion for

conjugacy. We consider a 2-closed extension 9|k and an in-
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termediate field K, which is h.p. relative to Q. Let L be a
real extension of K in Q. From the particular structure of

the Galois group G(Q]K), one derivegs that there exists a

unigue maximal intermediate field of L{K, which has od¢d
degree over K. This field will be denoted by (L{K); or - for

short - Lﬁ.

THEOREM 10. Let 2k be a 2-closed Galois extension of the

real field k, and K be an intermediate field, which is here-

ditarily-pythagorean relative to . Let L and F be real ex-

tensions of K in f, such that L = KL2 ané F = KF2 hold.

&
Then the following holds:

LeF & L. o=F. , /\ L nKs=~F n K.
K K n €N

Proof. It remains to show the implication " « ". Let

w: L, ~» F be a K-isomorphism, which exists by assumption.

) U on o0
We shall show: (*) /\ o(L nwLy)="F .no(L) By
new v v,
chapt. III, lemma 4, corecllary 1, we have LU = KLU » Since
n
LylK is an odd extension. It follows that Ly = KL% holds
n
for every n € N. Assume that x € L satisfies x% € Ly-
n n
Thus, x2 = ayz for some o € K, y € K. This implies
2" 2%, 2P o
L N Ly = Ly (L n K). Correspondingly, F n FU =
n n
= FS (F2 N K). Hence, the assertion is proved. We shall

now study pairs (E,y), where E is an intermediate field of
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LiLEf

holds:

and ¥ a monomorphism E = F, such that the following

n 21’]

' nE) = P2 ooy,

(**) il = 9, /\ y(L
nen
The existence of a maximal pair (E,¥) fbllows from Zorn's
lemma. We assert E = L. Suppose E = L. Then a proper
quadratic extension E(Va) has to be contained in L. We have
a EEnN L2, hence, y(a) € F2  and P(EY(V¥{a)) « F. ¥ has
two extensions E{(va) - W(E){(V§({al}). We shall prove that
one of these extensions also satisfies the condition (*%*),
Thus,, we shall obtain a contradiction. Because of L* o=

L= Kxsz, there exists a € K', such that aVa € L2, Hence

a2a € Lq n E. From the properties of §, it follows that
azw(a) e F¥ n ¢(E)., Therefore, there is a root oavi{(a) € Fe,
This root is to be fixed in the sequel. We may assume

va € L%, Vy(a) € F2, substituting va by ava if necessary.

Define ;: E(va) - ¢(E)(V§(a)) by $|B = P, @(VE) = Jgtaj.

n

Given n € N, we have to compute w(L2 n E(va)*). Because
n _ n
of L* = K*L*? , there is B € K, such that pya € L2
2 x2n+1 2 2n+1
B°a € L n E. Hence, p°yla) € F n p{E}, which im~

n n n
plies pV§(ay € F°  or -pVylal € F2 . If -Bvyla) € F2 ,

then -p € F2 as v p(ay € F2 holds. But this would imply

2 2

- € L and, in view of BVa € L2, the statement va € -L°,

which contradicts our choice of Va. Thus we have proved
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A A n

P(BVa) = By(va) € 1 - By lemma 8 and its foregoing remarks,

n -~

we have L2 n E(Va) = n U, where U ranges over those sub-
n ~

groups of a higher level which lie above L2 NE. By Uy, we

denote that faithful extension, which contains BVa. From
n

this, it follows that (L% n E(VE)™) = n (U =
n ~ - P
= 77 0 WEX(VBTEN). as  B(U)ICU), BVA € (), and, be-
n

n
cause of w(L2 NE) = F° n Y(E), ¢ induces a bijecticn

between the subgroups of level n of E, which lie over
n
2 N E, and the subgroups of level n of Y(E), which enclose

nn
F2 0 p(E).

The assumption E T L has thus been led to a contradicti-
on. Hence, there is a moncmorphism ¢: L - F, such that
2" 2" 2"
y(L) = g(L° ) = y(L) n F for every n € N. Because of
P(L) > FU, F is contained in the maximal 2-extension of p(L).

But ¢(L) n F? - w(L)2 implies that (L) is quadratically

closed relative to F. Thus, F = ¢(L).

In the following theorem, we shall drop the assumption

that the base field is h.p. Rather than that, we shall be

concerned with the following situation: Q|k is a 2-closed

extension, k is real, K, L are hereditarily-pythagorean in-

termediate fields subject to the conditions:

1) kK% = K , xL? = L 2) alK, Q|L 2-extensions
2" 2 n 2" 2"
3) K +K° =K s LT+ 1L for every n € N.
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Under assumption2), the condition 3) is equivalent to the
statement trat K and L are hereditapily—strictly—m—pythago-

rean relative to . In order te prove this, use theorem 10

of chapt. III and theorem 27, corollary 2, of chapt. I.

THEOREM 11. On the foregoing assumptions, it follows that

K ¢ L o AN ¥ nx=12 ok

neN

Proof. As in the proof of theorem 10, we consider pairs
{E,tp), such that the feollowing holds:

. 21"1 2n
(* ke EcK, @E-1L, olk=id , A (kK% nE)=L® ne(E).
n

Let (E,p) be a maximal pair. Using lemma 9 this time, in-
stead of lemma 8 (K and L are strictly-w-pythagorean), one

proves, such as with theorem 10, that E is quadratically

2

closed relative to K. From (p(l(2 nE) =L°Ne(E) , i1t re-

sults that F := @(E) is quadratically closed in L, too.

This ciosedness implies that E and T are themselves strict-

n n
ly-ew-pythagorean. To prove this, show that E2 and F2 are

fans. By the above quoted theorem 27, corollary 2, E2 (res-

pectively F2 ) is a strongly-homogeneous fan. Hence A , =
= A(Ez), and the residue field of A 9 is ‘euclidean. CoEres~
pondingly, we obtain AF2 = A(F?), ind the fact that AFQ
euclidean., It also holds thgt AK2 A(K2) s AF2 = A(Fz):
are euclidean. Since Q]X and f|L are 2-exten-

1is

A and A
K? 2

sicns, the rings A(K?) and A(LZ) ape f-henselian, As E is
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quadratically closed in K, and F in L, it follows that

ax?) n £ = A€, ALY 0 F = A(F?). Hence, one finds in

K a f2-henselian closure E of A(E2), correspondingly a f-hen-
selian closure % of A(Fz) in L. Because of m(A(Ez)) = A(Fz),
¥ extends to an isomorphism &: E - %. We want to show that

L N

(E,p) satisfies the condition (*), too. From this, it will

follow that E = E, F = F, E = EE2 s F = FF2 results from

the henselian lemma. Hence, every ordering P of a higher
n n

level of E, which satisfies P > K2 n E(= 2 ), can be ex-
tended uniquely to an ordering of E. Thus, P is the uniquely
determined extension of P to E, The same holds for the or-

el oh ! ol
derings of F. Because of (X NE) =w(E” ) = F = L nF,
¢ induces a bijection between the orderings of E and F,
which preserves the exact level. From ©(F) n F = o(P) , it

follows that o(F) = @(P). This shows, as explained before

A 2t A y S
lemma 8, that (K nEeE) =L N F for every n € N,

With thet, we have proved that A(Ez) and A(Fz) are {-hen-
gselian valuation rings of E and F, From this, we shall ob-
tain that E admits no odd extension in K. Buf this will
mean that QIE must be a 2—extensioﬁ as, by the theorems of
Sylow, the 2-group G(R]K) may be extended to.a 2-Sylow group
of G(Q|E). The fact that Q|E is a 2-extension combined with

the quadratic closedness of E in K implies E = K and

@(E) = L ( see the proof of theorem 10).
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In order to prove that E admits no odd extensions in K,
we first adopt a more convenient notation. Let v be a valu-
ation of £, which belongs to the unique extension of AGE?)
to fi. The restriction of v to an intermediate field M may

also be denoted by v. We write Mv for its residue field.

Since 2|k is Galois, the monomorphism ¢: E » F extends
to a k-automorphism ;: Q2 - £ . Thus the valuation w:= a(v)
belongs to the unique extension of A(Fz) to . Concerning
the notation, we deal with w such as with v, @ and & induce

isomorphisms ®,s O, of the residue fields, and one obtains

the following diagramm

17}

ﬂv ~v . Qw

Kv Lw
©

Ev v , Fw

As already noted, the fields Ev’ Kv’ F Lw are euclidean.

W,

Because Pf assumption 2), Q_|K  and @ |F_ are 2-exten-
sions. Hence, Qv = KV(l) and Qw = Lw(l). This means that

K. and L _ are realclosures of E in £ and of F_ in § .
v W v v W W

Since E_ and F_ are euclidean, it must hold that E2=K2 nE ,
v w vowv v

2 _ .2 2 2
F, = Ly M F, 5 o (E)) = Fi. By chapt. III, theorem 4, there
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exists an extension of 9, Ev - FW tc an isomorphism

O: Kv - Lw.
Now assume M to be a finite odd intermediate field of X|E.
Let P be an ordering of higher level of E, and P' a faithful

extension of P to M. We shall show: P' = B & B' =M n Kﬁ.

1 1

The nrecessity follows from % = Kg which implies f":MV n KS.
In order to prove the converse, we apply chapt. I, § U,

lemma 12, which yields that P has only one faithful exten-
sion P', such that B' = %. An analogous criterion is valid
for the extensions of orderings of F té an odd extension NIF,
where N < L holds. Assume, for a moment, that an extension
p: M+ N of ¢: E~» L 1is given, where F < N <« L. By the
properties of v and w, we must have ¢(v) = w. Hence, ¥ in-

duces an isomorphism v, M, Nv’ which extends L If,

v

additionally, it holds that ¢, = UIMV, then, given any or-

- 2
dering P of E, it follows that ¢(F) = 9 (F) = ¢ _(M_n K ) =
2 Vv v v v
= N, n L. This implies p(F) = (P} and, finally,
It
y(M n K2 Y = Nn L2 for n € IN. The maximality of (E,¢)

thus yields M = E.

We shall now construct such an extension y¢: M - N, .First
assume that (M,v) is unramified over (E,v). From the hense-
lian lemma, applied to w, the existence of an intermediate
field N of L|F follows, such that N_ = o(M ). At the same

time, we get an isomorphism ¢: M - N, such that ¢ = G[Mv.
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With that we have shown that every odd extension M of KIE is
purely ramified, moreover, tamely purely ramified . In the
case of M % E, there exists a € E and an odd number e,
such that B(?E).C M, E(%¥2):E = e. We may assume that
M = E(Va). Since£1|L is a 2-extension, the equation
x® - pla) = 0, which is reducible over 2, has already to be
reducible over L. This means that L contains a root .Vp(a).
This root is even unique, since L is real. Define ¢: M = L
by means of (Va ) = 9@?37, $]E = 9. Because of the pure

ramification , it obviously holds that Y, =@, ° Gluv.

We apply this theorem to the real Q-closures (R,P), asso-
ciated with an ordering P of higher level of k (see chapt.II,
§ 2). The theorem 5 of that place, and its proof shows that

‘R satisfies the conditions 2) and 3), However, the condition
1) is also sétisfied,for if we choose o € k, such that

2n—1 2n-l - 2
o € -P, then we have « € -P, in particular a € R".

2 2

Now note that -R* N aR™ generate the group Rx/RX2 by

chapt. II, § 2, theorem 5,i).

THEOREM 12. Let §lk be a 2~closed Galols extension of the

real field k, and P be an ordering of higher level of k.,

Given any two real f-closures (Ri,E-), i=1,2 , of (k,P),

1

the following holds:

oh ol
R, RzﬁléRl.1k;R2nk

K
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If, for instance, P is an order, then R

2 2 2
dean, which implies Ri = Ri > Ri Nk =P and, in virtue

1 and R2 are eucli-

of the theorem 12, R1 e RZ' Thus, our theorem 12 extends the
well-known theorem of Artin and Schreier [4 ; Satz 8]. In
the case of orderings of an exact level n > 2, there are,
in general, non-isomorphic real 9-closures (R,P). We shall
now attend to the problem of describing the isomeorphy classes

more detailed.

THEOREM 13. Let P be an ordering of the exact level n > 2

of k, andflik be a 2-closed Galois extension. Let v be the

valuation belonging to A(P), and [ its value group. Then the

following statemants hold.

n '
i) The mapping (R,F) » {v(R2 n kx)}n€|N yields a bijec-

tion between the set of isomorphy classes of real Q-closures

(R,P) of (k,P), and the set of all those families {rn}nEN

of subgroups of I'y, which are subject to the conditions

a) T =T B) I‘n/I‘n is cyclic of order 2"

=n ~—n+1 +1

Xy -
Y) v(P7) =T _4 -

ii} Any two real Q-closures of (k,P) are isomorphic over k

iff [P:PQ] = 2 holds.

iii) If there is more than only one isomorphy class, there

are in fact infinitely many classes,

Using this theorem, we can characterize those fields,
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which admit for every ordering of higher level only one iso-

morphy class of real closures.

COROLLARY. Every ordering of higher level of k has a single

isomorphy class of real Q-closures iff it holds for every

real valuation ring of k, with value group T, that [P:P2]i2.

Proof of the corollary. Assume that there is a single iso-

morphy class for every ordering. Let A denote a real valua-
tion ring, such that [P:PZ] > 2. By chapt. I,§ 2, theorem 11,
there exists an ordering P of an exact level n > 2, which

is compatible with A, Thus, A(P) € A, and ' is seen to be a
%)

factor group of a group I'', wheré\{r':r‘ = 2. Hence,

[F:FZ] = 2 too.

In particular, the uniqueness occurs in the case of
Pasch-fields (= SAP-fields, see chapt. I, § 3}, for instance,
in the case of algebraic function fields F over R, such that
tr(F|IR) = 1. But the unigueness may also occur for other
fields; consider a field Kgs which has only archimedean or-
ders (e.g. kg = Q). Then every real valuation ring T of
ko(X) has Z as its value group. Thus, [F:FZ] = 2. In the
case of k = Q(X,Y), there is generally no uniqueness, since
there are real valuation rings, such that [F:P2] = 4 holds,

Proof of theorem 1%. i) Let (R,F) be a real f~closure of
-1
2]'11

(k,P}, and a an element of x*, such that « € -P. As
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noted before theorem 12, the cosets —sz and uRX2 gene-

rate the group RX/RXQ. Moreover; R has the two orders

~ 4 ~ —
P1 = R2 ] aRz, P1 z R2 U -aRz, and for every n > 2, the
unique ordering of the exact level n is given by ﬁg =

on zn—l o1 2n-l ol 2n—1 o
=RV -a R™ .7It further holds that R =R" Ua R

(chapt. I, theorem 16, corollary 2 and chapt. II, theorem 5).
Frém chapt. I, lemma 14, and the corollary 2 of chapt. I,
theorem 27, one derives A(Rz) = A(Rzn) =‘A(§n) for every

n € N. Since f|R is a 2-extension, AR?) proves to be a
fi-henselian valuation ring. Its residue field is euclidean

n n
by chapt. II, theorem 5. Thus X* = &%2 y -zX2 , where

~

A = A(R?), n €IN. Let ¥ be the valuation belonging to X,
and ¥ its value group. Then, for every n € IN: V(?§+1) =

~,ox20 I SLRP L n
= v(R Yy =T s /T is cyclic of order 2. The valua-
tion v := VIk belongs to the valuation ring A N k =

= A(?m) nks= A(?ﬁ N k), = A(P). Let T be its value group.

n
From sz = T, it follows that T/r n ?2 is cyelic of
n n
order 2. We have T n T2 = ngz n k¥ = w(F nk*y.

n+l
To prove this, one makes use of the relatién A(P)F c

n n n
r:(R2 n kx)U -(R2 n kx), which results from KX=KXQ u —ﬂxz .

It is now easlly checked that the family {Fn}naN’ where
n
2 .

I = v(R n kx), satisfies a), B), ¥).

n
n
The preorderings Tn 1= R2 n k* can be re-obtained fram

the family {r,}, for, if n > m, then TX - v_j'(I'n) n P
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follows from A(P)Y* < Tﬁ ] -Tﬁ. If n < m, then one recur-

, m-1
- - M 2
sively constructs T Dby means of Tm~1 =T, va T

. m
mn-2
U uz T etec. Taking theorem 12 into account

T =T =2

m-1 m=-2 n
. = 2

we thus obtain the fact that the map (R,P) p» {v{(R" n k)}nEN

is injective. In order to prove that this map is surjective

too, we consider objects {L, F, {F_ } }, consisting of a

n-néN
faithful extension (L,P) of (k,P) in 2, a family {Fn}naN
of subgroups ', subject to the conditions a), B), v), and

?n nr=r1_, v ) = ¥ , where V belengs to A(P) and

n m-1
¥ is the value of V. Zorn's lemma proves the existence of a
maximal object, denoted by ({R, P, {Fn}}. We shall. show that
(R,P) is a real Q~closure of (k,P). By the first part of the
proof, it then follows that V(R2n n k) =r, . To prove the
assertion on (R,P), we apply the extension theory of chapt.I,
§ 4. A(P) has to be 9-henselian, since, otherwise, the
@ -henselian closure of (R, A(F)) would 1ead to the construc-
tion of a proper greater object; for F is faithfully exten-
dable to the g-~henselian closure, which is an intermediate
extension. Denote the extension of A = A(P) to @ by B.
Thus, BIA is a 2-cl;sed Galois extension. Choose a real B-
closure to the order ® of A.F is faithfully extendable to
every such finite unramified extension of R in @, the resi-

due field of which is contained in this real B-closure., The

same obviocusly holds for {Pn}. Hence, A is indeed real-
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closed in B, i.e. B = A(i), A is euclidean. Let L be a

-

proper odd extension of R in §. Then L has to be a purely
ramified extension with an odd vramification index. It is

possible to construct extensions of T and {?5} to L. Hence,
n-1
QIR has to be a 2-extension. Choose o € k* with a2 €-pP*,

Since T/v(F*X) is cyclic of order 2™, it follows that
S(a) ¢ F. Choose a € RY, such that %(b) € F2 U v(a)F?2, It

is possible to extend ¥ and {?n} to R(VB). Thus, [T:T?] = 2.

X2y - 4, as A is euclidean and A is Q-hense-
n

lian. Observing Qn(R) = R2 » we apply chapt. I, lemma 14,

This yields [R™:R

to R, and get the structure of R relative to their orderings.
Moreover, the refletions at fhe beginning of chapt. I, § U,
show that P has no faithful extension in Q. Hence, (R,P) is

a real Q-closure of (k,P}.

ii), iii) It remains to study the families {rn}nﬂN , such

that v(P®) = T Since T/Fm is cyclic, the groups

m~-1° -1

r,, i=1,..,m-2, are determined by Fm

1 . Therefore, we have

-1

to construct all groups Pm o Fm_l, such that T/Fm is cye-

lic of order 2™, Let ol 4 be a generator of P/Fm If

.—1'
P/Fm is eyelic, it is generated by arm. In this case, it
-1

I

follows that o €T Hence, we have to find all

~T .
m-1 "m m-1
characters y: rm—i + {1,-1}, such that (o Y = -1,

These characters correspond bijectively with the characters

£ T Ty azm-lrz The inclusion T + ' induces
o m=-1 m-1 m-1"* m-1
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an isomorphism of the latter factor group with 7/r% U ar?.
From this, one concludes that there exists only one of the
required characters iff [P£P2] = 2 holds. Otherwise, one
can construct at least two of the desired groups. These re-
flections are wvalid for every n, hence, it follows that ii)
and 1ii) hold. The statement iii) can even be strengthened
to the following result: there is only one single or at least

X, . . )
2 “-many isomorphy classes.
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