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§0 - INTRODUCTION

These lectures are an introduction to Hamiltondian
systems. The main emphasis is on properties that occur
generically, i.e. for most Hamiltonian systems,

§1 contains the basic linear theory. §2 contains
some facts about normalizing sympléctic matrices, which
is used in §3 to study generic bifurcation of eigenvalues
for one parametér families of symplectic transformations.
§4 contains the basic nonlinear theory. If the reader is
primarily interested in the nonlinear theory’it is
possible to read through Proposition 1.6 and the defi-
nition of N-elementary and then ship to §4, §5 contains
a proof of Darboux's Theorem and related theorems. These
are proved using_fhe method dévelopéd by Moser and
Weinstein. §6 contains the resﬁlts about generic
properties of Hamiltonian systems. We prove that
generically closed orbits lie on one parameter families.
Using this fact the theorems in §3 tell something about
how tﬁe derivative of the Poincard map varies as the

orbit varies along this family. Also Cl genericaliy the
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periodic points are dense in the nonwandering set, Finally
we show that any Hamiltonian system that has a closed
orbit with an eigenvalue of absolute value one is not
structurally stable, §8 gives a proof of the general
density theorem stated in §6. §7 states the theorems in
transversality necessary for the proof of §a,

The following books and papers alsp give introduct-
ions into Hamiltonian systems and treat some subjects not
covered here: [Al}l, [A3, Chapter 4], [A5], [B1], [M6i:

[81], and [S11].
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§1 - BASIC LINEAR THEORY

For the linear theory we start with a paif (Vzn,w)
where Vzn is an even dimensional real vecéor'space and
w is an alternating bilinear two form on V. To w we
associate a map, ®:V 5 V¥, from V so its dual space
defined by g{v) = iw = w(v,.) where i, dis the
interior product of ®w with v. The rank of w is the

dimension of the image of ®. W is nondegenerate if

has rank 2n, i.e. ® is an isomorphism. The pair (V,w)

is called a (real) symplectic space if w is a nondege~

nerate alternating bilinear two form on V.
Zn

We usually identify V qith R by picking a
basis, ul,...,uzn. We associate to w the matrix

1J

. t .
where we write vectors as columms and x is the

t
A= (aij) where a, ., = w(ui,uj). Then w(x,y) = x"Ay

transpose. Since w is alternating, A is skewsymmetric.
The standard skewsymmetric matrix is

J = 0O I .

=T O
where I 4is the nxn identity matrix. A basis for which

w has J as its matrix is called a symplectic basis.
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2n

LEMMA 1.1 - Given a symplectic space (V™ ,») there

exists a symplectic basis.

Proof: Pick any wvector uy € V. Since w 1is nondegenerate

there exists a vector un+l such that

w(ul,un+l) # O. By scalar multiplication we can make

w(ul,u = 1. Let (u;,u ) be the space spanned by

n+l)

these vectors.

Let

i
V2 = {ve V: u](v,ul) =0 = m(v,un+l)} = (ul,un+1> .

v has dimension 2n-2, ]|V

2 is nondegenerate, and

2

V = (ul,un+l) f] V2 since @ 1is nondegenerate on Y.

By induction on the dimension there exists a symplectic

basis of V Then Uyseeesl,

27 Uprees sl sl oyeeeyUy .
is a symplectic basis of V.

Q.E.D,

LEMMA 1.2 - Let (Vzn,w) be a symplectic space. Let

Ujseee,l IERRETL be independent

+P
) =1 and w(uj,uk) = 0

p+q’un+
vectors such that wf{u.,u,

J? 7 j+n
Jj # k & n., Then there exist vectors which complete these

to a symplectid basis.

Proof: We prove by induction on gq that we can find u,
Jj=n+p+l,...,n+p+gq. If ¢q = 1 then the

construction is just the one in Lemma 1,1, Assume the
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construction is possible for g-1, Take the subspaces

1
B = (ul,...,u = [v g V: m(v,uj) = 0

p+q’un+1""'un+p>

J = leeee,ptayntl, ... ,n+p}  and

L
C = (ul,...,u « By the

p’up+2""’up+q’un+l"'"un+p>

independence of the wvectors and nondegeneracy of w,

C 2 B. Take -B  such that wi(u } = 1.

un+p+l € ¢ p+1’un+p+1

By induction we can find uj J = n+p+2,...,04p+q.
Now use the construction of Lemma 1.1 to complete

the basis.
Q.E.D,

To (V,w) there is associated a Lie group of linear
maps that preserve w, Sp(V). A transformation A ¢ Sp(V)

is called a symplectic transformation (or matrix)., For

A sp(V) (a*w)(u,v) = w(Au,av) = w{u,v) or in matrix

notation with a symplectic basis AtJA = J.

Let AS € Sp(Rgn) be a differentiable curve of matrices

with A_ = T. Let B = =~ 4 | . Then 0 = Sy =
o ds "sts=0 ds
d t t
= 4g Ag JA, = BJ + JB, or w(Bu,v) + w(u,Bv) = 0,

B is called an infinitesimally symplectic transformation

(or matrix). The set of the infinitesimally symplectic
transformations is labeled sp(V). It is the Lie algebra

associated to the Lie group Sp(V).

LEMMA 1.3 = IF A ¢ Sp(R°™) then det A = I.
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Proof: By taking determinants of AtJA =J we get

(det A)2 = 1. That is not enough. Define a volume

on V, 0, by Q(vi""’vén) = det(w(vi,vj)).
(A*n)(vl""’VZn)_= Q(Avl,...,Av2n) = det(w(Avi,Avj)) =

= det(w(vi,vj)) = Q(vl,...,v But one definition of

zn)'
the determinant is A¥Q) = (det A)Q. Thevefore det A = 1,

Q.E.D.

LEMMA 1.4 - Let A ¢ 5p(R2n) and p(x) = det{4-xI). Then

p(x) = =% p(1/x). .

Proof: p(x) = det{A-xI) = det(JAI " -xI) = det((a¥) T -xT)=
= det(a~tox1) = (-x)g"1 (deta™ ) det(-I/x+4) =

2n -
= X p(l/x).
Q.E.D.
PROPOSITION 1.5 - If XA is an eigenvalue of AcSp(R™™)
then l/k, l/_, and i also are eigen-

values with the same multiplicity. In particular both 1

and -1 have even multiplicity if they are eigenvalues.

Proof: This regult follows directly from Lemma 1.4,

PROPOSITION 1.6 -~ If A 4is an eigenvalue of B ¢ sp(R>D)
then -3, JK, and % also are eigen-
values wit!: the same multiplicity. In particular if O

is an eigenvalue then it has even multiplicity.
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Proof: This result is proved in a similar way as the
above result. We leave the proof to the reader.

" Often, we want to talk about multiplicative
independence of the eigeﬁvalues for a symplectic matrix.
However A and 1/A are not independent. To have
independence we need to take half of the eigenvalues.

The principal eigenvalues of a symplectic matrix are

those n eigenvalues with (i) absolute value strictly
greater than one or (ii) ébsolute value equal to one and
imaginary part greater than or equal o zZeroc. In order to
get n principal eigenvalues we take exactly half the
eigenvalues equal to 1 or -1,

A symplectic matrix is called N-elementary (N > O)

if the priancipal eigenvalues ll,...,ln satisfy the

. o . Pa p .
following condition: if Ai e lnn = 1 with

1
E?_l ijl £ N then Py = 0 for all j. It is called
elementary if it is N-elementary for all N » 0. If a
matrix is N-elementary then no eigenvalue is a jth root

of unity for 0 <« j =< N. In particular, a matrix is
l-elementary if and only if 1 4is mot an eigenvalue.
A matrix is Z2-elementary if and only if it does not have
any multiple eigenvalues,

Let A be a real eigenvalue of B ¢ Sp(Rzn). The

eigenspace of )\ is defined to be the set of vectors u
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such that (B-AI)u = O. The root space of L is defined
to be the set of vectors such that (B-AI)™u = 0 for
some integer m » O, If A is not real replace (B-AI)
with (32 - AB - 3B + 3AI) in both definitions. This

gives a real subspace associated to both X and X\,

LEMMA 1.7 = Let A = a + ib be an eigenvalue of
B ¢ Sp(R*®) with b # 0. Let u be in the

eigenspace of L. Then there exists another vector v in

the eigenspace such that Bu = au + bv and Bv = =-butav,
Proof: Let v = 1/b(Bu-au). Bu = au+bv. O = Bzu - 2aBu +
+ (a2+b2)u = bu - abv + bBv so Bv = -bu + av.
Q.E.D.

The following propositions show ®w is nondegene-

-

rate on the root space.

LEMMA 1.8 - Let X and 12 be eigenvalues for

1
B e sp(R™) with A A, £ 1and A A, £ 1
1z 12 *

Then the root spaces of kl and Kz are perpendicular

-with respect to W, i.e, if v, is in the root space of

A; then W(vl,vz) = 0.

Proof: See [M5]., Extend B +to act linearly on C2n and
extend ® to be an alternating bilinear form.

Using the Jordan form for B (with li‘s off the diagoml
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as well as on the diagonal in the blocks corresponding to
li) there exists a complex basis Ujsees,u,  such that
Epuj = Aij(p) where Pj(p) is a nonzero vector whose
components are polynomials in p. This is not necessarily
a symplectic basis. Also we have relabeled the eigenvalues
s0 uj is the reot space of Kj' The compeonents of Pjﬁﬂ
are polynomials in p since for fixed q +the binomial
coefficient ( g) is a polynomial in p. Then

w(uj,uk) =.w(BPuj,Bpuk) = (Kjlk)p w(Pj(p),Pk(p)). I |
kjlk # 1 it follows that w(uj,uk) = 0, In the real roat
space corresponding to Kj and lk it follows the

vectors must be perpendicular with respect to w.

Q.E.D,

COROLLARY 1.9 - Let A be an eigemvalue of - B ¢ Sp(R?D).
then w is nondegenerate on the subspace

spanned by vectors in the root space of A and l/x.

In particular if }l] = 1 then w is nondegenerate on

the root space of A,

COROLLARY 1.10 - Let A be an eigenvalue of B ¢ Sp(RZ™)
with |A] = 1 and A # 1. If .w(u,Bu)=
= 0 for a nonzero vector in the root space then w(v,Bv)
is both strictly positive and stricily negative on the
root space. Thus ®(v,Bv) is either positive definite,

negativea
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negative definite, or assumer both signs on the root space

of an eigenvalue ) of absolute value one with X # +I1,

Proof: Assume w(u,Bﬁ) = 0. Since B2u ~u#£ 0 and w is
nondegenerate on the root space, there exists a
vector y such that w(By,Bzu-u) # O, Let ¢ be a scalan
. Then w(y+cu, B(y+cu)}) = w(y,By) + cw(y,Bu) + cw(u,By) +
+ c2w(u,Bu) =‘w(y,By) + c(w(By,Bgu) - w(By,u)) =
= o(y,By) + cw(By,BZu—u). Thus w(y+cu, B(y+cu)) assumes
both signs on the root space for different wvalues of c.
Q.E.D.
Using Corollary 1,10 we give names fo the three
possible cases. Let A be an eigenvalue of B ¢ Sp(Rgn)
with |A| =1 and A #£ tl. A is said to be of positive

type (resp. negative type) if w(u,Bu) > 0 (resp. < 0)

for all nonzero vectors in the root space. A is said
to be of mixed type if w(u,Bu) > 0 and w®w(v,Bv) < 0 for

u and v both in the root space of A,

Both positive and negatiwe rotations on a plane
have the same eigenvalues. However if w is nondegenerabe
on this plane it induces an orientation which distinguish-
es the two cases, i.e. if w(u,v) = 1, Bu = au + bv,

Bv = -bu + v then w(u,Bu) = w(v,Bv) = b.

Next we prove the root space equals the eigenspace
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for an eigenvalue of Positive or negative type. This
proposition is false for eigenvalues of mixed type. See

the examples in §2.

LEMMA 1.11 - Let B ¢ Sp(R*™). Assume Vc R is an

invariant subspace for B and o|V is non-
degenerate. Then V* = {u: w(u,v) = 0 for all =+ € V}

is dinvariant by B,

Proof: Assume V™ is not invariant. Then there exists

u g v’ such that Bu = x+v with x¢ V' and
ve V. Let v' ¢ V be such that w(v,Bv') £ 0. Then
0 =w(u,v') = w(Bu,Bv') = w(v,Bv') £ 0., Contradiction.

Q.E.D.

PROPOSITION 1,12 - Let A be an eigenvalue for Besp(R2n)
with [A] = 1, A # t1, and of positive
or negative type. Then the eigenspace of A equals the

root space,

Proof: Let P be the root space and V be the eigenspace
of X. wIP is nondegenerate by Corollary 1,9,
Using Lemma 1.7 the reader can check that @w|V is non-
degenerate. By Lemma 1,11 Vl'n P is invariant by B,
B|(v'n P) must have an eigenvector wu. But all the

eigenvectors for A lie in V. Therefor V' P = {0}.

Q.E.D.,
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§2 ~ NORMAL FORMS FOR SYMPLECTIC MATRICES

In this section we give an explicit normal form far
matrices with eigenvalues of multiplicity at most two.
See [M5] and [W2] for the general case. These results
are used in the next section to study generic properties
of one parameter families of symplectic matrices.

We are given a symplectic transformation B on a
real symplectic space (Rzn,w). By Lemma 1,8 and
Corollary 1.9 we can find a symplectic basis Vyseee Vo,
such that eath vector vj. lies in a root space for B.
®w 1is nondegemnerate on the subspace generated by the root
spaces of ) and K_l. Thus it is sufficient to look at
these subspaces one at a time. In the following A = a+ib

is an eigenvalue of B ¢ Sp(Rzn).

PROPOSITION 2.1 - Let _X = a+ib 'be an eigenvalue of
absolute value one for which the eigen-

space equals the root space, V., Then there exists a

symplectic basis for the root space such that B|V has

as its matrix
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aIl 0] -bI1 0
0] a12 0 bI2
bIl 0] aIl 0
0 _bI2 o aI2

where Il is the jxj didentity matrix, 12 is the kxk

identity matrix, and A has multiplicity j+k = q.

Proof: We can take b > O by using A or A.

Assume w(u,Bu) > 0 for some vector wu € V. Then
by Lemma 1.7 there exists v ¢ V such that Bu = au+dbv,
Bv = -obu+av where ¢ = w{u,v). In fact we can take
0 = %1 by écalar multiplication. By reordering u and

v we can assume (u,v) = +1, Let u; =u, u = v,

L
Look at (ul,uq+l) = {veg Ve w(v,ul) = w(v,uq+l) =
: L
Tt must be invariant by Lemma 1.11, (ul,uq+l) has

dimension two less than V. Continuing by induction we

can find Uyseee,u such that

J.,uquJ_,...,1:LQ+J

Bu, = au, + bu__ ., Bu ., = -bu. + a u
i i i

qei q+i y and such that

q-+i

L €L
w(v,Bv) s 0 wv ¢ <ul""’uj’uq+1"'"uq+j> =V, . By
Corollary 1.10 B must be of negative type on VlL.
Now proceed to pick pairs ui’ui+q such that

w(u,,u, . ) =1 and Bu., = au. - bu. » Bu,
i?'Mi4g i i i+q i+q

+ a ui+q' By induction we can complete the basis,

= bu, +
1

Q.E.D,
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REMARK - The above construction could be used for a

different proof by Proposition 1.12,.

COROLLARY 2,2 « Let A = a £ ib be an eigenvalue of

, absolute value one, multiplicity two, of
mixed type, and for which the eigenspace‘equals the root
space. Then there exists a symplectic basis for the root
space, Vl,.{.,vq with w(vl’VS) =1 and w(vz,vh) = 1

as usual, and such that B has as its matrix

a ~-b o} 0

b a o] 0]
0 o] a =b
o} o ] 3 a

Proof: Let Uiyeas,ly be the basis that put B in the

form of Proposition 2.1 with I, = I, = (1).

Let

'\4"l=u1+‘l.12

v = 113 - 1.14
v, = i(u +u, )
37 2V 3774

l(u -u
2*72 71

<
=
1}

The reader can check the details.,

Q.E.D.

PROPOSITION 2.3 -~ Let A = a + ib be an eigenvalue of
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absolute value one, maltiplicity two, of mixed type, and
for which the eigenspace does not egqual the root space.
Then theré exists a symplectic basis such that B has as

its matrix
where A =

and ¢ = +1,

Proof: See [M5] for a proof that includes higher
multiplicity. Take two eigenvectors u and v
such that Bu = au+bv and Bv = -bu+av. IF w(u,v) £ 0
then (u,v)_L would be invariant and the root space would
equal the eigemspace. Thus ®{u,v) = 0, Let u, = u,

u, = v, and pick u3 and uy that'complete the

symplectic basis. In terms of this basis B equals
L]

a -b b d b'd

1 2
b a x3 Xy,
o o a =b
0O 0 b a
Let vy = Wy, VvV, = Uy, VS = u3 + ylul + Yolys and

vy = b, + y3ul + yhuz. To be a simplectic basis
w(VB’vh),z Y3=¥5 = O. Then

Bv3 = ul(xl+ayl-by2) + u2(x3+byl+ay2) + aug + bu, =
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ul(xl-zbyz) + u2(x3+byl-by4) + avy + bvy

th ul(x2+ay2-by4) + uz(x4+y2b+ay4) - bu3+auu =

ul(x2+byl-bya) + u2(x4+2by2) - bv3 + avy .

We want Xy - 2by'2 = Xy + 2by2 and‘ x3 + b(yl-yh)
= -x, - b(yl-yh) or y, = (x;-x,)/4b and Yy~Y, =
= (x2+x3)/2b. After making these choices B has the
form

a =-b Z -2

1 2
b a P Zq
0 G a -b
0 0 b a

0 = w(BVB,BVQ) =2 z,a - 2 bz, so0 21/22 = a/b or
z; = ca, zZ, = cb. By taking the basgis dv
(l/d)VB' (1/d)v4 with d = (Ec|)l/2 we can make c¢ = Il
' Q.E.D,

PROPOSITION 2.4 « Let A = %1 be an eigenvalue of multi-

plicity two. Then there exists a

symplectic basis such that B has as it matrix

A ¢
0o A
where ¢ = -1, 0, or 1.

The proof is left to the reader.
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PROPOSITION 2.5 - Let )\ be an eigenvalue of absolute
R [}
value value different from one. Then
given any basis of the root space of A, there exists a

basis of the root space of 1/1 such that the combined

basis is symplectic. In terms of this basis B has the

Fform
Al 0
o} AZ
where A;l = AE + In particular A, can be taken in

Jordan form.

Proof: Take any basis Ujsees,u of the root space of 3.
By Lemma 1,8, w(uj,uk) =0 for all j and k.

By Lemma 1,2 we can complete this to a symplectic basis.

In fact we can always pick vectors from the root space

of 1/A to complete the basis. Then the matrix of B

has the form

Al 0
o A2
Since BYJB = J, a dirvect computation shows AYA = I.
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§3 - GENERIC BIFURCATION OF EIGENVALUES

FOR LINEAR SYSTEMS

In this section we study generic properties of Cl
maps from the closed interval I = [-1,1] +to Sp(Rzn),
Cl(I,Sp(Rzn)). Using Theorem 6.1, Theorem 4.5, and
Proposition 4.7 below, these result can be interpreted
in the nonlinear setting. The matrices correspond the to
derivative of the Poincard map restricted o an energy
surface. The parameter in I corresponds to moving along
a one parameter family of closed orbits.

Let T = {B ¢ Sp(Rzn):B has a multiple eigenvalue}
= {B ¢ Sp(Rzn)zB is not 2-elementary}. Let T' = {B € T:
i) B has an eigenvalue of multiplicity at least three or

ii) B has two eigenvalues A # L, of multiplicity two

with [A.[, |A,] 2 1 and Im Ays Im X, = O}.

T and T*' are both semi-algebraic subset of Sp(R2n)

. o there exist submanifolds of Sp(R2n), Tisess,T) such
q

that T' = | T, and T = |J T.. See [A2].
j=1 4 j=1 4

T is closed so by the Thom Transversality Theorem,
G ={Ac Cl(I,Sp(Rzn))zA is transverse to all the Tj}
is dense and open in Cl(I;Sp(Rgn)). Also see Theorems

7+1 and 7.2 below. An element A € G is called a generic
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curve of svmplectic matrices, or just a generic curve.,

The result of this section completely describe what can
occur for A€ G and A{0O) ¢ T. These results are
directly connected with the_parametric stability studied
by Krein, Moser, Diliberto, and Coppel and Howe. See [Dl],
(c1], [c2], [c3], [M5]. However as noted below the results

are slightly different.

LEMMA 3.1 - Let A€ G. If A(0) € T then a(0) ¢ T-Tr.

Proof: By the normal forms of §2 the interior of T dis

empty. Thus all the Tj have at least codimension
one. Also by these normal forms the interior of T! in T
is empty so T' has codimension one in T and codimen-
sion %weo in Sp(R2n). Thus any A é'G can not intersect
any of the Tl""’Tq where Tt = LJ. T, .

Q.E.D.
REMARK - The codimensions probably also follow from the
fact that T £ Sp(R°®) ana T A T using

general facts about algebraic subvarieties.

THEOREM 3.2 - I) Let B € T have a multiple eigenvalue A

such that 1., the root space of )\ equals
its eigenspace or 2, Il[ A1 and Im X # O. Then there
does not exist a A € G such that A(0) = B, i.e. B is

not in the image of any generic curve A ¢ G.
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IT. Let B € T=-T! have a multiple eizenvalue X such
that 1. ]hl =1 or ImX =0 and 2. the root space
of XA does not equal its eigenspace. Then there exists

A € G such that A{0) = B.

REMARK -~ Let A ¢ G be such that A(0Q) € T=T!'. Then by

the theorem the root space does not equal the
eigenspace. The reader can check that the linear diffeo-
morphism is not Liapounov stable at the origin. Or sge
[M5]. Also the case of a mixed eigenvalue in I above is
.not parametrically stable and the case of a eigenvalue of
positive type is parametrically stable even though both
do not occur generically.

We state the last result before giving the proofs,

THEOREM 3,3 - Let A € G be such that A(0) € T. Then
there exists & » 0 and eigenvalues l(e)
and y(e) of A(e) such that one of the following occurs:
. -1 ‘.
I. (1) A(0) =p(0)™7, (1) |r(e)| = Jufe)| =1 and
A(e) £ ule)™ for 5= e<o0 (resp. O < ex< ),
and (iii) A(e) = u(e)-l and |A(e)] > 1 for O < e < &
(resp. -5 < e < 0) or
II. (i) A(0) =1 or =1, (ii) |i(e}] =1 and

Af(e) # 31 for -5 < e <0 (resp. O< ex §) and
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(iii) A(e) dis real and £ *1 for O < e < & (resp.
-6 £ & < 0) or

1

III. (i) Aa(o) w(0)™7,  (di) Im A(e) = Im u(e) = ©

and i (e) # u(e)_lfor ~5 £ e < 0 (resp. 0 < e < 5)
and (idii) A(e) = u(e)_l ‘and Im Afe) > 0 for O < ex<5

(resp. =6 = ¢ < 0).

In pictures we have one of the following cases of

change of eigenvalues:

(i) (i1)

3 e
SEETES

¥

(iii)

A(e)

e

u(e

Proof of Theorem 3.2 - By Corollary 1,10 and Proposition

1.12 there are only the following cases:

I 1. X is an eigenvalue of positive or negative type of

maltiplicity two
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mult

=2

dimensional subspace in the tangent space to Sp(R
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A is an eigenvalue of mixed type of multiplicity

two and its eijgenspace equals its root space

A is a real multiple eigenvalue and its eigenspace

equals its root space

A is a multiple eigenvalue and |A| £ 1 and

Im A £ O.

A is a mixed eigenvalue and its eigenspace does

not equal its root space

A dis a real multiple eigenvalue and its eigenspace

does not equal its root space.

Il.
Let B € T = T' have a positive eigenvalue of
iplicity two. It suffices to show T has co&imension
at B, We show this fact by comstructing a two

21’1) at

B that is not tangent to T.

symp

has

By Propositions 2.1 and 1.12 there exists a
lectic basis Uygeeertly such that the matrix of B

the following form:



al ] -bX 0
0 Al 0 A2
bI o al 0
0 A3 o Ah
where I dis the 2X2 identity matrix. Let a = cos e,

b = sin e, a(t) = cos(e+t), and b(t) = sin{e+t). Let

B(t) be the transformation whose matrix equals

a(t) o o -b(t) o 0
0 a(-t) o 0 -b(-t) o
0 0 A 0 0 A,

b(t) cC o0 a(t) 0 0
0 ©b(-t) 0 ¢ a(t) 0
0 0 A, 0 0 Ay

B(0) =B but B(t) € T for small t £ 0. We now use the
symmetry of B +to construct a whole plane of such

matrices. Let C{(d) have the following matrix

c -5 C
s c 0 .0
o 0 X
o} -5 o
0 s pe o
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where ¢ = cos(d/Z) and s = sin(d/z). Let B(t,d) =

= ¢(d)B(t)c(-d). Note that B(0,d) = B for all d. Also
¢(d) is a symplectic matrix so conjugation by it
represents a symplectic change of basis. Direct comput-
ation shows that the derivative of B(t,d) with respect
to t at ‘t = 0 has the following form:

B1(0,d) = ¢(d) B*(0) c(-d) =

b 0 O —-a 0 O 0O -b 0 0 w=a O
0O b 0 0 a 0 -b 0 0 -a 0 O
cos(d) 0 0 0 ©0 O O |+ sin(d 0 0 © 0 © O
a 0 0 =b 0 O 0 a 0 0 =b O
0O -a 0 O b © a ©O O0-b 0 0
0 0 0 0 o0 o O 0 0 0 0

{tB*(0,d):d ¢ [0,2n], t € R} forms a plane in the tangent

space of Sp(Rzn) at B. Conjugation by C(d) preserves

the form of B, so if B'(0) is not tangent to T at B

then none of the matrices t B'(0,d) can be tangent.
Assume B'(O) is tangent to T. Then there would

exist a curve D{%) din T such that D(0) = B and

D*{0) = B'(0). Four of the eigenvalues of B'(0) are

ib #ia and the root space of D{0) equals its eigenspace.

By a lemma in [CZ]Vfour ;f the eigenvalues of D(t) would

have to be (a+ib) + t(-b+ia) + 6{(t), (a+ib) + t(b-ia) +

i
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+ @(t) and their complex conjugates. The other eigen-
values would have to be distinct. Cleafly the eigenvalues
of D(t) can not remain multiple so D(t) can not lie
in T.

We have shown there exists a two dimensional plane
in the tangent space of Sp(Rzn) at B that does not
lie in the tangent space of 7T at B. Thus T has

codimension two at B.

Case A2,
Let B € T-T' have a mixed eigenvalue whose root
space equals its eigenspace. By Proposition 2.2 there

exists a symplectic basis for which B eguals

-k O
a 0 o
o 0 Al o 0O A2
0 a -b 0
0 (0] b a 0
A3 Cc 0 Ah

Form B(t) by multiplying the first and second row by t

and the n+l1 and n+2 row by 1/t, Let ¢(d) egual

c 0 0 -5 0 O©
0 ¢ 0 0 -s 0
O 0 I 0 0 0
s 0 0 ¢ 0 0
0 5 0 O ¢ ©
O 0 0 0 0 T
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with ¢ = cos(da/2) and s = sin(d/2). Let B(t,d) =
= c(a)p(t)c(~-a)s(1,d) = B for all d. An argument as

before shows none of the Bt(l,d) are tangent to T.

Case I3.

If A 1is equal to %1 +the root space only has
dimension two otherwise it is similar to case I2. If A
is real and ﬁ 1l the proof is very similar to case Il.

We omit the details.

Case Ik,

Let B € T~-T' have a miltiple eigenvalue A = a+ib
with |A| # 1 and Im A # 0. If the root space equals
the eigenspace then a proof similar to the above cases
shows T has codimension two. Thus we can assume they
are not equal, The esgsential ideas are contained in the
case when mn = 4 so we loock at that case,

By Proposition 2.5 there exists a symplectic basis

U;,...,ug  such that B equals

with AT = A; and 4 equal to



Set A(x,y) equal to

<

@]

and

B(XQY) =

Define F:R*°xsp(rR®) 4 T c sp(rR®) by F(x,y,C) =

-b a
a b
0 a
0 b

- x
X Y
0 x
o ¥
A'CX s Y)

0
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~b

-b

=¥

-y

A(X’Y)t-l

C-IB (X:Y)C .

F is analytic. Taking the derivative,

DF(X.,Y,I)-(U,V‘,E) = B(st)E - EB(x,jr) + DB(X,Y)(LI,V).

The kernel of DF(x,y,I)

is four dimensional and is

‘contained in the tangent space to Sp(RS). It is made up

of matrices

P E
0O D 0

o -pt o
-t

-nt
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where D and E are 2x2 matriées in the space spanned
by I and J, i.e. they are the general product of a
rotation and an expansion. The derivative at the point
(x,y,C)’ is conjugate to the one at (x,y,I) so its
kernel has the same dimension:

-1 1

DF{x,v,C){u,v,E) = {(C B(x,y)c)c"lE - c'lE(c" B(x,y)C)+

+ c'lDB(x,y) fu,v)e . .

The the image of F has codimension two.

Next we show F 1is onto a neighborhood of B in
T. Let A(t) be a differentiable curve in T such that
A(O) = B, Let ¥ be a small closed curve around the
maltiple eigenvalue for A(O) and hence around the

multiple eigenvalue for A(t) for small +. Let

¢ pi(c)
_2K(t) = Z#i J{ Pt?G) df where pt(x) is the character-

istic polynomial for At' Then l(t) is the multiple
eigenvalue for A{t}) and it varies differentiably. The
lemma below shows that thereris a differentiable curve of
matrices C(ﬁ) such that ¢{(0) = I and

c(t)a(s)e(t)™! = B(Re A (%), Im A(+)). Thus a(t) =

= F{Re A (%), Im A(t), Cc(t))}. Since T is a union of
manifolds this shows F is onto a neighborhood of B in

T. This neighborhood has codimension two. We are done

except the lemma.
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LEMMA 3.4 - Let A{t) have an eigenvalue A(%t) of

meltiplicity exactly two, with |l(t)[ £ 1,
with Im A(t) # O, and with the root space not equal to
the eigenspace. Then there exists C(t) such that

c¢(0) = I and c(t)A(t)c(t)'l = B(Re A {(t), Im A (t)).

REMARK - What this ammounts to showing is that the change
of coordinates to Jordan form can be choosen

differentiably when the multiplicity remains constant.

i -1
Proof: Let P, = zi- (6T - a(t)) ac .

If ¥ dis a small closed curve that surrounds Jjust this

one eigenvalue, -X(t), then P is a projection onto the

t
root space of A(t) for A(t). See [R5]. Take v = uj-ﬁh
v(t) = P, v, and u(t) = (a(t)-A(+))v(t). Then u(0) =

= ul-iuz. By continuity u(t) £ 0 for small t. Direct
computation shows that u(t) is an eigenvector of A(t)
for A(t). Let ﬁl(t) = Re u(t), u,(t) = -Im u(t),
ﬁj(t) = Re‘v(t), and w,(t) = ~Im v(%). Then u;(0) = u,
is part of the symplectic basis we started with and the
uj(t) vary differentiably. We can 09mplete these vectors
to a symplectic basis uj(t) where the other vectors 1lie
in the root space of l(t)_l. Let C(t) be the change of

basis from the uj(t) to the u; basis. Then

c(t)a(t)o(+)™" = B(Re 2 (%), Im 2 (t)) and ¢(0) = I. Q.E.D.
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CaseIll.

Let B € T-T?* have a mixed eigenvalue of multi-
plicity two wﬁose eigenspace does not equal its root
sﬁace. For simplicity assume 2n=4. By Proposition 2.3

there exists a symplectic basis for which B equals

a =b ca -cb
b a chb ca
0O o a -b
0O o) b a

with ¢ = t1 and a,b £ 0. Define a curve B(t), through

B by B(t) equals

a(t) -b(t) cal(t) -cb ()

b{t) a{t) cv(t) ca(t)
0 ) a(t) “b(t)
0 0 b{t) a(t)

with a{t) = cos(d+t), b(t)} = sin(a+t), a(0) = a, and
b(0) = b, Define TF:R x sP(R“) + T by F(t,C) =

= ¢! B(t)C. F is analytic. An argument as in Case Il

shows F is onto a neighborhood of B din T,

DF(t,1}{(s,E) = B{t)E - EB(t) + s B'(t)}. A direct comput-
ation shows that its kernel is two dimensional and is

spanned by the matrices



where I is the 2x2 identity matirix and J

|—J.
w
b
g

2Xx2 standard skew symmetric matrix, Thus the image of

F has codimension one. A neighborhood of B in T has

codimension one.

Case ITI 2.

We

omit the proof in this case. The proof should

be divided into the cases when )\ = 1 or when it doces

not.

LEMMA 3.5

there are
number of

number of

2
B, € Sp(R

Q.E.D.

prove Theorem 3.3 we_first give a lemma.

- Let A€ G be such that A(0) € T. Then in,

every neighborhood of A(0) in Sp(Rzn)
matrices B, € Sp(R®®) - T with the same
eigenvalues of absolute value one and the same
real eigenvalues and there are matrices

n) - T with either fewer eigenvalues of

absolute value one or fewer real eigenvalues,
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§4 - BASIC NONLINEAR THEORY

The equations for the flow of a Hamiltonian vector
field are just generalizations to manifolds of Hamilton's
equations of motion inm mechanics. To put these eqguations
on a manifold we start with an even dimensional manifold,

2n

M™, and a closed two form w, i.e. the exterior deriva-

tive of ®w is zero, dw = 0. w is called nondegenerate

if for each point p € M the map 5P:TPM -+ T;M is an

isomorphism from the tangent space at p to the cotangent

space at p, Ep(v) =i = w(v,+). A symplectic manifold
is a pair (Mzn,w) where ® 1is a closed nondegenerate
two form on M. Local coordinates on M, xl,...,xzn,

n
such that w = Zj=l

dxj A dxj+n are called symplectic
coordinates. We prove below in Theorem 5.1, that there
exist symplectic coordinates in a neighbérhood of every
point in M. This is the nonlinear analogue of Lemma 1.1.

Given a Cr+l real valued function on M,

H ¢ Cr+l

(M,R), its exterior derivative is a C° section
of the cotangent bundle, dH ¢ I'"(T*M). & induces an
isomorphism between I'"(TM) = ¥(M) and ro(1T*n),

Associated to dH is a wvector field XH. XH is called
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a Hamiltonian vector field. The set of all such Hamilton-

ian vector fields is denoted IE(M). Let us see what this

looks like in symplectic coordinates. If H(xl,...,xzn)
is a real valued function then dH = S5 dxl toook Eﬁéﬁdém
axl 3
3H 3 3H 3 3H >
and = — —= t.,at - res =
xH 3 n+l axl ax2n axn axl axn+l
3 d
m_gEﬁ 7 If xl(t),...,xzn(t) is a trajectory of
x x
b axl _ ?m dx"  3H ax™1  am
Xy FEE T mel'ttr qp T L Zn' dap St ogaesss
33X ax dx
2n dH

= = —— . These are just Hamilton's equations of

motion.

A symplectic diffeomorphism is a diffeomorphism, f,

on a symplectic manifold, (M,w), stuch that f preserves
W, i.e. f* = or ®(u,v) = w(Df(m)u, Df(m)v) for all

me M and u,v € TmM.

EXAMPLE 4,1 - The positions of n-particles in R- is
described by (xl,...,x3n) € R® yhere
. . - +
(x33+l, x3J+2, x33+3) describes the position of the J h

particle., Let their velocities be (vl,...,VBn) and their
masses ml""'mjn where m3j+l = m3j+2 = m33+3. Let

pJ = mjvJ be the linear momentum. Then Newton's equatios
are

J : J
dx? _ pd/m ang  gpY _ Fj(xl,...,x3n)
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where (Fl,...,F is the totél force acting on the

3n)
particles. If the forces are assumed to be conservative

we get a potential energy V(xl,...,xBn) such that

F. = = Ejar « The kenetic energy of the system is
J 3x9
1 3n jve
K(P sreesP” ) = by (p ) /21’1‘13.. Let H(x,p) = V(x) + K(P)'
N
The equations of motions can be given by

J b
%%—:E—H—-r and %:-B—Hr.
3ap? 3x?

If we let o =2 dxJ A dpJ then the Hamiltonian vector
field XH just gives the above equations of motion for
the particles.

Let rY = (x3J+l, x33+2, x33+3). Then for most

laws of attraction V(rl,...,rn) = %@ when »J = r¥
for j # k. Therefo?e V is not well defined on all of
RO, Let W= {(zl, .., 2 )eR?™ : 23 £ 55 for § £ K).
Let M = T*Wf= W X RBn. Let w be as above, Then (M,w)
is a symplectic manifold and H:M + R is ; real valued
function. XH then describes the motion. It is not clearxr
from.this presentation why the momentum should be consiw-

dered a covector while velocity is a vector. However we

have the following theorem.

THEOREM 4.2 - Let W be a manifold and M = T*W its

cotangent bundle. Then there exists a
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canonical two form w on M such that (T*W,w) is a
symplectic manifold. In fact @ = -d60 where & is a

one form,

Proof: We have the following diagram

T(T*W)
AN
THW TW
W

M T(T*W) + T*¥W is the natural projection from the
tangent space. m*:T*¥W w W 4is the natural projection and
To*:T(T*W) » TW 4is its derivatide, Fixing x € W, TXW
is a linear space. There is a natural projection from its
tangent space to itself p:T(TiW) + T*W. This extends to
a projection p:TT*W + T¥W. If (x,p,u,v) € TT*W then
m(x,p,u,v) = (x,p), p(x,p,u,v) = (x,v), and
™m*(x,p,u,v) = (x,u). Let { , ) T W X T*W 4+ R be the’
natural pairing.

Define a one form 6 and a two form ® on
M= T*W by 6(U) = (Tw*U,nU} and w(Ul,Uz) =

= (Tn*Ul,pUz) - (Tn*Ua,pUl). Then 6(x,p,u,v) = (u,p)x
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and w((x,p,ul,vl), (er:uzavz)) = <ulaV2> - <u23Vl)-
W is obviously nondegenerate and alternating.

Let us look at W in local coordinates. Take

coordinates xlf...,xn on W.héz(x) € wa' These coordi-
x
nates induce cocrdinates v-,...,vn on the fibers of TW
by vJ(—iv) =&,., i.e. is one if and only if i = j.
axl j

These coordinates on TW induce coordinates on T*W,
xl,...,xn, pl,...,pn, such that for Py c T; W and

Pj(Px) Vj(vx). In these

n
v, € T_W, va,px) = Zj:l
n

coordinates 8 = Zj 1 plddxd and w = Z? 1 ax? A dp’.
= ) J:
W = -de6,
Q.E.D,

EXAMPLE 4.3 - We use the theorem to show how the first

example can be explained in a more invariant
fashion, This includes a discussion of the geodesic flow
for a metric on both the tangent bundle and on the

cotangent bundlie,

Let g be a Riemannian metric on a manifold W,
i.e. for each x ¢ W gx:TxW X TXW 2+ R dis a positive
definite symmetric bilinear map. Let X:TW -+ R be the
associated quadratic function, K(x,v) = %—gx(v,v). Let
Vi:W s R be a potential function. We extend V:TW 4+ R by
letting V(v) = V(mv) where mw:TW + W. Let L:TW -+ R

be given by L = K-V. L is called the Lagrangian,
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Taking the derivative of L along the fibers we get
DZL(x,v)u = DZK(x,v)u = gx(v,u) for ue¢ T%W. Therefore
DZL(x,v) is a linear map from TXW' to R or D2L(x,v)
is a covector in T;W. D2L(x,v) = gx(v,-) = é(v). Since

8, is nondegenerate 8y is'a linear isomorphism

between the fibers T W and T;W. In fact g 4is a

diffeomorphism from TW +to T*W. This diffeomorphism is

called the Legendre tfansformation. Let A:TW 4 R be
defined by A(x,v) = DgL(x,v)v = g(v)v = gx(v,v) =

= 2K(x,v) for w € wa. A is called the action. Let
E = A-L = K+V:TW 2 R, E is called the energy.

Since the canonical two form w is on T*W we
use D,L to transfer E to T*W. Let H:T*W 4+ R be
defined by H(x,p) = E(x,é;lp) = K(x,é;l P} o+ V(x).

Let XH be the associated Hamiltonian vector field on
T*W, \XH € EH(T*W). This is just the procedure we used in
Example 4.1 to define the motion of n particleslin R3}
K(x,é;l(p)) is a quadratic function on the fibers of T*W.
Thus H is the sum of an (arbitrary) quadratic function
Plus a potential,

We want té.show that in the present case, where
the Riemannian metric need not be independent of the base
point x € W, the motion still corresponds to the Euler

Lagrange equations for motion on W under the influence
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of the potential V.
Let (x(%),p(t)) be a trajectory of X, in T*W.
Take local coordinates on TW and T*W as in the above
n

1 1 1 il i
theorem, X seeesX 'y VoyesesV o, P yeresD e w = T daxJAdpd.

The path (x(t),p{t)) satisfies

i
dx _ aHu
ac - and

apl axi

Let Gx be the matrix representing By in these local
coordinates, i.e. gx(u,v) = ut G v where tangent vectors

are columns and ut is the transpose (a row). Then

- + . t -1
gx(v).= P =V Gx is a row, v = p Gx y and
i ip= AL _
= P (gx(v)) = P.e; = D2 L(x,v).ei —-g;z(x,v). H(x,p) =
1 -1 -1 & 1 -1 %
=5pG, G G TP + vix) = P G P+ vix).
-1 i dxi i
- sD) = P G; e, =v.e, = v . Thus og— =V the
first set of equations we want. EEE x,p) = éyi(x) +
-1 9x x
P R R S T N SN R
7P Gy 3x, °x P " ZP %% % P -
i ox
AG 3G
1 -1 t ok -1 x =1 _t
“wZp GG ——p =—x(x,v) - p G G~ P =
2 x X 54t x x 5,1 X
o) 3
= EET X, V) - —éi(x,v) = - _EI(x,v). Combing this last
x Bx x

calculation with representation of pl above we get

i
d d 3L 3H L
a%— = dE ( (xsv)) - ;;{(X-P) = g;;(xav) or

E},-
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o (ééﬁ(x,V)) = é]—“;.L(x,v'). This is the second
v dx

set of equations we want. Thus é—l(x(t),p(t)) satisfy
the Euler Lagrange equations of ﬁotion under the influernce
of a potential V, In pa:ticular if V = 0 +then the
curves x(t) are geodesics on W for the metric Eye

We have constructed the "geodesic flow" on T*w,

Instead of transfering E %o T*W, we could have
pulled back the two form to TW, ¢ = F'w. Let X, be
the Hamiltonian vector field for E using the two form
¢. The reader can check that (x(t),y(t)) is a
trajectory for X, iff g(x(t),v(t)) is a trajectory
for XH. We could have used this procedure to constgﬁct
the geodesic flow on 7TW. See [L2, p. 109],

For a more general and complete discussion of the
above procedures see [Al].

’ \ Q.E.D,
REMARK -.A more invariant derivation of Lagrange equations
from Hamiltonis equations is as follows:

Let p = D, L(x,v). Then H(x,p) = H(x,D2 L(x,v)) =
= A(x,v) - L(x,v) = D, L(x,v).v - L(x,v). Taking the
derivative with respect to v we get

D, H(x,p) D,, Lix,v) = D,, L(x,v).v + D, L(x,v) -

- Dz‘L(x,v) = D,, L{x,v).v. Thus D, H(x,p)D22 L{x,v) =
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=D,, Lix,v).v. v ¢ T W and D H(x,p) € T*#* W. Since

22 2
D22 L(x,v) is invertible the usual identification shows
dx .
v o= D2 H(x,p). s D2 H(x,p) = v. Next taking the

derivative of the same equation above with respect to x

holding v fixed we get D, H(x,p) + D, H(x,p)Dzl L{x,v)=

D2l L{x,v).v - Dl L(x,v). As above D2 H(X’P)D2l L(x,v):

D21 L(x,v).v s0 DlH(x,p) = nDl L(x,v). Then

]

Ll

EE(DZ L{x,v)) = e -Dl H(x,p) = D1 L(x,v).
Q.E.D.
Next we prove that energy and the two form are

preserved by the flow,

’

THEOREM 4.k - Let X, € EH(M) have a flow w(t,m) =

= mt(m). Then H m(t,n) = H{m) and
¢§ w = w. The fact that m: W =w is equivalent to the
fact that D, p(t,m):T M+ T M is a symplectic transfor-

mation, i.e. Dpreserves .

Proof: Fix m € M and let k(t) = Hoo(t,m).

kt(t) = DH(P(t,m) ). X (9 (t,m)) = w(x,(e(t,m))},
X (e(t,m})) = 0 since w is alternating. Therefore
k(t) = x(0).

To prove wg w = we first look at the Lie

derivative. Let X = XH. wa = i, dw + d in =0 4+ d2H =

X

= 0. See [Al] for the formula for the Lie derivative.
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Then
TEEW @I e Lot ] (m) = (F Lw)(m) = o
ds'\"s s=t t ds s _ = NPy Ly -
= X s5=0
9, = id so cpj)"w = w. Therefore cpjc‘w =w for all t.

I+ is instructive to write out the second proof in
symplectic coordinates. Writing X = XH as a column

vector and its parials in the various columns we get

2 2
DX = (é EO where A = (_QTE_T"_'), B = ( g -—) ,
> xdyttn 3xd ¥R 3 ien
2 : 2

3
¢c = (__%), and D' = (-_E{TIHL—_{) . A direct

3xYd 3x axY ax
computation show that since D' = -At and B and ¢

are symmetric, it follows that (DX)tJ + J(DX) = 0, or

w(DX's') + W(+,DX+) = 0. Let g(t)(u,v) = (Cp:UJ)(m)(u,V‘) =

il

@ (@ (m)) (D 9 (m)u,D @ (m)v). &' (t)(u,v) =
w (e, (m) (5 D2y (m)u, Do, (m)v)

w(mt(m))(D @t(m)U, %g D @t(m)v) since w is constant

+

in these local coordinates. g!'(t)(u,v) =
= w(p,(m)) (DX-Dp,u, Do, v) + (g (m)) (Do, u,DX Dy, v) = 0
by above,
Q.E.D,
Given a closed orbit ¥ for a Hamiltonian vector
field XH,‘We want to §how there is a one parameter
family of closed orbité ﬁearby under very general -

conditions. Take a transversal to Y (surface of section)
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Y. ¥ is a 2n-1 dimensional local submanifold. Locally
if xl,...,xgn are coordinates with XH =-§E then let

L = {(xl,...,xzn):xl = 0}. By following the flow of X,
we define a local diffeomoerphism from %L to I calléd
the Poincaré map. Let ©{t,x) be the flow of X; at
time t. Using the implicit function theorem there is a
t(x) such that o(t{x),x) € T where t(x} is the period.
o(x) = wl(t(x),x). 0:T, + X where I, is a neighborhood
in . Thus 6 is as differentiable as Xg. Locally on

L there exists a vector field Y such that w(XH,Y) =

Il

1. Y is like 2= . Define m:iTE » TC by mv, = v_ -~
aH x X

Y(x)w(XH@d,vx). 7T is a projection onto vectors tangent

to the energy surface,

THEOREM 4.5 (One parameter closed orbit theorem).
lL.et ¥ he a closed orbit, G:Zl + & and

T:TY » TY as above, and m =X N v. Let Lt = ZHH-l

H(m).
If mebo{m) - m:T T 4 T T* is a surjection then
Y lies on a one parameter family of closed orbiis that

are fixed points of @.

Proof: Take local cocrdinates xl,...,xzn such that

Xy =-—31 and x*' = H. dHtm) # O since XH(m)#O.
ox
Let ¥ = {x :xl(x) = 0}. Let p:Z = R**"2  pe defined by

p(x) = (xz(x),...,xn(x),xn+2(x),...,xgn(x)).
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Let w:Zl 4 R*%-2

be defined by ¥ (x) = pe o(x)-p(x).
Dy'(m) is a surjection by fhe-assumption. By the implicit
function theorem there is a ome dimensional set in 21
that are taken to zero by U. For these points p °9(x)=
= p(x). By Theorem 4.4 He(x) = H(x) so 6(x) = x.
Q.E.D.
if ﬁaDe(m)-nszE + T I¥ is a surjection the

closed orbit is called O~elementary. The reader can check

if 1 4is not an eigenvalue of D&(m):T 5! 4 T, 5! then
the orbit is O-elementary, i.,e., if De(m)ITmZ l-elementary

then the orbit is O-elementary.

PROPOSITION 4.6 - With the assumptions of Theorem h.5,
the one dimensional set of fixed points
of © 1is either parameterized locally by H or by the

period t{x) of the closed orbit.

Proof: Assume the one dimensional set is not parameterized
by H, i.e. the one dimensional set is tangent to

the energy surface H_l(

eo). Thus there is a wector

u, € T, Z' such that DO(m)u2 = u,, or Dzm(t(m),m)u2 =

= 1, + aXH(m). The reader can check that Dt(m).u2 = wa.
Let w) =X; and wu_, be such that w(ul,un+l) =1

and w(uz,un+l) = 0. Complete these wectors to a symplectic

basis of TmM as in Lemma 1.1, ul,...,uzn.
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\
Since ng(t(m),m) ' preserves the two form ® a calcul-

. : 2n j 2+n _, l+n
ation shows that D,p(t(m),m) % bJuj + (B eabT u
a . .
+ other terms, Thus (ﬂoDO(m)—ﬁ)Ejzz bJuj = -abn+lun+2 +

+ other terms. For mo D8(m)-nm +to be a surjection it is

_necessary that -a #£ O.
Q.E.D.

The idea of this proposition is used to continue
the one parameter family of closed orbits on computers.
It energy does not parameterize the orbits then the

computer switches and uses the period.

PROPOSITION 4,7 - Let ¥ Dbe a closed orbit, G:El + Z Dbe
the Poincard map, m =L 1 Y, e = H(m),
and It = El n H-l(e). Then ©6' = G|Z' is a symplectic

diffeomorphism, i.e. preserves le'.

Proof: Look at Dzm(t(m),m). Then v,,v, € T T'c T M
Dzm(t(m),m)vi = a; XH(m) + Avi where A = De'(m),
i.e, its image in tangent to .H_l(e). Then w(v,,v,) =
= wla Xy + Avy, a X, + Av,) = w(Avl,sz).
Q.E.D.
EXAMPLE 4.8 -~ We now give a local example near an elliptic
fixed point. We will show later all flows

near elliptic fixed points look like this formally, i.e.

their C° jefs look like this example at their fixed
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points,
1o 3y2 j+ny2 . .
Let pj = 5((x3) + (x93, Let i = (ll""’lnk

n .

¢ (Zf)', i.e. an n-tuple of integers =20. Let
i i

1

pl =P, ...pnn be the product. Let H be given by a
power series in the Py H(xl,...,xzn) = ¥ a(i)pi .
. ie(z+)™

M _ JRWM o 3 _  jen3H
3x9d Bpj 3xoth apj

= 13 3 . 213 3 (1 3H 2 _ _
T 30 axt 77T 90y ax™ 0Py ax"*1 o

n 9H 3 . .
-x g—gﬁ . Thus XH(O) = 0 and zero is a fixed

n d¥x

peint. Looking at the wvector Xy @s a column and taking

partials we get that DX, (0) = (?A g) where
a 0

1
A=(0"a)

and a, = a(0,...,1,...,0) = EE—(O). Thus
n 4 apj

the eigenvalues of DXH(O) are %i ay J= 1,.0.e,n,

Zero is an elliptic fixed point.

P gdaxd e @It cgdm@H__ 3y _
dt  ~ dt dt 3 5 op '

Thus the flow Preserves the funciions pj. 4 neighborhood
of the origin is filled with invariant tori so the origin

is Liapounov stable.

JxIR e would get a

If. we replace pj by x
hyperbolic fixed point with eigenvalues iaj .

Q.E.D.
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PROPOSITION 4.9 (Generating functions): Take local sym-
plectic coordinates xl,...,xn,yl,...,y .

Let G be a real values function of 2n wvariables,

' G(xl,t..,xn

,nl,...,nn) with G(0) = 0, DG(0) = 0, and

DgG(O) = 0. Let T = (fl,...,f2n) be the map defined by
gt = fi(x,y) and ql = fi+n(x,y) where
yi = ni + Egi(x!ﬂ) and §i = xi + 99-i(x,-n) .
3x an

Then f 1is a local symplectic diffeomorphism,

Proof: Since G starts with terms.of order three it ié

possible to solve the equations yl = nl + EEE
dx
and £1 = .x" 4+ 8& to give &% and n* as functioms of

omn
x and y. Then Df{0) = id so f dis a local
diffeomorphism.
. i 32 . 2 .
ay™ = dn* o+ E( & axd 4 _Eqﬁii dan?) ,
Jaxdaxt anvex
. . 2 . 2 .
d;l = dxl + E(M_‘- dx‘] + L."G-:—J.':'d'ﬂ‘]) ]
J axaan 3ndan
i i 3 G i J 32 i j
dx'ady” = ax™* Adn + Z(—_-——— dx'Adxd &+ 2 € _ ax*aand) ,
J Jy 1
J axdaxt 3nvex
. . . i . . 2 . .
dglAdnl = dx*adnt + E(—QEEiT deAdnl +-—§fg—1 dnJAdnl) s
Jaxdaxt 3anJan

Summing on i +the reader can check that

n . . n

2 C]..Xll d 1 = d i i .
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Next we show Example 4.8 is more general than it
appears. We show that there exist symplectic coordinates
such that the derivatives at the origin look like Example
4.8,

THEOREM 4.10 (Birkhoff normal form) - Let X bea
Hamiltonian vector field with an elliptic
fixed point with the eigenvalues of DX (0) additively

independent over the integers. Then there exist C°

symplectic coordinates about the fixed point xl,...,xn,
yl,...,yn such that H(x,y) = H(0) + % a{i)p™® +0f=)
i i ie(z+)n

j 1 n jy 2 H . .
where p* = Preee Ppn s Py = (x9)° + (33)2, a(i) is a
real coefficient, and 0(~») has all its derivatives at

the origin equal to zero. Note the series may mnot converge

but its sum with O(«) gives a €~ function.

Proof: For a more detailed proof than we give see [MG].
Also a more general theorem is given .there. The
theorem is only about the derivatives of H at the ori-

gin, so it is sufficient to work with formal power series,

1.0, series that may diverge. These can always be extend-

ed to give functions with the same derivatives at
the origin. We represent H by H2 +ooot Hn + «es where
Hn is a homogeneous polynomial of degree n. »

Take symplectic coordinates xl,...,xn,yl,:..,yn
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i
such that Hz(x,y) E{kl P Feeet Xn pn) where

0. = x> + y2 and ixj are the eigenvalues of DXH(O).

J J J
These coordinates exist since the: eigenvalues are distinct

We assume coordinates have been found so that }12+...+Hn_l
are in the correct form. We take a generating function

Gn which is a homogeneous polynomial of degree n. Define
aG

a change of coordinates by Y= +-§EE(X’ﬂ),

d
G
gj = Xj +-§ﬁ§(x,n). We want to show we can pick Gn S0
H, +...+ H are in the desired form in the 5,n
o 3G 3
o) ] z — -,___n © = __}l
coordinates. X = Ej anj(g,n) toeess Vg nj+agj(§,n)+
... where the dots represent higher order terms.
-3¢
1 n 2 n 2
= = A, . - P F SE e
Then Hz(x,y) % 5 J((gJ aﬂj *+e ) " (nJ+ ng + )
- ) 3 __
= Hz(g,n) + Z kj(nj-ﬁ—j - §j anj )Gn + ey

H(x,y) = H2(§,n) taead Hn(g,n) + kj(nj %ga-gj %ﬁngn+.u

Thus we can elliminate all the terms of order n except

a <)
the k 1 of th t D = . e
e kernel o e operator b KJ(ﬂJ agj EJ an )

Looking in the associated complex coordinates (. =& . +

J
. = . . o =
+ i M and Qj = Ej - i nj’ D = EAj(gj Szj - Cj 3¢ }.
J
k

. . k.p kl n Pn
Monic polynomials ( (% = Ql ...Qn C

Py
...gn are eigen-

i

vectors ani they are in the kernel exactly when kj = Pj

. . k= k=
for all j, DC*TP = ¢CP Z(kj-pj)kj. Thus we can
elliminate all terms except for polynomials in the
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Q.E.D.
The corresponding theorem for symplectic diffeo-

morphisms is also true.

THEOREM 4.11 (Birkhoff) - Let g be a ¢ symplectic
diffeomorphism with an elementaxry elliptic

fixed point, i.e. all the eigenvalues are of absolute

value one and are multiplicatively independent over the

-

integers. Then there exist Cco symplectic coordinates

xl, v ,X2n such that

3 cos L - x9™ gin L + O(=)

g;(x) = x

gj+n(x) = xJ sin L + xd*8 cos L + 0(w)

where L =3 a(3) o7+ 0(e), = (3y....,3.) € (z9)7,
p'j = pil...pin, py= (xj)z + (xj+n)2, and all the O0f=)
have all their derivatives at the crigin equal to zero.
The best proof is indicated in [810]. The formal
diffeomorphism associated to & 1is embedded in a formal
vector field as the time ome map. As in [M6], the formal
vector field must be a formal Hamiltonian vector field.
Take coordimates as in Theorem 4.10 that normalized the
vector field. These coordinates normalize the time one

map. This proof is probably what Birkhoff meant in [B2]

but it is not cleé:. A direct proof of Theorem 4,11 is
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contained in [59] and [S1].

Birkhoff worked with analytic diffeomorphisms and
analytic change of coordinates. He hoped the fprmal power
series would actually converge. Siegal proved that
generically tﬁe change of coordinates W;uld not comnverge,
See [M6] and [M4]. We can see a differentiable analogue
from Theorem 6.1 below. That theorem proves generically
there are only a countable number of periodic points for
a symplectic #liffeomorphism. If a differentiable change
of coordinates existed the elliminated that O(e=) terms
then all points would lie on invariant tori. Some of these
tori would be completely filled with periodic points so
there would be uncountably many periodic points., Thus the
change of coordinates c¢an not converge for a generic set.

Kolmorgorov proved that if the matrix aij =-§%i§a—

i’"g
has nonzero determinant then the tori near the origin

with "highly irrational rotations" exist and form a set
of positive measure, Thus the tori with periodic points
generically @o not exist but those with irrational
rotations do exist. For a summary of this work sme [S117,

(a3], [a4], [as], [M7], [M9].
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§5 - DARBOUX'S THEOREM AND RELATED RESULTS

The proofs given here arise from an idea Moser in
[(M8]. They were adapted to Darboux's theorem by
A. Weinstein in [Wl1l] and generalized to prove Morse's

lemma in [P1].

THEOREM 3.1 (Darboux) - Let (M2n,w) be a symplectic
manifold and p ¢ M. Then there exist
symplectic coordinates on M in a neighborhood U of P,
i.e. there exist g = (xl,...,xgn)U c M R®® such that
g w = Zj:l dxj A dxj+n .
Proof: By-Lemma l.1 we can pick a basis of wvectors in
T M such that w({p) has J as its matrix in

this one fiber. By exponentiating down there vectors we

get coordinates | = (yl,...,yzn) in a neighborhood of

v, Y(p) = O. (¢*w)(y) =z a.k(y)de A dxk and
jk J
(ajk(o)) = J. Let Q; be the two form given by
En .j i j“!‘ﬂ . - .
j=1 dyY A dy defined ;n a neighborhood of O.

Let Q_ = 4y,0, A& = G, -Q, , and ﬂt(y) = Qo(y) +

+ £(2,(y) =, (v)). 0,(0) =0_(0) for all % so there



-52.

is a neighborhood U! of the origin such that —Qt(y) is
nondegenerate for ¥y ¢ U and 0= ¢ < l.. Let U =

= m_l(U'). dA = dog = 0 for all t. By Poincaré Lemma
there exists a one form g defined in U? such that

A = da. Let Xt(Y) be the time dependent vector field

defimed by X, (v) = - 87" a(y). d.e. 0, (x,(3),) =-aly).

aly) ¢ T} R*™, Let ¢,(y) be the flow of the time
dependent vector field X.» d.e. mo(y) =y and

d . e

ds ws(y)|s=t = Xt(@t(y)) for all +t. Py = identity so

* . d_ * _ x d * d *
?o Qo = Q4e ds(ws Qs)(Y)Is=t' ®t ds Qs‘s=t+(9tagqgﬂtg=t
= m§ Ao+ mz(-a) = 0. Thus o¥ 0, =0 .
Let g =@g0 ¥ = (xl,...,xgn). Then  g* Q; = 0.

Q.E.D,

COROLLARY 5.2 - Let VI*®¥ o o ¢ anda w a closed

two form such that it has constant rank
2k, i.e. the dimension of the image of W(p):TpV - T;V
is indgpendent of p and is equal to 2k, Let p € V.

Then there exist coordinates on M in a neighborhood U

of p, & = (x7,...,x°5*Y)  guch that
x J J+k
g0 = Ej:l dxY A dx .
Proof: We ;rove the corollary by induction on q. If

q = 0 +this result is just Theorem 5.1. Assume the

rcorollary is true for ¢-1. There exists a 2k+g-1 dimen-—
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sional subspace of T,V on which ww(p) has rank 2k.
Let V! be a 2k+q-1 dimensional submanifold of V
tangent to this subspace. Then in a neighborhood of B,
w|V' has rank 2k. By the induction hypothesis there

exist coordinates h = (yl,...,y2k+q-l) on ViV such

X . X
that hw|ve = = ayd o ayd™®, po¢

ker(w) =-[u € TV: @{u) = 0 ¢ T*V}., In a neighbofhood of
P there exists a section of ker{w), Y ¢ T(ker(w)) c
c ¥(V) = T(TV), such that Y(m) ¢ T Vi for meg vr,

Let w(t,m) be the flow of Y. There exists a neighbor-
hood W of V' in VvV and & differentiable function
siW + R such that ©(s(m),m) ¢ V'. Let

xj(m) = yjc p(s(m),m) j = 1,.¢4,2k+g-1 and

x2k+q(m) = -s(m). Let g = (xl,..u,x2k+q). Since Yeker(w)
’ k . .
as forms on V (g*w)(x) = Ej=1 dxd A dxdtk for

x € g(V*). The Lie derivative of u with respect to Y

is zero, LYw = iY dw + diYw = 0. In the local coordinates

Ek dxJ A de+k is a constant form so its Lie derivative
_—
? . k J J+k
with respect to 8xY 1is zero. Thus Ex = I dx¥ aAdx

J=1
along the flow of Y and hence in a neighborhood of v,

Q.E.D,

COROLLARY 5.3 - Let (M°%

,m) be a symplectic manifold.
Lot oK+ 4. o submanifold such that

w|V has constant rank 2k. Let p ¢ V. Then there exist
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symplectic coordinates in a neighborhood U of p in M,

1 2n), such that

g = (x7500e,x

VnnU-=[m: xJ(m) =0 J= ktqtl,...,n, n+k+l,...,20},

Proof: B¥ Corollary 5.2 there exist coordinates on a

contractible neighborhoed W 1in V,

1 k+ n+l n+k *
Bz (Y yeee,y 3, v arees¥ ), such that h,(w|V) =
= E?#l dxd A ax?™?. Let Y, be vector fields on W
defined by h,Y. =-—1* .

J BYJ

Applying the construction of Lemma 1.2 to cross sections
of the tangent bundle of M on W, we get there exists
Yj € r(TwM) j = k+q+l,...,n,n+ktq+l,...,2n such that
for each m € W the set {Yj(m):j=l,...,2n} forms a
symplectic basis of TmM.

By the proof of the existence of tubular naigh-

borhoods [L2, p.75] there exist ¢” coordinates on a

neipghborhood U in M, yl,...,yzn that are extensions

of the coordinates on W and such that Yj(m) =jlu3(m)
N 2 372

j=lyyee42n for mé€E W. Let h = (v ,eeesy n). Now

apply the proof of Theorem 5.1 to find symplection coor-

dinates, g = ®;°h = (xl,...,xzn). Since (hw)(y) =

_ v J
= Ej:l dy+- A dy

JH - for v € h(W) it follows that
¢,(y) =y for y ¢ hW so g(W) has the form stated in

the corollary. Q.E.D,
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This last corollary can be used to find local
symplectic coordinates that give stable, center-stable,
or center-manifolds as flat Planes in a neighborhood of

a rixed point.

THEOREM 5.4 (Symplectic flow box coordinates) = Let
X, € EH(M) and let p € M be such that

XH(p) £ O. Then there exist symplectic coordinate in a -

neighborhood of p, g = (xl,...,xzn), such that
n+1 . )
x = H and g*XH =7 -
ox
2n-1
Proof: Take a transversal X to XH at p.

XH(p) £°0 dimplies de # 0 so the energy surface
is regular in a neighborhood of P, ® must bave rank
2n-2 on H_l(e) since it was nondegenerate on M. There-
fare dim(ker(w]H_l(e))) = 1. E(XH) = dH so

Xy € ker(w|H-l(e)). Since Xy is transverse to I it

follows that w|Z? is nondegenerate where £! = ¥ n H-l(%L
H(m) = e The reader can check +that is possible to
take yn+l = H 4in the proof of Corollary 5.2 to get

coordinates h = (yz,...,yzn) on I such that

he(w|Z) = £7_ dyd A ayd*® | _

Take the flow of XH to give coordinates in a

neighborhood of I i.e. these exists s(m) such that

®(s(m),m) ¢ T.
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Let xj(m) = yjo ¢(s{m),m) for j# 1 and x* = -s{m).

2n}

Let g = (xls---,x . g*XH =-E~1 by construction.
ax

For m¢ g(Z) guo(m) = E§=i dxd A ax?™  since

El
g#»(m)Qéwi,g—ﬁ) —dH +~— dis 1 or O as J = n+l, j #n+l
ax™ axY axy .

But ggn and I5_; axd A axJ*™ nave Lie derivative with
respect to g*XH equal to zero. Therefore they are eqgual
in a meighborhood of I.

) Q.E.D.
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§6 - GENERAL DENSITY THEOREM FOR HAMILTONTAN SYSTEMS

In this section we state the general density theo-
rem for Hamiltonian systems. This theorem is analogous to
the Kupka-Smale Theorem for ordinary vector fields. Tts
broof is given in §8 after the transversality theorems
necéssary for its proof are given in §7. Also in this 4
section we give other theorems related to generic proper-—
ties of Hamiltonian systems. See [R1] and [R2].

By Proposition 4.7, the Poingard map near a closed
orbit is a map from an odd dimensional manifold, Ezn_l,
to itself such that when it is rdstricted to an energy
surface; Ezn-2, it is a local symplectic diffeomorphism,
Thus the essential details of the behavior near a closed

"orbit is contained in a study of maps f£:IXM 4 IXM with
I=1[-1,1] a closed interval, M a symplectic manifold,

f(t,m) = (t,ft(m)), and with f, a symplectic diffeo-

t

morphism for each +t., Such maps are called one parameter

families of symplectic diffeomorphisms. The set of all

such maps is denoted by Sym' (IXM). The results we state

about Sym®(IxM) have analogous results in IE(M).
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For the next statements f(t,m) = (t,f (m)) is
always a family of symplectic diffeomorphisms. A point

(+,m)} has prime period p if £P(t,m) = (t,m) but

e¥(t,m) £ (t,m) for O < k < p. A point (t,m) with
prime period p is called O-elementary if p{me£P} (t,m) -
- Dﬂ(t,m):T(t’m)(IxM) -+ TmM is onto where T:IXM 4+ M is
the natural projection. (Note for Hamiltonian wvector
fields there is no natural projection on the energy
surface). If a periodic point is O-elementary then by
Theorem 4.5 there exists a one dimensioﬁal manifeld in
IxM, {(t(s),m(s))}, such that all the points have prime
period p. Let E = {(g,A):q € M and A:TqM - TqM is a
linear symplectic transformation}. Let W o= {(qg,A)EB: A
is nét N-elementary}. Let g:R + E be defined by

g(s) = (m(s), th(s)p(m(s))). f is said to have property
H2-N at a point (t,m) of prime period p if

i) (t,m) is a O-elementary periodic point and

ii) the map g:R + E defined above crosses WN trans«
versally. In other words (t,m) does not have to be
N-elementary but all but a finite number of nearby period-
ic peoints are N-elementary. Here we are calling a periodic

point N-elementary for N > 0 if its derivative along

the energy surface i1s Nwelementary. Note that if a period-

ic point is l~elementary (1 is not an eigenvalue of thp)
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then it is O-elementary.

THEOREM 6.1 - Let 2 s r< =, 8%(p,N) = {f ¢ Sym"™ (IxM):
f has property H2-N at all points of prime
period s?}, and 8% = () 8% (p,N). Then 8% (p,N) and aF
are residual subsets ofp’gymr(IxM).‘A residual subset is
dense.
If a periodic point is not Z-elementary then there
is a multiple eigenvalue of fo(m). The analysis of §3
shows what is happening to fo(m) as it moves along the
family of periodic Points near a non~2-elementary periodic
point. If a periodic point is not l-elementary then 1 is
an eigenvalue of ng(m). The next proposition says what

is happening near a non-l-elementdry periodic point.

PROPOSITION 6.2 - Let f ¢ ﬂz(p,l) have ‘a point (t,m)
of period p +that is not l-elementary
but is O-elementary. Let {(t(s),m(s))} be the set of
points nearby of‘pe;iod P where t(0) = t. Then t(s)
has a quadratic maximum or minimum at 0, i e. t'(0) =0
and t"(0) £ 0. Also for every k 2 p there is a neigh-
borhood U(k) € IXM such that tﬁé only points in’ U(k)

of period <k are {(t(s),m(s))} n U(x).

Proof': For the proof of the first part see [R2, §IV B].

The idea is as follows. Assume ¢"(0) = 0. Lot v(s)
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be a vector tangent to the family of periodic points.

Let u(s) = wev(s) € Tm(s)M' Then u(0) = v(0) and
th(s)P(m(s))-u(s) - u(s) =almost equals zero. Using this
fact we prove 1 is close enough to being an eigenvalue
that th(S)P(m(s)) can not be transverse to matrices
that are.not l-elementary.

For the second part it follows from general argu-
ments that if k is not a multiple of p then there
exists such a U(k). Now assume k = gp.

Let A = DfP(t,m) and B = Dfi(m). Then WoAs® is onto.
Look at meA? - 5. Tts jimage contains the image of

(Bq-l tueaot I)(mA-TT). Bqﬂl ++2e+ I dis an isomorphism
because otherwise B would have an eigenvalue that was a
Jh root of unity but not equal to 1. ToA~T is onto.

Thus the composition is onto.

o

Q.E.D.
When dim M = 2, K. Meyer has a complete analysis
of the generic cases of branching of periodic peints at
non-N-elementary periodic points, dim M = 2. impliesrthat
non-Neelementary periodic points have eigenvalues that are
Nth roots of unit. Assume the non-N-elementary point has
period p. Then there exist two families of points of

period Np branching off at the point. One family has

hyperbolic periodic points and the other family has ellipt-
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ic periodic points. See [M}]. It would seem that his
results could be combined with Theorem 6.1 to give resuits
in higher dimensions. To do this the work in [T1] should
be used.

[R3] proves that generically all but a countable
number of stable manifolds are transverse in the energy
surfaces. We refer the reader to this paper for these
results.

Another generic property.is the density of periodic
points in the nonwandering set. Let f ¢ Sym{IxM).

m € IXM is nonwandering if for every neighborhood U of
m there exists an integer %k > 0 such that fk(U) n u#
B. Let 0,(f) = {m € IXM: m is nonwandering and the
trajectory of m is contained in a compact subset of IxM],
The second condition avoids the necessity of assuming M
is compact. Let Per(f) = {m €& IxM: m is a periodic

1

point of f}. Then the C" Closing Lemma of Pugh gives

the follewing result.

PROPOSITION 6.3 -~ There exists a residudl subset

- R & Syml(IXM) such that for f ¢ R

f

closure Per(f) = closure Qc(f).

\
For a proof of this result see [P5] and [R2].

"The result is unknowing in Sym® (IxM) for r 2= 2.
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£ is said to be structurally stable if thekre

exists a neighborhood U such that for all g € U there
exists & homeomorphiém h:IxM 4+ IXxM such that gh = hf.

r is said to be P-stable if there exists a neighborhood
U such that for g € U there exists a home omporphism
from the periodic points of f onto the periodic points
of g, h:Per(f) + Per(g), such that gh = hfIPer(f);
.Obviﬂusly if f 4is not P-stable then it is mnot strucﬁur&L

-

ly stable.

THEOREM 6.4 - Let £ ¢ Sym' (IxM) for 1< r s « have a
point (t,m) of periocd p with an eigen-
value of Dfﬁ(m) of absolute value one. Then f is not

P-stable.

Proofs Wergive the proof for r < =, Also see related
statements in [M6] din the analytic setfing.

Assume f is P-stable. Let N be a neighborhood of f

such that f is P-conjugate to everything in n.

Take g€ h n 8° such that g has a periodic point (t,m)

with eigenvalues hl""’lq;il""’iq of absolute valﬁe

one, Since g € ﬂm, g has only a countable number of

periodic points. Let P C TmM be the linear subspace

spanned by the root spaces of kl,...,lq. The dimension

of P is 2q. w|P is nondegenerate by Corollary 1.9,
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There exists a local center manifold ¢ tangent to P
and invariant by 8.« See {A1]. ¢ has dimension l2q.
wIC is nondegenerate in a neighborhood of m. By Corolla-
ry 5.3 there exist symplectic coordinates _yl,...,y2n
such that C = {x € M: y'(x) =0 j = S I L B
2n}. By Proposition 4.11 there exist dymplectic coordina-

tes xl,...,xzn with x

J = yj J = g+l,...,n,n+g+l,...,2n
and for s near %, gj(s,x) = hj(s,x) + 6(r) for
J=2,...,49, n+l,...,n+q where hj(s,') is a polynomial
in p, = (xk)2 + (xk+n)2 k=1,.0.,q9 and 6(r) is ¢°
and has its first r derivatives equal to zero at points
(s,0). By a perturbation of £ we can assume the
determinant of the coefficients of the quadratic terms in
h_ are nonzero. As in Example 4.9 ht(x) will have tori
near the origin filled with Periodic points.

Let hj(s,x) = gj(s,x) Tor the other j. All the deriva;
tives of h equal those of g at points (s,0) for
small s. Let p(s,x) be a bump function in a neighbor-
hood of (t,0) in the local coordinates. Assume p(s,x)=
= 1 din a smaller neighborhood of (%,0). Let pl(y) =

= p(x/2). Let h (s,x) = (1 - o (s:x))e(s,x) + p, (s,x)n(s)
By standard calculations hl + g in the ¥ topology.
Thus for small X, h, € n. But hl has whole tori fi;led

A
with periodic points in a neighborhood of (t,0). Thus there
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can not even exist a homeomorphism from Per(hk) to
Per(g) let alone one the conjugates the maps. Thus h)L
and g are not P-conjugate. Thus £ can mnot be P-con-

jugate to both hh and g. Contradiction.

Q.E.D.
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§7 - TRANSVERSALITY THEOREMS

et M and N ©be second countable Banach mani-
folds, N finite dimensional and Vc N a submanifold.

f:M a4 N is said to be transverse to V at x if either

f(x) ¢ v or f£(x) € V and Df(x)-TxM + Tf(x)v = Tf(x)N.
Thus the image of f crosses V 1in a way that locally
can not be destroyed by a small perturbation. F is said

to be transverse to V if it is transverse to V at all

bpoints x ¢ M. By the implicit function theorem if f is
transverse to V then f-l(V) is a submanifold of M
whose codimension equals the codimension of V in N.

Let A be a topological space and FrA 4 Ct(M,N) a
point set map. C'(M,N) ‘is not given a topology here.
The evaluation map ev(F):AXM 4+ N. is defined by

ev(F)(f,x) = (F£)(x). Let rlea o Cr-l(TM,TN) be defined

by (Plf)(x,v) = D(rlf)(x)v. F is called a ol pseudo-

representation if ev(Fl):AXTM + TN is continuous., Let A

be a Banach manifold F is called a €T representation if

ev(P):axM » N is cT.

A subspace R c A is called residudal if there exist
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a countable set of open dense subsets R,c A such that
f\Rn < R. By Baire category theorem if A is a metfric
n ;
space then a residual subset is dense. A topological

space A dis said to be a Baire space if all residual

subsets are dense.

THEOREM 7.1 - Let A be a topological space, M and N
finite dimensional second countable mani-
folds., Let V be a closed subset of N that is the
finite union of Cl submanifolds of N. Let K be a
compact subset of M, and F:A o Cl(M,N) be a C; pseudo-
representation. Then the subset R = {f € A: F(f) is

transverse to V at points in K} is open in A.

THEOREM 7.2 {Abraham) - Let A,M,N be second countable
Banach manifalds and M and N be finite

dimensional. Let T:A + CT(M,N) be a ¢ representation
and V a submanifold of N. Assume r z max{l, dim M -
- codim V+1}, énd the evaluation map of F is transverse
to V. Then the subset R = {f € A: F(f) 'is transverse to
V} is residual in A (hence dense).

The most important assumption is that the evaluaticm
map is transverse to V., A loose intefpretation of this
assumption is that if f£(x} € V then we can construct a

perturbation of f that is transverse to V at points
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near x. The theorem then globalizes this result to give
a perturbation that is transverse to V at all points.

The idea of the proof is that since the evaluation
map is transverse to V, W= ev(F)-l(V) is a submanifold
of AXM of finite codimension. Then look at the project-
ion TW:AXM 4 A restricted to W. Next it is shown Sards
theorem applies so a residual set of boints are regular
values of T:W -+ A, Finally, the regular values Ff can
be shown to exactly equals those f such that F(f) is
transverse to V.

For detailed proofs of both of the above theorems
see [AR].

Finally we need a statement about how transverse
intersections cﬁange under perturbation. The following

theorem is a simplified version of [A2, Thebrem 20,2].

THEOREM 7.3 = Let A be a topological space, M and N
finite dimensional second countable mani-

folds. Let V be a closed submanifold of N, X a compact

submanifold of M with boundary, F:A o+ Cl(M,N) a Cl

pseudorepresentation, and f € A such that

F(£):int(K) + N and F(£):3K + N are transverse to V.

Then the function gh+(F(g)_1V) N K is continuous at f.

Here we put the Hausdorff metric on the distance between

two compact sets
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d(4,B) = max{sup{d(a,B):acA}, sup{d(b,A).:bEB}} .
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§8 - PROOF OF THEOREM 6.1

Fix N. Define Fj:Symr(IxM) + Ct(IXM,MxM)} by
Fj(f)(t,m) = (m,fg(m)). Let W = {(m,m):m € M} c MxM.
Then Fj(f)(t,m) € W if and only if the point has period
j+ The reader canchakihathf) is transverse to W at
(tym) 4if and only if (t,m) is a O-elementary periodic
point, If Fj(f) is transverse to W then Fj(f)-l(w)c
C IXxM dis a submanifold of the samgAcodimension as W, 2n,
so it is one dimensional. This is just Proposition 4.7,

Define 'szsymr(IXM) + ¢t (IxM,E) by 6;(e)(t,m) =
= (Fj(g)(t,m), Dgi(m)). E issthe bundle |
{(m,p,A): m,p € M and AT M o TpM is a linear symplect-
ic transformation}. Let W' = {(m,m,A) € E: A is not
N-elementary}. W ois closed. By ~[aZ2, 30.#] wois
locally the union of submanifolds WNh h = 1,...,hN
since it is a semialgebraic set in each fiber. WN has
empty interior in each fiber so it has codimension at
least 1 in each fiber. W has codimension 2n. Combining

this two facts we get thdt each W has at least co-

dimension 2n+l. If Fj(f) is transverse to W and Gj(f)
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\

is transverse to the WNh then the map

mae Gj(f):Fj(f)_l(w) - Sp(Ran) is transverse to non-N-
elementary matrices, This fact is just condition (ii) of
the definition of H2-N.

A periodic point of period p that is O~elementary
but has an ith root of unit as an eigenvalue has 1 as
an eigenvalue of foi(m). Fpi(f) would not be transver-
se to W. The resultsof K. Mever [M3] whow that the points
of period pi probably do not form a manifold but bi-
furcate forming a branched manifold. The perturbations
defined below can not be used to make Fpi transverse
since they only apply to the prime period. Therefore we
need to modify the proof of the standamnri Kupka-Smale Theorem,

Let V be a compact submanifold wi%h boundary of
M (M is not assumed to be compact). Let
8T (p,N,V) = {f € Sym(IxM)tif me V is a point of prime
period k and -k < p then Fk(f) is transverse to W
at m and G _(f) is transverse to all the W™ at m.
Morevver if m is on the boundary of V +then Fy (m)[3v
is transverse to W}. We show below Qr(p,N,V) is
residual. By taking the intersection over a countable
number of such V whose union is all of IXM we get that

8%(p,N) 1is residual. Now we fix N and V and let

ﬂr(p,N,V) = R(P) .
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Let d Be a distance between points of IxXM
derived from a Riemannian metric. Also let d stand for
the induced minimum distance from a point to a closed set
and the Hausdorff distance between ,two compact sets,

d(4,B) = sup{d(a,B),d(b;A): a ¢ 4, b ¢ B} ;

For g ¢ Sym(IxM) and pe 2% 1let I'(g,p) = [mEV c IxM:
ﬁ is a point of period <p for g}. Let
¢{g,p,j) = {me Vv IxM: &(m,T(g,p)) z2 279}, For
g € Sym(IxM), je 2V, and using induction on p € gzt
define I'{g,p,j) = {m€ Vc IXM: m is a point of period
k for g with k< p and d(mT(g,k-1,5)) = 279},

| We claim the map g = I'(g,p) is continuous at
points of R(p)L Let f € R(p). Take e = 274, By
Theorem 7.3 there exists a neighborhood Pl‘ of f such
that for g ¢ P, sup{d(m,T'(g,p)):m € I(f,p, j+1)} 52'(j+1l
Thus sup{d(m,['(g,p)):m ¢ r(f,p)} < 273, By opmnness of
nonintersection of .Fj(g) C(£,p,J) N W = #, there efists
a neighborhood P2 of f such that for g E-P2 T
T{g,p) N ¢(f,p,j} = P. Thus for g ¢ P,
sup{d(m,T(£,p)): m € T(g,p)} < 279 . For ¢ tE‘P1 N Py,
al (£,p), T'(g,p)) = 279,

Assume the result has been proven for p-1l and
R(p-1) is residual. Take £ € R(p-1) and a neighborhood

P(£) such that for< g € p(f}, a(r(s,p-1), T'{g,p-1)) <
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< 2‘(j+1). Let R(f,p,j) = {g € P(f):Fp(g) and Fp(g)|aV
are transverse to W and Gﬁ(g) is transverse to all
the W at points of C(f,p-1,3)}. R(f,p,j) is open by
Theorem 7.l. We prove below it is demse in P(f).

Let R(p,j) = U[R(f,p,3):f € R(p-1)} and R,(p) =

= n[{R(p,3):d € 2} n R(p-1). By induction R(p-1) is
residual so R(p,j) is dense and open and Rl(p) is
residual. But for g € P(f), c(g,p-1,3) C c(f,p-1,3+1).
?hus R(p,j+l) c {g:Fp(g) and Fp(g)lav are transverse
to W and Gp(g) is transverse to all the W ag
points of C(g,p-1,3)}. Thus R,(p)} = R(p). All is left

to prove is the density of R{f,p,j} in P(f).

PROPOSITION 8.1 - Let g € Sym' (IxM) and U; be a

compact subset of IxM such that g
has no points of period <p-l in Ul' Let 3V be a sub-
manifold of IxM. Then the set R = {h ¢ Symr(IxM):Fp(h)
and Fp(h)lav is transverse to W and Gp(h) is

transverse to the W at points of Ul} is dense at g.

REMARK: In the above application U1 = C(f,p—l,j).

Proof: Let U2 be a compact neighborhood of. Uln Let
B = {Xe x¥(ixM): X(m) = 0 for me€ (IxM-U,} and
for each t ¢ I X(t,-) € %;(M), i.e. X(t,:) dis tangent

to the energy surfaces and on each energy surface it is
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a2 Hamiltonian vector field]. Let ml(X) be the time one
map of the flow of X € B. Define X:B » Sym{IxM) by
K(X) = ®,(X) e g. The reader ¢an check that Foe X and

1 representations respectively.

2

GPO K are ¢ and C
Claims a) and b} prove their evaluations are trmsverse to
W and WNh respectively on Z X Ul where Z is a
neighborhood of 0 din ®B. By Theorem 7.2,

Y= {X¢c Z:F_ oK is transverse to W and & o K is

. 'Y p
transverse to all the W at points of Ul} is dense in

Z. Thus K(Y) 4is dense at g. This proves R is dense

at g.

CLAIM a - ev(Fpo K) 4is transverse to W on a neighbor-

hood of 0O X Ul'

Proof: Since tramnsversality is an open condition we only

need to prove transvewsality on O X U Let

1°

FP = F, Assume F(g)(t,m) € W. Take symplectic coordina.

tes (xl,...,x = X on M near m, Let b:IXM -+ R be

21’1)
a bump function whose support is in the coordinate neigh-
borhood of (t,m) and is identically equal to one in a
smaller neighborhood of (+,m)}. Let L(t,xl,...,xzn) be
independent of t and a linear function in the xY.

Let ¢ be a real number. Let cbL{t,m} = cb(t,m)L{t,x(m)),

cbL:IXM 4 R. Let xch is the associatéd Hamiltonian
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vector field on each level set. chL ¢ B. Identify points

to their image under x = (xl,...,xzn). For ¢ small

K(xch)(t,m); (t,m +"cXL(m)) .

%E K(chL)(t,m) = (O;XL(m)) .

I is an arbitrary linear function so XL(m) is an
arbitrary vector in TmM. Thus these perturbations span

T,M. ev(FoX) is transverse to W at (t,m).

CLAIM b - ev(GpO K) is transverse to W on a neigh-

bﬁrhood of O x Ul'

- — ) Nh -
Proof: Let G = G, « Assume Gp(g)(t,m) €W . Let X ..

be as before but now L 1is a homogeneous guadratic

function.

In local coordinates

-

XCbL(s ,Y) =

i=lyeee,yn



. s e e 0
DX . (t,m) =
cbL .3 3 3 3 3
L3 T—— ———— L —-3-‘ r -
C : aXJ aKII.-'i-IJ. axJ+n aX1+Il
3 3 a3 3
0-— 1 3 "1 jm i
axJd ax 3xY Bx

As 1. wvaries over all quadratic functions the 2n ¥ 2n
submatrix varies over all infinitesimally symplectic

matrices

D(E(Xp ) (m) = o exp(pX,  (m)) De(t,m),

Fo DX, )) (m) = exp(DX_ (m)) Dg(s,m).

The exponential of infinitesimally symplectic matrices is
onto the symplectic matrices¥. Thus these perturbations
together with those of Claim a show that ev(GoK) is
transverse to all the WNh om0 X Ul .
Q.E.D.
The exponential of infinitesimally symplectic matrices

is onto a meighborhood of the identity in the set of

all symplectic matrices,
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