INTRODUÇÃO À ANÁLISE FUNCIONAL

PEDRO NOWOSAD

6.º COLÓQUIO BRASILEIRO DE MATEMÁTICA

POÇOS DE CALDAS

júlho de 1967

APRESENTAÇÃO

Estas notas foram preparadas para um curso introdutório à Análise Funcional a ser apresentado durante o 6º Colóquio Brasileiro de Matemática.

São pré-requisitos os cursos de Álgebra Linear e de Análise Matemática, mas, do ponto de vista formal, o curso também é acessível a quem tenha Cálculo Avançado ao envés de Análise.

Devido ao prazo curto para realização do curso, muitos conceitos e resultados fundamentais nem sequer são citados; mas aqueles que apresentamos procuramos introduzir de maneira razoàvelmente completa. Também tivemos a preocupação de que as notas fossem auto-suficientes nos assuntos de que trata; com isto, aqui figura algo mais além daquilo que será dado no curso.

Ao entregar estas notas aos leitores, o fazemos esperando que lhes sejam úteis e que atinjam seu objetivo de introduzi-los ao estudo da Análise Funcional.

Pedro Nowosad

INDICE

	スー・コー・コー・アンド アン・アン・アン・アン・カー・スポート (株式) おおし アン・アン・アンドン (大学) アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア	_
Capitulo O	- Preliminares	1
Capitulo 1	- Espaços topológicos. Espaços métricos	
1.1 1.11		9
1.12	Oumpactuate	15
1.13	Definições. Produtos cartesianos de espaços topológicos	16
1.14		17
1,15		19
1.15.8		26
1.16	Espaços métricos completos	27
Capítulo 2	- Espaços métricos completos: Alguns resul- tados fundamentais.	
2.1	Aplicações contrativas	33
2.2	Categoria de um espaço métrico completo	37
2.2.3	Teorema de Baire	3.9
Capitulo 3	- Espaços vetoriais normados	
3.1	Definição	44 45
3.2	Subespaços e esfera unitária	50
3.2.2	Lema de Riesz	51
3 • 4	Transformações lineares	54
3.4.3	Norma de uma transformação linear	56
3.4.5	Normas equivalentes	58
3.4.8	Espaços vetoriais de aplicações lineares	59
3 .5	Espaços de Banach	60
3.5.2	Completamento de espaços vetoriais normados	63
3.6	Dual de um espaço vetorial normado	65
3.7	Espaços reflexivos	69

Capitulo 4	- Espaços de Hilbert	
4.1	Produto escalar. Definição	73
4.2	Desigualdade de Schwarz	
4.4	Espaço de Hilbert. Definição	73
4.4.2	Pré-espaços de Hilbert	74
4.5	Geometria dos espaços de Hilbert	75
4.6	Designaldade de Beggal	77
4.7	Desigualdade de Bessel	79
4.8	Teorema de Riesz-Fischer	80 81
4.13	Teorema da projeção	
4.14	Teorema da representação de Riesz	84
4.15	Espaço dual	85
4.16	Reflexividade dos espaços de Hilbert	86 88

Capitulo 0

PRELIMINARES

Nêste capitulo revemos principalmente alguns conceitos e resultados da Teoria dos Conjuntos; alguns têrmos são utilizados sem que tenha sido dada sua definição.

O.1 - Conjuntos - Nosso objetivo é estudar propriedades de objetos ou relações entre os mesmos. Objetos serão representados por símbolos (letras, em geral); propriedades e relações por combinações dos símbolos dos objetos nelas envolvidos com símbolos característicos da propriedade ou relação considerada.

Dos objetos que consideraremos temos inicialmente os conjuntos e os elementos. A relação xeX será lida: " x é um elemento do conjunto X ", ou " x pertence a X ". Sua negação escrever-se-á: x £ X.

Empregaremos, também, as seguintes relações:

- i) x = y, significando que os objetos x = y são o mesmo objeto; sua negação escrever-se-á $x \neq y$.
- ii) Se X e Y são conjuntos a relação X ⊂ Y significa que todo elemento de X é também elemento de Y; neste caso dizemos que X está contido em Y, ou que Y contém X ou ainda que X é sub-conjunto de Y. A negação desta relação será escrita X ≠ Y.
- iii) Se $X \subset Y$ e $Y \subset X$ escrevemos X = Y, isto é, dois con-

juntos são considerados iguais se e só se tiverem os mesmos elementos.

Por extensão de conceito de conjunto definimos por conveniência o conjunto vazio \emptyset como sendo aquele caracterizado pela relação $x \notin \emptyset$, qualquer que seja o objeto x. Daqui resulta, então, que $\emptyset \subset X$ qualquer que seja o conjunto X (prova por vacuidade; vêr 0.5).

Dado um conjunto X e uma propriedade P há um único sub-conjunto de X cujos elementos são exatamente aqueles elementos $x \in X$ para os quais P(x) é verdadeira; representâmo-lo por $\{x \in X \mid P(x)\}$. É claro que podemos escrever $\emptyset = \{x \in X \mid x \neq x\}$.

0.1.1 Operações com Conjuntos - Diferença de dois conjuntos X e Y nesta ordem é o conjunto $\{x \in X \mid x \notin Y\}$, o qual se escreve X - Y. Quando Y \subset X dizemos que X - Y é o complemento de Y em relação a X e escrevemos X - Y = C_X Y.

O conjunto $\{x \in X \mid x \in Y\}$ é chamado intersecção de X e Y e escreve-se X \cap Y. Quando X \cap Y \neq Ø diz-se que X e Y são disjuntos.

O conjunto dos elementos que pertencem a pelo menos um dos dois conjuntos X, Y é chamado união de X e Y e escreve-se X U Y.

0.2 Produto Cartesiano. Classes de equivalência.

Dados dois objetos a, b podemos formar um novo objeto chamado seu par ordenado e representado por (a,b); entenderemos que (a,b) = (a',b') se e só se a = a' e b = b'.

Dados dois conjuntos X e Y, definimos produto cartesiano de X por Y ac conjunto $\{(x,y)|x\in X, y\in Y\}$. Êste novo conjunto é representado por X x Y.

0.2.1 Uma relação entre objetos é dita <u>binária</u> quando ela envolve tão somente dois objetos de cada vez. Uma relação binária R entre elementos x do conjunto X e elementos y do conjunto Y, nesta ordem, é dita <u>relação de X em</u> Y. Quando Y = X dizemos que a relação é <u>sôbre</u> X.

Ao sub-conjunto de X x Y formado pelos pares ordenados (x,y) para os quais a relação R é verdadeira, dá-se o nome de gráfico da relação R. É claro que todo subconjunto G de XXY é o gráfico de uma relação, qual seja a relação $(x,y) \in G$.

Também escreveremos x R y se R é verdadeira para o par (x,y).

- 0.22 Uma relação sôbre R é dita relação de equivalência se valem as propriedades:
 - i) x R y -- x R x (propriedade reflexiva)
 - ii) x, y ϵ X, x ϵ X \longrightarrow yRx (propriedade simétrica)
 - iii) x,y,z & X, xRy, yRz xRz (propriedade transitiva)

Se R é relação de equivalência sôbre X e se x R y, dizemos que x e y são equivalentes pela R e escrevemos também $x = y \mod R$.

0.2.3 Classes de Equivalência.

Dada uma relação de equivalência R sôbre um conjunto X e dado um elemento $x \in X$ definimos classe de equivalência de $x \mod R$ ao sub-conjunto C de X dado por

$$C = \{ y \in X \mid y R x \}$$

É fácil verificar que todo elemento de X determina uma classe de equivalência mod R e uma só. Se entendermos por partição de X a uma coleção de subconjuntos de X dois a dois disjuntos, cuja união é X, então é claro que a coleção de tôdas as classes de equivalência mod R contidas em X é uma partição de X. Reciprocamente o leitor verificará que uma partição de C define uma relação de equivalência sôbre X.

0.3 Aplicações.

Sejam X e Y dois conjuntos e f uma relação de X em Y; se para todo x de X existe um e um único y e Y tal que x f y, dizemos que f é uma aplicação de X em Y e escrevemos f:X-Y. f é também chamada função definida em X com valôres em Y. O conjunto X é chamado domínio de f.

O elemento y tal que x f y será indicado também por f(x) e denominado valor de f em x.

Seja $A \subseteq X$; chamamos imagem de A pela f ao conjunto representado por f(A) e dado por

$$f(A) = \{ y \in Y | \exists x \in A : y = f(x) \}$$
.

- 0.3.1 A aplicação $I_X:X\to X$ definida por $I_Xx=x$ para todo $x\in X$ é chamada aplicação identidade de X.
- 0.3.2 Seja f:X→Y e B ⊂ Y. Chamamos de <u>imagem inversa de</u> E <u>pela</u> f ao subconjunto de X que denotamos por f⁻¹(B) e definimos por

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\}$$
.

- 0.3.3 Dizemos que duas aplicações $f:X \to Y$ e $f':X' \to Y'$ são iguais se e só se tivermos X = X', Y = Y' e f(x) = f'(x) para todo $x \in X$.
- 0.3.4 Seja f:X→Y, Se A é subconjunto de X, a aplicação g:A→Y definida por g(x) = f(x) para todo x∈A chama-se restrição da f ao subconjunto A e indica-se por f|A.

 0.3.5 Seja f:X→Y. Dizemos que f é
 - i) injetora se x, x' \in X e f(x) = f(x') implicar x = x' (f diz-se também 1:1);
 - ii) sobrejetora se f(X) = Y, isto é, se para todo yeY existe pelo menos um xeX tal que y = f(x)
 (f diz-se também sôbre Y);
 - iii) <u>bijetora</u> se f fôr injetora e sobrejetora (neste caso diz-se também que f determina uma correspondência biunívoca entre X e Y).
- 0.3.6 Seja $f:X \rightarrow Y$ uma aplicação bijetora; chamanos <u>aplicação</u>

 <u>inversa</u> da f à aplicação $g:Y \rightarrow X$ que a $y \in Y$ associa o elemento $x \in X$ tal que f(x) = y. Denotamos g por f^{-1} . É fácil ver que f^{-1} é também bijetora e que $(f^{-1})^{-1} = f$.
- 0.3.7 Sejam f:X \rightarrow Y e g:Y \rightarrow Z. A aplicação h:X \rightarrow Z definida por h(x) = g f(x) para todo x \in X é denominada aplicação composta de g com f, representando-se por g f ou gf.
- Observação: Quando se tem uma aplicação f:D→Y, com D ⊂ X, também se costuma escrever f:X→Y. Neste caso quando não se faz menção explícita do domínio de f entende-se que seu domínio é X.

0.3.8 Famílias.

Sejam L e X dois conjuntos. Uma aplicação de L em X é também chamada uma família de elementos de X indexada por L. Representa-se esta aplicação por $\{x_\lambda\}_{\lambda\in L}$. Um dos casos mais comuns é aquele em que L é um subconjunto infinito do conjunto N dos inteiros positivos. Neste caso a família chama-se sequência. É preciso não confundir a família $\{x_\lambda\}_{\lambda\in L}$ com a imagem de L por esta aplicação. Assim, por exemplo, a sequência $\{x_i\}_{i\in N}$ definida pela condição $x_i = 1$, $i\in N$, tem como imagem tão sòmen te o número 1.

Se os elementos da família $\left\{X_{\lambda}\right\}_{\lambda\in L}$ são subconjuntos de um dado conjunto X definimos <u>união desta família</u> ao conjunto

$$\{x \in X \mid x \in X_{\lambda} \text{ para algum } \lambda \in L\}$$
,

que é denotado por $\bigcup_{\lambda \in L} X_{\lambda}$.

A intersecção desta família será o conjunto definido por

$$\{x \in X \mid x \in X_{\lambda} \text{ para todo } \lambda \in L \}$$
,

que será denotado por $\bigcap_{\lambda \in \mathbb{L}} \mathbb{X}_{\lambda}$.

O leitor verificará que são válidas as seguintes regras de complementação:

0.4 Conjuntos enumeráveis.

Um conjunto X é dito equipotente a um conjunto Y quando existe uma bijeção, isto é, uma aplicação bijetora, de X sôbre Y. É fácil de verificar que esta relação entre dois conjuntos é uma relação de equivalência; em particular, para verificar a transitividade basta considerar a aplicação composta das duas aplicações envolvidas na definição.

Um conjunto é dito enumerável se e só se fôr equipotente a um subconjunto do conjunto N dos números inteiros positivos. Uma família $\left\{x_{\lambda}\right\}_{\lambda\in L}$ é dita enumerável se L o fôr. Observamos que vale o seguinte resultado:

0.4.1 "A união de uma família enumerável de conjuntos enumeráveis é um conjunto enumerável".

0.5 Prova por vacuidade.

Supomos os leitores familiarizados com as noções básicas definidas em Lógica. Aqui aperas analizaremos o tipo de prova cha mado prova por vacuidade. Se ja π uma proposição condicional, isto é, uma proposição que se expressa por uma sentença do tipo: "para todo x que satisfaz a condição..., vale a relação...". Sua negação π é uma proposição existencial, isto é, da forma: "existe um x que satisfaz a condição..., e para o qual não vale a relação ...". Sabemos que das duas, uma: ou π é verdadeira (e então π é falsa) ou π é verdadeira (e π é falsa). Se mostrarmos que π é falsa, π será verdadeira. Agora se o conjunto dos x que satisfazem a condição ..., é vazio, π é

automàticamente falsa, e daí π é verdadeira. Conclusão: "uma proposição condicional definida sôbre um conjunto vazio X é au tomàticamente verdadeira". Prova por vacuidade é exatamente aque la que consiste em mostrar que X é vazio.

Exemplo: a proposição $\emptyset \subseteq X$ diz que todo elemento de \emptyset é tam bém elemento de X; portanto é condicional, e daí verda deira pois está definida sôbre o conjunto vazio.

Capítulo l

ESPAÇOS TOPOLÓGICOS . T. ESPAÇOS MÉTRICOS

ESPAÇOS TOPOLÓGICOS

- 1.1 <u>Definição</u> Um conjunto X com uma família T de subconjunto tos de X é chamado um espaço topológico se T satisfaz às condições:
 - i) : Ø, X e T .
 - ii) A união de qualquer subfamília de T pertence a T.
 - iii) A intersecção de qualquer subfamília finita de T está em T.
- A família T é chamada uma topologia em X e os dementos de T são chamados conjuntos abertos de X nesta topologia.
- Exemplos: a) Se $X \neq \emptyset$ e $T = \{X, \emptyset\}$, T é claramente uma topologia de X.
- b) Se $X \neq \emptyset$ e T = P(X) = conjunto das partes de X, T é uma topologia em X e é chamada topologia discreta de X.
- 1.2 <u>Definição</u> Um conjunto F em um espaço topológico X é dito to fechado se o seu complemento $\mathbb{C}_{X}(F)$ for aberto, isto é, se seu complemento pertencer a T. Daqui resulta lo go que \emptyset e X são ao mesmo tempo abertos e fechados. Das regras de complementação vistas em 0.3 e das definições 1.1 e 1.2 resulta que a intersecção de uma família qualquer de fechados é

um conjunto fechado e que a união finita de fechados é também é um fechado.

- 1.3 Definições Se S é um subconjunto de X chamamos
 - i) a <u>aderência</u> (ou <u>fêcho</u>) de S à intersecção de todos os fechados que contém S, que é denotada por S. Da observação imediatamente acima resulta que S é fechado.

 Mais ainda S ⊂ S e S = S se e só se S é fechado.
 - 11) <u>interior</u> de S à união de todos os subconjuntos de S que sejam abertos; êste novo conjunto será denotado por S.
 - iii) <u>fronteira</u> de S à intersecção $\overline{S} \cap \overline{\mathbb{C}_X(S)}$, que será denotada por ∂S .
- 1.4 <u>Definição</u> Dado um ponto $x \in X$ chamaremos de uma <u>vizinhança</u> dêste ponto x a um qualquer aberto que o contenha. Do mesmo modo dado $S \subseteq X$, um aberto U tal que $S \subseteq U$ será dito uma <u>vizinhança</u> do conjunto S.
- 1.5 Definição Um ponto x é dito ponto de acumulação de um conjunto S, se qualquer vizinhança de x contiver algum ponto de S distinto de x.

O conjunto dos pontos de acumulação de S é chamado derivado de S e representa-se por S'.

- Exercício: Verifique que $\overline{S} = S \cup S'$ e que portanto S é fechado se e só se $S' \subset S$.
- 1.6 Seja 8 uma família de subconjuntos de um conjunto X

qualquer, satisfazendo às condições:

- i) a todo $x \in X$ corresponde um $B \in \mathfrak{B}$ tal que $x \in B$.
- ii) se $B_1, B_2 \in \mathfrak{B}$ e $x \in B_1 \cap B_2$, há um $B_3 \in \mathfrak{B}$ tal que $x \in B_3 \subset B_1 \cap B_2$.

A partir de B podemos definir uma topologia T em X como segue. Um conjunto S \subseteq X será dito um conjunto aberto se para todo x \in S existir um B \in % tal que x \in B \subseteq S. Em outras pala vras, um aberto é uma união de conjuntos de $^{\mathfrak{B}}$. Verifiquemos que T é topologia em X. De fato, \emptyset \in T por vacuidade; X é aberto pela i). Quanto às demais condições, sejam S₁ e S₂ abertos e seja S = S₁ \cap S₂; dado x \in S segue da definição que x \in B₁ \subseteq S₁ e x \in B₂ \subseteq S₂, com B₁ e B₂ \in $^{\mathfrak{B}}$. Daí x \in (B₁ \cap B₂). Pela ii) há um B₃ \in % tal que x \in B₃ \subseteq B₁ \cap B₂ e como B₁ \cap B₂ \subseteq S, segue que S é aberto; para a intersecção de n conjuntos, n inteiro > 2 o resultado segue por indução finita. Que a união de abertos é aberto segue diretamente da definição.

1.6.1 <u>Definição</u> - A família & é dita uma <u>base</u> do espaço topológico X, cuja topologia T foi definida através de & pelo processo dado acima.

Êste processo de construção de uma topologia é muito útil. Exemplo: No espaço euclidiano n-dimensional \mathbb{R}^n a seguinte família \mathfrak{B} é uma base. Um conjunto \mathbb{B} de \mathfrak{B} é definido por meio de um ponto $\mathbf{x}_0 = (\mathbf{x}_0^{(1)}, \mathbf{x}_0^{(2)}, \ldots, \mathbf{x}_n^{(n)})$ e de um número real $\mathbf{r} > 0$ do seguinte modo: \mathbb{B} é o conjunto dos pontos

$$x = (x^{(1)}, x^{(2)}, \dots, x^{(n)})$$

do Rⁿ satisfazendo à condição

$$(x^{(1)}-x_0^{(1)})^2 + \dots + (x^{(n)} - x_0^{(n)})^2 < r^2$$
.

Se $\mathfrak B$ for então a família de todos possíveis conjuntos B o lei tor verá fàcilmente que as condições i) e ii) são satisfeitas. A topologia do R^n definida por esta base é dita topologia habitual do R^n .

- 1.7 Comparação de Topologias. Se duas topologias T_1 e T_2 em um mesmo conjunto X são tais que $T_1 \subset T_2$ dizemos que T_1 é uma topologia mais fraca que a T_2 e que T_2 é mais forte que T_1 . Em outras palavras a topologia mais forte tem mais conjuntos abertos.
- 1.8 Topologia gerada por uma família &. Seja & uma família de subconjuntos de X. A

família $T_{\mathcal{A}}$ constituida de \emptyset , X e das uniões de intersecções finitas de elementos de \mathcal{A} é uma topologia em X.

Exercício: Verifique esta asserção.

 $T_{\mathcal{A}}$ é dita <u>topologia gerada por</u> \mathcal{A} , e \mathcal{A} é chamada <u>sub-base</u> da topologia $T_{\mathcal{A}}$.

1.9 Sejam x₁,x₂ ε X pontos distintos e suponhamos X munido da topologia T = [Φ,X]. Então qualquer vizinhança de x₂ contém x₁, isto é, x₂ é ponto de acumulação do subconjunto {x₁} de X; portanto pontos isolados de X não são conjuntos fechados nesta topologia. Interessa-nos topologias em que tal fato não

ocorre, para os quais valem os seguintes axiomas ditos de <u>sepa-ração</u>:

- 1.9.2 <u>Definição</u> Um espaço topológico é do tipo T_2 (ou de Hausdorff) se $x_1 \neq x_2$ implicar a existência de abertos S_1 e S_2 com $x_1 \in S_1$, $x_2 \in S_2$ e $S_1 \cap S_2 = \emptyset$.
 1.10 <u>Topologia relativa</u>.

Seja X um espaço topológico com topologia T e seja $X_o \subset X$. Podemos definir uma topologia T_o em X_o definindo T_o como a família dos conjuntos da forma $X_o \cap S$, com $S \in T$. Um subconjunto de X_o que é aberto (ou fechado) na topologia T_o é dito relativamente aberto (ou relativamente fechado, resp. Observemos que um conjunto $F \subset X_o$ é relativamente fechado se só se fôr da forma $A \cap X_o$ com A fechado. De fato, F é rel tivamente fechado se e só se $C_{X_o}(F)$ fôr relativamente aberto; daí $C_{X_o}(F) = S \cap X_o$ com $S \in T$ e portanto $F = X_o - S \cap X_c$ Mas $X_o - S \cap X_o = X_o \cap C_X(S)$; portanto $F = X_o \cap A$, com $A = C_X(S)$ fechado.

1.11 Funções continuas.

1.11.1 <u>Definição</u> - Seja f:X-Y, com X e Y espaços topológ cos. A aplicação f é dita contínua no pont

 $x_0 \in X$ se a cada vizinhança V de $f(x_0)$ corresponde uma vizinhança U de x_0 tal que $f(U) \subseteq V$. Isto equivale a dizer que f é contínua em x_0 se para cada vizinhança V de $f(x_0)$ a imagem inversa $f^{-1}(V)$ contiver uma vizinhança de x_0 .

Dizemos que f é contínua em $\mathbb X$ se f for contínua em todos os pontos de $\mathbb X$.

1.11.2 Teorema - Uma função f:X→Y, com X e Y espaços topológicos, é contínua em X se e só se a imagem inversa de abertos (fechados) fôr aberta (fechada, respectivamen te).

Prova: Suponhamos que V aberto implica $f^{-1}(V)$ aberto. Seja $x_0 \in X$ e V vizinhança de $f(x_0)$. Então $f^{-1}(V)$ é aberto e contém x_0 , isto é, $f^{-1}(V)$ é vizinhança de x_0 e portanto a segunda expressão da definição de continuidade no ponto x_0 é verificada.

No outro sentido, seja f contínua em X e V um aberto em Y. Então se $x \in f^{-1}(V)$, V é uma vizinhança de f(x) e portanto $f^{-1}(V)$ contém uma vizinhança de $f^{-1}(V)$ é aberto. A parte relativa aos fechados segue da relação

$$f^{-1}(f_{\underline{X}}(S)) = f_{\underline{X}}(f^{-1}(S)).$$

orolário - Se f:X→Y, g:Y→Z, sendo X, Y, Z espaços topológicos, são contínuas então a composta gf:X→Z, ambém é contínua.

rova: imediata.

1.11.3 - Se f:X Y (com X e Y espaços topológicos) fôr bijetora e se tanto f quando f são contínuas, f é chamada homeomorfismo de X sobre Y, e X e Y são ditos homeomorfos.

1.12 Compacidade.

Seja S um subconjunto de um conjunto X e $\{A_{\lambda}\}_{\lambda \in L}$ uma família de subconjuntos de X tal que S $\subset \bigcup_{\lambda \in L} A_{\lambda}$. Então a família dada é dita uma cobertura de S. Se X é um espaço topológico e todos A_{λ} são abertos a cobertura é dita <u>aberta</u>.

1.12.1 <u>Definição</u> - Um subconjunto S de um espaço topológico X é dito <u>compacto</u> se tôda cobertura aberta de S contiver uma subcobertura finita de S.

Daqui segue que o conjunto vazio é compacto e também que qualquer conjunto constituído por um número finito de elementos é compacto (verifique).

1.12.1 <u>Teorema</u> - Sejam X, Y espaços topológicos e f:X-Y contínua. Então se K ⊂ X é compacto, também f(K) é compacto.

Prova: Seja 3 uma cobertura aberta de f(K). Então $\left\{f^{-1}(A)\right\}_{A \in \mathfrak{F}} \text{ \'e cobertura aberta de K, pelo teorema}$ 1.11.2. Por ser K compacto há uma subcobertura $\left\{f^{-1}(A_{\mathbf{i}})\right\}_{\mathbf{i}=\mathbf{l}}^{\mathbf{n}}, \quad A_{\mathbf{i}} \in \mathfrak{F}, \text{ e da\'e segue que } \left\{A_{\mathbf{i}}\right\}_{\mathbf{i}=\mathbf{l}}^{\mathbf{n}} \text{ cobre } f(K).$ C.Q.D.

1.12.2 Teorema - Um subconjunto fechado de um compacto é compacto.

Prova: Seja K compacto e F C K fechado. Em primeiro lugar o

leitor verificará que K é compacto se e só se K é compacto em relação à topologia relativa de K. Em segundo lugar F sendo fe chado e estando contido em K, F é também relativamente fechado. Portanto basta provar o teorema para o caso em que K é o espaço todo.

Seja então 3 uma cobertura aberta de F. Como $C_K(F)$ é aberto a família 3' obtida acrescentando-se $C_K(F)$ a 3 é uma cobertura aberta de K. Sendo K compacto há conjuntos A_1 , A_2 , ..., $A_n \in \mathcal{F}$ tais que $K \subset C_K(F) \cup (\bigcup_{i=1}^n A_i)$. Disto e do fato de que $F \subset K$ segue imediatamente $F \subset C_N(F)$

- 1.12.3 <u>Definição</u> Um conjunto S cuja aderência S é compacta diz-se relativamente compacto.
- 1.13 Definições Seja X um espaço topológico. Um subconjunto S de X é dito:
 - i) denso em X se $\overline{S} = X$.
- ii) magro em X se o interior de \overline{S} fôr vazio, isto é, se $\overline{S} = \partial S$.
- 1.13.1 Definição Um conjunto S⊂X é dito de la categoria se S fôr a união enumerável de conjuntos magros em X. Caso contrário S é dito de 2a. categoria.
- 1.13.2 <u>Definição</u> Um espaço topológico X é dito <u>separável</u> se contiver um conjunto finito ou enumerável denso em X.
- 1.13.3 <u>Definição</u> Um espaço topológico é dito <u>localmente</u> com-

pacto se todo ponto tiver uma vizinhança relativamente compacta.

1.13.4 Produto cartesiano de espaços topológicos.

Sejam X,Y espaços topológicos com topologias ^{T}X e ^{T}Y respectivamente. Podemos definir uma topologia no produto cartesiano X x Y do seguinte modo. Construimos a família

$$\mathcal{A} = \left\{ U \times V \mid U \in T_{X}, V \in T_{Y} \right\}$$

A topologia $T_{\mathcal{K}}$ gerada por \mathcal{K} será então uma topologia em XXY. Como a intersecção de conjuntos de \mathcal{K} pertence a \mathcal{K} segue que \mathcal{K} é uma base, isto é, os abertos de $T_{\mathcal{K}}$ são simplesmente as uniões de elementos de \mathcal{K} .

Esta definição se estende a um produto cartesiano finito qualquer da maneira óbvia.

Quando nos referirmos ao produto cartesiano de espaços topológicos estaremos implicitamente atribuindo a topologia de-finida acima, salvo menção em contrário.

ESPAÇOS MÉTRICOS

1.14 Distâncias.

1.14.1 Definição - Seja X um conjunto. Uma distância sôbre X é uma aplicação d de X x X no conjunto dos números reais R, gozando das seguintes propriedades:

- i) $d(x,y) \ge 0$ para todo par x, y de X, sendo d(x,y) = 0 se e só se x = y;
- ii) d(x,y) = d(y,x) para x, y em X;
- iii) $d(x,y) \le d(x,y) + d(z,y)$ para quaisquer elementos x, y, z, de X.

Esta última desigualdade chama-se desigualdade triangular.

Espaço métrico é um conjunto X juntamente com uma distância sôbre X. Por abuso de linguagem chamaremos X de espaço métrico omitindo a referência à distância, sempre que não houver possibilidade de confusão.

1.14.2 Exemplos:

- a) No conjunto dos números reais a função d(x,y)=|x-y| satisfaz às três condições acima. Ao conjunto dos reais munidos desta métrica chamamos reta real R.
- b) No plano euclidiano $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$, qualquer uma das seguintes funções é uma distância:

$$d_{1}(x,y) = \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$d_{2}(x,y) = |x_{1} - x_{2}| + |y_{1} - y_{2}|$$

$$d_{3}(x,y) = \max\{|x_{1} - x_{2}|, |y_{12} - y_{2}|\}$$

sendo $x = (x_1, x_2)$ e $y = (y_1, y_2)$. Fórmulas análogas a estas definem distâncias no R^n .

c) Se excluirmos do R² o disco unitário de centro na origem, digamos, e se definirmos a distância entre dois pontos quaisquer do conjunto restante como o ínfimo dos comprimentos das po-

ligonais contidas neste conjunto, que unem os dois pontos dados, podemos verificar que tal função é mesmo uma distância. De fato as i) e ii) são trivialmente válidas. Quanto à iii) basta observar que a soma de uma poligonal de x a y com uma poligonal de y a z é uma poligonal de x a z (a soma é no sentido de soma de arcos orientados), e que o ínfimo de uma soma algébrica é menor ou igual à soma dos ínfimos.

d) Seja C[a,b] o conjunto das funções complexas contínuas, definidas no intervalo finito [a,b] , munido da distância

$$d(x,y) = \max_{a \le t \le b} |x(t) - y(t)|.$$

- O leitor verificará fàcilmente que C[a,b] é espaço métrico.
- e) Como qualquer subconjunto S de um conjunto X no qual está definida uma distância d é também um espaço métrico com a métrica d/SxS, qualquer subconjunto dos espaços métricos dados acima fornecem novos exemplos.
- 1.15 Topologia dos espaços métricos.
- 1.15.1 Definição Dado um ponto x de um espaço métrico X e um real r > 0 chamamos bola aberta de centro em x e raio r ao conjunto

$$B_r(x) = \{y \in X \mid d(x,y) < r \}$$
.

Por brevidade diremos às vêzes bola ao invés de bola aberta.

Observação: Da definição acima segue que se y ϵ B $_{r}(x)$ então há uma bola aberta de centro em y contida em B $_{r}(x)$,

qual seja $B_{\rho}(y)$, onde $\rho=r-d(x,y)$. De fato por definição temos $\rho>0$; por outro lado se $z\in B_{\rho}(y)$ temos, pela desigualdade triangular:

$$d(z,x) \leq d(z,y) + d(x,y) ,$$

e como

$$d(z,y) < \rho$$
 segue:
 $d(z,x) < \rho + d(x,y) = r$,

isto é

$$z \in B_r(x)$$
.

1.15.2. Seja $\mathfrak{B} = \left\{ \mathbb{B}_{\mathbf{r}}(\mathbf{x}) \middle| \mathbf{x} \in \mathbb{X} \text{ e r} > 0 \right\}$. \mathfrak{B} satisfaz às condições que uma base de uma topologia deve verificar (i) e ii) em 1.6.). De fato a i) é satisfeita por definição. Quanto à ii) suponhamos que \mathbf{x} pertence à intersecção de duas bolas abertas; pela observação acima há duas bolas de centro em \mathbf{x} contidas na primeira e na segunda dessas, respectivamente. A de menor raio está contida na outra e portanto também na intersecção das duas bolas inicialmente dadas.

Entendemos por topologia de um espaço métrico exatamente aquela definida pela família B das suas bolas abertas.

Tôdas as definições anteriormente dadas para espaços topológicos são aplicáveis, portanto, ao caso particular dos espaços métricos. Notemos que todo espaço métrico é de Hausdorff (verifique).

1.15.3. Definições - Uma sequência $\{x_n\}$ de um espaço métrico X é dita convergente se existe um ponto $x \in X$ tal que $d(x_n,x) \longrightarrow 0$ quando $n \longrightarrow \infty$. Chamamos x de limite da

sequência dada e escrevemos $x_n \rightarrow x$. De $d(x,y) \le d(x,x_n) + d(y,x_n)$, de $x_n \rightarrow x$ e de $x_n \rightarrow y$ segue $d(x,y) \le 0$, isto é, x = y; portanto o limite é único quando existe.

Exercícios: 1. Prove que num espaço métrico um conjunto S é fe chado se e só se $x_n \in S$, $x_n - x$ implica $x \in S$.

- 2. x é ponto de acumulação de um conjunto E se e só se existe uma sequência que converge para x, formada de pontos de E, distintos entre si.
- 3. Seja X um espaço métrico com mais de um ponto, com a distân · cia definida por d(x,y)=1 se $x\neq y$, e d(x,y)=0 se x=y. Verifique que o fêcho da bola de raio 1 e centro em um ponto x de X não coincide com o conjunto $\{y\in X\mid d(x,y)\leq 1\}$, estando nele contida propriamente.
- l.15.4 <u>Proposição</u> Se X e Y são espaços métricos, uma aplicação f:X-Y é contínua num ponto x_o se e só se a condição $x_n - x_o$ implicar $f(x_n) - f(x_o)$.

Prova: Seja dado $\varepsilon > 0$, arbitrário, e suponhamos que $x_n - x_0$. Se f é contínua em x_0 então dada a bola $B_{\varepsilon}(f(x_0)) \subseteq \mathbb{C}$ Y sua imagem inversa contém uma vizinhança de x_0 e portanto to também contém uma bola $B_{\rho}(x_0)$, para um certo $\rho > 0$. Como por outro lado existe N inteiro tal que n > N implica $d(x,x_n) < \rho$ segue $d(f(x_0),f(x_n)) < \varepsilon$ para n > N; portanto $f(x_n) - f(x_0)$. (Aqui usamos a mesma letra d para representar a função distância em ambos espaços; não há como confundi-las).

Suponhamos agora, que f é discontinua em x_o. Então

existe uma vizinhança V de $f(x_0)$ cuja imagem inversa $f^{-1}(V)$ não contém x_0 como ponto interior, isto é, x_0 é ponto da sua fronteira; logo, existe uma sequência $\{x_n\}$ de pontos fora de $f^{-1}(V)$, tais que $x_n \rightarrow x$. Para esta sequência $f(x_n) \not\leftarrow V$, isto é $f(x_n) \not \sim f(x_0)$. Portanto se $x_n \rightarrow x_0$ sempre implicar $f(x_n) \rightarrow f(x_0)$, f é necessàriamente contínua em x_0 . C.Q.D.

1.15.5 Definição - Em um espaço métrico um conjunto S é dito limitado se estiver contido em uma bola. Neste caso definimos seu diâmetro como sup d(x,x') para $x,x' \in S$. O leitor verificará que o conjunto $\{x_1\}$ dado em 1.9 é compacto mas não é fechado. Em contra posição a isto, temos o seguinte teo rema em espaços métricos.

1.15.6. Teorema - Em um espaço métrico X todo conjunto compacto é fechado e limitado.

Prova: Seja K compacto e suponhamos que $x_0 \not\in K$. Como X é de Hausdorff para cada $x \in K$ existem abertos V(x) e U(x) tais que $x \in V(x)$, $x_0 \in U(x)$ e $V(x) \cap U(x) = \emptyset$. A família $\left\{V(x)\right\}_{x \in K}$ é uma cobertura aberta de K e portanto existe uma subcobertura finita $\left\{V(x_i)\right\}_{i=1}^n$. Seja $W = \bigcup_{i=1}^n V(x_i)$ e $W' = \bigcap_{i=1}^n U(x_i)$. Então W e W' são abertos e disjuntos, sendo $x_0 \in W'$ e $K \subseteq W$; portanto $x_0 \notin K$ implica $x_0 \notin K$. Logo $\overline{K} \subseteq K$, isto é, K é fechado. (Note o leitor que a prova vale para qualquer espaço de Hausdorff).

Para provar que K é limitado basta tomar a família de tôdas as bolas de centro em K e raio igual a um. Desta cobertura aberta extraimos uma subcobertura finita; sejam x_1, x_2, \dots, x_n os centros das bolas das subcoberturas. Tomando uma bola B de centro em x_1 digamos, e raio $r = 1 + d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n)$ teremos $K \subset B$. De fato se $x \in K$ temos que $x \in B_1(x_k)$ para um certo k, $(1 \le k \le n)$. Daí segue: $d(x_1, x_2) + \dots + d(x_{k-1}, x_k) + d(x_k, x) < r$. C.Q.D. Ressaltemos que a recíproca dêste teorema não é necessàriamente verdadeira; ver o corolário e o exemplo após o teorema seguinte. 1.15.7. Teorema - Em um espaço métrico, um conjunto K é compacto se e só se tôda sequência em K contém

um sub sequência convergente cujo limite está em K.

Prova: Se ja $\{x_n\} \subset K$, K compacto. Se o conjunto formado pelos pontos x_n , $n=1,2,\ldots$, é finito então há um dêles que figura um número infinito de vêzes na sequência; a sub-sequência assim formada satisfaz ao enunciado do teorema. Em caso comtrário podemos supôr, sem perda de generalidade, que todos os pontos da sequência são distintos entre si. Mostraremos, então, que o conjunto S dêstes pontos tem um ponto de acumulação xeK. Admitamos que S não tivesse nenhum ponto de acumulação. Então teríamos $\tilde{S} = S$ e pelo teorema 1.12.2 S seria compacto, por ser um fechado contido num conjunto compacto. Mais ainda para todo x_n , $n=1,2,\ldots$, haveria uma bola de centro neste ponto cuja intersecção com K conteria somente x_n . O conjunto formado por estas bolas seria uma cobertura aberta e portanto ha veria uma subcobertura finita. Mas então S seria finito pois somente o centro destas bolas pertence a S, o que contradiz a

hipótese. Logo há um x que é ponto de acumulação de S e portanto pertence a K, pois K é fechado. Para extrair a subsequência basta considerar as bolas $B_{1/m}(x)$, m=1,2,3,... Para m = 1 tomamos $x_{n_1} \in S \cap B_1(x)$. Para m = 2 tomamos $\mathbf{x}_{n_2} \in S \cap \mathbf{B}_{1/2}(\mathbf{x})$, com $\mathbf{x}_{n_2} \neq \mathbf{x}_{n_3}$ e, assim por diante; dêste modo construimos a subsequência convergente para Reciprocamente, suponhamos que tôda sequência em K contém uma sub sequência convergente para um ponto de K. Então para cada in teiro positivo n existe um número finito de pontos de K tais que as bolas de raio 1/n neles centradas cobrem K, isto é, qualquer $x \in K$ está à distância < l/n de pelo menos um dêstes pontos. De fato, em caso contrário, existiria um N tal que para qualquer conjunto finito de pontos x_1, \dots, x_m de K sempre haveria um ponto x_{m+1} de K tal que $d(x_{m+1},x_j) \ge 1/n$, j=1,...,m; partindo de um x_1 de K e aplicando esta propriedade construiríamos por indução uma sequência $\{x_n\}$ de K tal que $d(x_i,x_j) \ge 1/n$ se $i \ne j$. Isto contraria a hipótese, pois $\{ ext{ x}_{ ext{n}} \}$ não teria nenhuma subsequência convergente. Seja então ${\mathscr N}$ a família de tôdas as bolas assim obtidas para todos n=1,2,... Por 0.4.1 $\mathcal N$ é enumerável. Se ja agora $\mathcal C$ uma cobertura aberta qualquer de K. Construimos uma subcobertura ℓ^* enumerável, como segue. Dado $x \in K$ há um $A \in \mathcal{C}$ tal que $x \in A$ e portanto $B_{\rho}(x) \subset A$ para um certo $\rho > 0$; tomando $n \ge 2/\rho$, x pertencerá a pelo menos uma das bolas de raio 1/n de ${\cal N}$, a qual estará contida em $B_{\rho}(x)$ e portanto em A. Escolhemos uma destas bolas e a designamos por $\mathbb{B}(x)$. Do conjunto de todos \mathbb{A} de \mathcal{E} que

que contém B(x) escolhemos um que designamos por A(x). Então \mathcal{C}^* definido por $\mathcal{C}^* = \{A(x)\}_{x \in K} \subset \mathcal{C}$ é uma subcobertura aberta de K que é enumerável ou finita por ser equipotente a $\{B(x)\}_{x \in K} \subset \mathcal{N}$. Se não fôr finita escrevamos

$$\mathcal{C}^* = \{A_n\}_{n=1}^{\infty}, A_n \in \mathcal{C}, n=1,2,\dots$$

Mostremos que existe N inteiro tal que $K \subset \bigcup_{i=1}^n A_i$. De fato se para todo n houvesse em K um $x_n \notin \bigcup_{i=1}^n A_i$, então da sequência $\{x_n\}$ assim formada extrairiamos uma subsequência $\{x_n\}$ com $x_n \to x \in K \subset \bigcup_{i=1}^\infty A_i$, o que seria uma contradição, pois dai seguiria que $x \in A_n$ para um certo m, o que implicaria $x_n \in A_m$ para todo $n' \geq N$, com N suficientemente grande. C.Q.D.

1.15.7 a) <u>Corolário</u> - Todo fechado e limitado do Rⁿ é compacto.

<u>Prova:</u> Como consequência do teorema de Bolzano-Weierstrass tôda sequência limitada do Rⁿ contém uma subsequência convergente. Basta agora aplicar o teorema acima.

b) Êste corolário não é verdadeiro no caso geral. Basta considerar em C[0,1] o conjunto F das funções $x_n(t) = t^n$ $(0 \le t \le 1)$, para $n=1,2,\ldots$. F é limitado pois $\|x_n\| = 1$. Qualquer subsequência de F converge pontualmente para a função descontínua dada por s(1) = 1, s(t) = 0 $(0 \le t < 1)$. Como o limite pontual é único, nenhuma subsequência de F pode convergir para uma função contínua.

Por um lado isto mostra que F é fechado (por vacuidade) e por outro lado que F <u>não</u> é compacto.

Exercício: Prove o teorema de Weierstrass: tôda função real contínua num compacto atinge seu máximo.

Sugestão: use os teoremas 1.12.1 e 1.15.6.

1.15.8 Produto cartesiano de espaços métricos.

Consideremos o caso de dois espaços métricos X e Y. É fácil verificar que $\hat{d}(x,y);(x',y')=\max\{d(x,x');d(y,y')\}$ é uma distância sôbre XxY. Queremos mostrar que a topologia T dêste espaço métrico coincide com a topologia T' definida para o produto X X Y em 1.13.4. Uma base de T' é dada pelos conjuntos U X Y, sendo U e V abertos de X e Y, respectivamente. Por outro lado é fácil de vêr que as bolas de T são exatamente o produto de bolas de X e Y, de mesmo raio. Daquí segue fâcilmente que T = T'.

Da definição da distância \hat{d} segue imediatamente que $(x_n,y_n) \longrightarrow (x,y)$ se e só se $x_n \longrightarrow x$ e $y_n \longrightarrow y$.

1.15.9 Continuidade da distância.

A aplicação d:XxX→R é contínua.

De fato aplicando a desigualdade triangular também na forma $d(a,b) \ge |d(a,c) - d(c,b)|$ vem:

$$\begin{aligned} |d(x_n, y_n) - d(x, y)| &\leq |d(x_n, y_n) - d(x_n, y)| + |d(x_n, y) - d(x, y)| \\ &\leq d(y, y_n) + d(x, x_n) \leq 2 \ \hat{d}((x_n, y_n); (x, y)) \end{aligned}$$

Logo $(x_n, y_n) \longrightarrow (x, y)$ implica $d(x_n, y_n) \longrightarrow d(x, y)$. Pela proposição 1.15.4 d é contínua.

1.15.10 Definição - Dados um ponto x e um subconjunto S de

um espaço métrico definimos distância de x a S por

$$d(x,S) = \inf_{s \in S} d(x,s)$$
.

Exercício: Mostre que em um espaço métrico $x \in \overline{S}$ se e só se d(x,S) = 0.

1.16 Espaços métricos completos.

Seja $\{x_n\}$ uma sequência convergente em um espaço métrico X, com limite x. Da desigualdade $d(x_n,x_m)=d(x_n,x)+d(x,x_m)$ segue que $d(x_n,x_m)\to 0$ quando $n,m\to\infty$. No entanto a recíproca não é necessàriamente verdadeira, isto é, dada uma sequência $\{x_n\}$, podemos ter $d(x_n,x_m)\to 0$ quando $n,m\to\infty$ sem que $\{x_n\}$ seja convergente. Exemplo típico desta situação é a que ocorre no espaço métrico dos números racionais munidos da distância d(x,y)=|x-y|. Assim, a seguinte sequência de números racionais dados pelas suas representações decimais $0,1;0,101;0,101001;0,1010010001;\ldots$ não é convergente (verifique), e no entanto vê-se de imediato que satisfaz à condição acima citada.

Êstes fatos motivam as seguintes definições.

l.16.1 <u>Definição</u> - Uma sequência $\{x_n\}$ de um espaço métrico X é dita <u>fundamental</u>, ou <u>sequência de Cauchy</u>, se $d(x_n,x_m) \rightarrow 0$ quando $n,m \rightarrow \infty$; isto é, se para todo $\epsilon > 0$ existe um correspondente inteiro N tal que $n,m \geq N$ implica $d(x_n,x_m) < \epsilon$.

Desta definição resulta que tôda sequência de Cauchy $\{x_n\}$ é limitada; basta fixar um certo $\epsilon>0$, por exemplo $\epsilon=1$, e tomar a bola de centro em x_N e raio

$$r = \max \{d(x_1,x_N);d(x_2,x_N);...;d(x_{N-1},x_N); \epsilon\}$$
.

1.16.2 <u>Definição</u> - Um espaço métrico X é dito <u>completo</u> se tôda sequência de Cauchy nele contida fôr convergente.

O exemplo dado acima mostra que o conjunto dos racionais com a métrica dada, não constitue espaço métrico completo. Em contraposição, o conjunto dos reais constitue um espaço métrico completo, como o leitor verificará combinando a propriedade de que tôda sequência de Cauchy é limitada com o fato de que todo conjunto limitado de reais tem um supremo. [Basta definir $s_n = \sup \left\{ x_n, x_{n+1}, \ldots \right\}$ e $x = \inf s_n$ e verificar que $x_n \rightarrow x$].

1.16.3 <u>Definição</u> - Dois espaços métricos X,Y são ditos <u>isomé</u>
<u>tricos</u> quando há uma bijeção f:X-Y, que
mantém as distâncias, isto é, que satisfaz

 $d_{X}(x_1,x_2) = d_{Y}(f(x_1),f(x_2))$ para todo par x_1,x_2 em X.

1.16.4 <u>Definição</u> - Um espaço métrico completo Y é chamado <u>com</u>
<u>pletamento</u> de um espaço métrico X se X fôr
isométrico a um subespaço Y_o de Y, denso em Y,

1.16.5 Teorema - Todo espaço métrico X possui um completamento.

Prova: Diremos que duas sequências de Cauchy $\{x_n\}$ e $\{x_n'\}$ em X são <u>equivalentes</u>, escrevendo-se $\{x_n\} \sim \{x_n'\}$, se $d(x_n,x_n') \rightarrow 0$ quando $n \rightarrow x$. O leitor verificará fàcilmente que esta relação é uma relação de equivalência; em consequência, o conjunto de tôdas as sequências de Cauchy em X fica particio-

nado em classes de equivalência. Seja Yoconjunto destas classes de equivalência. Definimos distância de dois elementos quaisquer y,y' de Y pela fórmula

$$d(y,y') = \lim_{n \to \infty} d(x_n,x_n')$$

onde $\{x_n\}$ e $\{x_n'\}$ são duas sequências de Cauchy quaisquer pertencentes a y e y', respectivamente. Devemos mostrar que esta função está bem definida, isto é, que o limite citado existe e que é o mesmo para qualquer escolha das duas sequências de Cauchy extraidas das classes y e y'.

A primeira asserção decorre da desigualdade

$$\begin{split} |d(x_{n}, x_{n}^{!}) - d(x_{m}, x_{m}^{!})| &\leq |d(x_{n}, x_{n}^{!}) - d(x_{n}, x_{m}^{!})| + \\ &+ |d(x_{n}, x_{m}^{!}) - d(x_{m}, x_{m}^{!})| \\ &\leq d(x_{n}^{!}, x_{m}^{!}) + d(x_{n}, x_{m}^{!}) \end{split}.$$

(Aqui usamos a desigualdade triangular na forma $d(a,b) \ge |d(a,c)-d(c,b)|$. Iso mostra que $\{d(x_n,x_n)\}$ é uma sequência de Cauchy de números reais.

Quanto à segunda sejam $\{z_n\}$ ϵ y e $\{z_n'\}$ ϵ y' duas outras sequências de Cauchy. Temos anàlogamente

$$|d(x_n, x_n^i) - d(x_n, x_n^i)| \le d(x_n^i, x_n^i) + d(x_n, x_n^i)$$

Como $\{x_n'\} \sim \{z_n'\}$ e $\{x_n\} \sim \{z_n\}$, o limite do 2º membro na última desigualdade quando $n \to \infty$, é zero; isto prova a segunda asserçã Y é um espaço métrico. A condição i), da definição l.14.1, segue diretamente da definição de Y. A validade da condição ii) em Y é decorrência da sua validade em X, e o mesmo ocorre com a condição iii).

Definamos Y_0 como o subespaço de Y constituido pelas classes de equivalência determinadas pelas sequências de Cauchy em X da forma $\{x,x,x,\ldots\}$. Em outras palavras um elemento de Y_0 é uma classe de equivalência que contém uma sequência da forma $\{x,x,x,\ldots\}$, para algum $x\in X$. Daquí resulta imediatamente que X e Y_0 são isométricos. Mostremos que Y_0 <u>é denso em Y. Seja yeY; consideremos uma bola qualquer de centro em Y; seja Y0 seu raio. Tomemos $\{x_n\}$ 0 y; por definição existe Y0 inteiro tal que Y1 y determinada pela sequência Y2. Tomemos a classe de equivalência Y3 determinada pela sequência Y4. Temos, por definição:</u>

$$d(y,\hat{y}) = \lim_{n \to \infty} d(x_n,x_N)$$
.

De $d(x_n,x_N) < \epsilon/2$ para $n \ge N$, segue $d(y,\hat{y}) \le \epsilon/2 < \epsilon$. Logo tôda bola de centro em $y \in Y$ contém um $\hat{y} \in Y_0$; portanto $\overline{Y}_0 = Y$.

Provemos, agora, que Y é completo.

Seja $\{y_n\}$ uma sequência de Cauchy em Y. Como $\bar{Y}_0 = Y$, para todo n existe $\hat{y}_n \in Y_0$ tal que $d(y_n, \hat{y}_n) < 1/n$. A sequência $\{\hat{y}_n\}$ é de Cauchy pois

$$\begin{split} d(\hat{y}_{n}, \hat{y}_{m}) & \leq d(\hat{y}_{n}, y_{n}) + d(y_{n}, y_{m}) + d(y_{m}, \hat{y}_{m}) \\ & \leq \frac{1}{n} + \frac{1}{m} + d(y_{n}, y_{m}) . \end{split}$$

Como Y e X são isométricos a sequência $\{x_n\}$, onde x_n é o elemento de X correspondente ao elemento \hat{y}_n de Y e também de Cauchy.

Seja y a classe de equivalência que contém $\left\{ \mathbf{x}_{n}\right\}$. Como

$$\{\mathbf{x}_n, \mathbf{x}_n, \mathbf{x}_n, \dots\} \in \hat{\mathbf{y}}_n$$
 , vem

$$d(\hat{y}_n, y) = \lim_{m \to \infty} d(x_n, x_m)$$

Daqui segue $\lim_{n\to\infty} d(\hat{y}_n, y) = 0$. Por outro lado a desigualdade

$$d(y_n, y) \le d(y_n, \hat{y}_n) + d(\hat{y}_n, y) < 1/n + d(\hat{y}_n, y)$$

implica também $\lim_{n\to\infty} d(y_n,y) = 0$. Portanto $y_n\to y$, isto é, tôda sequência de Cauchy em Y é convergente. C.Q.D.

Um espaço métrico pode ter mais de um completamento. Por exemplo, os números reais definidos através dos cortes de Dedekind constituem um completamento dos racionais; por outro lado o processo usado na prova do teorema anterior também serve para obter um completamento dos racionais, o qual é evidentemente distinto do primeiro. A êste respeito temos o seguinte teorema.

1.16.6 <u>Teorema</u> - Dois completamentos quaisquer de um mesmo espaço métrico são isométricos.

Prova: Seja X o espaço métrico do qual Y e Z são completamentos. Definimos a bijeção b:Y-Z como segue.

Seja yeY; por definição existe $\{x_n\}$ em X tal que $x_n \longrightarrow y$. (Aqui nos beneficiamos da simplificação que consiste em identificar X com Y_0). Como X também pode ser identificado com $Z_0 \subset Z$, e como $\{x_n\}$ também é sequência de Cauchy em Z, existe $Z \in Z$ tal que $x_n \longrightarrow Z$. Definimos então f(y) = Z.

É fácil verificar que f é uma bijeção de Y sôbre Z. Sejam agora y,y' ϵ Y, quaisquer. Sejam z=f(y) e z'=f(y').

Pela definição de f, existem $\{x_n\}$, $\{x_n'\}$ em X, tais que $x_n \rightarrow y$, $x_n' \rightarrow y'$ em Y e $x_n \rightarrow z$, $x_n' \rightarrow z'$ em Z. Como a distância é uma aplicação contínua vem:

$$d(y,y') = \lim_{n \to \infty} d(x_n,x_n')$$

$$d(z,z') = \lim_{n \to \infty} d(x_n,x_n') ;$$

daí segue d(y,y') = d(z,z'). Portanto f é uma isometria. C.Q.D.

- 1.16.7 Observação: Podemos também construir um completamento de um espaço métrico X em que o próprio X é um subconjunto denso. Basta tomar o completamento Y dado pelo teorema 1.16.5 e construir o espaço métrico $\hat{X} = X \cup (Y-Y_0)$ com a distância definida do modo óbvio, sugerido pelo teorema 1.16.6.
- 1.17 Exercício 1 Mostre que o espaço métrico C[a,b] definido em 1.14.2 d) é completo.
- Exercício 2 Mostre que o Rⁿ, com qualquer uma das métricas correspondentes às dadas em 1.14.2, é completo.

Capítulo 2

ESPAÇOS MÉTRICOS COMPLETOS:

ALGUNS RESULTADOS FUNDAMENTAIS

2.1 Aplicações contrativas

2.1.1 Definição - Seja T:X - X uma aplicação em um espaço métrico X. A aplicação T é dita aplicação
contrativa, ou simplesmente contração, se existe uma constante
Θ satisfazendo 0 < Θ < 1, tal que

$$d(T(x),T(y)) \leq \Theta \cdot d(x,y) \tag{1}$$

para todo par de elementos $x,y \in X$.

Observemos que tôda contração é uma aplicação contínua pois de $d(x,y) < \epsilon$ segue $d(T(x),T(y)) < \epsilon$ também.

2.1.2 Teorema - Tôda contração T em um espaço métrico completo X tem exatamente um ponto fixo, isto é, um x tal que T(x) = x.

<u>Prova:</u> Tomemos um qualquer $x_0 \in X$ e definamos $x_n = T(x_{n-1})$ (n=1,2,...). Temos

$$d(x_{n+1},x_n) = d(T(x_n),T(x_{n-1})) \le \Theta \cdot d(x_n,x_{n-1})$$

Por indução sôbre n obtemos

$$d(x_{n+1}, x_n) \le \Theta^n \cdot d(x_1, x_0)$$
.

Por outro lado se n > m temos:

$$\begin{split} d(x_{n},x_{m}) & \leq d(x_{n},x_{n-1} + d(x_{n-1},x_{n-2}) + \dots + d(x_{m+1},x_{m}) \\ & \leq (\theta^{n-1} + \theta^{n-2} + \dots + \theta^{m}) d(x_{1},x_{0}) \\ & \leq \frac{\theta^{m}}{1-\theta} d(x_{1},x_{0}) . \end{split}$$

Logo $\{x_n\}$ é uma sequência de Cauchy pois $\Theta^m \to 0$ quando $m \to \infty$. Como X é completo, $x_n \to x$, para um certo $x \in X$. Como T é continua temos $T(x_n) \to T(x)$ (proposição 1.15.4). Portanto fazendo $n \to \infty$ na expressão $x_{n+1} = T(x_n)$ obtemos x = T(x). Seja agora $y \in X$ tal que T(y) = y. De $d(x,y) = d(T(x),T(y) < \Theta.d(x,y)$ concluimos que d(x,y) = 0, pois $\Theta < 1$. Logo y = x; isto prova a unicidade do ponto fixo. C.Q.D.

Observação: Nas aplicações práticas sucede muitas vezes que T não é uma contração, mas sua restrição T|S a um subconjunto fechado S do espaço métrico completo X satisfaz à desigualdade (1). Neste caso se poudermos assegurar que $T(S) \subset S$ então podemos aplicar o teorema anterior à aplicação $T|S:S \to S$, levando-se em conta que o fechado S também é um espaço métrico completo. Uma condição simples que assegura a inclusão acima pode ser dada quando S é o fêcho de uma bola, isto é, $S = \overline{B}_r(x_0)$; esta condição é: $d(x_0,T(x_0)) < r(1-0)$. De fato de $y \in \overline{B}_r(x_0)$ segue $d(x_0,T(y)) \le d(x_0,T(x_0)) + d(T(x_0),T(y)) < r(1-0) + 0r = r$. De $d(x_0,T(y)) < r$ segue $T(y) \in \overline{B}_r(x_0)$. Note o leitor que esta condição adicional refere-se apenas a x_0 e à sua imagem $T(x_0)$.

Capítulo 2

ESPAÇOS MÉTRICOS COMPLETOS: ALGUNS RESULTADOS FUNDAMENTAIS

2.1 Aplicações contrativas

2.1.1 <u>Definição</u> - Seja T:X → X uma aplicação em um espaço métrico X. A aplicação T é dita <u>aplicação</u>
contrativa, ou simplesmente contração, se existe uma constante
⊕ satisfazendo 0 < ⊕ < 1, tal que

$$d(T(x),T(y)) \leq \Theta \cdot d(x,y) \tag{1}$$

para todo par de elementos x,y & X.

Observemos que tôda contração é uma aplicação contínua pois de $d(x,y) < \epsilon$ segue $d(T(x),T(y)) < \epsilon$ também.

2.1.2 Teorema - Tôda contração T em um espaço métrico completo X tem exatamente um ponto fixo, isto é, um x tal que T(x) = x.

<u>Prova</u>: Tomemos um qualquer $x_0 \in X$ e definamos $x_n = T(x_{n-1})$ (n=1,2,...). Temos

$$d(x_{n+1},x_n) = d(T(x_n),T(x_{n-1})) \le \Theta \cdot d(x_n,x_{n-1})$$

Por indução sôbre n obtemos

$$d(x_{n+1}, x_n) \le \Theta^n \cdot d(x_1, x_0)$$

Por outro lado se n > m temos:

$$\begin{split} d(x_{n},x_{m}) & \leq d(x_{n},x_{n-1} + d(x_{n-1},x_{n-2}) + \dots + d(x_{m+1},x_{m}) \\ & \leq (\Theta^{n-1} + \Theta^{n-2} + \dots + \Theta^{m}) d(x_{1},x_{0}) \\ & \leq \frac{\Theta^{m}}{1-\Theta} d(x_{1},x_{0}) . \end{split}$$

Logo $\{x_n\}$ é uma sequência de Cauchy pois $\Theta^m \to 0$ quando $m \to \infty$. Como X é completo, $x_n \to x$, para um certo $x \in X$. Como T é continua temos $T(x_n) \to T(x)$ (proposição 1.15.4). Portanto fazendo $n \to \infty$ na expressão $x_{n+1} = T(x_n)$ obtemos x = T(x). Seja agora $y \in X$ tal que T(y) = y. De d(x,y) = d(T(x),T(y) < 0.d(x,y) concluimos que d(x,y) = 0, pois 0 < 1. Logo y = x; isto prova a unicidade do ponto fixo. C.Q.D.

Observação: Nas aplicações práticas sucede muitas vezes que T não é uma contração, mas sua restrição T|S a um subconjunto fechado S do espaço métrico completo X satisfaz à desigualdade (1). Neste caso se poudermos assegurar que $T(S) \subset S$ então podemos aplicar o teorema anterior à aplicação. $T|S:S\to S$, levando-se em conta que o fechado S também é um espaço métrico completo. Uma condição simples que assegura a inclusão acima pode ser dada quando S é o fêcho de uma bola, isto é, $S = \overline{B}_{\mathbf{r}}(\mathbf{x}_0)$; esta condição é: $d(\mathbf{x}_0,T(\mathbf{x}_0)) < r(1-\Theta)$. De fato de $\mathbf{y} \in \overline{B}_{\mathbf{r}}(\mathbf{x}_0)$ segue $d(\mathbf{x}_0,T(\mathbf{y})) \leq d(\mathbf{x}_0,T(\mathbf{x}_0)) + d(T(\mathbf{x}_0),T(\mathbf{y})) < r(1-\Theta) + \Theta \mathbf{r} = \mathbf{r}$. De $d(\mathbf{x}_0,T(\mathbf{y})) < \mathbf{r}$ segue $T(\mathbf{y}) \in \overline{B}_{\mathbf{r}}(\mathbf{x}_0)$. Note o leitor que esta condição adicional refere-se apenas a \mathbf{x}_0 e à sua imagem $T(\mathbf{x}_0)$.

2.1.3 Aplicação à solução de equações diferenciais ordinárias.

Consideremos a seguinte equação diferencial ordinária de la. ordem $\frac{dx}{dt}=g(t,x)$ com a condição inicial x(0)=a. Suponhamos que g(t,x) está definida para $-\infty < x < \infty$, $0 \le t \le b$ sendo contínua nesta região e Lipschitz-contínua com constante M na la. variável uniformemente no intervalo [0,b], com b>0; isto é, quanto à la. variável g deve satisfazer à dondição

$$|g(t,x) - g(t,y)| \le M \cdot |x-y|$$
 (2)

para quaisquer x,y reais e t em [0,b].

A equação diferencial, junto com a condição inicial dada, é equivalente à equação integral

$$s(t) = a + \int_0^t g(x,s(x))ds \quad 0 \le t \le b$$

como se vê fàcilmente.

Consideremos o espaço métrico C[0,b] definido em 1.17; sabemos que é completo. Por outro lado se definirmos a aplicação $T: C[0,b] \longrightarrow C[0,b]$ pela fórmula $(T(x))(t) = a + \int_0^t g(s,x(s))ds$, para $0 \le t \le b$, podemos reescrever a equação integral como x = T(x).

De (2) resulta então para todo t ϵ [0,b]:

$$|(T(x))(t) - (T(y))(t)| \le \int_0^t |g(t,x) - g(t,y)| dt$$
 $\le M \int_0^t |x-y| dt$

$$\leq M. \max_{a \leq t \leq b} |x-y|. \int_{0}^{t} dt \leq Mb.d(x,y).$$

Portanto temos:

$$d(T(x),T(y)) \leq Mb \cdot d(x,y)$$
.

Se tomarmos $b<\frac{1}{M}$, a aplicação T será uma contração. Aplicando o teorema 2.1.2 concluimos pela existência e unicidade da solução da equação diferencial com valor inicial, no intervato [0,b] com $b<\frac{1}{M}$.

Observação: É mais comum, porém, o caso em que a função g(t,x) está definida tão sòmente em um aberto A limitado contendo o ponto (0,a), sendo contínua em t e Lipschitz-contínua em relação a x. Neste caso tomando-se um retângulo R_1 to do contido em A, dado por $a-r_1 \le x \le a+r_1$, $-b_1 \le t \le b_1$, com r_1 , $b_1 > 0$, a aplicação T anteriormente definida passa a ser uma aplicação de $\overline{B_r(x_0)}$ em C[-b,b], para todo $0 < r \le r_1$ e $0 < b \le b_1$, onde x_0 é definida por $x_0(t) = a$ para $|t| \le b$.

A constante de contração será, como antes, $\Theta=Mb$. Pela observação anterior devemos escolher r e Θ de modo que $d(x_0,T(x_0))< r(1-\Theta)$ (*) Temos

$$(T(x_0))(t) = a + \int_0^t g(t,a)dt$$

e portanto

$$d(x_0,T(x_0)) = \max_{|t| \le b} \left| \int_0^t g(t,a)dt \right|.$$

Como g é contínua em R_1 , |g| é limitada em R_1 , digamos por K. Daí: $d(x_0,T(x_0)) \le Kb$. Basta então tomar r e b de modo que Mb < 1 e Kb < r(1-Mb) para assegurar as condições $\theta < 1$ e (*), respectivamente. Fixando $r = r_1$ obtemos daí $b < \frac{r_1}{K+Mr_1}$, que preenche a ambas. Daquí segue, então, a existência e a unicidade da solução no intervalo [-b,b] assim escolhido.

Exercício - Aplique o teorema do ponto fixo à equação integral linear não homogênea de Fredholm:

$$s(t) = \lambda \int_{a}^{b} K(t,s)x(s)ds + \varphi(t) , \qquad a \le t \le b ,$$

onde K(t,s) e ϕ (t) são funções continuas conhecidas, x(t) é a função a determinar e λ é um parâmetro. Determine valores de λ para os quais há solução.

2.2 Categoria de um espaço métrico completo.

2.2.1 Lema - Seja X um espaço métrico completo e $\{S_n\}$ uma sequência de subconjuntos fechados não vazios tais que $S_1 \supset S_2 \supset S_3 \supset \dots$ e para os quais $\operatorname{diam}(S_n) \longrightarrow 0$ quando $n \longrightarrow \infty$. Então $\bigcap_{n=1}^\infty S_n$ consiste exatamente de um ponto x de X. Prova: Escolhemos um ponto $x_n \in S_n$ para cada $n=1,2,\dots$

Se m < n, tanto x_m como x_n estão em S_m e portanto $d(x_n,x_m) \le diam(S_m)$. Daqui segue que $d(x_n,x_m) \longrightarrow 0$ quando $m,n \longrightarrow \infty$; isto é, $\{x_n\}$ é uma sequência de Cauchy e portanto $\{x_n\}$ converge para um certo x, por ser X completo. Êste x pertences a $\bigcap_{n=1}^{\infty} S_n$, pois em caso contrário, se x pertencesse ao

complemento de algum S_m , haveria uma bola $B_r(x)$ tôda contida neste complemento, por ser êste aberto. Então seria $d(x,x') \ge r$ para todo $x' \in S_m$ e em consequência também para $x' \in S_n$, com $n \ge m$. Daí não teríamos $x_n \longrightarrow x$.

É imediato que x é o único ponto na intersecção dada. C.G.D.

2.2.2 Teorema (Baire) - Seja X um espaço métrico completo não vazio e $\left\{ A_n \right\}$ uma coleção enumerável de conjuntos abertos, densos em X. Então $\bigcap_n A_n$ também é denso em X. Prova: Dado um ponto x qualquer de X e uma bola B de centro em x há um x_1 de A_1 nesta bola, por ser A_1 denso em X. Como A_1 é aberto há uma bola B_1 de centro em x_1 cujo fêcho está contido em A_1 ; podemos tomar seu raio suficientemente pequeno para que também tenhamos $\overline{B}_1 \subset B$; isto é, temos $\overline{B}_1 \subset A_1 \cap B$. Como A_2 é denso há um x_2 de A_2 em B_1 . Como A_2 é aberto podemos tomar uma bola B_2 de centro em x_2 tal que $\overline{B}_2 \subset A_2 \cap B_1$, pelo mesmo crtiério usado na escolha de B_1 . Podemos ainda impôr que diam $(B_2) = \frac{1}{2}$ diam (B_1) . Por indução construimos por êste processo uma sequência de bolas $\left\{ B_n \right\}$ tais que

 $\overline{\mathbb{B}}_n \subset \mathbb{A}_n \cap \mathbb{B}_{n+1}$ e $\operatorname{diam}(\mathbb{B}_n) \leq \frac{1}{2} \operatorname{diam}(\mathbb{B}_{n-1})$

n=2,3,... Esta última condição garante que $\operatorname{diam}(\overline{\mathbb{B}}_n) \to 0$ quando n $\to \infty$. Como por outro lado vale $\overline{\mathbb{B}}_n \subset \overline{\mathbb{B}}_{n-1}$ para n=2,3,... o lema anterior nos diz que $\bigcap_{n=1}^{\infty} \overline{\mathbb{B}}_n = \{p\}$ para um certo $p \in X$. Por construção temos $\bigcap_{n=1}^{\infty} \overline{\mathbb{B}}_n \subset \bigcap_{n=1}^{\infty} A_n$ e também $\bigcap_{n=1}^{\infty} \overline{\mathbb{B}}_n \subset \mathbb{B}$.

Logo dado $x \in X$ e dada a bola B de centro em x há um

p $\epsilon \bigcap_{n=1}^{\infty} A_n$ também nesta bola. Como x e B são quaisquer isto prova que $\bigcap_{n=1}^{\infty} A_n$ é denso em X. C.Q.D.

Os três enunciados seguintes são formas equivalentes do teorema de Baire.

- 2.2.3 Teorema de Baire Em um espaço métrico completo $X \neq \emptyset$ valem os enunciados:
 - I) Se ja $\{A_n\}$ família enumerável de abertos densos; então $\bigcap_{n=1}^{\infty} A_n$ é denso.
 - II) X é de segunda categoria.
 - III) Se $X = \bigcup_{n=1}^{\infty} F_n$, F_n fechados $n=1,2,\ldots$ então pelo menos um F_n contém uma bola.
- Prova: I \Rightarrow II Seja $\left\{E_n\right\}$ uma família enumerável de conjuntos magros em X. Então $\overline{E}_n = \partial E_n$ e portanto $A_n = C(\overline{E}_n)$ são abertos densos em X. Pela I) há $x \in \bigcap_n A_n$ e daí $x \notin \bigcup_n E_n$, isto é $X \bigcup_n E_n \neq \emptyset$. Logo X não pode ser de la. categoria.
- II \Rightarrow III: Se nenhum \mathbb{F}_n contivesse uma bola, os \mathbb{F}_n seriam magros e daí \mathbb{X} seria de la. categoria.
- III \Rightarrow I: Se $\bigcap_{n=1}^{\infty}$ A_n não fôsse denso haveria uma bola cujo fêcho E estaria contido no seu complemento, i.e,em $\bigcup_{n=1}^{\infty}$ C(A_n). Como B é um espaço métrico completo por ser fechado \subseteq X, como B = $\bigcup_{n=1}^{\infty}$ [B \cap C(A_n)] e como estas intersecções são conjuntos

relativamente fechados, III implica a existência de uma bola B

contida em um certo B \cap C(A_n). Mas então A_n não seria denso em X , o que contraria a hipótese. C.Q.D.

Como a aplicação do teorema de Baire provaremos os segui<u>n</u> tes resultados.

2.2.4 Teorema - Dada uma família 3 de funções reais contínuas em um espaço métrico completo X que são limitadas pela mesma constante $K(\mathbf{x})$ para cada $\mathbf{x} \in X$, existe uma bola na qual as funções são uniformemente limitadas.

Prova: Seja $F_n = \{x \in X \mid f(x) \le n \text{ para qualquer } f \in \mathfrak{F} \}$ $n=1,2,\ldots$. Pela continuidade das funções os F_n são fechados. Para cada x basta tomar $n \ge K(x)$ para ver que $x \in F_n$. Portanto $X = \bigcup_n F_n$. Pela forma III do Teorema de Baire, há uma bola contida em um certo A_N . Como em A_N tôdas as funções são limitadas por N, segue o resultado. C.Q.D.

2.2.5 <u>Teorema</u> - Há funções continuas no intervalo [0,1] que não são diferenciáveis em menhum ponto dêste intervalo.

Prova: Seja X = C[0,1]; já vimos que êste espaço métrico é completo. Definimos o conjunto

 $K_n = \left\{ x \middle| \left| \frac{x(t+h) - x(t)}{h} \right| \le n \text{ para todo } h \neq 0 \text{ e algum } t \right\}$ (n=1,2,3,...).

Mostremos que:

a) K_n são fechados. Seja $\{x_j\}$ uma sequência convergente a x_j com $x_j \in K_n$, $j=1,2,\ldots$, n fixo. Por definição há pontos

 $t_j \in [0,1]$, j=1,2,..., para os quais vale $\left|\frac{x_j(t_j+h)-x_j(t_j)}{h}\right| \le n \quad \text{para todo } h \ne 0.$

Como consequência do teorema de Bolzano-Weierstrass $\{t_j\}$ contém uma subsequência $\{t_j\}$ convergente a um ponto t_0 .

De
$$|x_{j}(t_{j}) - x(t_{o})| \le |x_{j}(t_{j}) - x(t_{j})| + |x(t_{j}) - x(t_{o})|$$

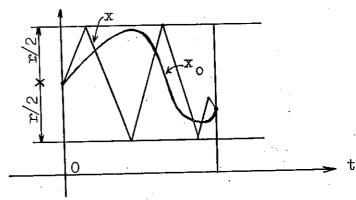
 $\le d(x_{j},x) + |x(t_{j}) - x(t_{o})|$

obtemos que $x_{j'}(t_{j'}) \longrightarrow x(t_{0})$, quando $j' \longrightarrow \infty$. Anàlogamente para h fixo vem $x_{j'}(t_{j'}+h) \longrightarrow x(t_{0}+h)$. Portanto obtemos

$$\left|\frac{x(t_0 + h) - x(t_0)}{h}\right| \le n \quad \text{para todo } h \ne 0,$$

isto é $x \in K_n$.

b) K_n <u>não contém nenhuma bola</u>. Dado $x_o \in C[0,1]$ seja $B_r(x_o)$ a bola de raio r e centro em x_o . Pela continuidade uniforme de x_o há um $\delta > 0$ tal que $|x_o(t) - x_o(t')| < \frac{r}{2}$ sempre que $|t-t'| < \delta$. Dividimos o intervalo [0,1] em intervalos sucessivos de comprimento $< \delta$, e em cada um dêstes intervalos definimos uma função contínua x cujo gráfico é constituído por segmentos retilíneos com coeficiente angular > n, em módulo, como indica a figura:



É claro que x é continua em [0,1] e que $x \in B_r(x_0)$; no entanto $x \notin K_n$. Como x_0 e r são arbitrários segue a b). Como \overline{K}_n não contém nenhuma bola (temos $\overline{K}_n = K_n$), K_n é magro. Pela forma II do teorema de Baire há um x em C[0,1] que não pertence a $\bigcup_n K_n$. Mas como uma função contínua é diferenciável em algum ponto se e só se pertence a algum K_n , segue que x não é diferenciável em nenhum ponto. C.Q.D.

Capítulo 3

ESPAÇOS VETORIAIS NORMADOS

3.0 Espaço vetorial.

Sejam E um conjunto e K um corpo. Suponhamos que existem aplicações de E x E em E e de K x E em E, as quais denotaremos por $(x,y) \longrightarrow x+y$ e $(\lambda,x) \longrightarrow \lambda x$, respectivamente, satisfazendo às condições:

- $1) \quad x+y = y+x$
- 2) x + (y+z) = (x+y) + z
- 3) existe um elemento \circ de E tal que $x + \circ = x$ para todo x.
- 4) a todo x de E corresponde um elemento, que denotamos por -x, tal que x + (-x) = 6.
- 5) $\lambda(x+y) = \lambda x + \lambda y$
- 6) $(\lambda + \vartheta)x = \lambda x + \vartheta x$
- $7) \quad (\lambda \vartheta)_{X} = \lambda(\vartheta_{X})$
- 8) 0.x = 6
- 9) 1.x = x

Dizemos que E, com estas duas aplicações, constitue um espaço vetorial sôbre K. Chamamos vetores aos elementos de E, escalares aos de K; o vetor x+y é chamado soma dos vetores x e y e o vetor λx diz-se produto de x pelo escalar λ.

Suporemos o leitor já familiarizado com tôdas as noções relativas aos espaços vetoriais de dimensão finita, estudados na

Algebra Linear. Somente consideraremos aqui os casos em que K é o corpo dos reais R ou o dos complexos C, e em geral, omitiremos referência específica.

- 3.1 <u>Definição</u> Uma <u>norma</u> em um espaço vetorial E é uma aplicação | |:E -> R, satisfazendo as seguintes con dições:
 - i) $\|\mathbf{x}\| \ge 0$ e $\|\mathbf{x}\| = 0$ se e só se $\mathbf{x} = 0$
 - ii) $|\lambda x| = |\lambda|_{\alpha} |x|$
 - iii) $|x+y| \le |x| + |y|$

Destas propriedades resulta imediatamente que a função definida por $d(x,y) = \|x-y\|$ é uma distância (verifique); em particular, a desigualdade triangular decorre de $\|x-y\| \le \|x-z\| + \|z-y\|$. Um espaço vetorial considerado também como espaço métrico, com a métrica induzida por esta norma, é dito espaço vetorial normado.

3.1.1 Exemplos: Nos exemplos a seguir consideraremos espaços constituidos por funções reais ou complexas definidas em um certo conjunto T. O leitor verificará que êstes espaços se tornam espaços vetoriais se a soma e o produto por escalar são definidos por

$$(x+y)(t) = x(t) + y(t), (\lambda x)(t) = \lambda x(t), teT$$

Em particular se $T=\{1,2,3,\ldots,n\}$ obtemos os espaços $V_n(\mathbb{R})$ ou $V_n(\mathbb{C})$, das n-uplas de reais ou complexos com soma e produto escalar definidos pelas operações correspondentes sôbre as componentes. Se T= conjunto dos inteiros naturais, obtemos espaços

vetoriais de sequências.

Exemplo 1 - Podemos introduzir vários tipos de normas em $V_n(\mathcal{L})$ (e em consequência em $V_n(\mathbb{R})$). Para $p \ge 1$ e $x = (\xi_1, \xi_2, \dots, \xi_n) \in V_n(\mathcal{L})$ façamos

$$\|\mathbf{x}\| = (|\xi_1|^p + |\xi_2|^p + \dots + |\xi_n|^p)^{1/p}$$
 (3.1)

É imediato que os axiomas i) e ii) são satisfeitos. Quanto ao axioma iii) sua expressão em têrmos de (3.1) é:

$$\left(\sum_{i=1}^{n} \left| \xi_{i} + \eta_{i} \right|^{p} \right)^{1/p} \leq \left(\sum_{i=1}^{n} \left| \xi_{i} \right|^{p} \right)^{1/p} + \left(\sum_{i=1}^{n} \left| \eta_{i} \right|^{p} \right)^{1/p} , \quad (3.2)$$

que se chama <u>desigualdade de Minkowski</u>; sua validez é provada a seguir, bastando considerar o caso p > 1, pois para p = 1 ela é imediata.

Desigualdades de Holder e de Minkowski

A desigualdade de Holder é:

$$\sum_{i=1}^{n} |\xi_{i} \cdot \eta_{i}| \leq \left(\sum_{i=1}^{n} |\xi_{i}|^{p} \right)^{1/p} \cdot \left(\sum_{i=1}^{n} |\eta_{i}|^{q} \right)^{1/q}$$
 (3.3)

onde q é definido por $q = \frac{p}{p-1}$ e portanto satisfaz

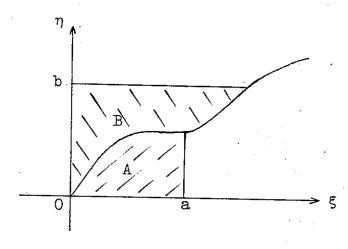
$$\frac{1}{D} + \frac{1}{d} = 1 \tag{3.4}$$

Como a (3.3) é homogênea, isto é, contínua válida ao substituir-mos x por λx e y por λy , λ escalar, basta prová-la no caso em que

$$\sum_{i=1}^{n} |\xi_{i}|^{p} = \sum_{i=1}^{n} |\eta_{i}|^{q} = 1$$
 (3.5)

Neste caso o 2º membro da (3.3) é igual a 1. Para tanto obser-

vemos que se $\eta = f(\xi)$, com η, ξ reais ≥ 0 , fôr uma função con tínua monótona não decrescente, tal que f(0) = 0 e $f(\xi) \longrightarrow \infty$ quando 5→∞, então, dados dois números positivos a,b quaisquer a soma das áreas A, B indicadas na figura é ≥ ab.



Daí
$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$
.

Aplicando êste resultado no caso em que $\eta = f(\xi) = \xi^{p-1}$ e portanto₁ $\xi = \eta^{p-1} = \eta^{q-1}, \text{ obtemos}.$

$$\xi = \eta^{\overline{p-1}} = \eta^{q-1}$$
, obtemos

$$A = \int_0^a \xi^{p-1} d\xi = a^p/p$$

$$B = \int_0^a \eta^{q-1} d\eta = b^q/q$$

 $a = |\xi_i|$, $b = |\eta_i|$ e somando sôbre i de la n obtemos

$$\sum_{i=1}^{n} |\xi_{i}\eta_{i}| \leq 1 ,$$

levando em conta (3.5) e (3.4), que é o que queríamos provar.

Para provar a desigualdade de Minkowski pomos a = |5|, $b = |\eta_i|$ na identidade

$$(a+b)^p = (a+b)^{p-1}.a + (a+b)^{p-1}.b$$
,

válida para a,b ≥ 0, e somamos sôbre i de l a n. Obtemos:

$$\sum_{i=1}^{n} (|\xi_{i}| + |\eta_{i}|)^{p} = \sum_{i=1}^{n} (|\xi_{i}| + |\eta_{i}|)^{p-1} \cdot |\xi_{i}| + \sum_{i=1}^{n} (|\xi_{i}| + |\eta_{i}|)^{p-1} \cdot |\eta_{i}| \cdot$$

Aplicando a desigualdade de Holder a cada um dos somatórios no 2º membro desta igualdade, separadamente, e levando em conta que (p-1)q = p obtemos:

Dividindo os dois membros desta desigualdade pelo prime \underline{i} ro fator do 2º obtemos a (3.2).

Nota - O espaço vetorial normado assim obtido é denotado por $\ell^p(n). \mbox{ Ao espaço vetorial normado obtido com esta norma definida sôbre <math>V_n(\ensuremath{\,\overline{IR}\,})$ chamaremos $\ell^p(n)$ sôbre os reais. Uma outra norma em $V_n(\ensuremath{\,\overline{C}\,})$ é dada por

$$\|\mathbf{x}\| = \max \left\{ |\mathbf{\xi}_1|, \dots, |\mathbf{\xi}_n| \right\}.$$

Neste caso se denota o correspondente espaço vetorial normado por $\iota^{\infty}(n)$, o que é motivado pelo fato que

$$\max_{1 \le i \le n} |\xi_i| = \lim_{p \to \infty} (|\xi_1|^p + \dots + |\xi_n|^p)^{1/p}.$$

Exercício: Prove esta igualdade.

 $\frac{\text{Exemplo 2}}{\text{rial das sequencias}} \sim \frac{\ell^p}{p}, \ p \geq 1, \ \text{como o espaço veto-rial das sequencias} \quad x = \left\{\xi_i\right\}_{i=1}^\infty \quad \text{para as quais vale} \\ \sum_{i=1}^\infty \left|\xi_i\right|^p < \infty \ , \ \text{sendo a norma definida por}$

$$\|x\|_{p} = \left(\sum_{i=1}^{\infty} |\xi_{i}|^{p}\right)^{1/p}$$
.

Exercício: Prove que ℓ^p é um espaço vetorial e que $\|\mathbf{x}\|_p$ é de

fato uma norma. (Sugestão: estenda a desigualdade de Minkowski para séries; para isto note que $\|x\|_p + \|y\|_p$ é maior ou igual do que o 2º membro da (3.2), e portanto as somas parciais da série $\sum_{i=1}^{\infty} \left|\xi_i + \eta_i\right|^p \text{ são limitadas}).$

O espaço ℓ^∞ é definido como o espaço vetorial das sequências $x=\left\{\xi_i\right\}_{i=1}^\infty$ limitadas, com a norma

$$\|\mathbf{x}\|_{\infty} = \sup_{\mathbf{i}} \|\boldsymbol{\xi}_{\mathbf{i}}\|$$

Nota - No caso em que p = 2, o espaço l², que é a generalização dos espaços l²(n) = espaço unitário de dimensão n,
chama-se espaço de Hilbert das sequências de quadrado somável.
Neste caso q = 2 também e as desigualdades de Holder e de
Minkowski tomam as formas, respectivamente,

$$\left|\sum_{i} |\xi_{i} \eta_{i}| \le \left(\sum_{i} |\xi_{i}|^{2} \cdot \sum_{i} |\eta_{i}|^{2}\right)^{1/2}$$

 $\left(\sum_{\mathbf{i}} \left| \mathbf{g}_{\mathbf{i}} + \eta_{\mathbf{i}} \right|^2 \right)^{1/2} \leq \left(\sum_{\mathbf{i}} \left| \mathbf{g}_{\mathbf{i}} \right|^2 \right)^{1/2} + \left(\sum_{\mathbf{i}} \left| \eta_{\mathbf{i}} \right|^2 \right)^{1/2} .$

A primeira é a desigualdade de Cauchy-Schwarz e a segunda simples mente expressa o fato de que o comprimento do lado de um triângulo (no caso $\|x+y\|_2$) é menor ou igual do que a soma do comprimento dos outros dois (no caso $\|x\|_2$ e $\|y\|_2$).

Exemplo 3 - a) Se T é um conjunto qualquer não-vazio, chamamos $B(T) \quad \text{ao espaço vetorial de tôdas funções comple-} \\ \text{xas limitadas definidas em } T, \text{ com a norma } |x| = \sup_{t \in T} |x(t)| . \\ \text{Em particular } \ell_{\infty} = B(N), \quad N = \text{conjunto dos inteiros naturais.} \\$

b) Se T além disso fôr um espaço topológico, podemos falar em funções complexas contínuas sôbre T; ao espaço vetorial formado pelas funções contínuas limitadas, com a mesmo norma que em a) representamos por C(T).

Exemplo 4 - Seja p ≥ 1; no intervalo finito [a,b] consideremos o espaço vetorial de tôdas funções complexas contínuas e definiremos sua norma por

$$\|x\| = \left(\int_{a}^{b} |x(t)|^{p} dt \right)^{1/p}$$
.

Como no Exemplo 1, prova-se que esta é de fato uma norma; para tanto usa-se a desigualdade de Minkowski para integrais

$$\left(\int_{a}^{b} |x+y|^{p} dt \right)^{1/p} = \left(\int_{a}^{b} |x(t)|^{p} dt \right)^{1/p} + \left(\int_{a}^{b} |y(t)|^{p} dt \right)^{1/p} ,$$

cuja prova se obtém simplesmente substituindo o símbolo de somatório pelo de integral nas etapas da prova dada no Exemplo 1. Denotaremos êste espaço vetorial normado por $\mathcal{E}^p[a,b]$.

3.1.2 Seja E um espaço vetorial normado e \mathbb{K} ($\mathbb{K}=\mathbb{C}$, ou $\mathbb{K}=\mathbb{R}$) seu corpo de escalares.

Notemos que K é também espaço vetôrial normado, quando se toma como norma o valor absoluto. Consideremos o espaço métrico K× E (ver 1.15.8). O produto por escalar está definido em

K xE → E. Vamos mostrar a continuidade desta aplicação. Temos

$$\|\lambda x - \lambda_0 x_0\| = \|(\lambda - \lambda_0) x_0 + \lambda(x - x_0)\| \le \|\lambda - \lambda_0\| \cdot \|x_0\| + |\lambda| \cdot \|x - x_0\| \cdot$$

Daqui resulta que de $(\lambda_n, x_n) \longrightarrow (\lambda_0, x_0)$ quando $n \longrightarrow \infty$ segue $\lambda_n x_n \longrightarrow \lambda_0 x_0$, pois $\lambda_n \longrightarrow \lambda$ e $x_n \longrightarrow x_0$, separadamente e λ_n é

limitada. Pelo teorema 1.15.4 a aplicação é contínua. Da desigualdade

$$\|(x+y) - (x_0+y_0)\| \le \|x-x_0\| + \|y-y_0\|$$

segue, anàlogamente, que a soma, como aplicação de ExE - E, é também contínua.

Que a norma também é função contínua segue de $\|x\| - \|x_0\| \le \|x - x_0\|$ (bastando usar a desigualdade triangular para obter esta última).

Observemos, de passagem, que um espaço vetorial no qual está definida uma topologia tal que a soma de vetores e o produto por escalar são funções contínuas é chamado espaço vetorial topológico (abreviadamente EVT). Portanto todo espaço vetorial normado é um EVT; a recíproca não vale, porém.

3.2 Subespaços e esfera unitária.

3.2.1 Definição - Um subespaço S de um espaço vetorial E é um subconjunto de E tal que se x,y ϵ S então também $\lambda x + \mu y \epsilon$ S.

Um subespaço S de um espaço vetorial normado E pode ser ou não ser um conjunto fechado. Se fôr fechado diremos que é um subespaço fechado.

Da continuidade da soma e do produto escalar em um espaço vetorial normado resulta imedia tamente que o fêcho \overline{S} de um subespaço S é também um subespaço.

Chamamos de esfera unitária em E ao conjunto

$$\{x \in E \mid ||x|| = 1\}$$
.

Observemos que se S é um subespaço, então todos os pontos da esfera unitária estão a uma distância <1 de S (basta notar que 0 є S e que ||x-0|| = 1 se ||x|| = 1; portanto d(x,S) = inf ||x-s|| < 1). Se o leitor traçar no plano o círculo de seS raio 1 e uma reta qualquer pela origem, verá que há um ponto do círculo cuja distância a S é exatamente 1; basta procurá-lo sô bre a normalà reta, tirada pela origem. Cabe perguntar se algo semelhante sucede no caso de um espaço vetorial normado E qualquer. A êste respeito temos o seguinte

3.2.2 <u>Teorema</u> (Lema de Riesz) - Seja E espaço vetorial normado.

Se S é um subespaço fechado próprio de E, então há pontos na esfera unitária de E cuja distância a S é arbitrariamente próxima de 1.

Prova: Seja dado Θ arbitrário tal que $0 < \Theta < 1$. Tomemos $x_1 \in E-S$; seja

$$d = d(x_1, S)$$
.

Como S é fechado temos d > 0 (ver Exercício em 1.15.9). Como $\theta^{-1}d > d$ existe $s_0 \in S$ tal que $|s_0 - x_1| \le \theta^{-1}d$, pela definição de 'd. Seja $\alpha = |s_0 - x_1|^{-1}$. O vetor $x_\theta = \alpha(s_0 - x_1)$ está na esfera unitária. Se $s \in S$ temos:

 $\|\mathbf{s}-\mathbf{x}_0\| = \|\mathbf{s}-\alpha(\mathbf{s}_0-\mathbf{x}_1)\| = \alpha \|(\alpha^{-1}\mathbf{s}+\mathbf{s}_0)-\mathbf{x}_1\| \ge \alpha d$ pois $\alpha^{-1}\mathbf{s}+\mathbf{s}_0\in S$ e daí $\|(\alpha^{-1}\mathbf{s}+\mathbf{s}_0)-\mathbf{x}_1\| \ge d$. Mas \mathbf{s}_0 foi escolhido de modo que $\Theta \le \alpha d$; logo $\|\mathbf{s}-\mathbf{x}_0\| \ge \Theta$ para todo $\mathbf{s}\in S$, como requerido. C.Q.D.

Todavia não é necessàriamente verdade que haja um vetor x na eg

fera unitária tal que $^{\circ}$ d(x,S) seja exatamente igual a l, como nos mostra o exemplo seguinte.

Exemplo: Seja E o subespaço de C[0,1] das funções tais que x(0)=0; como tal, E também é um espaço vetorial nor mado com a mesma norma de C[0,1]. Seja $S=\left\{x\in E\mid \int_0^1 x(t)dt=0\right\}$. É claro que S é um subespaço de E, fechado, pois de $x_n\in S$, x_n convergindo uniformemente para x, segue $\int_0^1 x(t)dt=0$, isto é, $x\in S$.

Suponhamos que houvesse $x \in E$, com $\|x\| = 1$ tal que d(x,S) = 1. Então seria $\|x-s\| \ge 1$ para todo $s \in S$. Tomemos em particular a função $s_n \in S$ dada por:

$$s_n(t) = t^{1/n}$$
, $0 \le t \le 1$, n inteiro >0.

Temos:

$$\|s_n\| = 1$$

$$\int_0^1 s_n(t)dt = \frac{n}{n+1} ,$$

0 vetor $y = x - \left[\frac{n+1}{n} \cdot \int_{0}^{1} x(t) dt\right]$, s_n pertence a S. Logo

$$1 \le \|x-y\| = \frac{n+1}{n} \cdot \int_{0}^{1} x(t) dt$$

Como isto vale para todo n inteiro positivo segue daí que

$$\int_0^1 x(t) dt \ge 1$$

o que é um absurdo pois como $x(t) \le 1$ $(0 \le t \le 1)$ e x(0) = 0 a continuidade de x obriga que esta integral seja menor do que 1.

3.3 <u>Teorema</u> - A esfera unitária de um espaço vetorial normado E é compacta se e só se E tiver dimensão finita.

<u>Prova</u>: Se E tem dimensão finita $n \ge 1$, E tem uma base x_1, x_2, \dots, x_n tal que todo $x \in E$ se expressa por uma única combinação linear dos vetores desta base, i.e.

$$x = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$$

Êste fato estabelece um isomorfismo entre E e $\ell^1(n)$ (ou entra entre $\ell^1(n)$ sobre os reais se $\ell^1(n)$ sobre os reais) dado por

$$x \longleftrightarrow (\xi_1, \xi_2, \dots, \xi_n)$$
.

Consideremos a função f definida em $\ell^1(n)$ por $f(\xi_1, \xi_2, \dots, \xi_n) = \|\xi_1 x_1 + \dots + \xi_n x_n\|$.

Seja $A = \max_{i} \|x_{i}\|$; então vem:

$$\|\xi_1 x_1 + \dots + \xi_n x_n\| \le A(|\xi_1| + \dots + |\xi_n|)$$
 (3.5')

Daqui segue que f é continua em $\ell^1(n)$. Como a esfera unitária de $\ell^1(n)$ é compacta (Corolário 1.15.7 a)), o teorema de Weierstrass nos diz que f atinge seu mínimo $\alpha \ge 0$ nesta esfera. Se α fôsse zero teríamos $\|\xi_1x_1 + \dots + \xi_nx_n\| = 0$ para um certo ponto de $\ell^1(n)$, e daí $\{x_1,\dots,x_n\}$ não seria uma base. Logo

$$\|\xi_{1}x_{1} + \dots + \xi_{n}x_{n}\| \ge \alpha \cdot (|\xi_{1}| + \dots + |\xi_{n}|)$$
 (3.6)
 $com \alpha > 0.$

Se ja agora $\{x^{(m)}\}$ uma sequência qualquer da esfera unitária de E. Pela (3.6) vem

$$|\xi_{1}^{(m)}| + \cdots + |\xi_{n}^{(m)}| \le 1/\alpha$$
, m=1,2,...

Logo a sequência $\left\{(\xi_1^{(m)},\dots,\xi_n^{(m)})\right\}_m$ contém uma subsequência convergente. Pela continuidade do produto por escalar e da soma a subsequência correspondente de $\left\{x^{(m)}\right\}$ também é convergente e converge para um x com $\|x\|=1$ (pela continuidade da norma). Pelo teorema 1.15.7, segue a tese. O caso n=0 é trivial. Reciprocamente, tomemos a cobertura aberta da esfera unitária de E constituida de tôdas as bolas de raio 1/2 e centro nesta esfera. Por ser esta compacta, por hipótese, há uma subcobertura finita, de centro em certos pontos x_1, x_2, \dots, x_n . Seja S o subespaço gerado por êstes vetores. Admitamos que S fôsse um subespaço próprio de E. Como S é fechado, o lema de Riesz asseguraria a existência de um ponto na esfera unitária de E, cuja distância a S seria > 1/2; em particular teríamos $\|x-x_1\| > 1/2$, $i=1,\dots,n$. Portanto x não estaria na subcobertura citada, o que é um absurdo. C.Q.D.

3.4 Transformações lineares.

- 3.4.1 <u>Definição</u> Sejam X e Y espaços vetoriais sôbre o mesmo corpo de escalares. Uma aplicação T:X-Y
 será dita <u>transformação linear</u> ou <u>operador linear</u> se seu domínio
 D fôr um subespaço vetorial de X e se fôr
 - i) homogênea, isto é, se $T(\lambda x) = \lambda T x$ para todo escalar λ e todo x em D;
 - ii) aditiva, isto é, se satisfizer $T(x_1+x_2) = Tx_1 + Tx_2$, $x_1,x_2 \in D$.

Somente nos interessarão os casos em que os escalares são os reais ou os complexos.

Notas - Da definição é imediato que To = 0.

Quando Y=R ou C costuma-se chamar as transformações lineares de funcionais lineares.

Uma aplicação linear também é chamada <u>homomorfismo</u> (de espaços vetoriais). Se além disto é bijetora diz-se <u>isomorfismo</u> (de espaços vetoriais).

Exemplos: 1) No espaço $V_n(\mathbb{C})$ a multiplicação por uma matriz $m \times n \quad \text{de números complexes \'e uma transformação limear de } V_n(\mathbb{C}) \quad \text{em} \quad V_m(\mathbb{C}) \, .$

2) Se K(s,t) é uma função real e continua para $0 \le s,t \le 1$, a transformação dada por $x \longrightarrow y$, com $y(t) = \int_0^1 K(s,t) ds$, $0 \le t \le 1$, é um operador linear em C[0,1].

Já a transformação $x \longrightarrow \lambda = \int_0^1 x(t) dt$ é um funcional linear em C[0,1] .

Representaremos o domínio de T pelo símbolo D_T ou por D[T]. À imagem de D_T pela T representaremos por R[T]. O leitor verificará fàcilmente que R[T] é um subespaço de Y. O conjunto $N[T] = \left\{x \in D_T \middle| Tx = 0\right\}$ é obviamente um subespaço de X e será denominado espaço nulo de T.

Observação: Quando não fizermos menção explícita do domínio de T estaremos supondo que D[T] = X.

3.4.2 <u>Inversa</u> - Sejam X e Y espaços vetoriais e T uma transformação linear de X em Y, com domínio

D[T]. Se a transformação T fôr injetora, então $T:X \longrightarrow R[T]$ tem uma aplicação inversa T^{-1} ; T^{-1} será chamada simplesmente inversa da T. O leitor verificará que $T^{-1}:Y \longrightarrow X$ é linear e que $D[T^{-1}] = R[T]$ e $R[T^{-1}] = D[T]$.

Exercício - Faça a verificação citada e mostre que T, sendo linear, é injetora se e só se Tx=0 implicar x=0.

3.4.3 Norma de uma transformação linear.

- a) Definição Sejam X e Y espaços vetoriais normados e

 T:X-Y uma transformação linear. Dizemos que T
 é limitada se existe uma constante M tal que ||Tx|| < M.||x||

 para todo x de X. (Aqui e no que segue representaremos as normas em X e Y pelo mesmo símbolo, a fim de simplificar a notação).
- b) <u>Definição</u> Se T fôr <u>limitada</u> definimos sua <u>norma</u> como o número ||T|| dado por

$$\|\mathbf{T}\| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{T}\mathbf{x}\|}{\|\mathbf{x}\|}.$$

Devido à linearidade de T temos também:

$$\|T\| = \sup_{\|\mathbf{x}\| = 1} \|T\mathbf{x}\|$$

- 3.4.3 <u>Teorema</u> Se X e Y são espaços vetoriais normados e T:X-Y é linear, então
- i) se T é continua em $x_0 \in X$, T é continua em X;
- ii) T é continua se e só se T é limitada.

Prova: Suponhamos que T é continua em x_0 e seja x_1 um ou-

tro ponto qualquer de X. Dado $\varepsilon > 0$ há um $\delta > 0$ tal que $\|x-x_0\| < \delta$ implica $\|T(x-x_0)\| < \varepsilon$.

Seja agora $\|\mathbf{x}-\mathbf{x}_1\| < \delta$; como $\|\mathbf{x}-\mathbf{x}_1\| = \|(\mathbf{x}+\mathbf{x}_0-\mathbf{x}_1) - \mathbf{x}_0\| < \delta$ segue então $\|\mathbf{T}(\mathbf{x}-\mathbf{x}_1)\| < \mathcal{E}$; isto é T é continua em \mathbf{x}_1 , e isto prova i).

Seja agora T limitada; então de $\|Tx-Tx_n\| = \|T(x-x_n)\| \le \|x-x_n\|$ e de x_n x segue $\|Tx_n\|$ e de x_n x segue $\|Tx_n\|$ e de x_n x segue $\|Tx_n\|$ e de $\|Tx-Tx_n\|$ e de $\|$

Reciprocamente suponhamos que T não é limitada. Então existe uma sequência x_n tal que $\|Tx_n\| \ge n\|x_n\|$. Considerando a sequência dada por $y_n = \frac{x_n}{n\|x_n\|}$ vemos que $y_n \to 0$; porém $\|Ty_n\| \ge 1$. Logo T é descontínua na origem e portanto em todo espaço X, pela i). C.Q.D.

- 3.4.4 <u>Teorema</u> Seja T:X-Y uma transformação linear e X e
 Y espaços vetoriais normados. Então os enunciados seguintes são equivalentes:
 - i) T⁻¹ existe e é contínua em R[T].
 - ii) Há uma constante m > 0 tal que $\|Tx\| \ge m\|x\| \ , \quad x \in X.$

Prova: Se T^{-1} existe e é continua no seu dominio então para todo $y \in R[T]$ vale $\|T^{-1}y\| \le M \|y\|$, para uma certa constante M > 0. Dado $x \in X$ temos então:

 $\|\mathbf{x}\| = \|\mathbf{T}^{-1}(\mathbf{T}\mathbf{x})\| \le M.\|\mathbf{T}\mathbf{x}\|$. Basta agora tomar $m = \frac{1}{M}$.

Reciprocamente de ii) segue que se Tx = 0 então x=0.

Pelo exercício em 3.4.2 T é uma injeção e portanto tem inversa T^{-1} sôbre R[T]. Se $y \in R[T]$ então y = Tx para um certo x

de X e daí de $x = T^{-1}y$ e da ii) segue:

$$\| \mathbf{x}^{-1} \mathbf{y} \| = \| \mathbf{x} \| \le \| \mathbf{T} \mathbf{x} \| = \| \mathbf{y} \|$$

isto é

$$\|T^{-1}y\| \le \frac{1}{m}\|y\|$$
. C.Q.D.

Basta agora aplicar o teorema anterior.

- 3.4.5 <u>Definição</u> Duas normas definidas sôbre o mesmo espaço vetorial E são ditas <u>equivalentes</u> se as topologias induzidas pelas métricas correspondentes forem coincidentes.
- 3.4.6 Teorema Duas normas $\|\cdot\|_1$ e $\|\cdot\|_2$ sôbre um espaço vetorial E são equivalentes se e só se existirem constantes positivas m e M tais que

 $m \|x_1\| \le \|x\|_2 \le M. \|x\|_1$ para todo x de E.

Prova: Sejam E_1 e E_2 os espaços vetoriais normados obtidos de E por introdução das normas $\|\cdot\|_1$ e $\|\cdot\|_2$, respectivamente. Definimos a transformação linear $T:E_1 \longrightarrow E_2$ pela expressão Tx = x. Pelo teorema 3.4.4, as desigualdades

$$\|x\|_{1} \le \|Tx\|_{2} \le M. \|x\|_{1}$$

são exatamente as condições que asseguram a continuidade simultâneamente de T e de T^{-1} . Porém como $T^{-1}(A) = A$ e $(T^{-1})^{-1}(A) = A$ para qualquer subconjunto A de E segue que T e T^{-1} são continuas simultâneamente se e só se os abertos de E_1 forem abertos de E_2 e vice-versa. C.Q.D.

3.4.7 Corolário - Os espaços $\ell^p(n)$, $1 \le p \le \infty$, têm a mesma topologia.

Exercício: Prove êste corolário calculando as constantes m e M para os diversos casos. (Como a equivalência de normas é uma relação de equivalência é suficiente fixar uma delas e variar as demais).

3.4.8 Espaços vetoriais de aplicações lineares.

O conjunto de tôdas transformações lineares de um espaço vetorial X em outro espaço vetorial Y, constitue um espaço ve torial sôbre o mesmo corpo de X e Y, desde que munido das seguintes operações:

- i) soma, definida por $(T_1+T_2)(x) = T_1x + T_2x$
- ii) produto por escalar, definido por $(\lambda T)(x) = \lambda(Tx)$, isto para todos $x \in X$ e λ no corpo dado.

Exercício: Verifique esta asserção.

3.4.9 - Agora suponhamos que X e Y são espaços vetoriais nor mados. Então sendo T:X-Y linear e limitada, já definimos sua norma por $\|T\| = \sup_{\|x\|=1} \|Tx\|$. É imediato que $\|T\| \ge 0$ e $\|T\| = 0$ se e só T = 0 onde 0 é a transformação linear definida por 0.x = 0 para todo x de X. Mais ainda vale $\|\lambda T\| = |\lambda|$. $\|T\|$. A designaldade triangular resulta de

$$\|(\mathbf{T}_{1} + \mathbf{T}_{2})\mathbf{x}\| = \|\mathbf{T}_{1}\mathbf{x} + \mathbf{T}_{2}\mathbf{x}\| \le \|\mathbf{T}_{1}\| + \|\mathbf{T}_{2}\|$$

para |x|=1. Em consequência disto introduzimos a seguinte notação.

- 3.4.10 Sejam X,Y espaços vetoriais normados. Por £(X,Y) representaremos o espaço vetorial normado das transformações lineares continuas de X em Y, com a norma dada acima.
- 3.5 Espaços de Banach.
- 3.5.1 <u>Definição</u> Um espaço vetorial normado completo chama-se espaço de Banach.
- Exemplo 1 Por 1.17 C[0,1] é completo e pelo Exemplo 3a) em 3.1.1 C[0,1] é um espaço vetorial normado. Logo é espaço de Banach.
- Exemplo 2 Todo espaço vetorial normado E de dimensão finita n , é de Banach. Basta observar que o isomorfismo de E sôbre & l(n) definido em 3.3:

$$x = \xi_1 x_1 + ... + \xi_n x_n - ... + (\xi_1, \xi_2, ..., \xi_n)$$

é um homeomorfismo, isto é, é uma aplicação continua (pela (3.6)) que tem inversa continua (pela (3.5')). Daí, se $\{y_n\}$ em E é de Cauchy, sua imagem em $\ell^1(n)$ também o será; como $\ell^1(n)$ é completo, esta sequência será convergente; pela continuidade da aplicação inversa a sequência $\{y_n\}$ deverá convergir para a imagem inversa dêste limite.

Exemplo 3 - ℓ^p , $p \ge 1$, é espaço de Banach.

De fato, se ja $\{x_n\}$ uma sequência de Cauchy , $x_n\in \ell^p$, $x_n=(\xi_1^{(n)},\xi_2^{(n)},\ldots)$, $n=1,2,\ldots$. Escrevendo a tabela infinita,

$$x_1: \xi_1^{(1)} \xi_2^{(1)} \xi_3^{(1)} \cdots$$
 $x_2: \xi_1^{(2)} \xi_2^{(2)} \xi_3^{(2)} \cdots$
 $x_3: \xi_1^{(3)} \xi_2^{(3)} \xi_3^{(3)} \cdots$

vamos mostrar que o conjunto das entradas de uma coluna k qual quer constitue sequência de Cauchy de números complexos.

Isto segue imediatamente de:

$$|\xi_{k}^{(n)} - \xi_{k}^{(m)}| = (|\xi_{k}^{(n)} - \xi_{k}^{(m)}|^{p})^{1/p} \le ||x_{n} - x_{m}||.$$

Seja então $\xi_k = \lim_{n \to \infty} \xi_k^{(n)}$.

Agora construimos o vetor $x = (\xi_1, \xi_2, ...)$ cujas entradas são exatamente os limítes das diversas colunas. Mostraremos que:

a) $x = (\xi_1, \xi_2, \dots)$ $\in \ell^p$. De fato, por ser de Cauchy, $\{x_n\}$ é limitada, isto é $\|x_n\| \le M$, para um certo M. Daí

$$\left(\sum_{i=1}^{k} |\xi_{i}^{(n)}|^{p}\right)^{1/p} \le \|x_{n}\| \le M$$

Fazendo $n \rightarrow \infty$, e observando que $\xi_i^{(n)} \rightarrow \xi_i$, obtemos:

$$\left(\sum_{j=1}^{k} \left| \xi_{j} \right|^{p}\right)^{1/p} \leq M .$$

Como k é qualquer, isto mostra que x ϵ ι^p .

b) $\|x_n-x\| \to 0$. Seja dado $\varepsilon > 0$. Daí há N tal que $\|x_n-x_m\| < \varepsilon$ se $n,m \ge N$. Portanto

$$\left(\sum_{i=1}^{k} |\xi_{i}^{(n)} - \xi_{i}^{(m)}|^{p}\right)^{1/p} \le \|x_{n} - x_{m}\| < \varepsilon$$

para $n,m \ge N$ e k qualquer. Com n e k fixos, façamos $m \longrightarrow \infty$. Obtemos

$$\left(\sum_{i=1}^{k} \left|\xi_{i}^{(n)} - \xi_{i}\right|^{p}\right)^{1/p} \leq \varepsilon$$
, se $n \geq N$.

Como k é arbitrário isto significa que $\|x_n-x\| \le \epsilon$ se $n \ge N$, isto é, $x_n - x$ e ℓ^p é completo.

Exemplo 4 - 0 espaço vetorial normado $\mathcal{C}^p[a,b]$, $p \ge 1$, dado em 3.1.1 <u>não</u> é de Banach. Vamos considerar o caso em que p = 1, a = 0, b = 2 e definir as funções contínuas

$$x_n(t) = \begin{cases} t^n, & 0 \le t \le 1 \\ 1, & 0 \le t \le 2 \end{cases}$$

Então $\{x_n\}$ é de Cauchy pois

$$\int_{0}^{2} |x_{n} - x_{m}| dt = \frac{1}{n+1} - \frac{1}{m+1} \quad \text{se} \quad n \ge m.$$

Mas $\mathbf{x}_{n}(t)$ converge pontualmente para a função discontínua

$$x_0(t) = \begin{cases} 0, & 0 \le t \le 1 \\ 1, & 1 \le t \le 2 \end{cases}$$

Como a desigualdade triangular ainda valeria se permitissemos funções contínuas por partes, a existência de uma função limite $\mathbf{x}(t)$ contínua implicaria que

$$\int_{0}^{2} |x(t) - x_{0}(t)| dt = 0$$

o que não é possível,

3.5.2 Completamento.

Se um espaço vetorial normado X não fôr completo, pode mos completá-lo como espaço métrico, pelo processo descrito no teorema 1.16.5, ou por algum outro processo. No entanto se quizermos obter um espaço de Barach a partir de X, precisamos estender a estrutura vetorial e a norma ao completamento, garantindo ainda a continuidade das operações vetoriais. Vamos usar o completamento e a notação dada em 1.16.5. Dados y,v ϵ Y, sejam $\{x_n\}$ ϵ y e $\{u_n\}$ ϵ v. Então $\{x_n+u_n\}$ também é sequência de Cauchy e portanto pertence a um z de Y. Este z só depende de y e v e não da escolha particular das sequências pois de $\{x_n'\}$ ϵ y e $\{u_n'\}$ ϵ v segue

$$\{x_n + u_n\} \sim \{x_n' + u_n'\}$$
 . (Verifique).

Então definimos a soma por y+v = z. Anàlogamente definimos λy . A norma seria definida por $\|y\| = \lim_{n \to \infty} \|x_n\|$, sendo $\{x_n\} \in y$. O zero de Y seria a classe contendo a sequência $\{\emptyset, \emptyset, \emptyset, \dots\}$, $\emptyset \in X$. É uma simples questão de rotina verificar que estas definições estão bem dadas, que X é isomorfo a Y_0 e que a métrica de Y é derivada desta norma assim introduzida, o que deixamos a cargo do leitor. Como em 1.16.7, podemos agora obter o completamento \hat{X} , o qual será um espaço de Banach do qual X é um subespaço denso.

Informamos ao leitor que o espaço $L^p(a,b)$, com $p \ge 1$, dito das funções de potência p integrável, é um espaço de Banach isométrico e isomorfo ao espaço de Banach obtido de $\mathcal{C}^p(a,b)$ pelo processo acima descrito. Isto é mostrado em teoria

da integração, onde se constroe os elementos de L^p(a,b) como classes de equivalência de funções que diferem apenas em conjuntos ditos de medida nula, com uma norma apropriada; no caso particular em que p = 1 e em que a classe contém uma função não negativa esta norma coincide com a integral de Lebesgue das funções da classe dada. Esta integral generaliza o conceito de integral de Riemann, via um processo de completamento. Com isto, o leitor que desconhece integral de Lebesgue, fica no entanto conhecendo sua ligação com o que aqui estudamos.

Um tipo de espaço de Banach muito importante é o que nos é dado pelo seguinte teorema.

3.5.3 <u>Teorema</u> - Sejam X,Y espaços vetoriais normados. Se Y é de Banach então também $\mathfrak{L}(X,Y)$ é espaço de Banach.

Prova: $\pounds(X,Y)$ foi definido como espaço vetorial normado em 3.4.10, com norma $\|T\| = \sup_{\|X\| = 1} \|Tx\|$. Vamos mostrar que é completo. Seja $\{T_n\}$ uma sequência de Cauchy; dado $\epsilon > 0$ há N tal que $n,m \geq N$ implica $\|T_m - T_n\| < \epsilon$. Daí obtemos $\|T_mx - T_nx\| \leq \|T_m - T_n\| \cdot \|x\| < \epsilon \|x\|$, usando a definição da norma dada acima. Logo $\{T_nx\}$ é uma sequência de Cauchy em Y, para todo x, e portanto tem um limite em Y por ser êste completo. Definimos uma aplicação $T:X \longrightarrow Y$ dada exatamente por êste limite, isto é fazemos $Tx = \lim_{n \to \infty} T_nx$. Da continuidade das operações vetoriais resulta imediatamente que T é linear. Por ser de Cauchy, $\{T_n\}$ é limitada, isto é, vale $\|T_n\| \leq M$ para certo M. Daí também $\|T_nx\| \leq M\|x\|$ para todo x e portanto pela con-

tinuidade da norma segue $\|Tx\| \le M\|x\|$. Logo T é limitado; pelo teorema 3.4.3 T é continua isto é $T \in \mathfrak{L}(X,Y)$. Fazendo $n \to \infty$ na desigualdade $\|T_mx - T_nx\| \le \varepsilon \|x\|$, $n,m \ge N$, obtemos $\|T_mx - Tx\| \le \varepsilon \|x\|$ e em consequência $\|T_m - T\| \le \varepsilon$ para $m \ge N$. Logo $T_m \to T$, isto é, $\mathfrak{L}(X,Y)$ é completo. C.Q.D.

3.6 Dual de um espaço vetorial normado.

Seja E um espaço vetorial normado, sôbre o corpo dos reais ou dos complexos. Introduzindo o valor absoluto como norma dos escalares êstes passam a ser espaços de Banach, respectivamente \mathbb{R} e \mathbb{C} ; representemo-los indistintamente por \mathbb{K} . Então pelo teorema anterior $\mathcal{L}(\mathbb{E},\mathbb{K})$ é um espaço de Banach e seus elementos são exatamente os funcionais lineares contínuos sôbre \mathbb{E} .

3.6.1 Definição - Chamamos $\mathfrak{L}(E,K)$ dual, ou adjunto, do espaço vetorial normado E, e $\mathfrak b$ denotamos por E^* . Em um espaço vetorial normado E_n de dimensão finita n>0, to do funcional linear f pode ser escrito

$$f(x) = \xi_1 f(x_1) + ... + \xi_n f(x_n)$$
 (3.7)

onde x_1,\ldots,x_n constituem uma base de E_n e $x=\xi_1x_1+\ldots+\xi_nx_n$. Como as aplicações $x\longrightarrow\xi_1$, $i=1,\ldots,n$, são continuas em E_n (verifique), resulta daqui que todo funcional linear sôbre E_n é contínuo. Portanto o espaço vetorial que integra E_n^* é o de todos funcionais lineares, independentemente da norma de E_n , e tem dimensão n também. No entanto a norma de E_n^* dependerá da norma de E_n .

Exemplos: 1) Dual de $\ell^{p}(n)$, $1 \le p \le \infty$.

Pela observação anterior o espaço vetorial de $(\ell^p(n))^*$ está em isomorfismo com $V_n(\mathfrak{C})$, dado por

onde $f_i = f(x_i)$, $i=1,\ldots,n$, $e=x_1,\ldots,x_n$ constituem base de $\ell^p(n)$. Tomemos a base constituida por $x_1 = (1,0,\ldots,0)$; $x_2 = (0,1,0,\ldots,0)$; $x_n = (0,\ldots,0,1)$.

Seja l \infty . Pela desigualdade de Holder ((3.3)) aplicada a (3.7) obtemos:

$$|f(x)| \le \left(\sum_{i=1}^{n} |f_{i}|^{q} \right)^{1/q} \|x\|_{p}$$

onde $q = \frac{p}{p-1}$. Portanto $\|f\| \le \left(\sum_{i=1}^{n} |f_i|^q\right)^{1/q}$. Tomemos o vetor x^0 de componentes $\xi_k^0 = |f_k|^{q-1}$. C = 10 onde $\theta_k = \arg f_k$, $k=1,\ldots,n$. Dai então:

$$f_k \xi_k^0 = |f_k|^q = |\xi_k^0|^{\frac{q}{q-1}} = |\xi_p^0|^p$$

Portanto:

$$\|x^{o}\|_{p} = \left(\sum_{k} |\xi_{k}^{o}|^{p}\right)^{1/p} = \left(\sum_{k} |f_{k}|^{q}\right)^{1/p},$$

$$f(x^{o}) = \sum_{k} |f_{k}|^{q} = \left(\sum_{k} |f_{k}|^{q}\right)^{1/q} \cdot \|x^{o}\|_{p},$$

por ser 1/p + 1/q = 1.

Logo a norma de f é exatamente

$$\|f\| = \left(\sum_{k} |f_{k}|^{q}\right)^{1/q} = \|(f_{1}, \dots, f_{n})\|_{q},$$

isto é, $(\ell^p(n))^*$ é isomètricamente isomorfo a $\ell^q(n)$, através

do isomorfismo dado acima; aqui $q = \frac{p}{p-1}$.

Exercício: Mostre que um resultado correspondente vale para os casos p = 1 e $p = \infty$.

2) Dual de ℓ^p , $1 \le p < \infty$.

Denotemos os vetores unitários por $e_1 = (1,0,\ldots)$ $e_2 = (0,1,\ldots)$, etc. Seja $\mathbf{x} = (\xi_1,\xi_2,\ldots)$ $\in \ell^p$; então os vetores $\mathbf{x}^{(n)}$ definidos mantendo-se as n primeiras componentes de \mathbf{x} e fazendo-se as demais iguais a zero, para $\mathbf{n} = 1,2,\ldots$, também estão em ℓ^p e convergem para \mathbf{x} , nos casos $\mathbf{p} \geq 1$, $\mathbf{p} < \infty$ (verifique). Seja f um funcional linear contínuo sôbre ℓ^p . Escrevamos $\mathbf{f}_i = \mathbf{f}(\mathbf{e}_i)$, $i=1,2,\ldots$. Então $\mathbf{f}(\mathbf{x}^{(n)}) = \sum_{i=1}^n \xi_i \mathbf{f}_i$, pela linearidade de f, pois $\mathbf{x}^{(n)} = \sum_{i=1}^n \xi_i \mathbf{e}_i$. Como f é contínua, $\mathbf{x}^{(n)} \to \mathbf{x}$ implica $\mathbf{f}(\mathbf{x}^{(n)}) \to \mathbf{f}(\mathbf{x})$. Portanto $\sum_{i=1}^n \xi_i \mathbf{f}_i \to \mathbf{f}(\mathbf{x})$, isto é, a série $\sum_{i=1}^n \xi_i \mathbf{f}_i$ é convergente e vale:

$$f(x) = \sum_{i=1}^{\infty} \xi_{i} f_{i}$$
, $(1 \le p < \infty)$ (3.8)

Agora consideremos primeiramente o caso $1 . Tomemos em particular o vetor <math>\mathbf{x}^{(n)}$ dado por

$$x_k^{(n)} = \begin{cases} |f_k|^{q-1} \cdot e^{-i \theta_k}, & k=1,...,n \\ 0, & k>n \end{cases}$$

onde $\Theta_k = \arg f_k$; obviamente $x^{(n)} \in \ell^p$.

Como no exemplo anterior obtemos aqui:

$$|f(x^{(n)})| = (\sum_{i=1}^{n} |f_i|^q)^{1/q} \cdot ||x^{(n)}||_p$$

Portanto

$$\|f\| \ge \left(\sum_{i=1}^{n} |f_i|^q\right)^{1/q}$$
, para qualquer n.

Isto mostra que

$$\left(\sum_{i=1}^{\infty} |f_i|^{q}\right)^{1/q}$$

é convergente e é ≤ ||f| .

Em particular da desigual dade de Holder aplicada à (3.8) segue que

$$\|f\| \le \left(\sum_{i=1}^{\infty} |f_i|^q\right)^{1/q}$$
;

portanto vale o sinal da igualdade. Então a correspondência $f \longleftrightarrow (f_1, f_2, \ldots) \text{ \'e um isomorfismo entre } (\ell^p)^* \text{ e } \ell^q \text{ \'e tamb\'em uma isometria, nos casos } 1$

$$x_k^{(n)} = \begin{cases} e^{-i\Theta_k} & \text{se } k = n \\ 0 & \text{se } k \neq n \end{cases}$$

Então $\|\mathbf{x}^{(n)}\|_1 = 1$ e $\mathbf{f}(\mathbf{x}^{(n)}) = |\mathbf{f}_n|$. Daí $\|\mathbf{f}\| \ge |\mathbf{f}_n|$ para todo n implica $\sup_n |\mathbf{f}_n| \le \|\mathbf{f}\|$ logo o vetor $(\mathbf{f}_1, \mathbf{f}_2, \dots) \in \iota^{\infty}$. Agora de (3.8) obtemos

$$|f(x)| \le \sup_{n} |f_{n}| \cdot \sum_{i=1}^{\infty} |\xi_{i}|$$

o que mostra que $\|f\| \le \sup |f_n|$. Portanto vale o sinal de igualdade; logo $(\ell^1)^*$ é isomètricamente isomorfo a ℓ^1 .

3) A reciproca <u>não</u> é verdadeira, isto é, $(\ell^{\infty})^*$ não é isomètricamente isomorfo a ℓ^1 , porém isto não será provado aqui. Já o dual do subespaço e de ℓ^{∞} , dos vetores $\mathbf{x} = (\xi_1, \xi_2, \dots)$ para os quais vale $\xi_n \longrightarrow 0$, quando $n \rightarrow \infty$, é isomètricamente isomorfo a ℓ^1 .

Exercício: Prove a asserção acima acêrca de c*.

4) Dual de C[a,b].

Mostra-se que a todo elemento f do dual de C[a,b] corresponde uma função v de variação limitada em C[a,b] tal que f(x) se expressa pela integral de Riemann-Stieltjes

$$f(x) = \int_{a}^{b} x(t) dv(t) ,$$

sendo ainda válido que ||f|| = Variação de v em [a,b]. Omitimos a prova.

3.7 Espaços reflexivos.

O dual E^* de um espaço vetorial normado E, também tem, por sua vez, um dual que denotaremos por E^{**} .

Observemos que tomando x de E e definindo a aplicação $\ell_x : E^* \longrightarrow \mathbb{K}$ por $\ell_x[f] = f(x)$, para todo f de E^* , resulta fàcilmente que ℓ_x é linear. Mais ainda ℓ_x é contínuo pois $|\ell_x(f)| = |f(x)| \le \|x\| \cdot \|f\|$. Portanto $\|\ell_x\| \le \|x\|$ e $\ell_x \in E^{**}$. Pode-se provar que $\|\ell_x\| = \|x\|$, mas não o faremos aqui. É fácil de ver que a aplicação $x \longrightarrow \ell_x$ é linear, isto é, que

 $\alpha x + \beta y = \alpha \ell_x + \beta \ell_y$. Portanto esta aplicação leva E em um subespaço de E**, isto é E é isometricamente isomorfo a um subespaço de E**.

3.7.1 Definição - Se suceder que a aplicação $x \longrightarrow \iota_x$ de E em E** fôr sobrejetora, isto é, se para todo ϕ de E** houver um correspondente x de E tal que $\phi(f) = f(x)$ qualquer que seja f de E*, dizemos que E é reflexivo.

Em particular, segue que se E é reflexivo então E e E* são isometricamente isomorfos.

Exemplos: 1) Os espaços ℓ^p , $1 , são reflexivos. De fato, representemos por T o isomorfismo <math display="block"> (f_1, f_2, \dots) \longrightarrow f \quad \text{de} \quad \ell^q \quad \text{em} \quad (\ell^p)^*, \quad \text{tal que} \quad f(x) = \sum_{i=1}^\infty f_i f_i, \\ \text{para todo} \quad x = (f_1, f_2, \dots) \in \ell^p.$

Seja $\varphi \in (\ell^p)^{**}$ e f $\varepsilon (\ell^p)^{*}$ quaisquer. Por definição de T, f = $T\widetilde{f}$, onde $\widetilde{f} = (f_1, f_2, \dots) \in \ell^q$. Daí $\varphi(f) = \varphi(T\widetilde{f}) = (\varphi T)(\widetilde{f})$.

Como $\phi^T: \ell^q \to \mathbb{C}$ é também um funcional linear contínuo, por ser composição de aplicações lineares contínuas, temos que $\phi^T \in (\ell^q)^*$. Daí

$$(\varphi T)(\tilde{f}) = \sum_{i=1}^{\infty} (\varphi T)(e_i).f_i$$
,

e o vetor $((\phi^T)(e_1), (\phi^T)(e_2), \dots) \in \ell^p$; chamemos a êste vetor de x^0 . Então vem:

$$\sum_{i=1}^{\infty} (\varphi T)(e_i) \cdot f_i = f(x^0) .$$

Logo para todo φ de $(\ell^p)^{**}$ o elemento $\mathbf{x}^0 = ((\varphi^T)(\mathbf{e}_1), (\varphi^T)(\mathbf{e}_2), \ldots) \in \ell^p \text{ e satisfaz } \varphi(\mathbf{f}) = \mathbf{f}(\mathbf{x}^0) \text{ ,}$ para qualquer \mathbf{f} de $(\ell^p)^*$. Logo ℓ^p , $1 , <math>\ell$ reflexivo.

- 2) Já o espaço l¹ não é reflexivo pois, como vimos, (l¹)* é isomètricamente isomorfo a l[∞] mas a reciproca não é verdadeira.
- 3) Qualquer espaço vetorial normado E incompleto é <u>não</u> reflexivo. De fato, como os duais são sempre completos e como um
 espaço vetorial normado isomètricamente isomorfo a um espaço de
 Banach também é completo, E não pode ser isomètricamente isomorfo a E**; portanto como esta condição é necessária para a reflexividade. E não é reflexivo.

Capítulo 4

ESPAÇOS DE HILBERT

Consideremos o caso particular dos espaços ℓ^p quando p=2. Como p=2 implica $q=\frac{p}{p-1}=2$ também, os resultados em 3.6.1 nos dizem que $(\ell^2)^*$ é isomètricamente isomorfo a si próprio e que a todo funcional linear contínuo f sôbre ℓ^2 corresponde um único elemento $y=(\eta_1,\eta_2,\ldots)$ de ℓ^2 tal que para todo $x=(\xi_1,\xi_2,\ldots)$ vale

$$f(x) = \sum_{i=1}^{\infty} \bar{\eta}_i \cdot \xi_i$$
 (4.1)

Se definirmos $\langle y, x \rangle$ por $\langle y, x \rangle = f(x)$, (4.1) nos mostra então que a aplicação $\langle , \rangle : \ell^2 \times \ell^2 \rightarrow \mathbb{K}$ goza das propriedades

- i) $\langle x, x \rangle \ge 0$, = 0 se e só se x = 6
- ii) $\langle y, x \rangle = \langle \overline{x, y} \rangle$
- iii) <y,x> é linear em x.
- 4.1 Definição Em um espaço vetorial E sôbre o corpo K

 (K = R ou C) uma aplicação < , >:ExE K

 gozando das propriedades i,ii,iii) acima, é chamada produto escalar. Ao escalar <y,x> chama-se produto escalar dos vetores
 y e x, nesta ordem.
- De ii) e iii) resulta que o produto escalar é anti-linear na la. variável, isto é, que

$$<\alpha z + \beta y, x> = \overline{\alpha}. < z, x> + \overline{\beta}. < y, x>$$

Por simplicidade vamos sempre tratar sòmente o caso em que $\mathbb{K} = \mathbb{C}$; o caso real pode ser tratado anàlogamente.

4.2 Desigualdade de Schwarz.

Vamos provar que vale a seguinte desigualdade (dita de Schwarz) em um espaço vetorial normado provido de produto escalar:

$$|\langle y, x \rangle|^2 \le \langle y, y \rangle \cdot \langle x, x \rangle$$
 (4.2)

Temos que $\langle x-\lambda y, x-\lambda y \rangle \geq 0$. Desenvolvendo:

$$\langle x, x \rangle - \overline{\lambda} \langle y, x \rangle - \lambda \langle x, y \rangle + |\lambda|^2 \langle y, y \rangle \geq 0$$

Se $\langle y, y \rangle = 0$ obtemos

$$\langle x, x \rangle \ge 2 \operatorname{Re} (\lambda, \langle x, y \rangle)$$

Como λ é arbitrário podemos tomar $\lambda = \hat{\alpha}.\langle \overline{x,y} \rangle$, com α real.

$$\langle x, x \rangle \ge 2\alpha |\langle x, y \rangle|^2$$

o que implica $\langle x,y \rangle = 0$ pois α é arbitrário. Neste caso a (4.2) é válida trivialmente.

Se
$$\langle y,y \rangle \neq 0$$
 podemos tomar $\lambda = \frac{\langle y,x \rangle}{\langle y,y \rangle}$; obtemos $\langle x,x \rangle - \frac{|\langle x,y \rangle|^2}{\langle y,y \rangle} \ge 0$ que é equivalente a (4.2).

Exercício: Prove que o sinal de igualdade vale na desigualdade de Schwarz se e só se ou $x=\alpha y$ ou $y=\lambda x$.

4.3 Desigualdade triangular.

Observemos inicialmente que da ii) segue

$$+ < y,x> = 2 Re < y,x> \le 2 |< y,x>|$$

Como

$$< x+y,x+y > = < x,x > + < x,y > + < y,x > + < y,y >$$

obtemos

$$< x+y, x+y > \le < x, x> + 2 |< x, y>| + < y, y>$$

Usando a desigualdade de Schwarz obtemos

$$< x+y, x+y > \le (< x, x>^{1/2} + < y, y>^{1/2})^2$$

pondo então $\|x\| = \langle x, x \rangle^{1/2}$ esta última desigualdade pode ser escrita, após extração de raiz quadrada:

$$||x+y|| \le ||x|| + ||y||$$

Pelas condições i) e iii) e por esta desigualdade resulta que $\|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{x} \rangle^{1/2}$ é uma norma. Dizemos que esta norma se deriva do produto escalar dado.

4.4 <u>Definição</u> - <u>Um espaço de Hilbert</u> H é um espaço de Banach cuja norma deriva de um produto escalar.

Como exemplo temos o espaço ℓ^2 que motivou a presente definição. Do mesmo modo $\ell^2(n)$ sôbre os reais, dito também espaço euclidiano de dimensão n, nos dá um exemplo de espaço de Hilbert, com o produto escalar $\sum\limits_{i=1}^n \xi_i \eta_i$.

4.4.1 Lema - O produto escalar em um espaço de Hilbert H é uma função contínua sôbre H \times H .

Prova: Temos

$$|\langle x, y \rangle - \langle u, v \rangle| = |\langle x - u, y \rangle + \langle u, y - v \rangle|$$

 $\leq |\langle x - u, y \rangle| + |\langle u, y - v \rangle|$ (4.3)
 $\leq ||x - u|| \cdot ||y|| + ||y - v|| \cdot ||u||$

Se agora $(x_n,y_n) \longrightarrow (u,v)$ em H X H então $x_n \rightarrow u$ e $y_n \rightarrow v$ (ver 1.15.8); daí $\|y_n\|$ é limitada e portanto substituindo-se x por x_n e y por y_n nas desigualdades acimas, decorre que $\langle x_n,y_n \rangle \longrightarrow \langle u,v \rangle$ Q.E.D.

4.4.2 Pré-espaços de Hilbert.

Já vimos que um espaço vetorial normado incompleto pode ser completado de modo a se obter um espaço de Banach (ver 3.5.2) Se tivermos um espaço vetorial normado incompleto E cuja norma se deriva de um produto escalar, (também chamado pré-espaço de Hilbert), podemos então completá-lo obtendo-se um espaço de Banach. Para que o completamento se ja além disso um espaço de Hilbert H, devemos estender a definição do produto escalar a H x H, assegurando que goze das propriedades i), ii) e iii) requeridas. Pelo lema anterior o produto escalar é contínuo; portanto só pode haver uma única maneira de fazer esta extensão, como se ja definindo-o por

$$\langle y, v \rangle = \lim_{n \to \infty} \langle x_n, u_n \rangle$$
, $y, v \in H$,

onde $\{x_n\}$, $\{u_n\}$ são sequências de Cauchy pertencentes a y, v respectivamente (ver notação em 3.5.2). Que $\langle y,v \rangle$ está bem definido vê-se de (4.3) aplicado a $\langle x_n,u_n \rangle$ e $\langle x_n',u_n' \rangle$ sendo

{x_n} ∈ y, {u_n} ∈ v. As propriedades i), ii) e iii) saem imedia tamente desta definição. Daquí segue que todo pré-espaço de Hilbert admite um completamento que é um espaço de Hilbert, estendendo-se o produto escalar pela fórmula acima.

Exemplo: O espaço vetorial normado & [a,b] dado em 3.1.1 é um pré-espaço de Hilbert, pois sua norma se deriva do produto escalar definido por

$$\langle x, y \rangle = \int_{a}^{b} \overline{x(t)}y(t)dt$$

como o leitor verificará fàcilmente. Daquí segue que o espaço $L^2(a,b)$ citado em 3.5.2 é um espaço de Hilbert, com o produto escalar definido via o processo limite acima referido.

Observação: O processo aqui referido dá então um instrumento para a construção de espaços de Hilbert, bastando inicialmente definir um produto escalar em um espaço vetorial complexo ou real.

Exercício: Verifique que no espaço vetorial das funções complexas com derivadas contínuas no intervalo finito a, to funcional

$$\int_{a}^{b} \overline{x}(t)y(t)dt + \int_{a}^{b} \overline{x}'(t)y'(t)dt$$

$$(x^{\dagger} = \frac{dx}{dt}, y^{\dagger} = \frac{dy}{dt})$$

é um produto escalar. Tire daí uma conclusão.

4.5 Geometria dos espaços de Hilbert.

Retornemos ao estudo dos espaços de Hilbert.

4.5.1 Lei do paralelogramo. De

$$\|x \pm y\|^2 = \|x\|^2 + \|y\|^2 \pm 2 \text{ Re } \langle x, y \rangle$$

obtemos

$$\|x + y\|^2 + \|x - y\|^2 = 2 \|x\|^2 + 2 \|y\|^2$$

que é dita lei do paralelogramo.

Pode-se provar fàcilmente que se em um espaço de Banach a norma satisfaz à lei do paralelogramo então ela se deriva de um produto escalar, isto é, o espaço também é de Hilbert. Em outras palavras esta lei é uma propriedade exclusiva dos espaços de Hilbert.

Exercício: Prove esta asserção se o espaço é real. (Sugestão: defina $\langle x,y \rangle = \frac{1}{4} \left[\|x+y\|^2 - \|x-y\|^2 \right]$

Angulo entre dois vetores.

O cosseno do ângulo formado por dois vetores não nulos $\mathbf{x} = (\xi_1, \xi_2, \xi_3)$ e $\mathbf{y} = (\eta_1, \eta_2, \eta_3)$ do \mathbf{R}^3 é dado por $\sum_{i=1}^3 \frac{\xi_i \ \eta_i}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$, que também se pode escrever $\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$. Em particular o ângulo por êles formado será de 90° se e só se $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Isto motiva a seguinte definição no caso geral.

4.5.2 <u>Definição</u> - Dois vetores x,y de um espaço de Hilbert são ditos <u>ortogonais</u> quando $\langle x,y \rangle = 0$. Neste caso também escrevemos x $\perp y$; notemos que x $\perp y$ equivale a y $\perp x$ e que sempre x $\perp 6$.

- 4.5.3 Definição Um conjunto S de vetores de um espaço de Hilbert diz-se ortogonal quando $x \perp y$ para todo par de elementos distintos x,y de S. Se além disto $\|x\| = 1$ para todos x de S, S é dito ortonormal.
- 4.5.4 Exemplos: Os vetores $e_1 = (1,0,...)$; $e_2 = (0,1,0,...)$;...

 do ℓ^2 constituem um conjunto ortonormal.

No espaço $c^2(0,2\pi)$ referido em 4.4.2 o conjunto formado pelas funções S: $\frac{e^{int}}{\sqrt{2\pi}}$, $n=0,1,2,\ldots$, $0 \le t \le 2\pi$, satisfaz à relação

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{imt} e^{-int} dt = \begin{cases} 1 & \text{se } m = n \\ 0 & \text{se } m \neq n \end{cases}$$

Portanto no completamento $L^2(0,2\pi)$ dêste espaço as classes determinadas pelos elementos de S constituirão um conjunto ortonormal, em vista do que se vire em 4.4.2. O leitor poderá verificar também que no espaço $\ell^2(0,2\pi)$ sôbre os reais, as funções

$$\frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{\pi}} \cos t \cdot \frac{1}{\sqrt{\pi}} \cos 2t \cdot \dots$$

$$\frac{1}{\sqrt{\pi}} \sin t \cdot \frac{1}{\sqrt{\pi}} \sin 2t \cdot \dots$$

$$(0 \le t \le 2\pi)$$

também satisfazem às condições de ortonormalidade.

Exercício: Verifique esta asserção.

4.5.6 Definição - Dada uma sequência ortonormal $\{e_n\}$ em um espaço de Hilbert H chamamos os escalares $\langle e_n,h \rangle$, $n=1,2,\ldots$, de coeficientes de Fourier de h com res-

peito à sequência $\{e_n\}$.

Veremos agora uma desigualdade fundamental redacionando a norma e os coeficientes de Fourier de um elemento qualquer em relação a uma dada sequência ortonormal.

4.6 Desigualdade de Bessel.

Se ja $\{e_n\}$ uma sequência ortonormal e x um elemento de H. Chamemos de S_n o subespaço gerado por e_1,\dots,e_n , $n=1,2,\dots$ Calculemos o quadrado da distância de x a um vetor $y=\sum_{i=1}^n \alpha_i e_i$ de S_n :

$$\|x - \sum_{i=1}^{n} \alpha_{i} e_{i}\|^{2} = \|x\|^{2} + \sum_{i=1}^{n} \{|\alpha_{i}|^{2} - 2 \operatorname{Re} < \alpha_{i} e_{i}, x > \}$$

$$= \|x\|^{2} + \sum_{i=1}^{n} \{|\alpha_{i}|^{2} - 2 \operatorname{Re} < \alpha_{i} e_{i}, x > + | < e_{i}, x > |^{2} - | < e_{i}, x > |^{2} \}$$

$$= \|x\|^{2} + \sum_{i=1}^{n} |\alpha_{i} - < e_{i}, x > |^{2} - \sum_{i=1}^{n} | < e_{i}, x > |^{2}.$$

Como o segundo têrmo no último membro da igualdade acima é não negativo segue daí

$$\|x-y\|^2 \ge \|x\|^2 - \sum_{i=1}^n |\langle e_i, x \rangle|^2$$
, para todo y de S_n .

Em particular quando tomamos $\alpha_i^0 = \langle e_i, x \rangle$, i=1,2,...,n o vetor $y^0 = \alpha_1^0 e_1 + \dots + \alpha_n^0 e_n$ de S_n satisfaz

$$\|x-y^0\|^2 = \|x\|^2 - \sum_{i=1}^n |\langle e_i, x \rangle|^2$$
.

Daqui segue

$$\|\mathbf{x}\|^2 \ge \sum_{i=1}^{n} |\langle \mathbf{e}_i, \mathbf{x} \rangle|^2$$
 e $d(\mathbf{x}, \mathbf{S}_n) = \sqrt{\|\mathbf{x}\|^2 - \sum_{i=1}^{n} |\langle \mathbf{e}_i, \mathbf{x} \rangle|}$

Como isto vale para todo n obtemos daqui a desigualdade de Bessel:

$$||x||^2 \ge \sum_{i=1}^{\infty} |\langle e_i, x \rangle|^2$$
.

Ao mesmo tempo obtivemos uma expressão que dá a distância de \mathbf{x} a $\mathbf{S}_{\mathbf{n}}$.

4.7 Ortonormalização de Gramm-Schmidt.

Dada uma sequencia $\{x_n\}$ qualquer em um espaço de Hilbert podemos construir a partir dela um conjunto ortonormal, desde que pelo menos um $x_n \neq 0$. Sem perda de generalidade podemos supôr os seus vetores linearmente independentes, pois em caso contrário extraimos primeiramente um subconjunto com esta propriedade. Pomos então:

(Observemos que sempre será $y_n \neq 0$ por causa da independência linear suposta). É fácil verificar que $\{e_n\}$ é ortonormal.

4.8 Teorema (Riesz-Fischer).

Se $\{e_n\}$ é uma sequência ortonormal em um espaço de Hilber H e se a sequência de escalares $\{\alpha_n\}$ é tal que $\sum_{i=1}^{\infty} |\alpha_i|^2 < \infty$ então há um elemento x de H tal que $\alpha_n = \langle e_n, x \rangle$, isto é, cujos coeficientes de Fourier com respeito a $\{e_n\}$ são os escalares dados. Vale ainda $x = \lim_{n \to \infty} \sum_{i=1}^{n} \alpha_i e_i$.

Prova: Pondo $x_n = \sum_{i=1}^n \alpha_i e_i$, n=1,2,..., obtemos, sendo $m \ge n$:

$$\|\mathbf{x}_{m} - \mathbf{x}_{n}\|^{2} = \|\sum_{i=n+1}^{m} \alpha_{i} \mathbf{e}_{i}\| = \sum_{i=n+1}^{m} |\alpha_{i}|^{2} \longrightarrow 0$$

quando $n,m \to \infty$, por ser convergente a série $\sum_i |\alpha_i|^2$. Logo $\{x_n\}$ é de Cauchy e daí $x_n \to x$ para um certo x de H. Para $m \ge n$ temos $\{e_n,x_m\} = \alpha_n$; pela continuidade do produto escalar obtemos, fazendo $m \to \infty$:

$$<\mathbf{e_n},\mathbf{x}> = \alpha_n \quad , \quad n=1,2,\ldots$$
 Pela construção de $\mathbf{x_n}$ temos $\mathbf{x} = \lim_{n \to \infty} \sum_{i=1}^n \alpha_i \mathbf{e_i}$. C.Q.D.

Aplicação - Uma aplicação clássica dêste teorema diz respeito às séries de Fourier. De fato se a₀,a₁,a₂,... e b₁,b₂,... são sequências de reais tais que

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) < \infty$$
,

então como a sequência de funções trigonométricas dadas em 4.5.4 é ortonormal há uma função x em alguma classe de $L^2(0,2\pi)$ sôbre os reais, cujos coeficientes de Fourier são exatamente os nú

meros dados, isto é:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} x(t) \cos nt dt$$
; $b_n = \frac{1}{\pi} \int_0^{2\pi} x(t) \sin nt dt$

4.9 <u>Definição</u> - Seja S um subconjunto do espaço de Hilbert H.

Definimos seu <u>complemento ortogonal</u> como o conjunto S dado por

$$S^{\perp} = \{x \in H \mid \langle s, x \rangle = 0 \quad \forall s \in S \}.$$

É fácil de ver que S^{\perp} é sempre um subespaço fechado. De fato que é um subespaço segue da linearidade de $\langle s,x \rangle$ em x. Que é fechado segue da continuidade do produto escalar pois se $x_n \longrightarrow x$, $x_n \in S$, $n=1,2,\ldots$, então $\langle s,x_n \rangle \longrightarrow \langle s,x \rangle$ e daí $\langle s,x \rangle = 0$.

- 4.10 <u>Definição</u> Um subconjunto C de um espaço vetorial real ou complexo é dito <u>convexo</u> se para todo par x,y de C também o subconjunto $\{\Theta x + (1-\Theta)y | 0 \le \Theta \le 1\}$ está contido em C.
- 4.11 Teorema Se C é um subconjunto convexo fechado de um espaço de Hilbert H então dado h ε H existe um e um só \mathbf{x}_{o} de C tal que

$$|x_0 - h| = d(C,h)$$
.

Prova: Por definição d = d(C,h) = $\inf_{x \in C} \|x-h\|$; daí existe $x_n \in C$ tal que $\|x_n-h\| \rightarrow d$ quando $n \rightarrow \infty$. Apliquemos a lei do paralelogramo aos vetores $\frac{1}{2}(x_n-h)$ e $\frac{1}{2}(x_m-h)$; obtemos:

$$\|\frac{1}{2}(\mathbf{x}_{n}+\mathbf{x}_{m})-\mathbf{h}\|^{2}+\|\frac{1}{2}(\mathbf{x}_{n}-\mathbf{x}_{m})\|^{2}=2\|\frac{1}{2}(\mathbf{x}_{n}-\mathbf{h})\|^{2}+2\|\frac{1}{2}(\mathbf{x}_{m}-\mathbf{h})\|^{2}$$
(4.4)

Como C é convexo $\frac{1}{2}(x_n+x_m)$ \in C e daí $\|\frac{1}{2}(x_n+x_m)-h\|^2 \ge d^2$. Logo substituindo acima vem:

$$\|\mathbf{x}_{n} - \mathbf{x}_{m}\|^{2} \le 2 \|\mathbf{x}_{n} - \mathbf{h}\|^{2} + 2\|\mathbf{x}_{m} - \mathbf{h}\|^{2} - 4 d^{2}$$
.

Como $\|\mathbf{x}_n - \mathbf{h}\|^2 \longrightarrow \mathbf{d}^2$ quando $n \longrightarrow \infty$ segue daí que $\{\mathbf{x}_n\}$ é uma se quência de Cauchy. Portanto há um \mathbf{x}_0 tal que $\mathbf{x}_n \longrightarrow \mathbf{x}_0$; \mathbf{x}_0 per tence a C por ser C fechado. Daí $\|\mathbf{x}_0 - \mathbf{h}\| = \mathbf{d}$ pois $\|\mathbf{x}_n - \mathbf{h}\| \longrightarrow \|\mathbf{x}_0 - \mathbf{h}\|$. A unicidade se prova fàcilmente também; se ja $\hat{\mathbf{x}}_0 \in \mathbb{C}$ tal que $\|\hat{\mathbf{x}}_0 - \mathbf{h}\| = \mathbf{d}$. Substituindo na (4.4) \mathbf{x}_n e \mathbf{x}_m por \mathbf{x}_0 e $\hat{\mathbf{x}}_0$ respectivamente obtemos:

$$\|\frac{1}{2}(\mathbf{x}_{0}+\hat{\mathbf{x}}_{0}) - \mathbf{h}\|^{2} + \|\frac{1}{2}(\mathbf{x}_{0}-\hat{\mathbf{x}}_{0})\|^{2} = \frac{1}{2} d^{2} + \frac{1}{2} d^{2} = d^{2}. \quad \text{Como}$$

$$\|\frac{1}{2}(\mathbf{x}_{0}+\hat{\mathbf{x}}_{0}) - \mathbf{h}\|^{2} \ge d^{2}$$

segue dai que:

$$\|\frac{1}{2}(\mathbf{x}_0 - \hat{\mathbf{x}}_0)\|^2 = 0$$
 isto é $\hat{\mathbf{x}}_0 = \mathbf{x}_0$. C.Q.D.

Observação: Êste resultado não é necessàriamente válido em espaços de Banach. De fato se o fôsse, então considerando o caso em que C é um subespaço fechado próprio e h $\not\in$ C teríamos que $\frac{1}{d}(h-x_0)$ pertenceria à esfera unitária e estaria à distância =1 de C. Portanto o lema de Riesz (3.2.2) valeria com $\theta=1$. Mas alí já vimos um contraexemplo a esta possibilidade.

Prova: Tomemos $0 \le \Theta \le 1$. Daí:

$$d^{2} \le \|\Thetax + (1-\Theta)x - h\|^{2} = \|\Theta(x - x_{0}) - (h - x_{0})\|^{2}$$

$$= \Theta^{2} \|x - x_{0}\|^{2} - 2\Theta \text{ Re } < h - x_{0}, x - x_{0} > + \|h - x_{0}\|^{2}$$

$$= \Theta^{2} \|x - x_{0}\|^{2} - 2\Theta \text{ Re } < h - x_{0}, x - x_{0} > + d^{2}$$

Portanto

$$2\theta$$
. Re $\langle h-x_0, x-x_0 \rangle \leq \theta^2$. $\|x-x_0\|$.

Dividindo por Θ e fazendo $\Theta \longrightarrow O$ obtemos

$$Re < h-x_0, x-x_0 > \le 0$$
 C.Q.D.

Recordemos o seguinte conceito:

4.12 <u>Definição</u> - Um espaço vetorial V diz-se <u>soma direta</u> de dois subespaços W e U quando todo v de V se escreve de um modo único como soma de elementos u de U e w de W. Neste caso escrvemos V = U + W.

4.13 Teorema da projeção - Se S é um subespaço fechado do espaço de Hilbert H então $H = S + S^{1}$.

Prova: Um subespaço sempre é convexo. Como S é fechado, por hipótese, podemos aplicar o teorema 4.11. Para todo $h \in H$ existe $s_0 \in S$ tal que $d(h,S) = \|h-s_0\|$. Ponhamos $g = h-s_0$. Pelo corolário 4.11.1 vale

Re $\langle s-s_0, g \rangle \leq 0$ para qualquer s de S.

Para um dado s de S seja $\alpha=(s,g)$. Como s $_0-\alpha s\in S$ a lesigualdade aplicada a êste vetor nos dá:

Re $\langle \alpha s, g \rangle \leq 0$,

$$Mas \qquad \langle \alpha s, g \rangle = \overline{\alpha} \langle s, g \rangle = |\langle s, g \rangle|^2$$

Logo de $|\langle s,g \rangle|^2 \le 0$ obtemos $\langle s,g \rangle = 0$ para todo s de S.

Portanto $g \in S^{\perp}$. Daquí segue que $h = s_0 + g$, $s_0 \in S$, $g \in S^{\perp}$.

Falta provar a unicidade. Se também fôsse $h = s'_0 + g'$, com $s'_0 \in S$, $g' \in S$, teríamos então

$$s_0 + g = s'_0 + z'$$
 e daquí:
 $s_0 - s'_0 = g' - g$.

Como $s_0 - s_0' \in S$ e $g' - g \in S^{\perp}$ e como $S \cap S^{\perp} = 0$ segue daquí que $s_0 = s_0'$ e g = g'.

C.Q.D.

4.14 Teorema da representação de Riesz.

Se ℓ é um funcional linear continuo sôbre H então há um único elemento f de H tal que $\ell(x) = \langle f, x \rangle$ para todo χ de H. Além disto $\|\ell\| = \|f\|$.

Prova: O espaço-nulo S da aplicação linear &,

 $S = \left\{x \in H \mid \ell(x) = 0\right\}, \text{ \'e um subespaço fechado pois de}$ $s_n \in S, \quad s_n \longrightarrow s \text{ segue } \ell(s) = \lim \ell(s_n) \text{ devido \'a continuidade}$ $de \quad \ell. \text{ Pelo teorema da projeção} \quad H = S \stackrel{!}{+} S \stackrel{!}{\cdot} \text{ Se } \ell(x) = 0 \text{ para}$ $todo \quad x \quad de \quad H \quad então \quad f = 0 \text{ satisfaz ao teorema.}$ $Se \quad \ell(x) \quad \text{não \'e idênticamente zero então } S \quad \text{\'e subespaço próprio}$ $e \quad \text{neste caso } \dim S^\perp = 1. \text{ De fato se jam } p, g \in S^\perp \quad \text{com } g \neq 0.$ $Como \quad z = p - \frac{\ell(p)}{\ell(g)}, g \in S^\perp \quad \text{e como também } z \in S \quad \text{por ser}$ $\ell(z) = 0, \text{ segue que } z = 0 \quad \text{isto \'e } p = \frac{\ell(p)}{\ell(g)}, g. \text{ Logo } S^\perp \quad \text{tem}$ $\dim são \quad 1. \quad \text{Podemos supor sem perda de generalidade que } \|g\| = 1.$ $Agora \quad todo \quad x \in H \quad \text{se escreve } x = s + \alpha g \quad \text{com } s \in S.$

Daquí vem

$$\ell(x) = \ell(s) + \alpha \ell(g) = \alpha \cdot \ell(g) ,$$

e também vem

$$\langle g, x \rangle = \langle g, s \rangle + \alpha \|g\|^2 = \alpha$$

por ser gls. Substituindo α na igualdade anterior vem

$$\ell(x) = \ell(g) \cdot \langle g, x \rangle$$

Se puzermos $f = \ell(g)$.g obtemos $\ell(x) = \langle f, x \rangle$ para todo $x \in H$. A unicidade de f se prova fàcilmente pois se também $\ell(x) = \langle f', x \rangle$ para todo x de H obtemos $\langle f - f', x \rangle = 0$; daí tomando x = f - f isto nos diz que $\|f - f'\| = 0$ isto é f' = f. Finalmente temos

$$|\ell(x)| = |\langle f, x \rangle| \leq ||f|| \cdot ||x||$$

e portanto $\|\ell\| \le \|f\|$. Como porém $|\ell(f)| = \|f\|$. $\|f\|$ vem daí $\|\ell\| = \|f\|$. C.Q.D.

4.15 Espaço dual H*. Seja H* o espaço de Banach de todos os funcionais lineares contínuos sôbre H.

A aplicação $\sigma: H* \to H$ que associa a todo funcional linear ℓ de H* o elemento f dado pelo teorema de Riesz é tal que

$$\ell(x) = \langle f, x \rangle$$
 , $x \in H$,

é bijetora. De fato pela unicidade de f ela é injetora. Como todo h de H é a imagem pela σ do funcional linear contínuo $\ell_h(x) = \langle h, x \rangle$ ela é sobrejetora. Esta aplicação também é uma isometria pois vale $\|\ell\| = \|f\|$. No entanto σ é antilinear pois de

$$(\alpha \ell + \beta \ell^{\dagger})(x) = \alpha \ell(x) + \beta \ell^{\dagger}(x) = \langle \overline{\alpha}f + \overline{\beta}f^{\dagger}, x \rangle$$

segue que $\sigma(\alpha \ell + \beta \ell^{\dagger}) = \overline{\alpha}.\sigma(\ell) + \overline{\beta}.\sigma(\ell^{\dagger}).$

Porém se H é real então σ é isomorfismo, isto é, no caso real H é isomètricamente isomorfo a H*. (Observe o leitor que ao tratamos do ℓ^p , $1 \le p < \infty$, escrevemos $f(x) = \sum_i f_i \xi_i$ e não $f(x) = \sum_i f_i \xi_i$; com isto a aplicação lá definida era um isomorfismo. Porém no caso de um espaço de Hilbert qualquer, não está necessàriamente definida uma aplicaão com propriedades equivalentes às da aplicação $(\xi_1, \xi_2, \dots) \longrightarrow (\xi_1, \xi_2, \dots)$ que permite passar de uma a outra das representações acima dadas para f(x).

4.15.1 Produto escalar em H*.

Podemos introduzir um produto escalar em H* de modo a torná-lo também espaço de Hilbert. Basta definir o produto escalar de & e & em H* por

em outros têrmos, se $\ell(x) = \langle f, x \rangle$ e $\ell'(x) = \langle f', x \rangle$ para todo x de H, definimos

O fato de que σ é antilinear fica compensado pela antilinearidade de <f',f> em f', Resulta daí que H* também é espaço
de Hilbert.

Exercício: Verifique que <1,1'>* é produto escalar e que a norma de H* dêle se deriva.

Reflexividade dos espaços de Hilbert

4.16 Teorema - Todo espaço de Hilbert é reflexivo.

Se ja $\sigma_*: H^* \to H^{**}$ a aplicação definida em 4.15 correspondente ao espaço de Hilbert H^* .

 \textbf{D}_{ado} ϕ ε \textbf{H}^{**} -queremos mostrar que existe $\textbf{x}\varepsilon\textbf{H}$ -tal que

$$\varphi(\ell) = \ell(x)$$
 para todo $\ell \in H^*$.

Para tanto basta tomar $x = \sigma\sigma_*(\phi)$. Daí, usando as definições de σ e σ_* e do produto escalar < , >* obtemos:

$$\ell(\mathbf{x}) = \ell(\sigma\sigma_{\mathbf{x}}(\phi)) = \langle \sigma(\ell), \sigma\sigma_{\mathbf{x}}(\phi) \rangle = \langle \sigma_{\mathbf{x}}(\phi), \ell \rangle_{\mathbf{x}} = \phi(\ell) .$$

Portanto todo espaço de Hilbert é reflexivo. C.Q.D.