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Chapter 1

Introduction

Linear relations are unavoidable — one doubles the cause and the
effect doubles, at least on a first guess. A substantial amount of the
mathematics used in modeling is linear, which does not mean that it
is trivial. The calculus of many variables, like optimizing in hundreds,
millions of unknowns, is frequently a linear algebra problem. Besides,
nonlinear problems are hard and substantial information may be ob-
tained by linearization at points of interest.

It is not clear that this is how we approach the teaching of linear
algebra however. Sometimes, students are introduced to the subject
as a sophisticated version of analytic geometry, for essentially visual
purposes. Few students have the opportunity of relating linear al-
gebra to... all things linear. The task is considered in engineering
courses, but rarely within mathematics departments.

There are historical reasons for this attitude. Linear algebra at
some moment must have looked like the golden opportunity to present
students to the axiomatic approach. Possibly the very first conse-
quence of this point of view was the utter separation between linear
and nonlinear theory: Jacobians and Hessians from Calculus hardly
relate to matrices in linear algebra courses.

Then there were the computational difficulties — a 3× 3 matrix
should have a simple eigenvalue or somehow it is inappropriate to
fit in an exercise. Galois theory provides one of the most interesting
no-go theorems in mathematics: radicals and the usual arithmetic

5
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6 [CHAP. 1: INTRODUCTION

symbols are not sufficient to write down the solutions of a polyno-
mial of degree 5 with integer coefficients. Still, this is not the end
of the world — one might invent new symbols or simply live with
arbitrarily good approximations. Few students (possibly few profes-
sionals) are conscious of the fact that most real numbers cannot even
be described, a simple cardinality argument.

And worse, among the important concepts in linear algebra lie
... nonlinear objects, eigenvalues, functions and groups of matrices.
Derek Hacon, a colleague from PUC-Rio, used to say that fiber bundle
theory is linear algebra with parameters. Few math students know
how to take a derivative of an eigenvalue λ(t) of a matrix M(t). The
standard analysis course in Rn interacts poorly with matrix theory.

The highlights from last century — quantum mechanics 1, the
role of spectral theory in pure and applied dynamical systems; the
numerical analysis of differential equations; the spectral theory of
graphs, or in a more general setting, numerical linear algebra as a
whole, being confronted with larger symmetric and non-symmetric
matrices — indicate a combination of theory, practice and technology
which should be a source of enthusiasm to any mathematician. Just
to stick to one inevitable example, any Google search is a very large
(numerical) problem in spectral graph theory.

There is so much to choose from, what should be said in five
short lectures? The topics intend to stimulate the interaction among
different disciplines within mathematics, having in mind a public of
graduate students. There are arguments involving algebra, basic real
analysis, geometry, some complex variable, a bit of measure theory,
a couple of algorithms, differential equations... and extensive point-
ers to more sophisticated material in algebraic topology, symplectic
geometry, numerical and functional analysis.

Alas, everything is deterministic: there is nothing about random
matrices or eigenvalue distributions. Also, there is nothing about the
integrable systems associated to spectral theory.

Acknowledgements abound. The Departamento de Matemática at
PUC-Rio allowed me to teach a number of courses in these subjects,
and students from different departments contributed with a large

1According to Reed and Simon ([45]), the fact that the point spectrum of the
Schrödinger operator of the hydrogen atom describes with spectacular precision
the frequencies of its emission spectrum borders on the scientifically embarrassing.
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spectrum of opinions. Some colleagues are friends and mentors —
Percy Deift, Charlie Epstein, Nicolau Saldanha. Peter Lax, Beresford
Parlett, Barry Simon are sources of inspiration. Years of subsidies
from CNPq, CAPES and FAPERJ are also gratefully acknowledged.

1.1 Contents

There are threads across the text. Chapter 2 contains some basic
algebraic constructions which are extensively used. The fact that
matrices form an algebra lead to cyclic vectors, companion and Ja-
cobi matrices, inverse variables for Jacobi matrices, an introduction
to orthogonal polynomials and eventually an indication of how the
spectral theorem for self-adjoint operators in infinite dimension fol-
lows from its counterpart for tridiagonal matrices. Tensor products
and their spectral properties give rise to the resultant, the SVD de-
composition, small rank approximations of symmetric and nonsym-
metric matrices. There is frequent interplay between the invariant
formalism and the use of coordinates. From the very start, density
arguments are used to simplify proofs: matrices with distinct eigen-
values are usually easier to handle.

The study of eigenvalues and eigenvectors as objects which depend
smoothly on matrices extends to some basic geometry of isospectral
manifolds, which in turn are presented as natural phase spaces of
algorithms for the computation of spectrum. Other geometric meth-
ods in the study of eigenvalues are exemplified by standard results —
the Schur-Horn theorem, spectral interlacing — for which elementary
proofs are given, as opposed to the current symplectic approach.

The standard road to the spectral theorem is the construction of a
powerful functional calculus. Since good presentations are available,
we decided instead to stop along the road, in particular the Dunford-
Schwartz calculus, for better appreciation of some details.

The text contains a number of references for further study. And
this is perhaps the real motivation for these notes: to convince the
reader of the vitality of the subject.
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8 [CHAP. 1: INTRODUCTION

1.2 Texts

There are periodicals, libraries, dedicated to the subject. Here I just
quote a few classics, of great mathematical and pedagogical value.
The basic spectral theory of differential operators is exquisitely de-
scribed in the books by Reed and Simon ([45]) and Kato ([28]). Great
functional analysis texts are Dunford-Schwartz ([19]), Lax ([33]) and
for linear algebra, [34] and [27]. From the numerical analysis litera-
ture I choose a minimal sample, Wilkinson ([64]), Parlett ([44]) and
Trefethen and Embree, as a source to more recent material ([63]).

1.3 Basic notation

Some sets are just too frequent. LetM(n,K) denote the vector space
of n× n matrices with entries in the field K (usually R or C). Simi-
larly S(n,K) and A(n,K) will denote symmetric and skew symmetric
matrices for K = R, and Hermitian and skew Hermitian matrices for
K = C. The reader should get used to dropping a few indices and
dimensions: GL is the group of invertible matrices, SO, the real or-
thogonal matrices with determinant equal to 1 — the context will
naturally specify the dimension and the underlying field.

There is a systematic, irresistible, abuse of notation which we
accept as a fact of life. An n × n matrix M has n eigenvalues λi
counted with multiplicity. Thus, the appropriate concept to describe
the spectrum of a matrix is a multiset, i.e., a set on which repetitions
of elements are allowed and give rise to different objects. We avoid
such considerations and refer to the spectrum σ(M) as

σ(M) = {λ1, λ2, . . . , λn} ,

where eigenvalues may be equal, and then they should be repeated
in the list. The order in which the eigenvalues are presented, i.e.
their labeling, is an irrelevant matter. In particular, one cannot in
principle talk about the first eigenvalue of a matrix.
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1.4 Why spectral theory?

This section is not about the contributions of spectral theory to sci-
ence in general and mathematics in particular. This is a very specific
example, an excellent starting point for a second course in linear
algebra. Leslie models are frequently used in biology: they are con-
cerned with the evolution of a population divided in age groups ([39]).
Say, for example, that a population splits in n + 1 groups of ages
0−1, 1−2, 2−3, . . . , n−∞ and consider the simplest possible model
for demographic variation. Thus, for example, for n = 4, one might
consider a transition matrix

M =


α0 α1 α2 α3 α4

s0 0 0 0 0
0 s1 0 0 0
0 0 s2 0 0
0 0 0 s3 s4


relating the population vector between consecutive (integer) times,

p(t+ 1) = M p(t) .

The αi’s are fertility rates, indicating the contribution of each age
group to newborns. The si’s instead are survival rates, which again
may vary among age groups.

One merit of this simple model is that it may be described graph-
ically, with boxes and weighted arrows representing the information
coded in the matrix. Another is its versatility: it allows for sex-
ual distinctions and immigrations, which would introduce a non-
homogeneous term. The students may develop a concrete feeling
for the values of the parameters.

The natural question is: given M , what happens in the long run
to a population? Things get especially theatrical if the class is facing
computers (and why isn’t it?!). Each student enters with a different
initial population and, by comparing results with the teacher’s choice,
the following beautiful fact comes through.

Theorem 1. For an open, dense set of positive parameters, p(n) for
n large is essentially given by cλnMv, where c ∈ R is a fixed number,
λM is the eigenvalue of M of largest module and v is a normalized
eigenvector associated to λM .
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10 [CHAP. 1: INTRODUCTION

The vector v is the pyramid distribution of the population if it is
normalized so as to have its components adding to one: in the long
range, it is essentially independent of the initial population! A single
eigenvalue specifies if the population increases (exponentially) or faces
extinction. More, in order for the model to make sense, one is forced
to believe that the eigenvalue of largest module of M is a positive
number, and has an eigenvector with nonnegative entries — after all,
the pyramid distribution consists of fractions of the population. A
more experienced practitioner would identify these last statements as
consequences of the celebrated Perron-Frobenius theorem.

Thus, not only eigenvalues and eigenvectors come up as the natu-
ral vocabulary to answer an interesting question, but the key informa-
tion is concentrated in very little data of that kind — one seldom cares
for many eigenvalues and eigenvectors on a realistic model. What
may happen is that the relevant eigenvalues have different geometric
properties: largest real part (recall that they might be complex num-
bers), or they should belong to a certain set in the complex plane.
By the way, no symmetric matrices were required in the example.
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Chapter 2

Some basic facts

2.1 Linear transformations, matrices

Consider the following two versions of the matrix spectral theorem.

Theorem 2. Every real, symmetric matrix S may be written as a
product S = QTΛQ, where Q ∈ SO and Λ is a real diagonal matrix.

Theorem 3. Let V be a finite dimensional vector space over R en-
dowed with an inner product. Then every symmetric linear transfor-
mation T : V → V admits a basis of orthonormal eigenvectors.

First, are we talking about the same theorem? For starters, the
word symmetry here plays different roles. We all know what a sym-
metric matrix is, and a symmetric transformation is still quite familiar
— for any vectors u, v ∈ V , one should have

〈T u , v 〉 = 〈u , T v 〉 .

Now, we also know that linear transformations incarnate in matrices,
once bases are chosen in the domain and counterdomain. Here we
have to be careful: the subjects in which (finite dimensional) spectral
theory is relevant require the same choice of vector space for both
roles, and this strongly suggests that only one choice can be made.

Indeed, if M represents a transformation T : V1 → V2 for choices
of two bases, one for V1, the other for V2, and then other two bases

11
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12 [CHAP. 2: SOME BASIC FACTS

are chosen, the new matrix M̃ representing the same T satisfies

M̃ = P M R

for two invertible matrices P and R — and these matrices arbitrary,
once invertibility is preserved. This flexibility may be used to convert
T into a matrix M which consists only of zeros and ones, so that the
ones are along the diagonal entries — in particular, all eigenvalues
of such an M are zeros and ones. Said differently, there is only one
number which is left of T when all possible matrix representations
are considered: its rank.

On the other hand, if the same basis is chosen on V1 and V2, then
matrices M and M̃ are related by

M̃ = P−1M P

and we know that conjugation does not change the eigenvalues of a
matrix (besides changing the eigenvectors in a controlled fashion).

Also, one might start with a symmetric transformation T : V → V
and get to a non-symmetric matrix. A possible amend is choosing a
common orthonormal basis (by the way, an orthogonal basis suffices).

Exercise 1. Under these requirement, M is indeed a symmetric ma-
trix. Changes of bases between orthonormal bases give rise to or-
thogonal matrices Q ∈ SO, so that

M̃ = Q−1M Q = QT M Q

and matrix symmetry is preserved.

The first version of the spectral theorem above essentially states
that eigenvalues are the only invariant information, once all matrix
representations of this form are allowed. Actually, it says another
simple fact: by writing MQT = QTΛ and comparing columns, we
see that the columns of QT are eigenvectors associated to eigenvalues
which sit along the diagonal of Λ.

The two versions suggest different proofs of the spectral theorem.
The invariant version, i.e., the one about linear transformations, is
usually proved by induction on the dimension: once an eigenvector v
is found, restrict T to the invariant subspace given by the orthogonal
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complement of v, on which, trivially, T is still symmetric. This last
statement does not convert easily to matrix representations.

Thinking of a matrix as a box of numbers leads to different ap-
proaches — a paradigmatic example is Gaussian elimination for solv-
ing linear systems. A proof of the spectral theorem from this point
of view follows from Jacobi’s algorithm, described in Section 3.5.2.

One might think that for numerical purposes one should stick to
matrix representations, but this would be an exaggeration. Many
algorithms in numerical linear algebra are based on the assumption
that the only manifestation of the matrix M is through a routine that
computes the value Mv for an input vector v.

We get back to a more conceptual standpoint. Real, symmetric
matrices are diagonalizable and all matrices admit a Jordan form.
One might be tempted to search for other hypotheses implying di-
agonalizability. We know, for example, that normal matrices M ∈
M(n,C), for which

MM∗ = M∗M , where M∗ = M
T
,

are diagonalizable. From the spectral theorem for normal matrices,
M = U∗ ΛU , where now U is a unitary matrix (i.e., UU∗ = I) and Λ
is a diagonal matrix with possibly complex entries.

But there is still a substantial gap between normal and arbitrary
matrices. The invariant point of view is especially convenient to
handle this issue. Say M =PΛP−1: think of the columns of the
invertible matrix P as orthonormal vectors for some inner product of
Cn. In other words, define the inner product in Cn by requiring that
the columns of P are orthonormal. The invariant point of view then
forces you to believe the following result, which closes the gap above.

Proposition 1. Any diagonalizable matrix is normal for some ap-
propriate inner product.

Let us be clear about the statement of the theorem. For a complex
vector space V with an inner product, there is an appropriate gener-
alization of transposing a matrix: a linear transformation T : V → V
has a unique adjoint T ∗ : V → V , defined by

〈u , T v 〉 = 〈T ∗ u , v 〉 , ∀ u , v ∈ V .
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In invariant terms, a normal transformation satisfies TT ∗ = T ∗T .
This definition also defines normality for an n × n complex matrix,
where we think of Cn being endowed with an inner product.

We finish with another confrontation of the two points of view.
Some people find Sylvester’s law of inertia nonintuitive.

Theorem 4 (Sylvester). Let S be a real, n × n symmetric matrix,
and take an n × n real invertible P . Then S and PSPT have the
same number of positive, zero and negative eigenvalues.

The eigenvalues of both matrices would be equal for an orthogonal
matrix P . Now, consider a smooth n-manifold M and a smooth
function f : M → R with a critical point m. Following the reflex
inherited from calculus, once the derivative at a point is zero, we
search for the sign of the second derivative there (in order to classify
the critical point, as they say). In this case, we have to compute the
Hessian S=Hf(m) of f at m, and different charts would give rise to
different symmetric matrices representing the Hessian.

Patient use of the chain rule shows that the Hessian associated
to two different charts are of the form S and PSPT (and what is P ,
untiring reader?). Say f represents the temperature on the surface
of a planet: the fact that, say, m is a local minimum is independent
of the chart being used, so Sylvester’s law is inevitable — the signs
of the eigenvalues of the Hessian are invariants. They provide the so
called signature at a critical point of a Morse function.

One should neither overestimate spectrum, nor underestimate co-
ordinates. As a final comment, in many variable calculus one fre-
quently classifies local extrema by computing eigenvalues of the Hes-
sian, which boils down to diagonalizing it. Sylvester’s law, or bet-
ter, one of its computational implementations, the LDLT decom-
position (or, closely, the Cholesky’s decomposition), can be actually
performed, unlike the computation of eigenvalues — it is an extended
version of the celebrated ‘complete the square’ trick. Thus, for ex-
ample, for H =LDLT as below,

H =

 2 4 −2
4 5 −7
−2 −7 1

 =L

 2 0 0
0 −3 0
0 0 2

 LT ,
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for

L=

 1 0 0
2 1 0
−1 1 1

 .

For v = (x, y, z) the quadratic form

〈H v , v 〉= 〈DLT v , LT v 〉

becomes

2x2 + 8xy − 4xz + 5y2 − 14yz + z2 = 2X2 − 3Y 2 + 2Z2

for (X,Y, Z) =LT v= (x+ 2y − z, y + z, z).
Matrix factorizations are so natural that they are incorporated in

the more invariant Lie group theory ([18]).

Exercise 2. This factorization counts the positive eigenvalues of an
invertible real symmetric matrix S. How would you count the number
of eigenvalues of S in an arbitrary closed interval whose endpoints
are not in σ(S)? This simple idea gives rise to a bisection method to
compute eigenvalues. It is rather cumbersome, but robust ([44]).

A linear transformation T : V →W between vector spaces V and
W (over the same field R or C) gives rise to a matrix M once bases
are chosen for V and W . In particular, taking the canonical bases
for V = Rn and W = Rm, the entries of M are the numbers

Mij = 〈 ei , M ej 〉,

for the usual inner product in Rm. We define generalized entries

Tvw = 〈w , T v 〉 v ∈ V , w ∈ W,

for some inner product in W . If X is a Banach space and T : X → X
is a linear bounded map, consider

Tvw = w(T v ) , v ∈ X , w ∈ X∗,

where X∗ is the dual space of X. When X is a Hilbert space, we are
back to the previous definition, by the Riesz representation theorem.
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Generalized entries sometimes are eigenvalues — this is what di-
agonalization is all about. But this happens away from the diagonal-
izable context — an example is given by the variational interpretation
of the eigenvalues and of their indispensable and underrated cousins,
the singular values of a transformation (Section 3.3).

Frequently in descriptions of the (infinite dimensional) spectral
theorem, one performs operations on a transformation T by specifying
what goes on with these many scalars Tuv. The practice is common
among (quantum) physicists — generalized matrix entries include the
so called observables of a system. But this is another story.

2.2 Krylov spaces, companion matrices

As we all know, a linear transformation is determined by its action
on a basis, a fundamental fact of linear algebra. We should give
more thought, as algebraists do, to the possibility of a more appro-
priate concept when we deal with square matrices, which correspond
to linear transformations from a space to itself — the multiplication
structure (composition, for transformations) might be exploited. To
simplify matters, assume all vector spaces to be real, even if eigen-
values might be complex occasionally.

Let T : V → V be a linear transformation from a vector space V
to itself and consider v ∈ V . The Krylov subspace K(T, v) ⊂ V is
the space generated by the vectors T kv, k = 0, 1, . . .. Clearly, once a
vector T k0v is a combination of the previous ones, the same happens
to the subsequent vectors. The set {v, Tv, . . . , T k0−1v} forms a basis
B(T, v) for K(T, v), which is clearly an invariant subspace of T . If V
is finite dimensional and K(T, v) =V , then v is a cyclic vector.

Exercise 3. Suppose V is of dimension n < ∞ and T : V → V has
simple spectrum (i.e., all its eigenvalues are distinct). Show that a
vector v ∈ V is not cyclic if and only if it is a linear combination of
less than n eigenvectors of T . If instead T has a basis of eigenvectors
and some double eigenvalue, then there is no cyclic vector.

Say V is of dimension n < ∞ with a cyclic vector v. Endow
domain and counterdomain with the basis B(T, v) and the matrix
associated to T is a companion matrix, which for n = 5 looks like
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M =


0 0 0 0 −c0
1 0 0 0 −c1
0 1 0 0 −c2
0 0 1 0 −c3
0 0 0 1 −c4

 .

and whose characteristic polynomial is

det(M − λI) = λ5 + c4λ
4 + c3λ

3 + c2λ
2 + c1λ

1 + c0 .

This used to be the standard method to compute the characteristic
polynomial of a matrix M . The usual algorithm to compute determi-
nants by expanding along a line requires essentially n! multiplications
for an n×n matrix, while the process above takes something of order
n3, depending of your favorite way of solving a linear system (so as to
expand Tnv in the basis B(T, v)). The process would be applied to
reduce an arbitrary matrix M to a companion form (or even simpler,
if the vector v happened not to be cyclic!), from which one could
search for eigenvalues by solving for the roots of a polynomial.

2.3 Lanczos’s procedure, Jacobi matrices

If V is a real finite dimensional Hilbert space and T : V → V is a
bounded symmetric operator, one might wish to obtain a real, sym-
metric matrix to represent T , but this is not expected for a basis
B(T, v). Probably, the first thing that comes to mind to circumvent
this difficulty is submitting B(T, v) to the Gram-Schmidt orthonor-
malization process, obtaining an orthonormal basis

GS(T, v) = {v0, v1, . . . , vn−1}

(say v is cyclic, to simplify matters). It is clear that that each vk is a
linear combination of the first k+1 vectors in B(T, v) (said differently,
both bases are related by a triangular matrix). The representation of
T in the basis GS(T, v) in principle is a so called Hessenberg matrix,
a matrix whose entries (i, j) with i− j > 1 are all equal to zero. Here
is the pattern of zeros of a 5× 5 Hessenberg matrix.
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H =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 .

On the other hand, this matrix should also be symmetric: after all,
this is why we decided to use the basis GS(T, v). The upshot is that
T in the GS(T, v) basis is a real, symmetric, tridiagonal matrix.

One can do slightly more: because of cyclicity, the entries (i, j)
with i = j + 1 can be shown to be nonzero, and even more, they are
strictly positive numbers. Thus, T in this case is represented by a so
called Jacobi matrix. If n = 5,

J =


a0 b0 0 0 0
b0 a1 b1 0 0
0 b1 a2 b2 0
0 0 b2 a3 b3
0 0 0 b3 a4

 ,

where bk > 0.
Let us write the computations above in matrix form. Say T is

n × n, with a cyclic vector v0 giving rise to an orthonormal basis
GS(T, V0) = v0, v1, . . . , vn−1. Let W be the (orthogonal) matrix with
columns given by the vk’s.

Proposition 2. W tridiagonalizes T by conjugation,

T W =W J , so that J =WT T W ,

a0 = 〈 v0 , T v0 〉 , ak = 〈 vk , T vk 〉 , bk−1 = 〈 vk−1 , T vk 〉 k ≥ 1 .

We extend the result.

Theorem 5. Let H be a Hilbert space, T : H → H a bounded sym-
metric operator. Then there is a unitary transformation U : H → H
such that J̃ = U∗TU splits into Jacobi blocks.

The operator T may induce infinitely many blocks. Thus H splits
in a sum of orthogonal invariant subspaces

H = closure
(⊕

α

Hα

)
,
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(only countably many, if H is separable) and on each such Hα there
is a cyclic vector vα, in the sense that Hα is the closure of the span
of the vectors T kvα, k = 0, 1, . . ..

Proof. Take any nonzero v ∈ H to obtain the first invariant subspace,
given by span(T kv). Now proceed by taking another vector in the
orthogonal complement of this subspace. This works if H is finite
dimensional, otherwise use Zorn’s lemma.

This is one of the reasons why tridiagonal (in particular Jacobi)
matrices are relevant. In particular, the spectral theorem for bounded
symmetric operators follows once it is proved for Jacobi matrices.

Exercise 4. No eigenvector v of a Jacobi matrix has its first coordi-
nate v1 equal to zero (write Jv = λv in coordinates). The spectrum
of a Jacobi matrix is always simple (i.e., all eigenvalues are distinct).

The Lanczos method tridiagonalizes a symmetric matrix S by
splitting it in a sum of Jacobi matrices Jk so that ∪k σ(Jk) = σ(S).
It is used, for example, in the conjugate gradient algorithm.

2.3.1 Jacobi inverse variables

What does it take do describe an n×n Jacobi matrix J? Say J has the
same eigenvalues of a diagonal matrix Λ with simple spectrum (this
is automatic, from Exercise 4) and write J =WTΛJ , where again by
the same exercise, we may suppose that the first row of WT (hence,
the first column of W ) has strictly positive entries. Clearly, knowing
J is equivalent to knowing W , which in turn is obtained from the
cyclic vector v0 from the Lanczos procedure applying successively Λ
to v0. The entries of v0 are the first coordinates of the eigenvectors of
J , which, from exercise 4, may be taken to be strictly positive. Also,
since W is orthogonal, the vector v0 must be normal.

Thus, Jacobi matrices are described by eigenvalues (yielding Λ)
and norming constants ck, which are the entries of v0 — these are the
so called Jacobi inverse variables. In a sense we are tridiagonalizing
a diagonal matrix Λ, and this allows for the additional parameters
ck: we provide details. Define two natural geometric objects,

Rn+ = {x ∈ Rn |x1 > x2 > . . . > xn} ,
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Qn+ = {c ∈ Rn | ck > 0 and
∑
k

c2k = 1 } .

Theorem 6. The map taking a Jacobi matrix J to its ordered spec-
trum and norming constants is a diffeomorphism to Rn+ ×Qn+.

Moser stated this result as a discrete analogue of the inverse scat-
tering variables for the Schrödinger equation in the line. In the
continuous case, such variables were used to linearize the celebrated
Korteweg-de Vries equation. Moser used their discrete counterpart
to essentially linearize the Toda lattice ([42]). He credits the result
to Stieltjes and gives a different proof from the one presented here.

Proof. The map J 7→ (Λ, c) is smooth (even real analytic): Jacobi
matrices for an open set of the vector space of symmetric, tridiagonal
matrices with simple spectrum, so that eigenvalues and eigenvectors
vary smoothly (from Proposition 10 in Section 3.2). The inverse map
(Λ, c) 7→ J , from which the rest of the statement follows immediately,
is just the Lanczos procedure starting from Λ and c.

2.4 Genericity and density arguments

It is very frequent that a statement about matrices is simpler to prove
if we add some generic hypothesis. The additional hypothesis is then
removed by taking limits. Let us provide examples of this technique,
which will be used extensively in this text.

2.4.1 The resultant

The resultant of two polynomials is one of those algebraic jewels ev-
erybody should know. Say p(x) and q(x) have degrees n and m. If
they have a common root r, their greatest common divisor (gcd) has
(x − r) as a factor. On the other hand, if they are mutually prime,
their gcd is 1 and from the Euclidean algorithm, there are polynomi-
als a(x) and b(x) with degrees at most m− 1 and n− 1 for which

a(x) p(x) + b(x) q(x) = 1 .

The coefficients of a and b can be obtained from this equation by
solving a system with m + n unknowns and m + n equations — its
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determinant R(p, q) then is zero if and only if p and q are mutually
prime. Clearly R(p, q) is a polynomial in the coefficients of p and q.
In particular, p has a double root if and only if R(p, p′) = 0.

The next step is more interesting: the resultant provides a non-
linear version of Gaussian elimination. Indeed, consider

p(x, y) = 0 , q(x, y) = 0 .

In the linear case, we solve for one variable and replace it in the other
equation. Here, we compute the resultant R(p, q; y) (think of x = x0

fixed and compute the resultant of two polynomials in y) to obtain a
polynomial R̃(x) which is zero exactly when p(x0, .) and q(x0, .) have
a common root y0. So, the roots of R̃(x) are exactly the values of
x0 for which one obtains common roots y0 of p and q! Clearly the
procedure holds for larger systems — get rid of a variable per step!

A very natural construction of the resultant is presented in Section
2.7.2. It uses a basic fact of spectral theory of tensor products.

2.4.2 Density arguments

As usual, let M(n,K) denote the algebra of n × n matrices with
entries in the field K (which is either R or C). Here are two generic
properties of matrices which are commonly used. As usual, GL(n,K)
is the set of invertible matrices. Let Md be the set of matrices with
distinct eigenvalues (i.e., of simple spectrum).

Proposition 3. GL(n,K) andMd are open, dense sets ofM(n,K).

Proof. If there is a nontrivial ball B ⊂ M(n,K) in which all matri-
ces are not invertible, then the determinant function det(M), which
is a polynomial in the entries of M , is identically zero throughout
M(n,K), which is not true.

Similarly if in such a ball B all matrices have a double eigenvalue,
then the resolvent R(p(M), p′(M)) between p(M) = det(M−λ I) and
its derivative in λ, p′(λ), is also zero in B — again, this expression
is a polynomial in the entries of M and is not identically zero, since
there are matrices with simple spectrum.

Openness of both sets is trivial: det and R are continuous maps.
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Exercise 5. Sometimes, genericity is simply not true: this exercise
is harder. Let A and B be real, skew-symmetric matrices (so that
AT = −A and BT = −B). Then the product AB never has a simple
eigenvalue. More, eigenvalues of AB always have even multiplicity.
Hint: learn about Pfaffians.

Let H be a separable infinite dimensional Hilbert space. Within
B(H), the algebra of bounded operators from H to itself, invertible
operators form an open subset, but they are not dense. This role is
taken by Fredholm operators: they somehow subsume rectangular ma-
trices (how can one distinguish RN and Rn in infinite dimensions?).
We don’t handle such issues in this text ([34] is a beautiful reference).

We now provide an archetypical density argument.

Proposition 4. Let A and B be square matrices of the same dimen-
sion. Then σ(AB) =σ(BA). If A is n × N and B is N × n, for
N > n, then σ(AB) \ {0}=σ(BA) \ {0}.

This result holds for appropriate closed operators (in the rectan-
gular version...) — see [12] for a proof and some very interesting
applications. Actually, one can even obtain the celebrated KdV soli-
tons using this result ([15]).

Proof. Suppose A is invertible: then the result is trivial:

AB=A (BA)A−1 .

Take an arbitrary square matrix A, and An → A, where the An’s are
invertible. Then σ(AnB) =σ(BAn), which we rewrite as

det(AnB−λ I) = det(BAn−λ I) .

The coefficients of the polynomials on both sides are continuous func-
tions of the input matrices, so equality is preserved in the limit.

In general, obtain N × N matrices Ã and B̃ from A and B by
adding blocks of zeros and apply the result for Ã and B̃.
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2.5 Tensors and spectrum

There is nothing wrong with thinking of vectors in Rn as strings of n
real numbers, but sometimes this is simply not convenient. Consider
the following important example — solve for u in

∆u(x, y) =uxx(x, y) + uyy(x, y) = f(x, y) , u = 0 in ∂R

for (x, y) ∈ R= (0, (n+ 1)h)× (0, (m+ 1)h). A good starting point
for this enormous subject is [16], here we just point out a relevant
issue and bifurcate. Define the grid of equally spaced

(xi, yj) = (i, j) , i= 1 , . . . , n i= 1 , . . . , m .

The unknowns ûij are the approximations of u(x, y) on these points.
Frequently the Laplacian ∆ is approximated by

∆u(xi, yj) ∼
1

h2

(
ûi−1,j − 2ûij + ûi+1,j + ûi,j−1 − 2ûij + ûi,j+1

)
,

and one solves the linear system for ûij ,

1

h2

(
ûi−1,j + ûi+1,j + ûi,j−1 + ûi,j+1 − 4ûij

)
= fij ,

where û is taken to be zero in the grid points in ∂R (i.e., i= 0, n+ 1
or j= 0,m) and fij is the value of f on grid point (xi, yj).

Suppose that there are n and m points in the interior of R on each
horizontal or vertical lines of the grid, respectively. The unknown is
naturally a vector in Rnm and the matrix L associated to the discrete
Laplacian is of dimension nm× nm. Still, the unknown is not really
a string of numbers, it is a box of numbers, precisely, an association
of a number to each grid point. If we think of the unknown Û as
an m × n matrix , L is given by A Û + Û B, where A is m ×m and
B is n × n: A and B are discretizations of the second order (one
dimensional) derivative, respectively along the y and the x axes.

It is true that A and B have much less entries than L, but a nu-
merical analyst would argue that Lû, the discrete counterpart of Lu,
should not be computed by writing the discrete Laplacian as a ma-
trix: one might simply obtain Lu by using the discretization formula
above. So clever programming circumvents this issue — but how
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do you realize that there is a similar clever programming associated
to the linear transformation of another problem? The Fast Fourier
Transform, for example, is essentially a trick using tensor products,
combined with exquisite programming ([46]).

There is more to this representation of L. As usual, Mrs is the
vector space of real r × s matrices.

Theorem 7. Let A ∈Mnn and B ∈Mmm have eigenvalues

αi, i = 1, . . . , n and βj , j = 1, . . . ,m .

The linear transformations

Ts, Tp :Mnm →Mnm , TsM =AM −M B , Tp(M) = AM B

have spectra given by

σ(Ts) = {αi − βj } , σ(Tp) = {αi βj } ,

for i = 1, . . . , n , j = 1, . . . ,m.

Thus, one obtains the spectrum of the Laplacian with Dirichlet
conditions on a rectangle from the spectrum of the second derivative
acting on functions which satisfy Dirichlet conditions in an interval,
both in the continuum and discrete cases (use Exercise 10).

Proof. Suppose that A and B have simple spectrum. Fix eigenvalues
and eigenvectors

Avi =αi vi , BT wj =βj wj

and define the matrix Zij = vi w
T
j . We have

TsZij =Avi w
T
j − vi w

T
j B= (αi − βj) vi w

T
j = (αi − βj)Zij ,

TpZij =Avi w
T
j B=αi βj vi w

T
j =αi βj Zij ,

so not only we computed eigenvalues but eigenvectors of Ts and Tp.
We still have to show that the Zij ’s are independent. A possibility



i
i

“Spectrum” — 2015/5/11 — 12:17 — page 25 — #25 i
i

i
i

i
i

[SEC. 2.5: TENSORS AND SPECTRUM 25

is the following: take bases {ṽk} and {w̃`} so that 〈ṽk , vi〉 = δki and
〈w̃` , wj〉 = δ`j . If ∑

ij

cijZij =
∑
ij

cijvi w
T
j = 0 ,

multiply the linear combination on the left by (ṽi)
T and on the right

by w̃j to conclude that cij = 0.
For arbitrary A and B, use a density argument (Section 2.4.2).

Bases {ṽk} and {w̃`} are bi-orthogonal: they will come up again
in Section 3.2.1. Notice that rows of a matrix and columns of its
inverse are bi-orthogonal.

In a nutshell, tensor products are related to matrix properties
which are easily described in terms of rank one matrices uvT . Say
V = Rn and W = Rm. The tensor product V × W is Mnm, the
vector space of n×m real matrices. A natural basis is given by the
matrices Eij = eie

T
j , whose only nonzero entry is eij = 1.

More generally, one may define V ⊗W as linear combinations of
symbolic expressions vi⊗wj , for basis elements of both spaces, which
are interpreted as a basis for the product. For Hilbert spaces, start
from orthonormal bases and expressions like that define the inner
product structure of V ⊗W . In the infinite dimensional Hilbert case,
linear combinations are replaced by (convergent) series.

Exercise 6. As every physicist knows ([45]),

L2(R× R, dxdy ) ' L2(R, dx )⊗ L2(R, dy ) .

For orthonormal bases of functions fi ∈ L2(R, dx) and gj ∈ L2(R, dy),
the expressions fi⊗gj are identified with fi(x)gj(y). The equivalence
states that functions in two variables u(x, y) ∈ L2(R × R, dxdy) are
limits of linear combinations of monomials of the form fi(x)gj(y).
This is what makes the method of separation of variables work.

Even more generally, one may define V ⊗W in invariant terms,
without invoking explicit bases, but this is another story ([32]). No-
tice that extensions of the symbolic approach, like using expressions
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ui ⊗ vj ⊗wk, are equally amenable, and correspond to vectors which
are associated to grid points in three dimensional boxes.

Equally tempting, what about different patterns, what if for ex-
ample the entries of a vector naturally correspond to vertices of an
icosahedron? This would lead us to representation theory, a fascinat-
ing subject outside of the scope of these notes ([49], [50]). For some
simple examples, see Section 2.8.2.

One also takes tensor products of linear transformations. Say
A ∈Mnn and B ∈Mmm: define A⊗B : Rn⊗Rm → Rn⊗Rm to be
the map Tp in the theorem above. In particular, Ts =A⊗In + I⊗Im
where the Ik denotes the identity Ik : Rk → Rk.

Exercise 7. For A ∈ Mnn and B ∈ Mmm, the Kronecker product
([27]) (actually, there are two forms of it) yields an nm× nm matrix
associated to Tp = A⊗B defined in Theorem 7, when one identifies M
(in the notation of the theorem) with either the nm-vector obtained
by writing sequentially all its rows or all its columns. How does it
look? In particular, if the entries of A and B are integer numbers,
the same happens to their Kronecker products.

Tensor products are now a hot topic in numerical analysis. Don’t
expect you favorite linear transformation to be a tensor product,
like the discrete Laplacian on a rectangle. But perhaps it is well
approximated by a sum of few tensor product monomials. We will
have more to say about this in Section 3.4. The interested should
consult [3], which approaches from this point of view the numerics of
Schrödinger operators, and the review article [29].

2.6 Wedges

Once we consider linear operations like Ts and Tp acting on two sides
of matrices M , we may think of special cases on which the matrices
M have additional structure. We are interested in M ∈ A(n,R),
a real skew-symmetric matrix — this is a possible starting point to
exterior algebras ([53]). We limit our attention to a unique example.

Take S ∈ S(n,R) (symmetric) with eigenvalues λk and define

TS : A(n,R) → A(n,R) , A 7→ S A+AS .
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Clearly, this is is a well defined linear map and it is so similar to Ts
in Theorem 7 that we should be able to compute its eigenvalues.

Theorem 8. σ(TS) = {λk +λ` , k > `}

Proof. Take an orthonormal eigenvectors vi so that S vi =λi vi. Now
vi ⊗ vj is not an eigenvector of TS , simply because it is not a skew
symmetric matrix. Take instead Zij = vi⊗vj − vj⊗vi: to get a basis,
we must stick to i > j. And the rest is the same:

TS Zij =S Zij +Zij S

= (S vi)⊗ vj − (S vj)⊗ vi + vi ⊗ (S vj)− vj ⊗ (S vi)

=λi vi ⊗ vj −λj vj ⊗ vi + λj vi ⊗ vj −λi vj ⊗ vi
= (λi +λj ) ( vi ⊗ vj − vj ⊗ vi ) = (λi +λj )Zij .

Thus, if λ1 ≤ λ2 ≤ . . . ≤ λn, the smallest eigenvalues of S and TS
are λ1 and λ1 +λ2. Iterate the process (how?) to prove properties
about extremal eigenvalues (an example is in Section 3.2.2).

But then what are the wedges? They are the expressions

u ∧ v=u⊗ v− v ⊗ u .

Linear combinations of such monomials span A(n,R). taking longer
strings of wedges leads to the exterior algebra, a very elegant formal-
ism to handles areas and volumes, but this is another story ([53]).

2.7 Some applications

2.7.1 Roots of polynomials are eigenvalues

Consider the following natural question: given a polynomial p with
roots rk, find another polynomial q with roots r2

k. The key point
is to notice that the roots are not given, and in principle are not
obtainable. But indeed, this is not necessary. Given p, find a matrix
having p for its characteristic polynomial — this is accomplished by a
companion matrix A. The required polynomial q is the characteristic
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polynomial of A2. Indeed, the eigenvalues of A2 are simply the square
of the eigenvalues of A (by Jordan’s theorem, for example, or by
proving first for diagonalizable matrices and then taking a limit).

There is nothing sacred about squaring, one might ask for q with
roots f(ri): it is the characteristic polynomial of f(A).

2.7.2 The resultant revisited

From Section 2.4.1, the resultant R(p, q) is a polynomial which is zero
exactly when p and q have a common root — by checking its degree,
we are forced to have, up to a nonzero constant (which is actually 1),

R(p, q) = cΠxi,yj (xi − yj),

where xi and yj are the roots of p and q. From Theorem 7, R(p, q)
is the characteristic polynomial of A⊗ Im − In ⊗B, where A and B
are companion matrices with characteristic polynomials p and q.

2.7.3 Algebraic numbers form a field

An algebraic number is a root of a polynomial with integer coefficients:
we prove the familiar fact that algebraic numbers are a subfield of
C. Thus for example, if x is an algebraic number and p(x) = 0, for
a polynomial p with integer coefficients, then 1/x is a root of a poly-
nomial q obtained by getting rid of denominators in the coefficients
of p(1/x). The only nontrivial facts to check are related to closure:
the sum and product of two algebraic numbers is another one.

Take x and y roots of p and q with integer coefficients, and con-
sider companion matrices A and B with characteristic polynomials p
and q. Both A and B have integer entries, and do not have necessarily
the same dimension. Now, as seen in Theorem 7, the transformations
A⊗ I + I ⊗B and A⊗B have respectively x+ y and xy among their
many roots, and are represented by Kronecker products consisting of
integer valued matrices (exercise 7) — we are done.

The reader might be intrigued by the fact that if p and q are
of degree n and m, then a polynomial of large degree mn pops up,
but this is frequently necessary to accommodate all the roots x + y
and xy, — the resulting polynomial is usually irreducible over the
rationals.
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2.8 Some examples: adjacency matrices

Given a graph G, enumerate its vertices 1, 2, . . . , n and consider the
n × n adjacency matrix A whose entry ai,j is 1 or 0, depending if
vertices i and j have a common edge or not. Notice that this is
simple idea — a matrix as a table — is a natural technique to convey
what looks like visual information to a computer.

The reader may imagine a number of generalizations: one could
think about directed or undirected graphs (i.e, one or two-way streets)
or weighted edges (which give rise to Markov chains). Most of what
we do admit trivial adaptations to these contexts, but we stick to the
simple case of undirected graphs.

The following well known theorem is a nice motivation for adja-
cency matrices. A path in a graph G with endpoints i and j is of
length k if it consists of k (possibly repeated) edges.

Theorem 9. Let G be a graph with adjacency matrix A. Then the
number of paths of length k with endpoints i and j is (Ak)ij.

2.8.1 Polygons and second derivatives

We compute the eigenvalues (and eigenvectors) of some special adja-
cency matrices. Let us start with something simple: G is a bracelet,
i.e., a graph with n vertices so that vertex i is adjacent to vertices
i− 1 and i+ 1, where we identify labels 0 and n+ 1. Set n = 5:

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

We use the first trick in representation theory. Consider the shift

S =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 .
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Then AS = S A, a fact that can be checked by matrix multiplication,
or which might be phrased in words. The shift S essentially moves
the indices 1, 2, . . . , 5 as 5→ 4→ 3→ 2→ 1→ 0 ∼ 5. Now, S−1AS
describes adjacencies of the same graph after the vertices have been
renamed by the shift, and clearly nothing changes.

Also, it should be clear that we know that S5 = I, the identity
matrix and it is not hard to write an explicit diagonalization

S = U∗ΛU , U ∈ SU(5) .

Such a diagonalization of S follows from the spectral theorem for
normal matrices: S commutes with its transpose ST = Sn−1. The
matrix Λ contains the fifth roots of unity along the diagonal, say,

1, ω = exp(2π/5), ω2, ω3, ω4 ,

and the unitary matrix U∗ has for columns the associated normalized
eigenvectors — it is the discrete Fourier transform of dimension 5.

The reader may think that something went wrong: we were inter-
ested in A and deviated in order to compute eigenvalues and eigen-
vectors of the simpler matrix S. We now compute eigenpairs of A in
two different ways. The simpler one is to realize that A = S + ST =
S+Sn−1, so that if vk is an eigenvector of S associated to S, then vk is
an eigenvector of A associated to ωk+ωn−1

k = ωk+ωk = 2 cos(2kπ/n).
In particular, most of the eigenvalues of A are double.

Exercise 8. From the spectral theorem, A should have only real
eigenvalues associated to an orthonormal basis of real eigenvectors
— show that this is indeed the case, by taking seriously the fact that
most of its eigenvalues are double.

Exercise 9. Consider circulant matrices, polynomials in the shift S:

p(T ) =

n∑
k=1

ck S
k , ck ∈ C .

Find a pattern in its entries. Compute eigenvalues and eigenvectors.

The second approach is more conceptual. Since A and S com-
mute and S has simple spectrum, A is a function of S, which might
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even be taken as a polynomial p, A = p(S). So again we learn that
eigenvectors of S are eigenvectors of A: computing eigenvalues once
one has eigenvectors is a triviality. One of the first proofs in the rep-
resentation theory, the so called Schur’s lemma, resolves the issue as
follows. If v is an eigenvector of S, then S v = λ v for some λ ∈ C.
Since AS = S A, we must have λA, v = S (Av) , so that Av is either
zero (and then v is an eigenvector of A associated to the eigenvalue
0) or Av 6= 0 is another eigenvector of S associated to λ. Since λ is
a simple eigenvalue, Av = µ v and again v is an eigenvector of A.

Exercise 10. Let f : [0, π] → R be a smooth function with f(0) =
f(π) = 0. The mesh with equally spaced points

x0 = 0 < x1 < . . . < xn < xn+1 = 1 ,

yields sub-intervals of size h = π/(n + 1) and a discretization of the
second derivative acting on such functions, which, for n = 5, is

L5 =
1

h2


−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2

 .

To compute its spectrum, it clearly suffices to know the spectrum of

A5 =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 .

The answer is remarkable. The second derivative clearly has eigen-
functions sin(kx) and eigenvalues k2 for k = 1, 2, . . . . The eigen-
vectors vk, k = 1, . . . , n of the discrete problem are the evaluations of
the continuous eigenfunctions at the points of the grid,

vk = ( sin(kxi) ) ∈ Rn, i = 1, . . . , n

and eigenvalues λk = 2 cos(k x1). This is easy to check — can you ob-
tain this result from the periodic case, which is the adjacency matrix
of a bracelet ? Show also that, as n→∞, the k-th discrete eigenpair
converges to the k-th continuous eigenpair.



i
i

“Spectrum” — 2015/5/11 — 12:17 — page 32 — #32 i
i

i
i

i
i

32 [CHAP. 2: SOME BASIC FACTS

2.8.2 Regular polytopes

It is a remarkable fact, known already in the nineteenth century,
that one can enumerate all possible regular polytopes (for a precise
definition and an enormous amount of fascinating material, see [9]).

In two dimensions, they are just the regular polygons, with adja-
cency matrices whose spectra were computed above. In three dimen-
sions, the Greeks knew about the five platonic solids: the tetrahe-
dron, the cube, the octahedron, the dodecahedron and the icosahe-
dron. Things are less familiar in four dimensions, where one still has
the counterparts of the tetrahedron (a 4-simplex, or more concretely,
the convex span of the five canonical vectors in R5), the cube, the
octahedron (the span of the centers of the faces of the cube) and
three other regular polytopes, with 24, 120 and 600 vertices respec-
tively. Rather surprisingly, for dimensions larger than 4, only the
three simpler types of polytopes remain.

Simplexes
The n-simplex is the convex span of the canonical vectors in Rn+1.

In particular its (n+1)×(n+1) adjacency matrix A satisfies A=1−I,
where 1 is the matrix all of whose entries are equal to 1. Now, all
the canonical vectors are taken by 1 to the same vector, which then
must be an eigenvector of 1,associated to n+ 1. Since dim Ran1= 1,
the kernel must be of dimension n— the remaining eigenvalues of 1
are 0, with multiplicity n. The upshot is that σ(A) consists of the
eigenvalue −1 with multiplicity n and the simple eigenvalue n.

Cubes
We present two different arguments. The vertices of the n-cube

may be taken to be the points in Rn all of whose coordinates are
equal to zero or one. More, there is a natural underlying inductive
construction for the adjacency matrix An. The list of vertices of the
n-cube consists of two copies of the list of vertices of the (n−1)-cube
to which one appends a 0 or a 1 as last coordinate of each copy. Thus,
a labeling of the vertices of the (n−1)-cube induces a labeling for the
n-cube and the adjacency matrices are related in a simple fashion,

An =

(
An−1 I

I An−1

)
.
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A simple computation now shows that if An−1vn−1 = λn−1vn−1

then the eigenpairs ( v±N , λ
±
n ) of An are given by

v+
n = (vn−1, vn−1) , λ+

n =λn−1 + 1

and
v−n = (vn−1,−vn−1) , λ−n =λn−1 − 1 .

It is easy to see that all eigenvectors constructed in such fashion are
orthogonal, hence the juxtaposition of the v+

n and v−n form a basis.
The inductive step yields the eigenvalues of cubes. In one dimen-

sion, they are simply {−1, 1}. Adding and subtracting 1 to these
eigenvalues, we obtain for the 2-cube the eigenvalues −2, 0 and 2,
where 0 is a double eigenvalue. More generally, the n-cube has n+ 1
distinct eigenvalues in arithmetic progression from −n to n, with con-
secutive numbers differing by two. The multiplicities, in ascending
order, are given by the binomial numbers. Thus, the 4-cube, for ex-
ample, has eigenvalues −4,−2, 0, 2, 4, with multiplicities 1, 4, 6, 4, 1.

We consider a second argument, which is more complicated but
more flexible. The formula Av = λv for the eigenpair of an adjacency
matrix A has a geometric interpretation. Think of v as the obvious
distribution of numbers at the vertices of A — the coordinates of v are
labeled by the indices of the vertices. Now Av is a similar distribution
obtained by adding the neighboring values of v at a vertex. Thus,
for example, for the 3-cube, the vector v which corresponds to the
number 1 at each of the eight vertices, gives for Av the vector for
which there is a 3 on each vertex — we have just found an eigenvector
associated to the eigenvalue 3.

We start with n = 3. Hold the cube from a vertex (or bend your
head) and think of (1, 1, 1) as a vertical vector. Vertices lie in three
different planes of R3 according to the number of nonzero coordinates:

{1, 1, 1}, {(1, 1, 0), (1, 0, 1), (0, 1, 1)},

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, {(0, 0, 0)} .

Now, a rotation R by 2π/3 around the vertical axis keeps the two
extreme vertices fixed and permutes the vertices of the intermediate
levels. More, if A3v = λv for v 6= 0, then Rv and R2v are also
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eigenvectors of A3 associated to the same λ. Without loss (why?) we
may suppose that v at the vertex (1, 1, 1) is not equal to zero. Thus,

vm =
1

3

(
v + Rv + R2 v

)
is also a (nonzero) eigenvector of A3 associated to λ with the addi-
tional property that it is constant on each level — vm is the average
of an orbit of a Z3 action which keeps the levels invariant and is
transitive on each level (i.e., there are group elements which take one
point of a level to any other in the same level).

In a nutshell, every eigenvalue of A3 is associated to an eigenvector
which is constant on each of the four levels. Let V be the subspace of
vectors v which are constant on each level, clearly a vector space of
dimension 4. The fact that A commutes with the rotation R (why?
think visually about the effect that A and R have on distributions
of numbers at vertices) implies that V is an invariant subspace of
A. Thus, to obtain the eigenvalues of A3, it suffices to look at the
eigenvalues of the restriction of A3 to V . Label the levels A,B,C and
D. A vertex in A has three neighbors in B, a vertex in B has one
neighbor in A and two in C, one in C has two in B and one in D and
finally the vertex in D has three neighbors in C. A distribution of
values (a, b, c, d) giving rise to a vector in V would be taken by A3 to
the vector in V associated to (3b, a+ 2c, 2b+ d, 3c), so that a matrix
representation of the restriction of A3 to V is given by

0 3 0 0
1 0 2 0
0 2 0 1
0 0 3 0

 .

We can do better. This matrix has a special symmetry: the entry
(i, j) equals the entry (n + 1 − i, n + 1 − j) (surely your eyes have
a simple description of this symmetry). This in turn implies that
V splits in two additional invariant subspaces V =V e ⊕ V o of even
and odd vectors of the form (a, b, b, a) and (a, b,−b,−a) (this could
be inferred abstractly and pedantically, by an averaging argument).
Also, on V e and V o, A3 acts as follows:

(a, b, b, a) 7→ (3b, a+ 2b, b+ 2a, 3b) ,
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(a, b,−b,−a) 7→ (3b, a− 2b, b− 2a,−3b) ,

and representations of A3 restricted to such smaller subspaces are(
0 3
1 2

)
,

(
0 3
1 −2

)
.

So, each eigenvalue of the 8× 8 matrix A3, is an eigenvalue of one of
these 2× 2 matrices, which are respectively {−1, 3} and {−3, 1}.

For the general case An, there are n+ 1 levels, defined as above,
and the issue is the existence of a group of special orthogonal matrices
(like the rotation R) which acts transitively on the levels. Indeed,
there is such a group: it is the group of even permutations on n
symbols (for n = 3, it is Z3), represented as n × n permutation
matrices. The action is just the permutation of the entries of a vector:
it clearly preserves levels and is indeed transitive, so the subspace of
vectors which are constant on levels plays the same role as before.
Notice the implicit use of the fact that, on each level (orbit action),
the number of group elements taking one coordinate to another is the
same (the isotopy group at each orbit element is of the same size).

As a nice corollary, we obtain a collection of tridiagonal matrices
with simple spectrum having integer eigenvalues in arithmetic pro-
gression — extend the 3×3 example above. These matrices come up
in Lie algebra theory, as for example in the theory of Verma modules.

By the way, once the eigenvalues are computed, how does one
go about computing multiplicities? A simple answer goes as follows.
From Theorem 9, the number of closed paths of length k of such
a regular graph with adjacency matrix A is given by trAk (why?),

an easily computable number. But trAk =
∑
i

λki , so for each k

one obtains a linear relation among the multiplicities of the many
eigenvalues.

The polytope with 600 vertices
The spectra of all regular polytopes was obtained in [47]. The

spectrum of the adjacency matrix of the four-dimensional polytope
with 600 vertices, for example, has been computed with the many
levels technique described above for the cube. There are 46 levels
which, using an additional Z2-involution, give rise to two invariant
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subspaces of dimension 23 containing the original eigenvalues. Rather
surprisingly, the eigenvalues of all adjacency matrices of all regular
polytopes can be explicitly calculated, in the sense that all the char-
acteristic polynomials have no Galois-type obstructions.

Let us add some details. One might use a numerical algorithm
to approximate eigenvalues to compute the 46 eigenvalues above. It
takes some... inspiration (but there are algorithms for this also, nowa-
days) to conclude that some of these numbers are surds, a very old
word to describe numbers of the form a+ b

√
c, a, b ∈ Q, c ∈ N. How

does one prove precisely that a surd is indeed an eigenvalue, using
only integer arithmetic? Well, we all know that a real matrix has
eigenvalues coming in complex conjugate pairs. If a matrix M with
integer entries has an eigenvalue a + b

√
c it will also have a − b

√
c

for eigenvalue, so that the matrix (M − aI)2− b2 c I should have two
eigenvalues equal to zero, a check which is easily performed in Z.

2.8.3 Semi-regular polytopes

The usual soccer ball consisting of hexagons and pentagons is an ex-
ample of a semi-regular polyhedron. There are thirteen of them in
three dimensions, the so called Kepler polyhedra. The list of semi-
regular polytopes in all dimensions has been known since the nine-
teenth century, but the confirmation that it was indeed complete is
a result from the early nineties, by Blind and Blind ([4]).

These spectra were computed in [48]. The subfamily of Gosset
polytopes only has integer eigenvalues, hundreds of them. In the pic-
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ture, we show the only two semi-regular polytopes whose eigenvalues
are beyond solutions by radicals. Both are three dimensional.

Additional techniques from representation theory were required.
We all know that if a collection of diagonalizable matrices commute,
then they are simultaneously diagonalizable, i.e., they have a diagonal
representation on a common basis. Representation theory studies
with spectacular success the following generalization: how far can
one go towards diagonalizing a finite group of matrices? A small part
of the answer is that full diagonalization is usually not possible, but
one may achieve a common block-diagonal form, where the sizes of
the block may be known in advance.

A related technique, also used in [48], handles the so called Cay-
ley graphs, which are graphical descriptions of multiplication tables
of groups described by generators and relations. The spectrum of
adjacency matrices associated to graphs — spectral graph theory —
is an intense field of research, associated to issues in contagion of dis-
eases, and more generally, the propagation of information ([10],[7]).

As a final remark, we slightly expand our collection of graphs.
There is a special configuration of atoms of carbon, fullerene, con-
sisting of 60 atoms arranged as vertices of the soccer ball formed by
hexagons and pentagons. Carbon usually attaches to four neighbors,
and each vertex has only three, but the edges between hexagons have
two links between them, so one performs a slight modification on the
adjacency matrix to take into account this information. The spec-
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trum of this modified adjacency matrix is of practical interest, and
may be computed with the techniques described before ([8], [48]).
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Chapter 3

Some analysis

3.1 Algebras of matrices and operators

Square matrices (or for the matter linear transformations, or even
bounded operators from a Banach space to itself) are not just a
normed vector space — they form an algebra, i.e., they can be mul-
tiplied. In particular, we can evaluate squares, cubes, polynomials
of square matrices and transformations of a space to itself. More
general functions are also relevant.

Let X be a complex Banach space and consider

B=B(X) = { linear bounded transformations T : B → B} ,

which we endow with the operator norm

||T || = sup
||v||=1

||Tv || .

With this norm, B is known to be a Banach space, with a special
feature: this norm is multiplicative ,

||TS || ≤ ||T || ||S || , ∀T , S ∈ B .

Norms are not supposed to handle multiplications, being defined on
vector spaces. This property is an extra feature — B now is a Banach
algebra, but we shall not deal in such generality. The great advantage

39
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of working with a multiplicative norm is that the estimates performed
on C transfer to B. This vague statement deserves an illustration.

What is eπ ? The answer through the series

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
. . . ...

is so good that actually much more is obtained. First, of course,
we have to give meaning to the limit indicated by the dots. This
follows by verification that the sequence of partial sums is a Cauchy
sequence. It requires the triangular inequality, the fact that |czk| ≤
|c| |z|k (well, actually an equality) and estimates in terms of geometric
progressions, which is how we usually estimate series in an open disk.

There is nothing wrong in replacing z in the series by an n × n
matrix or by an operator T ∈ B — all the steps used to give sense to
the limit still make sense! This is where the multiplicative property
of the norm is handy: indeed, ||T k|| ≤ ||T ||k. In the series, 1 has to
be replaced by the neutral element of multiplication, namely I. The
argument also shows that eT is indeed a bounded operator.

Exercise 11. The imitation goes further. If one has to justify the
convenience of being able to compute eT , one may prove that the
(unique) solution to the differential equation

v′(t) = Tv(t), v(0) = v0

is given, as usual, by v(t) = etT v0 — simply show that derivatives
may be taken term by term as in the scalar case.

Exercise 12. In the notation of Theorem 7, consider

X ′(t) =TsX(t) =AX(t)−X(t)B , X(0) = X0 .

Exponentiate (with the Taylor series) Ts to obtain

X(t) = et Ts X0 = et AX0 e
t B .

Now take X ′=TpX =AX B , X(0) = X0. What now?

Let us identify another such operator. Consider the exponential

F :M(n,R)→M(n,R) , M 7→ eM .
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(everything works for complex numbers too). What is the derivative
of F at M along the direction A ? We have to compute the standard
Newton-type limit. All possible rearrangements are permitted since
the series are absolutely convergent (just like real series...):

lim
t→0

F (M + tA)− F (M)

t
= lim

eM+tA − eM

t

= lim
1

t
( I − I + (M + tA − M)

+
1

2!

(
(M + tA)2 − M2

)
+

1

3!

(
(M + tA)3 − 1

3!
M3
)

+ . . .)

=A +
1

2!

(
M A+AM

)
+

1

3!

(
M2A+M AM +AM2

)
+ . . . =T A

which in principle is the answer to the problem — notice by the way
that T is indeed a linear transformation T on A.

There is something to learn by computing eigenvalues of this
transformation. Say M has distinct eigenvalues µk and eigenvectors

M vk =µk vk , wT` M =µ` w
T
` , , k, ` = 1, . . . , n .

As in the proof of Theorem 7, the matrices Zk` = vk ⊗w` = vkw
T
` are

eigenvectors of T , with eigenvalues

1 +
1

2!

(
µk + µ`

)
+

1

3!

(
µ2
k + µk µ` + µ2

`

)
+ . . .

=
1

µk − µ`
(
µk − µ` +

1

2!
(µ2
k − µ2

`) +
1

3!
(µ3
k − µ3

`)
)

=
eµk − e

µ
`

µk − µ`
,

a beautiful formula. In particular, if M has two eigenvalues differing
by 2πi ∈ C, the Jacobian DF (M) is not a bijection.
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3.2 Smoothness of eigenpairs

We present a short argument which implies smoothness of eigenvalues
and eigenvectors, combined with the formulas for the derivatives.

Let K be either R or C: C is the usual context for spectral the-
ory, but we are also interested in real eigenvalues. Consider X ⊂ Y
Banach spaces over K and let B = B(X,Y ) be the space of lin-
ear transformations from X to Y , bounded in the sup norm. Let
λ0 ∈ K and φ0 ∈ X be eigenvalue and eigenvector of T0 ∈ B, so that
(T0 − λ0I)φ0 = 0.

In order for φ0 to be well defined, we need some kind of normal-
ization. Let ` ∈ X∗ be a linear functional for which `(φ0) = 1. This
choice is better than normalizing by the norm, since the unit ball is
not necessarily a manifold for a general Banach space (think of balls
with spikes, for example).

Another difficulty for a theorem stating smooth variation of eigen-
pairs are double eigenvalues. This is easy to see already on two di-
mensional examples. We need additional hypotheses which somehow
exclude this possibility.

Theorem 10. Suppose that T0−λ0I is a Fredholm operator of index
zero with one dimensional kernel and that φ0 /∈ Ran(T0 − λ0I). Set
Z = φ0 +Ker `. Then there is an open neighborhood U ⊂ B of T0 and
unique maps λ : U → K and φ : U → Z with (T − λ(T )I)φ(T ) = 0.
Such maps are analytic.

For finite dimensional spaces, the hypothesis φ0 /∈ Ran(T0 − λ0I)
is equivalent to the statement that λ0 has algebraic multiplicity one.

Proof. Clearly Z is a closed, affine subspace of X of codimension 1.
We use the implicit function theorem on the analytic map

H : B × Z ×K→ Y , T, φ, λ 7→ (T − λI)φ.

We must show the invertibility at (T0, φ0, λ0) of the derivative of H
with respect to the last two variables,

DHφ,λ(T0, φ0, λ0)(v, c) = (T0 − λ0I)v − cφ0 .

Let 〈φ0〉 be the vector space generated by φ0. By hypothesis,

X = Ker `⊕ 〈φ0〉 , Y = Ran(T0 − λ0I)⊕ (DF (u)− λ(u))
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and T0 − λ0I respects the decompositions. To solve

(T0 − λ0I) v − c φ0 = y ,

split v = k+c φ0 and y = r+dφ0: k = (T0−λ0I)−1 r and c = −d.

3.2.1 Bi-orthogonality, derivatives of eigenpairs

In Section 2.5, we used two sided eigenvectors extensively, they are
convenient when matrices are not symmetric. On Cn, take the usual
complex inner product which is skew-linear in the first coordinate.

Proposition 5. Let M ∈ M(n,C) have distinct eigenvalues {λk},
and two sided eigenvectors

M vk =λk vk , w∗`M =λ` w
∗
` , k, ` = 1, . . . , n .

Then 〈 vk , w` 〉= 0 for k 6= ` . Also, 〈 vk , wk 〉 6= 0.

The orthonormal basis of eigenvectors of self-adjoint matrices is
a manifestation of this bi-orthogonality of both eigenvector bases.

Proof. The proof follows the standard self-adjoint counterpart:

λk〈 vk , w` 〉= 〈λk vk , w` 〉= 〈M vk , w` 〉

= 〈 vk ,M∗ w` 〉= 〈 vk , λ` w` 〉=λ` 〈 vk , w` 〉 ,
and now use that λk 6= λ`. If 〈 vk , wk 〉= 0, then vk would be orthog-
onal to all the elements of the basis of the w`’s, a contradiction.

Exercise 13. Prove something harder — use the Jordan form. Say
λ is a simple eigenvalue of M with left and right eigenvectors v and
w. Then 〈 v , w 〉 6= 0. State and prove something similar in infinite
dimensions: consider the Dunford-Schwartz calculus of Section 5.1.

We compute derivatives of eigenvalues and eigenvectors of matri-
ces, but they extend easily to infinite dimensional operators: one only
has to add the hypotheses of Theorem 10.

In the finite dimensional case, if λ0 is a simple eigenvalue of M0

with eigenvectors v0 and w0,

M0 v0 =λ0 v0 , w∗0M =λ0 w
∗
0 ,
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we saw in Theorem 10 that that there is a neighborhood of M0 for
which, under appropriate normalizations, there are (analytic) func-
tions λ(M), v(M) and w(M) which equal λ0, v0 and w0 at M = M0.
We simply take derivatives on a parameter of the eigenvalue equation

M v=λ v ,

yielding, in very convenient notation,

Ṁ v + M v̇= λ̇ v + λv̇ .

Now take inner products with w to get

〈w , Ṁ v 〉 + 〈w ,M v̇ 〉= 〈w , λ̇ v 〉 + 〈w , λv̇ 〉 ,

so that, imitating the proof of Proposition 5,

〈w , Ṁ v 〉 + 〈M∗ w , v̇ 〉= λ̇ 〈w , v 〉 + λ 〈w , v̇ 〉

and we obtain

λ̇=
〈w , Ṁ v 〉
〈w , v 〉

,

which is well defined from the previous exercise. Notice also that
the expression is independent of the normalizations we impose on
both eigenvectors. To clarify matters, denote by ∂A the directional
derivative along direction A. This equation states that

∂Aλ(M) =
〈w , ∂AM v 〉
〈w , v 〉

.

We now compute the derivative v̇ of the eigenvector v. From the
derivative of the eigenvalue equation, we have

(M − λ I) v̇= − c ,

so that the apparent obstruction —the fact that (M − λ I) is not
invertible — has to be irrelevant. The right hand side (Ṁ − λ̇ I) v is
indeed in the range of (M − λ I), which is of rank n− 1. Indeed,

Ran(M − λ I) =
(

Ker(M∗ − λ I)
)⊥

=w⊥ ,
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so we have to check that〈w , Ṁ − λ̇ I) v 〉= 0, which is exactly what
we get from the formula for λ̇. Thus we know v̇ up to a kernel vector
c v: this is where we need to specify a normalization for v.

We consider only a simple case: sayM is a real, symmetric matrix,
and we take ||v||= 1. Then it is easy to see that the restriction
(M − λI)|v⊥ : v⊥ → v⊥ is a bijection, and the normalization forces
c = 0: in a nutshell,

V̇ = − (M − λI)|−1
v⊥

(Ṁ − λ̇ I) v .

The simple details are left to the reader.

3.2.2 Continuity of eigenvalues

Self-adjoint matrices have real eigenvalues and can be ordered, say

λ1 ≤ λ2 ≤ . . . ≤ λn .

We are thus entitled to ask about continuity of λk(S) as a function
of S ∈ S — this is a well known fact. We present a brief argument.
The standard min-max definition of λ1 follows by simplifying the
computations in the previous section,

λ1 = min
||v||=1

〈S v , v 〉 ,

and continuity is immediate. For the remaining eigenvalues, one may
consider the formulas for λk associated to min-max, or simply invoke
the fact that TS : A(n,R) → A(n,R) in Section 2.6 has minimal
eigenvalue λ1 +λ2, from which continuity of λ1 +λ2 and hence λ2

follow. The argument extends for all eigenvalues.

3.3 Some variational properties

A real, n× n symmetric matrix S gives rise to a quadratic form

Q : Sn−1 ⊂ Rn → R , v 7→ 〈 v , S v 〉 ,

whose critical points (i.e., the vectors v ∈ Sn−1 for which DQ(v) = 0)
are the eigenvectors of S and critical values are its eigenvalues. We
can do almost the same for general matrices.
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Proposition 6. Consider the function

F : Sn−1 × Sn−1 → R , u , v 7→ 〈u ,M v 〉 .

Then a point (u, v) is critical if and only if u and v are eigenvectors
respectively of MMT and MT M associated to the same eigenvalue.

Recall from Exercise 4 that σ(MMT ) =σ(MT M ).

Proof. Take directional derivatives for 〈 a , u 〉= 0 and 〈 b , v 〉= 0,

DF (u, v) (a, b) = 〈 a ,M v 〉+ 〈u ,M b 〉 ,

which is always zero only if

∀ a ∈ u⊥ , 〈 a ,M v 〉= 0 and ∀ b ∈ v⊥ , 〈u ,M b 〉= 0 .

Thus, there are constants α and β such that

M v=αu MT u=β v

and

MT M v = αβ v and MMT u = αβ u .

In the symmetric case, the variational description of eigenvalues
and eigenvectors is related to the spectral theorem: S=QΛQT , or
better, S QT =QΛ, so that the columns of Q are the eigenvectors of
S. To show that Q may be taken orthogonal start with a generic ma-
trix with simple spectrum, conclude that Q may be taken orthogonal
(from bi-orthogonality, if you want). For an arbitrary symmetric S,
take limits, keeping in mind that the orthogonal group is compact.

Similarly, the variational principle above is related to the singular
value decomposition (SVD) of a matrix M : M = QΣU , where now
Q and U are orthogonal matrices and Σ is a non-negative diagonal.

Theorem 11. Every M ∈M(n,R) is a product

M =QT ΣU , Q, U ∈ O(n), Σ = diag(σ1, σ2, . . . , σn) , σk > 0 .
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Proof. Use the spectral theorem and Exercise 4 to write

MMT =QΣ2Q , MT M =UT Σ2 U .

Here we make the generic hypothesis

σ(MMT ) =σ(MT M) = {σ2
1 > σ2

2 > . . . > σ2
n, σk ∈ R } ,

and take Σ = diag(σ1, . . . , σn). Indeed, if we want M =QT ΣU , we
must have spectral decompositions of MMT and MT M as above:
we must show that the Q,U and Σ obtained by the spectral decom-
positions indeed yield M . Using that M is invertible (σk > 0), write

MM t =M (MT M )M−1

so that comparing spectral decompositions (and using the generic
hypothesis) we learn that

QD=M UT

for some real diagonal matrix D (each eigenvector of MMT is well
defined up to normalization), and thus M =QDU . Now

MMT = QΣ2QT =QD2QT

so D2 = Σ2, since both matrices are positive. But from the hypothe-
sis, Σ > 0 and we want D > 0: we must have D= Σ. Get rid of the
generic hypothesis by taking limits.

The SVD may be interpreted as an extension of the spectral the-
orem. It is probably the most important neglected subject in linear
algebra courses. It is also a the fundamental tools in applied mathe-
matics (a good example is [20]). We will see why, from a theoretical
standpoint, in the next section. The SVD of rectangular (and com-
plex) matrices is equally important: a very clear presentation is [61].

The singular values σk of M have a very simple geometric in-
terpretation, which is indicative of their relevance. The (Euclidean)
unit ball is taken to an ellipsoid by M — its semi-axes are the σk’s.
Clearly, when M is symmetric, then σk = |λk|.
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3.4 Approximations of small rank

We start rewriting the spectral theorem and the SVD.

Theorem 12. Let S be a real, n× n symmetric matrix, with eigen-
values λk and normalized eigenvectors vk, so that it has a spectral
decomposition S=V ΛV T . Then

S=λ1 v1 ⊗ v1 +λ2 v2 ⊗ v2 + . . . +λn vn ⊗ vn ,

where the vk’s are the columns of V . For M a real n×n matrix with
SVD decomposition M =QΣ UT ,

M =σ1 q1 ⊗ u1 +σ2 q2 ⊗ u2 + . . . +σn qn ⊗ un + ,

where the qk’s and uk’s are the columns of Q and U .

Said differently, S and M are decomposed in a sum of rank one
maps. In both cases, the monomials are orthogonal to each other
with respect to the usual matrix inner product, 〈X ,Y 〉= trXT Y .

Proof. In the symmetric case, we show that the sum of monomials
acting on each vk gives λk vk, which is obvious, since u`⊗u` = u` u

T
` .

In the general case, the action of the sum on uk has to be equal to
M uk = QΣUTuk, and again orthogonality (of U) does it.

The matrix inner product defines a distance between matrices.
LetMk be the set of real n×n matrices with rank at most k. Given
a matrix M , which is the matrix Mk ∈Mk closest to it?

Theorem 13. Given the SVD M =QΣUT , with ordered singular
values σ1 ≥ σ2 ≥ . . . ≥ σn,

Mk =

k∑
i=1

σiqi ⊗ ui .

Similarly, for S a real, symmetric matrix with spectral decomposition
S=QΛQT and |λ1| ≥ |λ2| ≥ . . . ≥ |λn|,

Sk =

k∑
i=1

λivi ⊗ vi .
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Hopefully, Mk and M differ by a small amount even for small k:
the distance between both matrices is given by Pythagoras:

||M −Mk ||2 =

n∑
i=k+1

σ2
i .

This is a fascinating opening to random matrix theory ([11], [55]):
given a measure in the space of matrices, how do the singular values
(or the eigenvalues, in the symmetric case) distribute? The answers
are surprisingly benign: substantial truncation is frequently possible.
We do not treat these issues in this text.

Proof. We handle the nonsymmetric case, the other is similar. For
any matrices X and Y and orthogonal matrices Q and U , we have

〈QX U t , QY UT 〉= 〈X ,Y 〉 ,

so that multiplication on the left and on the right by orthogonal
matrices are isometries in M(n,R). Thus, without loss, instead of
the general M =QΣU we only consider M = Σ.

We make the generic hypothesis that the singular values of Σ
(which are also its eigenvalues) are distinct and greater than 0 —
the general Σ is handled by taking limits, using the continuity of
eigenvalues proved in Section 3.2.2 and the compactness of SO(n,R).

Since Mk ⊂ M(n,R) is a closed set, a closest matrix M̂k ∈ Mk

to Σ exists by compactness. Notice that we don’t know that M̂k is
diagonal, or for the matter, symmetric. Indeed, once once this is
proved, the rest is trivial — we have to find a diagonal matrix with
at most k nonzero diagonal entries closest to Σ: the answer is exactly
what the statement of the theorem says, and is trivially proved.

We show that M̂k is diagonal. Any invertible matrix, like Σ, is
best approximated in Mk by a matrix of rank equal to k (why?).
Take an SVD M̂k = Q̂ Σ̂k Û

T , where the first k diagonal entries of Σ̂k
are nonzero. The matrices in Mk near M̂k are parameterized by

N(A,B,E) = eA Q̂ ( Σ̂k +Ek ) ÛT eB ,

for skew-orthogonal matrices A,B near 0 and a diagonal matrix Ek
with nonzero entries only along the first k diagonal entries. (For more
about this parametrization, see the exercise below).
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We are now reduced to a calculus problem: derivatives along direc-
tions A,B and Ek of the function ||Σ−N(A,B,Ek) ||2 at the point
N(0, 0, 0) = M̂k should be equal to zero:

||Σ−N(A,B,Ek) ||2 = tr (Σ−N)T (Σ−N)

= tr Σ2 + tr N(A,B,Ek)T N(A,B,Ek)− 2 tr ΣN(A,B,Ek)

= tr Σ2 + tr (Σ̂k +Ek)2− 2 tr ΣN(A,B,Ek) .

Take the derivative with respect to A at (0, 0, 0) — or more precisely,
replace A by tA and take the derivative with respect to t, to get

tr ΣAQ̂ M̂k Û
T = 0 or tr AQ̂ M̂k Û

T Σ = 0 , ∀A ∈ A ,

and we learn that Q̂ M̂k Û
T Σ = M̂k Σ is a symmetric matrix. In the

same fashion, taking the derivative with respect to B, we learn that
Σ M̂k is also symmetric. Write down in coordinates the equalities

M̂k Σ = ΣM̂T
k and Σ M̂k = M̂T

k Σ

(recall that Σ has simple spectrum) to see that M̂k is diagonal.

Exercise 14. The parametrization N(A,B,Ek) is not injective, and
this is not relevant: we only want to take directional derivatives in
variables for which they make sense. All we need is the smoothness
of the matrices Q, Σ and U , which follow from the smoothness of
simple eigenvalues and eigenvectors proved in Section 10.

3.5 Isospectral manifolds

Sets of matrices with a given fixed spectrum are frequently manifolds.
We begin with the first nontrivial manifold of matrices, SO(n,R).

Indeed, SO(n,R) = SO ⊂ M(n,R) is a (compact) submanifold
of dimension equal to the dimension of the vector space A, which
happens to be its tangent space at the origin. The argument is surely
familiar: the matrix I ∈ S is a regular value of the map

F :M→ S , M 7→MTM ,
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so that SO = F−1(I) is a manifold. The tangent space at I, TISO,
is the vector space of values Q′(0) for curves Q(t) ∈ SO, Q(0) = I.
Taking derivatives of QT (t) Q(t) = I yields Q′(0) ∈ A. Also, the
curve Q(t) = etA ∈ SO, for A ∈ A, satisfies Q′(0) = A so TISO = A.

We now consider an isospectral manifold of matrices. Let Λ be a
real n×n diagonal matrix with simple, ordered eigenvalues along the
diagonal, λ1 > λ2 > . . . > λn. We consider the set of real, symmetric
matrices with eigenvalues equal to those of Λ,

SΛ = {QTΛ Q , Q ∈ SO(n,R)}.

The set SΛ would be a compact manifold even if some eigenvalues
were equal, by general arguments about group actions ([1]). Here,
we start from scratch, require simplicity of spectrum, and provide
more information. Let S and A denote respectively the vector space
of real, symmetric and skew-symmetric matrices of dimension n. We
also denote by C(S) the vector space of all polynomials of S, i.e., of
matrices of the form p(S), for arbitrary polynomials.

Exercise 15. C(S) consists of the matrices p(S), where p is a poly-
nomial of degree at most n− 1. Hint: without loss, take S = Λ.

Theorem 14. SΛ is a compact, oriented manifold. At S0 ∈ SΛ, the
tangent space of SΛ is {[S0, A], A ∈ A} and the normal space is C(S).

The bracket between to matrices is [X,Y ] = XY − Y X. To make
sense of normal spaces, we need an inner product in M: take

〈X,Y 〉 = trXTY , X, Y ∈M(n,R) ,

which is invariant under translations by orthogonal matrices,

〈X,Y 〉 = 〈Q1 X Q2, Y 〉 ,∀ Q1, Q2 ∈ SO .

Proof. Diagonalize S0 ∈ SΛ as S0 = QT0 ΛQ0 and consider the map

F : SO(n,R)×D → S , (Q,D) 7→ QTQT0 (Λ +D) Q0Q .

Clearly F is smooth and F (I, 0) = S0. We use the inverse function
theorem to show that F is a local diffeomorphism between neighbor-
hoods of (I, 0) and S0.
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Derivatives along directions A ∈ A are obtained by taking the
derivative at t = 0 of the expression (etA)TS0e

tA, yielding [S0, A].
For a curve t d ∈ D we obtain for derivative the matrix QT0 dQ0 =
p(S0) ∈ C(S0). Adding up, the Jacobian of F at (I, 0) is

DF (I, 0) : A×D → S , (A, d) 7→ ( [S0, A] , QTo d Q0 ) .

To show invertibility of DF (I, 0), we first show that matrices
[S0, A] are orthogonal to matrices p(S0) ∈ C(S0):

〈 [S0 , A] , p(S0) 〉= tr(S0A
−AS0)T p(S0)

= tr (S0A−AS0) p(S0) = tr A [p(S0) , S0] = 0,

since C(S0) is a commutative algebra. We prove that DF (I, 0) is
injective on the restrictions to A and D: the general case Q0 ∈ SO
reduces to Q0 = I, for which injectivity is a simple verification.

As for compactness, SΛ lies in the sphere centered at 0 through
Λ. Finally, SΛ is not only orientable, it is parallelizable: for each
S ∈ SΛ, consider the independent vector fields [S,A], A ∈ A.

Exercise 16. Show by using tensor products that if S has simple
spectrum, A ∈ A 7→ [S,A] ∈ S is injective.

Exercise 17. The manifold SΛ is very similar to SO: SΛ is a quo-
tient of SO by the (discrete) subgroup of its diagonal matrices. In
particular, SO covers (2n−1 times) SΛ.

3.5.1 More isospectral manifolds

Keep Λ with simple spectrum. It turns out that for certain vector
spaces V ⊂ S the intersection V ∩ SΛ is still a (compact) manifold.
This is the case when TΛ = V ∩SΛ for V consisting of tridiagonal ma-
trices. The result is harder: the group structure is not available any
more. The first proof was given in [59] and a second yielding charts
in [36], which extends the result for vector spaces of matrices with a
fixed profile: all entries below a staircase are zero. The dimension of
the manifold is the number of possibly nonzero entries strictly below
the diagonal. Here is one example of dimension 5. the charts consist
of extensions of the Jacobi inverse variables to larger domains and
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more general scenarios — notice, for example, that diagonal matrices
are not parameterized by Jacobi inverse variables.

J =


∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 .

3.5.2 Two functionals on SΛ

From Galois theory, the roots of polynomials of degree greater than
four are rarely written in terms of radicals and the usual arithmetic
operations on the coefficients of the polynomial. Thus, the eigen-
values of a matrix can only be approximated with standard arith-
metic. In particular, few symmetric matrix are explicitly diagonal-
ized, despite of the fact that tridiagonalizing without changing the
spectrum is feasible, from Lanczos’s method. Actually, his algorithm
is a construction with compass and straight edge, in the sense that
only quadratic extensions of the original field of entries are required.

Jacobi had the following wonderful idea to compute (i.e., to ap-
proximate arbitrarily well) the spectrum of a symmetric matrix. As
an example, we compute the spectrum of S:

S =

 3 2 −4
2 3 2
−4 2 3

 .

First, conjugate S by a rotation on the plane generated by the canon-
ical vectors e1 and e3 so as to diagonalize the 2 × 2 block in the
intersection of lines and columns 1 and 3. More generally, define a
Jacobi step to be the conjugation of a n×n matrix S by the (Jacobi)
rotation Rij(θ) on the plane spanned by the canonical vectors ei and
ej of an angle θ. A few simple observations are in order. The only
diagonal entries which change value are in positions (i, i) and (j, j).
Also, the sum of the squares of these new diagonal entries equal the
sum of the squares of the four entries Sii, Sij , Sji and Sjj (why? you
may think in terms of the matrix inner product on 2× 2 matrices).



i
i

“Spectrum” — 2015/5/11 — 12:17 — page 54 — #54 i
i

i
i

i
i

54 [CHAP. 3: SOME ANALYSIS

Consider now the sum of squared diagonal entries

J : SΛ → R , S 7→
∑
i

S2
ii .

From the remarks above, a Jacobi step, taking a matrix S0 ∈ SΛ

to S1 ∈ SΛ typically increases the value of J , J(S1) ≥ J(S0). By
compactness of SΛ, J achieves a maximum Smax, which is necessarily
a diagonal matrix: indeed, if Smax

i,j 6= 0, i 6= j, then a Jacobi step
associated to a rotation Ri,j(θ) increases J .

Thus, we proved the spectral theorem: a real symmetric matrix
is orthogonally conjugate to a diagonal matrix. Also, we have a
numerical scheme to approximate eigenvalues by diagonal entries.
The algorithm provides a simple cumulative measure for how much
we deviate from spectrum if we decide to stop at matrix Sk: if S has
eigenvalues λi and Sk has diagonal entries µi, then∑

(λ2
i −µ2

i ) =
∑
i 6=j

(Sk)2
ik .

There are finer issues related to implementation: one might set to
zero the largest off-diagonal entry in each iteration, but finding it is
rather expensive. Also, the algorithm is extremely compatible with
parallel processing: conjugating by Ri,j and Rk,` can be made with
minimal interaction (think of the dimension n as being in the scale of
hundreds, thousands). The underlying compactness guarantees that
the algorithm is very stable numerically.

Exercise 18. There is an invariant description of the Jacobi step
which may look pedantic now but will be convenient later. The rota-
tion Rij(θ) lies in the curve etAi,j , where Ai,j is the skew-symmetric
matrix having only two nonzero entries, (i, j) and (j, i), respectively
equal to 1 and −1. Said differently, A = ei ∧ ej = eie

T
j − eje

T
i ,

a wedge monomial as in Section 2.6. More generally, rotations on
the two dimensional plane spanned by the two orthonormal vectors
u, v,∈ Rn are of the form etA, for A = u ∧ v.

Conceptually, there is something peculiar about the Jacobi algo-
rithm: it might be thought as a dynamical system (with some discrete
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freedom at each step) converging to one of the n! maxima of the func-
tion J — all the diagonal matrices. But what about other critical
points of J , say, its minima ? This is not an easy question.

For a simple matrix Λ, consider instead the weighted trace

T : SΛ → R , S 7→ w1.S1,1 + w2.S2,2 + · · ·+ wn.Sn,n

for a vector w ∈ Rn with w1 > w2 > · · · > wn.
One might think of T as being a height function on the manifold

SΛ — in particular, it achieves extrema and one might compute its
critical points: they are exactly the n! diagonal matrices of SΛ. The
signature at a critical pointD (i.e., the number of negative eigenvalues
of the Hessian of T at the point D) is also an interesting number.

Exercise 19. How does the signature at D relate to the number of
inversions of the eigenvalues of Λ in D? For example, eigenvalues
in descending (resp. ascending) order correspond to the maximum
(resp. minimum) of T .

One can obtain a substantial amount of topological information
about SΛ by studying the Morse decomposition associated to T . In
this case, there are two issues to take into account. First, since SΛ is
so close to SO, this is not necessarily the simplest way of doing it. On
the other hand, the same T , when restricted to TΛ, the tridiagonal
isospectral manifold from Section 3.5.1, provides information which
is not amenable from Lie group arguments ([59], [36], [22]).

The second issue is more... serendipitous — is there a numerical
algorithm associated to T in the same fashion that Jacobi rotations
are related to J ? Welcome to the Toda lattice ([21],[13], [60]). Every
subject in mathematics has its surprising moments, but the Toda lat-
tice is really a collection of fireworks, one of the great combinations of
linear and nonlinear phenomena. Alas, we will not handle the subject
in this text. Suffices to say that, for matrices with simple spectrum,
it is a vector field in SΛ, i.e., a differential equation which preserves
symmetry, the eigenvalues and even the original profile (from Section
3.5.1) of the initial condition. The diagonal matrices are its equilib-
rium points and more, the weighted trace T is a height function (for
any weight w!), i.e., given a solution S(t) ∈ SΛ, the function T (S(t))
is strictly increasing, unless the orbit is a single point, i.e., the initial
condition is an equilibrium.
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So now it is a differential equation to prove the spectral theorem
for matrices with simple spectrum: to diagonalize S0, follow its orbit
S(t) and ... wait: S(∞) is diagonal! For the general case, take limits.

For a different example, consider the Wielandt-Hoffmann theorem.

Theorem 15. Let A and B be real, symmetric n× n matrices with
eigenvalues αi and βj. Then there is a permutation π for which∑

i

(αi − βπ(i))
2 ≤ ||A−B|| = tr(A−B)2 .

Frequently, a property of a real symmetric matrix is easily veri-
fied using the spectral theorem. A property of two matrices is more
complicated: one can rarely diagonalize two matrices simultaneously.

Proof. Without loss (why?), take A and B with simple spectrum and
A diagonal with eigenvalues a11 = α1 > a22α2 > · · · > ann = αn > 0.
We need to show the inequality∑

i

(αi−βπ(i))
2 =

∑
i

α2
i − 2

∑
i

αi βπ(i) +
∑

β2
i

≤ tr(A−B)2 = tr A2 − 2 tr AB + tr B2 ,

where we used the fact that trAB = trBA. Since∑
i

α2
i = tr A2 and

∑
i

β2
i = tr B2 ,

we are left with showing that∑
i

απ(i)βi ≥ tr AB .

Now, the left hand side is a weighted trace T with weights αi,
so that trAB = T (B). Let B = B(0) flow with Toda. From the
properties above, trAB(t) increases and obtains is maximum at

tr AB(∞) =
∑

αu βπ(i) ,

where B(∞) is a diagonal matrix with diagonal entries given by the
eigenvalues of B in some order.

This proof is from [14].
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Chapter 4

Spectrum and convexity

4.1 The Schur-Horn theorem

We start with a classic. As usual, Λ is an n× n real diagonal matrix
with spectrum σ(Λ) = {λ1 ≥ λ2 ≥ . . . ≥ λn}.

Theorem 16. (Schur-Horn) The image of the map

H : SΛ → Rn ∩HΛ , S 7→ diagS ,

is PΛ, the convex closure of the n! points

{vπ = (λπ(1), λπ(2), . . . , λπ(n), ) , π ∈ Sn} ⊂ HΛ .

Here, HΛ is the hyperplane

HΛ = {x ∈ Rn ,
∑
i

xi =
∑
i

λi } ,

the expression diagS ∈ HΛ is the vector with the diagonal entries of
S and Sn is the permutation group on the numbers 1, 2, . . . , n.

For n+2, PΛ is a segment in R2. For n = 3, a hexagon in R3 (or in
two dimensions, once we restrict its ambient space to be HΛ), which
projects injectively to the first two coordinates (see the figure in Step
2 of the proof). For n = 4, it is a permutohedron, a polyhedron in R3

displayed in the end of the section.

57
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The inclusion RanH ⊂ PΛ is due to Schur ([51]). Horn ([25])
proved the harder inclusion. The argument below was presented in
the dissertation of Leite ([35]).

The untiring reader might enjoy proving that all the vectors vπ are
indeed vertices of PΛ, and hence they are all the vertices of PΛ. Con-
vex polytopes may be described by their vertices or by their faces, or
more generally, by the intersection of a collection of half-spaces (i.e.,
one of the two closed sides of space defined by an affine hyperplane).
It turns out that RanH =PΛ is the intersection of the sets

xi ≤ λ1 , i= 1, . . . , n

xi + xj ≤ λ1 + λ2 , i, j= 1, . . . , n i 6= j ,

. . .( n∑
1

xi
)
− xk ≤

n−1∑
1

λi , k= 1, . . . , n

∑
i

xn1 =

n∑
1

λi .

This more balanced list of restrictions also describes PΛ:

λn ≤ xi , i= 1, . . . , n

λn + λn−1 ≤ xi + xj , i, j= 1, . . . , n i 6= j ,

. . .
n∑
2

λi ≤
(∑

i

xi
)
− xk , k= 1, . . . , n .

The equivalence may be proved with bare hands (as in [59]) — it is
a matter of manipulating inequalities in an appropriate fashion. The
reader might instead have a look at [41], where the problem is made to
fit into the interesting field of majorization inequalities. Or one could
identify the polytope PΛ as a dual Weyl chamber, and the equivalence
of both descriptions would be a theorem in Lie algebra theory. It is
not surprising that there should be other convex polytopes hanging
around associated to similar theorems ([25], [35]).
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Before proceeding with the proof, it is worth considering the really
simple case n= 2. Without loss (why?), suppose Λ = diag(1, 0). In
this case, the image of F lies in the line x + y= 1 + 0 in the plane.
The two diagonal matrices with spectrum equal to Λ correspond to
the vectors (0, 1) and (1, 0). Perhaps the simplest way to confirm the
theorem is to use the spectral theorem,

S ∈ SΛ ⇔ S=

(
c −s
s c

)(
1 0
0 0

)(
c s
−s c

)
=

(
c2 cs
cs s2

)
,

where c= cos θ, s= sin θ for θ ∈ [0, π/2].

In the general case, the scheme of the proof is geometric and
simple. Since the domain of H is compact, RanH must be a compact
set in HΛ and probably its boundary ∂ RanH identifies it. Suppose
without loss (. . .) that Λ has simple spectrum. For a generic matrix
S ∈ SΛ, we should expect the derivative DH(S) : RN → HΛ ' Rn−1

to be surjective, since N � n — at such regular points Sr, from the
local form of a surjection, H is open, i.e., an open neighborhood of
Sr is taken to an open set containing H(Sr):

Only critical (i.e., non-regular) points can be taken to ∂ RanH.

Some notation will be helpful. A subspace V ⊂ Rn is canonical
if it is spanned by vectors of the canonical basis of Rn. Canonical
subspaces come in pairs: V and V ⊥ are simultaneously canonical. A
matrix S which has a nontrivial invariant canonical subspace splits.
Indeed, consider a simple example: if V is spanned by the first k
canonical vectors, only the entries on the k × k top principal minor
and on the (n− k)× (n− k) bottom principal minor can be nonzero.

The orthogonal complement ofHΛ is spanned 1= (1, 1, . . . , 1) and
we denote by H0 the parallel subspace 1⊥.

Step 1. Computing the critical set C of H.
We prove that a matrix S is critical if and only if it splits. First,

we compute DH(S) : TSSΛ → H0. From Theorem 14,

TSSΛ = { [S,A] =SA−AS, A ∈ A(n,R) = A} .

Then DH(S).[S,A] = diag[S,A] and DH(S) is not surjective if and
only if there is a nonzero w ∈ H0 for which

〈diag [S,A] , w〉= tr [S ,A]W = 0 , ∀A ∈ A
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where W is the diagonal matrix having w along its diagonal (by the
way, show that diag[S,A] ∈ 1⊥). Thus S ∈ C if and only if

tr A [S,W ] = 0 , ∀A ∈ A .

Thus, the matrix [S,W ] is orthogonal to all real skew-symmetric ma-
trices under the matrix inner product considered in Section 3.5: it
is easy to show that such matrices are exactly the real symmetric
matrices, so [S,W ] ∈ S. On the other hand, both S and W are sym-
metric, which trivially implies that [S,W ] is skew-symmetric: there
is only one possibility, [S,W ] = 0 — in words, S and W commute.

The orthogonality of w and 1 implies that trWI = 0, so that the
diagonal matrix W has at least two distinct eigenvalues. Split the
eigenvalues of W in two nonempty disjoint sets sharing no common
eigenvalue and take a polynomial g take one set to 0 and the other
to 1. Then g(W ) is a diagonal matrix with spectrum {0, 1}.

Since S commutes with W , it must commute with g(W ) (proof?).
But then V = Ran g(W ) is a nontrivial invariant canonical subspace
of S (write down the matrices if you don’t see why): S splits.

The converse — if S splits then S ∈ C — is easy: any invari-
ant canonical subspace of S gives rise to a diagonal matrix W with
eigenvalues 0 and 1 so that [S,W ] = 0 and then

tr [S,A]W = − tr [S,W ]A = 0 , ∀A ∈ A .

We consider n= 3, Λ = diag(4, 2, 1). The critical set decomposes
into nine ways of splitting. Each split yields a pair (V, V ⊥) ' (V ⊥, V )
for which V may taken to be of dimension one, and hence spanned
by some canonical vector. Having fixed V , one has to choose the
eigenvalue of the restriction of S to V . The x’s stand for real numbers.1 0 0

0 x x
0 x x

 2 0 0
0 x x
0 x x

 4 0 0
0 x x
0 x x


x 0 x

0 1 0
x 0 x

 x 0 x
0 2 0
x 0 x

 x 0 x
0 4 0
x 0 x


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x x 0
x x 0
0 0 1

 x x 0
x x 0
0 0 2

 x x 0
x x 0
0 0 4


Each such set is a circle and they meet at diagonal matrices.

In general, the critical set C decomposes into chunks CV,σV
con-

sisting of matrices which have V as invariant canonical subspace and
whose restrictions SV : V → V have spectrum σV ⊂ σ(Λ). The
partial trace trV S of S in V is equal to

trV S= tr SV =
∑
λi∈σV

λi .

Step 2. Computing the image H(C).

The image of chunk CV,σV
⊂ C lies in the (affine) hyperplane

HV,σV
= {y ∈ HΛ | 〈 eV , y 〉 =

∑
λi∈σV

λi} ,

where eV is the vector with coordinate i equal to 0 and 1, depending
if ei ∈ V or not. Then

trV S= tr EV S EV = tr S EV = 〈 eV , diagS 〉 .

The orthogonal projection EV on V is the diagonal matrix having
the vector eV along its diagonal. Clearly S commutes with EV .

Chunks associated to the same V are taken to parallel hyper-
planes, differing only by the choice of eigenvalues of SV . For a given
V , such family of parallel hyperplanes has two extremal elements,
when the partial trace equals the smallest and the greatest possible
sums of σV . If V is of dimension k, those numbers are the sum of the
k smallest or the k largest eigenvalues of Λ.

We have just proved Schur’s inclusion: RanH ⊂ PΛ, where PΛ is
expressed in terms of (balanced) inequalities.

Again, the case n= 3 is informative: take for spectrum the set
{1, 2, 4}. In the picture, we see the three families of parallel hyper-
planes. Notice that only the first two diagonal entries are plotted:
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the last one is obtained from the (fixed) trace. The hyperplanes of
the form S33 = c correspond to lines of the form S11 +S22 = 7− c.

So far, we know that ∂ RanH is contained in a grid G consisting
of families of parallel hyperplanes. This is already intriguing: since a
dense set of points in the domain consists of regular points (why?),
the interior of RanH is dense in HΛ, so RanH itself consists of the
closure of the union of a collection of connected component of the set
HΛ \ G, each component a parallelotope in HΛ. Thus, if one of such
parallelotopes meets RanH then it is completely included in RanH.

Step 3. Getting rid of fake walls.

We now show that in each family of parallel hyperplanes, only the
two extreme hyperplanes act as barriers to RanH — this essentially
proves the theorem. The reader should return to the picture for
n= 3. Each family consists of three hyperplanes (in this case, lines)
— removal of the central line on each family yields the theorem.

First, notice that the intersection of two such hyperplanes is an
(affine) plane of codimension two in HΛ. Let D be the set of points
in the grid G which belong to at least two different hyperplanes: not
only D has empty interior in HΛ, but PΛ \ D is still connected. A
point in G \ D belongs to a single hyperplane HV,σV

.
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If HV,σV
is not extreme within its family, then σV consists of

numbers which are not the smallest or the largest in σ(Λ). Say σV
does not yield the smallest (resp. largest) sum: there is λin ∈ σV
and λout /∈ σV with λin > λout (resp. λin < λout).

Suppose that S ∈ SΛ obtains H(S) = diagS ∈ HV,σV
∩G \D for a

hyperplane HV,σV
which is not an extremal of this family. We show

that there are matrices S+, S− ∈ SΛ close to S for which

〈 eV , diagS− 〉 < 〈 eV , diagS 〉=
∑
λi∈σV

λi < 〈 eV , diagS+ 〉,

and thus the parallelotopes on both sides of the hyperplane HV,σV
at

the point H(S) belong to RanH.
Without loss, say HV,σV

does not yield the minimal possible sum
for the eigenvalues in σ(V ). Consider the two dimensional plane
spanned by the orthonormal eigenvectors vin and vout associated
to the eigenvalues λin and λout of S. We perform conjugations
R(−θ)SR(θ) ∈ SΛ by Jacobi rotations in this plane of an angle θ,
as in Exercise 18. We are interested in

α(t) = 〈 eV , H( e−tA S etA ) 〉 , where A= vin ∧ vout .

Expand the curve of matrices near t= 0 :

e−tA S etA =S + t [S , A ] + t2
( A2

2
S −AS A+ S

A2

2

)
+O(t3) ,

so that, in particular,

d

dt
α(0) = 〈 eV , diag[S , A ] 〉 = trEV [S , A ] = tr[EV S ]A ] = 0 ,

since EV and S commute — indeed, the image of the chunk CV,σV

containing S is sent to the hyperplane HV,σV
, and α(t) can only

deviate quadratically from it. We now consider the quadratic term
of the expansion of α at t= 0,

Q= 〈 eV ,diag
( A2

2
S−AS A+S

A2

2

)
〉= trEV

( A2

2
S−AS A+S

A2

2

)
which simplifies considerably if we apply the following algebraic facts:

E2
V =EV , EV S=S EV , EV vin = vin, EV vout = 0 .
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In particular, EVA= vinv
T
out and AEV = − voutvTin) and

Q =
1

2
tr vinv

T
in S + tr vinv

T
out S vout v

T
in −

1

2
tr S voutv

T
out

=
1

2
(λin − λout) > 0 .

Thus, for small t we have α(t) > α(0): take S+ =S(t) = e−tA S etA.
To get S−, choose λin ∈ σV and λout /∈ σV with λin < λout and

proceed exactly as above.

Exercise 20. The argument above computes second derivatives of
α(t) = 〈 eV , H(S(t) ) 〉 for special curves S(t) = e−tA S etA. Show that
this is sufficient to compute the full Hessian of α at t= 0 (hint: the po-
larization identity). More, the computations above obtain the eigen-
values of the Hessian. It is not an invertible matrix and thus α is not
a Morse function, but a Morse-Bott function.

Step 4. Rounding up.
The points in ∂ RanH belong to extreme faces (which correspond

to the balanced equalities presented after the statement of the theo-
rem) and possibly by the points in D, which consist of a thin set which
does not disconnect RanH — by compactness of SΛ, D ⊂ RanH and
we are done. For completeness, the untiring reader might show that
the extreme hyperplanes indeed generate nontrivial faces.

In the picture, the polytope associated to the case n= 4.
There are eight hexagons corresponding to the extreme cases V

spanned by one of the four canonical vectors ei and σV equal to λ1 or
λ4. The six squares correspond to the six possible two dimensional
subspaces V and σV = {λ1, λ2}.
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4.2 Mutations, the high and low roads

The Schur-Horn theorem is so interesting that it deserves additional
contemplation. Kostant ([30]) obtained a first generalization in a
Lie algebraic context. In 1982, both Atiyah ([2]) and Guillemin and
Sternberg ([23]) obtained beautiful results related to the convexity of
the image of a moment map of a Hamiltonian action of a torus: they
imply the complex version of the Schur-Horn theorem, in which SΛ is
replaced by its complex counterpart {S=U∗ΛU ,U ∈ SU(n)}.

Duistermaat ([17]) later obtained a real counterpart of such results
from which the real Schur-Horn theorem follows immediately. These
theorems rely on basic facts of symplectic geometry, namely equiv-
ariant versions of the so called Darboux theorem. The counterpart of
the symplectic (complex) arguments to the statement that most walls
are fake is trivial. In a sense, the real case of the Schur-Horn-theorem
(which by the way implies the complex case) is harder.

There are variations of the Schur-Horn theorem for orthogonal
and skew-symmetric matrices. The counterpart for singular values
instead of eigenvalues is the Sing-Johnson theorem ([52],[56]). The
results admit proofs with different levels of sophistication, which led
Thompson ([57]) to comment on high and low levels in linear algebra.

We present now a different kind of convexity result. For a real
diagonal matrix with simple spectrum Λ, let JΛ be the set of Jacobi
matrices (real, symmetric, tridiagonal matrices with strictly positive
entries in coordinates (i, i− 1)) with spectrum Λ.

Theorem 17. JΛ ' PΛ, in the sense that there is a homeomorphism
between both spaces which is a diffeomorphism between interiors.

The result was originally proved in [59]. Later, Bloch, Flaschka
aand Ratiu ([5]) managed to phrase it in terms of a moment map,
and obtained an explicit diffeomorphism. A low road argument was
provided by Leite, Richa and Tomei ([35]).

Theorem 18. Let T ∈ JΛ and consider any spectral decomposition
T =QTΛQ,Q ∈ SO(n,R). Then the map

BFR : JΛ → PΛ T 7→ diagQΛQ

realizes explicitly the identification in the previous theorem.
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4.3 Interlacing and more

4.3.1 Rank one perturbations

Say S is a real n× n symmetric matrix, with simple eigenvalues

σ(S) = {λ1 < λ2 < . . . < λn } .

What may happen to the spectrum when we add a (real, symmetric)
matrix P of rank one? The answer is very satisfactory.

We introduce notation. Without loss, we may suppose

S= Λ = diag(λ1 < λ2 < . . . < λn )

and P = t v ⊗ v= t v vT , for ||v||= 1, t > 0: we are interested in the
eigenvalues of Λ + t v ⊗ v.

It is clear that removing the signs of v has no effect in the problem.
Indeed, if E is a diagonal sign matrix (i.e., a diagonal matrix with
±1 along its diagonal entries), then the matrices

Λ + t v ⊗ v and E(Λ + t v ⊗ v)E−1 = Λ + t (Ev)⊗ (Ev)

have the same spectrum. Define

Qn+ = {v ∈ Rn | ||v||= 1 , vk ≥ 0 } , λ= (λ1 . . . , λn) ∈ Rn ,

B= [λ1, λ2 ] × [λ2, λ3 ] × . . . × [λn,∞) ,

R+ = {t > 0} , Rno = {x ∈ Rn |x1 ≤ x2 ≤ . . . ≤ xn} .

For (v, t) ∈ Qn+ × R+, let (µ1 . . . , µn ) ∈ Rno be the ordered eigen-
values of the matrix Λ + t v ⊗ v.

Theorem 19. The map

F : D=Qn+ × R+ → Rno , ( v , t ) 7→ (µ1 . . . , µn )

induces a homeomorphism between D and B − λ which restricts to a
diffeomorphism between the interior of both sets, Do and Bo.
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The proof follows the argument of Theorem 16, and is simpler in
some aspects. For n = 2, consider the map taking (v, t) ∈ D to R2

o,
for the parametrization v= (c, s), c= cos θ, s= sin θ, θ ∈ [0, π/2]:(

λ1 0
0 λ2

)
+ t

(
c
s

) (
c s

)
=

(
λ1 + t c2 c s
c s λ2 + t s2

)
7→ (µ1 , µ2) ,

The domain D is the rectangle [0, π/2] × (0,∞). We are especially
interested in the behavior of F at ∂D= {0, π/2} × (0,∞), the part
of the boundary of D in D. For θ= 0, the eigenvalues µ1 ≤ µ2 are
λ1 ≤ λ2 + t. But for θ=π/2, things are slightly more complicated:
the eigenvalues are λ1 + t and λ2, so that

µ1 =λ1 + t , µ2 =λ2 , for t ∈ (0, λ2 − λ1] ,

µ1 =λ2 , µ2 =λ1 + t , for t ∈ [λ2 − λ1,∞) .

The picture clarifies matters: one boundary is sent to one face of
B= [λ1, λ2]× [λ2,∞), while the other occupies two. The picture also
suggests (and a computation confirms) that as t → 0, the image
of F (v, t) goes to the point λ= (λ1, λ2). In the same fashion, as
t → ∞, F (v, t) goes to [λ1, λ2] × {∞}, or, more simply, to ∞ —
said differently, F is a proper map (inverse of compact sets of R2

o are
compact sets of D) and this allows us to handle F as if it were a
function between compact spaces in some arguments.

From a simple computation (which will be done for the general
case), F is differentiable in Do and has no critical points. Because
of properness, we can apply now (essentially) the same fact that we
used in the proof of the Schur-Horn theorem 16:

The boundary of the image of F is the union of three sets: the
image of the boundary of its domain, the image of the critical set C ⊂
Do of F (which is empty) and the image of the set of nondifferentiable
points of F (which lies in the first set anyway).

Once the identification of these three sets is accomplished, the
proof follows as in Theorem 16 with minor modifications. Because of
properness, the image of F has to stay in the box B. Also, F takes
(∂D) − λ to ∂B − λ injectively: to see this, we only have to show
that F takes Do to Bo bijectively, and global injectivity follows from
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degree theory. Alternatively, take a few more steps. By properness,
once a point in Bo is attained, the full interior is, since the image of
F must be open and closed — this settles surjectivity to B − λ. As
for injectivity, use a monodromy argument: say x, y ∈ Do are taken
to the same point p ∈ Bo. A path γ ⊂ Do joining x to y gives rise
to a closed curve F (γ) ⊂ Bo with endpoints at p. Now deform F (γ)
in Bo to the constant path p and show that the deformation can be
pulled back to the domain, clearly a contradiction.

In the n-dimensional case, the box B has 2n−1 faces: to describe
a face, fix an endpoint of one interval and use the others. In the last
interval we do not consider the endpoint ∞. Thus each coordinate
(but the last) gives rise to a bottom and a top face.

We are ready for the proof.

Proof. The function F is differentiable when all the eigenvalues µi
are distinct — we start showing that this is the case for points in Do.

• σ(Λ + t v ⊗ v) is simple if v /∈ ∂ Qn+.

A double eigenvalue µ has an eigenvector z for which z1 = 0. Since

Λ z + t v 〈 v , z 〉=µz ,

we have v1 〈 v , z 〉= 0. If v1 = 0, then clearly v ∈ ∂Qn+. If 〈 v , z 〉= 0,
then Λ z=µ z, so that µ is some eigenvalue λi of Λ and z= ei, a
canonical vector (recall that Λ has simple spectrum). But then

Λ ei + t v 〈 v , ei 〉=λiei

and some coordinate of v must be zero — again, v ∈ ∂Qn+.
In particular, F is differentiable in Do.

• There are no critical points in Do.
We compute the derivative of F , or better, of an equivalent func-

tion G. Take u=
√
tv for (v, t) ∈ Do, and consider the matrix Λ+u⊗u

with distinct eigenvalues µk and (normalized) eigenvectors wk,

G(u) = (µ1(u) , µ2(u) , . . . , µn(u)) ∈ Rno , Λwk + u⊗uwk =µk wk .
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We take directional derivatives ∂wj µj along wk. From Section 3.2.1,

∂wj
µk = 〈∂wj

(
Λ + u⊗ u

)
wk , wk 〉

= 〈
(
wj ⊗ u + u⊗ wj

)
wk , wk 〉= 2 〈wj , wk 〉 〈u ,wk 〉 .

Thus, the differential of G at a point u is the diagonal matrix

DG(u) = diag( 〈u ,w1 〉 , 〈u ,w2 〉 , . . . , 〈u ,wn 〉 ) ,

which is invertible provided 〈u ,wk 〉 6= 0 for all k. If not, from the
eigenvector equation for some k,

Λwk + u⊗ uwk =µk wk

so that Λwk =µkwk and wk equals some canonical vector ei. Since
〈u , ei 〉= 0, the i-th coordinate of u is zero, a contradiction: u ∈ Do.

• The map F is proper.

If λk are the eigenvalues of a real, symmetric matrix M , then∑
k

λ2
k = tr 〈M ,M 〉= tr M2 .

(Without loss take S diagonal: this is obvious). For S= Λ + t v ⊗ v,∑
k

µ2
k = tr(Λ + tv ⊗ v)2 = tr Λ2 + 2t〈 v ,Λ v 〉+ t2 .

Thus a sequence F (vn, tn) in the image converges to λ if and only if
tn → 0 and converges to ∞ if and only if tn →∞.

We now compute the image of the boundary of the domain.

• If vi = 0, then either µi−1 or µi equals λi.

We consider the eigenvalues of S=F (v) = Λ + tv ⊗ v,

S=

∗ 0 ∗
0 λi 0
∗ 0 ∗

 .
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The juxtaposition of the four blocks (∗) gives rise to a (n−1)×(n−1)
matrix S̃= Λ̃ + ṽ ⊗ ṽ, where Λ̃ is obtained from Λ by removal of the
i-th row and column and ṽ from v by removal of vi = 0.

Clearly, λi ∈ σ(F (u)) = {µk}. By induction, the ordered eigen-
values µ̃= (µ̃1, . . . , µ̃n−1) of S̃ lie in the box

[λ1 , λ2] × [λ2 , λ3] × . . . × [λi−1 , λi+1] × . . .× [λn−1 , λn] × [λn ,∞] .

The ordered eigenvalues µ of S are obtained from µ̃ of S̃ by inserting
µk =λi among the coordinates of µ̃. Clearly,

µk ∈ [λi−1 , λi+1] = [λi−1 , λi] ∪ [λi , λi+1] ,

so that F (v) lies necessarily on the top face of coordinate i− 1 or on
the bottom face of the i-th coordinate.

We leave to the reader the inductive proof of the next statement.

• The restriction F : ∂D → ∂B \ λ is a bijection.

Now it’s a matter of filling up, i.e., of showing that F : D → B\λ
is a bijection — this is goes exactly as in the 2×2 case. From Section
3.2.2, F extends continuosly, hence homeomorphically.

A few remarks are in order. Clearly, the eigenvalues λk and µk
interlace. When t > 0, eigenvalue µk usually trespasses λk: infor-
mally, eigenvalues are pushed to the right. When t < 0 interlacing
still holds and the eigenvalues are pushed to the left.

There is nothing sacred about the positive quadrant Qn+ — the
theorem holds for each quadrant, so given two strictly interlacing
spectra λ and µ, there are actually 2n rank one perturbations v ⊗ v
for which σ(Λ + tv ⊗ v=µ, Λ being simple.

An interlacing theorem of this form is also true sometimes in in-
finite dimensions. Say, for example, that instead of Λ one has a self-
adjoint operator with spectrum which is bounded from below, possi-
bly starting with some isolated eigenvalues. The operator obtained
by adding a symmetric rank one perturbation is still self-adjoint and
there is interlacing of spectra until something nasty happens (i.e.,
essential spectrum). The proof uses min-max.
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4.3.2 The sum of two Hermitian matrices

Now fix t in the previous section: consider the possible values of
σ(S+ v⊗ v), where ||v||2 = c, for example. The ordered spectra have
to lie in B defined in Theorem 19, but there is one more restriction:

tr(S + v ⊗ v) = trS+ c ,

which is a hyperplane H intersecting B in a convex set which may
combinatorially more complicated then a box (for example: a plane
can intersect a cube along a hexagon). It turns out that lying in
H ∩ ∩B is not only necessary but also a sufficient condition.

We phrase the question differently: what are the possible spectra
of the sum of two real, symmetric matrices, one with eigenvalues
{λ1, . . . , λn}, the other with eigenvalues {c, 0, 0, . . . , 0} ?

In 1912, Hermann Weyl asked, what are the possible spectra of
the sum S+T of two real, symmetric matrices, if we fix σ(S) and
σ(T )? Some partial results were obtained until Horn ([26]) suggested
a complete list of linear inequalities: the answer to this problem is
again a convex polytope! His conjecture is now a theorem, following
from very interesting work by a sequence of authors, among them
Helmke, Klyachko, Knutson, Lidskii, Rosenthal and Tao ([31]).

4.3.3 Weinstein-Aronsjan, Sherman-Morrison

If Ax= b is easy to solve, this should be used to solve Ãx = b for
Ã near A. Thus, for example, if Ã is metrically near A, one might
consider a recursive algorithm. Here by proximity we mean

Ã=A+u⊗ v=A+u vT .

The trick is simple: suppose A is invertible and write

Ã x= b ⇐⇒ (A+u⊗ v )x=Ax+u 〈v , x 〉= b ,

so that
x+A−1 u 〈v , x 〉=A−1 b

and, by taking inner products,

〈v , x 〉+ 〈v ,A−1 u 〉 〈v , x 〉= 〈 v , A−1 b 〉
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so that

〈v , x 〉= 〈 v ,A−1 b 〉
1 + 〈v ,A−1 u 〉

, x=A−1 b − A−1 u 〈v , x 〉 ,

and Ã is not invertible if and only if 1 + 〈v ,A−1 u 〉= 0. When A is an
infinite dimensional operator, these equations are usually called the
Weinstein-Aronsjan formulas ([28]). For matrices, extensions (essen-
tially, the block form of such equations) are the Sherman-Morrison
formulas, and are usually associated to matrix tearing ([43]).

Exercise 21. To set the record straight, the Weinstein-Aronsjan
formulas relate the inverse of Ã and A when they differ by a rank k
perturbation, as opposed to the example above, where Ã − A is of
rank one. Obtain the formulas for this case.

Exercise 22. Try to solve the integro-differential equation

u′(x)−
∫ 1

0

u(t) = g(t) , u(0) =u(1) .

Generically, the eigenvalues of A and Ã are distinct: imitating
Section 2.4.2, we show that the set of pairs (A, v) for which the spectra
A and Ã are disjoint is an open dense set of M(n) × Rn. If the
resultant

R ( det(A−λ I) , det(A+ v ⊗ v−λ I )

is zero in a nontrivial ball of the product S × Rn \ {0}, then it is
identically zero. Let A be a diagonal matrix with distinct eigen-
values, and v a vector with nonzero entries: we now show that A
and Ã=A+ t v⊗ v have distinct eigenvalues for small t. Indeed, the
derivatives of the eigenvalues of A+ t v × v are given by

λ′k(t) = 〈 v × v ek , ek 〉= 〈 v , ek 〉2 6= 0 ,

and thus σ(A+ t v × v) and σ(A) are disjoint for small t.

We extend the formulas above. Subtract λ I from A and Ã by Ã:

Ã−λ I =A−λ I +u⊗ v=A−λI +u vT
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and the solution of (Ã−λ I) = b is then

〈v , x 〉= 〈 v , (A−λ I)−1 b 〉
1 + 〈v , (A−λ I)−1 u 〉

,

x= (A−λ I)−1 b − 〈v , x 〉 (A−λ I)−1 u .

Supposing that A and Ã are no common eigenvalues,

g(λ) = 1 + 〈v , (A−λ I)−1 u 〉= c
det(Ã−λ I)

det(A−λ I)

and we obtain c = 1 by taking λ→∞.
We are very close to another proof of the interlacing theorem.

More specifically, take A real symmetric with simple spectrum and
u = v and suppose first the generic hypothesis that A and A+ v ⊗ v
have no common eigenvalues — we want to show that the roots and
poles of g(λ) alternate: simply compute g′(λ) for λ ∈ R,

g′(λ) = 〈v , (A−λ I)−1(A−λ I)−1 v 〉 ≥ 0 ,

from which interlacing follows. Take limits to get rid of the generic
hypothesis using the continuity of the eigenvalues (Section 3.2.2).
The result in Section 4.3.1 is clearly more precise.

Exercise 23. Choose one of the two approaches above to handle
another interlacing situation. Take S real symmetric and let Ŝ be
obtained from S by removing the last row and column. Show that
the spectra of S and Ŝ interlace.
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Chapter 5

The spectral theorem

The spectral theorem is about generalizing the finite dimensional di-
agonalization process. Indeed, in one of its forms, it conjugates a self-
adjoint operator to a normal form, a multiplication operator, which
is pretty similar to a diagonal matrix. But this is only partially right.

The spectral theorem interpreted as a functional calculus is at
least as relevant. As in Section 3.1, let B(X) be the algebra of
bounded linear transformations with the operator norm on a Banach
space X. For an operator T ∈ B(X), polynomials p(T ) and entire
functions like eT make sense. To go further we need to take limits,
which require finer estimates: enter complex variables.

5.1 The Dunford-Schwartz calculus

Recall (as if one could forget) Cauchy’s theorem from the basic com-
plex variable course, presented without any effort towards generality.

Theorem 20. Let γ be a smooth, positively oriented simple curve
bounding an open set Ω ⊂ C. Let f : Ω→ C be an analytic function
which extends continuously to the closure Ω. Then, for z ∈ Ω,

f(z) =
1

2πi

∫
γ

f(w)

z − w
dw .

74
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The Dunford-Schwartz calculus gives meaning to such expression
when replacing z by an operator T . More, the calculus applies to
(unbounded) closed operators, as presented in [19]. And again, no
symmetry is needed. As usual, we are limited to an outline of the
concepts. Lorch’s little book is highly recommended ([40]), as well as
Bueno’s for the matrix functional calculus ([6]).

First, we need to integrate continuous curves from, say, C to a
Banach space Y (which in our case is B(X), but we emphasize the
generality of the construction). In a nutshell, such integrals are limits
of Riemann sums, which in turn only require the vector space struc-
ture of Y . Limits, of course, are defined by the norm of Y . These
two sentences should convince the reader of a fundamental fact: the
integral of a curve of matrices, for example, is just the integral of
each matrix entry along this curve — recall the end of Section 2.1.

This naive idea should make the reader comfortable when inte-
grating operators in infinite dimensions: if H is a Hilbert space and
T ∈ B(H), one can think of the many expressions 〈u, Tv〉 and, in
particular, the integral of a curve t ∈ I → T (t) ∈ B(H) gives rise to
an operator whose ’entry’ associated to u and v is simply

〈u,
( ∫

I

T (t) dt
)
v 〉 =

∫
I

〈u, T (t) v 〉 .

Diagonalizable matrices will lead the way. For M = PDP−1,

M2 = (P DP−1) (P DP−1) = P D2 P−1,

and, more generally, for any polynomial p,

p(M ) = P p(D )P−1,

where p(D) is the diagonal matrix with entries p(Dii). By the way,
the constant term c in p has to be replaced by the matrix cI (why?).
As in Section 3.1, this must be true for entire functions, which are
uniform limits of polynomials on compact sets, and possibly more:
the reader should have no difficulty in showing, for example, that

M−1 = P D−1 P−1 .

We replace z by M in the integrand of Cauchy’s formula,

p(w) (M−wI)−1 = p(w)P (D−wI)−1 P−1 = P p(w) (D−wI)−1 P−1 .
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Notice that p(w) is a scalar, and thus it commutes with any matrix.
Integration handles the constant matrices P and P−1 as constants,
and they are taken out of the integral: this is the next exercise.

Exercise 24. Consider a curve of matrices M(t) ∈ M , t ∈ I and
fixed matrices A,B ∈M. Show that∫

I

AM(t)B dt = A
( ∫

I

M(t) dt
)
B .

Clearly, the result holds also for T ∈ B(X), X Banach.

Then, along a curve γ,∫
γ

p(w) (M − wI)−1 dz = P
( ∫

γ

p(w) (D − wI)−1 dt
)
P .

The last integral is a diagonal matrix obtained by integrating diagonal
entries (again, integrate entry by entry!). Thus for each position (i, i),

p(Dii) =
1

2πi

∫
γ

p(w)

dii − w
dw

and this happens when γ is a simple positively oriented curve sur-
rounding all possible numbers dii ∈ C — γ should surround σ(M)!

This should be the fundamental formula of the Dunford-Schwartz
calculus ([19],[40]). Say Ω ⊂ C and f : Ω → C satisfy the usual
hypotheses of Cauchy’s formula. For a Banach space B and T ∈ B,

f(T ) =
1

2πi

∫
γ

f(w) (T − wI)−1 dw

for a simple, positively oriented curve surrounding σ(T ).

Let us see a first example: we prove the Cayley-Hamilton theorem
for matrices — given a matrix M , the evaluation of its characteristic
polynomial p(λ) = det(M − λI) for λ = M equals zero (why can’t
you just replace λ = M in the formula for p?). By the calculus,

p(M) =
1

2πi

∫
γ

p(w) (M−wI)−1 dw =
1

2πi

∫
γ

p(w)
(M − wI)c

p(w)
dw .
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where we used Cramer’s rule, the formula for the inverse of a matrix
in terms of its cofactor matrix M c — all that we have to know about
it is that the cofactor is a polynomial in the entries of the matrix.
We are thus integrating n2 polynomials in w, one on each entry (the
p(w)’s cancel), so by Cauchy’s theorem again, the integral is zero.

Exercise 25. This is an open ended problem. The Cayley-Hamilton
theorem is true for matrices with entries in arbitrary commutative
rings with an identity. Have we proved it in this generality or not?
After all, its statement, even in M(n,C), is of an arithmetic nature:
the n2 polynomials corresponding to the entries of p(M − λI) are
all equal to zero. How much does the complex result says about the
general case? I am reminded of some geometry problems in which
auxiliary lines are convenient to the solution. In this case, we throw
in a bunch of auxiliary axioms, those defining the complex numbers.
The appropriate context for this question is close to universal algebra,
possibly something in logic.

As another automatic application of the Dunford-Schwartz calcu-
lus, we show that for an operator T ∈ B whose spectrum is strictly
contained in the open unit disk in C, we must have Tn → 0. Indeed,

Tn =
1

2πi

∫
γ

wn (M − wI)−1 dw

where we take for γ a circle centered at 0 ∈ C with radius slightly
less than 1 (recall that since σ(T ) is compact, the hypothesis allows
for such a γ surrounding σ(T )). Now take absolute values and use
that wn → 0, that simple (the norm of the denominator is clearly
bounded away from zero).

The main result is the following theorem, whose proof is found
in any presentation of the Dunford-Schwartz calculus. Let B be a
complex Banach space, B be the algebra of linear continuous maps
T : B → B endowed with the usual operator norm (Section 3.1). Let
U ⊂ C be an open set containing σ(T ). Let γk ⊂ U be a collection
of curves enclosing open (topological) disks Dk ⊂ U so that σ(T ) ⊂
∪kDk. Let Aγ be the algebra of continuous functions f : ∪kDk → C
which are analytic in ∪kDk, with norm ||f ||= sup

z∈∪kγk

|f(z)|.
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Theorem 21. There is a unique continuous algebra homomorphism
Φ : Aγ → B taking f(x) = 1 to Φ(f) = I and f(x) = x to Φ(f) = T .

Say T is an n × n matrix with (possibly repeated) eigenvalues
λk. Draw small (positively oriented) circles γk containing a unique
distinct eigenvalue in each of the associated disks Dk. Let fk be
identically 1 in Dk and 0 in the other disks. Then

fk(T )2 = fk(T ) , fk(T )f`(T ) = 0 for k 6= ` ,
∑
k

fk(T ) = I ,

because the functions fk satisfy these identities.
The projections fk(T ) are the key ingredients in the Jordan de-

composition of T . Their ranges are invariant subspaces and T on
each subspace is of the form λkI +N , where N is nilpotent. Notice
also that tr fk(T ) is the multiplicity of the eigenvalue λk. The decom-
position theorem follows from a normal form of a nilpotent operator.

And in infinite dimensions? A connected component σk ⊂ σ(T )
induces an invariant subspace Vk = Ran fk(T ) of T in the same fash-
ion (γ does not intersect σ(T )). More, if tr fk(T ) < ∞, then the
Jordan theorem applies to the restriction of T to Vk.

Exercise 26. Say λk is an isolated eigenvalue of T0 ∈ B(X) of finite
algebraic multiplicity, i.e., tr fk(T0) =n < ∞. For T near T0, the
functions

s0(x) = fk(x) , s1(x) =x fk(x) , s2(x) =x2 fk(x) . . .

give rise to operators sj(T ) of finite trace equal to the sum of the
j-th power of the eigenvalues of T near λk (what does that mean?).
In particular, tr s0(T ) =n. Clearly, these expressions are analytic
in T . In a nutshell, even if the eigenvalues are hard to describe as
continuous functions of T , polynomial symmetric functions, like the
sum of the k-th powers, are as smooth as possible.

A standard proof of the spectral theorem for bounded self-adjoint
operators proceeds by extending this algebra homomorphism. It
turns out that for such T , we have ||f ||= ||T || and Φ extends natu-
rally to continuous functions on σ(T ) ⊂ R. The subsequent step is
the extension to (Borel) measurable functions ([45]).
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For an entire function f and an n × n matrix M =λ+N , where
N is nilpotent, it is clear that the computation of f(T ) through the
power series gives rise to a polynomial, since Nk = 0 for some k ∈ N.
The upshot is that, in finite dimensions, say for σ(T ) ⊂ R, possi-
ble extensions of Φ are naturally limited to spaces Ck. In infinite
dimensions, where the nilpotency indices become arbitrarily large, a
space of analytic functions comes up naturally. Recall that a bound
on the uniform norm of f in an open disk D surrounded by γ leads
to uniform bounds of derivatives of f in closed disks in D, another
gift from complex variable theory.

Exercise 27. Using Theorem 12, prove that

(S−λ I)−1 =
1

λ1−λ
v1⊗ v1 +

1

λ2−λ
v2⊗ v2 + . . . +

1

λn−λ
vn⊗ vn ,

where the vk’s are normalized eigenvectors of V . Thus the orthogonal
projections associated to the invariant subspaces of S are the residues
of the resolvent R(λ) = (S−λ I)−1. For g(λ) = 〈 e1 , R(λ) e1 〉,

g(λ) =
c21

λ1−λ
v1 ⊗ v1 +

c22
λ2−λ

v2 ⊗ v2 + . . . +
c2n

λn−λ
vn ⊗ vn ,

where the ck’s are the first coordinates of the vk’s. In particular, if T
is a Jacobi matrix, they are the norming constants of Section 2.3.1.

We finish with an example. Let C+ and C− be the open right and
left complex half planes. For z ∈ C+ ∪ C−, the sign function s(z) is

s(z) =

{
1 , z ∈ C+ ,

−1 , z ∈ C− .

Given T ∈ B (in particular, a square matrix), one may compute
s(T ) provided σ(T ) does not meet the imaginary axis. This function
is used rather frequently by engineers and numerical analysts ([3]).
Notice that s(T ) can be computed by the Dunford-Schwartz calculus,
in principle: it is an analytic function in some open neighborhood
of T . We present instead two computational alternatives, in order
to convince the reader that functions of matrices allow for a lot of
craftsmanship (there is much more in [24]).
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Consider the two iterations

Tk+1 =
1

2
(Tk +T−1

k ) , Tk+1 =
1

2
Tk ( 3I − T 2

k ) .

The first iteration, starting with T0 =T , converges (quadratically!)
to s(T ). This is easy to see for matrices: just check the effect of
the iteration step on complex numbers in C+ ∪ C−. For the second,
if σ(T ) ⊂ (−

√
3 ,
√

3), quadratic convergence is guaranteed provided
0 /∈ σ(T ) — again, check the effect of the iteration step on σ(T ). By
the way, what about (infinite dimensional) operators?

Exercise 28. Use the sign function to count the number of eigen-
values of T in a quadrilateral of the complex plane. In a sense, this
is an extension of Exercise 2.

5.2 Orthogonal polynomials

We simply can not honor one of the most interesting subjects in math-
ematics in such few pages — our intention is simply to show how a
number of ideas in the previous sections combine. Alas, we will not
provide examples and will almost trivialize the analytic context, but
the reader will at least realize that we are at crossroads of different
mathematical avenues. To go further, the only problem is the em-
barassment of riches — Szegö ([54]), Deift ([11]), Trefethen ([62]) are
very different point of views, all of them very interesting.

Start with a real Hilbert space H = L2(I, dµ), for some finite
interval I = [a, b] ⊂ R. We take µ to be a probability measure, i.e., a
measure on the Borel sets of I with the property that∫

I

dµ = 1 .

Natural choices for µ are the Lebesgue measure, or a finite sum of
deltas. Recall the inner product between real functions u, v,∈ H,

〈u , v 〉 =

∫
I

u(x) v(x) dµ(x) .

Consider the multiplication operator

T : H → H , u(x) 7→ x u(x) ,
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which is clearly bounded and symmetric, in the sense that

〈u , T v 〉= 〈T u , v 〉 , ∀ u , v ∈ H .

We now perform the construction described in Section 2.3. More
precisely, consider the Krylov sequence of polynomials in H,

u0 = 1 , u1 =T u0 =x , u2 =T 2 u0 =x2 , , . . .

and their Gram-Schmidt orthonormalization (Lanczos) in H,

p0 = u0 , p1 , p2 . . .

The procedure works until the polynomial uk becomes linear depen-
dent from the previous ones, and then p0, p1, . . . , pn−1 span an n-
dimensional invariant subspace V ⊂ H of T . This is the case if µ is
a sum of n deltas in I. If µ is Lebesgue measure, all vectors are inde-
pendent. The open ended notation {p0, p1, . . .} indicates the largest
set of such independent vectors, both for n finite or infinite.

The polynomials pk have degree k — they are the orthogonal
polynomials associated to the measure µ.

Exercise 29. Show that if V is infinite dimensional then polynomials
are indeed a dense subset of H.

More, equipping V with the basis {p0, p1, . . .}, the multiplication
operator T is represented by a matrix J which is real, symmetric,
tridiagonal with strictly positive entries ti,i+1 = ti+1,i — in a nutshell,
J is a Jacobi matrix, as in Section 2.3. For convenience we index both
rows and columns of J starting with zero and rename entries,

j00 j01 0 0 0 . . .
j10 j11 j12 0 0 . . .

0 j21 j22 j23 0 . . .
0 0 j32 j33 j34 . . .
0 0 0 j43 j44 . . .

. . . . . . . . .

 =


a0 b0 0 0 0 . . .
b0 a1 b1 0 0 . . .
0 b1 a2 b2 0 . . .
0 0 b2 a3 b3 . . .
0 0 0 b3 a4 . . .

. . . . . . . . .

 .

We have just obtained the three terms recurrence of the orthogonal
polynomials pk(x): dropping the dependence on x,

T p0 =x p0 = a0p0 + b0p1 , T p1 =x p1 = b0p0 + a1p1 + b1p2 ,
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and, in general,

T pk =x pk = bk−1pk−1 + akpk + bkpk+1 k ≥ 1 .

Take inner products and use orthonormality to get the next result.

Proposition 7. The entries ak and bk are given by

a0 = 〈 p0 , T p0 〉 , ak = 〈 pk , T pk 〉 , bk−1 = 〈 pk−1 , T pk 〉 k ≥ 1 .

It is convenient to normalize the pk’s so as they become monic:
set ckp̃k = pk, so that the top coefficient of p̃k is equal to one. The
recurrence relation for the p̃k’s is (notice that c0 = 1)

x p̃0 = a0p̃0 + b0 c1 p̃1 ,

x p̃k = bk−1
ck−1

ck
p̃k−1 + akp̃k + bk

ck+1

ck
p̃k+1 k ≥ 1 .

Now, compare top coefficients to conclude that

bk
ck+1

ck
= 1 k ≥ 0 ,

and since p0 = p̃0 ≡ 1,

x p̃0 = a0p̃0 + p̃1 , x p̃k = b2k−1 p̃k−1 + akp̃k + p̃k+1 k ≥ 1

or

p̃0 ≡ 1 , p̃1 = (x− a0) , p̃k+1 = (x− ak) p̃k − b2k−1 p̃k−1 k ≥ 1 .

Let Dk(λ) be the characteristic polynomial of the principal minor of
dimension k × k of J . and set D0(λ) ≡ 1. In particular,

D0(λ) = 1 , D1(λ) = a0 − λ , D2(λ) = (a0 − λ)(a1 − λ)− b20 .

and, in general, expanding the determinant along the last row,

D0 ≡ 1 , D1 = a0−λ , Dk+1 = (ak−λ)Dk − b2k−1Dk−1 , k ≥ 1 .

Comparing recursions, we get the following result.
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Proposition 8. The monic orthogonal polynomials are, up to sign,
the determinants of the principal minors,

p̃2k(x) = D2k(x) and p̃2k+1(x) = −D2k+1(x) .

The next result combines a number of previous statements.

Theorem 22. The polynomials pk(x) have simple roots. The roots
of pk and pk+1 interlace.

Proof. The roots of pk, being eigenvalues of a Jacobi matrix, are dis-
tinct, by Exercise 4. More, pk and pk+1 are characteristic polynomials
of two matrices satisfying the hypothesis of Exercise 23.

A line of active research is the distribution of the zeros of orthogo-
nal polynomials pk for large values of the index k. They turn out to be
surprisingly independent of the matrix µ under very mild hypothesis
— said differently they display universality properties ([11]).

As an extra bonus, we compute the eigenvectors of the principal
minors. Rewrite the three terms recurrence in matrix form:


x p0(x)
x p1(x)
x p2(x)
x p3(x)
x p4(x)

. . .

 =


a0 b0 0 0 0 . . .
b0 a1 b1 0 0 . . .
0 b1 a2 b2 0 . . .
0 0 b2 a3 b3 . . .
0 0 0 b3 a4 . . .

. . . . . . . . .




p0(x)
p1(x)
p2(x)
p3(x)
p4(x)
. . .

 .

Consider n = 4. Take for x a root r of the polynomial p4:

r


p0(r)
p1(r)
p2(r)
p3(r)

 =


a0 b0 0 0
b0 a1 b1 0
0 b1 a2 b2
0 0 b2 a3




p0(r)
p1(r)
p2(r)
p3(r)

 .

Again, each root r of p4 is an eigenvalue of the 4 × 4 principal
minor of J associated to an explicit eigenvector.
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5.3 A quadrature algorithm

Orthogonal polynomials have been presented as a special case of
Lanczos’s procedure. We now relate them to the Jacobi inverse vari-
ables from Section 2.3.1. From this association, we obtain a quadra-
ture algorithm: consider the problem of approximating the integral∫

I

f dµ ,

for reasonable functions f : R → R. Given N = 2n − 1, we obtain
interpolating points λi and weights ci, for i = 0, . . . , n− 1 for which

∫
I

p dµ=

n−1∑
i=0

c2i p(λi) , (∗)

for all polynomials of degree less than or equal to N .

The idea behind the algorithm is simple. Consider the (possibily
infinite) orthogonal matrix J associated to the three term recursion
of the orthogonal polynomials given by µ and the multiplication op-
erator T . By Proposition 7, the entries ak and bk of J are given
respectively by integrals of polynomials of degree 2k + 1 and 2k + 2.
By Proposition 2, on the other hand, the common entries of J and its
n×n principal minor Jn−1 can be obtained in a different fashion, by
making use of the inverse variables of Jn−1. We provide the details
and set n = 4 to simplify notation.

In the previous section, orthogonal polynomials pk associated to
µ and T gave rise to eigenvalues and eigenvectors of principal minors
of a(possibly infinite) Jacobi matrix J . Given the principal minor

J3 =


a0 b0 0 0
b0 a1 b1 0
0 b1 a2 b2
0 0 b2 a3

 ,

we compute its (simple) spectrum λ1 > . . . > λ4, which we arrange as
Λ = diag(λ1, . . . , λ4). The entries of the eigenvectors are the values
of the pk’s at points λi — such eigenvectors are not normal in R4:
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we write J3 =WT ΛW for some orthogonal matrix WT , so that its
columns are normalized eigenvectors of J3,

WT =


p0(λ1) p0(λ2) p0(λ3) p0(λ4)
p1(λ1) p1(λ2) p1(λ3) p1(λ4)
p2(λ1) p2(λ2) p2(λ3) p2(λ4)
p3(λ1) p3(λ2) p3(λ3) p3(λ4)




c0 0 0 0
0 c1 0 0
0 0 c2 0
0 0 0 c3

 ,

The numbers ck > 0 are the first coordinates of the normalized eigen-
values of J3: they are the norming constants of J3, as defined in Sec-
tion 2.3.1. Indeed, p0 ≡ 1 and the first row of W is also an orthogonal

vector, so that
∑
k

c2k = 1.

Theorem 23. For N = 2n− 1 and a measure µ supported in I, the
quadrature equality (∗) above is true for the inverse variables (λi, c)
of the principal minor Jn−1 of the Jacobi operator J associated to the
multiplication operator T : L2(I, µ)→ L2(I, µ).

Proof. For a polynomial of degree zero, the equation (∗) is true:

1 =

∫
I

dµ=

n−1∑
i=0

c2i = 1 .

The entries ak, k = 0, . . . , n− 1 and bk, k = 0, . . . , n− 2 are common
to J and Jn−1, so that, from Propositions 2 and 7,

a0 = 〈 p0 , T p0 〉= 〈 v0 ,Λ v0 〉 , ak = 〈 pk , T pk 〉= 〈 vk ,Λ vk 〉 k ≥ 1 ,

bk−1 = 〈 pk−1 , T pk 〉= 〈 vk−1 ,Λ vk 〉 k ≥ 1 .

We warn the reader: the vectors vk, which are the rows of WT , are
not the eigenvalues of Λ. When such inner products are equal,∫
I

x pk(x) p`(x) dµ= 〈 pk , T p` 〉= 〈 vk ,Λ v` 〉=
n∑
i=1

c2i pk(λi) p`(λi) .

This is sufficient to prove equation (∗) for all polynomials p of degree
less than or equal to N — start with k = ` = 0 to show equality for
polynomials of degree 1, then increase by one either index to extend
to degree 2, and continue up to the equality associated to entry an−1:
it yields the result for degree N = 2n− 1.
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5.4 The spectral theorem — a sketch

Let us rephrase some facts from the previous sections. Take a prob-
ability measure and an operator

µ =

n∑
k=1

c2k δλk
, T : L2(R, µ)→ L2(R, µ)

with a cyclic vector p0 ∈ L2(R, µ). Denote by (Rn, 〈., .〉) the usual
inner product in Rn. The correspondence between orthogonal bases

pk ∈ L2(R, µ) 7→ wk = ck(vk(λi)) ∈ Rn

extends by linearity to an isometry Q : L2(R, µ) → (Rn, 〈., .〉) which
diagonalizes T : T =QT ΛQ. For the orthogonal matrix with rows
given by the vectors wk, J =WTΛW is a Jacobi matrix.

We may have taken T to be the usual multiplication operator
Mf =x f(x), and we would have obtained an isometry conjugating
J to M . Thus J admits two normal forms under orthogonal conju-
gation, Λ and M : the second form extends to infinite dimensions.

Starting with J , on the other hand, we obtain µ by computing
poles and residues of g(λ). Indeed, from Exercise 27, the function
g(λ) = 〈 e1 , (T −λ I)−1 e1 〉 is given by

g(λ) =
c21

λ1−λ
v1 ⊗ v1 +

c22
λ2−λ

v2 ⊗ v2 + . . . +
c2n

λn−λ
vn ⊗ vn ,

where the ck > 0’s are the norming constants of T , i.e., the first
coordinates of the normalized eigenvectors vk’s. In a more compact
notation, preparing to jump to infinite dimensions,

g(λ) =

∫
R

1

x−λ
dµ(x) (∗),

where µ is the probability measure above. Notice a very special
property of g: all poles are real and the residues are positive.

Now, let H be a separable Hilbert space. From Theorem 5, a
general bounded self-adjoint operator T : H → H splits into a direct
sum of Jacobi operators Jα : Hα → Hα, for appropriate subspaces
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Hα ⊂ H. To prove the spectral theorem for T , it suffices then to prove
it for a Jacobi operator J : H → H, where without loss we may take
H = `2(N) (we consider the finite dimensional case as settled).

A proof of the spectral theorem along this lines is technically
simpler: the issues related to spectral multiplicity are finessed. The
theorem states: there is a measure µ supported in I = [−||J ||, ||J || ]
and an isometric bijection QT : `2(N)→ L2(I, µ) for which

T =QM QT ,

where M : L2(I, µ) → L2(I, µ), (Mf)(x) = xf(x) is multiplication
by x. The proof sometimes is presented for this statement, as in [11],
or in some variation, as in [40]. Both texts are beautiful.

Suppose we know already, from standard estimates, that the spec-
trum of J is real. The key technical object is a representation theorem
of Herglotz, which ensures that the function

g(λ) = 〈 e1 , (J −λ I)−1 e1 〉

is given by a probability measure µ supported in I, as in (∗). Indeed
this is true for analytic functions which take the open upper half-plane
to itself: this is the appropriate phrasing of the special properties of
g outlined in the finite dimensional case. Asymptotic properties of g
(it goes to zero at infinity) then yield the formula.

Once µ is available, everything follows as in the finite dimensional
case: the conjugation Q, the multiplication operator T ... Notice by
the way the following alternative to retrieve J from µ. Expand

g(λ) =
−1

λ
〈 e1 , (I −

J

λ
)−1 e1 〉=

−1

λ
〈 e1 ,

(
I +

J

λ
+ (

J

λ
)2 + . . .

)
e1 〉 .

Thus, from g(λ) we obtain the expressions 〈 e1 , J
n e1 〉, from

which the entries ak and bk are recursively computed.

As is well know, the spectral theorem for unbounded self-adjoint
operators follows from the bounded case, using a trick by Von Neu-
mann from the functional calculus. An alternative route closer to
the techniques above leads to a question of independent interest —
given a measure µ in R, when are polynomials dense in L2(R, µ)?
The interested reader should consult [11] again.
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[51] I. Schur,Über eine Klasse von Mittelbildungen mit Anwendun-
gen auf die Determinantentheorie, Sitzungsber. Berl. Math.
Ges. 22, 9-20, 1923.

[52] F.B. Sing, Some results on matrices with prescribed diagonal
elements and singular values, Canad. Math. Bull. 19, 89-92,
1976.

[53] M. Spivak, Calculus on manifolds, Addison-Wesley, 1971.
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