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faire vivre et qui me le rendent au centuple. . .



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 4 — #4 i
i

i
i

i
i



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 1 — #5 i
i

i
i

i
i

Contents

I Independence and stationarity 9

1 Independence 11

2 Gaussian convergence and inequalities 17
2.1 Gaussian Convergence . . . . . . . . . . . . . . . . . . 17

2.1.1 Central Limit Theorem . . . . . . . . . . . . . 20
2.1.2 Empirical median . . . . . . . . . . . . . . . . . 21
2.1.3 Gaussian approximation for binomials . . . . . 22

2.2 Quantitative results . . . . . . . . . . . . . . . . . . . 24
2.2.1 Moment inequalities . . . . . . . . . . . . . . . 24
2.2.2 Exponential inequalities . . . . . . . . . . . . . 28

3 Estimation concepts 33
3.1 Empirical estimates . . . . . . . . . . . . . . . . . . . . 33
3.2 Contrasts . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Functional estimation . . . . . . . . . . . . . . . . . . 38
3.4 Division trick . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 A semi-parametric test . . . . . . . . . . . . . . . . . . 50

4 Stationarity 53
4.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Spectral representation . . . . . . . . . . . . . . . . . . 57
4.3 Range and spectral density . . . . . . . . . . . . . . . 64

4.3.1 Limit variance . . . . . . . . . . . . . . . . . . 67
4.3.2 Cramer Wold representation . . . . . . . . . . . 69

4.4 Spectral estimation . . . . . . . . . . . . . . . . . . . . 70

1



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 2 — #6 i
i

i
i

i
i

2 CONTENTS

4.4.1 Functional spectral estimation . . . . . . . . . 71
4.4.2 Whittle spectral estimation . . . . . . . . . . . 72

4.5 Parametric estimation . . . . . . . . . . . . . . . . . . 73
4.6 Subsampling . . . . . . . . . . . . . . . . . . . . . . . 74

II Models of time series 77

5 Gaussian chaos 79
5.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Fractional Brownian motion . . . . . . . . . . . 82
5.2 Gaussian chaos . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Hermite polynomials . . . . . . . . . . . . . . . 89
5.2.2 Second order moments . . . . . . . . . . . . . . 96
5.2.3 Higher order moments . . . . . . . . . . . . . . 99
5.2.4 Integral representation of the Brownian chaos . 102
5.2.5 The fourth order moment method . . . . . . . 105

6 Linear processes 109
6.1 Stationary linear models . . . . . . . . . . . . . . . . . 109
6.2 ARMA(p, q)−processes . . . . . . . . . . . . . . . . . . 112
6.3 Yule-Walker equations . . . . . . . . . . . . . . . . . . 115
6.4 FARIMA(0, d, 0)−processes . . . . . . . . . . . . . . . 117
6.5 FARIMA(p, d, q)−processes . . . . . . . . . . . . . . . 121
6.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Non-linear processes 123
7.1 Discret chaos . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.1 Volterra expansions . . . . . . . . . . . . . . . 123
7.1.2 Appell polynomials . . . . . . . . . . . . . . . . 125

7.2 Memory models . . . . . . . . . . . . . . . . . . . . . . 128
7.2.1 Bilinear models . . . . . . . . . . . . . . . . . . 128
7.2.2 LARCH(∞)−models . . . . . . . . . . . . . . . 132

7.3 Stable Markov chains . . . . . . . . . . . . . . . . . . . 133
7.3.1 AR-ARCH–models . . . . . . . . . . . . . . . . 136
7.3.2 Moments of ARCH(1)-models . . . . . . . . . . 139
7.3.3 Estimation of LARCH(1)–models . . . . . . . . 140
7.3.4 Branching models . . . . . . . . . . . . . . . . 146



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 3 — #7 i
i

i
i

i
i

CONTENTS 3

7.3.5 Integer valued autoregressions . . . . . . . . . . 149
7.3.6 Generalized Linear Models . . . . . . . . . . . 151
7.3.7 Non-linear AR(d)-models . . . . . . . . . . . . 153

7.4 Bernoulli schemes . . . . . . . . . . . . . . . . . . . . . 154
7.4.1 Structure and tools . . . . . . . . . . . . . . . . 155
7.4.2 Coupling . . . . . . . . . . . . . . . . . . . . . 158

8 Associated processes 163
8.1 Association . . . . . . . . . . . . . . . . . . . . . . . . 163
8.2 Associated processes . . . . . . . . . . . . . . . . . . . 164
8.3 A main inequality . . . . . . . . . . . . . . . . . . . . 166
8.4 Limit theory . . . . . . . . . . . . . . . . . . . . . . . 168

III Dependences 169

9 Dependence 173
9.1 Ergodic theorem . . . . . . . . . . . . . . . . . . . . . 173
9.2 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10 Long range dependence 187
10.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . 187
10.2 Gaussian polynomials . . . . . . . . . . . . . . . . . . 189
10.3 Rosenblatt process . . . . . . . . . . . . . . . . . . . . 190
10.4 Linear processes . . . . . . . . . . . . . . . . . . . . . 193
10.5 Functions of linear processes . . . . . . . . . . . . . . . 194
10.6 More non-linear models . . . . . . . . . . . . . . . . . 196

10.6.1 LARCH–type models . . . . . . . . . . . . . . 196
10.6.2 Randomly fractional differences . . . . . . . . . 197
10.6.3 Perturbed linear models . . . . . . . . . . . . . 198
10.6.4 Non-linear Bernoulli shift models . . . . . . . . 198

11 Short range dependence 201
11.1 Weak dependence . . . . . . . . . . . . . . . . . . . . . 201
11.2 Strong mixing . . . . . . . . . . . . . . . . . . . . . . . 202
11.3 Bootstraping autoregressive models . . . . . . . . . . . 205
11.4 Weak dependence conditions . . . . . . . . . . . . . . 208
11.5 Proving limit theorems . . . . . . . . . . . . . . . . . . 214



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 4 — #8 i
i

i
i

i
i

4 CONTENTS

12 Moments and cumulants 219
12.1 Method of moments . . . . . . . . . . . . . . . . . . . 220

12.1.1 Notations . . . . . . . . . . . . . . . . . . . . . 220
12.1.2 Combinatorics of moments . . . . . . . . . . . 222

12.2 Dependence and cumulants . . . . . . . . . . . . . . . 225
12.2.1 More dependence coefficients . . . . . . . . . . 225
12.2.2 Sums of cumulants . . . . . . . . . . . . . . . . 229
12.2.3 Moments of sums . . . . . . . . . . . . . . . . . 230
12.2.4 Rosenthal inequality . . . . . . . . . . . . . . . 233

12.3 Dependent kernel density estimation . . . . . . . . . . 234

Appendices 238

A 239
A.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . 239

A.1.1 Notations . . . . . . . . . . . . . . . . . . . . . 239
A.1.2 Random variables . . . . . . . . . . . . . . . . 240

A.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . 247
A.2.1 Normal distribution . . . . . . . . . . . . . . . 247
A.2.2 Multivariate Gaussians . . . . . . . . . . . . . . 251
A.2.3 γ−distributions . . . . . . . . . . . . . . . . . . 252

A.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . 256
A.3.1 Convergence in distribution . . . . . . . . . . . 256
A.3.2 Convergence in probability . . . . . . . . . . . 259
A.3.3 Almost sure convergence . . . . . . . . . . . . . 260



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 5 — #9 i
i

i
i

i
i

CONTENTS 5

Objectives

Time series appear naturally with data sampled in the time but many other
physical situations let also appear such evolutions indexed by integers.
We aim at providing some tools for the study of such statistical models.
The purpose of those lectures is introductory and definitely no systematic
study will be proposed here.

Those notes are divided into 3 Parts including each 4 Chapters and an
Appendix.

1. Independence and Stationarity.
Even wether this part addresses mainly items of the independent
world, the choice of subjects is biased and motivated by the fact
that they easily extend to a dependent setting.

(a) Independence.
This is a main concept in those notes so we set some simple
comments concerning independence as a separate chapter. For
instance we mention all the elementary counter-examples in-
voking independence. Other examples relating orthogonality
with independence may be found in the Chapter 8 and in Ap-
pendix, §A.2.1.

(b) Gaussian convergence and moments.
A special emphasis is set on Lindeberg method with easily ex-
tends to a dependent setting. Applications of the central limit
theorems are proved in the independent setting. Moment and
exponential inequalities related to Gaussian convergence are
also derived.

(c) Estimation concepts.
Classical estimations techniques, as empirical ones, contrasts
and non-parametric techniques are introduced. Kernel density
estimates are described with some details as an application of
previous results in view of their extension to time series in a
further Chapter.

(d) Stationarity.
The notions of stationarity are essential for spectral analysis
of time series. [Brockwell and Davis, 1991] use filtering tech-
niques in order to return to such a simple stationary case.
Indeed this assumption is not naturally observed. Weak and
strong stationarity are considered together with examples.
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Second order weak dependence or long range dependence are
defined according the convergence of the series of covariances.
Stationarity and an introduction to spectral techniques are pro-
vided after this. We precise the spectral representation for both
a covariance and for the process itself. and we rapidly scan
some applications of time series.

2. Models of time series.

(a) Gaussian chaos.
Due to the CLT the Gaussian case plays a central role in statis-
tics. The first time series to be considered are Gaussian. We in-
troduce the Gaussian chaos and Hermite polynomials as well as
some of their properties. Gaussian processes and the methods
of the Gaussian chaos are thus investigated. Namely Hermite
representations and Mehler formula for functions of Gaussian
processes are developed precisely while the diagram formula
for higher order moments is simply considered. The fractional
Brownian motion essential hereafter for the long range depen-
dent setting is also introduced. The asymptotic theory for
Gaussian functionals is also precisely stated. We also recall
the 4th moment method based on Malliavin calculus.

(b) Linear models.
From Lindeberg’s lemma, the linear case is the second case to
consider after the Gaussian one. Eg. ARMA shortly dependent
processes or long range dependent models such as FARIMA
models are provided. See [Brockwell and Davis, 1991] for fur-
ther information.

(c) Nonlinear models.
This central Chapter proposes a wide botanic for models of
time series. Non linear models are naturally considered as ex-
tensions of the previous ones. After the elementary ideas of
polynomials and chaoses we come to an algebraic approach of
models explicit solutions of a recursion equation. Then more
general and non explicit contractive iterative systems are in-
troduced together with a variety of examples. Finally the ab-
stract Bernoulli shifts yield a general and simple overview of
those various examples; their correlation properties are explic-
itly provided. This class of general non linear functionals of
independent sequences yields a large amount of examples.

(d) Association.
Associated processes are then rapidly investigated. This prop-
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erty was introduced for reliability and for statistical physics.
The association property admits a main common point with
Gaussian case: independence and orthogonality coincide in
both cases. This feature is exploited in the following chapter.

3. Dependences.

(a) Ergodic theorem.
As an extension of the strong law of large numbers, the ergodic
theorem is the first result proposed in this chapter. In order to
get confidence bounds for asymptotic distribution of the mean
one first needs consistency of the empirical mean. Further
needed asymptotic expansions are obtained from SRD/LRD
properties.
We then make a tour of the tools for the asymptotic theory
under long range or short range dependence (resp. SRD and
LRD).

(b) Long Range Dependence.
Under LRD the more elementary examples are are seen to get
such asymptotic explicit expansion in distribution up to non-
Gaussian limits. Gaussian and subordinated Gaussians are first
considered as well as linear LRD models, anyway a rapid de-
scription of non linear LRD models is also included.

(c) Short Range Dependence.
In the SRD case we give a rapid idea of techniques. Namely
the standard Bernstein blocks technique is proposed as a way to
derive CLTs by using a recent dependent Lindeberg approach.

(d) Moment methods.
A last chapter is devoted to moment and cumulant inequali-
ties developing the more standard spectral ideas of the second
chapter.
Such inequalities are needed in many occasions but first in order
to derive CLTs, another application is for subsampling. This
technique applies for the kernel density estimator.

Appendices.

(a) Probability.
A first Appendix recalls essential concepts of probability, in-
cluding repartition functions and some Hoeffding inequalties.

(b) Distributions.
Useful examples of probability distributions are introduced in
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relation with the dependence conditions. Standard Gaussians,
Gaussian vectors and γ−type distributions are considered.

(c) Limit theory in probability.
Basic concepts of convergence in probability theory are recalled
in this Appendix.

Applications of those techniques to spectral estimations are developed in an
elegant way in monographs [Rosenblatt, 1985, Rosenblatt, 1991]. Relations
with the asymptotic theory for kernel density estimation are also given.
[Azencott and Dacunha-Castelle, 1987] and [Rosenblatt, 1985] also lead to
a large amount of additional developments. Functional estimation frames
are synthetically described in [Rosenblatt, 1991].
[Doukhan et al., 2002b] provides a wide amount of directions for the study
of LRD.
[Doukhan and Louhichi, 1999], [Dedecker and Doukhan, 2003] as well as
[Dedecker et al., 2007] also consider the weakly dependent setting.

Paris, May 20, 2015

Paul Doukhan
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Chapter 1

Independence

Definition 1.1.1. Events A,B ∈ A are called independent in case

P(A ∩B) = P(A)P(B).

Definition 1.1.2. The random variables X1, . . . , Xn (with values for
instance in the same space topological E) are said to be independent
in case, for any g1, . . . , gn : E → R continuous and bounded:

E
(
g1(X1)× · · · × gn(Xn)

)
=
(
Eg1(X1)

)
× · · · ×

(
Egn(Xn)

)
.

Definition 1.1.3. Events A1, . . . An are called independent if the
random variables X1 = I1A1

, . . . , Xn = I1An are independent.
In other words for each E ⊂ {1, . . . , n}

P
( ⋂
i∈E

Ai

)
=
∏
i∈E

P(Ai).

Definition 1.1.4. The random variables X1, . . . , Xn are called pair-
wise independent if each couple Xi, Xj is independent for i 6= j.

In case the characteristic function is analytic around 0, and E = R
previous remarks imply that the previous identity is enough to prove
the the independence of X1, . . . , Xn if

φX1+···+Xn = φX1 × · · · × φXn .

11
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12 [CHAP. 1: INDEPENDENCE

Assume now that Xj admits a density fj with respect to some mea-
sure νj on Ej then the random vector (X1, . . . , Xd) ∈ E1 × · · · × Ed
admits the density

f(x1, . . . , xd) = f1(x1) · · · fd(xd), (x1, . . . , xd) ∈ E1 × · · · × Ed

on the product space E1 × · · · × Ed with respect to ν1 × · · · × νd.

If A1, . . . , Ad ∈ A are events then simple random variables write
Xk = 1Ak ∈ {0, 1} and the independence of couples (Xi, Xj) is easily
proved to coincide with the independence of couples of events Ai, Aj .
Anyway the independence of the family of events A1, . . . , Ad writes
a bit differently, as:

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai), ∀I ⊂ {1, . . . , d}.

Example 1.1.1. As a probability space consider a model (Ω,A,P)
for two (fair) independent dices

Ω = {1, 2, 3, 4, 5, 6}2, A = P(Ω),

and P is the uniform probability on this finite set with 36 elements.
Let A,B be the events that the dices show an even number, then

P(A) = P(B) =
1

2

and those events are independent.
Now let C be the event that the sum of the results in both dices is
also even then A ∩B ⊂ C and on the event A ∩C the second dice is
necessarily even too, so that A ∩ C ⊂ B.
Analogously B∩C ⊂ A so that it is easy to check that A,C and B,C
are independent pairs of events,

P(A∩B) = P(A)P(B), P(A∩C) = P(A)P(C), P(B∩C) = P(B)P(C)

(those values all equal 1
4 = 1

2 ·
1
2).

From the other hand A ∩B ∩B = A ∩B thus

P(A ∩B ∩ C) =
1

4
6= P(A)P(B)P(C) =

1

8
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and the triplet of events (A,B,C) is not independent.
Then the events A,B,C are pairwise independent but not independent
on this probability set with 36 elements equipped with the uniform law.

Remark 1.1.1.

• As sketched in the previous Exercise, this is possible to find 3
pairwise independent random variables which are not indepen-
dent (X = I1A, Y = I1B and Z = I1C). Pairwise independence
should thus be carefully distinguished from independence.
Precisely for each p there exist a vector X = (X1, . . . , Xp) ∈ Rp
which components are not independent but such that any vec-
tor with dimension strictly less than p and components among
X1, . . . , Xp is independent, [Derriennic and Klopotowski, 2000]
and [Bradley and Pruss, 2009] for additionally a counter-example
to the CLT.

• Now quote that the Example A.1.3 provides us with a whole
sequence of independent random variables with a given distri-
bution on R.

• Let X1, . . . , Xn be independent b(p)−distributed random vari-
ables, then the calculation of generating functions implies that
X1 + · · ·+Xn ∼ B(n, p) admits a Binomial distribution.

The following essential but very simple result is also stated as an
Exercise:

Exercise 1. Let X,Y ∈ R be real valued random variables with
EX2 + EY 2 <∞. If (X,Y ) are independent then Cov (X,Y ) = 0.

Solution to Exercise 1. In case those variables are bounded, then
independence allows indeed to assert that EXY = EXEY .
The general case is derived from a truncation by setting XM = X ∨
(−M)∧M and the use of Lebesgue dominated convergence theorem
with M ↑ ∞.

Exercise 2. Let X,R ∈ R be independent random variables with X
symmetric (i.e. −X admits the same distribution as X), EX2 < ∞
and P(R = ±1) = 1

2 , set Y = RX.
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14 [CHAP. 1: INDEPENDENCE

• Cov (X,Y ) = 0,

• moreover if |X| is not a.s. constant then X,Y are not indepen-
dent.

An important use of this Exercise in provided in Exercise 23.

Solution to Exercise 2. The first equality follows as well from in-
dependence in the case of bounded X and dominated convergence
yields the general case as in Exercise 1.
The second result also follows since because |X| is not a.s. constant
there is an even function g such that Var g(X) 6= 0, now we have:
Cov (g(X), g(Y )) 6= 0.

Exercise 3. If random variables X,Y ∈ {0, 1} satisfy Cov (X,Y ) =
0, prove that X,Y are independent.

Solution of Exercise 3. To prove the independence of those random
variables one needs to prove the independence of events (Aa, Bb) for
all a, b ∈ {0, 1}, with Aa = (X = a) and Bb = (Y = b).

• Relation Cov (X,Y ) = 0 writes as the independence of the
events A1, B1,

• Relation Cov (X, 1 − Y ) = 0 writes as the independence of
events A1, B0,

• Relation Cov (1−X,Y ) = 0 is independence of A0, B1,

• Relation Cov (1−X, 1− Y ) = 0 is independence of A0, B0.

Quote that either Gaussian or associated vectors fit the same property
see in Appendix A.2.1, and Chapter 8 respectively.
This Exercise 3 admits tight assumptions as suggests the following:

Exercise 4. Exhibit random variables X ∈ {0,±1}, Y ∈ {0, 1} not
independent, but orthogonal anyway, i.e. Cov (X,Y ) = 0.
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Solution for Exercise 4. Consider the uniform random variable X
on the set {−1, 0, 1} and Y = I1{X=0}, then EX = 0, Cov (X,Y ) =
EXY = 0 because XY ≡ 0 (a.s.) while those random variables are
not independent.
Indeed with f(x) = I1{x=0} and g(x) = x we derive

Ef(X)g(Y ) = P(X = 1) 6= Ef(X)Eg(Y ) = P2(X = 1).
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Chapter 2

Gaussian convergence
and inequalities

The Chapter aims at processing the Gaussian limit theory, namely we
precise some Central Limit Theorems together with applications and
moment/exponential inequalities for partial sums behaving asymp-
totically as Gaussian random variables.

2.1 Gaussian Convergence

This is a well-know feature that accumulation of infinitesimal inde-
pendent random effect are accurately approximated by the Gaussian
distribution. The best illustration of this fact is explained by Linde-
berg method.

Lemma 2.1.1 (Lindeberg). Assume that U1, . . . , Uk are centered real
valued random variables.
Let V1, . . . , Vk be independent random variables, independent of the
random variables U1, . . . , Uk and such that Uj ∼ N (0,EU2

j ) and g ∈
C3
b .

Set U = U1 + · · ·+Uk and V = V1 + · · ·+ Vk then we obtain the two

17
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18 [CHAP. 2: GAUSSIAN CONVERGENCE AND INEQUALITIES

bounds:

|E(g(U)− g(V ))| ≤ 3

k∑
i=1

E
(
|Ui|2 (‖g′′‖∞ ∧ (‖g′′′‖∞|Ui|))

)
.

≤ 3 ‖g′′‖1−ε∞ ‖g′′′‖ε∞
k∑
i=1

E|Uj |2+ε.

Proof of Lemma 2.1.1. Set Zj = U1 + · · · + Uj−1 + Vj+1 + · · · + Vk
for 1 ≤ j ≤ k then

E(g(U)− g(V )) =

k∑
j=1

E (g(Zj + Uj)− g(Zj + Vj)) =

k∑
j=1

Eδj .

Set now δ = g(z + u) − ug′(z) − 1
2u

2g′′(z) then Taylor formula at
order 2 entails |δ| ≤ 1

2u
2|g′′(z)− g′′(t)| for some t ∈]z, z + u[.

This implies from either the mean value theorem or from a simple
bound that

|δ| ≤ (u2‖g′′‖∞) ∧ (
1

2
|u|3‖g′′′‖∞)

= (u2‖g′′‖∞)

(
1 ∧

(
1

2
|u| ‖g

′′′‖∞
‖g′′‖∞

))
≤ u2‖g′′‖∞

(
1

2
|u| ‖g

′′′‖∞
‖g′′‖∞

)ε
= 2−ε|u|2+ε‖g′′‖1−ε∞ ‖g′′′‖ε∞

Apply the above inequality with z = Zj and u = Uj or Vj . To
conclude we also quote that E|Vj |2 = E|Uj |2 and thus E|Vj |3 =

E|Z|3
(
EU2

j

)3/2
for a standard normal random variable Z ∼ N (0, 1).

Hölder inequality thus yields
(
EU2

j

)3/2 ≤ E|Uj |3.

An integration by parts implies E|Z|3 = 4√
2π
< 2. Hence from Jensen

inequality (Proposition A.1.1) we derive E|V |2+ε < 2E|V |2+ε.
Now

E|δj | ≤ 2−ε‖g′′‖1−ε∞ ‖g′′′‖ε∞E
(
|Uj |2+ε + |Vj |2+ε

)
≤ 3‖g′′‖1−ε∞ ‖g′′′‖ε∞E|Uj |2+ε



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 19 — #23 i
i

i
i

i
i

[SEC. 2.1: GAUSSIAN CONVERGENCE 19

This yields the desired result.

As a simple consequence of this result we derive:

Theorem 2.1.1 (Lindeberg). Let (ζn,k)k∈Z be independent identi-
cally distributed sequences of centered random variable (for each n).
Suppose ∑

k

Eζ2
n,k →n→∞ σ2 > 0,∑

k

Eζ2
n,k I1{|ζn,k|>ε} →n→∞ 0, for each ε > 0.

Then: ∑
k

ζn,k
L→n→∞ N (0, σ2).

Proof. In the first inequality from Lemma 2.1.1, set Uk = ζn,k I1{|ζn,k|≤ε}
for a convenient ε > 0 then the first assumption implies that

sup
n

∑
k

Eζ2
n,k ≡ C <∞,

and thus setting ζn =
∑n
k ζn,k, we derive

n∑
k=1

E|Uk|3 ≤ C · ε.

Now from independence,

E (ζn − U)
2 ≤

∑
k

Eζ2
n,k I1{|ζn,k|>ε} ≡ an(ε).

Thus the triangular inequality implies σ2
n = EU2 →n→∞ σ2.

Those bounds together imply for Z ∼ N (0, 1) a normal random vari-
able:

|Eg(ζn)− g(σZ)| ≤ |Eg(ζn)− g(U)|
+ |Eg(U)− g(σnZ)|

+ |Eg(σnZ)− g(σZ)|.
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To prove the result use |Eg(σnZ)− g(σZ)| ≤ ‖g′‖∞E|Z||σn − σ| and
select ε = εn conveniently such that limn(an(εn) + εn) = 0.
Then the result follows.

In order to prove the power of this result the forthcoming subsections
aim at deriving some other consequences of Lindeberg lemma, see the
beautiful book [van der Vaart, 1998] for much more.
Namely the classical central limit Theorem 2.1.2 is a first consequence
of this result.
Then the asymptotic behavior of empirical medians will derived in
the Proposition 2.1.1 following the proof in [van der Vaart, 1998].
Finally the validity of the Gaussian approximation of binomial dis-
tributions is essential for example in order to assert the validity of
χ2−goodness-of-fit tests.

To conclude this section quote that we will present a simple dependent
version of the Lindeberg lemma [Bardet et al., 2006] in Lemma 11.5.1
below.

2.1.1 Central Limit Theorem

Theorem 2.1.2. The central limit theorem ensures the convergence

1√
n

(X1 + · · ·+Xn)→L N (0,EX2
0 ),

for independent identically distributed sequences with finite variance.

Proof. This follows from Theorem 2.1.1. Set ζn,k = Xk/
√
n the only

point to check is now limn→∞ EX2
1 I1|X1|≥ε

√
n = 0, which follows from

EX2
1 <∞ (1).

1An alternative proof may be given by using Lemma 2.1.1 with k = n and
Uj = Xj/

√
n.

To prove it simply note that such a random variable X0 satisfies the tightness
condition

E|X0|2 ∧
(
|X0|3√
n

)
→n→∞ 0.

Indeed we let it as an exercise that if EX2
0 < ∞ then there exists a function

H : R+ → R+ such that limx→∞H(x)/x2 = ∞, EH(|X0|) < ∞ (symmetric
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2.1.2 Empirical median

Suppose that the number of observations n = 2N+1 is even; we con-
sider here an independent identically distributed n−sample Y1, . . . , Yn
with median M

P(Y1 < M) ≤ 1

2
≤ P(Y1 > M).

To simplify notations assume this law is continuous.
The empirical median of the sample is the value Mn of the order
statistic with rank N + 1.

Proposition 2.1.1. Assume that (Xk) is an atomless identically
distributed and independent sequence. If the cumulative repartition
function F of Y1 admits a derivative γ at point M then

√
n(Mn −M)

L→n→∞ N
(

0,
1

4γ2

)
.

Proof. Notice that P(
√
n(Mn −M) ≤ x) = P(Mn ≤ M + x/

√
n) is

the probability that N + 1 observations Yi (among the n = 2N + 1
considered) satisfy Yi ≤M + x/

√
n:

P(
√
n(Mn −M) ≤ x) = P

( n∑
i=1

I1{Yi≤M+x/
√
n} ≥ N + 1

)
.

Setting pn = P(Y1 ≤M + x/
√
n) and

Xi,n =
I1{Yi≤M+x/

√
n} − pn√

npn(1− pn)
,

yields

P(
√
n(Mn −M) ≤ x) = P

(
sn ≤

n∑
i=1

Xi,n

)
, sn =

N + 1− npn√
npn(1− pn)

.

and non decreasing on R+). For each k > 0 there exists Mk > 0 that we may
choose non decreasing and such that E|X0| I1{|X0|≥Mk}≤ 1

k2
. Set H(x) = kx2 for

Mk ≤ |x| < Mk+1.
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The continuity of Y1 distribution at point M implies pn → 1
2 and its

derivability yields sn → −2xγ.
Lindeberg theorem thus yields

∑n
i=1Xi,n → N (0, 1), which allows to

conclude.

Remark 2.1.1. If instead of the continuity of X0’s cdf (the atom-
less assumption) we deal with more general properties then only the
regularity around the median is really required.

2.1.3 Gaussian approximation for binomials

Theorem 2.1.3. Let Sn ∼ B(n, p) and fix some ε ∈ (0, 1], then

sup
np(1−p)ε>1

sup
u∈R

∆n,p(u) = O
(

(np(1− p))− 1
8

)
,

with

∆n,p(u) =
∣∣∣Pp( Sn − np√

np(1− p)
≤ u

)
− Φ(u)

∣∣∣.

Sample size 10, p=0.3

X1

D
en
si
ty

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
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0
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0.
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5
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Sample size 100, p=0.3
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D
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1.
0

1.
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0

Figure 2.1: Accuracy of Gaussian approximation from binomials.
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Remark 2.1.2. This result is not optimal and exponent 1
8 may be

replaced by 1
2 , see [Petrov, 1975].

Anyway it allows to validate the Gaussian approximation if the prod-
uct np(1 − p) is large as a classical heuristics tells us: in statistics
np ≥ 5 is the condition used to use a Gaussian approximation of
binomials. Figure 2.1 demonstrates the evolution of this Gaussian
approximation.

Proof. Use Lemma 2.1.1. Rewrite Sn = b1 + · · · + bn with iid
b1, b2, . . . ∼ b(p). Set

Xi =
bi − p√
np(1− p)

, 1 ≤ i ≤ n.

Then X1, . . . , Xn are centered independent identically distributed
and

Epb3i = Ep(bi − p)2 = p(1− p).
Let 0 < p ≤ 1− ε then for f ∈ C3 we get from the Lemma 2.1.1, with
some Z ∼ N (0, 1):

∆n(f) =
∣∣∣Epf( Sn − np√

nθ(1− p)

)
− f(Z)

∣∣∣
≤ ‖f ′′′‖∞

2

n∑
i=1

E|Xi|3

≤ 4‖f ′′′‖∞
ε

1√
np(1− p)

In order to conclude one needs to prove Exercise 5 below.
Using P(Z ∈ [u, u+ η]) ≤ η/

√
2π we then derive

∆n(fu−η,η)+P(Z ∈ [u, u−η]) ≤ ∆n,p(u) ≤ ∆n(fu,η)+P(Z ∈ [u, u+η])

Thus

∆n,p(u) ≤ C

(
1

η3
√
np(1− p)

+ η

)
,

for some constant non depending on n, η, ε and p.
The choice η = (np(1− p))−1/8 allows to conclude.
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Exercise 5. For each η > 0, u ∈ R there exists function fu,η ∈ C3
b

with

I1[u+η,∞[ ≤ I1[u,∞[ ≤ fu,η and ‖f ′′′u,η‖∞ = O
(
η−3

)
.

1. Set first u = 0, η = 1. Then we set g(x) = 0 if x /∈]0, 1[ and:

(a)
g(x) = x4(1− x)4, x ∈]0, 1[.

Then g ∈ C3
b .

(b)

g(x) = exp

(
− 1

x(1− x)

)
, x ∈]0, 1[.

Then g ∈ C∞b .
Indeed each of g’s derivative writes as g(k)(x) = F (x)g(x)
for some rational function F with no pole excepted for 0, 1.
In this case the function is C∞b .

A convenient function is defined as f(x) = G(x)/G(0) where
we set

G(x) =

∫ 1

x

g(s)ds, for 0 ≤ x < 1,

and f(x) = 0 for x ≥ 1 with g as above.

2. General case. With f as before set fu,η(x) = f(u+ x/η):

f (k)
u,η(x) =

1

ηk

(
u+

x

η

)
≤ ‖f

(k)‖∞
ηk

, for k = 0, 1, 2 or 3.

For the second function k may be chosen arbitrarily large.
This allows to conclude.

2.2 Quantitative results

2.2.1 Moment inequalities

We now derive two important moment inequalities respectively called
Marcinkiewicz-Zygmund and Rosenthal moment inequalities.
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Later in those notes alternative proofs of those results will be ob-
tained.

Lemma 2.2.1. Let Xn be a sequence of independent centered random
variables with finite moment of order 2p for some p ∈ N∗, then there
exists a constant C > 0 which only depends on p such that

• Marcinkiewicz-Zygmund inequality holds:

E(X1 + · · ·+Xn)2p ≤ CnpEX2p.

• Rosenthal inequality for p = 2:

E(X1 + · · ·+Xn)4 ≤ C((nEX2)2 + nEX4).

Remark 2.2.1. The second inequality also extends to all p ≥ 2.
There exists a constant C only depending on p such that

E|X1 + · · ·+Xn|p ≤ C((nEX2)
p
2 + nE|X|p).

Proof. Simple combinatoric arguments yield:

E(X1 + · · ·+Xn)2p =

n∑
i1,..,i2p=1

EXi1 · · ·Xi2p

=

n∑
i1,..,i2p=1

T (i1, . . . , i2p)

≤
n∑

i1,..,i2p=1

|T (i1, . . . , i2p)|

≤ (2p)!
∑

1≤i1≤···≤i2p≤n

|T (i1, . . . , i2p)|.

Now from centering conditions we see that terms T vanish except for
cases when i1 = i2, . . . , i2p−1 = i2p, since else an index i would be
isolated and the corresponding term vanishes by using independence.
Among A = {i2, i4, . . . , i2p} which take precisely np values one needs
to make summations according to Card(A).
If all those indices are equal T = EX2p

0 and there are n such terms,
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and if they are all different, it is (EX2
0 )p.

For p = 2 we thus get the second point in this Lemma.
For any p ≥ 1, just use Hölder inequality to derive the first result.

Exercise 6 (Weierstrass theorem). Weierstraß theorem states that
a continuous function over the interval is the uniform limit of some
sequence of polynomials.
Let g : [0, 1]→ R be a continuous function we recall that

w(t) = sup
|x−y|<t

|g(x)− g(y)|

satisfies limt↓0 w(t) = 0 since Heine theorem (recalled below) entails
that the function g is uniformly continuous.
Let X1,x, X2,x, . . . be iid b(x)−random variables (Bernoulli distributed
with the parameter x), we denote

Sn,x =
1

n
(X1,x + · · ·+Xn,x).

Set gn(x) = Eg(Sn,x):

1. Prove that gn is a polynomial with degree n with respect to the
variable p.

2. Prove the bound of Var g(Sn,x) = 1
nVarX1,x ≤ 1

4n .

3. Apply Markov inequality to derive to prove that

lim
n→∞

sup
0≤x≤1

|gn(x)− g(x)| = 0.

4. If g is a Hölder function, hence if there exist constants c, γ > 0
with |g(x) − g(y)| ≤ c|x − y|γ for each x, y ∈ [0, 1], precise
convergence rates in the Weierstraß approximation theorem.

5. Now use Lemma 2.2.1 for moment inequalities with even order
2m, then E(Sn,x − gn(x))2m ≤ cn−m for a constant which does
not depend on x ∈ [0, 1].

6. Use the previous hight order moment inequality to derive alter-
native convergence rates in Weierstraß theorem.
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Hints.

1.

gn(x) =

n∑
k=0

(
k

n

)
xk(1− x)n−kg

(
k

n

)
.

2. Prove that x(1− x) ≤ 1
4 if 0 ≤ x ≤ 1.

3. Set t > 0 arbitrary, an An,p = (|Sn,p − p| > t) then:

gn(x)− g(x) = E(g(Sn,x)− g(x))

= E(g(Sn,x)− g(x))1An,x

+ E(g(Sn,x)− g(p))1Acn,x .

From Markov inequality and the second point

P(An,x) ≤ 1

4nt2
,

thus a bound of the first term in the previous inequality is

‖g‖∞
2nt2

,

and from definitions the second term is bounded above by w(t).
Let n tend to infinity first to conclude.

4. Here w(t) ≤ ctγ and the previous inequality writes

‖gn − g‖∞ ≤
‖g‖∞
2nt2

+ ctγ .

Setting t2+γ = ‖g‖∞
2cn provides a rate n−

γ
2+γ .

5. From Lemma 2.2.1 E(Sn,x − gn(x))2m ≤ cEX2m
1,x n

−m.

6. Now

‖gn − g‖∞ ≤
c‖g‖∞
2nt2m

+ ctγ

set t2m+γ = C
nm then a rate is n−

mγ
2m+γ is now provided.
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Recall that continuity at point x0 ∈ [0, 1] and uniform continuity of
g : [0, 1]→ R write respectively

∀ε > 0,∃α > 0, ∀x ∈ [0, 1] : |x− x0| < η ⇒ |g(x)− g(x0)| < ε

∀ε > 0,∃α > 0,∀x, y ∈ [0, 1] : |x− y| < η ⇒ |g(x)− g(y)| < ε.

In the latter case η does thus not depend on x0.

Exercise 7. The function x 7→ g(x) = x2 is not uniformly continuous
over R.

Hint. Reasoning by absurd. Set x = n and y = n+ 1
2n , then

g(y)− g(x) = 1 +
1

4n2
does not tend to zero as n ↑ ∞.

This fundamental result (see eg. [Doukhan and Sifre, 2001]) writes:

Theorem 2.2.1 (Heine). Let g : K → R be a continuous function
defined on a compact metric space (K, d) then g is uniformly contin-
uous.

2.2.2 Exponential inequalities

Below we develop two exponential inequalities which yelds reason-
able bounds for the tail of partial sums of independent identically
distributed random variables. From the Central Limit Theorem we
first check the Gaussian case.

Exercise 8. Let N ∼ N (0, 1) be a standard normal random variable,
then use integrations by part and Markov inequality to derive:(

1

t
− 1

t3

)
e−

1
2 t

2

√
2π
≤ Φ(t) = P(N (0, 1) > t) ≤ 1

t

e−
1
2 t

2

√
2π

.

Analogously we obtain:

Lemma 2.2.2 (Hoeffding). Let R1, . . . , Rn be independent Rademacher
random variables (i.e. P(Ri = ±1) = 1

2).
For real numbers a1, . . . , an set

ξ =

n∑
i=1

aiRi, and we assume that

n∑
i=1

a2
i ≤ c.
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Then:

1. P(ξ ≥ x) ≤ e− x
2

2c , for all x ≥ 0,

2. P(|ξ| ≥ x) ≤ 2e−
x2

2c , for all x ≥ 0, and

3. Ee
ξ2

4c ≤ 2.

Proof. If s ∈ R first prove that

EesR1 ≤ es
2/2. (2.1)

The inequality (2.1) is rewritten

ch s ≡ 1

2

(
es + e−s

)
≤ es

2/2.

Indeed the two previous functions may be expanded as analytic func-
tions on the real line, R, and:

ch s =

∞∑
k=0

s2k

(2k)!
, es

2/2 =

∞∑
k=0

s2k

2k · k!
.

Inequality (2.1) thus follows from the relation (2k)! ≥ 2k · k! simply
restated as

(k + 1)(k + 2) · · · (k + k) ≥ (2 · 1)(2 · 1) · · · (2 · 1) = 2k.

Markov inequality now implies

P(ξ ≥ x) ≤ e−txEetξ, ∀t ≥ 0,

because eqn. (2.1) entails

Eetξ =

n∏
i=1

EetaiRi ≤ et
2c/2.

For t = x/c we derive the point 1).
Point 2) come from the observation that ξ is a symmetric random



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 30 — #34 i
i

i
i

i
i

30 [CHAP. 2: GAUSSIAN CONVERGENCE AND INEQUALITIES

variable and thus P(|ξ| ≥ x) ≤ 2P(ξ ≥ x).
Point 3) is derived after the forthcoming calculations:

Ee
ξ2

4c − 1 = 4cE
∫ ξ2

0

exp

(
t

4c

)
dt

= 4cE
∫ ∞

0

I1{t≤ξ2} exp

(
t

4c

)
dt

= 4c

∫ ∞
0

E I1{t≤ξ2}e
t
4c dt

= 4c

∫ ∞
0

P(ξ2 ≥ t)e t
4c dt

≤ 4c

∫ ∞
0

e−
t
4c dt = 1

Here Fubini-Tonnelli justifies the first inequalities while the last in-
equality is consequence of relation 2).

Remark 2.2.2. Let R ∈ [−1, 1] be a centered random variable then

EetR ≤ 1

2

(
et + e−t

)
,

thus Hoeffding instantaneously extends to sums
∑
i aiRi for Ri with

values in [−1, 1], centered independent random variables.

Lemma 2.2.3 (Bennett). Let Y1, . . . , Yn be independent centered
random variables with |Yi| ≤M for 1 ≤ i ≤ n denote

V =

n∑
i=1

EY 2
i .

If ξ =

n∑
i=1

Yi then for each x ≥ 0 the Bennett inequality holds:

P(|ξ| ≥ x) ≤ 2e−
x2

2V B(MxV ), with B(t) =
2

t2
((1 + t) log(1 + t)− t) .
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Bernstein inequality also holds:

P(|ξ| ≥ x) ≤ 2 exp

(
− x2

2
(
V + 1

3Mx
)) .

Proof. The proof is again based upon Markov inequality.
We shall make use of the independence of Y1, . . . , Yn.
We first need to bound above Laplace transform of Yi:

EetYi =

∞∑
k=0

tk

k!
EY ki

≤ 1 + EY 2
i

∞∑
k=2

tk

k!
EY ki

= 1 + EY 2
i g(t),

with g(t) =
etM − 1− tM

M2

≤ eEY
2
i g(t)

The first inequality follows from EYi = 0 and |EY ki | ≤Mk−2EY 2
i for

each k > 1.
Both from independence and from Markov inequality we then obtain:

P(ξ ≥ x) ≤ eV g(t)−xt.

Optimize this bound with respect to V yields V g′(t) = x hence

t =
1

M
log

(
1 +

xM

V

)
> 0,

and V g(t)− xt = x/M − t(V/M + x) yields Bennett inequality.
Bernstein inequality follows from the relation

(1 + t) log(1 + t)− t ≥ t2

2(1 + t/3)
.

rewritten (1 + t/3)B(t) ≥ 1. To prove it quote that the function

t 7→ f(t) = t2((1 + t/3)B(t)− 1)
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satisfies moreover

f ′(0) = 0, and f ′′(t) =
1

3
((1 + t) log(1 + t)− t) ≥ 0,

entails f(0) = 0 and f ′(t) ≥ 0,

Remark 2.2.3. Let g : R+ → R+ be an a.s. derivable non-decreasing
function, then Fubini-Tonnelli entails

Eg(|ξ|) =

∫
g(z)P|ξ|(dz) =

∫
g′(z)P(|ξ| > z) dz.

Set A = 3V/M then from Bernstein inequality in Lemma 2.2.3 we
get

Eg(|ξ|) ≤ g(3V/M) + 2

∫ ∞
3V/M

g′(z)e−3z/4M dz,

and

Eg(|ξ|) ≤ g(3V/M) + 8M/3

∫ ∞
9V/4M2

g′(4Mx/3)e−x dx,

with x = 3z/4M .
Hence if g(x) = |x|p for some p > 0,

Eg(|ξ|) ≤ (3V/M)p + 2p(4M/3)p
∫ ∞

9V/4M2

xp−1e−x dx.

This is a more general form of the Rosenthal inequality in Lemma
2.2.1.
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Chapter 3

Estimation concepts

Many statistical procedures are restatements of probabilistic inequal-
ities and results but in several occurrences such procedures need much
more as this will be initiated in this section for the independent case.
We begin the section with applications of the previous moment in-
equalities in Lemma 2.2.1 useful for empirical procedures and then
describe some empirical estimates, contrast estimates and non para-
metric estimates.
The developments are not given with mention to their specific inter-
est but rather with respect to the dependent development provided
in those notes under dependence.

3.1 Empirical estimates

The behavior of empirical means are deduced from the behavior of
partial sums, and below we shall restate such results in a statistical
setting.

Corollary 3.1.1. Let (Xn)n≥0 be and independent identically dis-
tributed sequence. If EX4

0 <∞ then,

X =
1

n
(X1 + · · ·+Xn)→n→∞ EX0, a.s.

33
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Figure 3.1: Convergence in a law of large numbers.

Remark 3.1.1. Quote the the ergodic Theorem 9.1.1 proves that the
simple assumption E|X0| < ∞ ensures indeed this SLLN. We set
this result as a simple consequence of the previous Marcinkiewicz-
Zygmund inequality in Lemma 2.2.1 for clarity of the exposition.
Convergence in this LLN is simulated in the Figure 3.1

Proof. Let ε > 0 be arbitrary then Markov inequality entails

P(|X| ≥ ε) ≤ CEX4
0

ε4n2
.

Thus ∑
n

P(|Xn| ≥ ε),

is a convergent series. Hence the a.s. convergence is a consequence
of Borel-Cantelli Lemma.

Now in case EX2
0 < ∞ Markov inequality yields L2−convergence of

X; indeed Var (X) = Var (X0)/n, thus convergence in probability
also holds.
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Figure 3.2: A cumulative distribution function.

This also allows to prove a first statistical fundamental result:

Theorem 3.1.1. Let (Yn) be a real valued and independent identi-
cally distributed sequence such that Y0 admits cumulative distribution
function F (y) = P(Y0 ≤ y) on R.
Define the empirical cumulative distribution

Fn(y) =
1

n

n∑
j=1

I1{Yj≤y}.

Then EFn = F (the estimator is said to be unbiased) and

sup
y∈R
|Fn(y)− F (y)| →n→∞ 0, a.s.

Remark 3.1.2. This is interesting to check graphically this conver-
gence as reported by Figure 3.2.

Proof. The previous SLLN (in Corollary 3.1.1) implies the conver-
gence.



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 36 — #40 i
i

i
i

i
i

36 [CHAP. 3: ESTIMATION CONCEPTS

Uniform convergence is implied by the variant of Dini theorem in
Exercise 9.

Exercise 9 (variant of Dini theorem). Assume that a sequence of cdf
satisfies limn→∞ Fn(x) = F (x) for each x ∈ R. If F is a continuous
cdf then the convergence is uniform.

Proof. Let ε > 0 be arbitrary from the properties of a cdf there
exists A > 0 such that if x > A then 1 − F (x) < ε/2 and x < −A
implies F (x) < ε/3.
From Heine Theorem 2.2.1, there exist x1 = −A < x2 < · · · < xp = A
such that if x ∈ [xi, xi+1] then F (xi+1) − F (x) < ε/3 and F (x) −
F (xi) < ε/3, if i = 1, . . . , p − 1. Set x0 = −∞ and xp+1 = ∞, thus
the oscillation of F is less that ε/3 over each interval Ji = ([xi, xi+1)
for each i = 0, . . . , p (limits are included for each finite extremity).
From the relation limn→∞ Fn(xi) = F (xi) for i = 1, . . . , p this is
possible to exhibit N such that if n > N then |Fn(xi)−F (xi)| < ε/3.
Each x ∈ R belongs to some interval Ji so that in case i 6= 0:

|Fn(x)−F (x)| ≤ |Fn(x)−Fn(xi)|+|Fn(xi)−F (xi)|+|F (xi)−F (x)| < ε

For i = 0 one should replace x0 = −∞ by x1 = −A in the above
inequality to conclude.

3.2 Contrasts

Assume that an independent identically distributed sample with val-
ues in a Banach space E and admits a marginal distribution in a class
(Pθ)θ∈Θ.

Definition 3.2.1. A function ρ : E × Θ → R is a contrast if the
expression θ 7→ D(θ0, θ) = Eθ0ρ(X, θ) is well defined and admits a
unique minimum θ0.

If X ∼ Pθ0 then ρ(X, θ) is an unbiased for the function g(θ0) =
D(θ0, θ) (for each θ ∈ Θ). In case we have only one realization X of
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this experiment the true parameter θ0 is estimated by a minimizer
θ̂(X) of the contrast θ 7→ ρ(X, θ).

θ̂(X) = Argminθ∈Θ ρ(X, θ) (3.1)

If Θ ⊂ Rd is open and such that the function θ 7→ ρ(X, θ) be differ-

entiable the estimate θ̂(X) of the parameter θ0 satisfies

∇ρ(X, θ̂(X)) = 0 (3.2)

(usually this is easier to check than (3.1)).

Example 3.2.1. This situation occurs eg. if:

• Maximum Likelihood Estimator (MLE) ρ(x, θ) = − log fθ(X)
with fθ the density of Pθ. If X = (X1, . . . , Xn) for an inde-
pendent identically distributed sample with marginal densities
pθ(x) then

ρ(x, θ) = −
n∑
k=1

log fθ(Xk).

The contrast assumption relies on identifiability:

fθ1 = fθ2 (a.s.) ⇒ θ1 = θ2.

• Least Squares (LSE) X = G(θ) + σ(θ)ξ and ρ(x, θ) = ‖X −
G(θ)‖2/σ2(θ). If ξ = (ξ1, . . . , ξn) are independent identically
distributed random variables and G(θ) = (g(θ, z1), . . . , g(θ, zn))
then this is a regression model with fixed design.

Remark 3.2.1 (Model selection). A huge part of nowadays statistics
extends on such contrast techniques in case the statistical model itself
is unknown but in a class of modelsM, precisely each of those models
M ∈M is indexed by a parameter set ΘM and one knows a contrast
(ρM (X, θ))θ∈ΘM (this is model selection).
However the price to pay for using the model M is a penalization
p(M) which increases with the complexity of the model, then one may
estimate the model M and the parameter θ ∈ ΘM as:

Argmin

{
p(M) + inf

θ∈ΘM
ρM (X, θ), M ∈M

}
.
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We choose in this presentation to avoid a precise presentation of
those techniques essentially introduced by Pascal Massart, see eg. in
[Massart, 2007].
Indeed very tough concentration inequalities are needed in this fasci-
nating setting. Also the dependent case is always in our mind: no
completely satisfactory extension exists yet.

3.3 Functional estimation

We now introduce another standard tool of statistics related to func-
tion estimation; a great presentation is that in the lecture notes
[Rosenblatt, 1991].
Let (Yj) be an independent identically distributed sequence with a
common marginal density f .
In order to fit f = F ′ the simple plug-in technique consists to derive
a an estimate of the cumulative repartition. This does not work since
derivation is not a continuous function in the space D[0, 1], moreover
Fn’s derivative is 0 (a.s.).
A reasonable estimate is the histogram; divide the space of values
into pieces with a small probability then we may count the propor-
tion of occurrences of Yj ’s in an interval to fit f by a step function.
Formally this means that

f̂(x) =
1

n

n∑
i=1

m∑
j=1

ej,m(x)ej,m(Xi), ej,m(x) =
I1{x∈Ij,m}√

P(X0 ∈ Ij,m)

for a partition I1,m
⋃
· · ·
⋃
Im,m = R.

Remark 3.3.1. A problem is that histograms are not smooth even if
they are aimed at estimating possibly smooth densities.
Thus, more generally (ej,m)1≤j≤m may be chosen as an orthonormal
system of L2(R), such as a wavelet basis; in [Doukhan, 1988] we
initially introduced a simple wavelet type estimates.
Any orthonormal system ej,m = ej for 1 ≤ j ≤ m may also be
considered. Note also that

f̂(x) =

m∑
j=1

ĉjej,m(x)
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where

ĉj =
1

n

n∑
i=1

ej,m(Xi)

empirical unbiased estimate of Eej,m(X0) (which means that the mean
of those estimates is the coefficient to be fitted).
Such estimators are empirical estimators of the orthogonal projection
fm of f of the vector space spanned by (ej,m)1≤j≤m; they are know as
projection density estimations of f . In order to make them consistent
one needs to choose a sequence of parameter m ≡ mn ↑ ∞. Such
general classes of estimates are thus reasonable and may be proved to
work.

Anyway we propose to develop an alternative smoothing technique
since in this case an asymptotic expansion of the bias may be exhib-
ited (quote that the wavelet type estimator corrects this real problem
of projection estimators) .
Let gh be an approximation of the Dirac measure as h ↓ 0, we derive
Fn?gh(x) to get the forthcoming kernel type estimates of the density:

Definition 3.3.1. Let (Yn) be a real valued and independent identi-
cally distributed sequence such that Y0 admits a density f on R. If
K : R→ R denotes a function such that:∫

R
(1 + |K(y)|)|K(y)|dy <∞,

∫
R
K(y)dy = 1,

a kernel estimator of f is defined through a sequence h = hn →n→∞ 0
by:

f̂(y) =
1

nh

n∑
j=1

K

(
Yj − y
h

)
.

Figure 3.3 reports competitive behaviors for an histogram and for a
kernel density estimate (n = 32, h = 2.477). A first result allows to
bound the bias of such estimators:

Lemma 3.3.1. Let g denote a bounded density for some probability
distribution with moments up to order p ∈ N∗, then there exists a
polynomial P with degree ≤ p such that K = Pg is a kernel satisfying∫

R
ysK(y)dy =

{
1, if j = 0, p,
0, if 1 ≤ j < p.
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Figure 3.3: Histogram versus a kernel density estimate.

Remark 3.3.2. Such functions are called p−th order kernels.
If p > 2 such kernel are not non-negative.
For p = 1 and g symmetric (g(−y) = g(y)) this is simple to see that
P = 1 satisfies the previous relations but maybe not

∫
y2g(y)dy = 1,

anyway this expression is positive.

Proof. It is simple to use the fact that the quadratic form associ-
ated to the square matrix A = (ai+j)0≤i,j≤n with ak =

∫
R y

kg(y)dy
with order (p + 1) is symmetric positive definite. Indeed if x =
(x0, . . . , xp)

′ ∈ Rp+1

x′Ax =

∫
R

( p∑
j=0

xjy
j
)2

g(y)dy ≥ 0.

If the previous expression vanishes the fact that g 6= 0 on a set with
positive measure implies that this set infinite and thus that the poly-
nomial

y 7→
p∑
j=0

xjy
j ,

vanishes on an infinite set.
Thus it must have null coefficients.
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The change of variable u = (v − y)/h together with a simple ap-
plication of Taylor formula, left as an exercise, proves Proposition
3.3.1:

Ef̂(y) =
1

h

∫
R
K

(
v − y
h

)
f(v)dv =

∫
R
K(u)f(y − hu) du.

Proposition 3.3.1. Assume that h→n→∞ 0.
Assume that the function f admits p continuous and bounded deriva-
tives, then if K is a p−th order kernel:

sup
y

∣∣∣Ef̂(y)− f(y)
∣∣∣ ≤ hp

p!
‖f (p)‖∞

∫
|u|p|K(u)|du.

Remark 3.3.3. Some precisions and improvements are needed here.

• Independence of (Yk) is not necessary here but only the fact that
Yk’s are identical for 1 ≤ k ≤ n.

• The uniformity over R may be omitted if K admits a compact
support, then∣∣∣Ef̂(y)− f(y)

∣∣∣ ≤ hp

p!
sup

u∈y+V
|f (p)(u)|

∫
|u|p|K(u)|du,

for a neighborhood V of 0 such that hV ⊂ Support(K).

• In fact using analytic functions ideas this is even possible to
describe infinite-order kernels as in [Politis, 2003].

Use the previous results together with Lindeberg theorem with k = n
and

Uj =
1√
nh

(
K

(
Yj − y
h

)
− EK

(
Yj − y
h

))
.

Theorem 3.3.1. Let now h = hn ↓ 0 as n → ∞. Assume that
nhn →n→∞ ∞:

nhVar f̂(y) →n→∞ f(y)

∫
R
K2(u)du,

√
nh(f̂(y)− Ef̂(y)) →Ln→∞ N

(
0, f(y)

∫
R
K2(u)du

)
.
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Hence if conditions of the previous Proposition hold and if we assume
also that h→n→∞ 0 then:

E(f̂(y)− f(y))2 ∼n→∞
1

nh
f(y)

∫
R
K2(u)du

+

(
hp

p!
f (p)(y)

∫
|u|pK(u)du

)2

.

Thus convergence in probability holds for such estimators and a CLT
is also available.
The usual minimax rates of such estimates is O(n

p
2p+1 ) is obtained

by minimizing this expression wrt h = hn or by equating the squared
bias and variance of the estimator.
Now if nhn →∞ using Rosenthal moment inequalities from Remark
2.2.1 implies

E|f̂(y)− Ef̂(y)|p ≤ C

(nh)
p
2

.

This with Markov inequality and Borel-Cantelli implies the result

Proposition 3.3.2. For f continuous around the point y, f̂(y) →
f(y) a.s. if ∑

n

1

(nhn)
p
2

<∞.

Remark 3.3.4. In fact better results can be proved by using the Bern-
stein exponential inequality but the present section was only introduc-
tory in order to provide some statistical applications to be developed
later under dependence.

Exercise 10. Prove the bound:

P(
√
nh|fn,h(x)− Efn,h(x)| ≥ t) ≤ 2e−t

2/(cf(x)), (3.3)

for all c ≤ 2
∫
RK

2(u)du for n large enough.
Then from integration derive that for each p ≥ 1:

‖f̂(x)− Ef̂(x)‖p = O
(

1√
nh

)
, if nh ≥ 1.
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Proofs. The results rely on simple integration tricks. We will use
Bernstein inequality in Lemma 2.2.3.
Write √

nh(fn,h(x)− Efn,h(x)) = Z1 + · · ·+ Zn

with
Zj = Uj − EUj , Uj = K ((Yj − y)/h) /

√
nh.

Then the relations

‖Zj‖∞ ≤ 2‖K‖∞/
√
nh,

and

EZ2
j ∼

√
h

n
f(y)

∫
K2(s) ds,

completing the proof of the first inequality.
The moment inequality relies on the fact that setting u = t/

√
f(x)

yields:

2

∫
tpe−t

2/(cf(x))dt = 2f(x)
p+1
2

∫
upe−u

2/cdu <∞.

This allows to conclude.

Remark 3.3.5 (Uniform convergence). A.s. uniform convergence
over a compact interval I may also be derived under uniform conti-
nuity.
Typically:
Divide I = [0, 1] into m i, thenntervals I1, . . . , Im with measure 1/m.

Then if the chosen kernel is Lispchitz the oscillation of f̂ over each
such interval is less that C/mh2 for some suitable constant.
Thus if mh2 > C ′ is large enough for a constant C ′ ≡ C ′(ε, C, f),

the oscillation of the function f̂ − f over each interval Ik will be less
that some fixed valued ε.
Choose now xk ∈ Ik for each 1 ≤ k ≤ m.
Then for each ε > 0:

P

(
sup
x∈[0,1]

|f̂(x)− f(x)| > 2ε

)
≤ m max

1≤k≤m
P(|f̂(xk)− f(xk)| > ε).
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Calibrating more precisely h and m yield a.s. uniform results for
the convergence of f̂ extending Proposition 3.3.2. Quote that this re-
inforcement of a.s. convergence is not related to independence, see
Exercise 28.

Example 3.3.1. Other functions of interest may be fitted through
kernel estimates.

• A very useful example is that of non-parametric regression.
The natural estimate of a mean is the empirical mean, but think
now of an independent sequence

Yk = r
(k
n

)
+ ξk, k = 1, . . . , n (3.4)

for some independent identically distributed sequence (ξk) and
a smooth regression function r.
A natural estimate would be a local mean

r̂(x) =

∑n
k=1 I1{h|x−k/n|<1}Yk∑n
k=1 I1{h|x−k/n|<1}

.

This is easily generalized as a kernel regression estimate in the
previous fixed regression design:

r̂(x) =
1

nh

n∑
k=1

YkK

(
x− k/n

h

)
.

• Random regression designs write Yk = r(Xk) + ξk, for k =
1, . . . , n, where (Xk) is an independent identically distributed
sequence.
Here the Nadaraya-Watson estimate writes:

r̂(x) =

{
ĝ(x)

f̂(x)
, if f̂(x) 6= 0

0, if f̂(x) = 0
(3.5)

with

ĝ(y) =
1

nh

n∑
j=1

XjK

(
Yj − y
h

)
.

The functions f and g estimated are respectively the derivative
and g = rf .
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• Derivative also can also be estimated. For example to estimate
f ′ one just may derivate f ’s estimate if K is a smooth function.
This makes a change in rates since eg.

f̂ ′(y) =
−1

nh2

n∑
j=1

K ′
(
Yj − y
h

)
.

One may indeed check that each term in the sum above admits a
variance equivalent to its second moment and the usual change
in variable u = y + th yields:

E
(
K ′
(
Yj − y
h

))2

= h

∫
K ′2(t)f(y + th) dt

∼h→0 hf(y)

∫
K ′2(t) dt.

We derive analogously

EK ′
(
Yj − y
h

)
= O(h)

thus from independence we obtain

Var f̂ ′(y) ∼h→0
1

nh3
f(y)

∫
K ′2(t) dt.

The variance of this estimator, O(1/(nh3)), admits a different

rate that for f̂(y), which makes convergence rates pretty dis-
tinct.

• The same phenomenon occurs for

r′ =
g′f − gf ′

f2

or for higher order derivatives of f or of r.

Such estimates may be analogously controlled. Anyway we shall not
develop more their theory in those notes.
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Exercise 11. Let [a, b] be a compact interval. Consider the previous
regression setting. Provide bounds for

sup
x∈[a,b]

E|ĝ(x)− g(x)|p.

Deduce convergence results for the Nadaraya-Watson estimation of a
regression function.

Hint. Proceed as in Remark 3.3.5.

3.4 Division trick

This section is a new visit to a result of interest for statistics, as it will
be stressed below. This ratio-trick was initiated in [Colomb, 1977]
and reformulated in [Doukhan and Lang, 2009], which we try to fol-
low and to simplify. This result does not assert any independence
which give it a place in this Chapter.
Setting D = EDn, and N = ENn where Nn, Dn are random quan-
tities, this is an interesting question to get evaluations for centered
moments of ratios in some special cases, when this may be expected
that

E
∣∣∣∣NnDn

− N

D

∣∣∣∣p ≤ O(E|Nn −N |p + E|Dn −D|p
)

(3.6)

Assume that this ratio appears as a weighted sum where Vi ≥ 0

Dn = an

n∑
i=1

Vi, Nn = an

n∑
i=1

UiVi.

Maybe more simply, set

wi =
Vi∑n
j=1 Vj

,

then one may rewrite

Rn =
Nn
Dn

=

n∑
i=1

wiUi, with

n∑
i=1

wi = 1, wi ≥ 0. (3.7)

In the the general case for the previous relation (3.6) to hold we prove:
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Theorem 3.4.1. Assume that for some numbers 1 ≤ 2m ≥ p ≤ q ≤ t
and that the sequence(vn) is such that vn ↓ 0 (as n ↑ ∞) there exists
an absolute constant M > 0 such that:

max
1≤i≤n

‖Vi‖t + vann
1
t ≤ M (3.8)

‖Dn −D‖p + ‖Nn −N‖q ≤ Mvn (3.9)

with: a =
(m− p)s+ pm

p(s−m)

Then the relation (3.6) holds.

A useful main Lemma follows:

Lemma 3.4.1. For each z ∈ R, and 0 ≤ a ≤ 1 the following inequal-
ity holds: ∣∣∣∣ 1

1− z
− 1

∣∣∣∣ ≤ |z|+ |z|1+a

|1− z|

Proof. From relations

1

1− z
= 1 +

z

1− z
= 1 + z +

z2

1− z

thus since 0 ≤ a ≤ 1:∣∣∣∣ 1

1− z
− 1

∣∣∣∣ ≤ max(|z|+ |z|2

|1− z|
, | |z|
|1− z|

)

≤ |z|+ |z|max(1, |z|)
|1− z|

≤ |z|+ | |z|
1+a

|1− z|

The last inequality follows from the elementary eqn. (12.16).

In the previous Lemma set z = (D − Dn)/D then quote with R =
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N/D that

|Rn −R| ≤
∣∣∣∣Rn − Nn

D

∣∣∣∣+
1

D
|Nn −N |

= |Nn|
∣∣∣∣ 1

Dn
− 1

D

∣∣∣∣+
1

D
|Nn −N |

=
|Nn|
D

∣∣∣∣DDn
− 1

∣∣∣∣+
1

D
|Nn −N |

=
|Nn|
D

∣∣∣∣ 1

1− z
− 1

∣∣∣∣+
1

D
|Nn −N |

=
|zNn|
D

+ |Rn||z|1+a +
1

D
|Nn −N |

Thus

‖Rn −R‖m ≤ A+B + C

A =
1

D2
‖(Dn −D)Nn‖m

B =
1

D2+a
‖Rn|Dn −D|1+a‖m

C =
1

D
‖Nn −N‖m

and for constants denoted c, c′, c′′ . . . > 0:

A ≤ N

D2
‖Dn −D‖m +

1

D2
‖(Dn −D)(Nn −N)‖m

≤ c(vn + ‖(Dn −D)(Nn −N)‖m)

≤ c(vn + ‖Nn −N‖p‖Dn −D‖q)
≤ c′(vn + v2

n) (since p, q ≥ 2m)

≤ c′′′vn

Now quote that since (3.7) writes Rn as a convex combination, we
obtain |Rn| ≤ max1≤i≤n |Ui|; thus an idea of Gilles Pisier entails:

E|Rn|s ≤ (E|Rn|t)
s
t ≤ (nM t)

s
t , for 1 ≤ s ≤ t.

Now use Hölder inequality writes

‖Y Z‖m ≤ ‖Y ‖um‖Z‖vm, if
1

u
+

1

v
= 1, (3.10)
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thus with Y = Rn, Z = |Dn −D|1+a, um = s vm = (1 + a)p:

B ≤ 1

D2+a
‖Rn · |Dn −D|1+a‖m ≤ ‖Rn‖s‖Dn −D|‖1+a

q ≤ c′′′n 1
t v1+a
n .

Quote that

m

s
+

m

(1 + a)p
= 1 =⇒ 1

(1 + a)p
=

1

m
− 1

s
=
s−m
ms

,

thus

1 + a =
ms

p(s−m)
=⇒ a =

(m− p)s+ pm

p(s−m)
,

we need vann
1
t = O(1), the result follows since m ≤ q, C ≤ vn/D.

Example 3.4.1. Relations (3.6) are needed in many cases, examples
are provided below:

1. Empirical estimate for censored data. Here one intends to
fit the mean of the incompletely observed iid sequence (Ut)t≥0.
Namely we suppose that this is according to the fact that an
independent sequence Bernoulli distributed sequence Vt ∼ b(p)
take the value 1. The observed variables are thus Xt = UtVt and
there number is Dn =

∑n
i=1 Vi. Now with an = n, vn = 1/

√
n

we calculate D = p and N = pEV0 so that R = EV0.

2. Regression with random design. For the previous Nadaraya-
Watson estimate (3.5) we may complete exercise 11. This is
indeed important to bound centered moments ‖r̂(x)− r(x)‖m as
well as uniform moments ‖ supx∈[a,b] |r̂(x)− r(x)|‖m. For clar-
ity we will only address the first question but the other one is
handled analogously as in the exercise 11.
Assume the functions to have regularities r = 2 to allows the
use of non-negative kernels. Then from the section above, the
biases of f̂(x) and ĝ(x) admit order h2.
The previous relation make the hard part of the job since with
Nn = ĝ(x) and Dn = f̂(x) and here an = 1 (1) and vn = 1√

nh
,

1An alternative choice is an = 1/nh and Nn = nhĝ(x) and Dn = nhf̂(x).
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it should imply:

‖r̂n(x)− r(x)‖m ≤
∥∥∥r̂n(x)− ĝ(x)

f̂(x)

∥∥∥
m

+
∥∥∥ ĝ(x)

f̂(x)
− g(x)

f(x)

∥∥∥
m

≤ C

(
1√
nh

+ h2

)
≤ 2Cn−

2
5 , with a choice h = n−

1
5

Exercise 12 (3.4.1-1, continued). Make precise the assumptions in
in Example 3.4.1 item 1.

Hint. First conditions (3.8) follow from independence, and vann
1
t =

n
1
t−

a
2 if bounded in case

t ≥ 2p(s−m)

(m− p)s+ pm
.

Exercise 13 (3.4.1-2, continued). Make precise the assumptions in
Example 3.4.1 item 2.

3.5 A semi-parametric test

In case the model is indexed by a class of functions but the only pa-
rameter of interest is a constant in Rd, the frame is semi-parametric.
An example of such semi-parametric estimation is provided here.
Let w : R → R be a weight function such that the following inte-
gral converges. We estimate the energy θ =

∫
f2(x)w(x) dx from a

plug-in estimator of the density f .

θ̂n =

∫
f2
n,h(x)w(x)dx (3.11)
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here h = hn ↓ 0 will also satisfy additional conditions described later.
Set θn =

∫
(Efn,h)

2
(x)w(x)dx, then

θ̂n − θ = θ̂n − θn + θn − θ

=

∫
(fn,h(x)− Efn,h(x))

2
w(x) dx

+

∫
(fn,h(x)− Efn,h(x)) (2Efn,h(x))w(x)) dx

+

∫ (
Ef2

n,h(x)− f2(x)
)
w(x)dx

=

∫
(fn,h(x)− Efn,h(x))

2
w(x) dx+O

(
1

nh
+ h2

)
The expressions O obtained are in L1 and thus in probability too.
We use the previous bounds in section 3.3.

Theorem 3.5.1. Under the previous assumptions, if nh2
n → 0, nh4

n →
∞:

√
n
(
θ̂n − θ

)
L→n→∞ N (0, V ) , V = 4Var (f(X1)w(X1)) .

Proof. Set v(x) = 2f(x)w(x), the remarks above yield to the study
of∫

(fn,h(x)− Efn,h(x)) v(x) dx =
1

n

n∑
i=1

(v(Xi)− Ev(Xi) + ∆i − E∆i)

the above sums is decomposed as sums of independent random vari-
ables with ∆i =

∫
K(s)(v(Xi + sh)− v(Xi))ds, since conditions over

h = hn entail that remainder terms may by neglected. To conclude
use the Central Limit Theorem for the iid random variables v(Xi).
The dominated convergence theorem implies E∆2

i → 0.
Thus:

1

n

∑
i

E(∆i − E∆i)
2 → 0.

Example 3.5.1 (some other parameters of interest).
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• Fisher information I(f) =
∫
f ′2/f may also be estimated under

comparable conditions.
For this we leave as an exercise that f ′n,h is also a convergent
estimate of f ′ and is asymptotically Gaussian (with normaliza-

tion
√
nh3).

Differentiability of the map (u, v) 7→ u2/v yields an affine ap-
proximation of this non linear functional of the couple

(
fn,h, f

′
n,h

)
.

• Using bivariate iid samples (Xn, Yn) yields estimation of the
regression function:

r(x) = E(Y0|X0 = x).

We already mentioned that r̂ = ĝ/f̂ with

ĝ(x) =
1

nh

n∑
i=1

YiK

(
Xi − x
h

)
,

accurately estimates r; this is Nadaraya-Watson estimate.

• If one is involved to test the linearity of r,

r′′ =
D(f, g, f ′, g′, f ′′, g′′)

f3
= 0,

or analogously D(f, g, f ′, g′, f ′′, g′′) = 0 where this expression
is a polynomial wrt the derivatives of f and g.
Since the function D is a polynomial, a Taylor expansion is
easy to derive.
Tests of linearity for r by considering a CLT for the conve-
niently renormalized expressions:∫

D2(f, g, f ′, g′, f ′′, g′′)w.

Exercise 14. Extend ideas in last item of Example 3.5.1 to propose
a linearity test for a regression function.
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Stationarity

Year

A
nn

ua
l F

lo
w

1880 1900 1920 1940 1960

600

800

1000

1200

1400

Figure 4.1: Annual flow of the river Nile at Ashwan 1871-1970.

Some bases for the theory of time series are given below. Time series
are sequences (Xn)n∈Z of random variables defined on a probability
space (always denoted by (Ω,A,P)) and with values in a measured
space (E, E).
Another extension mainly avoided in these notes is that of random
fields (Xn)n∈Zd .
This means that we will never hesitate to assume that sequences of
independent random variables can be defined on the same probability

53
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space.
A classical time series is used as a classically non-linear one, this
is Nile flooding data, see Figure 4.1 and some more financial data
are designed in Figures 4.2 (with daily and longer duration data) for
which stationarity seems more problematic.

0 50 100 150 200 250 300 350 400 450
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159

159.5

160

160.5

161
Cours AGF sur un jour

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
150

152

154

156

158

160

162

164

166

168

Cours de l’action AGF "en continu"

Figure 4.2: AGF stock values.

4.1 Stationarity

Definition 4.1.1 (strict stationarity). A random sequence (Xn)n∈Z
is strictly stationary if, for each k ≥ 0, the distribution of the vector
(Xl, . . . , Xl+k) does not depend on l ∈ Z.

Definition 4.1.2 (weak stationarity). A random sequence (Xn)n∈Z
is second order stationary if EX2

l <∞ and if only:
EXl = EX0 and Cov (Xl, Xk+l) = Cov (X0, Xk), for each l, k ∈ Z.
We shall denote by m the common mean of Xn and by r(k) =
Cov (X0, Xk) the covariance of such a process.

In other words (Xn)n∈Z is strictly stationary if for each k, l ∈ N and
each function continuous and bounded h : Rk+1 → R:

Eh(Xl, . . . , Xl+k) = Eh(X0, . . . , Xk).

Under second moment assumptions strict stationarity implies second
order stationarity (set k = 1 and h a second degree polynomial.
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Under the Gaussian assumption we will see that both notions coin-
cide. Anyway this is not true in general.

0 200 400 600 800 1000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Figure 4.3: SP500 data.

Example 4.1.1. We consider an independent identically distributed
sequence (ξn)n∈∈Z:

1. The iid sequence (ξn)n∈∈Z is always strictly stationary, anyway
if those variables do not admit finite second order moments, is
a strictly stationary but not a second order stationary sequence.

2. Assume now that Eξ0 = 0 the sequence Xn = ξnξn−1 is thus
centered and orthogonal but not independent sequence, indeed
if those variables admit 4-th order moments:

Cov (X2
n, X

2
n−1) = Eξ2

nξ
4
n−1ξ

2
n−2 − Eξ2

nξ
2
n−1Eξ2

n−1ξ
2
n−2

=
(
Eξ2

0

)2
Var ξ2

0 .

does not vanish if ξ2
0 is not a.s. constant.

3. A simple modification of this example yields a second order sta-
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tionary sequence which is not strictly stationary:

Xn = ξn

(√
1− 1

n
· ξn−1 +

1√
n
· ξn−2

)
.

If Eξ2
n = 1 then EXnXm = 0 or 1 if n 6= m or n = m. Non

stationarity relies on the calculation of EXnXn−1Xn−2 which
depends on n.

4. Write more generally Xn = ξnVn for a sequence such that Vn
is independent of ξn (as before where Vn = cnξn−1 + snξn−2 for
constants such that c2n + s2

n = 1).
This sequence is always centered and orthogonal if EV 2

n <∞.
Also using independence EX2

nXn−1 = EVnV 2
n−1ξ

2
n−1.

If now the sequence Vn is independent of the sequence ξn we
may take an analogue example Vn = cnζn−1 + snζn−2 for a
sequence ζn independent of ξn in order to finish the previous
calculation which we propose as an exercise.

5. Write now V 2
n = cnξ

2
n−1 + snξ

2
n−2. If a = Eξ4

0 <∞ then:

EX4
n = aEV 4

n = aE(cnξ
2
n−1 + snξ

2
n−2)2

= a(a(c2n + s2
n) + 2sncn)

= a(a+ 2sncn).

is not a constant in general. And again we have a second order
stationary sequence which is not strictly stationary.

6. Clearly real data as those for Standard and poor in Figure 4.3
are not stationary! Large pics are September 11. . .

Remark 4.1.1. Stationarity effects are rather mathematical notions.
For instance daily insurance real data in (Figure 4.2) nonstationarity
is not evident while it is clear for longer observations (Figure 4.6);
anyway a more careful analysis of the previous daily data proves that
even daly data are not stationary see Figure 4.4 for longer term and
4.5 for short time observations. which look a bit like the previous
one. A scaling effect is also to be taken into account but this does not
enter our present scope.
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Figure 4.4: AGF stock values.
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Figure 4.5: Daily AGF stock values.

4.2 Spectral representation

This is easy and important to quote the following property of covari-
ances. Fix n ∈ N∗. Let cl ∈ C for all |l| ≤ n, then setting c = (cl)|l|≤n
and Σn = (r|i−j|)|i|,|j|≤n we obtain:

ctΣnc =
∑
|i|,|j|≤n

cicjr|i−j| = E
∣∣∣ ∑
|i|≤n

ciXi

∣∣∣2 ≥ 0. (4.1)
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Theorem 4.2.1 (Herglotz). If a sequence (rn)n∈Z satisfies (4.1) then
there exists a non-decreasing function G (essentially unique) with
G(−π) = 0 and

rk =

∫ π

−π
eikλdG(λ).

Notation. Integral dG(λ) is considered in the meaning of Stieljes:
define the measure µ with

µ([−π, λ]) = G(λ), ∀λ ∈ [−π, π].

If h : [−π, π]→ R is continuous:∫ π

−π
h(λ)dG(λ) =

∫ π

−π
h(λ)µ(dλ).

Proof. Set

gn(λ) =
1

2πn

n−1∑
s=0

n−1∑
t=0

rt−se
−i(t−s)λ =

1

2π

n−1∑
j=−(n−1)

(
1− j

n

)
rje
−ijλ,

and Gn(λ) =
∫ λ
−π gn(u) du then relation (4.1) implies gn(u) ≥ 0 hence

Gn is continuous, non-decreasing and Gn(π) = r0.
From a compactness argument, some subsequence Gn′ of Gn is con-
vergent (1). Note that dGn(λ) = gn(λ)dλ then(

1− k

n

)
rk =

∫ π

−π
eikλdGn(λ).

An integration by parts yields

rk = (−1)kr0 − ik
∫ π

−π
eikλdGn(λ) dλ,

1Use a triangular scheme, by successive extraction of convergent subsequences.
Choose a dense sequence (λk)k in [−π, π].
Here φk+1(n) is a subsequence of φk(n) such that Gφk+1(n)(λk+1) converges as

n→∞. We then set Gφ(n) = Gφn (n).
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and implies the uniqueness of G.
Existence of G follow from the fact that it is the only possible limit
of such a convergent subsequence Gn′ .

Definition 4.2.1. The spectral measure of the second order station-
ary process (Xn)n∈Z (defined from G) is such that for each λ ∈
[−π, π]:

µX([−π, λ]) = G(λ).

If G is derivable, the spectral density of the process (Xn)n∈Z is the
derivative g = G′.

Example 4.2.1. • For an orthogonal sequence (i.e EXkXl = 0
for k 6= l, as in Examples 4.1.1 2., 3., 4. and 5. with EXn = 0,
EX2

n = 1: G(λ) = 1/2 + λ/2π, the measure associated is
Lebesgue on [−π, π].

• The random phase model admits complex values. Given con-
stants a1, b1, . . . , ak, bk ∈ R and independent uniform random
variables U1, . . . , Uk on [−π, π] this model is defined through the
relation

Xn =

k∑
j=1

aje
i(nbj+Uj),

one computes

Cov (Xs, Xt) = EXsXt = rs−t =

k∑
j=1

|aj |2ei(s−t)bj .

This model is associated with a stepwise constant function G.

• Let (ξn)n∈Z be a centered and independent identically distributed
sequence such that Eξ2

n = 1, let a ∈ R, the moving average
model MA(1) is defined as

Xn = ξn + aξn−1.

Here, r0 = 1 + a2, r1 = r−1 = a, and rk = 0 if k 6= −1, 0, 1.
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With the proof of Herglotz theorem we derive

g(λ) =
1

2π
(r0 + 2r1 cosλ)

=
1

2π

(
1 + a2 + 2a cosλ

)
=

1

2π

(
(1 + a cosλ)2 + a2 sin2 λ

)
≥ 0

Notation. For a function g : [−π, π]→ C denote g(I) = g(v)−g(u)
if I = (u, v) is an interval. If g : [−π, π] → R is nondecreasing, we
thus identify g and the associated nonnegative measure.

Definition 4.2.2 (Random measure). A random measure is defined
with a random function Z : Ω × [−π, π] → C, (ω, λ) 7→ Z(ω, λ),
nondecreasing for each ω ∈ Ω, with E|Z(λ)|2 < ∞ and such that
there exists a nondecreasing function H : [−π, π]→ R+ with,

• EZ(λ) = 0 for λ ∈ [−π, π],

• EZ(I)Z(J) = H(I ∩ J) for all the intervals I, J ⊂ [−π, π].

Let g : [−π, π] → C be measurable and
∫ π
−π |g(λ)|2dH(λ) < ∞, we

define a stochastic integral with respect to a deterministic function∫
g(λ)dZ(λ),

in two steps:

• If g is a step function, g(λ) = gs for λs−1 < λ ≤ λs (with
−π = λ0 ≤ λ ≤ λS = π) 0 < s ≤ S, set∫

g(λ)dZ(λ) =

S∑
s=1

gsZ([λs−1, λs]).

Notice that

E
∣∣∣∣∫ π

−π
g(λ)dZ(λ)

∣∣∣∣2 =
∑
s,t

gsgtEZ([λs−1, λs])Z([λt−1, λt])
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=
∑
s

|gs|2E|Z([λs−1, λs])|2

=
∑
s

|gs|2H([λs−1, λs])

=

∫ π

−π
g2(λ)dH(λ).

• Else approximate g by a sequence of step functions gn with∫ π

−π
|g(λ)− gn(λ)|2dH(λ)→n→∞ 0.

The sequence Yn =
∫
gn(λ)dZ(λ) is such that if n > m,

E|Yn − Ym|2 =

∫ π

−π
|gn(λ)− gm(λ)|2dH(λ)→n→∞ 0.

This sequence is thus Cauchy. Thus it converges in L2(Ω,A,P)
and its limit defines the considered integral.

Example 4.2.2. Simple examples are provided from processes with
independent increments.

• A natural example of such a random measure is the Brown-
ian measure. Namely, denote W ([a, b]) = W (b) −W (a) then
this random measure is defined with the Lebesgue measure as a
control spectral measure λ.

• Another random measure of interest is Poisson process on the
real line, see Definition 7.3.3.

Theorem 4.2.2 (Spectral representation of stationary sequences).
Let (Xn)n∈Z be a centered second order stationary random process
then there exists a random spectral measure Z such that

Xn =

∫
einλdZ(λ),

and this random measure is associated to the spectral measure of the
process.
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Relevant random spectral measures are reported as Examples 4.3.1.

Proof. The spectral function G of the process Xn is nondecreasing,
hence its discontinuities are at most denumerable set denoted DG (2).
If I = (a, b) is an interval with a, b /∈ DG, set

Zn(I) =
1

2π

∑
|j|≤n

Xj

∫ b

a

e−ijudu,

then the sequence (Zn(I))n≥1 is Cauchy in L2(Ω,A,P) since for n >
m,

E|Zn(I)−Zm(I)|2 =
1

4π2
E

∣∣∣∣∣∣
∑

m<|j|≤n

Xj

∫ b

a

e−ijudu

∣∣∣∣∣∣
2

=

∫ π

−π
|hn−hm|2dG.

Denote now by hn, the truncated Fourier series of the indicator func-
tion I1I :

hn(λ) =
1

2π

∑
|j|≤n

∫ b

a

e−ij(u−λ)du.

Write Z(I) for the limit in L2 of Zn(I), then EZ(I) = 0 because
EXn = 0 and with immediate notations

EZ(I)Z(J) = lim
n

EZn(I)Zn(J) = lim
n

∫ π

−π
hI,nhJ,ndG = G(I ∩ J)

in case the extremities of I, J are not in DG. Because the the set of
continuity points is dense, taking limits allows to consider extremities

2Recall that monotonic functions admit limits on the left and on the right at
each point thus non-empty open intervals (f(x−), f(x+)) are disjointed in R.
Choose a rational number in each of them to derive this result.
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of this interval only in DG. To conclude, quote that

EXnZn(I) =
1

2π

∑
|j|≤n

rn−j

∫ b

a

eijudu

=

∫ π

−π

dv

2π

∫ b

a

∑
|j|≤n

eij(u−v)dG(u)

=

∫ b

a

einvdG(v).

Hence for step functions f :

EXn

∫
f(λ)dZ(λ) =

∫ π

−π
einλf(λ)dG(λ).

Figure 4.6: March 4, 2015’s AGF data and local autocovariances.

This extends to continuous functions f by considering limits. If
f(λ) = einλ then

E
∣∣∣∣Xn −

∫
einλdZ(λ)

∣∣∣∣2 = r0 − 2r0 + r0 = 0.
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Example 4.2.3. Examples of spectral densities may be found in Ex-
ample 4.2.1. Besides measures with independent increment (Exam-
ple 4.2.2), some relevant examples are reported as Examples 4.3.1.
In Figure 4.7 we plot empirical autocovariances. For non stationary
processes a local empirical covariance may be plotted too as in Figure
4.6.

4.3 Range and spectral density

Here we denote (Xn)n∈Z a centered second order stationary process.
Assume that

∞∑
k=0

r2
k <∞,

then the spectral density

g(λ) =
1

2π

∞∑
k=−∞

rke
−ikλ,

is defined in L2([−π, π]) and

rk =

∫ π

−π
eikλg(λ)dλ.

Here the spectral measure G of the process is absolutely continuous
with derivative g ∈ L2.

Definition 4.3.1. If a centered second order stationary process (Xn)
satisfies

∞∑
k=0

r2
k <∞ and

∞∑
k=0

|rk| =∞.

it is long range dependent (LRD).
If

∞∑
k=0

|rk| <∞,
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it is short range dependent (SRD). In this case the spectral density g
is uniformly continuous and

‖g‖∞ ≤
1

2π

∞∑
k=0

|rk|.

Example 4.3.1. Some examples follow:

• If rk ∼ k−α for 1
2 < α < 1 the sequence is LRD and there exists

β > 0 with g(λ) ∼ cλ−β as λ→ 0.

• If the spectral density

g(λ) =
σ2

2π
,

then the sequence

ξn =

∫ π

−π
einλZ(dλ),

is a second order white noise with variance σ2:

Eξnξm = 0 or σ2, according that n 6= m or m = n.

This is the case if:

Z([0, λ]) =
σ2

2π
W (λ),

with W the Brownian motion. Here Gaussianness of the white
noise also implies its independence and it is an independent
identically distributed sequence (strict white noise).

If λ 7→ Z([0, λ]) admits independent increments, the sequence
ξn is again a strict white noise.
A weak white noise is associated with random spectral measures
with orthogonal increments.

• If

Xn =

∞∑
k=−∞

ckξn−k,

∞∑
k=−∞

c2k <∞,
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then the spectral density gX of X writes

gX(λ) =

∣∣∣∣∣
∞∑

k=−∞

cke
−ikλ

∣∣∣∣∣
2

gξ(λ).

To prove it compute X’s covariance.
Moreover

ZX(dλ) =

( ∞∑
k=−∞

cke
ikλ

)
Zξ(dλ),

where Zξ denotes the random spectral measure associated to ξ.
E.g. autoregressive models, AR(p), may also be defined for non
independent inputs,

Xn =

p∑
k=1

akXn−k + ξn.

In case the sequence (ξn) is a white noise with variance 1, they
are such that

gX(λ) =
1

2π

∣∣∣∣∣1−
p∑
k=1

ake
−ikλ

∣∣∣∣∣
−2

Now the spectral density gX is continuous if the roots of the
polynomial

P (z) = zp −
p∑
k=1

akz
p−k

are outside the complex unit disk. This holds e.g. if
∑p
k=1 |ak| <

1.

The previous heredity formulas extend to L2−stationary sequences
ξn:

Proposition 4.3.1. Let (Xn) be a centered second order stationary
sequence and cn be a real sequence :

Yn =

∞∑
k=−∞

ckXn−k, h(λ) =

∞∑
k=−∞

cke
ikλ, with

∞∑
k=−∞

c2k <∞, .
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Then the sequence Yn is also centered second order stationary se-
quence and

gY (λ) = |h(λ)|2 gX(λ), ZY (dλ) = h(λ)ZX(dλ).

Proof. The first claim follows from the bilinearity properties of co-
variance :

Cov (Y0, Yk) =

∞∑
m=−∞

 ∞∑
j=−∞

cjcj−m

 rk+m.

The second claim is just algebra.

4.3.1 Limit variance

This definition of the range of a process is justified as follows in case
Xn is centered, indeed :

E |X1 + · · ·+Xn|2 =

n∑
s=1

n∑
t=1

EXsXt =

n∑
s=1

n∑
t=1

rt−s

Thus:

E |X1 + · · ·+Xn|2 =

n∑
|k|<n

(n− |k|)rk. (4.2)

According to the previous section one derives:

Proposition 4.3.2. If Xn is SRDthen

E |X1 + · · ·+Xn|2 ∼ ng(0).

Proof. Quote that the result is a variant of Cesaro lemma.
This will be enough to prove that:∑

|k|<n

|k|rk = o(n).
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For each ε > 0 there exists K such that |rk| < ε for |k| > K.
Split the expression∑

|k|<n

|k||rk| ≤
∑
|k|<K

|k||rk|+ εn.

Recall that in case EX0 = 0

g(0) =

∞∑
k=−∞

EX0Xk.

The previous quantity is thus of a specific importance.
According to the independent case a first possibility is to fit each term
of the sum above approximated for a convenient sequence m = mn

by

σ2
m =

m∑
k=−m

EX0Xk.

Then an empirical estimate of this expression writes

σ̂2
n =

m∑
k=−m

1

n

n∑
i=1

EXiXi+k. (4.3)

or alternatively if one only has a sample X1, . . . , Xn

σ̂2
n =

mn∑
k=−mn

1

n

n∧(n+k)∑
i=1∨k

EXiXi+k, (4.4)

quote that all the terms in the previous sum do not have the same
number of elements.
Namely the k−element of the sum is over n− |k| terms which makes
this estimate biased.
A variant of the previous estimate which is unbiased writes now as

σ̂2
n =

mn∑
k=−mn

1

n− |k|

n∧(n+k)∑
i=1∨k

EXiXi+k. (4.5)
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The previous estimate may also be seen as a non parametric estimate
of the spectral density a the origin which also justifies the introduction
of a smoothing parameter even though one only aims at estimating
a real parameter.

4.3.2 Cramer Wold representation

In fact the second order stationary processes write as infinite or-
der moving average of a weak white noise under a weak assump-
tion, the proof of following results may be found in the volume
[Azencott and Dacunha-Castelle, 1987]:

Theorem 4.3.1 (Crámer Wald). Let (Xn)n∈Z be a second ordered
stationary sequence with a derivable spectral measure G such that
g = G′ satisfies ∫

log g(x) dx > −∞.

Then there exists a unique orthogonal sequence ξn second order sta-
tionary (weak white noise) with Eξ2

0 = 1 and a sequence (cn)n∈N with∑∞
n=0 c

2
n <∞, c0 ≥ 0 such that

Xn = EX0 +

∞∑
k=0

ckξn−k. (4.6)

Theorem 4.3.2 (Wold decomposition). Let (Zn)n∈Z be a second
ordered stationary sequence then there exists Xt, Vt with Zt = Vt+Xt

such that (Xt) writes as in eqn. (4.6) and Vt is measurable wrt to
σ(εu, u ≤ s) for each s ≤ t.

The first part of the representation of Zt is as before while the second
part Vt is something new.
That part is called the deterministic part of Zt because Vt is perfectly
predictable based on past observations Xs for s ≤ t.
A parameter of a main interest for stationary time series is thus the
spectral density.
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4.4 Spectral estimation

This section is a very short survey of the question addressed in sev-
eral nice volumes: see [Azencott and Dacunha-Castelle, 1987], and
[Giraitis et al., 2012] for a complete study of the LRD case, see also
[Brockwell and Davis, 1991] for parametric setting and for non para-
metric setting in [Rosenblatt, 1991].
Our aim is more to make explicit how probabilistic limit theory can
be used for the development of statistical methods for time series
analysis that to provide a course of time series analysis since really
nice textbooks are already available. Anyway the present viewpoint
allows to present many tools usually not considered directly by statis-
ticians.

0 5 10 15 20 25

-0.4
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0.0

0.2

0.4

0.6
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Lag

A
C
F

Series  Nile

Figure 4.7: Autocorrelation for Nile at Ashwan 1871-1970.

Definition 4.4.1. For a centered and second order stationary (Xt)t∈Z
define the periodogram:

In(λ) =
1

2πn

∣∣∣∣∣
n∑
k=1

Xke
−ikλ

∣∣∣∣∣
2

=
1

2π

∑
|`|<n

r̂n(`)e−ikλ.

for each n ≥ 1 and λ ∈ R, where

r̂n(`) =
1

n

n∧(n+`)∑
k=1∨(1+`)

XkXk+`.
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Example 4.4.1. An example of very classical real data the is annual
flow of the river Nile at Ashwan 1871-1970 in Figures 4.1 and 4.7
shows the fitted covariances. A rapid decay of covariances is observed
from the covariogram.

Remark 4.4.1. Quote the last sum is over (n− |`|)−terms thus the
estimator r̂n(`) of the covariance r(`) = EX0X` is biased for ` 6= 0,
which means that we do not necessarily Er̂n(`) = r(`).
Remark thus that in case

∑
` ||r(`)| <∞ then the spectral density of

the process f is continuous and that EIn(λ) = f(λ).
Unfortunately the variance of this estimate of f does not converge to
0.
Thus In(λ) is not a reasonable estimator of f(λ.

Anyway the integrated statistics

Jn(g) =

∫ 2π

0

g(λ)In(λ) dλ,

admit smoother behaviors and usually converge to

J(g) =

∫ 2π

0

g(λ)f(λ) dλ.

They even may be proved to satisfy a central limit theorem.

The previous feature may be be used in two directions rapidly de-
scribed in the two following subsections.

4.4.1 Functional spectral estimation

First, we use a kernel method to consider g ∼ δu thus for a convenient
window width h = hn and a kernel K we may consider the estimate

f̂n(λ) = In ? Kh(λ) =
1

h

∫ 2π

0

In(µ)K

(
λ− µ
h

)
dµ.

It allows reasonable spectral density estimators.
If now one replaces the smoothing function 1

hK( ·h ) by the Dirichlet
kernel

Dm(u) =

m∑
k=−m

eiku =
sin
(
(2m+ 1)u2

)
sin
(
u
2

) ,
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with order m = mn = 1/hn the previous estimates writes

f̃n(λ) = In ? Dmn(λ) =

∫ 2π

0

In(µ)Dmn (λ− µ) dµ.

almost fits the above mentioned estimate (4.3) of f(0). In fact it

writes in such a way that f̃n(0) writes as in eqn. (4.4), contrary to
eqn. (4.5) this gives a biased estimate:

f̃n(0) =

mn∑
k=−mn

1

n

n∧(n+k)∑
i=1∨k

EXiXi+k.

Remark 4.4.2. Asymptotic properties of such estimates may be de-
rived under specific assumptions on the time series.
One may prove them by approximating the spectral density by its
Fourier expansion. Then standard empirical arguments allow to de-
rive asymptotic properties of such estimates as for the simple empir-
ical means considered in section 3.1 for independent sequences.
Further improvements of inequalities for dependent samples are thus
needed to complete the program.
Quote that the case of the kernel estimate is in fact analogue since reg-
ularity conditions of a spectral density are tightly related to the qual-
ity of their approximation by trigonometric polynomials; this point is
proved by using Jackson polynomial approach see in [Lorentz, 1966]
or in [Doukhan and Sifre, 2001].

4.4.2 Whittle spectral estimation

Assume that the time series is in a parametric set of models. Maybe
ARMA or others: see hereafter. Then the distribution of the whole
process X = (Xt)t∈Z may depend on a parameter θ the spectral den-
sity is defined in a family (fθ)θ∈Θ (for some Θ ⊂ Rd) and a suitable

estimator, named Whittle estimator, is the value θ̂ minimizing the
contrast, as defined in Section 3.2:

Un(θ) =

∫ 2π

0

(
log fθ(λ) +

In(λ)

fθ(λ)

)
dλ

=

∫ 2π

0

log fθ(λ) dλ+ Jn

(
1

fθ

)
.
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Here again central limit theorems extending those for independent
sequences allow to expand pointwise the previous expression. An
additional argument such as for example a uniform results (see e.g.
§ 3.1) is then necessary to make the Taylor expansion valid after
integration.

4.5 Parametric estimation

Remark also that parameters based on the spectral density maybe be
estimated also from other contrast estimators.
Usually there is no close expression for the density pθ(x1, . . . , xn) of

a sample (X1, . . . , Xn) but MLE θ̂ estimates are defined through the
relation:

θ̂ ∈ Argmaxθ∈Θpθ(X1, . . . , Xn).

An interesting special case is that of an homogeneous Markov chain
with transitions

Pθ(x,A) = Pθ(X1 ∈ A|X0 = x),

admitting a density πθ(x, y) and an invariant measure with density
νθ(x), then:

pθ(x1, . . . , xn) = νθ(x1)πθ(x1, x2) · · ·πθ(xn−1, xn).

For instance the non linear auto regressive processes

Xt = rθ(Xt−1) + ξt,

are this way in case ξ0 admits a density gθ, and then

πθ(x, y) = gθ(y − rθ(x)).

The MLE of Markov chains written

Xt = ξtσθ(Xt−1),

with iid centered innovations (ξt) writes with

πθ(x, y) =
1

σθ(x)
· g
(

x

σθ(x)

)
,
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in case ξt admits a density g. Instead of considering pθ one better
considers the minimization of

qθ(x1, . . . , xn) = πθ(x1, x2) · · ·πθ(xn−1, xn).

Now usually such maximization problems are numerically unstable
the QMLE is the minimization of the previous expression but with
simply ξ0 ∼ N (0, 1) a normal distribution.
Now the MLE maximizes θ 7→ Lθ(X1, . . . , Xn). Anyway even in this
simplest case of Gaussian inputs fθ does not usually admit a close
form.
This expression, simpler to be minimized writes:

Lθ(X1, . . . , Xn) =

n∑
t=2

X2
t

σ2
θ(Xt−1)

+ log σ2
θ(X2

t−1).

This estimator is considered in the most general situations in the
monograph [Straumann, 2005].

Remark 4.5.1. A last related remark is that for Gaussian processes
with a fixed variance VarXt ≡ σ2 the least squares coincide with MLE
because of the quadratic expression of a Gaussian density.

4.6 Subsampling

Besides model based bootstrap techniques in Section 11.3 this sec-
tion is aimed at explicating the specific features of resampling under
dependence.
Namely assume that a limit theorem holds for a sequence

tm(X1, . . . , Xm)→m→∞ T.

This is not unusual that the distribution of T is not accessible. Any-
way as before a test of goodness-of-fit is based on quantiles of the
limiting distribution T . In case one wants more generally fit the
distribution of the convergent statistics

Tm = tm(X1, . . . , Xm), for some m = mn � n.
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A way to proceed is to consider families of m−samples (Xi1 , . . . , Xim)
with (i1, . . . , im) ∈ Em,n and i1 ≤ · · · ≤ im, then the expression of
Tm’s distribution is provided from the value of K(g) = Eg(Tm) which
is obtained from the empirical method as

K̂(g) =
1

Card Em,n

∑
(i1,...,im)∈Em,n

g (tm(Xi1 , . . . , Xim)) .

In order that the distribution of tm(Xi1 , . . . , Xim) is the same as
for Tm a natural assumption is to assume that the distribution of
(Xi1 , . . . , Xim), is the same as for (X1, . . . , Xm).
For iid samples the set Em,n may admits the huge cardinality n!

(n−m)! ∼
nm; e.g. select Em,n as the set all the ordered m−tuples among
{1, . . . , n}.
Unfortunately not all m−tuples admit the same distribution when
independence is omitted.
Two choices of sets may be considered to support this distributional
equality,

Em,n =
{

(i+ 1, . . . , i+m); 0 ≤ i ≤ n−m
}
,

satisfies CardEm,n = n−m+ 1 and gives overlapping samples,

Em,n =
{(

(i− 1)m+ 1, . . . , im
)
; 1 ≤ i ≤ n/m

}
,

satisfies CardEm,n = n/m + 1 for n a multiple of m and gives non-
overlapping samples. Again asymptotic consistency of such expres-
sions still relies of moment and exponential inequalities.

Some words of asymptotic.
Set respectively for each of those following schemes:

gi,m ≡ g(tm(X(m(i−1)+1, . . . , X(i+1)m)) (4.7)

gi,m ≡ g(tm(Xi+1, . . . , Xi+m)) (4.8)

and the set Em,n is indexed by an integer i = 1, . . . N ∼ n − m or
n/m.
In order to prove the convergence of such expressions, a simple way



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 76 — #80 i
i

i
i

i
i

76 [CHAP. 4: STATIONARITY

is to calculate the variance of such expressions and from Cesaro trick
to derive that

K̂(g)→n→∞ Eg(T ) (in probability).

Eqn. (4.2) entails

Var K̂(g) ≤ 1

Card Em,n

∑
i∈Em,n

|Cov (g0,m, gi,m)|.

Usually g(x) = I1(x≤u) so that using Exercise 24 the limit in proba-
bility

sup
u
|Kn,m(u)− P(T ≤ u)| →n→∞ 0, Kn,m(u) = K̂(g),

holds uniformly with respect to u by using Exercise 9 as in the proof
of Glivenko-Cantelli Theorem 3.1.1.

Remark 4.6.1. Such uniform convergences are taken into account to
consider non convergent cases, in [Doukhan et al., 2011] we consider
extreme value theory.

Remark 4.6.2. In order to prove almost sure convergence of such
expressions, higher order moments need to be accurately bounded,
[Doukhan et al., 2011].
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Chapter 5

Gaussian chaos

Gaussian distributions play a special role in the field of probability
since they appear as limit distributions from the CLT. See e.g. The-
orem 2.1.1 and its dependent counterpart, Lemma 11.5.1.
Gaussian random variables are pretty natural and functions of such
Gaussian random variables also mechanically appear. A precise study
of the Gaussian distributions is deferred to Appendix §A.2.
Gaussian processes admit also an essential property which led them
to be extensively used in statistics for which descriptive solutions are
a real tool:

L2−properties of Gaussian processes are equivalent to their distribu-
tional properties.

Gaussian linear spaces spanned by multivariate random variables of
Gaussian random processes are thus also natural tools from this ge-
ometric viewpoint. . .
Since those lectures are devoted to non-linear modeling, the last step
in this Gaussian setting is the use of non-linear functions of Gaussian
processes. We consider here L2 functionals in order to work inside a
Hilbert setting.
The Gaussian chaos is simply the set of such L2−integrable function-
als of such Gaussian random variables. In case of a 1-dimensional
Gaussian random variable the associated chaos admits a simple or-
thonormal basis: Hermite polynomials. We develop here some as-
pects of the Gaussian chaos including some recent developments of

79
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the 4th order moment method which exhibit a rigidity property of
the chaos useful to derive simply CLTs in this setting. A nice feature
is that for such models all calculations seem to be possible.
The organization of the chapter follows. discretely indexed Gaussian
random processes (time series) and the central Brownian motion as
well as the attractive fractional Brownian motion are first considered.
Now we will get enough tools to get to the convergence of functionals
of Gaussian processes.
Limits will involve the Brownian motion as well as the fractional
Brownian motion and expansion in the convenient chaoses will make
it possible to express limits. Thus expressing a functional in the
Brownian chaos is a natural way to express its limit. We thus defi-
nitely need to work in Gaussian chaoses (including the 1-d Hermite
polynomials).
The method of moments is considered rapidly and in order to calcu-
late all the moments of a random variable belonging to some chaos
the Mehler and the diagram formula will be explained.
Final sections will introduce the so called 4-order moment method
which proves that in order that a sequence Zn of random variables
belonging to some chaos converges to the Normal standard distribu-
tion, this is enough to prove that only limn EZn = 0, limn EZ2

n = 1
and limn EZ4

n = 3.

5.1 Gaussian processes

Definition 5.1.1. A Gaussian process (or a Gaussian family) Y =
(Yt)t∈T is a a collection of random variables defined on a same prob-
ability space such that each finite subset defines a Gaussian random
vector.

Remark 5.1.1. Alternatively, if (ut)t∈T is a family of real numbers
such that ut ≡ 0 excepted for finitely many t then

∑
t∈T utYt is a

Gaussian random variable.
Or for each finite subset of T ⊂ T, and if (ut)t∈T is a finite family
of real number then

∑
t∈T utYt is a Gaussian random vector.

We begin with the existence of finite dimensional Gaussian random
variables which will be an important support for proving the existence
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of Gaussian processes defined later.
If Σ is a d× d symmetric positive definite, we just proved before the
existence of a symmetric positive definite matrix R with R2 = Σ.
For Z = (Z1, . . . , Zd)

t independent identically distributed standard
normal random variables and for each m ∈ Rd:

Y = m+RZ ∼ Nd(m,Σ).

As an application:

Proposition 5.1.1. If a sequence of real numbers (rk)k satisfies
r−n = rn for all n ≥ 0 and

n∑
i,j=1

uiujri−j ≥ 0,

for all u1, . . . , un ∈ R, then there exists a stationary Gaussian process
with covariance rk = EX0Xk.

Proof. For each d ∈ N∗, the law Nd(0,Σd) is well defined with Σd =
(ri−j)1≤i,j≤d.

The Kolmogorov consistency theorem thus asserts the existence of
such a process. Recall that this theorem asserts that on may define
a distribution on a product set ET is the projections on finite subset
F ⊂ T exist (we denote them PF and are coherent in the sense
that for F ′ ⊂ F the projections satisfy PF ◦ π−1

F,F ′ = PF ′ where

πF,F ′ : EF → EF
′

denotes the projection.

The previous result holds in fact under general conditions.

Theorem 5.1.1. Let Γ : T2 → R be such that the matrix

(Γ(ti, tj))1≤i,j≤n

satisfies (4.1) for all possible choices ti ∈ T, then there exists a Gaus-
sian process with covariance Γ.

An essential example for the study of dependence is detailed below.
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5.1.1 Fractional Brownian motion

Definition 5.1.2. The fractional Brownian motion (fBm see Taqqu
paper in [Doukhan et al., 2002b]) with exponent H ∈ (0, 1] is a cen-
tered Gaussian process (Zt)t∈R with covariance Γ(s, t) = Cov (Zs, Zt)
defined as

Γ(s, t) =
1

2
(|s|2H + |t|2H − |s− t|2H). (5.1)

Proposition 5.1.2. The function Γ in (5.1) for s, t ∈ R is indeed
the covariance of a centered Gaussian process (BH(t))t∈[0,1].

Proof. From Theorem 5.1.1 we need to prove that for all 0 ≤ t1 <
· · · < tn ≤ 1, and u1, . . . , un ∈ C

A =

n∑
i,j=1

Γ(ti, tj)uiuj ≥ 0.

• Step 1. Set t0 = 0, u0 = −
∑n
i=1 ui then

n∑
i=1

n∑
j=1

|ti|2Huiuj = −
n∑
i=0

|ti|2Huiu0

= −
n∑
i=0

|ti − t0|2Huiu0

Analogously

n∑
i=1

n∑
j=1

|tj |2Huiuj = −
n∑
j=0

|tj − t0|2Hu0uj

hence

A = −
n∑
i=0

n∑
j=0

|ti − tj |2Huiuj .

• Step 2. For ε > 0 set

Bε =

n∑
i,j=0

e−ε|ti−tj |
2H

uiuj .
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Then Taylor formula simply implies

Bε ∼ εA, ε ↓ 0.

• Step 3. For each ε > 0 and H ∈ (0, 1], there exists a real
random variable ξ with

φξ(t) = Eeitξ = e−ε|t|
2H

(the law is 2H−stable); this may be derived from Fourier in-
version.
Then

Bε = E

∣∣∣∣∣∣
n∑
j=0

uje
itjξ

∣∣∣∣∣∣
2

≥ 0.

Remark 5.1.2. This process may be defined on R.
The case H = 1

2 yields the Brownian motion W = B 1
2

defined on

R+.
In this case:

Γ(s, t) = s ∧ t.

Lemma 5.1.1. Let 0 ≤ h < H then with probability 1, there exist
constants c, C > 0 with

|BH(s)−BH(t)| ≤ C|t− s|h if 0 ≤ s, t ≤ 1, |s− t| < c.

Proof. This is a consequence of Kolmogorov-Chentsov 10.1.1 and of
the calculation

2E(BH(s)−BH(t))2

= |s|2H + |t|2H −
(
|s|2H + |t|2H − |s− t|2H

)
= |s− t|2H .

Remark 5.1.3. Regularity properties of the fBm are clear from Fig-
ures 5.1, 5.3 representing its trajectories respectively for H = 0.3 and
0.9. while their derivatives are provided in 5.2 5.4: clearly bigger is
H and larger is the regularity. From the previous result in the latter
case derivatives almost exist while a ”real” white noise effect appears
for H = 0.3. Compare with real Gaussian noise in Figure A.2.
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Figure 5.1: fBm H = 0.3.
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Figure 5.2: Fractional noise H = 0.3.

.

Definition 5.1.3. The process (Z(t))t∈R is H−self-similar if for all
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Figure 5.3: fBm H = 0.9.
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Figure 5.4: Fractional noise H = 0.9.

a > 0

(Z(at))t∈R = (aHZ(t))t∈R, in distribution.

We leave the forthcoming point as exercises to a reader:
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Proposition 5.1.3. The condition of H−self-similarity is equivalent
to the stationarity of the process

(Y (t))t>0, Y (t) = e−tHZ(et)

when it is indexed by R+. For this only check that finite dimensional
repartitions of both processes coincide.

Remark 5.1.4. As (Y (t))t>0 is easily proved to be a Gaussian pro-
cess, strict stationarity and L2− (or weak–stationarity) are equiva-
lent: this makes more clear the previous result.

Remark 5.1.5. Also quote that:

1. If Z is self-similar then Z(0) = 0.

2. If Z is self-similar and its increments (Z(t + s) − Z(t))t∈R
are stationary for each s then: EZ(t) = 0 if H 6= 1 because
EZ(2t) = 2HEZ(t) and

E(Z(2t)− Z(t)) = E(Z(t)− Z(0)) = EZ(t)

implies (2H − 2)EZ(t) = 0.

3. If increments of Z are stationary we obtain the equality in dis-
tribution L(Z(−t)) = −L(Z(t) which follows from the equality
of distributions Z(0)− Z(−t) and Z(t)− Z(0).

4. From 3) and self-similarity: EZ2(t) = |t|2H .

5. H ≤ 1 because

E|Z(2)| = 2HE|Z(1)| ≤ E|Z(2)− Z(1)|+ E|Z(1)| = 2E|Z(1)|

thus 2H ≤ 2.

6. For H = 1, EZ(s)Z(t) = σ2st thus E(Z(t) − tZ(1))2 = 0 and
the process is degenerated Z(t) = tZ(1).

Thus

Proposition 5.1.4. BH is Gaussian centered and H−self-similar
with stationary increments.

Those self similarity properties are not alway present within real data
as prove Figures 4.6 and 4.2 which exhibits that stock values of AGF
are not at all self similar.
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5.2 Gaussian chaos

Linear combinations of Gaussian random variables have been inves-
tigated in the above sections. In order to get out of this Gaussian
world a first question is set as follows:

how to proceed for multiplying Gaussian random variables?

or equivalently

Do polynomials wrt Gaussian random variables admit a special
structure?

Thus polynomials of Gaussian random variables are needed and in
order to consider any asymptotic one needs a closed topological vec-
tor space. The simplest topology for probability theory is the Eu-
clidean topology of the Hilbert space L2(Ω,A,P) of the set of classes
of squared integrable random variables. This space indeed contains
any polynomial expression of a Gaussian vector.
The Gaussian chaos will be shown to be convenient for deriving ex-
pressions of any moment expression and thus yields limit theory in
this chaos, through Mehler formula and through the diagram formula
respectively.
Anyway the diagram formula is extremely complicated to use and we
present the so-called 4-th order moment method.
The 4-th moment method is a very powerful technique allowing to
prove that sequences of elements in the Gaussian chaos admit a Gaus-
sian asymptotic behavior based on the convergence of the 2 first even
order moments.
Namely any element Z in the Gaussian chaos such that EZ = 0 and
EZ2 = 1 is Gaussian if and only if EZ4 = 3 (and thus belongs to the
1rst order chaos).
This method needs an integral representation of elements of the chaos
which we first explain.

Definition 5.2.1. Let Y = (Yt)t∈T be a Gaussian process defined on
some probability space (Ω,A,P) the Gaussian chaos C(Y ) associated
to Y is the smallest complete vector sub-space L2(Ω,A,P) containing
Yt, ∀t ∈ T) as well as the constant 1 and which is stable under prod-
ucts (in quicker terms: it is the closure in L2(Ω,A,P) of the algebra
generated by Y ).
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Remark 5.2.1. C(Y )’s elements are thus L2−limits of polynomials:

Z =

D∑
d=1

∑
t1∈T ′

· · ·
∑
td∈T ′

a
(d)
t1,...,td

Yt1 · · ·Ytd

for some finite subset T ′ ⊂ T .
This space is thus a Hilbert space. In order to get easy calculations
in this space, a basis is first provided in case T = {t0} is a singleton.
Further subsections allow calculations of second order moments and
of higher order moments respectively.
Contrarily to what is usual in ergodic theory the denomination of
chaoses has nothing to do with some erratic behavior; its origin lies
in the tough expression of polynomials with many unknown variables
and with the fact that the annulus of such polynomials does not have
any of the standard property of such spaces, such as principality or
Noether properties; the first of which characterizes ideal sub-rings
as generated from products with a fixed polynomial: this property is
essential for factorization.

Example 5.2.1 (Hermite expansions).

• An interesting example of such random variables concerns the
case of singletons T = {0} is

Z = g(Y0), Y0 ∼ N (0, 1).

If Z ∈ L2 then we will prove that such expansions exist

Z =
∑
k=0

gk
k!
Hk(Y0), gk = EHk(N)g(N) N ∼ N (0, 1),

with Hk some polynomial to be defined below, called Hermite
polynomials, see remark 5.2.4.
Thus Z is also a L2−limit of polynomials in Y0.

• A second case is more suitable for time series analysis T = Z
and (Yt)t∈Z is a stationary time serie with Y0 ∼ N (0, 1): on
may consider partial sums processes

Z = g(Y1) + · · ·+ g(Yn), Eg2(Y0) <∞.
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It will be proved that such expressions are again L2−limits of
polynomials and thus belong to the chaos.
A difficult question is to determine the asymptotic behavior of
such partial sums. It will be addressed below.

The aim of those notes is to provide a reader with the tools necessary
to such considerations.

5.2.1 Hermite polynomials

Definition 5.2.2 (Hermite polynomials). Let k ≥ 0 be an arbitrary
integer. We set

Hk(x) =
(−1)k

ϕ(x)

dkϕ(x)

dxk
.

Then Hk is a k−th degree polynomial with leading term 1.

Thoses polynomials are graphically represented in Figure 5.5.
This last point follows from the relation

Hk(x)ϕ(x) = (−1)kϕ(k)(x).

Through derivation

H ′k(x)ϕ(x) +Hk(x)ϕ′(x) = (−1)kϕ(k+1)(x)

and using ϕ′(x) = −xϕ(x) we get

(H ′k(x)− xHk(x))ϕ(x) = (−1)kϕ(k+1)(x)

hence
Hk+1(x) = xHk(x)−H ′k(x)

Thus d◦Hk+1 = d◦Hk + 1 admits the same leading coefficient thus
H0(x) = 1 concludes.
For example

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 − 9x
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Figure 5.5: Graphs of some Hermite polynomials.

Hermite polynomials (Hk)k≥0 form an orthogonal system with re-
spect to the Gaussian measure since k integrations by parts yield for
k ≥ l:

EHk(N)Hl(N) =

∫ ∞
−∞

Hk(x)Hl(x)ϕ(x)dx

= (−1)k
∫ ∞
−∞

dkϕ(x)

dxk
Hl(x)dx

=

∫ ∞
−∞

dkHl(x)

dxk
ϕ(x)dx

this expression vanishes if k > l. In case k = l this yields

dkHk(x)

dxk
= k! hence EH2

k(N) = k!
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This system is also complete; we admit this result proved eg. in
[Choquet, 1973].
Hence any measurable function g with E|g(N)|2 <∞ admits the L2

representation:

g(x) =

∞∑
k=0

gk
k!
Hk(x), gk = Eg(N)Hk(N), E|g(N)|2 =

∞∑
k=0

|gk|2

k!
.

Definition 5.2.3. Assume that g ∈ L2(ϕ) is not the null-function.
Define as before gk = Eg(N)Hk(N).
The Hermite rank of the function g ( 6= 0) is the smallest index k ≥ 0
such gk 6= 0.
We denote m or m(g) his this is Hermite rank.

Proposition 5.2.1. This orthonormal basis in L2(ϕ(x)dx) also sat-
isfies:

∞∑
k=0

zk

k!
Hk(x) = ezx−z

2/2. (5.2)

This equality is thus only an equality in the Hilbert space L2(ϕ(x)dx).
The previous series converges (normally) in L2(ϕ(x)dx) because:

E

(
zk

k!
Hk(N)

zl

l!
Hl(N)

)
=

{
0, if k 6= l
|z|2k
k! , if k = l

We shall need the following Lemma:

Lemma 5.2.1. H ′k = kHk−1.

Proof of Lemma 5.2.1. As d◦(H ′k − kHk−1) < k − 1, this will follow
from the relation∫

(H ′k(x)− kHk−1(x))Hl(x)ϕ(x)dx = 0 for all l < k.

First

k

∫
Hk−1(x)Hl(x)ϕ(x)dx =

{
0, if l < k − 1
k(k − 1)! = k!, if l = k − 1
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An integration by parts implies∫
H ′k(x)Hl(x)ϕ(x)dx = (−1)l

∫
H ′k(x)ϕ(l)(x)dx

= (−1)l+1

∫
Hk(x)ϕ(l+1)(x)dx

=

∫
Hk(x)Hl+1(x)ϕ(x)dx

This expression vanishes if l < k − 1.
If now l = k − 1 we get the same value, k!, as for the other quantity
which implies H ′k = kHk−1.

Remark 5.2.2. An alternative and more elementary proof of the
previous relation begins with the identity:

ϕ′(x) = xϕ(x).

From the definition ϕ(k)(x) = (−1)kϕ(x) hence the previous expres-
sion rewrites

Hk+1(x) = xHk(x)−H ′k(x).

Derive k times this relation with Leibniz formula, then

ϕ(k+1)(x) = −xϕ(k)(x)− kϕ(k−1)(x)

thus

Hk+1(x) = xHk(x)− kHk−1(x).

The formula follows from comparing the two previous expressions of
Hk+1.

Now the function

x 7→ gz(x) = ezx−z
2/2

belongs to L2(ϕ): it admits an Hermite expansion

gz =
∑
k

gz,k
k!

Hk,
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this function satisfies:

gz,k = Egz(N)Hk(N)

=

∫ ∞
−∞

Hk(x)ezx−z
2/2ϕ(x)dx

=

∫ ∞
−∞

Hk(x)e−(z−x)2/2 dx√
2π

=

∫ ∞
−∞

Hk(t+ z)ϕ(t)dt, from the change in variable t = x− z

=

k∑
l=0

zl

l!

∫ ∞
−∞

H
(l)
k (t)ϕ(t)dt, with a Taylor expansion

=

k∑
l=0

Clkz
l

∫ ∞
−∞

Hk−l(t)ϕ(t)dt, because H
(l)
k =

k!

(k − l)!
Hk−l

= zk

We thus get the L2−expansion:

∞∑
k=0

zk

k!
Hk(N) = ezN−z

2/2 in L2(Ω,A,P). (5.3)

This L2(ϕ)−convergence also implies the x−a.s. convergence of the
series

g(x, z) =

∞∑
k=0

zk

k!
Hk(x) ∀z ∈ C.

Remark 5.2.3. If one would knows how to prove that this series
x 7→ g(x, z) converges in a more accurate space and if is derivable for
each z, then it would be easy to deduce

∂

∂x
g(x, z) = zg(x, z)

and the function x 7→ ezx−z
2/2 satisfies the same partial differential

equation.
In both cases Eg(N, z) = 1 implies (5.2) for all x ∈ R, z ∈ C.
A alternative proof of (5.3) would follow: unfortunately we do not
know such a result.
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Exercise 15 (Orthogonal polynomials). Assume that −∞ ≤ a < b ≤
+∞. Let more generally p : (a, b) → R+ be a measurable function
such that λ({x ∈ (a, b); p(x) = 0}) = 0.

f, g 7→ (f, g)p =

∫ b

a

f(x)g(x) p(x)dx

defines a scalar product on the pre-Hilbert space L2(p) of classes (wrt
to a.s. equality) of measurable functions with∫ b

a

f2(x) p(x)dx <∞.

1. Suppose that the polynomials x 7→ 1, . . . , xN satisfy this rela-
tion. Analogously to Hermite polynomials one may define re-
cursively a sequence of orthogonal polynomials such that P0 ≡ 1,
. . . , Pn(x)−xn is orthogonal to 1, x, . . . , xn−1, for 0 ≤ n ≤ N ≤
+∞.

2. There exist sequences an ∈ R, bn > 0 such that

Pn(x)−(x+an)Pn−1(x)+bnPn−2(x), ∀x ∈ (a, b), 2 ≤ n ≤ N

3. Roots of orthogonal polynomials. In case (a, b) is any closed,
open or semi-open interval of R, then each orthogonal polyno-
mial admits n distinct roots.

From now on we consider examples with N =∞.

4. If (a, b) = [−1, 1] and p(x) = (1 − x)u(1 + x)v we get Jacobi
polynomials for u, v > −1. In case u = v = 1 one obtains
Legendre polynomials and u = v = 1

2 yields Tchebichev polyno-
mials. Prove that (Pn) is a complete system.

5. If (a, b) = [0,+∞) and p(x) = e−x we get Legendre polynomials.
Analogously to Hermite case prove that

Pn(x) =
ex

n!

dn

dxn
(
xne−x

)
.

Proofs.
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1. Schmidt orthogonalization technique.
Quote that the fact that the system of orthogonal polynomial
is a Hilbertian basis is quite different and needs the proof that

f ∈ L2(p) :
{
∀n ≥ 0, (f, Pn)p = 0

}
⇒ f = 0

2. As the degree of Pn(x)−xPn−1(x) is < n− 1 one may write its
expansion

Pn(x)− xPn−1(x) = c0P0(x) + · · ·+ cn−2Pn−2(x)

Now (xPn−1, Pk)p = (Pn−1, xPk)p = ck(Pk, Pk)p ≥ 0. For
k < n − 2 this entails ck = 0 and if k + 1 = n − 1 this is
> 0.

3. Let x1 < · · · < xk the real roots of Pn with a change of sign.
Set Q(x) = (x− x1) · · · (x− xk) then Pn(x)Q(x)p(x) > 0 (a.s.)
which excludes the relation (Pn, Q)p = 0 which holds by con-
struction in case k < n.

4. Properties of such polynomials may be found in [Szegö, 1959]
or in [Sansone, 1959], and Weierstrass theorem (Exercise 6 for
a glance and [Doukhan and Sifre, 2001] for more appropriate
comments) entails that those systems are complete.

5. Prove that the leading coefficient of RHS is 1 and that the
corresponding system is orthogonal. To this aim again use in-
tegrations by parts and due to the fact that integrated terms
all vanish we get for n > k:

(Pn, Pk)p =
1

n!

∫ ∞
0

Pk(x)
dn

dxn
(
xne−x

)
dx

=
(−1)n

n!

∫ ∞
0

P
(n)
k (x)e−xdx.
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5.2.2 Second order moments

Lemma 5.2.2 (Mehler formula). Let Y = (Y1, Y2) be a Gaussian

random vector with law N2

(
0,

(
1 r
r 1

))
, then

Cov (Hk(Y1), Hl(Y2)) =

{
0, if k 6= l
k!rk, if k = l

Proof. If t1, t2 ∈ R set

σ2 = Var (t1Y1 + t2Y2) = t21 + t22 + 2rt1t2,

then
t1Y1 + t2Y2 ∼ σN

The relation (A.5) implies thus

E exp

(
t1Y1 + t2Y2 −

t21 + t22
2

)
= ert1t2

From the L2−identity (5.3) we may exchange integrals and sums from
dominated convergence

Eet1Y1+t2Y2−
t21+t22

2 = ert1t2

=

∞∑
k,l=0

tk1
k!

tl2
l!
EHk(Y1)Hl(Y2)

Identify the previous expansion with respect to powers of t1 and t2
yields the conclusion since EHk(Y1) 6= 0 only for the case k = 0.

Remark 5.2.4. Let g : R→ C be measurable and E|g(N)|2 <∞ in
the setting of Example 5.2.1. Then

g =
∑
k

gk
k!
Hk, gk = EHk(N)g(N)

and

Eg(Y1)g(Y2) =

∞∑
k=0

|gk|2

k!
rk

Cov (g(Y1), g(Y2)) =

∞∑
k=1

|gk|2

k!
rk
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For (Yn)n∈Z a stationary Gaussian process with EY0 = 0, VarY0 = 1
and rn = EY0Yn.
If Eg(Y0) = 0 (this means that the Hermite rank is such that m(g) ≥
1):

E

∣∣∣∣∣∣
n∑
j=1

g(Yj)

∣∣∣∣∣∣
2

=

n∑
s,t=1

Eg(Ys)g(Yt)

= n

n∑
|l|<n

(
1− |l|

n

)
Eg(Y0)g(Yl)

= n

n∑
|l|<n

(
1− |l|

n

) ∞∑
k=m(g)

|gk|2

k!
rkl

= n

∞∑
k=m(g)

|gk|2

k!

n∑
|l|<n

(
1− |l|

n

)
rkl (5.4)

Thus in case
∑
l |rl| < ∞, each series Rk =

∑
l r
k
l converges (for

k ≥ 1) because |rl| ≤ r0 = 1 and

E

∣∣∣∣∣∣
n∑
j=1

g(Yj)

∣∣∣∣∣∣
2

∼ n
∞∑

k=m(g)

Rk|gk|2

k!
= O(n)

If only

S ≡
∑
l

|rl|m(g) <∞

with m(g) the Hermite rank in Definition 5.2.3 then the previous
claim still holds true; indeed all series Rk are then convergent for
k ≥ m(g).
Also remark that Cauchy-Schwarz inequality implies |r(`)| ≤ 1 ≡ EY 2

0

thus

|r(`)|k ≤ |r(`)|m(g) if k ≥ m(g).

Moreover |Rk| ≤ S which proves that the previous expansion (5.4) is
indeed convergent.



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 98 — #102 i
i

i
i

i
i

98 [CHAP. 5: GAUSSIAN CHAOS

Example 5.2.2. For statistics the empirical cumulative distribution
is of a first importance

Fn(x) =
1

n

n∑
k=1

I1{Yk≤x}.

Fn(x) is an unbiased estimator of the cumulative function because a
simple calculation yields EFn(x) = F (x).
The expression of its variance relies on the previous identity for
g(u) = I1{u≤x}.
Here

gk = EHk(N) I1{N≤x}

=

∫ x

−∞
Hk(u)ϕ(u)du

= (−1)k
∫ x

−∞
ϕ(k)(u)du

=

{
Φ(x), (a primitive of ϕ) for k = 0,
ϕ(x)Hk−1(x), if k 6= 0.

Hence

Var Fn(x) =
1

n

∞∑
k=m(g)

|ϕ(k−1)(x)|2

k!

n∑
|l|<n

(
1− |l|

n

)
rkl .

This expression is

Var Fn(x) = O(
1

n
), as n→∞, if

∑
l

|rl| <∞.

If now
∑
l |rl| =∞ its order of magnitude is

Var Fn(x) = O

 1

n

∑
|l|<n

(
1− |l|

n

)
rl


which is more that 1

n .

Anyway from Ćesaro lemma this expression converges 0 if the se-
quence rl does converge to 0.
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5.2.3 Higher order moments

The technique used to derive Mehler formula suggests an extension
for an arbitrary number of factors Hlj (Yj).
Thus let Y = (Y1, . . . , Yp) ∼ Np(0, R) for a symmetric matrix R =
(ri,j)1≤i,j≤p with diagonal entries ri,i = 1.
If (t1, . . . , tp) ∈ Rp we derive

Var

 p∑
j=1

tjYj

 =

p∑
j=1

tj + 2ρ, ρ =
∑

1≤i<j≤p

ri,jtitj .

Relation (A.5) proves

eρ = E exp

 p∑
j=1

(
tjYj −

t2j
2

).
In case an Lp−analogue of (5.3) would exist then

exp

 ∑
1≤i<j≤p

ri,jtitj

 = E
∞∑
l1=0

· · ·
∞∑
lp=0

tl11
l1!
· · · t

lp
p

lp!
E

p∏
j=1

Hlj (Yj).

Any argument allowing the inversion of sums and integrals would
provide the identification of such moments.
Anyways such convergences are not simple and our technique to de-
rive such moments will rely on an argument from [Slepian, 1972].
The characteristic function of the random vector Y = (Y1, . . . , Yk)
writes

φY (s) = e−
1
2 s
tΣs,

if this is a centered Gaussian vector and its covariance Σ. Then an
alternative representation of its density function follows from Fourier
inversion.
Assume Σ to be invertible will imply the convergence of the forth-
coming integrals:

f(y,Σ) =
1

(2π)
k
2

∫ ∞
−∞
· · ·
∫ ∞
−∞

eis
tye−

1
2 s
tΣsds.



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 100 — #104 i
i

i
i

i
i

100 [CHAP. 5: GAUSSIAN CHAOS

If Σ = (ri,j)1≤i,j≤k with ri,i = 1 we thus get the heat equation from
derivations:

∂f(y,Σ)

∂ri,j
=
∂2f(y,Σ)

∂yi∂yj
, if i 6= j.

The function f(y,Σ) is analytic wrt the (multidimensional) variable
Σ. This will allow the expansion below.
Let n = (ni,j)1≤i<j≤k be such that ni,j ∈ N for each couple 1 ≤ i <
j ≤ k we denote

rn =
∏
i<j

r
ni,j
i,j , n! =

∏
i<j

ni,j !.

Also set

ni,j = nj,i, if i > j, and sn,i =
∑
j 6=i

ni,j

then denoting by

f(y, Ik) =

k∏
i=1

ϕ(yi),

we get

f(y,Σ) =
∑

n=(ni,j)

rn

n!

∂(
∑
i<j ni,j)f(y, Ik)∏
i<j ∂r

ni,j
i,j

=
∑

n=(ni,j)

rn

n!

∂sn,if(y, Ik)∏
i<j ∂y

ni,j
i ∂y

ni,j
j

=
∑

n=(ni,j)

rn

n!

k∏
i=1

∂sn,iϕ(yi)

∂y
sn,i
i

=
∑

n=(ni,j)

rn

n!

k∏
i=1

ϕ(sn,i)(yi)

f(y,Σ) =
∑

n=(ni,j)

rn

n!

k∏
i=1

Hsn,i(yi) · φ(y) (5.5)
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where

φ(y) =

k∏
i=1

ϕ(yi)

denotes the density function of a random vector Nk(0, Ik) and the
previous sums extend to all integer multi-indices

n = (ni,j)1≤i<j≤k.

Indeed sn,i is the number of apparitions for yi in the second identity.
Relation (5.5) thus implies

E
k∏
i=1

Hsi(Yi) =
∑
n

rn

n!

k∏
i=1

∫ ∞
−∞

Hsn,i(yi)Hsi(yi)ϕ(yi)dyi,

and orthogonality of the Hermite polynomials implies

E
k∏
i=1

Hsi(Yi) = s1! · · · sk!
∑

n∈N(s1,...,sk)

rn

n!
,

for sums ∑
n∈N(s1,...,sk)

extended to such multi-indices n with

sn,i = si if 1 ≤ i ≤ k.

If k = 2 the sum in n is a simple sum on the set of integers N because
i < j implies i = 1 and j = 2.
Thus ∑

n∈N(s1,s2)

corresponds the only value n1,2 = s1 = s2: this is again Mehler
formula.
For k ≥ 2 the previous formula is called the diagram formula.
The ni,j ’s correspond to partitions of the array such that

x1 . . . x1 appears s1 times,
x2 . . . x2 appears s2 times,
. . . . . . . . . . . .
xk . . . xk appears sk times.
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Precisely the first line the arrays may be divided into k−1 parts with
respective sizes n1,2,. . . , n1,k.
The number of such multi-indices is also the number of arrays satis-
fying the constraints sn,i = si.

Remark 5.2.5. Various uses of this formula are known.
[Breuer and Major, 1983] prove that if a stationary Gaussian process
satisfies Y0 ∼ N (0, 1) and

Sn =
1√
n

n∑
k=1

g(Yk)
in law−→ N (0, σ2)

if ∑
k

|rk|m <∞, r(k) = EY0Yk

and m = (g) denotes the Hermite rank of g.
For this those authors prove the convergence of moments of Sn to the
Gaussian ones with the diagram formula.
Another application is Arcones inequality for vector valued processes,
see Taqqu in [Doukhan et al., 2002b].
This inequality is extended in [Soulier, 2001] and further by Bardet
and Surgailis.
Other developments are also reported in [Rosenblatt, 1985].

The forthcoming 4-th order moment approach allows an impressive
simplification of the necessary calculations.
This is the justification of the two forthcoming subsections.

5.2.4 Integral representation of the Brownian chaos

Consider a square integrable function f : R+ → R.
We already defined Wiener integrals

I1(f) =

∫ ∞
0

f(t)dW (t)

as centered Gaussian random variables, in the corresponding Gaus-
sian closed space generated by the Brownian process (W (s))s≥0, with
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variance

‖f‖2 =

(∫ ∞
0

f2(t)dt

) 1
2

.

We aim at defining it first for step functions and noticing that for
such functions f 7→ I1(f) is an isometry L2(R+)→ L2(Ω,A,P),

‖f‖2 =

(∫ ∞
0

f2(t)dt)

) 1
2

=
(
EI1(f)2

) 1
2 = ‖I1(f)‖L2(Ω,A,P).

We extend it by using a topological argument (density).
A first simple extension is to define stochastic integrals on the real
line.
Consider two independent Brownian motions W− and W+ a way to
define the Brownian motion on the line is to set W (t) = W+(t) if
t ≥ 0 and W (t) = W−(−t) if t < 0.
Wiener integral is straightforwardly extended on (−∞,∞).
There exist two different ways to define

Ik(h) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(t1, . . . , tk) dW (t1) · · · dW (tk)

We denote by Hk the set of symmetric functions h ∈ L2(Rk), i.e.
such that for any arbitrary bijection (permutation) π : {1, . . . , k} →
{1, . . . , k}:

h(tπ(1), . . . , tπ(k)) = h(t1, . . . , tk).

We will better use the symmetrized version of a function h ∈ L2(Rk)
by setting:

Sym(h)(t1, . . . , tk) =
1

k!

∑
π

h(tπ(1), . . . , tπ(k)).

Those spaces are naturally equipped with their natural Hilbert norms

‖h‖2Hk =

∫
Rk
h2(t)dt1 · · · dtk,

and then the triangle inequality entails

‖Sym(h)‖Hk ≤ ‖h‖Hk .
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We defer a reader to [Major, 1981] for more precise statements and
we only provide a very fast overview.
Questions of convergence are extremely specific and technically dif-
ficult in this frame as quoted in the forthcoming Chapter concerned
with dependence.

• A first way is to simply set it by recursion but in this case
stochastic integrals to be considered are non anticipative.
An alternative way to proceed is to consider integrals over sets

{(t1, . . . , tk) ∈ Rk, t1 ≤ · · · ≤ tk}

then if the function is invariant through permutations one de-
fines

Ik(h) = k!

∫ ∞
−∞

∫ t1

−∞
· · ·
∫ tk−1

−∞
h(t1, . . . , tk) dW (t1) · · · dW (tk)

• Assume now that h is a symmetric function with

h(±t1, . . . ,±tk) = h(t1, . . . , tk).

An alternative construction in [Major, 1981] is based again on
an approximation by step functions.
First if A1, . . . , Ak ⊂ R+ are closed intervals, set ∆j = Aj ∪
(−Aj) and ∆ = ∆1 × · · · ×∆k , then we define

Ik( I1∆) = L1 · · ·Lk, with Lj = W+(Aj)−W−(Aj).

If A1, . . . , Ak are pairwise disjoint then those random variables
are independent.
This definition is extended by linearity to functions constant on
such intervals ∆.
A uniform continuity argument is thus used to define such mul-
tiple integrals for h ∈ Hk. Namely this integral is an isometry
over simple functions it thus extends to the closure Hk of this
set.

Exercise 16. Prove that:

Hk(I1(f)) = Ik(f⊗k),
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with Ik the k−th Ito -Wiener integral and

f⊗k(t1, . . . , tk) = f(t1) · · · f(tk).

For example this formula is just Ito formula for k = 2.

Hint. As for the construction of multiple Ito integrals, first proceed
with simple indicator functions, and then extend it linearly to piece-
wise constant functions. Conclude with the previous extension argu-
ment.

5.2.5 The fourth order moment method

The method of diagrams is now less used because of the recents devel-
opments by Peccati and coauthors as eg. [Nourdin et al., 2011] (1).
In order to simplify expressions we consider the chaos generated by

{W (t), t ≥ 0}.

From now on we restrict to functions on the interval [0, 1] and we
keep using the same notations as above. For f ∈ Hk and g ∈ Hm,
for 1 ≤ p ≤ k ∧m, define with [Nourdin et al., 2011]

f ⊗p g(t1, . . . , tm+k−2p)

=

∫
Rp
f(t1, . . . , tk−p, s1, . . . , sp)

× g(tk−p+1, . . . , tk+m−2p, s1, . . . , sp) ds1 · · · dsp

For example if m = 0 or k we have respectively:

f ⊗0 g = f ⊗ g, f ⊗k g =

∫
Rk
f(s)g(s) ds.

Ito formula writes in this case as the forthcoming formula and the
other 2 formulas are also useful:

Ik(f)Im(g) =

k∧m∑
p=0

p!

(
k

p

)(
m

p

)
Ik+m−2p(f ⊗p g).

1Many thanks to Ivan Nourdin for his essential and friendly help.
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(k +m)!

k!m!
‖Sym(f ⊗ g)‖2Hk+m = ‖f‖2Hk‖g‖

2
Hm

+

k∧m∑
q=1

(
k

q

)(
m

q

)
‖f ⊗q g)‖2Hk+m−2q

.

Now the 4-th order moments may also be calculated:

EI4
k(f) = 3k!2‖f‖4Hk +

3

k

k−1∑
p=1

p · p!
(
k

p

)4(
2(k − p)

)
!‖Sym(f ⊗p f)‖2H2(k−p)

.

In particular, observe from the above representation that

lim
n→∞

(
EI4

k(fn)− 3(EI2
k(fn))2

)
= 0,

is equivalent to

lim
n→∞

‖Sym(fn ⊗p fn)‖2H2(k−p)
= 0, ∀p ∈ {1, . . . , k − 1}.

We now present the most impressive rigidity result from this Nualart-
Peccati-Tudor theory.

Theorem 5.2.1. Assume that a sequence fn ∈ Hk satisfies

lim
n
‖fn‖Hk = 1,

then
Ik(fn)

in law−→n→∞ N (0, 1) ⇐⇒ lim
n

EI4
k(fn) = 3.

Proof (thanks to Ivan Nourdin). In fact this will be enough to prove
the result if, only EI2

k(fn) = 1 and limn EI4
k(fn) = 3.

In order to prove the result two additional tools will be needed

1. EIk(f)ψ(Ik(f)) = kEψ′(f)

∫ ∞
−∞

I2
k−1(f(·, t)) dt for each func-

tion ψ : R→ R in C1
b .

2.

Var

∫ ∞
−∞

I2
k−1(f(·, t)) dt

=
1

k4

k−1∑
p=1

p(p!)2

(
k

p

)4(
2(k − p)

)
!‖Sym(f ⊗p f‖2H2(k−p)
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This entails in particular

lim
n→∞

Var

∫ ∞
−∞

I2
k−1(fn(·, t)) dt = 0

⇔ lim
n→∞

‖Sym(fn ⊗p fn)‖2H2(k−p)
= 0, (1 ≤ p < k)

⇔ lim
n→∞

EI4
k(fn) = 3.

Now set

ψn(t) = e
t2

2 E(exp(itIk(fn)),

then

ψ′n(t) = tψn(t) + ie
t2

2 E(Ik(fn) exp(itIk(fn))

= te
t2

2 E
(

1−
∫ ∞
−∞

I2
k−1fn(·, t) dt

)
Ik(fn) exp(itIk(fn))

Then :

|ψ′n(t)| ≤ te t
2

2 E
∣∣∣∣1− ∫ ∞

−∞
I2
k−1fn(·, t) dt

∣∣∣∣ .
Quote that

E
∫ ∞
−∞

I2
k−1fn(·, t)dt = 1,

then from Cauchy-Schwarz inequality we need to control the variance
of ∫ ∞

−∞
I2
k−1(fn(·, t)) dt

which tends to 0 from the above equivalence.
We thus just proved that the sequence of the characteristic functions
of Ik(fn) converge to that of a standard Gaussian.
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Chapter 6

Linear processes

Stationary sequences generated through independent identically dis-
tributed (ξn)n∈Z are considered hereafter.
Such models are natural in signal theory since they appear through
linear filtering of a white noise (1).

6.1 Stationary linear models

Definition 6.1.1. Let (cn)n∈Z a sequence of real numbers, and (ξn)n∈Z
be an iid sequence. we define linear processes (when it makes sense)
as:

Xn =

∞∑
k=−∞

ckξn−k. (6.1)

Lemma 6.1.1. Relation ∑
k

|ck|m <∞

implies that the previous series converge if E|ξ0|m < ∞ for some
m ∈ (0, 1] (if E|ξ0| < ∞ then m = 1), then this series converges in
probability.

1Usually this is only a L2−stationary white noise sequence and not an inde-
pendent identically distributed sequence.

109
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Proof. From Markov inequality we derive:

P

(∑
k

|cn−k||ξk| > A

)

≤ 1

Am
E

(∑
k

|ck||ξn−k|

)m
≤ 1

Am
E|ξm|

∑
k

|ck|m.

Use the following exercise:

Exercise 17. Let a, b ≥ 1

1. Prove relation (a+ b)m ≤ am + bm if 0 ≤ m ≤ 1.

2. Prove relation (a+ b)m ≤ 2m−1(am + bm) if m ≥ 1.

Hints. Use the fact that g′(t) = m(1 + t)m−1 ≤ 1 for t > 0, if
g(t) = (1 + t)m for m ≤ 1.
The function h(x) = xm is convex in case m ≥ 1 and the inequality
follows with convexity inequality with equal weights

λ = µ =
1

2
: h

(
a+ b

2

)
≤ 1

2

(
h(a) + h(b)

)
.

The sequence (ξn) considered is zero mean in case m ≥ 1 and we as-
sume excepted if we explicitly mention it that this is an independent
sequence in order to serive strict stationarity assumptions.
If Eξ2

0 < ∞ (m = 2) and Eξ0 = 0, the weaker condition for station-
arity and existence in L2 holds∑

k

|ck|2 <∞.

Definition 6.1.2. If ck = 0 for k < 0 the process (6.1) is causal.

Assume here that (ξn) is a L2 white noise. This process admits the
covariance:

rk = Cov (X0, Xk) =
∑
l

clcl+k = c ? c̃k, (6.2)
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denoting c̃ = (c̃k)k∈Z with c̃k = c−k.

Remark that ∑
k

|rk| ≤

(∑
k

|ck|

)2

,

thus this series converges in case∑
k

|ck|. <∞

We thus obtain:

Proposition 6.1.1. Let (Xt) be a linear process defined from eqn.
(6.1) (with iid inputs ξn) then the above series converge a.s., this
process is stationary and in Lm in case either

E|ξ0|m <∞,
∑
k

|ck|m <∞, 0 < m ≤ 1,

or it is causal and,

E|ξ0|2 <∞,
∑
k

|ck|2 <∞, m = 2.

In the latter case the covariance of the process writes as in eqn. (6.2).
The series of covariances converges if

∞∑
k=0

|ck| <∞.

Definition 6.1.3. The Backward or shift operatorindexShift operator
B (2) is defined for sequences

x = (xn)n∈Z 7→ Bx : (Bx)n = xn−1, ∀n ∈ Z.

Remark 6.1.1. Moreover notational conventions are Bx = (Bxn)n∈Z
or equivalently Bxn = xn−1, eg. for any discrete time stochastic pro-
cess we set:

BXt = Xt−1, t ∈ Z.
2In the econometric literature this operator is also denoted by L, as the Lag-

operator.
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Using the backward operator B the previous causal models also write

X = g(B)ξ, g(z) =

∞∑
k=0

ckz
k, |z| < 1.

We now rapidly describe some such very simple models of a constant
use in statistics.
Clearly this chapter has no statistical ambition but we shall simply
rephrase some of the currently used models.

Remark 6.1.2 (centering). In case (Xt)t∈Z is not a centered process,
m ≡ EX0 may be estimated empirically by

m̂ =
1

2n+ 1

n∑
k=−n

Xk

the estimation is consistent from the ergodic theorem (Corollary 9.1.3)
in case the process (Xt)t∈Z is indeed ergodic.
Assume now that the process is observed on the period {1, . . . , N}
and there exists a continuous function and a centered stationary lin-
ear process such that

Xt = m

(
t

N

)
+ Yt, t = 1, 2, . . . , N.

In this case a local mean may be used the function m is fitted by

m̂(x) =
1

2n+ 1

n∑
k=−n

X[Nx]+k,

and for n ≡ n(N) such that limN→∞N/n(N) = 0 this estimation is
consistent.
More generally, a smoothing technique as in eqn. (3.4) may also be
used.

6.2 ARMA(p, q)−processes

Relation

Xt −
p∑
j=1

ajXt−j = ξt −
q∑

k=1

bkξt−k, (6.3)
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is written
α(B)Xt = β(B)ξt

Trajectories of such ARMA models are reported in Figure 6.1.

0 200 400 600 800 1000
−15

−10

−5

0

5

10

Figure 6.1: ARMA(1,1)–trajectory.

Definition 6.2.1 (ARMA-processes). Consider the recursion (6.3).
If the roots r1, . . . , rp of the polynomial α are such that

|r1| > 1, . . . , |rp| > 1

Then:

∀k ∈ Z : |rk| ≤ cρ|k| for some 0 ≤ ρ < 1.

Moreover, the series (6.3) converge in Lp in case inputs ξj ∈ Lp for
some p > 0.

For the proposed ARMA(1,1)–process note that it looks really non-
deterministic and its covariances decay extremely fast.
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Figure 6.2: An ARMA(1,1)–model

Sketch of the proof. A solution of eqn. (6.3) is written:

Xt =

∞∑
j=0

cjξt−j

where cj ’s are defined from

∞∑
j=0

cjz
j =

β(z)

α(z)
,
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with

α(z) = 1− a1z − · · · − apzp =

(
1− z

r1

)
· · ·
(

1− z

rp

)
.

If the roots r1, . . . , rp of the polynomial α are such that

|r1| > 1, . . . , |rp| > 1

then the function 1/α is analytic if

|z| < min{|r1|, . . . , |rp|}

and thus on a neighborhood of the closed complex unit disk. For
example (

1− z

r1

)−1

=

∞∑
l=0

r−l1 zl.

Moreover the analycity of the function β/α on some disk D(0, 1 + ε)
implies |ck| ≤ Ce−γk.

6.3 Yule-Walker equations

This section aims at providing a very fact approach to Yule-Walker
equations yielding parametric estimation for ARMA models, we defer
a reader to the remarkable textbook of Peter Brockwell and Richard
Davis (2006), [Brockwell and Davis, 1991].
For simplicity we restrict to AR(p) models where (ξt)t∈Z denotes an
iid sequence centered and with σ2 = Eξ2

0 , as before

Xt = a1Xt−1 + · · ·+ apXt−p + ξt (6.4)

we again assume that

α(z) = 1− a1z − · · · − apzp =

p∏
j=1

(
1− z

rj

)
admits roots |rj | > 1 for j = 1, . . . , p. Then we just proved that a
MA(∞)–expansion indeed holds:

Xt =

∞∑
j=0

cjξt−j
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Parameters of interest in this model are θ = (a, σ2) with at =
(a1, . . . , ap). In case the inputs are iid Gaussian N (0, σ2) those are
the only parameters. We aim at estimating those parameters.
Multiply equation (6.4) by Xt−j for 0 ≤ j ≤ p then taking expecta-
tions entails

Rpa = rp, Rp = (ri−j)1≤i,j≤p, r′p = (r0, . . . , rp)

σ2 = r0 − a′rp

By plugging-in estimates r̂j of covariances rj as in eqn. (9.2) provides
us with empirical estimates of the parameters.
First this is easy to define R̂p = (r̂i−j)1≤i,j≤p and r̂p and thus

R̂pâ = r̂p

σ̂2 = r̂0 − â′ r̂p

Remark 6.3.1 (ARMA case). Those equations also extend for ARMA
models, but besides the previous estimates CLT results are optimal
under AR–modeling, see again [Brockwell and Davis, 1991] Chapter
8.

Remark 6.3.2 (nonlinear models). Extensions to the case of weak-
white noise are used; for example nonlinear models such as ARCH
models are such white noises and a linear process with such input
may also be considered. In the forthcoming chapter we describe some
elementary versions of this idea.

Remark 6.3.3 (Durbin-Levinson algorithm).
From such estimation a plug-in one-step ahead prediction of the pro-
cess writes:

X̂t = â1Xt−1 + · · ·+ âpXt−p,

once the parameters have been estimated from the data X0, . . . , Xt−1.

2-steps ahead predictions are similar by replacing now Xt by X̂t in
the previous relation and:

X̂t+1 = â1X̂t + â2Xt−1 + · · ·+ âpXt−p+1.

Now we may replace the covariances by their empirical counterparts
(see [Brockwell and Davis, 1991]. § 8.2).
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6.4 FARIMA(0, d, 0)−processes

Set ∆ = I−B with B the Backward operator. The operator ∆ allows
to rewrite the previous models but it also helps to define some new
models. We aim at solving the formal equation

∆dXt = ξt.

In case d = 1 the equation writes Xt −Xt−1 = ξt thus

Xt = X0 + ξ1 + · · ·+ ξt,

which is a random walk if X0 = 0.
If d = 2 the relation still writes

∆2Xt = ∆(∆Xt) = ξt,

which leads to a recursive definition with initial condition 0 for the
solution of equation

∆dXt = ξt for d ∈ N.

If d ∈ −N the relation writes

Xt = ∆−dξt =

−d∑
j=0

Cj−dξt−j .

More generally the relation Xt = (I − B)−dξt is interpreted as an
expansion for |z| < 1 of the function

(1− z)−d =

∞∑
j=0

bjz
j ,

then:

bj =
Γ(j + d)

Γ(j + 1)Γ(d)
=

1

Γ(d)

j∏
k=1

k − 1 + d

k
. (6.5)

Stirling formula (see eg. [Doukhan and Sifre, 2001]):

n! ∼
√

2πn
(n
e

)n
, n→∞,
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implies indeed bj ∼ 1
Γ(d)j

d−1 as j →∞.

For − 1
2 < d < 1

2 , define the operators ∆±d. In order to ∆d out of
this range use relations ∆d+1 = ∆∆d and

∆d−1Xt = ξt ⇒ ∆dXt = ∆ξt = ξt − ξt−1.

The evolution of trajectories of such FARIMA(0, d, 0) is designed in
Figure 6.3.
Clearly the smallest values of d = .01 yields a white noise behavior
and the trajectories look more and more regular as d < .5 becomes
larger.
The corresponding covariograms (listing covariance estimates for such
models) is clear from Figure 6.4 confirms the impression provided by
trajectories of such FARIMA models. The evolution of covariances
which are those of white noise again for d = .01 and then seem more
and more cyclical for larger values of d.

Definition 6.4.1. FARIMA(0, d, 0) are linear causal processes given
by coefficients given from eqn. (6.5).
Hence ∑

j

b2j <∞, if d <
1

2
,

and the series

Xt =

∞∑
j=0

bjξt−j converge in L2.

Moreover:

r(0) = σ2 Γ(1− 2d)

Γ2(1− d)
, σ2 = Eξ2

0 ,

r(k) = σ2 Γ(k + d)Γ(1− 2d)

Γ(k − d+ 1)
∼ σ2 Γ(1− 2d)

Γ(d)Γ(1− d)
|k|2d−1 as |k| → ∞.

Thus ∑
k

|r(k)| =∞ ⇐⇒ d ∈
(

0,
1

2

)
.
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Figure 6.3: Trajectories of FARIMA(0, d, 0).

Remark 6.4.1. The Hurst coefficient H = d + 1
2 is designed to pa-

rameterize those models. They were introduced to models river flood-
ing.

Set Z for the random spectral measure associated to the white noise
ξt.
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Figure 6.4: Covariograms of FARIMA(0, d, 0).

Then

Xt =

∫ π

−π
eitλ(1− e−iλ)−dZ(dλ)

and

gX(λ) =
σ2

2π
|1− e−iλ|−2d =

σ2

2π

(
4 sin2 λ

2

)−2d

.

Remark 6.4.2 (Simulation). Such integral representations are used
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to simulate such models. For the case of Gaussian inputs the previ-
ous spectral process is Gaussian with independent increments which
makes the previous simulation trick possible by providing independent
random variables with a given distribution, see Remark A.1.4.
This idea extends to each process with independent increments as
Poisson unit process.
Another possibility to simulate such time series is clearly to truncate
the corresponding series. The problem is that simulation is approxi-
mative in this case.

6.5 FARIMA(p, d, q)−processes

The models FARIMA(p, d, q) fit the equation

α(B)(I −B)dXt = β(B)ξt.

If d < 1
2 the process is causal and well defined in case the roots of α

are not inside the unit disk.
It is invertible if d > − 1

2 and the roots of α are out of the unit disk.
Indeed in this case ξt = γ(B)Xt for a function γ analytic on the unit
disk

D(0, 1) = {z ∈ C/|z| < 1}.

Let again Z denote the random spectral measure associated to the
white noise ξt then

Xt =

∫ π

−π
eitλ

(
1− e−iλ

)−d β(eiλ)

α(eiλ)
Z(dλ).

Thus

gX(λ) =
σ2

2π
|1− e−iλ|−2d

∣∣∣∣β(eiλ)

α(eiλ)

∣∣∣∣2 .
6.6 Extensions

Clearly for any meromorphic function γ : C→ C without singularities
on D(0, 1) with finitely many singularities on the unit circle we mayo
define a process

Xt = γ(B)ξt.
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In case 1/γ satisfies the same assumptions then the process is re-
versible (zeros replacing singularities).
Singularities 6= 1 on the unit circle circle are called periodic long
range singularities.
Now let (ck,n)k,n∈Z be a sequence of real numbers, analogously to
eqn. (6.1) we may define non stationary linear processes from the
relation

Xn =

∞∑
k=−∞

ck,nξn−k.

Analogue existence results may be derived in this case.
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Chapter 7

Non-linear processes

This Chapter aims at describing stationary sequences generated from
independent identically distributed samples (ξn)n∈Z.
Many usual models of statistics will be proved to be this way.
This organisation follows the order from natural extensions of linear-
ity to more general settings.
From linear processes it is natural to build polynomial models or their
limits. Then we consider more general Bernoulli shift models in order
to define recurrence equations besides the standard Markov setting.

7.1 Discret chaos

This section aims at introducing some basing tools for algebraic ex-
tensions of linear to polynomial models.

7.1.1 Volterra expansions

Set X
(0)
n = c(0) some constant and consider arrays (c

(k)
j )j∈Zk of con-

stants and a sequence of arrays of independent identically distributed

random variables

((
ξ

(k,j)
n

)
1≤j≤k

)
n∈Z

.

123
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In case this makes sense set:

X(k)
n =

∑
j1<j2<···<jk

c
(k)
j1,...,jk

ξ
(k,1)
n−j1 · · · ξ

(k,k)
n−jk

then a Volterra expansion writes as:

Xn =

∞∑
k=0

X(k)
n .

Remark 7.1.1. According to the previous Gaussian Chapter 5, such
stationary models also write in the chaos generated from((

ξ(k,j)
n

)
1≤j≤k

)
n∈Z

.

Anyway we prefer to keep on with the more standard expression of
Volterra expansions.

Example 7.1.1. In order to understand why the previous definition
involves arrays of independent identically distributed random vari-

ables ((ξ
(k,j)
n )1≤j≤k)n∈Z, it seems to be better to consider the simplest

example of second degree polynomials

Xn =

∞∑
i,j=−∞

ai,jξiξj ,

the previous expansion holds if we note

X(2)
n =

∑
i<j

(ai,j + aj,i)ξn−iξn−j ,

X(1)
n =

∑
i

ai,i(ξ
2
n−i − σ2), σ2 = Eξ2

0

X(0)
n =

∑
i

ai,iσ
2.

For Volterra models with higher order Appell polynomials As(ξn) re-
place ξ2

n−σ2 in order to take into account the repetitions in diagonal
terms.
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Exercise 18. Suppose (without loss of generality) that E
∣∣∣ξ(k,j)
n

∣∣∣2 = 1,

then

EX(k)
0 X(l)

n = 0, if k 6= l,

EX(k)
0 X

(k)
0 =

∑
j1<j2<···<jk

∣∣∣c(k)
j1,...,jk

∣∣∣2 ,
EX(k)

0 X(k)
n =

∑
j1<j2<···<jk

c
(k)
j1,...,jk

c
(k)
n+j1,...,n+jk

.

Those calculations yield explicit expressions for the covariance of the
process (Xn)n∈Z from a simple summation in case

∑
j1<j2<···<jk

∣∣∣c(k)
j1,...,jk

∣∣∣2 <∞.
7.1.2 Appell polynomials

Analogously for the special case of the Gaussian laws which yields
the construction of Hermite chaos, one may define orthogonal poly-
nomials associated to a fixed distribution on the real line R.
Let ξ0 a real valued random variable with finite moments up to some
order m > 0.
Appell polynomials A0, . . . , Am are defined recursively with A0(x) =
1 and

A′k(x) = kAk−1(x),

k∑
j=0

Eξj0 ·Aj(0) = 0, 1 ≤ k ≤ m.

Hence

A0(x) = 1

A1(x) = x− Eξ0
A2(x) = x2 − 2Eξ0x+ 2(Eξ0)2 − Eξ2

0

. . . . . . . . .

Ak(x) = xk + · · ·
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If the Laplace transform of ξ0’s distribution is analytic around 0, this
entails

∞∑
k=0

zk

k!
Ak(x)Eezξ0 = ezx.

Let P be a polynomial with d = d◦P : it may be uniquely written as

P (x) =

d∑
k=0

ck
k!
Ak(x).

(reasoning on the degree allows to derive uniqueness).
lf the cumulative distribution function F of ξ0’s distribution (F (x) =
P(ξ0 ≤ x)) is regular enough we denote by f = F ′ the density of this
law. Then

ck = EP (k)(ξ0) = (−1)k
∫ ∞
−∞

P (x)f (k)(x)dx.

An important property of those Appell polynomials writes

EAk(ξ0)P (ξ0) = 0, if d◦P < k.

Set g = fP then

EAk(ξ0)P (ξ0) =

∫ ∞
−∞

Ak(x)g(x)dx.

Since the function g admits k derivatives then k integrations by parts
prove this identity. Set gl(x) = f (l)/f thus (1)

EAk(ξ0)gl(ξ0) =

{
1, if k = l
0, if k 6= l.

Remark 7.1.2. Extensions to more general functions is much more
complicated that the previous Gaussian theory! To be in order to
consider non-polynomial functions [Kazmin, 1969] assumes that the
function

x 7→ A(z) = 1/Eezξ

1The proof is quite analogue to that for the Gaussian chaos.
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is analytic and it does not vanish on the open disk

Dσ ≡ {z ∈ C/|z| < σ}.

Then each function g ∈ Eτ (set of analytic function on a disk Dτ )
admits a representation

g(z) =

∞∑
n=0

cn
n!
An(z), lim sup

n→∞
|cn|1/n < τ

for series which converge uniformly over compact subsets of the disk
Dτ .
Conversely for a sequence such that

lim sup
n→∞

|cn|1/n < τ,

the function g defined this way is proved to be analytic on Dτ .
Under those assumption the series defining g is convergent and

cn = Eg(n)(ξ, )

thus this proves uniqueness of the expansion of analytic functions.
Those results are far from representing all the L2 functions as in the
Gaussian case.

Multivariate Appell polynomials

If now ξ = (ξ1, . . . , ξk) ∈ Rk is a vector valued random variable this
is easy to define analogously An1,...,nk(x1, . . . , xk) through relations

∂

∂xi
An1,...,nk(x1, . . . , xk) = niAn1,...,nk(x1, . . . , xk), 1 ≤ i ≤ k

EAn1,...,nk(ξ) = 1 if n1 + · · ·+ nk = 0 and 0 else.

If random variables ξ1, . . . , ξk are independent and admit respective
distributions ν1, . . . , νk, then

An1,...,nk(x1, . . . , xk) = A(ν1)
n1

(x1) · · ·A(νk)
nk

(xk).
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7.2 Memory models

The section aims at considering some models which Volterra expan-
sions may be explicitly determined.
As usual those memory models will be excited by iid innovations with
values in the measurable space (R,B(R)). They are solution of some
recursion:

Xt = M(Xt−1, Xt−2, . . . , ξt).

for iid inputs an some explicit function RN × R→ R.
In some cases more complicated spaces may by used for innovations
and for the model but this section is essentially restricted to real
values for simplicity.

7.2.1 Bilinear models

For simplicity we first

Proposition 7.2.1. Consider the Markov bilinear model

Xn = (a+ bξn)Xn−1 + ξn, (7.1)

Assume that for some p ≥ 1,

αp = E|a+ bξ0|p < 1.

Then there exists stationary solution of this Markov recursion, this
solution is in Lp and writes:

Xn =

∞∑
k=0

ξn−k

k−1∏
j=0

(a+ bξn−j).

Proof. It is simple to check that the previous series in normally
convergent since independence entails

‖ξn−k
k−1∏
j=0

(a+ bξn−j)‖p = ‖ξ0‖p‖a+ bξn−j‖kp.

In order to check the result write

Xn =

m∑
k=0

ξn−k

k−1∏
j=0

(a+ bξn−j) +Xn−m

m−1∏
j=0

(a+ bξn−j).
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Then previous remark implies that the main term in this equality is
a convergent as m ↑ ∞, and its Lp−norm is thus bounded above by
some A > 0.
Now this also entails (1− α)‖X0‖p ≤ A.

Bilinear models (7.1) behave quite analogously to some white noise.
Their covariances present some bumps and then rapidly decay. In
Figure 7.1 we present in fact empirical covariances, the convergence
of those expressions is considered later on: see Remark 9.1.3 and Ex-
amples 9.1.3 include the current model. For such models a recursion
is also available for the sequence of covariances.

Exercise 19. Assume that Eξ0 = 0, Eξ2
0 = 1 and consider the

L2−strictly stationary solution (Xt) of eqn. (7.1). Set M = EX2
0

and C = Cov (X0, X1).

1. Prove that

EX0 = 0, M =
1

1− (a2 + b2)
, C =

a

1− (a2 + b2)

2. From empirical estimates of the previous expressions

M̂ =
1

n

n∑
k=1

X2
k , Ĉ =

1

n− 1

n∑
k=2

XkXk−1,

deduce that the following estimates of parameters a, b in the
model are consistent:

â =
M̂

Ĉ
, b̂ =

√
M̂2 − Ĉ2 − M̂

M̂

Hints.

1. From independence of ξt with Xt−1 and eqn. (7.1):
EX1 = aEξ0 , EX2

1 = E(a+ bξ0)2EX2
0 +Eξ2

0 hence M(1− (a2 +
b2) = 1, moreover C = EX0X1 = aM .

2. The previous relations are rewritten accurately:

C = aM, M2(1− (a2 + b2)) = M2(1− b2)− C2 = M
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Figure 7.1: Bilinear model.

hence Mb2 = M2 − C2 −M , thus

a =
M

C
, b =

√
M2 − C2 −M

M

See results in § 7.3.3 for a formal justification and the con-
sistency of those estimators, namely the ergodic theorem ap-
plies to prove a.s. consistency of those estimates (Corollary
9.1.3) and a

√
n−CLT also applies to get asymptotic confidence
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bounds for those estimates. The ∆−method applies to transfer
those properties to the proposed plug-in estimates.

One variant for this model (7.1) writes

Xn = h(ξn)Xn−1 + ξn

and, in case E|h(ξ0)| < 1, a stationary solution still writes

Xn =

∞∑
k=0

ξn−k
∏
j<k

h(ξn−j).

Notice that analogue expressions may be provided under more com-
plicated assumptions for models like

Xn = HnXn−1 + ξn

for some adapted and stationary sequence Hn eg.

Xn = ξn +HnXn−1

= ξn +Hn(ξn−1 +Hn−1Xn−2) = ξn + ξn−1Hn +Xn−2HnHn−1

= ξn + ξn−1Hn + (ξn−2 +Hn−2Xn−3)HnHn−1

= ξn + ξn−1Hn + ξn−2HnHn−1 +Hn−2Xn−3HnHn−1

= · · · · · · · · · · · · · · · · · ·

If
∑∞
k=0 ‖ξn−k

∏
j<kHn−j‖p <∞ then the following series is conver-

gent in Lp, and it defines a solution of the previous recursion:

Xn =

∞∑
k=0

ξn−k
∏
j<k

Hn−j

In the case when Hn = (ξn, ξn−1, . . . , ξn−r+1) then Hn Xn−1 are not
independent anymore which needs additional moment conditions,

‖ξn−k
∏
j<k

Hn−j‖p = ‖ξn−k
∏

k−r<j<k

Hn−j‖p‖
k−r∏
j=0

Hn−j‖p

≤ ‖ξn−k
∏

k−r<j<k

Hn−j‖p‖H0‖(`−1)r
pr , if k = `r
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indeed this follows from Hölder inequality if k = `r that

(`−1)r∏
j=0

Hn−j ,

writes as the product of r products of products of (`− 1) products of
independent sequences. Assumptions

‖H0‖pr < 1, ‖H0 · · ·Hr−1ξr‖p <∞,

together ensure the Lp−convergence of the previous series.
The last relation holds if

‖ξ0‖qr <∞ and ‖H0‖q′pr <∞,

for q, q′ ∈ [1,+∞] with
1

q
+

1

q′
= 1.

7.2.2 LARCH(∞)−models

Theorem 7.2.1. Consider the general non-Markov model solution
of the recurrence equation of the LARCH(∞)−equation:

Xn =

b0 +

∞∑
j=1

bjXn−j

 ξn.

A Lp−valued strictly stationary solution of this recursion writes

Xn = b0

∞∑
k=1

∞∑
l1=1

· · ·
∞∑
lk=1

bl1 · · · blkξn−l1ξn−l1−l2 · · · ξn−(l1+···+lk)

= b0

∞∑
k=1

∞∑
0<j1<···<jk=1

bj1bj2−j1 · · · bjk−jk−1
ξn−j1ξn−j2 · · · ξn−jk

Under condition

‖ξ0‖p
∞∑
k=1

|bk| < 1.
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Hints. Indeed, this is easy to derive from independence of each factor
that: ‖ξn−j1ξn−j2 · · · ξn−jk‖p = ‖ξ0‖kp.

If now the variables ξn are centered and admit a finite variance the
previous representation still holds in L2 if

Eξ2
0

∞∑
k=1

b2k < 1.

This assumption allows long rand dependent behaviors as proved in
Giraitis et al. [Giraitis et al., 2012].
A vector valued variant of this model as well as a random field variants
have both been developed.
Usual ARCH–models (Yn)n∈Z are such that squares Xn = Y 2

n satisfy
the previous equation.
They are defined through a sequence of nonnegative real numbers (bj)
with bj = 0 if j is large enough or a centered sequence of independent
identically distributed random variables (ξj)

Yn =

√√√√b0 +

J∑
j=1

bjY 2
n−j · ξn.

In this case the vector valued model Yn = (Xn, . . . , Xn−J+1) is a
Markov process will values in RJ . Quote that the general model is
not J−Markov for any J > 0.

7.3 Stable Markov chains

Proposition 7.6 of [Kallenberg, 1997] proves that any Markov chain
(homogeneous in time) (Xt) with values in Rd for some d ≥ 1 may be
represented as the solution of a recursion or iterative random model
or autoregressive models assuming the Condition 1 below:

Xt = M(Xt−1, ξt). (7.2)

Condition 1. (ξt)t∈Z an independent identically distributed sequence
with values in a measurable space (E, E) for a measurable function M
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is a (measurable) kernel

M : (Rd,B(Rd))× (E, E)→ (Rd,B(Rd))

For several models the innovation space has to be specified differently.
Sometimes it will be Rd but sometimes a product space (associated
to thinning operators) or a point process distribution (associated to
Poisson processes) are needed.
The objective of the section is to determine simple conditions for such
iterative models to admit a stationary solution. Further we will see
that such solutions write as Bernoulli schemes (7.11).

Definition 7.3.1. Suppose that (ξt) is an independent identically
distributed with values in a space E, moreover for d ≥ 1 and for
some measurable space (E, E) (we denote by ‖ · ‖ any norm on Rd).
A stable Markov chain Xn ∈ Rd in Lp (p ≥ 1) is a solution of
a recursive stochastic equation (7.2) satisfying the conditions 1 and
∀u, v ∈ Rd:

∃a ∈ [0, 1), E‖M(u, ξ0)−M(v, ξ0)‖p ≤ ap‖u− v‖p, (7.3)

∃u0 ∈ Rd, |M(u0, ξ0)|p <∞. (7.4)

Condition 2. We assume in the previous definition as in [Duflo, 1996]
that such a model is contracting; this means that the kernel M(u, z)
fits the condition (7.3).

Condition 3. (Fixed Point) Suppose also that for some e ∈ E the
function u 7→M(u, e) admits a fixed point u0 (if E is a vector space
a simple change allow to suppose e = 0).

Proof. Define (U
(n)
t )t∈Z a Markov chain such that

U
(n)
t = u0 if t ≤ −n, and U

(n)
t = M(U

(n)
t−1, ξt) if t > −n.

Lipschitz condition implies with independence of inputs:

E
∥∥∥U (n)

0 − U (n+1)
0

∥∥∥p ≤ apE∥∥∥U (n−1)
0 − U (n)

0

∥∥∥p .
From a recursion

E
∥∥∥U (n)

0 − U (n+1)
0

∥∥∥p ≤ anpE ‖M(u0, ζ0)− u0‖p
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Hence U
(n)
0 → U0 (n → ∞) converges in Lp to a random variable

U0 ∈ Lp.
Moreover U

(n)
0 is measurable wrt the σ−algebra generated by {ξt, t ≤

0} hence this is also the case for U0. U0 may thus also be represented
as a function U0 = H(ξ0, ξ−1, . . .) of this sequence.
Then the sequence Xt = H(ξt, ξt−1, ξt−2, . . .) is a stationary solution
of the previous recursion.

Now the sequences (U
(0)
t )t and (U

(1)
t )t, satisfy

U
(0)
0 = u0,

U
(0)
1 = M(u0, ξ1) = H(ξ1, 0, 0, . . .),

U
(0)
2 = M(M(u0, ξ1), ξ2) = H(ξ2, ξ1, 0, 0, . . .)

and from a recursion for each t > 0,

U
(0)
t = V (ξt, ξt−1, . . . , ξ1, 0, 0, 0, . . .).

Analogously

U
(1)
t = H(ξt, ξt−1, . . . , ξ1, ξ0, 0, 0, . . .).

Hence γn = E1/p
∥∥∥U (0)

n − U (1)
n

∥∥∥p ≤ aγn−1 and

γn ≤ anγ0 = anE1/p ‖M(u0, ζ0)− u0‖p (7.5)

decays exponentially to 0 since a < 1. In fact the assumption that
u 7→M(u, e) admits a fixed point may simply be replaced by assump-
tion (7.4).

Only set U
(n)
−n = M(u0, ξ−n). In fact we obtain the following:

Theorem 7.3.1. Assume that conditions (7.4) and (7.3) hold for
some p ≥ 1.
The equation (7.2) admits a stationary condition in Lp such that for
each t ∈ Z, Xt is measurable wrt to the σ-algebra Ft = σ(ξs, s ≤ t).

Example 7.3.1. [Diaconis and Freedman, 1995] provide nice series
of examples for which the previous technique applies. One may also
refer to [Doukhan, 1994], [Doukhan and Louhichi, 1999], as well as
to the monograph [Dedecker et al., 2007].
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7.3.1 AR-ARCH–models

Proposition 7.3.1. Let d = 1, E = R and set

M(u, z) = A(u) +B(u)z (7.6)

for Lipschitz functions A(u), B(u), u ∈ R.
If

Lip(A) = sup
u6=v

|A(u)−A(v)|
|u− v|

then the stability conditions in Definition 7.3.1 hold if p = 2 and
Eξt = 0 with

a2 = (Lip(A))
2

+ Eξ2
0 (Lip(B))

2
< 1.

and if p ≥ 1 in case

a = Lip(A) + ‖ξ0‖pLip(B) < 1.

Proofs. Note that Minkowski inequality implies that for p ≥ 1,

‖M(u0, ξ0)‖p ≤ ‖A(u0)‖+ ‖B(u0)‖‖ξ0‖p,
and

‖M(u, ξ0)−M(v, ξ0)‖p ≤ ‖A(u)−A(v)‖+ ‖B(u)−B(v)‖‖ξ0‖p,

which allows to derive the second point of the Proposition.
If p = 2 then

E(M(u, ξ0)−M(v, ξ0))2 = (A(u)−A(v))2 + (B(u)−B(v))2Eξ2
0

+ 2(A(u)−A(v))(B(u)−B(v))Eξ0

and the last rectangle term simply vanishes from Eξ0 = 0, this allows
to improve the previous bound, indeed

(Lip(A))
2

+ Eξ2
0 (Lip(B))

2 ≤ (Lip(A) + ‖ξ0‖2Lip(B))
2
.

Those relations yield a simple way to conclude.

Examples of such models follow:
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Une trajectoire d"un processus ARCH(2)

Figure 7.2: ARCH(2)–trajectory.

Example 7.3.2 (Some special cases).

• Non-linear AR(1)–models (B ≡ 1) satisfy the equation

Xn = A(Xn−1) + ξn.

• Stochastic volatility models (A ≡ 0) are solution of the equation

Xn = B(Xn−1)ξn.

• The AR-ARCH(1)–classical models is solution of equation

Xn = αXn−1 +
√
β + γ2X2

n−1 · ξn.

Here A(u) = αu and B(u) =
√
β + γ2u2 for α, β, γ ≥ 0. Lip-

schitz constant writes a = α2 + Eζ2
0γ from a direct calculation

of the derivatives A′(u) = α and

|B′(u)| = γ2|u|√
β + γ2u2

= γ ·
√
γ2u2√

β + γ2u2
≤ γ.
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This model is defined conditionally wrt to its past history:

Xt | Ft−1 ∼ N (αXt−1, β + γ2X2
t−1),

quote that the above recursion is just the simplest way to get
such conditional distributions for Gaussian innovations.

• ARCH(2)–models are solutions of equations

Xt = σtξt, σ2
t = α2 + β2X2

t−1 + γ2X2
t−2

Their trajectories may be seen in Figure 7.2.

0 200 400 600 800 1000
−30
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Figure 7.3: A GARCH(1,1)–trajectory.

• GARCH(1,1)–models are solutions of equations

Xt = σtξt, σ2
t = α2 + β2X2

t−1 + γ2σ2
t−1.

This is clear through iterations that one may rewrite such mod-
els as

σ2
t = α2 +

∞∑
k=1

β2
kX

2
t−1,
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and such models have also be designed for financial purposes for
their clustering aspects and trajectories may be seen in Figure
7.3.

7.3.2 Moments of ARCH(1)-models

We are interested here to check that recursive models without low
order moments may be generated from inputs with all finite moments.
Consider the simplest ARCH-model

Xt =
√
β + γ2X2

t−1 · ξt.

Check that the function p 7→ ‖ξ0‖p is monotonically non-decreasing
from Jensen inequality (Proposition A.1.1) applied with t 7→ tr for
r ≥ 1. If |ξ0| is not constant a.s. this function is strictly increasing.
E.g. if |ξ0| ∈ {0, a} then

‖ξ0‖p = (1 + apP(|ξ0| = a))1/p.

More precisely the forthcoming Lemma will give a precise answer.
Hence if γ‖ξ0‖2 = 1 the previous equation admits a strictly station-
ary solution in Lp for each p < 2. Moreover this solution is not
L2−integrable. Else indeed:

EX2
t = (β + γ2EX2

t−1)‖ξt‖22 = β‖ξt‖22 + EX2
t−1 (2).

For the AR-LARCH models with centered inputs the limit condition

α2 + γ2Eξ2
0 = 1

analogously implies that any solution of this equation does not have
second order moment. Also there exists a Lp−solution of this equa-
tion in case p is small enough in case |ξ0| is not constant. This is
simple to see if either α of γ = 0.

Lemma 7.3.1. Let Z ≥ 0 be a non-negative and non a.s. constant
random variable such that EZm <∞ for some m > 0 then the func-
tion p 7→ ‖Z‖p defined (0,m]→ R+ is strictly monotonic.
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Proof. The present proof follows from a personal communication with
Adam Jakubowski.
With Z = |ξ0|p we need to prove that if p′ > p and r = p′/p then
EZ ≤ ‖Z‖r.
As in the proof of (A.2) Jensen inequality for g(u) = ur with r =
p′/p > 1 we consider an affine minorant f(u) = au+b for the function
g with f(z) = g(z) for some z to be defined (a = rzr−1 makes
f ′(z) = g′(z) and b = (1− r)zr then does f(z) = g(z)).
Now if u 6= z then f(u) < g(u) hence Ef(Z) < Eg(Z) because Z is
not a.s. a constant.
Let now z = EZ then Ef(Z) = (EZ)r < Eg(Z) = EZr.
This is enough to conclude.

7.3.3 Estimation of LARCH(1)–models

This section aims at describing some important features of LARCH(1)–
models in order to provide some simple estimators of their parame-
ters as this was already sketched in Exercise 19. Ideas are essentially
those from Yule-Walker equations, § 6.3, and the main point is a MA–
representation with L2−weak-white noise inputs.
Besides (ξt) is an iid real valued sequence with E|ξ0|p <∞ for some
p > 0 and

Zt = (β + δZt−1)ξt (7.7)

Quote that even though covariances of the model appear to decay
quite rapidly, the behavior of trajectory looks quite erratic (Figure
7.4).

Lemma 7.3.2. Let p > 0 a fixed positive number. Then assumption
|δ| · ‖ξ0‖p < 1 implies that a unique stationary solution exists and it
is in Lp.

Proof. |δ|‖ξ0‖p < 1 is the contraction constant in this case. Now the
solution of the equation is the limit of a polynomial in the innovations
and thus writes as a Bernoulli shift in Lp.

A first proposal of estimators was provided in § 4.4.2 (the Whittle
estimator of the parameter θ = (β, δ). It needs explicit expressions
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Figure 7.4: A LARCH(1)–model.
Quote that even though covariances of the model appear to decay

quite rapidly, the behavior of trajectory looks quite erratic.

of Z’s spectral density (or equivalently of all the covariances of Z,
which may be quite heavy.
In § 4.5 the QMLE of such Markov chains

Zt = ξtσθ(Xt−1)

is considered in case ξt ∼ N (0, 1); here the transition probability
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density writes

πθ(x, y) =
1√

2π(β + δx)2
exp(−1

2

y2

(β + δx)2
)

the QMLE of (Zt) is now the couple θ = (β, δ) minimizing the ex-
pression

Lθ(Z1, . . . , Zn) =

n∑
t=2

Z2
t

(β + δZt−1)2
+ log(β + δZt−1)2

This estimator is considered in the most general situations in the
monograph [Straumann, 2005].
Anyway in our simple situation we choose a more direct way to esti-
mate the parameters. It will result in simple empirical estimators.

Lemma 7.3.3 (Close expressions of moments). Let (Zt) be the sta-
tionary solution of eqn. (7.7), we assume that Zt ∈ Lp.

1. Assume that p ≥ 1 then m = EZ0 = βEξ0/(1− δ).

2. Assume that p ≥ 2 and assume Eξ0 = 1 and set ν = Eξ2
0 then

M := EZ2
0 =

νβ2(1 + δ)

(1− δ)(1− νδ2)

3. Assume now that p ≥ 3 and that Eξ0 = Eξ3
0 = 0, then:

M = EZ2
0 =

νβ

1− νδ2

Set ` = Cov (Z0, Z
2
1 ) = EZ0Z

2
1 the leverage of Z then:

` = 2νβδM =
2ν2β2δ

1− νδ2
.

4. Assume now that p ≥ 3 and that Eξ0 = 0 and Eξ3
0 6= 0, then:

M = EZ2
0 =

νβ

1− νδ2

Set η = Eξ3
0 then:

P = EZ3
0 =

ηβ(β2 + 3δ2M)

1− ηδ3
.
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Proofs.

1. From L1−stationarity and independence: EZ0 = Eξ0(β+δEZ0).

2. From independence and then L2−stationarity:

EZ2
0 = νE{(β + δZ0)2}

= ν(β2 + 2βδEZ0 + δ2EZ2
0 )

= ν

(
β2 +

2β2δ

1− δ
+ δ2EZ2

0

)
= ν

(
β2(1 + δ)

1− δ
+ δ2EZ2

0

)

3. Note that Eξ0 = 0 then as before we get the identity EZ2
0 =

ν(β2 + δ2EZ2
0 ), thus

M = EZ2
0 =

νβ

1− νδ2
.

We have here Eξ3
0 = 0, hence:

` = νEZ0(β + δZ0)2

= ν(2βδEZ2
0 + δ2EZ3

0 )

= 2νβδEZ2
0 (7.8)

=
2ν2β2δ

1− νδ2

4. From independence

P = EZ3
1 = Eξ3

1E(β + δZ0)3

Using the binomial formula yields the result.

All the possible cases when moments exist have thus been considered.
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Lemma 7.3.4. A.s. consistent estimates of m = EZ0,M = EZ2
0 ,

P = EZ3
0 and ` are provided if respectively p ≥ 1, 2, 3 by

m̂ =
1

n

n∑
k=1

Zk, M̂ =
1

n

n∑
k=1

Z2
k ,

P̂ =
1

n

n∑
k=1

Z3
k ,

̂̀ =
1

n− 1

n∑
k=1

ZkZk+1

Proof. Quote that from Proposition 7.2.1, the process Zt admits
an explicit chaotic expansion with respect to the iid sequence (ξt),
thus it is ergodic from the examples following Corollary 9.1.3. The
ergodic theorem (Corollary 9.1.3) proves a.s. convergence of those
expressions.

From the above results we derive simple empirical estimators through
the ∆−method, they are built from empirical estimators explicited
by Lemma 7.3.4:

Corollary 7.3.1. Assume that |δ|‖ξ0‖1 < 1 and β = 1 then an a.s.
consistent estimator of δ writes

δ̂ = 1− 1

m̂

Corollary 7.3.2. Assume that |δ|‖ξ0‖2 < 1 and Eξ0 = 1,Eξ2
0 = ν

then a.s. consistent estimators of β, δ write:

δ̂ =

√√√√ νM̂ − m̂2

ν(M̂ − m̂2)
, β̂ =

1−

√√√√ νM̂ − m̂2

ν(M̂ − m̂2)

 m̂

Remark 7.3.1. Applying the previous results to the ARCH(1) model

Xt =
√
β + δX2

t−1 · ζt.

is simple since Zt = X2
t is a LARCH(1)–model with innovations

ξt = ζ2
t hence Eξ0 6= 0 and may be chosen equal to 1 and ν = Eζ4

0 .
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Proof. β = (1− δ)m thus

m2(1− δ2)

1− νδ2
= M

and m2(1 − δ2) = (1 − νδ2)M implies νδ2(νM −m2) = (M −m2),
quote that VarZ0 = M −m2 ≥ 0.
Also, even though Cauchy-Schwarz inequality entails ν ≥ 1 the above
relation entails M − νm2 = νm2Var ξ0 ≥ 0 and the following expres-
sion is well defined:

δ =

√
M − νm2

ν(M −m2)
, β =

(
1−

√
M − νm2

ν(M −m2)

)
m

Now the corresponding β̂, δ̂ are thus consistent estimators.

Corollary 7.3.3. Assume that |δ|‖ξ0‖3 < 1, Eξ0 = 0,Eξ2
0 = ν, ,Eξ3

0 =
0 then a.s. consistent estimators of β, δ write:

δ̂ = −1 +

√
1 + ν ̂̀, β̂ =

M̂

ν

(
2

√
1 + ν ̂̀− (1 + ν ̂̀))

Remark 7.3.2. As as special case of the situation 3. in Lemma
7.3.3 quote that for the symmetric innovations with 3 moments, we
have indeed Eξ0 = Eξ3

0 = 0.
In the special case P(ξ0 = ±1) = 1

2 of Rademacher distributed inputs
and β = 1, [Doukhan et al., 2009] prove that the model is not strong

mixing if δ ∈
]

3−
√

5
2 , 1

2

]
.

Moreover `δ2 + 2δ − 1 = 0 admits the solution δ = −1 +
√

1 + `.
Indeed the other solution of the previous second degree equation is
not in ]− 1, 1[.

Proof. Relations β, δ > 0 imply with its existence that ` > 0. Now
eqn. (7.8) together with νβ = M(1 − δ2) entails `(1 − νδ2) = 2δM
thus δ is the positive solution of the second order equation

ν`δ2 + 2δM − ` = 0
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hence δ = −1 +
√

1 + ν`.

β =
M

ν

(
1−

(
− 1 +

√
1 + ν`

)2
)

=
M

ν

(
2
√

1 + ν`− (1 + ν`)
)
.

The plug-in empirical estimate takes the same form as above.
Depending on the sign of ` which is that of the product β · δ one may
choose the other solution of the equation δ = −1−

√
1 + ν` < 0.

Remark 7.3.3. Assume that |δ|‖ξ0‖3 < 1, Eξ0 = 0,Eξ2
0 = ν,Eξ3

0 =
η 6= 0 and β, δ > 0 then a.s. consistent estimators of β, δ write
analogously by solving eqns. 4. in Lemma 7.3.3 and replacing M,P
by their empirical counterparts M̂, P̂ .
To this aim simply inject

β =
M

ν(1− νδ2)

in the definition of P and solve the remaining equation wrt δ

P =
ηβ(β2 + 3δ2M)

1− ηδ3
.

Unfortunately the resulting equation appears as a polynomial of degree
3 wrt to the variable δ2 hence the solution would result in a pretty
complicated form on the Cardan formula which provides the roots of
3rd degree polynomials.

7.3.4 Branching models

Here d = 1 and E = RD+1 for some D ≥ 2 and we choose again
m = 2.
Let ξt =

(
ξ

(0)
t , ξ

(1)
t , . . . , ξ

(D)
t

)
be such that

• ξ(0)
t is independent of

(
ξ

(1)
t , . . . , ξ

(D)
t

)
,

• Eξ(i)
t ξ

(j)
t = 0 if i 6= j in case i, j ≥ 1 and
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• P(ξ
(0)
t /∈ {1, 2, . . . , D}) = 0.

If the functions M1, . . . ,MD are Lipschitz on R satisfying assump-
tions (7.3) and (7.4) with constants aj > 0 for each j = 1, . . . , D:

‖Mj(u, ξ
(j)
0 )−M(v, ξ

(j)
0 )‖p ≤ aj‖u− v‖, (∀u, v ∈ Rd)

‖Mj(u, ξ0)‖p < ∞. (∃u ∈ Rd)

We set

M
(
u,
(
z(1), . . . , z(D)

))
=

D∑
j=1

Mj(u, z
(j)) I1(z(0) = j),

for (z(0), . . . , z(D+1)) ∈ RD.
The previous contraction assumption writes with the Euclidean norm
‖ · ‖ if

a =

D∑
j=1

ajP(ξ
(0)
0 = j) < 1.

Now in case p = 2 we also improve the result in case Eξ(j)
0 = 0 and

we denote

a2 =

D∑
j=1

a2
j P(ξ

(0)
0 = j) < 1.

For example in case Mj(u, z) = Aj(u) + z we have aj = LipAj :

• if D = 2 and ξ
(1)
t ∼ b(p) are independent and Bernoulli dis-

tributed and independent of the centered and independent iden-

tically distributed real valued sequence ξ
(2)
t ∈ L2 andM1(u, z) =

u+ z, M2(u, z) = z the previous relation holds if p < 1.
This model is defined through the equation

Xn =

{
Xn−1 + ξ

(2)
n , if ξ

(1)
n = 1

ξ
(2)
n , if ξ

(1)
n = 0

Its trajectories are simulated in Figure 7.5.

Exercise 20. Identify the parameters (p, µ), p = P(ξ
(1)
t = 1)

and µ = Eξ(2)
t , in this model.
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Branching models

Time

x

0 50 100 150 200

-2
-1

0
1

2
3

4

Figure 7.5: A trajectory of a switching model.

Hints. Use a moment method for m = EX0 and M = EX2
0 .

Set q = 1 − p and ν = E = E(ξ
(2)
t )2 (assumed to be known)

then
m = qµ+ p(µ+m) = µ+ pm⇒ m =

µ

q

and

M = qν + p(M + 2µm+ ν) = pM + ν + 2µ2 p

q

then
M =

ν

q
+ 2µ2 ν

q2
.

Thus relation q = µ
m entails M = νm/µ+ 2νm2

µ =
νm

M − 2νm2
, p = 1− ν

M − 2νm2

expressions respectively fitted by

µ̂ =
νm̂

M̂ − 2νm̂2
, p̂ = 1− ν̂

M̂ − 2νm̂2
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The ergodic theorem proves the consistency of such estimates.

• if D = 3 and ξ
(1)
0 = 1− ξ(2)

0 ∼ b(p) is again independent of the

centered random variable ξ
(3)
0 ∈ L2 we get random regime mod-

els if A3 ≡ 1 and the contraction condition writes if E
∣∣∣ξ(3)

0

∣∣∣2 <
∞ as

a = p (Lip(A1))
2

+ (1− p) (Lip(A2))
2
< 1

This model is defined through the recursion

Xn =

{
A1(Xn−1) + ξ

(3)
n , if ξ

(1)
n = 1

A2(Xn−1) + ξ
(3)
n , if ξ

(1)
n = 0

7.3.5 Integer valued autoregressions

Definition 7.3.2. Let P(a) denote a family of integer valued distri-
butions with mean a. The Steutel-van Harn (or Thinning) operator
is defined if x ∈ N as

a ◦ x =

x∑
i=1

Yi, for x ≥ 1, and 0 else.

for a sequence of independent identically distributed random variables
with marginal distribution Yi ∼ P(a). The random variables Yi are
also assumed to be context free, ie. independent of any past history.

For example Galton-Watson processes with immigration (naturally
called INAR(1)–process) fits the simple equation

Xt = a ◦Xt−1 + ζt

for another independent identically distributed and integer valued
sequence (ζt) independent of this operator. This model is simulated
in Figure 7.6. This means that for an independent identically dis-
tributed triangular array (Yt,i)t∈Z,i∈N we have

Xt =

Xt−1∑
i=1

Yt,i + ζt
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INAR process with a=0.5

Time

X

0 20 40 60 80 100

0
1

2
3

4

Figure 7.6: INAR(1)–model.

Hence we again write this as a model with independent and identically
distributed innovations (ξt)t∈Z

Xt = M(Xt−1, ξt) with ξt = ((Yt,i)i≥1, ζt)

Here M(0, ξ0) = ζ0 hence ‖M(0, ξ0)‖p = ‖ζ0‖p.
Now for y > x and p ≥ 1 we derive

M(y, ξ0)−M(x, ξ0) =

y∑
x+1

Yi

thus
‖M(y, ξ0)−M(x, ξ0)‖p ≤ a|y − x|.

Many other integer models write the same idea.
E.g. the bilinear model

Xt = a ◦Xt−1 + b ◦ (Xt−1ζt) + ζt
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As an exercise, one may check assumptions on a, b and on ζ0’s distri-
bution such that the assumptions of the previous theorem hold.
Integer valued extensions of AR(p) processes are also easy to define
as well as vector valued models.

7.3.6 Generalized Linear Models

Another way to produce attractive classes of integer valued models
follows the same lines as for AR-ARCH models. Generalized Linear

GLM Poisson process

Time

X

5 10 15 20

0
1

2
3

4
5

Figure 7.7: A GLM-Poisson trajectory.

Models (GLM) are derived produced from [Kedem and Fokianos, 2002].
Assume that (V (u))u∈U is a process defined on a Banach space U
equipped with a norm ‖ · ‖ and f : E × U→ E is a function then

Xt|Ft−1 ∼ V (Ut), Ut = f(Xt−1, Ut−1)

and Ft−1 = σ(Zs/s < t) denotes the historical filtration associated
to the process Zt = (Xt, Ut).
The usual way to define ARCH models follows with U = R, V = W
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(the Brownian motion) and

f(x, u) =
√
β + γ2x2 · u.

Set P(λ) the Poisson distribution with parameter λ Analogously Pois-
son GLM models (integer valued) are defined as:

Xt | Ft−1 ∼ P(λt), λt = f(Xt−1, λt−1)

Definition 7.3.3 (Poisson processes). A unit Poisson process is a
process (P (λ))λ≥0 such that

• P (λ) ∼ P(λ) follows a Poisson distribution with parameter λ,

• It satisfies moreover that P (λ) − P (µ) is independent of the
sigma-field σ(P (ν); ν ≤ µ) if λ > µ ≥ 0, and

• The distribution of P (λ)− P (µ) is P(λ− µ) for λ > µ ≥ 0.

A simple solution of the previous equation writes as a recursive system

Xt = Pt(λt), λt = f(Xt−1, λt−1) (7.9)

for some independent identically distributed sequence Pt of unit Pois-
son processes.
Note that Xt is not Markov and that either (λt) or Zt = (Xt, λt) are
Markov processes - equivalently iterative systems Xt = M(Xt−1, ξt).
As an exercise on may check the existence of L1 solutions of those
processes represented with affine function f(x, `) = a + bx + c` in
Figure 7.7.
A main point relies on the fact that for any Poisson process

|P (u)− P (v)| ∼ P (|u− v|)

Consider the bivariate model Zt = (Xt, λt) on R+×N ⊂ R2 equipped
with the norm ‖(u, `)‖ = |u|+ ε|`| for a given parameter ε > 0. Now
for Z ∈ R2 a random vector we get, ‖Z‖1 = E‖Z‖.
Then this GLM model writes with

M((x, `);P ) = (P (f(x, `)), f(x, `)).

Then it is possible to check assumptions of this Section:



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 153 — #157 i
i

i
i

i
i

[SEC. 7.3: STABLE MARKOV CHAINS 153

• M((0, 0), P ) is a vector with a first random coordinate P(f(0, 0))
and and a deterministic second coordinate f(0, 0): it thus ad-
mits moments eg. with order 1.

•

M((x, `), P )−M((x′, `′);P )

= (P (f(x, `))− P (f(x′, `′)), f(x, `)− f(x′, `′)),

thus

‖M((x, `), P )−M((x′, `′);P )‖1 = (1 + ε)|f(x, `)− f(x′, `′)|.

If the function f is Lipschitz with

|f(x, `)− f(x′, `′)| ≤ a|x− x′|+ b|`− `′|

then relations (1 + ε)a < 1 and (1 + ε)b < ε imply together the
relation (7.3).

Then, some cases may be considered:

• the stability holds if Lip f < 1
2 (set ε = 1).

• if f(x, `) ≡ g(x) only depends on x (analogously to ARCH-
cases), the stability condition holds if Lip g < 1 (ε = 0).

• if f(x, `) ≡ g(`) only depends on ` (analogously to the MA-
case), the stability condition holds if Lip g < 1 (with a large
ε).

Exercise 21. In equation (7.9) consider the function f(x, `) = a +
bx+ c`. Assume that coefficients are such that a stationary solution
of the equation (Xt, λt)t exists in L2. Then EX0 = Eλ=

a
b+c0. Set

µ = EX0 then µ = a + (b + c)µ. As before such considerations are
useful to fit the model.

7.3.7 Non-linear AR(d)-models

The (real valued) non linear auto-regressive model with order d writes:

Xt = r(Xt−1, . . . , Xt−d) + ξt, (7.10)
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The vector valued sequence Un = (Xn, Xn−1, . . . , Xn−d+1) writes as
a Markov models with values in Rd. Here E = R and

M(u1, . . . , ud, z) = A(u1, . . . , ud) + (1, 0, . . . , 0)z,

where
A(u1, . . . , ud) =

(
r(u1, . . . , ud), u1, . . . , ud−1

)
.

Theorem 7.3.2. Assume E|ξ0|m <∞ and

|r(u1, . . . , ud)− r(v1, . . . , vd)| ≤
d∑
i=1

ai|ui − vi|

for a1, . . . , ad ≥ 0 such that

αd ≡
d∑
i=1

ai < 1.

Then equation 7.10 admits a stationary solution and this solution is
in Lm.

Proof. Define a norm on Rd by

‖(u1, . . . , ud)‖ = max{|u1|, α|u2|, . . . , αd−1|ud|}.

For u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ Rd set wj = |uj − vj | for
j = 1, . . . , d:

‖A(u)−A(v)‖ ≤ max
{
αd max{w1, . . . , wd}, αw1, . . . , α

d−1wd−1

}
≤ αmax

{
αd−1 max{w1, . . . , wd}, w1, . . . , α

d−2wd−1

}
≤ max{w1, αw2, . . . , α

d−1wd} ≡ α‖u− v‖.

Duflo condition (7.3) thus holds with a = αm < 1.

7.4 Bernoulli schemes

The following approach to time series modeling is definitely simpler
and sharper but it is also less intuitive so that it is set only at the
end of the chapter.
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7.4.1 Structure and tools

Definition 7.4.1 (unformal definition). Such models write

Xn = H(ξ(n)), with ξ(n) = (ξn−t)t∈Z. (7.11)

the function H is thus defined EZ → R and ξ(n) = (ξn−k)k∈Z is
again an independent identically distributed sequence with a shifted
time index.
Suppose ξ = (ξk)k∈Z to take values in a measurable space (E, E).
We consider some examples of such situations.
An important special case is that of causal processes. H : EN → R
and we write in a simpler formulation

Xn = H(ξn, ξn−1, ξn−2, . . .).

Such a stationary process is said causal since the history of X before
the epoch n is included in that of ξ. Mathematically expressed this
means

σ(Xs/s ≤ n) ⊂ σ(ξs/s ≤ n).

Fix e ∈ E we denote ξ̂(n) the sequence with current element ξj , if
|j| ≤ n and e if |j| > n. Let m ≥ 1 a simple condition to define such
models writes

∞∑
n=1

ζn <∞, (7.12)

with

ζpn = E
∣∣∣H (ξ̂(n)

)
−H

(
ξ̂(n− 1)

)∣∣∣p . (7.13)

Due to the completeness of the space Lp a normally convergent series
is convergent and:

Proposition 7.4.1. Let p ≥ 1 be such that relation (7.12) holds then
the sequence (Xn)n∈Z defined this way is stationary and Lp−valued.

Proof. This relation indeed implies the convergence Lp of the well

defined sequence H
(

(ξj)|j|≤n

)
.

To prove the result a bit more is needed and on extends the previous
remark to the random variable Zn = (Xn+1, . . . , Xn+s) ∈ Rs.
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This is thus the limit of a sequence of Rs−valued random variable
with a distribution independent of n.

Example 7.4.1 (Bernouilli shifts).

• Let H : Rm → R the process Xn = H(ξn, . . . , ξn−m+1) is an
m−dependent sequence i.e. σ{Xj , j < a} and σ{Xj , j > a+m}
are independent σ−algebras.

• Stochastic volatility model. Let Yn = H(ξn, ξn−1, . . . ) be a
causal Bernoulli scheme such that the independent identically
distributed innovations ξn ∈ L2 are centered.
Set

Xn = ξnYn−1 = ξnH(ξn−1, ξn−2, . . . ).

The sequence Xn is orthogonal and

Var (Xn|Fn−1) = Y 2
n−1.

This property indicates possible rapid changes adapted to model
the stock exchange.

• All the previous sections of the present chapter provide us with
a series of examples of this situation.

The previous definition 7.4.1 is really adapted to deal with the pre-
vious chaotic examples for which tails may be bounded.
A more general setting is adapted to prove the existence of a station-
ary processes.

Definition 7.4.2 (formal definition). Let µ a probability distribution
on a measurable space (E, E).
Consider an independent identically distributed sequence (ξn)n∈Z with
marginal law µ.
Set ν = µ⊗Z the law of (ξn)n∈Z on the space (EZ, E⊗Z). Then Lp(ν)
is the space of measurable functions ν−a.s defined on EZ and such
that

E|H ((ξn)n∈Z) |p <∞

An analogue definition holds with ν+ = µ⊗Z the law of (ξn)n∈N on
the space (EN, E⊗N).
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Remark 7.4.1. The spaces Lp(ν) and Lp(ν+) are Banach spaces
(complete normed vector spaces) equipped respectively with the norms

‖H‖p = (E|H ((ξn)n∈Z) |p)
1
p , for the general case,

= (E|H ((ξn)n∈N) |p)
1
p , for the causal case.

The definition of Bernouilli schemes is as in the unformal definition
7.4.1 and holds non-causal or causal schemes for elements H ∈ Lp(ν)
or Lp(ν+) respectively.
Moreover condition (7.12) implies with Proposition 7.4.1, a simple
sufficient condition for functions of infinitely many variables to exist
in those huge spaces.
The next subsection also proves that those assumptions are relevant
to prove short range conditions.

Proof of Theorem 7.3.1. A quite simple and elegant proof relies on the
previous notions proves moreover that there exists a unique element
H ∈ Lp(ν+) such that a stationary solution of eqn. (7.2) writes

Xt = H(ξt, ξt−1, ξt−2, . . .).

To this end consider the application

Φ : Lp(ν+)→ Lp(ν+), H 7→ K,

with
K(v0, v1, . . .) = M(H(v1, v2, . . .), v0).

Conditions (7.4) and (7.3) allow to prove that prove that K ∈ Lp(ν+)
if H ∈ Lp(ν+) (for this condition wrt ξ0 and use triagular inequality).
Consider the fixed point e as an element of Lp:

‖K‖p = E1/p|M(H(ξ1, . . .), ξ0)|p ≤ E1/p|M(e, ξ0)|p + a‖H − e‖p.

Now if H,H ′ ∈ Lp(ν+) then again conditioning with respect to
ξ1, ξ2, . . . implies

‖K −K ′‖p ≤ a‖H −H ′‖p.

The classical Banach-Picard fixed point theorem thus implies that Φ
admits a unique fixed point H?.
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This theorem also implies that the iterates Hm = Φm◦H0 converge to
this fixed pointH? of Φ. In other wordsXn,m = Hm(ξn, ξn−1, ξn−2, . . .)
converge in Lp to the stationary solution of the process as m ↑ ∞ for
each value of n.
Moreover the convergent rate is geometric:

‖Xn −Xn,m‖p = ‖Hm −H?‖p ≤ Cam. �

7.4.2 Coupling

This section explicits ways to couple such Bernouilli shifts. Decorre-
lation rates are also deduced. This will allow to derive quantitative
laws of large numbers for expressions of a statistical interest.
Those ideas are widely developed later in chapter 9 in order to un-
derstand how to derive limit theorems in distribution.

Let (ξ′k)k∈Z another independent identically distributed sequence in-
dependent of (ξk)k∈Z and with the same distribution.

For n ≥ 0 set ξ̃(n) = (ξ̃(n)k)k∈Z with

ξ̃(n)k =

{
ξk, if |k| ≤ n,
ξ′k, if |k| > n.

Then we set

δpn = E
∣∣∣H (ξ̃(n)

)
−H (ξ)

∣∣∣p . (7.14)

Definition 7.4.3. Assume that a Bernoulli shift satisfies limn δ
(p)
n =

0 with the above definition (7.14) then it will be called Lp−dependent.

Remark 7.4.2. Replace ξ̃(n) by

ξ̂(n)k =

{
ξk, if |k| 6= n,
ξ′k, if |k| = n.

leads to the fruitful physical measure of dependence by Wei Biao Wu.
The two previous proposals are couplings in the sense that they leave
unchanged the marginal distribution of the Bernoulli shift.
Another alternative is to set

ξ′(n)k =

{
ξk, if |k| ≤ n,
0, if |k| > n.
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which is essentially the same as ξ̃(n) and makes easy to define func-
tions of infinitely many variables as limits of functions of finitely
many variables in the Banach space Lp(ν+) from the fact that H(ξ′(n))
is a Cauchy sequence in case∑

n

‖H(ξ′(n))−H(ξ′(n− 1))‖p <∞

Now as an introduction to weak dependence conditions in § 11.4 we
note that:

Proposition 7.4.2 (Decorrelation). If the stationary process (Xn)n∈Z
satisfies E|X0|p < ∞ for p ≥ 2 and is as before depending if H is
unbounded or bounded yields:

|Cov (X0, Xk)| ≤ 4(E|X0|p)1/pδ[k/2],

≤ 4‖H‖∞δ2
[k/2].

If the Bernoulli scheme is causal the previous inequalities write:

|Cov (X0, Xk)| ≤ 2(E|X0|p)1/pδk,

≤ 2‖H‖∞δ2
k.

Remark 7.4.3. Such results imply short range dependence of the
process X in the sense of definition 4.3.1, in case the above covari-
ances are summable.

Proof. Use Hölder inequality after the relation:

Cov (X0, Xk) = Cov (X0 −X0,l, Xk) + Cov (X0,l, Xk −Xk,l),

which holds if 2l ≤ k when setting Xk,l = H
(
ξ̃(l)(k)

)
.

Recall that ξ̃(l)(k) is the sequence whose j−element writes ξk−j if
|j| ≤ l and ξ′k−j if |j| > l.
If the Bernoulli scheme is causal the relation simplifies since

Cov (X0, Xk) = Cov (X0, Xk −Xk,k).

Now factors 4 and 2 arise from the fact that covariances are expecta-
tions of a product minus the product of expectations: same bounds
are provided for both terms.
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An important question is the heredity of such quantities through
instantaneous images Yk = g(Xk). A large number of usual statistics
of interest write as functions of the process of interest.
Denote the corresponding expressions by δk,Y and δk,X , then:

Lemma 7.4.1. Assume that m ≥ 1 and g : R→ R satisfies Lip g ≡
L <∞. Set Yk = g(Xk) then:

δk,Y ≤ Lδk,X .

In case the function g is not Lipschitz such relations do not hold in
a general setting.
Anyway simple indicators gx(u) = I1{u≤x} are the convenient func-
tions to derive bounds for the empirical process (3).
We obtain:

Lemma 7.4.2. If p = 2 and if there exist constants c, C > 0 such
that on each interval P(X ∈ [a, b]) ≤ C|b − a|c, then the process
defined by Yx,n = I1{Xn≤x} satisfies:

δk,Yx ≤ 2(2C)2/(c+2)δ
c
c+2

k,X .

Proof. Set

gx,ε =

 1, if u ≤ x− ε,
0, for u ≥ x,
is affine, else.

Consider Yx,ε,n = gx,ε(Xn)
Then

|gx,ε(u)− gx,ε(v)| ≤ |u− v|/ε and δk,Yx,ε ≤ δk,X/ε.

Moreover

|δ2
k,Yx,ε − δ

2
k,Yx | ≤ 2P(X0 ∈ [x− ε, x]) ≤ 2Cεc.

3Those are the simplest discontinuous functions. They are classes of functions
with only one singularity. More general functions with finitely many discontinu-
ities may be analogously considered.
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So
δ2
k,Yx,ε ≤ δ

2
k,X/ε

2 + 2Cεc.

We then conclude with εc+2 = δ2
k,X/(2C).

Up to a constant the result remains valid for a function g Lipschitz-
continuous on intervals.

Remark 7.4.4. A control for the cumulative empirical distribution
follows:

VarFn(x) = O
(

1

n

)
, if

∞∑
k=0

δ
c/(c+2)
k,X <∞.

In case c = 1, which hold for X0’s distribution with a bounded density,
the condition writes

∞∑
k=0

δ
1/3
k,X <∞.

This holds for example in case the marginal law of X0 admits a
bounded density.

Remark 7.4.5. Quote that higher order moment inequalities are de-
rived from analogue ideas as in Chapter 12.
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Chapter 8

Associated processes

The notion of association or positive correlation was naturally intro-
duced in two different fields reliability [Esary et al., 1967] and sta-
tistical physics [Fortuin et al., 1971] to model a tendency that the
coordinates of a vector valued random variable admit analogue be-
haviors.
We defer a reader to the nice paper [Newman, 1984] for more details.
This notion deserves much attention since it provides a class of ran-
dom variables for which independence and orthogonality coincide (as
for the Gaussian case).
The notion of independence is more related to σ−algebras but in
those two cases it is related to the geometric notion of orthogonality.
Those remarks are of a wide interest for modeling dependence as this
is the aim of the forthcoming chapter 9.

8.1 Association

Definition 8.1.1. A random vector X ∈ Rp is associated if for
all measurable functions f, g : Rp → R, with E|f(X)|2 < ∞ and
E|g(X)|2 <∞ such that f, g are coordinatewise non decreasing

Cov (f(X), g(X)) ≥ 0

Definition 8.1.2. A random process (Xt)t∈T is associated is the vec-
tor (Xt)t∈F is associated for each finite F ⊂ T.

163
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Remark 8.1.1. Covariances of an associated process are non nega-
tive if this process is square integrable.

Example 8.1.1. Now we will present a worked example and WE
WILL SHOW that it fits weak dependence conditions in the forth-
coming chapter.

A real random variable is always associated indeed if X ′ is an inde-
pendent copy of X then calculus proves that

Cov (f(X), g(X)) =
1

2
E(f(X)− f(X ′)(g(X)− g(X ′)).

Hence for f, g monotonic this expression is nonnegative.
More generally:

Theorem 8.1.1 ([Newman, 1984]). Independent vectors are associ-
ated.

Theorem 8.1.2 ([Newman, 1984]). A limit in distribution of a se-
quence of associated vectors is associated.

Proof. A recursion is needed. A careful conditioning is needed. For
this one needs to prove that

Lemma 8.1.1. Let Z = (X,Y ) ∈ Rp+q and f : g : Rp+q → R such
that f(Z) and g(Z) ∈ L2. If X, Y are independent vectors then
F (x) = Ef(x, Y ) and G(x) = Eg(x, Y ) ∈ L2 for a.s. each x ∈ Rp.

Remark 8.1.2. In this case by setting U(x) = Cov (f(x, Y ), g(x, Y ))
we derive:

Cov (f(Z), g(Z)) = EU(x) + Cov (F (X), G(X)).

Hint. From Cauchy-Schwarz inequality one derive F (X), G(X) ∈ L2.

8.2 Associated processes

Definition 8.2.1. A process (Xt)t∈T is associated if for each S ⊂ T
finite, the vector (Xt)t∈S is associated.
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Remark 8.2.1. Heredity properties of association is very important
to handle applications involving associated processes.

Example 8.2.1. The following example inherit association proper-
ties

• A non-decreasing image of an associated sequence. Such hered-
ity property admits many consequences:

• A LARCH(∞)–model with nonnegative coefficients aj ≥ 0 and
inputs ξj ≥ 0:

Xt =
(
a0 +

∞∑
j=1

ajXt−j

)
ξt.

To check this, use a recursion, the point that a linear function

(x1, . . . , xp) 7→
p∑
j=1

bjxj ,

with nonnegative coefficients bj(= ajξt) is non-decreasing and
the fact that association is stable under limits in distribution.

• An autoregressive

• non-linear AR–model process solution of an equation

Xt = r(Xt−1, . . . , Xt−p) + ξt,

if the function r : Rp → R is a coordinatewise non-decreasing
function,

• INAR models
Xt = a ◦Xt−1 + εt,

or more general Integer Bilinear models

Xt = a ◦Xt−1 + b ◦ (εt−1Xt−1) + εt,

are associated if εt ≥ 0 is iid and integer valued, and if a◦
and b◦ are both thinning operators with non-negative random
variables.
Indeed one may write (X1, . . . , Xn) as a monotonic function of
independent sequences (thus associated).



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 166 — #170 i
i

i
i

i
i

166 [CHAP. 8: ASSOCIATED PROCESSES

8.3 A main inequality

A new concept is needed

Definition 8.3.1. Let f, f1 : Rp → R the we set f � f1 if both
function f ± f1 are coordinatewise nondecreasing.

Example 8.3.1. Assume that the function f satisfies

|f(y)− f(x)| ≤ a1|y1 − x1|+ · · ·+ ap|yp − xp|

for all vectors x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ Rp.
Then f � f1 if one sets

f1(x) = a1x1 + · · ·+ apxp

Proof. In order to prove this only work out inequalities by grouping
terms invoking x’s or y’s only:

−a1(y1−x1)−· · ·−ap(yp−xp) ≤ f(y)−f(x) ≤ a1(y1−x1)+· · ·+ap(yp−xp).

The previous inequalities apply to vectors x, y such that xi = yi
excepted for only one index 1 ≤ i ≤ p.
The corresponding inequalities exactly write f � f1. . .

An essential inequality follows:

Lemma 8.3.1 ([Newman, 1984]). Let X ∈ Rp be an associated ran-
dom vector and f, g, f1, g1 be measurable functions Rp → R then:

|Cov (f(X), g(X))| ≤ Cov (f1(X), g1(X)),

if those function are such that f(X), g(X), f1(X), g1(X) ∈ L2 and
f � f1, g � g1.

Proof. The 4 covariances

Cov
(
f(X) + af1(X), g(X) + bg1(X)

)
are non negative if a, b = −1 or 1, then add them 2 by 2 yields the
result.
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For this consider separetely the cases
• ab = −1 and
• ab = 1
corresponding to the couples (a, b) = (−1, 1), (1,−1) and (1, 1),
(−1,−1), respectively.

As a simple byproduct of the previous Lemma implies with Example
8.3.1 we derive the nice following result:

Theorem 8.3.1. Let (Y, Z) ∈ Ru×Rv be an associated vector in L2.
If for some constants a1, . . . , au, b1, . . . , bv ≥ 0, the functions f and
g satisfy respectively:

|f(y)− f(y′)| ≤
u∑
i=1

ai|yi − y′i|, ∀y, y′ ∈ Ru,

|g(z)− g(z′)| ≤
v∑
j=1

bj |zj − z′j |, ∀z, z′ ∈ Rv,

then:

|Cov (f(Y ), g(Z))| ≤
u∑
i=1

v∑
j=1

aibjCov (Yi, Zj) (8.1)

Remark 8.3.1. We thus derive that for each associated random vec-
tor in L2:

• Independence
If the vectors Y , Z admit pairwise orthogonal components then
they are stochastically independent as for the Gaussian case.

• Quasi-independence

|Cov (f(Y ), g(Z))| ≤ Lip f · Lip g

u∑
i=1

v∑
j=1

Cov (Yi, Zj)

≤ uvLip f · Lip g max
1≤i≤u

max
1≤j≤v

Cov (Yi, Zj)

This inequality means that the asymptotic dependence structure
of an associated random vector relies on its second order struc-
ture.
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This conducted to the definition of weak dependence and proves
that κ-weak dependence holds for associated models (see chap-
ter 11).

8.4 Limit theory

[Newman, 1984] proved the following elegant and powerful weak in-
variance principle.

Theorem 8.4.1 (Newman, 1984). If the condition

σ2 =

∞∑
n=−∞

Cov (X0, Xn) <∞,

holds for the stationary and associated process (Xn)n∈Z then

1√
n

[nt]∑
k=1

Xk → σWt in the Skohorod space D[0, 1].

Note that the condition precisely extends that obtained for the inde-
pendent identically distributed case since it reduces to EX2

0 < ∞ in
this case. It cannot be improved which also makes such conditions
so attractive.
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Dependences
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A first chapter in this part begins with the (central) ergodic theorem
which asserts that the strong law of large numbers (SLLN) works for
the partial sum process of most of the previously introduced models.
Assume that an unknown parameter for (Xn)n∈Z, a stationary se-
quence, is θ = EX0, this writes as:

Xn =
1

n
(X1 + · · ·+Xn)→n→∞ θ, a.s.

The question of convergence rates in this results is solved in the forth-
coming dependence types for stationary sequences.
Two additional chapter detail as much as possible more precise asymp-
totic results useful for statistical applications.
According to the fact that they are either LRD or SRD very different
asymptotic behaviors will be seen to occur including corresponding
rates.

nα(Xn − θ)→n→∞ Z, in distribution

with α = 1
2 , or > 1

2 according to the fact that SRD or LRD holds.
Asymptotic confidence bounds may thus be derived. Namely set
τ > 0 a confidence level then in case there there exists t > 0 with
P(Z ≤ t) = 1− τ , then:

P(θ ∈ [Xn − tn−α, Xn + tn−α])→n→∞ τ.

This also yields to goodness of fit tests for this mean parameter θ.
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Chapter 9

Dependence

9.1 Ergodic theorem

We thank Jérôme Dedecker for the present presentation.

Definition 9.1.1. A transformation T : (Ω,A)→ (Ω,A) defined on
a probability space (Ω,A,P) is bijective bi-measurable and P-invariant
if it is bijective, measurable, admits a measurable inverse and more-
over P(T (A)) = P(A) for all A ∈ A.
Note

I = {A ∈ A / T (A) = A}

the sub-sigma algebra of A containing all the T−invariant events.
A transformation is ergodic if A ∈ I implies P(A) = 0 or 1.

Remark 9.1.1 (Link to stationary processes). Let X = (Xn)n∈Zbe a
real valued stationary process defined on the probability space (Ω,A,P).
Then the image PX is a probability on the space

(
RZ,B(RZ)

)
. The

sigma-algebra B(RZ) is generated by elementary events:

A =
∏
k∈Z

Ak with Ak = R excepted for finitely many indices k.

The transformation T defined by

T (x)i = (xi+1) for x = (xi)i∈Z

173
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satisfies

T

(∏
k∈Z

Ak

)
=
∏
k∈Z

Ak+1.

It is bijective bimeasurable and P-invariant ; it is called the shift
operator.
Note J = X−1(I) the sigma-algebra image of I through X.
If T is ergodic (i.e. P(A) = 0 or 1 if A ∈ J ) then the process
X = (Xn)n∈Z is ergodic.

Example 9.1.1 (A non ergodic process). A very simple example of
notn ergodic process is Xt ≡ ζ for each t and for a non-constant rv.
Refining it to Xt = ξt+ζ,for each t ∈ Z provides a non trivial example
if (ξt) is independent identically distributed and independent of ζ. In
order to make it evident just assume e.g. that ξt ≥ 0 and ζ < 0, a.s.
Many other examples may be found in [Kallenberg, 1997].

Proposition 9.1.1. Let T be a bijective and bi-measurable P-invariant
transformation.
Let f : (Ω,A)→ (R,BR) be measurable with Ef2 <∞ then

Rn(f) =
1

n

n∑
k=1

f ◦ T k L2

−→n→∞ EIf.

Proof of Proposition 9.1.1. Let C denote the closure (in L2(Ω,A,P))
of the convex hull C of

E = {f ◦ T k / k ∈ Z}, (1).

From the orthogonal projection theorem (see e.g. théorème 3.81, page
124 in [Doukhan and Sifre, 2001]) there exists a unique f ∈ C with

‖f‖2 = inf{‖g‖2 / g ∈ C}.

If one prove
‖Rn(f)‖2 →n→∞ ‖f‖2

1C = C with

C =

{
I∑
i=1

aixi; ai ≥ 0, xi ∈ E,
I∑
i=1

ai = 1, I ≥ I
}
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then the proof of the projection theorem implies also

‖Rn(f)− f‖2 →n→∞ 0.

Moreover
Rn(f) = f +Rn−1(f) ◦ T.

Hence

‖f ◦ T − f‖2 ≤ ‖f ◦ T −Rn−1(f) ◦ T‖2 +
1

n
‖f‖2 + ‖Rn(f)− f‖2.

P-invariance of T implies that the frist term in the right hand member
of this inequality writes ‖f −Rn−1(f)‖2 → 0. Thus

f ◦ T = f.

Thus f is I-measurable.
Since

Rn(f)→ f, in L2

we also deduce
EIRn(f)→ EI f = f.

The fact that EIRn(f) = EIf allows to conclude.

In order to prove
‖Rn(f)‖2 →n→∞ ‖f‖2

consider a convex combination

g =
∑
|j|≤k

ajf ◦ T j ∈ C, with ‖g‖2 ≤ ‖f‖2 + ε.

With the invariance of T we derive

‖Rn(g)‖2 ≤ ‖g‖2 ≤ ‖f‖2 + ε.

From another hand

‖Rn(f − g)‖2 =
∥∥∥ k∑
j=−k

aj(Rn(f)−Rn(f ◦ T j))
∥∥∥

2

≤
k∑

j=−k

aj‖Rn(f)−Rn(f ◦ T j)‖2
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and using again T ’s invariance,

‖Rn(f)−Rn(f ◦ T j)‖2 ≤ 1

n

k+j∑
i=k+1

(‖f ◦ T j‖2 + ‖f ◦ T−j‖2)

≤ 2j

n
‖f‖2 (9.1)

Thus

‖Rn(f − g)‖2 ≤
∑
|j|≤k

2jaj
n
‖f‖2 ≤

2k

n
‖f‖2 →n→∞ 0.

Hence
‖f‖2 ≤ lim sup

n
‖Rn(f)‖2 ≤ ‖f‖2 + ε

yielding the result.

Corollary 9.1.1. If we only assume E|f | <∞ then

Rn(f)
L1

−→n→∞ EIf.

Proof. There exists a sequence gm ∈ L2 such that ‖gm−f‖1 →m→∞ 0
(it is even possible to assume that gm ∈ L∞).
Then

‖Rn(f)− EIf‖1 ≤ ‖Rn(f − gm)‖1 + ‖Rn(gm)− EI(gm)‖1
+ ‖EI(gm − f)‖1

≤ 2‖f − gm‖1 + ‖Rn(gm)− EI(gm)‖1.

The previous Proposition implies

lim sup
n
‖Rn(f)− EIf‖1 ≤ 2‖f − gm‖1.

The conclusion follows from a limit argument m→∞.

The ergodic theorem (aim of this section) is also based upon the next
inequality
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Lemma 9.1.1 (Hopf maximal inequality). Let T be a bijective bi-
measurable and P-invariant transformation.
For f ∈ L1 set S0(f) = 0 and, for k ≥ 1 set:

Sk(f) =

k∑
j=1

f ◦ T j , S+
n (f) = max

0≤k≤n
Sk(f).

Then:
E
(
f ◦ T · I1S+

n (f)>0

)
≥ 0.

Proof of Lemma 9.1.1. If 1 ≤ k ≤ n+ 1 then

Sk(f) ≤ f ◦ T + S+
n (f) ◦ T.

Moreover if S+
n (f) > 0 then

S+
n (f) = max

1≤k≤n
Sk(f).

Thus

S+
n (f) I1S+

n (f)>0 ≤ f ◦ T I1S+
n (f)>0 + S+

n (f) ◦ T I1S+
n (f)>0.

This entails

f ◦ T I1S+
n (f)>0 ≥ (S+

n (f)− S+
n (f) ◦ T ) I1S+

n (f)>0.

Now

Ef ◦ T I1S+
n (f)>0 ≥ ES+

n (f)− ES+
n (f) ◦ T = 0.

Corollary 9.1.2. Assume that assumptions in Lemma 9.1.1 hold
then

P
(

sup
n≥1
|Rn(f)| > c

)
≤ E|f |

c
, ∀c > 0.

Proof. Apply Lemma 9.1.1 to f − c:

E
(
f − c

)
◦ T I1S+

n (f−c)>0 ≥ 0.

Hence

Ef ∨ 0

c
≥

Ef ◦ T I1S+
n (f−c)>0

c
≥ P(S+

n (f − c) > 0).
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Thus

S+
n (f − c) = 0 ∨ max

1≤k≤n
k (Rk(f)− c) ≥ max

1≤k≤n
(Rk(f)− c) .

Hence
Ef ∨ 0

c
≥ P

(
max

1≤k≤n
(Rk(f)− c) > 0

)
.

Replace f by −f one proves analogously:

−(Ef ∧ 0)

c
≥ P(S+

n (f + c) < 0) ≥ P
(

max
1≤k≤n

(Rk(f) + c) < 0

)
.

The result follows from summing up the previous inequalities and for
n→∞.
Indeed |f | = f∨0−f∧0 and P(R−c > 0)+P(R+c < 0) = P(|R| > c)
for each random variable R.

Theorem 9.1.1 (Ergodic theorem). Let T bijective bi-measurable
and P-invariant. Let f ∈ L1 then

Rn(f)→n→∞ EIf, a.s.

If the process is ergodic the limit is constant almost everywhere for
any integrable f .

Proof of Theorem 9.1.1. Assume first that g is bounded. If n,m ≥ 1
then ∣∣Rn(g)− EIg

∣∣ ≤ |Rn(g −Rm(g))|+
∣∣Rn(Rm(g)− EIg)

∣∣ .
Using the same idea as to derive inequality (9.1) we obtain

‖Rn(g)−Rn(g ◦ T j)‖∞ ≤ 2j‖g‖∞/n.

Hence

|Rn(g −Rm(g))| ≤ ‖g‖∞
nm

m∑
j=1

2j =
(m+ 1)‖g‖∞

n
.
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Thus

lim sup
n

∣∣Rn(g)− EIg
∣∣ ≤ sup

n≥1

∣∣Rn(Rm(g)− EIg)
∣∣

≤
∣∣Rn(Rm(g)− EIg)

∣∣ , a.s.

With Corollary 9.1.2 we derive

P
(

lim sup
n

∣∣Rn(g)− EIg
∣∣ > c

)
≤ 1

c
E
∣∣Rm(g)− EIg

∣∣→m→∞ 0.

So P
(
lim supn

∣∣Rn(g)− EIg
∣∣ = 0

)
= 1.

For the general case (g ∈ L1) there exists a sequence of bounded
functions gm which satisfies ‖f − gm‖1 →m→∞ 0. Then∣∣Rn(f)− EIf

∣∣ ≤ |Rn(f − gm)|+
∣∣Rn(gm)− EIgm

∣∣+
∣∣EI(gm − f)

∣∣ .
Hence

lim sup
n

∣∣Rn(f)− EIf
∣∣ ≤ sup

n≥1
|Rn(f − gm)|+

∣∣EI(gm − f)
∣∣ a.s.

1) Markov inequality implies EI(gm − f)
P→m→∞ 0. Indeed

E
∣∣EI(gm − f)

∣∣ ≤ 1

c
‖gm − f‖1

2) Let Am = supn≥1 |Rn(f − gm)| then from Lemma 9.1.1:

P(Am > c) ≤ 1

c
‖f − gm‖1.

The previous relations 1) and 2) imply

P
(

lim sup
n

∣∣Rn(f)− EIf
∣∣ > c

)
= 0

This holds for each c > 0 which implies the result.

In the case of stationary processes this theorem is reformulated with
the shift operator T .
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Corollary 9.1.3. Let (Xn)n∈Z be a stationary process. If f : RZ → R
is measurable and E|f(X)| <∞ then

1

n

n∑
k=1

f ◦ T k(X)→n→∞ EJ f(X) a.s. and in L1.

If Ef2(X) <∞ the convergence also holds in L2.

Proof. The only point to notice is that EJ f(X) = EIPXf .

Example 9.1.2. Exercise 23 provides us with a non-ergodic sequence
satisfying anyway a law of large numbers.

Remark 9.1.2. If the process X is ergodic

1

n

n∑
k=1

f ◦ T k(X) −→ Ef(X) if E|f(X)| <∞.

Ergodicity may also be omitted if Ef2(X) <∞ and

1

n

n∑
k=1

f◦T k(X)→n→∞ Ef(X) a.s.⇔ 1

n

n∑
k=1

Cov(f(X), f◦T k(X))→ 0

Moreover, as a partial converse of Theorem 9.1.1, quote that if the
above limit is constant everywhere for any integrable function f then
the system is ergodic, see [Kallenberg, 1997].

After those remarks we derive examples of ergodic processes.

Example 9.1.3 (ergodic processes).
The following models fit the ergodicity condition.

• An independent identically distributed sequence is also a sta-
tionary and ergodic sequence. For this, use Kolmogorov 0− 1’s
law.

• Hence Bernoulli schemes are also ergodic. Indeed if X = (Xi)i∈Z
is defined from an independent identically distributed sequence
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ξ = (ξi)i∈Z and a function H through equation (7.11) then
f ◦ T i(X) = f ◦H ◦ T i(ξ); hence as soon as E|f(X)| <∞

1

n

n∑
i=1

f ◦ T i(X)→ E(f(X)).

This is true for bounded measurable functions RZ in R which
entails the ergodicity of X.

• If relation Cov (f(X0), f(Xn)) → 0 as n → ∞ for f ∈ F (this
class of functions generates a dense linear vector subspace of
L1). Indeed this relation implies with Cesaro lemma that

1

n

n∑
k=1

f ◦ T k(X)→n→∞ Ef(X) in L1.

The result still holds for each bounded function from a density
argument. Now Corollary 9.1.3 entails EJ f(X) = Ef(X) and
ergodicity follows.
Forthcoming examples follow this scheme:

• A Gaussian stationary sequence is ergodic if its covariance rn →
0. Quote that this condition seems necessary since eg. a con-
stant sequence Xn = ξ0 ∼ N (0, 1) is not ergodic.
Assume X0 ∼ N (0, 1). If f Hermite expansion writes

f =

∞∑
k=0

ckHk

then

Cov (f(X0), f(Xn)) =

∞∑
k=1

c2k
k!
rkn
(

= G(rn)
)
.

The function G(r) defined this way is continuous on [−1, 1] if
one sets G(1) = Ef2(X0) and G(0) = 0. Ergodicity follows.

• Strongly mixing sequences, and all the previous examples of
weakly dependent sequences (see the definition (11.1)) are er-
godic.
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• A last example is that of stationary associated sequences such
that rn → 0. For this use inequality (8.1).

Remark 9.1.3. Let (Xn)n∈Z be a stationary and ergodic centered
sequence in L2.
Then

r̂n,p =
1

n− |p|

n∑
k=|p|+1

XkXk−|p| (9.2)

fits rp = EX0Xp without bias (i.e. Er̂n,p = rp) and r̂n,p → rp a.s.
and in L1 (it is consistent).
For this use the previous result with f(ω) = ω0ωp.
Let (ξn)n∈Z be stationary and ergodic with Eξ2

0 <∞.
If |a| < 1 then Xn =

∑∞
k=0 a

kξn−k is stationary and ergodic and
EX2

0 <∞.
Moreover

Xn = aXn−1 + ξn, ∀n ∈ Z.

The previous solution is the unique sequence such that this relation
holds. It is the first order auto-regressive process.
Previous arguments imply

ân =

∑n
k=2XnXn−1∑n

k=2X
2
n

−→n→∞ a, a.s.

if Eξ0 = 0 and limp→∞ Eξ0ξp = 0 for the ergodic sequence (ξt).

Example 9.1.4. Chapter 7 includes a wide variety of applications for
which Theorem 9.1.1 applies. Essentially the consistence properties
of all empirical processes follows from this main result.

9.2 Range

We aim at providing some ideas yielding definitions for the range of
a process. Namely we advocate to define it according a possible limit
theorem. As this is claimed at the beginning to the present Part
III, a definition through a limit theorem in distribution allows to
define an asymptotic confidence interval for testing a mean through
the simplest frequentist empirical mean. After Theorem 9.1.1 this is
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indeed known that such empirical estimates do converge under mild
assumptions.
The classical definition of the long/short range dependence for second
order stationary sequences is based on the convergence rates to zero
covariances rk = Cov (X0, Xk), more precisely the convergence of the
following series is of importance:∑

k

rk.

Definition 9.2.1 (L2−range). In case the series (rk) is absolutely
convergent the process is short range dependent (SRD) and if the
series diverges the process is long range dependent (LRD).

The proof of Proposition 4.3.2 provides an expression of the square of
a convergence rate in L2 in the ergodic theorem under L2−stationarity:

E(Sn − nEX0)2 = Var

(
n∑
k=1

g(Xk)

)
=
∑
|k|<n

(n− |k|)rk.

Based on the previous definition the partial sums

Sn =

n∑
k=1

Xk

admit variances with order n or � n according to either an SRD or
an LRD behavior.
A phenomenon of very short range corresponds to gX(0) = 0; in this
case VarSn � n.
More generally consider L1, L2, L3 are slowly varying functions (typ-
ically powers of logarithm) and constants α, β, γ > 0 introduce the
relations

n∑
k=−n

rk ∼n→∞ nαL1(n) (9.3)

rn ∼n→∞ k−βL2(n) (9.4)

gX(λ) ∼λ→0 |λ|−γL3

(
1

|λ|

)
(9.5)

One may prove (Taqqu in [Doukhan et al., 2002b])
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Theorem 9.2.1 (Tauber). If rk is monotonous for k ≥ ko then
relations (9.3), (9.4) and (9.5) are equivalent with α = 1 − β, L1 =

2
1−βL2, γ = 1− β and L3 = Γ(α+1)

2π sin π(1−α)
2 L1.

This yields a convergence rate in the precise law of large numbers
(Ergodic Theorem 9.1.1), but in case one needs more accurate test
for goodness-of-fit, then some more information is needed. This def-
inition is quite unsatisfactory because a user is more involved in the
asymptotic behavior of functionals of a process better that its only
L2−behavior. Even for an orthogonal sequence VarSn = nVarX0

does not imply an asymptotically Gaussian behavior.

Example 9.2.1. Let (ξn) be an independent identically distributed
sequence with marginals N (0, 1) and let η be a real valued random
variable independent of this sequence then Xn = ηξn is orthogonal
stationary but it is not ergodic since Sn/

√
n admits the same distri-

bution as ηξ0 usually not Gaussian.

A more attractive definition is thus based on limit theorems relative
to the partial sums:

Sn = X1 + · · ·+Xn

Definition 9.2.2 (distributional range). Let (Xn)n∈Z be a strictly
stationary and centered sequence in L2:

• if 1√
n
Sn is asymptotically Gaussian then we say it is short range

dependent. Precisely we may suppose that VarSn ∼ cn (as
n→∞) for some constant c > 0.
Assume that the sequence of processes

t 7→ Zn(t) =
1√

VarSn
S[nt], for t ∈ [0, 1]

converges toward a Brownian motion in the Skorohod space
D[0, 1] (see Definition A.3.2).

• if the sequence of processes

t 7→ Zn(t) =
1√

VarSn
S[nt], for t ∈ [0, 1]

does not converge toward a Brownian motion it would be long
range dependence
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An alternative definition omits the fact that Xn ∈ L2. It ask that the
previous partial sums process admits a limit with either independent
increments or not. This nice proposal is that of Herold Dehling and
allows to aggregate cases of heavy tail processes and Lévy processes.



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 186 — #190 i
i

i
i

i
i



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 187 — #191 i
i

i
i

i
i

Chapter 10

Long range dependence

Long range pendant phenomena were first exhibited by Hurst for hy-
drology purposes. This phenomenon occurs from the superposition of
independent sources, namely confluent rivers provide this behavior.
Such aggregation procedures provide this new phenomenon.
In the present chapter we address the Gaussian and linear cases as
well as the case of functions of such processes where such LRD phe-
nomena occur. Due to the technical difficulties we restrict to the
initial example of Rosenblatt for functions of Gaussian processes. Fi-
nally we also describe some few additional extensions.
The most elementary example is that of Gaussian processes. We fol-
low the presentation in [Rosenblatt, 1985] who discovered long range
dependent behaviors. He considered models of instantaneous func-
tions of a Gaussian process.

10.1 Gaussian processes

Let (Xn)n∈Z be a stationary centered Gaussian sequence with r0 =
EX2

0 = 1 and with covariance

rk ∼ ck−β as k →∞,

for c > 0, β > 0[ (Theorem 4.2.1 proves that the sequence rk =
(1 + k2)−β/2 is indeed the sequence of covariances of a stationary

187
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Gaussian process: hence there exist such sequences). Tauber theorem
9.2.1 implies g(λ) ∼ |λ|a−1. Also Sn ∼ N (0,VarSn) with

VarSn = n
∑
|k|<n

(
1− |k|

n

)
rk,

and

Zn(t) ∼ N
(

0,
VarS[nt]

VarSn

)
.

• Hence if β > 1, VarSn ∼ nσ2 the sequence is SRD and

1

n
VarS[nt] → tσ2.

Now Zn converges to a Brownian motion with variance

σ2 =

∞∑
k=−∞

rk.

First check that

EZn(t)Zn(s)→ (s ∧ t)σ2.

Tightness is consequence of

E(Zn(t)− Zn(s))2 ≤ C|t− s|

for C =
∑
k |rk| and from Chentsov Lemma 10.1.1 .

Indeed for Gaussian processes

E|Zn(t)− Zn(s)|p = E|N |p [E(Zn(t)− Zn(s))2]p

for each p > 2 if N ∼ N (0, 1).

• If now β < 1 the series of covariances diverges

VarSn ∼ n2−β if rk ∼ ck−β .

Hence
Zn(t)→ N

(
0, ct2−β

)
,

does not converge to the Brownian motion; indeed contrary to
the Brownian motion the previous variance does not increase
linearly with t.
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Remark 10.1.1 (Chentsov Lemma). This standard lemma (see e.g.
[Billingsley, 1999] and [van der Vaart and Wellner, 1998] for a more
complete overview) asserts tightness of the sequence of processes Zn
in C[0, 1] if

E|Zn(t)− Zn(s)|p ≤ C|t− s|a

for some a > 1.
For SRD sequences this needs p > 2 because a = p/2. The above
mentioned relations imply this holds for a Gaussian process if p = 2
and a > 0.
The long range dependent case is much nicer since for p = 2 one
derives a = 2− α > 1.

10.2 Gaussian polynomials

Generally if the process (Xn) is stationary and standard Gaussian
(i.e. EX0 = 0, VarX0 = 1) with rk ∼ ck−β and the function g is
such that E|g(X0)|2 <∞ then

•

Var

(
n∑
k=1

g(Xk)

)
= O (n) ,

if β ·m(g) > 1 and m(g) denote the Hermite rank of g.
In this first case the diagram formula (§ 5.2.3) allows to prove
the convergence in distribution, [Breuer and Major, 1983]:

1√
n

[nt]∑
k=1

g(Xk)→n→∞ σWt, in D[0, 1].

The result is also proved in a shorter way in [Nourdin et al., 2011]

• Else say if β ·m(g) < 1, then

Var

(
n∑
k=1

g(Xk)

)
= O

(
n2−m(g)β

)
.
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Here 1− m(g)β
2 > 1

2 and the convergence still holds

1

n1−m(g)β
2

n∑
k=1

g(Xk)→n→∞ Zr,

to some non Gaussian distribution in case the rank is > 1, see
[Dobrushin and Major, 1979]).
The technique is complicated due to the fact that for k > 2 the
Laplace transform for the law of Xk

0 is not analytic around 0.
The case k = 1 is considered in the previous section and the
case k = 2 is the aim of the next one.

10.3 Rosenblatt process

The previous non Gaussian asymptotic may be proved elementary “à
la main” in the case enlighted in [Rosenblatt, 1961], see also the nice
monograph [Rosenblatt, 1985]. Set Yn = X2

n−1 then Mehler formula
implies that the covariance Cov (Y0, Yk) equals 2r2

k ∼ 2c2k−2β . The
series of those covariances is divergent in case β < 1

2 .
In this case we aim at proving that

Un = nβ−1
n∑
k=1

Yk

converges toward a non-Gaussian limit. More explicitly the normal-
ization should be written

√
n2β/n.

Set Rn for the covariance matrix of the vector (X1, . . . , Xn), then for
t small enough:

EetUn = Eetn
β−1 ∑n

k=1(X2
k−1)

= e−tn
β

∫
Rn
e−x

t(R−1
n −2tnβ−1In)x/2 dx

(2π)n/2
√

detRn

= e−tn
β

∫
Rn
e−y

t(In−2tnβ−1Rn)y/2 dy

(2π)n/2

= e−tn
β

det−
1
2
(
In − 2tnβ−1Rn

)
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Indeed through a linear change in variable for each symmetric definite
positive matrix A with order n:∫

Rn
e−y

tAy/2 dy

(2π)n/2
=

1√
det(A)

Now denote (λi,n)1≤i≤n the eigenvalues (≥ 0) of the symmetric and
non-negative matrix Rn (diagonalizable) then

1√
det (In − 2tnβ−1Rn)

=

n∏
i=1

(1− 2tnβ−1λi,n)−1/2

= exp

(
−1

2

n∑
i=1

log
(
1− 2tnβ−1λi,n

))
Use the following analytic expansion (valid for |z| < 1)

log(1− z) + z = −
∞∑
k=2

zk

k

The simple observation that trace(Rn) = n follows from the fact that
Rn’s diagonal elements equal 1; we thus deduce that

e−tn
β

= exp
(
−2tnβ−1 trace Rn

)
= exp

(
−

n∑
i=1

(2tnβ−1)λi,n

)
Thus:

EetUn = exp

(
−1

2

n∑
i=1

{
log
(
1− 2tnβ−1λi,n

)
+ 2tnβ−1

})

= exp

(
1

2

∞∑
k=2

1

k
(2tnβ−1)k trace Rkn

)
Quote now that:

nkβ

nk
trace Rkn = nk(a−1)

n∑
i1=1

· · ·
n∑

ik=1

ri1−i2ri2−i3 · · · rik−1−ikrik−i1

∼ ck

nk

n∑
i1=1

· · ·
n∑

ik=1

1∣∣ i1
n −

i2
n

∣∣β 1∣∣ i2
n −

i3
n

∣∣β · · · 1∣∣ ik
n −

i1
n

∣∣β
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Hence through a discretization of a multiple integral by Riemann
sums we derive :

nkβ

nk
trace Rkn →n→∞, ck > 0

with

ck = ck
∫ 1

0

· · ·
∫ 1

0

1

|x1 − x2|β
· · · 1

|xk−1 − xk|β
1

|xk − x1|β
dx1 · · · dxk.

For this, simple upper and lower bounds for integrals over cubes with
volume n−k allow to derive this convergence; indeed the function to
be integrated is locally monotonic with respect to each coordinate.
More generally [Polya and Szegö, 1970] prove the validity of such ap-
proximations for generalized integrals, in case of functions monotonic
around their singularity as this is the case here. Thus for k = 2, on
obtains that for each 1 ≤ i ≤ n,

0 ≤ λ2
i,n ≤

n∑
j=2

λ2
j,n ≡ trace R2

n = O(n2(1−β))

thus 2|t|nβ−1λi,n < 1 if |t| < c for some constant c > 0.
Thus all the necessary convergences hold in order to justify the
above mentioned calculation if we assume |t| ≤ c/2.
Hence if t is small enough:

EetUn →n→∞ exp

(
1

2

∞∑
k=2

(2t)k
ck
k

)
Hence this sequence converges in distribution to a non-Gaussian law
(this distributeion is therefore named Rosenblatt distribution).
Indeed the logarithm of its Laplace transform is not a polynomial of
order 2.

Remark 10.3.1. This technique does not extend to polynomials with
degree > 2 since its Laplace transform is not analytic (this is easy to
prove that if N ∼ N (0, 1) then

E exp(t|N |3) = 2

∫ ∞
0

exp

(
tx3 − 1

2
x2

)
dx√
2π

=∞, if t > 0,
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and thus the method of moments does not apply to prove convergence
in law (see Theorem 12.1.1).
[Dobrushin and Major, 1979] introduced weaker convergences for se-
quences of multiple Ito integrals in order to derive ”non Central Limit
Theorems”, .

10.4 Linear processes

Other models admit analogue behaviors. Linear processes

Xn =

∞∑
k=0

ckξn−k

for which ck ∼k→∞ ck−β with 1
2 < β < 1 satisfy

rk =
∑
l

clcl+k ∼k→∞ ck1−2β

∫ ∞
0

ds

(s(s+ 1))β
,

hence Var (X1 + · · ·+Xn) ∼ c′n2−2β and it is possible to prove

nβ−1

[nt]∑
k=1

Xk →n→∞ BH(t),

with convergence in law in the Skorohod space D([0, 1]) of right-
continuous functions with limit on the left (called càdlàg functions,
see Definition A.3.2). It follows from the following simple result in
[Davydov, 1970]:

Theorem 10.4.1 (Davydov, 1970). Let (Xn) be a linear process. Set

Sn = X1 + · · ·+Xn.

If
VarSn = n2HL(n) (n→∞)

for a slowly varying function L and 0 < H < 1 then

1

nHL(n)

[nt]∑
k=1

Xk
in law−→n→∞ BH(t)

Hint. This result also relies on the Lindeberg Theorem 2.1.1.
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10.5 Functions of linear processes

A martingale based technique was introduced in [Ho and Hsing, 1996]
for the extension of such behaviors as previously considered for the
Gaussian case. The idea of this section is to give a flavor of results
and underlying techniques but the rigorous proofs should be found
in the corresponding literature. Using the weak uniform reduction
principle, [Giraitis and Surgailis, 1999] establish the same result for
a causal linear process. Let

Xt =

∞∑
s=0

bsξt−s,

where ξ is independent identically distributed and bs = L(s)s−(α+1)/2.

Theorem 10.5.1 (Causal linear process). Let f(x) be the density
of X0 and B1−α/2 the fractional Brownian motion. If there exists
constants δ, C > 0 such that∣∣E (eiuξ0)∣∣ ≤ C(1 + |u|)−δ,

and if E|ξ0|9 <∞ then there exists cα an explicit constant with

nα/2−1Fn(x, t) −→ cαf(x)B1−α/2(t)

in D[−∞,+∞]×D[0, 1].

A main tool is uniform control of the approximation of the empirical
process by the partial sums process:

Proposition 10.5.1 (Uniform reduction principle). There exist C, γ >
0 such that for 0 < ε < 1:

P
(nα2−1

L(n)
sup
n ≤ n
x ∈ R

∣∣∣∣∣
n∑
t=1

(
I1{Xt≤x} − F (x) + f(x)Xt

)∣∣∣∣∣ ≥ ε) ≤ C

nγε3
.

Proof. Set

Sn(x) =

√
nα

nL(n)

n∑
t=1

(
I1{Xt≤x} − F (x) + f(x)Xt

)
.
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Then
Var (Sn(y)− Sn(x)) ≤ n

n1+γ
µ([x, y]).

where µ is a finite measure on R. Then a chaining argument is used.

Remark 10.5.1. [Ho and Hsing, 1996] extend the expansion of the
reduction principle:

Sn,p(x) =
npα/2

nL(n)

(
n∑
t=1

I1{Xt≤x} − F (x)−
p∑
r=0

(−1)rF (r)(x)Yn,r

)
,

Yn,r =

n∑
t=1

∑
1≤j1<...<jr

r∏
s=1

bjsξt−js .

Proposition 10.5.2 (Uniform reduction principle). If the density of
ξ0 is (p+3)-times differentiable and if E|ξ0|4 <∞,there exist C, γ > 0
such that for 0 < ε < 1:

P
(

sup
x∈R
|Sn,p(x)| ≥ ε

)
≤ Cn−(α∧(1−pα))+γε−2−γ .

Proof methods. Computation of the variance of Sn,p(x): for

ft(x) = I1{Xt≤x} − F (x)−
p∑
r=0

(−1)rF (r)(x)Yn,r

write the orthogonal decomposition:

ft(x)− Eft(x) =

∞∑
s=1

E(ft(x)|Ft−s)− E(ft(x)|Ft−s−1),

where Ft is the σ-field generated by the {ξs, s ≤ t}. Compute the
variance of each term using a Taylor expansion. Note that the Ft are
increasing so that many covariances between terms are zero.
[Doukhan et al., 2005] generalize the preceding method to the case of
random fields. (Xt) is a linear random field:

Xt =
∑
u∈Zd

buζt+u, t ∈ Zd,
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where (ζu)u∈Zd is an i.i.d. random field with zero mean and variance
1, and bu = B0(u/|u|)|u|−(d+α)/2, for u ∈ Zd, 0 < α < d and B0 is a
continuous function on the sphere.

Let An = [1, n]d ∩ Zd and Fn(x) =
1

nd

∑
t∈An

I1{Xt≤x} :

Theorem 10.5.2. If there exists δ, C > 0 such that∣∣E (eiuξ0)∣∣ ≤ C(1 + |u|)−δ,

and if E|ξ0|2+δ <∞ then

nα/2(Fn(x)− F (x)) −→ cαf(x)Z,

in D[−∞,+∞], where Z is a Gaussian random variable .

Remark 10.5.2. This is remarkable that the limit distribution is
extremely simple in this case, indeed Z does not depend on x. Re-
call that the weak dependent case yields much more complicated limit
behaviors, typically the Brownian bridge which Hölder regularity ex-
ponent satisfies α < 1

2 .

10.6 More non-linear models

The section aims at providing some directions for the extension of
LRD. to nonlinear models. Below one addresses more bibliographical
comments that rigorous statements.

10.6.1 LARCH–type models

As quoted in § 7.2.2 models solution of the recursion:

Xn =
(
b0 +

∞∑
j=1

bjXn−j

)
ξn,

also admit LRD behaviors if the iid sequence (ξt) is centered and

Eξ2
0

∞∑
j=1

b2j < 1,
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but
∞∑
j=1

|bj | =∞.

More general volatility models

Xt = σtξt, σ2
t = G

( ∞∑
j=1

bjXt−j

)
,

extend on ARCH(∞)–models (G(x) = b0 + x2), and asymmetric
ARCH(∞)–models (G(x) = b0 + (c+ x)2). Again one requires

∞∑
j=1

b2j <∞,
∞∑
j=1

|bj | =∞.

10.6.2 Randomly fractional differences

[Philippe et al., 2008] introduced time-varying fractional filtersA(d), B(d)
defined by

A(d)xt =

∞∑
j=0

aj(t)xt−j , B(d)xt =

∞∑
j=0

bj(t)xt−j , (10.1)

where d = (dt, t ∈ Z) is a given function of t ∈ Z, and where we set
a0(t) = b0(t) = 1, and if j ≥ 1:

aj(t) =
(dt−1

1

)(dt−2 + 1

2

)(dt−3 + 2

3

)
· · ·
(dt−j + j − 1

j

)
,

bj(t) =
(dt−1

1

)(dt−j + 1

2

)(dt−j+1 + 2

3

)
· · ·
(dt−2 + j − 1

j

)
.

If dt ≡ d is a constant, then A(d) = B(d) = (I − L)−d is the usual
fractional integration operator (Lxt = xt−1 is the backward shift).
[Doukhan et al., 2007] consider for centered independent identically
distributed inputs εt,

XA
t =

∞∑
j=0

aj(t)εt−j , XB
t =

∞∑
j=0

bj(t)εt−j
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If dt is independent identically distributed and Edt = d̄ ∈ (0, 1
2 ) then

the asymptotic behavior of partial sums of this process is the same as
for FARIMA(0, 0, d̄, 0) which corresponds to the case of a constant
sequence dt. If εt is standard normal, then

• Xt is Gaussian with a variance A(t) = E(X2
t |D), conditionally

wrt D, the past sigma-algebra of dt,

• gk(A) = A−2kE[h(X)Hk(X;A)], whereHk(x;A) = AkHk(x/A)
(Hermite polynomials with variance A).

Then the Gaussian limit theory extends with Hermite coefficients
replaced by βk = E[gk(A(0))Qk] for a random variable Q related
with the random coefficients dt, Edt = d̄ and dt admits a finite range,
and E|h(Bεt)|a <∞, for some a > 2.

10.6.3 Perturbed linear models

[Doukhan et al., 2002a] study the empirical process of perturbed lin-
ear models:

Xt = Yt + Vt, t ∈ Z,

where (Yt) is a long range dependent causal linear process and Vt =
H(ζt, ζt−1, . . .) is a short range dependent perturbation. Then the
perturbation does not modify the behavior of the empirical process
which behaves as for linear LRD processes..

10.6.4 Non-linear Bernoulli shift models

Doukhan, Lang, Surgailis (manuscript) study the partial sums pro-
cess of

Xt = H(Yt; ζt, ζt−1, . . . ), Yt =

∞∑
j=0

bjζt−j ,

where bj ∼ c0j
d−1, with d ∈ (0, 1/2), and ζt independent identi-

cally distributed innovations, and H is a function of infinitely many
variables. A main goal of the results was to prove that:

There exists a non Gaussian process X whose partial sums converge
to a second order Rosenblatt process while the partial sums of X2

converge to the fractional Brownian motion.
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The technique extends on [Ho and Hsing, 1996]: it is based on a mar-
tingale decomposition of the partial sums process.

Sn(t) =

[nt]∑
s=1

(Xs − EXs), t ∈ [0, 1].

This is possible to give conditions ensuring that, in law:

Sn(t) ∼ h′∞(0)

[nt]∑
s=1

Ys,

h∞(y) = EH(y + Yt, ζt, ζt−1, . . . ).

An analogue result holds with a second order U -statistic of ζ which
asymptotic is related to the Rosenblatt process. There exists a con-
stant cd ∈ R such that if d ∈] 1

2 , 1] and if h′∞(0) 6= 0 then:

n−d−1/2Sn(t)
D[0,1]−→ N→∞ cdh

′
∞(0)Bd(t),

if now d ∈] 1
4 , 1] and h′∞(0) = 0 and h′′∞(0) 6= 0 then:

n−2dSn(t)
D[0,1]−→ N→∞ cdh

′′
∞(0)Z

(2)
d (t).
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Chapter 11

Short range dependence

The aim of the Chapter is only to fix some simple ideas. We inves-
tigate here Conditions on time series such that the standard limit
theorems obtained for independent identically distributed sequences
still hold.
After a general introduction to weak dependence conditions an ex-
ample quotes the fact that the most classical strong-mixing condition
from [Rosenblatt, 1956] may fail to work, see [Andrews, 1984].

Now when dealing with any weak dependence condition (including
strong mixing), additional decay rates and moment conditions are
necessary to ensure CLTs. Thus decay rates need to be known. Cou-
pling arguments as proposed in § 7.4.2 are widely used for this.
Finally to make more clear the need of decay rates, we explain how
CLTs may be proved with such assumptions.
The monograph [Dedecker et al., 2007] is used as the reference for
weak dependence and formal results should be found there.

11.1 Weak dependence

Looking for asymptotic independence it seems natural to consider
conditions such as this in [Doukhan and Louhichi, 1999]:

201
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Definition 11.1.1. Assume that there exist classes of functions

F ,G :
⋃
u≥1

Ru → R,

one function ψ : F × G → R (which depends on f, g and on the
number of their arguments u, v) and
a sequence εr ↓ 0 as r ↑ ∞.
A random process (Xt)t∈Z is said to be (F ,G, ψ, ε)−weakly dependent
in case

|Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xju))| ≤ εrψ(u, v, f, g) (11.1)

for functions f, g belonging respectively to classes F ,G, and

i1 ≤ · · · ≤ iu ≤ j1 − r ≤ j1 ≤ · · · ≤ jv.

The scheme of epochs is that reported in 11.1. The forthcoming

Figure 11.1: Asymptotic independence.

sections are devoted to examples of those generic notions.
First we explicitly consider strong mixing as well as a simple counter-
example, and then we develop model based bootstrap as an example
of application for which wider weak dependence notions in definition
11.4.1 are a reasonable option.

11.2 Strong mixing

A special case of the previous weak dependence situation is strong
mixing for which

F = G = L∞, and ψ(u, v, f, g) = 4‖f‖∞‖g‖∞, εr = αr.
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Examples of strongly mixing are given in [Doukhan, 1994]. The sup
bound of such εr satisfying this inequality is denoted αr and also
writes t

αr = sup
A ∈ σ(Xi, i ≤ 0)
B ∈ σ(Xj, j ≥ r)

|P(A ∩B)− P(A)P(B)| .

Indeed the previous inequality extends to (11.1) for non-negative lin-
ear combinations of indicator functions. A density argument make
possible to consider arbitrary non-negative functions. A factor 4 ap-
pears when one allows functions with values in [−1, 1].

Anyway this condition does not hold for some models. Eg.

Xn =
1

2
(Xn−1 + ξn) (11.2)

where the independent identically distributed inputs (ξn) admit a
Bernoulli distribution with parameter 1

2 .
Quote on the simulation (11.2) that this model admits quite chaotic
samples while its covariances decay quite fast (Cov (X0, Xt) = 2−t).

Proposition 11.2.1. The stationary solution of the equation (11.2)
exists and is uniform on the unit interval moreover it is not strong
mixing, more precisely αr ≥ 1

4 .

Note. In this case of equation (11.2) the process is however weakly
dependent under alternative dependence conditions, see Exam-
ple 11.4.1. More precisely εr(= θr) ≤ 21−r for r ∈ N, holds under a
dependence assumption for which the considered classes of functions
are Lipschitz, see below in § 11.4 some more precise statements.

Proof. The function x 7→ 1
2 (x + u) maps [0, 1] in a subset of [0, 1]

which implies that applying recessively the equation (11.2) yields

Xn =

p∑
k=0

2−1−kξn−k + 2−1−pXn−p.

Hence if we assume that initial values of the model are in the unit
interval, the remainder term is ≤ 2−1−p →p→∞.
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Figure 11.2: A non-mixing AR(1)–process.

The stationary solution of the previous equation writes

Xn =

∞∑
k=0

2−1−kξn−k = 0, ξnξn−1 · · · in the numeration basis 2.

The expansion of a real number in x = 0.x1x2x3 . . . ∈ [0, 1) in the
base 2 is in fact unique if one adopts the convention that there does
not exist an integer p with xk = 1 for each k ≥ p.
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This does not matter much since such event admits zero probability.
The marginals of this process are easily proved to be uniformly dis-
tributed on [0, 1] :: for example choose an interval with dyadic ex-
tremities makes it evident and such intervals generate the Borel sigma
field of [0, 1].
Now the previous condition writes in terms of sigma-algebra gener-
ated by the processes and Xt−1 is the fractional part of 2Xt which
implies the inclusion of sigma algebras generated by marginals of such
processes.
More precisely

X0 = 0, ξ0ξ−1ξ−2 . . . ,

and
Xr = 0, ξrξr−1ξr−2 · · · ξ0ξ−1ξ−2 . . .

thus the event A = (X0 ≤ 1
2 ) writes as ξ0 = 0 and thus P(A) = 1

2 ;
now there exists a measurable function (namely the r−th iterate of
x 7→frac(2x)) such that X0 = fr(Xr) and thus A = f−1

r ([0, 1
2 ]) ∈

σ(Xr).
If r = 1 then

A =
(
X1 ∈

[
0,

1

4

]
∪
[1

2
,

3

4

])
and if r = 2 we also easily check that

A =
(
X2 ∈

[
0,

1

8

]
∪
[1

4
,

3

8

]
∪
[1

2
,

5

8

]
∪
[3

4
,

7

8

])
.

More generally A = B with Ar = (Xr ∈ Ir) where Ir is the union of
2r intervals with dyadic extremities and with the same length 2−r−1.
Thus

αr ≥ sup{A ∈ σ(X0), B ∈ σ(Xr)} ≥ P(A∩Br)−P(A)P(Br) =
1

4
.

Such examples prove that strong mixing type notions are not enough
to consider a wide class of statistical models.

11.3 Bootstraping autoregressive models

A main problem for time series is that the exact distribution of many
useful functionals are unknown. Such functionals are important since
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they usually appear as limits (in distribution) of some convergent
sequences of functionals

Gk = gk(X1, . . . , Xk)→k→∞ Γ.

We already considered subsampling in § 4.6 as an easy process. A
common way to estimate the quantiles of Γ is due to Efron (1982)
and it is known as Bootstrap.
From the previous convergence in distribution this will be used to
determine distribution of simply high order quantiles useful to deter-
mine the property of tests of goodness of fit.
To this aim this is important to be able to simulate many samples

{X1(ωi), . . . , Xk(ωi)}, for 1 ≤ i ≤ I.

Indeed the simple law of large numbers (for independent identically
distributed samples) allows to prove the consistency of the empirical
quartiles derived from such samples.
We do not intend to provide an abstract theory for the bootstrap but
rather to explain how to implement it over a very simple example.
Consider first the estimation the model

Xn = aXn−1 + ξn, (11.3)

for an independent identically distributed and centered sequence with
first order finite moment.
Then analogously for |a| < 1 this equation admits a solution

Xn =

∞∑
k=0

akξn−k.

In order to bootstrap we proceed to the following steps.

• The estimate ân in Remark 9.1.3 is proved to be a.s. con-
vergent by a simple use of the ergodic theorem. Assume that
one observes a sample {X1(ω), . . . , XN (ω)} (which means that
ω ∈ Ω is fixed outside of some negligible event) of the stationary
solution of the AR(1) process (11.3).

• Then let us use the first n data {X1(ω), . . . , Xn(ω)} to estimate
ân and thus from a.s. convergence we may suppose that N is
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large enough in order that for n ≥ N/3, |ân| < 1. We thus only
used the first third of the sample to estimate ân and this allows
to estimate residuals ξ̂j = Xj − âN/3Xj−1 for j > 2N/3.
We just forget one third of the data to assume that the random
variables {ξ̂j ; j > 2N/3} are almost independent of âN/3 (in
some sense to be precised).

• Now assume that N = 3n we even may consider conditionally
centered residuals by setting

ξ̃j = ξ̂j −
1

n

N∑
k=2n+1

ξ̂k, 2n < j ≤ N.

• To the end of resampling statistics we simulate independent
identically distributed sequences (ξ∗i,j)(i,j)∈N×Z) with uniform

distribution on the set {ξ̃j ; 2n+ 1 ≤ j ≤ 3n}.

• This means that we may simply simulate trajectories of the
stationary solution of eqn. (11.3):

X∗i,n = ânX
∗
i,n−1 + ξ∗i,n, i ≥ 0, n ∈ Z,

which exists since we have chosen n large enough so that |ân| <
1.

As a final remark quote that the previous stationary solutions of eqn.
(11.3) are shown to be strongly mixing only in the case when ξ0’s dis-
tribution admits an absolutely continuous part, see [Doukhan, 1994].
This is not the case for the resampled process which led authors like
Jens Peter Kreiss and Michael Neumann to simply smooth the dis-
crete distribution ν∗ of ξ∗0 in order to be able to use the necessary
asymptotic properties shown under strong mixing in order to prove
the consistency of those techniques. They simply convolute ν∗ with
any probability density to get an absolutely continuous distribution.
They thus just replace ξ∗0 distribution by ξ∗0 + ζ0 for a small ran-
dom variable ζ0 independent of ξ∗0 admitting a density wrt Lebesgue
measure (think of ζ0 ∼ N (0, ε2)), then the Markov chain obtained is
ergodic and strong mixing applies (see [Doukhan, 1994] for details)
but it is not clear whether this distribution admits a real sense wrt
bootstrap.
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11.4 Weak dependence conditions

This sections aims at proving on the simple example of linear pro-
cesses that an alternative to mixing defined in Definition 11.1.1 is
indeed more adapted to such resampling questions.
The main point on the understanding of the concept of weak depen-
dence is the following: for some processes we are able to get fast
speed of decay just for some classes of functions. In this way it is
natural to restrict the class of observables that we want to analyze
to functions f and g which are on some special classes F and G.
Such a simple model will help us to introduce suitable weak depen-
dence conditions for model-based bootstrap procedures.
Those lectures essentially aim at proving that such weak dependence
conditions also allow to develop a simple asymptotic theory (see sec-
tion 11.5).
Return to inequality (11.1), which right hand side will be written for
simplicity Cov (f ,g) with f ≡ f(Xi1 , . . . , Xiu) and g ≡ g(Xj1 , . . . , Xjv ).
Then we consider a simple linear (infinite moving average) model de-
fined through an independent identically distributed sequence with
finite first order moments (ξt)t∈Z:

Xt =
∑
k∈Z

akξt−k.

The previous series converge in L1 in case

‖ξ0‖1 <∞, and
∑
t

|at| <∞,

and the considered process is then stationary; it corresponds to

H((ut)t∈Z) =
∑
t∈Z

atu−t.

Then the model is said to be causal in case ak = 0 for k < 0 since Xt

is measurable with respect to Ft = σ(ξs; s ≤ t). Set

X
(p)
t =

∑
|k|≤p

akξt−k, X̃
(p)
t =

∑
0≤k≤p

akξt−k,
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then this is simple to check that X
(p)
s and X

(p)
t are independent if

|t − s| > 2p and in case r > 2p this also implies that also f ′ and

g′ are independent when setting f ′ = f(X
(p)
i1
, . . . , X

(p)
iu

) and g′ =

g(X
(p)
j1
, . . . , X

(p)
jv

) and thus

Cov (f ,g) = Cov (f ,g − g′) + Cov (f − f ′,g′).

Now if the involved functions are both bounded above by 1 then

|Cov (f ,g − g′)| ≤ 2E|g − g′|, |Cov (f − f ′,g′)| ≤ 2E|f − f ′|.

If now those functions are Lipschitz then eg.

|f − f ′| ≤ Lip f

u∑
s=1

|Xis −X
(p)
is
|.

We should also notice that for each t,

E|Xt −X(p)
t | ≤ E|ξ0|

∑
k>p

|ak|.

Hence doing the same with g we derive:

|Cov (f ,g−g′)| ≤ 2vE|ξ0|
∑
k>p

|ak| and |Cov (f−f ′,g′)| ≤ 2uE|ξ0|
∑
k>p

|a|.

(we use the bound |Cov (U, V )| ≤ 2‖U‖∞ E|V |).
From another hand, in the causal case we derive that f and g̃ are

independent for g̃ = g(X̃
(p)
j1
, . . . , X̃

(p)
jv

) which implies Cov (f ,g) =
Cov (f ,g − g̃) and thus analogously we obtain:

• |Cov (f ,g)| ≤ (uLip f+vLip g)εr if we set εr = 2E|ξ0|
∑
|i|>2r |ai|

for non causal linear processes

Xn =

∞∑
i=−∞

aiξn−i

• |Cov (f ,g)| ≤ vLip g · εr if respectively εr = 2E|ξ0|
∑
i>r |ai| for

the causal case, ai = 0 if i < 0.
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Most of the previous models satisfy such conditions as for Bernoulli
schemes. A similar proof follows the same lines for general Bernoulli
shifts. Set here

εr = 2 sup
q>2r

E
∣∣H ((ξi)i∈Z)−H

(
(ξi)|i|≤q

)∣∣ ,
for non-causal Bernouilli shifts, Xt = H(. . . , ξt+1, ξt, ξt−1, . . .).

= 2 sup
q>r

E |H ((ξi)i∈N)−H ((ξi)0≤i≤q)| ,

for causal Bernouilli shifts Xt = H(ξt, ξt−1, . . .),

the sequence (ξi)|i|≤r is obtained by setting 0 for indices with |i| > r.
Then εr ↓ 0 as r ↑ ∞ (1). and the forthcoming conditions ψθ or ψη
apply according the fact the the Bernoulli is causal or not.

[Doukhan and Louhichi, 1999] synthesize such easy conditions in terms
of Lipschitz classes.
The present lectures are not exhaustive so that we will restrain the
really general notions in Definition 11.1.1 to some few examples of
such weak dependence.

Definition 11.4.1. Set L the class of functions g : Rv → R for some
integer v ≥ 1, with ‖g‖∞ ≤ 1 and Lip(g) <∞ where:

Lip(g) = sup
(x1,...,xv)6=(y1,...,yv)

|g(x1, . . . , xv)− g(y1, . . . , yv)|
|x1 − y1|+ · · ·+ |xv − yv|

Some weak dependence conditions correspond to G = L and respec-
tively F = L (non causal case) or

F = B∞ = {f : R→ R, measurable, ‖f‖∞ ≤ 1} (causal case).

Here respectively

ψ(u, v, f, g) = ψη(u, v, f, g) ≡ uLip(f) + vLip(g),

= ψθ(u, v, f, g) ≡ vLip(g

= ψκ(u, v, f, g) ≡ uvLip(g)Lip(g),

= ψλ(u, v, f, g) ≡ uLip(f) + vLip(g) + uvLip(g)

1Quote that for the special case of the previous linear processes, the present
bound εr is in fact sharper that the previous series remainders.
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Then the process (Xt)t∈Z is η (resp. θ, κ or λ)−weakly dependentttt
in case the least corresponding sequence εr given from relation (11.1)
converges to 0 as r ↑ ∞, the respective coefficients will be denoted ηr,
θr, κr or λr.

Example 11.4.1 (Dependence decay rates). To derive limit theo-
rems this will be essential to know decay rates of decorrelation as well
as the existence of moments. The following examples aim at feeling
this important gap.

• Conditions η, and θ are checked before to hold for linear causal
or non-causal sequences.
They also hold analogously for Bernoulli shifts under assump-
tions (7.14) if they are L1−weakly dependent (see Definition
7.4.3. Here respectively

θr = 2δ
(1)
r , under condition ψθ,

ηr = 2δ
(1)
[r/2], under condition ψη.

– Examples of such causal models are Markov stable pro-
cesses (see Definition 7.3.1) satisfy those relations as proved
in Theorem 7.3.1. Such Markov models 7.2 indeed satisfy
the inequality 7.5.
item Linear and Volterra type processes are also weakly de-
pendent and tails of coefficients allow to bound εr in both
the causal and the non-causal case.

– In order to consider an explicit example of a chaotic ex-
pansion. LARCH(∞)–models in § 7.2.2 are solutions of
the recursion

Xn =

b0 +

∞∑
j=1

bjXn−j

 ξn.

The Lp−valued strictly stationary solution of this recur-

sion writes Xn =
∑∞
k=1 S

(k)
n with:

S(k)
n = b0

∞∑
l1,..,lk=1

bl1 · · · blkξn−l1ξn−l1−l2 · · · ξn−(l1+··+lk).
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Under the condition B = ‖ξ0‖p
∑∞
l=1 |bl| < 1, this is sim-

ple to derive with independence of all those products that

‖S(k)
n ‖p ≤ |b0|ak. Now set S

(k,L)
n for the finite sum where

each of the indices satisfy 1 ≤ l1, . . . , lk ≤ L then analo-
gously

‖S(k)
n − S(k,L)

n ‖p ≤ k|b0|ak−1BL, with BL = ‖ξ0‖p
∑
l>L

|bl|,

where the factor k comes from the fact that in order that
only the tail of a series appears, it may appear at any
position in those multiple sums.
Turning now to p = 1, we approximate Xn by the following
(LK)−dependent sequence

X(K,L)
n = S(0)

n + S(1,L)
n + · · ·+ S(K,L)

n

then previous calculations prove that for a constant C > 0,

‖Xn−X(K,L)
n ‖1 ≤ C(BL+aK). Let L,K ≥ 1 be such that

LK ≤ r then this implies that wrt ψθ,

θr ≤ C inf
1≤L≤r

(
BL + a

r
L

)
.

Eg. if bl = 0 for l > L large enough then θr ≤ Ca
r
L , if

BL h decays geometrically to 0, then θr ≤ Ce−c
√
r, and if

BL ≤ cL−β then θr ≤ c′r−β.

• Either Gaussian processes or associated random processes (in
L2) are κ−weakly dependent because of Lemma 8.1. Here

κr = max
|j−i|≥r

|Cov (Xi, Xj)|,

is convenient from inequality (8.1) (in this case absolute values
are useless); this inequality holds in the Gaussian case as this
is proved eg. in [Dedecker et al., 2007].

• Now the function ψλ allows to combine both difficulties. For
example the sum of a Bernoulli shift and of an independent
associated process may satisfy such conditions.
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Remark 11.4.1 (A comparison). A strict comparison of the previous
strong mixing conditions and all such weak dependence is not not
always possible. Anyway αr and θr are obtained in inequality (11.1)tt
as the supremum of covariances |Cov (f(P ), g(F )| for functions of
past and future where ‖f‖∞ ≤ 1 and where ‖g‖∞ ≤ 1 under mixing
or where moreover Lip g ≤ 1 under weak dependence, thus

θr ≤ αr.

Various applications of those notions are considered in our monograph
[Dedecker et al., 2007]. It is however simple to quote that such prop-
erties are stable through Lipschitz images as an extension of Lemma
7.4.1.
The function g(x1, . . . , xu) = x1 · · ·xu is more specifically used in
the next Chapter, it is usually unbounded and non-Lipschitz so that
truncations will be needed to derive moment inequalities for par-
tial sums. The following Exercise is a first step to consider the
empirical cdf. Various generalizations of which may be found in
[Dedecker et al., 2007].

Exercise 22 (Heredity). Let (Xt)t∈Z be a real valued and θ−weakly
dependent process. Assume that there exists a constant C > 0 such
that P(Xi ∈ [a, b]) ≤ C(b− a) for each −∞ < a < b <∞.
Then: |Cov (g(X0), g(Xr))| ≤ (1 + C)

√
θr.

Proof. Set gε the continuous function such that gε(x) = g(x) if
x < u and x > u+ ε, and gε is affine on [u, u+ ε] then Lip gε = 1/ε:

|Cov (g(X0), g(Xr))|
≤ |Cov (g(X0), g(Xr)− gε(Xr))|+ |Cov (g(X0), gε(Xr))|

Cε+
1

ε
θr = (1 + C)

√
θr, with ε2 = θr.

(use the bound |Cov (U, V ) ≤ 2‖U‖∞E|V || to conclude.)

For non-causal weak dependences, use

|Cov (g(X0), g(Xr))| ≤ |Cov (g(X0), g(Xr)− gε(Xr))|
+ |Cov (g(X0)− gε(X0)), gε(Xr))|+ |Cov (gε(X0)), gε(Xr))|
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11.5 Proving limit theorems

Here follows a simple way to derive CLTs. The situation chosen is
that of stationary and centered processes.
In fact ergodicity really allows to recenter such processes.
Moment inequalities proved later in Chapter 12 yield good controls
for E|Sn|p and a central limit theorem may be derived by using the
following simple dependent Lindeberg CLT:

Lemma 11.5.1 (Dependent Lindeberg [Bardet et al., 2006]). We set
f(x) = ei<t,x> for each t ∈ Rd (with < a, b > scalar product in Rd)
and we consider an integer k ∈ N∗.
Let (Xi)1≤i≤k be Rd−valued centered random variables such that:

Ak =

k∑
i=1

E‖Xi‖2+δ <∞.

Set

T (k) =

k∑
j=1

∣∣Cov (ei<t,X1+···+Xj−1>, ei<t,Xj>)
∣∣.

Then
∆k ≤ T (k) + 6‖t‖2+δAk.

Proof. Going ahead with the proof of Lemma 2.1.1 we will only
reconsider the bound of Eδj , for this let a random variable U∗j be
independent of all the other random variables already considered and
with the same distribution as Uj .
Then we decompose:

δj = (g(Zj + Uj)− g(Zj + U∗j )) + (g(Zj + U∗j )− g(Zj + Vj))

The second term admits the bound provided in Lemma 2.1.1, which
writes as stated above since for f(x) = ei<t,x> one easily derive
that ‖f (p)‖∞ = |t|p. Now the first term is the ”dependent” one and
from the independence of V ’s and multiplicative properties of the
exponential:

|E(g(Zj+Uj)−g(Zj+U∗j ))| ≤ |Eg(U1 + · · ·+Uj−1)(g(Uj)−g(U∗j ))|
= |Cov (g(U1 + · · ·+ Uj−1), g(Uj))|.
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In case the series of covariances is summable we already quoted that

ES2
m ∼ σ2m, for large values of m.

The idea is to calculate

∆n = E
(
f

(
Sn√
n

)
− f(σN)

)
for enough functions in the class C3 class.
We need to derive ∆n → 0 as n → ∞. For this we sketch Bernstein
blocks technique To this end consider sequences

q = q(n)� p = p(n)� n as n ↑ ∞.

Then we may write

Sn√
n

= U1 + · · ·+ Uk + V,

with k = k(n) =

[
n

p(n) + q(n)

]
and

Uj =
1√
n

(j−1)(p+q)+p∑
i=(j−1)(p+q)+1

Xi

In this case the remainder ‖V ‖2 → 0 because V = 1√
n

∑
u∈E Xu is a

sum over some set E with cardinality m ≤ q + p = o(n).
Indeed

nVarV ≤
∑
u,v∈E

|Cov (Xu, Xv)|

=
∑
u,v∈E

|Cov (X0, Xv−u)|

≤ m
∞∑

j=−∞
|Cov (X0, Xj)|.

The variables U are almost independent since they are all distant at
least q so that Lemma 11.5.1 may be applied.
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To conclude we cite a result which is adapted to causal cases (follow-
ing from a very different proof to see eg. in [Rio, 2000]):

Theorem 11.5.1 (Dedecker & Rio, 1998). Let (Xn)n∈Z be an ergodic
stationary sequence with EXn = 0, EX2

n = 1. Set Sn = X1+· · ·+Xn.

Assume that the random series

∞∑
n=0

X0E
(
Xn

∣∣∣σ(Xk/k ≤ 0)
)

converges

in L1.
Then the sequence E(X2

0 + 2X0Sn) converges to some σ2 and

1√
n
S[nt] →n→∞ σWt, in distribution in D[0, 1] (2).

In [Dedecker and Doukhan, 2003] for the case of θ−weak dependence
and in [Dedecker et al., 2007] we derive analogue CLTs; quote that
assumptions needed to replace such abstract conditions always write
in terms of decay rates and moment conditions. Previously intro-
duced Conditions take into account most of the standard models in
a statistics. We do not recall those results because the aim is more
pedagogical here that formal and we defer a reader to the monograph
[Dedecker et al., 2007].

Exercise 23. Consider a sequence of iid random variables Ri (with
finite mean) and an independent standard normal random variable N
then we may set Xk = RkN ,

1. Set Xn = (X1 + · · ·+Xn)/n then limn→∞Xn = ER0 ·N a.s.

2. Deduce that this sequence is not ergodic in case ER0 6= 0.

3. If Rk follows Rademacher distribution (P(Rk = ±1) = 1
2) prove

that Cov (Xk, X`) = 0 for all k 6= ` and the sequence is not
independent.

4. In this Rademacher case prove that
√
nXn converges in distri-

bution to the product of 2 standard normal random variables.

5. Prove that the sequence (Xk)k is never ergodic.

2For Skorohod space see Definition A.3.2) and the Remark following it.
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Hints for Exercise 23.

1. The first point follows from the Strong Law of Large Numbers.

2. Ergodic theorem (Corollary 9.1.3) does not hold since the limit
is non-deterministic, which proves non-ergodicity.

3. This point is proved in Exercise 2.

4. It follows from the CLT.

5. This sequence is never ergodic since conditionally to N it is er-
godic and the tail sigma-field is always the sigma-field generated
by N .

Example 11.5.1. With the previous Exercise 23 we obtain an or-
thogonal stationary sequence of Gaussian random variables such that
the law of large numbers holds, but which is not ergodic and does not
satisfy the CLT. This sequence is thus not a Gaussian process.

Remark 11.5.1. The empirical process

Zn(x) =
√
n(Fn(x)− F (x)), Fn(x) =

1

n

n∑
k=1

I1{Xk≤x}

is also of a main interest and one may consider it as above but in
this case heredity of weak dependence conditions is no more ensured
directly since the function u 7→ I1{u≤x} is not Lipschitz but concentra-
tion conditions as in Lemma 7.4.2 allow to work out the asymptotic
properties for such processes.
In the Remark following Definition A.3.2 we recall a criterion for the
convergence of this cumulative repartition distribution.
Anyway we refer again to [Dedecker et al., 2007] for more details.

Exercise 24 (subsampling). Prove eqn. (11.4) for a bounded func-
tion g, and deduce asymptotic sketched in § 4.6:

• Under strong mixing this is enough to assume limr αr = 0, and
does not rely on the properties of functions tb.
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• Under θ−weak dependence, use Lipschitz properties of the func-
tions tm (set Lm = Lip tm) to derive a consistency result both
under overlapping and non-overlapping schemes.

Hint. The bound eqn. (4.2) yields with N = Card Em,n for each
case and with immediate notations:

Var K̂(g) ≤ 1

N

N∑
i=1

|Cov (g0,m, gi,m)|.

In the first strong mixing case

|Cov (g0,m, gi,m)| ≤ αr−m+1, (11.4)

(resp. ≤ αr/m+1) which does not depend on m for this special mixing
case. Hence Cesaro lemma yields the result for this case.
The cases of weak dependence are more complex, here Lip gm ≤
LmLip g and thus:

|Cov (g0,m, gi,m)| ≤ mLmLip g θr−m+1, (11.5)

(resp. ≤ mLmLip g θ r
m+1)here in the overlapping scheme e.g. we

otain for some constant:

Var K̂(g) ≤ Cm

n−m

(
1 + LmLip g

n−m∑
i=1

|Cov (g0,m, gi,m)|
)
.

The cases of sub empirical means Tm =
√
mXm, and Lm = C√

m
and

for kernel density estimates
√
mh(fm,h − Efm,h), Lm = C

h
√
mh

.

Eg. in the first case of subsampling means with overlapping scheme,
the assumptions

mn

n
→ 0,

1
√
mn

n∑
i=1

θi is bounded,

together imply consistency of subsampling. This hold for instance if∑∞
i=1 θi <∞ and limnmn/n = 0.

To derive the above inequality for discontinuous functions g = I1{·≤u}
one additional step is necessary, use Exercise 22.
Finally uniform convergence use again by using Exercise 24.
Higher order moments are considered in Exercise 31.
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Chapter 12

Moments and cumulants

The Chapter is devoted to moment methods: this tool is essential for
time series with finite moments.
Use of moments relies on their importance to derive asymptotic of
several estimators, based on moments and limit distributions.
Cumulants are linked with spectral or multispectral estimation which
are main tools of time series analysis.

g(λ) =

∞∑
k=−∞

Cov (X0, Xk)e−ikλ.

Such functions do not characterize the dependence of non linear pro-
cesses: indeed we already had examples of orthogonal but not inde-
pendent sequences. This motivated the introduction of higher order
characteristics.
E.g. a multispectral density is defined over Cp−1 by

g(λ2, . . . , λp) =

∞∑
k2=−∞

· · ·
∞∑

kp=−∞

κ(X0, Xk2 , . . . , Xkp)e−i(k2λ2+···+kpλp).

Remark 12.0.2. The periodogram in Definition 4.4.1 may be not
enough to deal with non-Gaussian stationary time series because:

• As quoted in Exercise 2 covariances are not enough to prove
independence. Thus in order to test for stochastic independence
the use of higher order spectral estimates appear reasonable.

219
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• Gaussian laws are characterized by the fact that cumulants with
order > 2 vanish. This provides hints to test Gaussianness.

12.1 Method of moments

Recall that the method of moments yields limit theorems:

Theorem 12.1.1 (Feller). If the sequence of real valued random
variables Un is such that

EUpn →n→∞ EUp, for each integer p ≥ 0,

then

Un →n→∞ U, in law.

If moreover U admits an analytic Laplace transform around 0. This
holds if there exists α > 0 with Eeα|U | <∞.

Hint. Indeed from the analytic continuation theorem implies that U ’s
distribution is characterized through its moments.

12.1.1 Notations

Let Y = (Y1, . . . , Yk) ∈ Rk be a random vector we set

φY (t) = Eeit·Y = E exp
(
i

k∑
j=1

tjYj

)
,

mp(Y ) = EY p11 · · ·Y
pk
k ,

where

p = (p1, . . . , pk), t = (t1, . . . , tk) ∈ Rk,
|p| = p1 + · · ·+ pk = r, E(|Y1|r + · · ·+ |Yk|r) < ∞.

Denote

p! = p1! · · · pk!, tp = tp11 · · · t
pk
k ,
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for t = (t1, . . . , tk) ∈ Rk, and p = (p1, . . . , pk).
In case the previous condition holds for some integer r ∈ N∗, the
function t 7→ log φY (t) admits a Taylor expansion

log φY (t) =
∑
|p|≤r

i|p|

p!
κp(Y ) tp + o(|t|r), as t→ 0.

Coefficients κp(Y ) are named cumulants of Y with order p ∈ Nk and
they exist if |p| ≤ r.
Replace Y by a vector with higher dimension s = |p| with p1 repeti-
tions for Y1, . . . , pk repetitions for Yk allows to consider p = (1, . . . , 1)
and we set κ(1,...,1)(Y ) = κ(Y ).
If µ = {i1, . . . , iu} ⊂ {1, . . . , k} set:

κµ(Y ) = κ(Yi1 , . . . , Yiu), mµ(Y ) = m(Yi1 , . . . , Yiu).

Identifying Taylor expansions Leonov and Shyraev (1959) (for a proof
see [Rosenblatt, 1985], pages 33–34), derived the relations

κ(Y ) =

k∑
u=1

(−1)u−1(u− 1)!
∑

µ1,...,µu

u∏
j=1

mµj (Y ) (12.1)

m(Y ) =

k∑
u=1

∑
µ1,...,µu

u∏
j=1

κµj (Y ) (12.2)

Previous sums are taken over all the partitions µ1, . . . , µu of the set
{1, . . . , k}. The Taylor expansion of s 7→ log(1 + s) as t → 0 succes-
sively yields

φY (t) = 1 +
∑

0<|p|≤r

i|p|

p!
mp(Y )tp + o(|t|r),

log φY (t) =

r∑
u=1

(−1)u−1

u

 ∑
0<|p|≤r

i|p|

p!
mp(Y )tp

u

+ o(|t|r)

=

r∑
u=1

(−1)u−1

u

∑
0 < |p| ≤ r

p1 + · · · + pu = p

(it)|p|

p!

u∏
j=1

mpj (Y ) + o(|t|r)
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hence identifying the coefficient corresponding to p = (1, . . . , 1) for
u−tuples such that p1 + · · ·+ pu = p; choose r = k to derive relation
(12.1). Indeed then |p| = k, p! = 1 and (it)p = iktk.
A combinatoric coefficient u! appears, it corresponds to the number
of the permutations in a partition.

12.1.2 Combinatorics of moments

Recall now some notions from [Saulis and Statulevicius, 1991]’s book.

Definition 12.1.1. Centered moments of the random vector Y =

(Y1, . . . , Yk) are defined with
_

E (Y1, . . . , Yl) = EY1c(Y2, . . . , Yl) where
centered random variable c(Y2, . . . , Yl) are recursively identified by

setting c(ξ1) =
︷︸︸︷
ξ1 = ξ1 − Eξ1 and

c(ξj , ξj−1, . . . , ξ1) = ξj
︷ ︸︸ ︷
c(ξj−1, . . . , ξ1)

= ξj (c(ξj−1, . . . , ξ1)− Ec(ξj−1, . . . , ξ1)) .

Consider Yµ = (Yj/j ∈ µ} as a p−tuple l for µ ⊂ {1, . . . , k}.

For example
_

E (ξ) = 0,
_

E (η, ξ) = Cov (η, ξ),

_

E (ζ, η, ξ) = E(ζηξ)− E(ζ)E(ηξ)− E(η)E(ζξ)− E(ξ)E(ζη).

Centered moments are a way to generalize covariances. They also say
about independence of the coordinates for a random vector.

The nice following result explains the nature of cumulants . This
provides a representation in terms of centered moments.

Theorem 12.1.2 ( [Saulis and Statulevicius, 1991]).

κ(Y1, . . . , Yk) =

k∑
u=1

(−1)u−1
∑

µ1,...,µu

Nu(µ1, . . . , µu)

u∏
j=1

_

E Yµj

sums are over all the partitions µ1, . . . , µu of the set {1, . . . , k} and
the integers Nu(µ1, . . . , µu) ∈

[
0, (u− 1)! ∧

[
k
2

]
!
]

defined for each par-
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tition satisfy

N(k, u) =
∑

µ1,...,µu

Nu(µ1, . . . , µu)

=

u−1∑
j=1

Cjk(u− j)k−1,

and

k∑
u=1

N(k, u) = (k − 1)!.

The following bound is a simple consequence of this result

Lemma 12.1.1. Let Y1, . . . , Yk ∈ R be centered random variables.
For each k ≥ 1 set Mk = (k − 1)!2k−1 max1≤i≤k E|Yi|k then

|κ(Y1, . . . , Yk)| ≤ Mk, (12.3)

MkMl ≤ Mk+l, for k, l ≥ 2. (12.4)

Hence:
u∏
i=1

∣∣κ(Y1, . . . , Ypu)
∣∣ ≤Mp1+···+pu . (12.5)

Proof of Lemma 12.1.1. The second point follow from inequality
a! b! ≤ (a + b)! also written Caa+b ≥ 1 and the second comes from
Lemma 12.1.2 and of the forthcoming Lemma.

Lemma 12.1.2. For each j, p ≥ 1 and for all the real valued random
variables

‖c(ξj , ξj−1, . . . , ξ1)‖p ≤ 2j max
1≤i≤j

‖ξi‖jpj (with ‖ξ‖q = E1/q|ξ|q).

Proof of Lemma 12.1.2. Jensen inequality (Proposition A.1.1) leads
to

‖c(ξ1)‖p ≤ ‖ξ1‖p + |Eξ1| ≤ 2‖ξ1‖p.
Set Zj = c(ξj , ξj−1, . . . , ξ1) then Zj = ξj(Zj−1 − EZj−1) and from
Hölder inequality

‖ξjZj−1‖pp ≤ ‖ξj‖
p
pj‖Zj−1‖ppj

j−1

.
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Thus using the recursion assumption for the pair (q, j − 1) where
q = pj/(j − 1) Minkowski and Hölder inequalities give

‖Zj‖p ≤ ‖ξjZj−1‖p + ‖ξj‖p|EZj−1|,

≤ 2‖ξj‖pj‖Zj−1‖q, (q = p · j

j − 1
)

≤ 2j‖ξj‖pj max
0≤i<j

‖ξi‖j−1
q(j−1),

≤ 2j max
0≤i≤j

‖ξi‖jpj ,

because q(j − 1) = pj which allows to conclude.

Proof of Lemma 12.1.1. Omit suprema by replacing maxj≤J ‖Yj‖p
by ‖Y0‖p for the sake of simplicity.

Lemma 12.1.2 yields |
_

E Yµ| ≤ 2l−1‖Y0‖ll with l = #µ. Indeed write
Z = c(Y2, . . . , Yl) and define p through the identity 1

p + 1
l = 1.

Then ∣∣∣_E (Y1, . . . , Yl)
∣∣∣ = |EY1Z| ≤ ‖Y0‖l‖Z‖p ≤ 2l−1 ‖Y0‖ll

since p(l − 1) = l. Theorem 12.1.2 implies

|κ(Y )| ≤
k∑
u=1

∑
µ1,...,µu

Nu(µ1, . . . , µu)

u∏
i=1

2#µi−1‖Y0‖#µi#µi

≤
k∑
u=1

2k−uN(k, u)‖Y0‖kk

≤ 2k−1 ‖Y0‖kk
k∑
u=1

N(k, u)

= 2k−1(k − 1) !‖Y0‖kk

ending the proof.
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12.2 Dependence and cumulants

The following Lemmas are essentially proved for sequences of real
valued random variables (Xn)n∈Z in [Doukhan and León, 1989].

12.2.1 More dependence coefficients

Consider a stationary real valued sequence (Xn)n∈Z. Then as in
[Doukhan and Louhichi, 1999] considert

cX,q(r) = max
1≤l<q

sup
t1 ≤ · · · ≤ tq
tl+1 − tl ≥ r

∣∣Cov
(
Xt1 · · ·Xtl , Xtl+1

· · ·Xtq

)∣∣ (12.6)

Example 12.2.1. Assume that the η−weak dependenceindexdependence
coefficient, ηr condition (11.1) associated with the functional ψη and
with the classes of function F = G = L holds. If Yi = h(Xi) for some
Lipschitz function h bounded by M , we get

cY,q(r) ≤Mq−1Lip(h)θr.

The following coefficients are also useful

c?X,q(r) = max
1≤l≤q

cX,l(r) · µq−l, with µt = E|X0|t. (12.7)

Define

κq(t2, . . . , tq) = κ(1,...,1)(X0, Xt2 , . . . , Xtq ).

The forthcoming decomposition explain the way cumulants behave
as covariances.
Precisely it proves that cumulants κQ(Xk1 , . . . , XkQ) are small if for
some index l the lag kl+1 − kl is large. Here k1 ≤ · · · ≤ kQ and a
weak dependence condition will be is assumed.
This is also a natural extension of an important property of cumu-
lants. A cumulant vanishes is it is derived from a couple of indepen-
dent vectors.

Definition 12.2.1. Let t = (t1, . . . , tp) be any p−tuple in Zp with
t1 ≤ · · · ≤ tp. Set r(t) = max1≤l<p(tl+1 − tl), the maximal lag in the
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sequence (t1, . . . , tp).
Define the other alternative dependence coefficient:

κp(r) = max
t1 ≤ · · · ≤ tp

r(t1, . . . , tp) ≥ r

∣∣κp (Xt1 , . . . , Xtp

)∣∣ . (12.8)

Lemma 12.2.1. If (Xn)n∈Z is a centered and stationary process with
finite moments up to order Q.
If Q ≥ 2 by using notation in Lemma 12.1.1 we derive

κX,Q(r) ≤ cX,Q(r) +

Q−2∑
s=2

MQ−s

[
Q

2

]Q−s+1

κX,s(r).

Proof of Lemma 12.2.1. Set Xη =
∏
i∈ηXi if η ∈ Zp (η may in-

clude repetitions). If k1 ≤ · · · ≤ kQ is such that kl+1 − kl = r =
max1≤s<p(ks+1 − ks) ≥ 0.
Assume that µ = {µ1, . . . , µu} runs over all partitions of {1, . . . , Q}
then one of those µi (denoted by νµ) satisfies

ν−µ = [1, l] ∩ νµ 6= ∅ and ν+
µ = [l + 1, Q] ∩ νµ 6= ∅.

From formula (12.2) we obtain with η = {1, . . . , l},

κ(Xk1 , . . . , XkQ) = Cov (Xη(k), Xη(k))−
∑
u

∑
{µ}

κνµ(k)Kµ,k, (12.9)

with Kµ,k =
∏
µi 6=νu

κµi(k) where he previous sum extends to all par-

titions µ = {µ1, . . . , µu} of {1, . . . , Q} such that µi ∩ ν 6= ∅ for some
i ∈ [1, u] and µi ∩ ν 6= ∅.
From r

(
νµ(k)

)
≥ r(k) it is easy to derive |κνµ(k)| ≤ κX,#νµ(r).

This allow to let the size of lags increase.
With Lemma 12.1.1 we arrive to |Mµ| ≤ MQ−#µν as in (12.5) and
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the following bound is proved:

∣∣κ (Xk1 , . . . , XkQ

)∣∣ ≤ CX,Q(r) +

[Q/2]∑
u=2

(u− 1)!
∑

µ1,...,µu

MQ−#νµ |κνµ(k)(X)|

≤ CX,Q(r) +

[Q/2]∑
u=2

(u− 1)!

Q−2∑
s=2

MQ−sκX,s(r)
∑

µ1, . . . , µu
#νµ = s

1

≤ CX,Q(r)+

[Q/2]∑
u=2

(u− 1)!

Q−2∑
s=2

(u− 1)Q−sMQ−sκX,s(r)

≤ CX,Q(r) +

Q−2∑
s=2

1

Q− s+ 1

[
Q

2

]Q−s+1

MQ−sκX,s(r)

Inequality

U∑
u=1

(u− 1)p ≤ 1

p+ 1
Up+1

follows from comparison of a series with an integral.

Write Lemma 12.2.1 as

κX,Q(r) ≤ cX,Q(r) +

Q−2∑
s=2

BQ,sκX,s(r),

then

κX,2(r) ≤ cX,2(r),

κX,3(r) ≤ cX,3(r),

κX,4(r) ≤ cX,4(r) +B4,2κX,2(r)

≤ cX,4(r) +B4,2cX,2(r),

κX,5(r) ≤ cX,5(r) +B5,3κX,3(r) +B5,2κX,2(r)

≤ cX,5(r) +B5,3cX,3(r) +B5,2cX,2(r),
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κX,6(r) ≤ cX,6(r) +B6,4κX,4(r) +B6,3κX,3(r) +B6,2κX,2(r)

≤ cX,6(r) +B6,4 (cX,4(r) +B4,2cX,2(r))

+B6,3cX,3(r) +B6,2cX,2(r)

≤ cX,6(r) +B6,4cX,4(r) +B6,3cX,3(r)

+(B6,2 +B6,4B4,2)cX,2(r).

Lemma 12.2.1 implies the following important Corollary derived from
a recursion with the previous inequalities.

Corollary 12.2.1. For each Q ≥ 2 there exists a constant AQ ≥ 0
only depending on Q and such that

κX,Q(r) ≤ AQ · c∗X,Q(r).

Remark 12.2.1.

• This Lemma proves the equivalence between coefficients cX,Q(r)
and κQ(r).
Precise upper bounds follow from Theorem 12.1.2.
Decompose for it the sums corresponding to centered moments
in 2 terms among which one explicitly depends on the maximal
lag.
Formula (12.9) implies with BQ,Q = 1,

cX,Q(r) ≤
Q∑
s=2

BQ,s κX,s(r).

Thus there exists a constant ÃQ with

cX,Q(r) ≤ ÃQκ∗X,Q(r), κ∗X,Q(r) = max
2≤l≤Q

κ∗X,l(r)µQ−l.

Hence constants aQ, AQ > 0 satisfy

aQc
∗
X,Q(r) ≤ κ∗X,Q(r) ≤ AQc∗X,Q(r).

Those coefficients are equivalent up to constants only depending
on Q.
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• The previous formula (12.9) implies that a cumulant

κ(Xk1 , . . . , XkQ) =
∑
α,β

Kα,β,kCov (Xα(k), Xβ(k))

is a linear combination of such covariances with α ⊂ {1, . . . , l}
and β ⊂ {l + 1, . . . , Q} for which coefficients Kα,β,k are poly-
nomials dof cumulants.
For this replace the Q−tuple (Xk1 , . . . , XkQ) by (Xi)i∈νµ(k) for
each partition µ in formula (12.9) and use recursion.

This representation is useful if one knows the covariances.

The advantage of cumulants over covariances of products is that
given a vector (Xk1 , . . . , Xkq ) the behavior of the cumulant is
that of cX,q(r(k)). It does not need to know where occurs the
maximal lag in indices.

Example 12.2.2. Constants AQ are not explicit but more tight bounds
are derived from the previous proof for small values of Q

κX,2(r) = cX,2(r)

κX,3(r) = cX,3(r)

κX,4(r) ≤ cX,4(r) + 3µ2cX,2(r)

κX,5(r) ≤ cX,5(r) + 10µ2cX,3(r) + 10µ3cX,2(r)

κX,6(r) ≤ cX,6(r) + 15µ2cX,4(r) + 20µ3cX,3(r)) + 150µ4cX,2(r)

However the heavy combinatorics gives an advantage to the rough
bound in Lemma 12.2.1 to bound high order cumulants.

12.2.2 Sums of cumulants

The previous bounds yield

Lemma 12.2.2. Let

κQ =

∞∑
k2=0

· · ·
∞∑

kQ=0

∣∣κ (X0, Xk2 , . . . , XkQ

)∣∣ , (12.10)
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with notation (12.7) for each Q ≥ 2 there exists a constant BQ such
that

κQ ≤ BQ
∞∑
r=0

(r + 1)Q−2C∗X,Q(r).

Proof of Lemma 12.2.2. Decompose sums:

κQ ≤ (Q− 1)!
∑

k2≤···≤kQ

∣∣κ (X0, Xk2 , . . . , XkQ

)∣∣ ≡ (Q− 1)! κ̃Q

considering the following partition of the index set

E = {k = (k2, . . . , kQ) ∈ NQ−1/k2 ≤ · · · ≤ kQ}

as Er = {k ∈ E/r(k) = r} for r ≥ 0 (according to the size of the
maximal lag) then

κ̃Q =

∞∑
r=0

∑
k∈Er

∣∣κ (X0, Xk2 , . . . , XkQ

)∣∣ .
The previous Lemma implies∑

k∈Er

∣∣κ (X0, Xk2 , . . . , XkQ

)∣∣ ≤ AQ#ErC
∗
X,Q(r),

for a constant AQ > 0 and the elementary bound

#Er ≤ (Q− 1)(r + 1)Q−2,

yields the result.

12.2.3 Moments of sums

Let (Xn)n∈Z be a stationary and centered sequence one expects an
asymptotic behavior analogue to the CLT for partial sums

1√
n

(X1 + · · ·+Xn) −→n→∞ N (0, σ2), in law.

The behavior of moments in Lp−norm is of importance.

Cumulants allow an elementary approach of such expressions.
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Lemma 12.2.3. If the series (12.10) are summable for each Q ≤ p
set q = [p/2] (1) then

∣∣∣∣∣∣E
 n∑
j=1

Xj

p∣∣∣∣∣∣ ≤
q∑

u=1

nuγu, with (12.11)

γu =

2q∑
v=1

∑
p1+···+pu=p

p!

p1! · · · pu!
κp1 · · ·κpu .

Proof. As in [Doukhan and Louhichi, 1999] bound

|E(X1 + · · ·+Xn)p| =

∣∣∣∣∣∣
∑

1≤k1,...,kp≤n

EXk1 · · ·Xkp

∣∣∣∣∣∣
≤ p!Ap,n ≡ p!

∑
1≤k1,...,kp≤n

∣∣EXk1 · · ·Xkp

∣∣

Let also µ = {i1, . . . , iv} ⊂ {1, . . . , p} and k = (k1, . . . , kp) set

µ(k) = (ki1 , . . . , kiv ) ∈ Nv (12.12)

To enumerate the terms with their multiplicity this is simpler to
consider multi-indices than partitions.
Cumulants and moments are defined analogously.
As in [Doukhan and León, 1989] with formula (12.2) and partitions

1This expression equals q = p/2 for p even and q = (p− 1)/2 else.
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µ1, . . . , µu of {1, . . . , p} with exactly 1 ≤ u ≤ p elements,

Ap,n =
∑

1≤k1,...,kp≤n

p∑
u=1

∑
µ1,...,µu

u∏
j=1

κµj(k)(X)

=

p∑
u=1

∑
µ1,...,µu

∑
1≤k1,...,kp≤n

u∏
j=1

κµj(k)(X)

=

p∑
r=1

∑
p1+···+pr=p

p!

p1! · · · pr!
× (12.13)

×
r∏

u=1

∑
1≤k1,...,kpu≤n

κpu(Xk1 , . . . , Xkpu
)

|Ap,n| ≤
q∑

u=1

nu
∑

p1+···+pu=p

p!

p1! · · · pu!

u∏
j=1

κpj (12.14)

Identity (12.13) follows from a change of variable and takes into ac-
count the fact that the number of partitions for {1, . . . , p} into u sets
with respective cardinalities p1, . . . , pu is the multinomial coefficient.
For λ ∈ N one may deduce from the stationarity of X that∑

1≤k1,...,kλ≤n

|κpu(Xk1 , . . . , Xkλ)| ≤ nκλ.

Cumulants with order 1 always vanish and non zero terms are such
that if there exist u indices pj ≥ 2 (p1, . . . , pu ≥ 2 thus 2u ≤ p) then
u ≤ q.
We thus get (12.14).

Remark 12.2.2. If their exists C > 0 with κs ≤ Cs for each s ≤ p
then due to the multinomial identity the bound (12.14) simply writes

Cp
q∑

u=1

upnu.
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12.2.4 Rosenthal inequality

Again as in [Doukhan and Louhichi, 1999] we derive a Rosenthal type
inequality using coefficients cX,l(r).
As in the previous proof

|E(X1 + · · ·+Xn)p| ≤ p!Ap,n ≡ p!
∑

1≤k1,...,kp≤n

∣∣EXk1 · · ·Xkp

∣∣ .
Each term Tk (k = (k1, . . . , kp)) in the sum Ap,n admits a maximal
lag r = r(k) = maxj(kj+1 − kj) < n,

Tk ≤ cX,p(r) + |EXk1 · · ·Xkl | ·
∣∣EXkl+1

· · ·Xkp

∣∣ .
Partition those multi-indices k according to the value of r(k) and the
smallest index l = l(k) such that r(k) = kl+1 − kl (for r and l fixed
there exists less that n(r + 1)p−2 such multi-indices).
We obtain

Ap,n ≤ (p− 1)n

n−1∑
r=0

(r + 1)p−2cX,p(r) +

p−2∑
l=2

Al,nAp−l,n.

A Rosenthal is thus proved in [Doukhan and Louhichi, 1999].
Iterating the previous relation yields

A2,n ≤ nC2,n

A3,n ≤ 2nC3,n

A4,n ≤ 3nC4,n +A2
2,n ≤ 3nC4,n + n2C2

2,n

A5,n ≤ 4nC5,n + 2A2,nA3,n ≤ 5nC5,n + 4n2C2,nC3,n

A6,n ≤ 5nC6,n + 2A2,nA4,n +A2
3,n ≤ 5nC6,n

+2n2
(
2C2

3,n + 3C2,nC4,n

)
+ 8n3C3

2,n

We denote (for a fixed q)

C(q)
m,n =

n−1∑
k=0

(r + 1)m−2cX,q(r).

Generally if p = 2q or p = 2q + 1 we obtain

Ap,n ≤
q∑
j=1

cj,nn
j ,
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with cj,n a polynomial wrt expressions C
(q)
i,n for i ≤ j. Precisely this

is a linear combination of expressions
∏t
s=1 C

(qs)
is,n

with i1 + · · ·+it = j
and q1 + · · ·+ qt = p.
Hence for cX,p(r) = O(r−q) one deduces Marcinkiewicz-Zygmund
inequality ∣∣∣E(X1 + · · ·+Xn)p

∣∣∣ = O(nq).

Rosenthal type inequalities yield sharp bounds for centered moments
of kernel density estimators or for the empirical process.

12.3 Dependent kernel density estimation

Better that atomizing the different items related to kernel density
estimation under dependence extending on section 3.3, in various
parts of those notes we set them all as a specific section. Assume
that the marginals of the stationary process (Xn) admit a density f .
Let the kernel K is symmetric compactly supported and Lipschitz
and a window sequence hn ↓ 0 with nhn →∞ and x ∈ R.
Set U = (Uj)j∈Z with

Uj = K

(
Xj − x
hn

)
− EK

(
Xj − x
hn

)
.

Use eg. θ−weakly dependence.
This is easy to prove that:

Liph ≤ l2p−1 · LipK

hn
, if we denote:

h(t1, . . . , tl) =

l∏
j=1

{
K

(
tj − x
hn

)
− EK

(
Xj − x
hn

)}

If for each n > 0 the joint density fn(x, y) of the couple (X0, Xn)
exists and

‖fn(·, ·)‖∞ ≤M. (12.15)

Exercise 25. Assume that (Xn) is a stationary real valued Markov
chain with a transition kernel P (x,A) = P(X1 ∈ A|X0 = x), with a
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density; this means that one may write

P(X1 ∈ A|X0 = x) =

∫
A

p(x, y) dy,

for a measurable function p.
Condition (12.15) holds if ‖f‖∞ <∞ and the transition probabilities
admit a transition density such that ‖p‖∞ <∞.
Assume e.g. that Xn = r(Xn−1) + ξn with Lip r < 1, E|ξ0| < ∞,
and ξ0 admits a bounded density g wrt Lebesgue measure then use the
previous results to derive those bounds (2).

Integrating of the relation (12.15) yields ‖f(·)‖∞ ≤M and

cU,p(0) ≤ 2pf(x)

∫
K2(s)ds.

A direct calculation coupled with a weak dependence inequality yield
2 distinct controls of cU,p(r) for r > 0

cU,p(r) ≤ 2p−1

(
p · LipK

θr
hn

)
∧ (2Mh2

n),

thus there exists a constant C > 0 with

Cp,n = Chn

(
1 +

n−1∑
k=1

(r + 1)p−2

(
hn ∧

θr
h2
n

))
.

The following elementary inequality is often useful when two different
bounds of a quantity are available. In our case, two inequality may
appear either from dependence properties or from simple analytic
tricks.

Exercise 26.

u ∧ v ≤ uαv1−α, if u, v ≥ 0, 0 ≤ α ≤ 1. (12.16)

2Check that Proposition 7.3.1 implies the existence of a stationary distribution
and the relation f(x) =

∫
R p(x, y)f(y) dy implies with p(x, y) = g(y − r(x)) that

M = ‖g‖∞.
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Hint. From the symmetry of u, v’s roles assume that u ≤ v then
u ≤ 1 implies u ∧ v = u = uα · u1−α ≤ uα · v1−α.

As a simple application of the previous inequalities, for p = 2 we
derive the following result

Proposition 12.3.1. Assume that θr ≤ Cr−a for some a > 3, then

lim
n→∞

nhnVar f̂(x) = f(x)

∫
K2(t) dt.

Proof. First quote that cU,2(0) ∼ hnf(x)
∫
K2(s)ds and thus one

simply need to derive that

lim
n→∞

1

hn

∞∑
r=1

cU,2(r) = 0

but for some constant and from relation (12.16) one derives

1

hn
cU,2(r) ≤ C θr

h2
n

∧ hn ≤ h1−3α
n θαr

The assumption a > 3 implies that there exists some α < 1
3 such that

∞∑
r=1

θαr <∞.

Hence the dependent part of those variances is indeed negligible and
the behavior of kernel density estimates is the same as under inde-
pendence.

Exercise 27. Using inequality θ/h2 ∧ h ≤ θ1/3, prove that Cp,n =
O (hn) if

∞∑
r=0

(r + 1)p−2θ1/3
r <∞ (12.17)

More generally if p ≥ 2, from recursion and by using assumption
(12.17) and Exercise 27 we get∣∣∣E(f̂n(x)− Ef̂n(x))p

∣∣∣ ≤ C(nhn)p−q.
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This bound has order (nhn)−p/2 for even p and (nhn)−(p−1)/2 if p is
odd.
Consider now some even integer p > 2. Almost sure convergence of
such estimates also follows from Markov inequality and Borel-Cantelli
lemma in case:

∞∑
n=1

1

(nhn)p/2
<∞.

Exercise 28. Derive a.s. uniformly for x ∈ [a, b] over a compact
interval.

Hint. Use Remark 3.3.5.

Those bounds fit with the underlying CLT:

Theorem 12.3.1 ([Bardet et al., 2006]). Assume the assumption in
Proposition 12.3.1 hold then:√

nhn(f̂n(x)− Ef̂n(x))→n→∞ N
(

0, f(x)

∫
K2(t)dt

)
.

Proof. Use Lemma 11.5.1 then arguing as in Proposition 12.3.1
allows a tight control of the dependent terms again.
We leave the result as an exercise.
Let

x` = z` − Ez`, with z` =
1√
nhn

K

(
X` − x
hn

)
,

s1 = 0 and s` = x1 + · · · + x`, then simply quote that the needed
controls of the dependence terms are obtained through the relation

Cov (eitsk , eitxk) =
∑

0≤`≤k

Cov (eits` − eits`−1 , eitxk),

which concludes.

Exercise 29. Extend this whole section to the case of associated
processes. In particular precise how eqn. (12.17) should be modified
in this case.
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Exercise 30. Extend those results to the case of regression estimates
(3.5), both under weakly dependent or under associated frameworks.

Remark 12.3.1. Standard extensions are possible for the other weak
dependence conditions as well as under strong mixing.

We leave all such extensions as exercises. Moreover the case of sub-
sampling is analogue:

Exercise 31. Moreover subsampling from § 4.6 may also be consid-
ered as in Exercise 24 and higher order moments may be accurately
bounded (as in [Doukhan et al., 2011]) under weak dependence condi-
tions in order to derive almost sure convergence from Borel-Cantelli
lemma in case some even number p ∈ 2N satisfies

∞∑
n=1

E
(
K̂n(g)− EK̂n(g)

)p
<∞.

Hints. The proof is as for kernel density estimation based on bounds
for coefficients cZ,r(r) in eqn. (12.7) with Zi = g(tm(Xi+1, . . . , Xi+m))
in the overlapping scheme.
For h(x) = I1{x≤z} analogously to Exercise 22, bounds of

cY,r(r) = sup
i,j
|Cov (h(Xi1) · · ·h(Xiu), h(Xj1) · · ·h(Xjv ))|

u + v = p, i1 ≤ · · · ≤ iu, j1 ≤ · · · ≤ jv with j1 − iu = r allow to
bound higher order moments.
Set I1 = h(Xiu), Iε1 = hε(Xiu), J1 = h(Xju), . . . since those functions
are bounded and Liphε = 1/ε, using the following inequalities yields
eg. under η−weak dependence:

|Cov (I1 · · · Iu, J1 · · · Jv))| ≤ |Cov (Iε1 · · · Iεu, Jε1 · · · Jεv))|

+ 2

u∑
s=1

E|Is − Iεs |+ 2

u∑
t=1

E|Jt − Jεt |

≤ u+ v

ε
ηr + (u+ v)ε = 2(u+ v)

√
ηr, (with ε2 = ηr).

The same job does not need this last step under strong mixing.
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Appendix A

A.1 Probability

A.1.1 Notations

For a space E, recall that a sigma-algebra E is a subset of P(E), set of the
subsets of E), such that

• ∅ ∈ E ,

• ∀A ∈ E : Ac ∈ E , where we denote by Ac = E\A the complementary
set of A.

• ∀An ∈ E , n = 1, 2, 3 . . . : ⋃
n∈N

An ∈ E .

A measured space is such a couple (E, E).
A probability space (Ω,A,P) is a measured space (Ω,A) equipped with a
probability, that is a function P : A → [0, 1] such that:

• P(∅) = 0,P(Ω) = 1

• ∀A,B ∈ A :

A ∩B = ∅ ⇒ P(A ∪B) = P(A) + P(B).

• ∀Ai ∈ A, i = 1, 2, 3 . . . :

A1 ⊂ A2 ⊂ · · · ⇒ lim
n→∞

P(An) = P(A), A =
∞⋃
n=1

An.

239
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Elements of A are called events.

Example A.1.1. Examples of measurable spaces (Ω,A) follow. One should
remember that one usually needs two measurable spaces: a space of values
or realizations (E,A) and an abstract probability space (Ω,A) which needs
a probability function P.
We list some such simple spaces.

• If Ω is a finite set with n elements then a reasonable choice of sigma-
algebra is A = P(Ω) which admits 2n elements as it may be seen from
the fact the the application: A 7→ I1A defined for P(E) on the set of
functions from E to {0, 1} is a bijective function.

• For denumerable finite sets Ω again A = P(Ω) is a suitable frame.

• R may be equipped with its Borel σ−field, the smallest containing
intervals.

• More generally a topological space Ω is measurable with A the small-
est σ−field containing all the open sets. This σ−field is called the
Borel σ−field.

• Products of 2 measurable spaces are still measurable, and here the
σ−field is again the smallest containing products A × B with clear
notations.

• Infinite products are again possible; for a family of measurable spaces
(Ωi,Ai)i∈I the product Ω =

∏
i∈I Ωi and A is equipped with the

smallest σ−field containing all the events
∏
i∈I Ai with Ai ∈ Ai for

each i ∈ I and Ai = Ωi for each i /∈ J with J ⊂ I, a finite subset of
I.

• Examples of probability spaces are various and some of them are
linked with the generation of random variables. They will be consid-
ered in Example A.1.3.

The sigma-algebra A is complete in case A ∈ A, P(A) = 0 and B ⊂ A
imply B ∈ A (roughly speaking, it contains the nullsets).
The σ−field considered are usually those obtained from a measurable space
equipped with some measure (often, probability measures): the completed
σ−field is the smallest containing both all the events A ∈ A and each set
B ⊂ A for each A ∈ A with P(A) = 0.

A.1.2 Random variables

Let X : Ω → E be an arbitrary function defined on the measurable space
(Ω,A), taking values in another measurable space (E, E).
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We introduce the probabilist notation:

(X ∈ A) = X−1(A) = {ω ∈ Ω; X(ω) ∈ A}, for each A ⊂ E.

A random variable X : Ω→ E is a measurable function between those two
measurable sets: this means that X−1(E) ⊂ A. In other terms:

∀A ∈ E : (X ∈ A) ∈ A.

Note also that σ(X) = X−1(E) is the σ−algebra generated by the random
variable X : Ω → E, that mean it is the smallest sub-σ-algebra F of A
which makes the application X : (Ω,F)→ (E, E) measurable.

Also the image distribution or the law of X is the probability distribution
defined as

PX(A) = P(X ∈ A), ∀A ∈ E .
In most of the cases E = R will be endowed with its Borel sigma-algebra
(1), completed when necessary. X’s distribution probability is also defined
through its cumulative distribution function:

F (x) = P(X ≤ x) ≡ PX((−∞, x]), ∀x ∈ R.
In some cases E = Rd is a finite dimensional vector space but we shall avoid
to make the situations more complicated. For a column vector v ∈ Rd, set
v′ the corresponding row vector (2).

Definition A.1.1. For E = Rd one defines the mean of a random variable
X ∈ Rd:

EX =

∫
E

xPX(dx) ∈ Rd,

in case those integrals converge (3).
And moreover the covariance:

Cov (X) = EXX ′ − EX(EX)′ is a symmetric positive n× n−matrix,

In case X = (X1, X2), we also write:

Cov (X) =

(
VarX1 Cov (X1, X2)

Cov (X1, X2) VarX2

)
1Let E be any topological space, its Borel sigma algebra E is the smallest

sigma-algebra containing all the open sets; it contains thus also intersections of
open sets but also much more complicated sets.

2Anyway we assume that students will rectify by themselves the numerous
errors of this type in those notes.

3or if they can be defined, as this is is the case for d = 1 and E = R+ ≡
[0,+∞). In this case integrals take values in the space [0,+∞].
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Note that if d = 1, then

X ≥ 0 =⇒ EX ≥ 0. (A.1)

A first but essential result is the following

Theorem A.1.1 (Markov inequality). Assume that V ≥ 0 is a real valued
non-negative random variable, then its expectation exists in R = R∪{±∞}
and:

P(V ≥ u) ≤ EV
u
, ∀u > 0.

Proof. Set A = (V ≥ u) then using (A.1) we derive:

EV = EV 1A + EV 1Ac ≥ EV 1A ≥ uP(A)

Proposition A.1.1 (Jensen inequality). Jensen inequality holds for each
function g : C → R convex and continuous on the convex set C ⊂ Rd.
If Z ∈ C a.s. (and if the following expectations are well defined)

Eg(Z) ≥ g (EZ) (A.2)

Proof. We begin with the case d = 1. In this case we assume that C = (a, b)
is an interval then g : (a, b) → R is derivable excepted possibly on some
denumerable set.
Moreover on each point of C the left and right derivatives exist (at the
extremities, only one of them may be defined; moreover for any x, y, z ∈ C
if x < y < z then

g′(x+) ≤ g′(y−) ≤ g′(y+) ≤ g′(z−),

with

g′(y±) = lim
h→0+

g(y ± h)− g(y)

±h ,

then for each x0 ∈ C choose any u ∈ [g′(x0−), g′(x0+)], then the affine
function

f(x) = u(x− x0) + g(x0)

satisfies f ≤ g and f(x0) = g(x0) by convexity.
Thus each convex function g is the upper bound of affine functions f ≤ g.
From linearity of integrals f(EZ) = Ef(Z) and thus f(EZ) ≤ Eg(Z).
Now the relation supf f(EZ) = g(EZ) allows to conclude.
If now d ≥ 1 then from the most elementary variant of Hahn-Banach
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Figure A.1: Convex functions are suprema of affine functions.

theorem (4) the same representation of g holds and the proof is the same
see Figure A.1.

Remark A.1.1.

• This inequality is an equality for each affine function.

• The inequality is strict if g is strictly convex and Z is not a.s. con-
stant. The case of power functions is investigated in lemma 7.3.1.

• Let B ⊂ A be a sub-σ algebra of A, a conditional variant of this
inequality writes(5) :

EBg(Z) ≥ g
(
EBZ

)
. (A.3)

The following standard inequality is important :

Proposition A.1.2 (Hölder inequality). Let X1 ∈ Lp1 , . . . , Xu ∈ Lpu be
real valued random variables, then:

E|X1 · · ·Xu| ≤ ‖X1‖p1 · · · ‖X1‖pu , if
1

p1
+ · · ·+ 1

pu
= 1.

4In the Hilbert case the orthogonal projection provides a elementary way to
separate a point from a disjoint closed convex set: take its orthogonal projection
y of x then the hyperplane with direction x⊥ and containing the middle of the
interval [x, y] is a valuable solution of Hahn-Banach separation problem.

5use of a conditional version of the dominated convergence theorem.
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Hint. For z1, . . . , zu > 0 the convexity of the exponential function implies
z1 · · · zu ≤ 1

p1
zp11 + · · ·+ 1

pu
zpuu . Now set zj = |Xj |/‖Xj‖pj to conclude.

Definition A.1.2. Let X ∈ Rd be a vector valued random variable then
its characteristic function is defined as

φX(t) = Eeit·X , ∀t ∈ Rd.

The Laplace transform of the law of X is :

LX(z) = Eez.X , for all z ∈ Dom(LX) ⊂ Cd,

(Dom(LX) if the set of such z such that this expression is well defined.)

Remark A.1.2. First quote that the characteristic function always exists
and φX(t) = LX(it).
If 0 is interior to the domain of definition of LX then this function is
analytic around 0 as well as φX .
Thus interchanging derivation and integrals is legitimate:

∂

∂tj
φ(0) = i · EXj .

Moreover Fourier integral theory implies that inversion if possible and thus
in this case φX determines X’s distribution.

Simple examples of probability distributions are

• Discrete random variables: there exists a finite or denumerable set S
such that P(X /∈ S) = 0 and in case the following series is absolutely
convergent we denote

EX =
∑
x∈S

xP(X = x).

In the case when S ⊂ Z the generating function gX(z) = EzX will be
preferred to the Laplace transform and this function is also defined
for |z| ≤ 1.
Examples are

– Bernoulli law b(p) with parameter p ∈ [0, 1] is the law of a
random variable with values in {0, 1} with

P(X = 1) = p and thus P(X = 0) = 1− p.
Here gX(z) = pz + q.
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– Binomial law B(n, p) with parameters n ∈ N∗, p ∈ [0, 1] is the
law of a random variable with values in {0, 1, . . . , n} with

P(X = k) =
n!

k!(n− k)!
pk(1− p)n−k.

Here, with gX(z) = (pz + q)n and, if X1, . . . , Xn ∼ b(p) are
independent identically distributed random variables then

X1 + · · ·+Xn ∼ B(n, p).

– A Poisson distributed random variable X with parameter λ

takes values in N and P(X = k) =
λk

k!
e−λ.

• Absolutely continuous distributions.

Definition A.1.3. We assume here that there exists a measurable
function f : E → R+ such that for each A ∈ E:

PX(A) =

∫
A

f(x) dx

this function is called the density of X distribution.

Remark A.1.3.

We also derive that for each measurable function g : E → R,

Eg(X) =

∫
E

g(x)f(x) dx.

This relation is also the definition of a density.

Example A.1.2. Some examples follow (see also Appendix § A.2):

– Uniform distribution on the unit interval, it admits a density
wrt the Lebesgue measure f(x) = I1[0,1](x)

– Exponential law E(λ) with parameter λ admits the density f(x) =
λe−λx I1x≥0.

– The Normal law N (0, 1) is the simplest Gaussian law which

admits the density f(x) =
1√
2π
· e−

x2

2 .

– Cauchy distribution is defined with f(x) =
1

π
· 1

1 + x2
. The

mean of such Cauchy distributed random variables is thus not
defined.
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Remark A.1.4 (Simulation). If a cdf F is one-to-one on its image then
for each uniform random variable U ∼ U [0, 1] the random variable X =
F−1(U) admits the cumulative distribution function F .
This is an easy way to simulate real random variables with marginal dis-
tribution.
Quote that the same holds for more general cases when defining:

F−1(t) = inf{x ∈ R| F (x) ≥ t}

Simple examples prove that other possibilities are available:

• Assume that X ∼ b(p) then F (t) = 1 for t ≥ p then one simulates a
b(p)−distributed random variable by setting X ′ = I1{U≤p}. Anyway
other possibilities are I1{U<p}, I1{U≥1−p} and I1{U>1−p}, since 1 − U
also admits a U [0, 1]−distribution.

• For E(λ)−distributions F (t) = 1− e−λt so that

F−1(t) = − ln(1− t)/λ;

again simulations of such exponential random variables write X =
− ln(1− U)/λ, or more accurately − ln(U)/λ.

Example A.1.3 (Probability spaces). An example of probability space is
Ω = [0, 1]Z endowed with its product σ-algebra.

This is the smallest sigma-algebra containing cylinder events
∏
n∈Z

An where

An is a Borel set of [0, 1] and An 6= [0, 1] for only finitely many indices n.
Then a sequence of random variables Xn is defined as the n−th coordinate
function Xn(ω) = ωn for all ω = (ωn)n∈Z.
In this case each of the coordinates Xn admits the uniform distribution µ,
the Lebesgue measure on [0, 1].
Let now F be the cumulative repartition of the law ν of a real valued random
variable then setting instead Xn(ω) = F−1(ωn) make that

P(Xn ∈ A) = F (A) = ν(A) = P(X ∈ A).

Thus one may assign any distribution to those coordinates.

Lemma A.1.1 (Hoeffding).

1. Let Z ≥ 0 be a (a.s.-)non-negative random variable then

EZ =

∫ ∞
0

P(Z ≥ t) dt.
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2. Let X,Y ∈ L2 be two real valued random variables

Cov (X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

(P(X ≥ s, Y ≥ t)−P(X ≥ s)P(Y ≥ t)) ds dt.

Proof.

1. Let z ≥ 0 then z =
∫∞

0
I1(z≥t) dt. Set λ the Lebesgue measure

on the line. Without any convergence assumption of those inte-
gral, Fubini-Tonnelli theorem applies to the non-negative function
(t, ω) 7→ I1(Z(ω)≥t). This allows to conclude.

2. First for X,Y ≥ 0 the same trick as above works and

EXY =

∫ ∞
0

∫ ∞
0

P(X ≥ s, Y ≥ t) ds dt.

WriteX = X+−X−, Y = Y +−Y − for nonnegative random variables
X±, Y ±.

The formula holds for each of them and

P(X ≥ s) =

{
P(X+ ≥ s), if s ≥ 0
1− P(X− > −t), if s < 0

Now for an arbitrary couple of real valued random variables Cov (X,Y )
writes as a linear combination of four such integrals with respective
coefficients ±1.

A.2 Distributions

We provide a short introduction to Gaussians with first the standard nor-
mal and then it vector extension essential to define Gaussian processes and
finally γ−laws which permit many explicit calculations.

A.2.1 Normal distribution

A standard normal random variable is a real valued random variable such
that N ∼ N (0, 1) admits the density

ϕ(x) =
1√
2π

e−
x2

2
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wrt Lebesgue measure on R. The norming factor
√

2π may be checked
through the computation of a square as follows:(∫ ∞

−∞
e−

x2

2 dx

)2

=

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dx dy

=

∫ 2π

0

dθ

∫ ∞
0

e−
r2

2 r dr

= 2π.

To this aim, use a change in variables with polar coordinates

(r, θ) 7→ (x, y) = (r cos θ, r sin θ), R+ × [0, 2π[→ R2.

This is easy to check that the Jacobian is simply r in this case.

Lemma A.2.1. The characteristic function of this normal distribution
writes

φN (s) = EeisN = e−
s2

2 (A.4)

Proof. Indeed the Laplace transform LN (z) = EezN is easy to compute in
case z ∈ R:

LN (z) = EezN =
1√
2π

∫ ∞
−∞

ezx−
x2

2 dx =
1√
2π

∫ ∞
−∞

e
z2

2
− (x−z)2

2 dx = e
z2

2

with the binomial formula (x− z)2 = x2 − 2zx+ z2 and after a change in
variable x 7→ x− z.
From dominated convergence theorem the application z 7→ LN (z) is an
entire function over C.
The principle of analytic continuation implies that this formula remains
valid for each z ∈ C, and in particular we obtain

φN (s) = LN (is) = e−
s2

2 .

Equation (A.4) may also be rewritten:

EezN−
z2

2 = 1, ∀z ∈ C. (A.5)

From the analicity of φN over the whole complex plane C, the distribution
of a Normal random variable is given from its characteristic function.

Definition A.2.1. A random variable Y admits the Gaussian law Y ∼
N (m,σ2) if it can be written Y = m+ σN for m,σ ∈ R and for a Normal
random variable N.
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The density and the characteristic function of such distributions are derived
from linear changes in variable:

fY (y) =
1

σ
√

2π
e
− (y−m)2

2σ2 , φY (t) = eitme−
1
2
σ2t2 .

Gaussian samples, Gaussian densities and a Normal repartition functions
are reproduced in Figures A.2, A.3, and A.4.

0 200 400 600 800 1000

-3
-2

-1
0

1
2

3

Figure A.2: Gaussian white noise (iid sample).

Exercise 32 (Similarity properties of the Normal law).

1. An important property is that if random variables Yj ∼ N (mj , σ
2
j )

are independent for j = 1, 2, then

Y1 + Y2 ∼ N (m1 +m2, σ
2
1 + σ2

2).

2. A converse of this result is that if Y1, Y2 are independent and with a
same distribution µ. If (Y1 + Y2)/

√
2 ∼ µ admits the same distribu-

tion then µ is a centered Gaussian distribution.
Hint. This property follows from a property of characteristic func-
tions.
The characteristic function γ(t) =

∫
etxµ(dx), satisfies

γ(t) = γ2
( t√

2

)
,
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Figure A.3: Normal density.

Figure A.4: The N (10, 4)−Normal cumulative distribution function.

from independence.
To prove that this characterizes Gaussians, it may be shown that the
log-characteristic function is a second degree polynomial.
With this formula, a simple recursion entails that there exists a con-
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stant a ∈ R such that log γ(t) = at2 for t = k2n with k, n ∈ Z. A
continuity argument allows to conclude.

A.2.2 Multivariate Gaussians

Definition A.2.2. A random vector Y ∈ Rk is Gaussian if the scalar
product Y · u = Y tu admits a Gaussian distribution for each u ∈ Rk.

Some essential features of Gaussian laws follow.

• Gaussian laws only depends on second order properties

The law of a Gaussian Y random variables only depends on the mean
and on the variance matrix. For

u ∈ Rk, Σ = E(Y − EY )(Y − EY )′,

we easily check that Y ·u ∼ N (EY ·u, utΣu) only depends on u, EY ,
and on Σ.
An important consequence is that, for Gaussian vectors, orthogonal-
ity and independence coincide (alternatively this property may also
be derived from the expression of characteristic functions).

• Reduction of Gaussian vectors

Let Y be such a Gaussian vector, Σ = E(Y −EY )(Y −EY )t, admits
a symetric nonnegative square root R, Σ = R2. Indeed Σ is nonneg-
ative symmetric (6), thus it is diagonalisable in an orthonormal basis
thus there exists an orthogonal matrix Ω and a diagonal matrix D
with Σ = Ω′DΩ and Ω′Ω = Ik.
Since Σ is nonnegative, the matrix D admits nonnegative diagonal
coefficients (positive if Σ is a definite matrix). The nonnegative diag-
onal matrix ∆ with elements the square roots of those of D satisfies
D = ∆2.
Thus R = Ωt∆Ω, is a convenient square root (nonnegative symmet-
ric) of Σ. This solution may be proved to be unique in case Σ is
definite, because eigenspaces of R and Σ coincide from the fact that
those matrices commute.
In this case Z = R−1(Y − EY ) is a Gaussian vector with orthog-
onal and normal N (0, 1) coordinates. The previous remark proves
that those components are independent identically distributed thus
Z ∼ Nk(0, Ik).

6Indeed u′Σu = Var (Y · u) ≥ 0 for each u ∈ Rk,
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• Density

Through a change in variables: if Σ is invertible then Y admits a
density on Rk:

fY (y) =
1√

(2π)k det Σ
e−

1
2

(y−EY )tΣ−1(y−EY ) (A.6)

• Characteristic function

Even for Σ non invertible we may write Y = EY + RZ. Thus for
each s ∈ Rk:

φY (s) = Eeis·Y

= eis·EY Eeis·RZ

= eit·EY EeiZ·Rs

= eis·EY−
1
2

(Rs)·(Rs)

φY (s) = eis·EY−
1
2

(stΣs) (A.7)

• Conditioning

Let (X,Y ) ∼ Na+b(0,Σ) be a Gaussian vector with covariance ma-
trix written in blocs (

Ia C
C′ B

)
for some symmetric positive definite matrix B (b× b) and a rectan-
gular matrix C with order a× b.
Then Z = Y −C′X est is orthogonal to X; hence from Gaussianness
of this vector they are independent. Thus E(Y |X) = C′X.

A.2.3 γ−distributions

As an example of the previous sections we introduce another important
class of distributions.

Definition A.2.3. The Euler function Γ of the first kind is defined over
]0,+∞[ by the relation

Γ(t) =

∫ ∞
0

e−xxt−1 dt.

Hints. Let t ∈ R. The integral Γ(t) is that of a positive and continuous
function over ]0,+∞[. This is always a convergent integral at infinity but
t > 0 is necessary to ensure the convergence at origin.
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Integration by parts together with the relation
d

dx
xt = txt−1 entails

Γ(t+ 1) =

∫ ∞
0

d

dx
{−e−x}xt dt =

[
(−e−x)xt

]∞
0
− t
∫

(−e−x)xt−1 dx.

Moreover a simple calculation proves tat Γ(1) = 1 thus a recursion using
the previous identity entails Γ(k) = (k − 1)! for k ∈ N, thus:

Lemma A.2.2. Let t > 0 then Γ(t + 1) = tΓ(t) and Γ(k) = (k − 1)! for
each k ∈ N∗ (with the convention 0! = 1).

Definition A.2.4. Set for b > 0, ca,b = ba/Γ(a).
In case b > 0, the law γ(a, b) is the law with density

fa,b(x) = ca,b e
−bxxa−1 I1{x>0}.

Proof. The function fa,b is integrable around infinity in case b > 0 and this
integral converges at 0 if a > 0.
As a density admits the integral 1, we compare both integrals to get:

c−1
a,b =

∫ ∞
0

e−bxxa−1dx = b−a
∫ ∞

0

e−yya−1dy = b−aΓ(a),

by using a change of variable y = bx. Thus ca,b = ba/Γ(a).

Some simple facts are easily derived:

Lemma A.2.3. Let Z ∼ γ(a, b) then for m > 0 and <(u) < b:

EZm =
Γ(a+m)

bmΓ(a)
,

La,b(u) = EeuZ =

(
b

b− u

)a
.

Proofs.

EZm = ca,b

∫ ∞
0

xme−bxxa−1dx =
ca,b

ca+m,b
=

Γ(a+m)

bmΓ(a)
.

To compute Laplace transform La,b(u) = EeuZ of Z, we first assume that
u ∈ R:

La,b(u) = ca,b

∫ ∞
0

e(u−b)xxa−1 dx =
ca,b
ca,b−u

=

(
b

b− u

)a
.
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This is an analytic function in case <(u) < b since integrals defining La,b(u)
is absolutely convergent because of∣∣∣e(u−b)xxa−1

∣∣∣ = e(<u−b)xxa−1

The same holds for the complex derivative ue(u−b)xxa−1.
Analytic continuation allows to conclude.

Easy consequences of this lemma follow:

Corollary A.2.1. Let Z,Z′ be two independent random variables with
respective distributions γ(a, b) and γ(a′, b), then

Z + Z′ ∼ γ(a+ a′, b).

Proof. The previous lemma implies

Eeu(Z+Z′) = La,b(u)La′,b(u) = La+a′,b(u)

if <u < a∧a′, then the result follows from uniqueness of Laplace transforms
in case they and analytic on a domain with non-empty interior.

Exercise 33. An alternative proof of Corollary A.2.1.

• Define Euler function of the second kind for a, a′ > 0 :

B(a, a′) =

∫ 1

0

ua−1(1− u)a
′−1 du.

(Prove that the above expression is well defined.)

• Prove that for a, a′ > 0 :

B(a, a′) =
Γ(a)Γ(a′)

Γ(a+ a′)
.

• Prove again Corollary A.2.1 without using the notion of Laplace
transform and the principle of analytical continuation.

Proofs. If a, a′ > 0, the function

B(a, a′) =

∫ 1

0

ua−1(1− u)a
′−1 du,
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is well defined, indeed such integrals converge at origin since a > 0 and at
point 1, it is due to the fact that a′ > 0.
Let g be a continuous and bounded function then for such independent
Z ∼ γ(a, b) and Z′ = γ(a′, b) one derives:

Eg(Z + Z′) =

∫ ∞
0

∫ ∞
0

g(z + z′)fa,b(z)fa′,b(z
′) dzdz′

=

∫ ∞
0

g(u) du

∫ u

0

fa,b(z)fa′,b(u− z) dz

= ca,bca′,b

∫ ∞
0

e−bug(u) du

∫ u

0

za−1(u− z)a
′−1 dz,

= ca,bca′,b B(a, a′)

∫ ∞
0

ua+a′−1e−bug(u) du with z = ut

=
ba+a′B(a, a′)

Γ(a)Γ(a′)

∫ ∞
0

ua+a′−1e−bug(u) du

thus Z + Z′ admits a γ(a + a′, b)−distribution. Now the normalization
constant writes in two different ways which entails:

ba+a′B(a, a′)

Γ(a)Γ(a′)
=

ba+a′

Γ(a+ a′)
,

so that B(a, a′) =
Γ(a)Γ(a′)

Γ(a+ a′)
.

Example A.2.1. From the above results

• The density of the sum Sk of k independent random variables with
exponential distribution E(λ) for λ > 0 is γ(k, λ).

• Define χ2
k distribution as the distribution of

Tk = N2
1 + · · ·+N2

k

for independent and normally distributed N (0, 1) random variables
N1, . . . , Nk. The law of χ2

k is γ( k
2
, 1

2
) and Γ( 1

2
) =
√
π.

• For m ∈ N and N ∼ N (0, 1), ENm = 0 for m odd and ENm =
(2p)!/2pp! for m = 2p an even number.

Hints. For k = 1, S1 ∼ E(λ) admits a γ(1, λ)−distribution, and T1 =
N2 is the square of a standard Normal; we compute its density from the



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 256 — #260 i
i

i
i

i
i

256 [CHAP. A:

expression of Eg(T1) for each bounded and continuous function g : R→ R:

Eg(T1) = Eg(N2)

=

∫ ∞
−∞

g(x2)e−x
2/2 dx√

2π

= 2

∫ ∞
0

g(x2)e−x
2/2 dx√

2π

= 2

∫ ∞
0

g(z)
1

2
√
z
e−z/2

dz√
2π
, (with z = x2)

=

∫ ∞
0

g(z)z
1
2
−1e−z/2

dz√
2π

Thus the density function of T1’s distribution is z
1
2
−1e−z/2/

√
2π for z ≥ 0.

Up to a constant this is the density f 1
2
, 1
2

of a law γ( 1
2
, 1

2
).

Since they are both densities it implies c 1
2
, 1
2

= 1/
√

2π. and thus Γ( 1
2
) =

√
π.

Now addition formulas allow to conclude for k > 1 that Sk ∼ γ(k, λ) and
Tk ∼ χ2

k ∼ γ( k
2
, 1

2
). The last result follows either from the previous result

Lemma A.2.3 since

ET p1 =
Γ( 1

2
+ p)

2−pΓ( 1
2
)
,

but it needs some additional effort. A simpler way to proceed is to use
relation A.4 and from comparing both sides of the expansion of EeitN =

e−t
2/2,

EeitN =
∑
m

1

m!
(it)mENm, e−t

2/2 =
∑
p

1

p!

(
−t2

2

)p
.

Clearly the parity of the characteristic function implies that all odd mo-
ments vanish. Now for m = 2p, we obtain:
((−t2)/2)p

p!
= EN2p(−1)p

t2p

(2p)!
.

A.3 Convergence

A.3.1 Convergence in distribution

We consider a sequence of random variables Xn and a random variable X
with values in an arbitrary complete separable metric space (E, d) .
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Definition A.3.1. The sequence Xn converges in distribution to X, which
we denote

Xn →Ln→∞ X, if Eg(Xn)→n→∞ Eg(X).

for any continuous and bounded function g : E → R.

This definition does not depend on the random variables but really only
on their distribution PXn → PX and thus we really define the convergence
of probability measures on a metric space.
An example of important metric space follows.

Definition A.3.2. The Skorohod space D[0, 1] is the space of functions
[0, 1] → R continuous from the right and admitting a limit on the left at
each point t ∈ [0, 1]. For short they are called cadlag functions.

Example A.3.1. Such cadlag functions are:

• Continuous functions are cadlag, C[0, 1] ⊂ D[0, 1],

• Indicators are also cadlag, x 7→ gt(x) = I1{x≤t} for each t ∈ [0, 1].

The metric d(f, g) = supt |f(t) − g(t)| is natural on the space C[0, 1] of
continuous real valued functions on the interval.
Note that the indicator function g 1

2
may be approximated by a sequence

of piecewise affine functions fn with Lip fn = n and fn(x) = I1{x≤ 1
2
} for

|x− 1
2
| ≥ 1

n
but this sequence is not d−Cauchy. If limn d(fn, g 1

2
) = 0 then

fn should also have a jump at 1
2

for large values of n.
D[0, 1] is not separable with the metric d since d(gs, gt) = 1 if and only if
s 6= t.

Remark A.3.1 (Prohorov metric). Let H be the set of monotonic home-
omorphisms (7) [0, 1]→ [0, 1] then a reasonable metric on D[0, 1] is

δ(f, g) = inf
λ∈H

{
d(f ◦ λ, g) + sup

t∈[0,1]

|λ(t)− t|

}
.

This metric makes D[0, 1] complete and separable. We shall not prove this
but this is simple to prove that limn δ(gt, gt+ 1

n
) = 0.

Quote that δ ≤ d thus for example the function f 7→ sup0≤t≤1 f(t) is a
continuous function on this space (D[0, 1], δ). Convergence in this space is
addressed in [Billingsley, 1999]; it is not in the scope of those notes.
A criterion for the convergence of empirical repartition functions Zn(t) =

n−
1
2 (Fn(t)− t) of a stationary sequence with uniform marginal distribution

(see in [Dedecker et al., 2007]) is

7i.e. bijective continuous functions with a continuous inverse.
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• For each d−tuple t1, . . . , td ∈ [0, 1] the sequence of random vectors
(Zn(t1), . . . , Zn(td)) converges in distribution to some Gaussian ran-
dom variable in Rd.

• There exist constants a, b, p > 1 and C > 0 such that for each s, t ∈
[0, 1]

E|Zn(t)− Zn(s)|p ≤ C
(
|t− s|a + n−b

)
.

From now on, we shall restrict to the case E = Rd. In this case,

Lemma A.3.1 (Tightness). Let X be a rv on Rd. For each ε > 0 there
exists a compact subset of E such that P(X /∈ K) < ε.

Proof. Note that Ω =
⋃∞
n=1 An with An = (|X| ≤ n). Hence from the

sequential continuity of the probability P there exists n such that P(Acn <
ε). The closed ball with radius n is now a convenient choice K = B(0, n).

Remark A.3.2. This result allows to restrict to a compact set. This
is easy to prove that the previous convergence holds in case the class of
continuous and bounded test functions is replaced by a smaller class of
functions:

• The class of uniformly continuous and bounded functions (8).

• The class of functions C3
b with third order continuous and bounded

partial derivatives (9).

• If φXn(t)→ φX(t) for each t ∈ Rd.
Indeed, from Stone-Weierstrass theorem which asserts the density
on trigonometric polynomials on the space C(K) of continuous real
valued functions on a compact K ⊂ Rd, equipped with the uniform
norm ‖g‖K = supx∈K |g(x)|.

8The restriction of a continuous function over a compact set is uniformly con-
tinuous. Indeed, from Heine theorem, a continuous over a compact set is uni-
formly continuous.

9From a convolution approximation with a bounded and indefinitely derivable
function with integral 1 φ, fε = f ? φε converges uniformly over compact subsets
to f as ε ↓ 0, if one sets φε(u) = 1

ε
φ(u/ε).

Now convolution inherits of φ’s regularity. Indeed the Lebesgue dominated con-
vergence applies to prove that eg.

f ′ε(u) = lim
h→0

1

h
(fε(u+ h)− fε(u)) = f ? φ′ε(u).
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• If a sequence of characteristic functions converges uniformly on a
neighborhood of 0 then its limit is also the characteristic function of
a law µ (Paul Lévy).

A.3.2 Convergence in probability

From now on we shall consider pathwise convergence only.

Definition A.3.3. The sequence Xn converges in probability to X, which
we denote

Xn →P
n→∞ X

if, for each ε > 0:
lim
n→∞

P (|Xn −X| ≥ ε) = 0.

Lemma A.3.2. If a real valued sequence of random variables Xn converges
in probability to X, then it converges in distribution.

Proof. Assume that convergence in probability holds then lemma A.3.1
then we may assume that g is uniformly continuous in the definition of
convergence in distribution. Let ε > 0 we set A = (|Xn −X| ≥ ε)

|E(g(Xn)− g(X))| =
∣∣∣E(g(Xn)− g(X))1A + E(g(Xn)− g(X))1Ac

∣∣∣
≤ 2‖g‖∞P(An) + sup

|x−y|<ε
|g(x)− g(y)|.

Uniform continuity of g yields convergence in law.
An alternative proof makes use of Lévy theorem, see Remark A.3.2 for
details.

Definition A.3.4. If E|Xn −X|p →n→∞ 0 we say that the sequence Xn
converges to X in Lp.

Remark A.3.3 (relations between convergences).

• Convergence in probability implies convergence in probability, see
Lemma A.3.2.

• Convergence in distribution does not imply convergence in probabil-
ity.
A dyadic scheme allows to write (0, 1] as the union of the 2n disjoint
intervals

Ij,n =]j2−n, (j + 1)2−n], (0 ≤ j < 2n),
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with the same measure 2−n.
This is thus possible to write [0, 1] = An

⋃
Bn where both sets admit

the measure λ(An) = λ(Bn) = 1
2

, by setting eg.

An =

2n−1⋃
j=1

I2j,n, Bn =

2n−1⋃
j=1

I2j−1,n.

On the probability space ((0, 1],B((0, 1], λ), the sequence Xn = I1An
follows the same Bernoulli distribution b( 1

2
) thus it converges in dis-

tribution to X0.
Now the sequence Xn does not converge in probability since

λ

(
An ∩

[
0,

1

2

])
=

1

4
<

1

2
= λ(A0).

Indeed P(Xn <
1
2
) = 1

4
cannot converge to 1

2
thus no subsequence of

Xn may be convergent in probability to X0.

• From Markov inequality applied to V = |Xn −X| this is immediate
to derive that Lp convergence implies convergence in probability.

• However if the random variable Z satisfies E|Z|p =∞ and E|Z|q <
∞ for each q < p then the sequence Xn = Z/n converges to X = 0
in probability but not in Lp.
Indeed Markov inequality implies

P(|Xn| > ε) ≤ E|Z|q

nqεq
→n→∞ 0,

for each ε > 0 in case q ∈ (0, p[.

As an example think of Z with a Cauchy distribution and p = 1.

A.3.3 Almost sure convergence

Definition A.3.5. The sequence Xn converges almost surely to X, which
we denote

Xn →a.s
n→∞ X

if there exists an event A with P(A) = 0 such that for each ω /∈ A

lim
n→∞

Xn(ω) = X(ω).
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Again a.s. convergence implies convergence in probability.

Definition A.3.6 (Limit superior). For a sequence of events Bn, set

lim
n
Bn =

⋂
n

⋃
k≥n

Bk.

Remark A.3.4. Note that An =
⋃
k≥nBk is a decreasing sequence of

events.

Lemma A.3.3 (Borel-Cantelli). If (Bn)n∈N is a sequence of events such
that

∑
n P(Bn) <∞ then

P(lim
n
Bn) = 0.

Remark A.3.5.

• If Xn → X in probability then some subsequence of Xn also converges
a.s.
Indeed for each k > 0 limn P(kZn > 1) = 0 with Zn = |Xn − X|.
This is possible to extract a subsequence φk(m) such that∑

m

P(kZφk(m) > 1) <∞.

Then from Borel-Cantelli lemma it is left to the reader to prove that
the diagonal scheme Tm = Zφm(m) is almost surely convergent.

• In Remark A.3.3 we use a dyadic scheme (Ij,n)0≤j<2n for n =
1, 2, 3, . . ., now the sequence Xn = I1An does not have any a.s. con-
vergent subsequence.
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et prévisions. Masson, Paris.

[Bardet et al., 2006] Bardet, J. M., Doukhan, P., Lang, G., and Ra-
gache, N. (2006). Dependent Lindeberg central limit theorem and
some applications. ESAIM P&S, 12:154–171.

[Billingsley, 1999] Billingsley, P. (1999). Convergence of probability
measures. Second edition, Wiley and sons.

[Bradley and Pruss, 2009] Bradley, R. and Pruss, A. (2009). A
strictly stationary, n−tuplewise independent counterexample in
the central limit theorem. Stoch. Proc. Appl., 119(10):3300–3318.

[Breuer and Major, 1983] Breuer, P. and Major, P. (1983). Central
limit theorems for non-linear functionals of Gaussian fields. Journal
of Multivariate Analysis, 13:425–441.

[Brockwell and Davis, 1991] Brockwell, P. J. and Davis, R. A.
(1991). Time Series: Theory and Methods. Springer Series in
Statistics. Second edition, Springer.

[Choquet, 1973] Choquet, G. (1973). Topologie, Volume II. Masson,
Paris.

263



i
i

“doukhan˙IMPA” — 2015/5/20 — 14:50 — page 264 — #268 i
i

i
i

i
i

264 BIBLIOGRAPHY

[Colomb, 1977] Colomb, G. (1977). Estimation non paramétrique de
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H−self-similarity, 84
4-th moment method, 87, 105

Appell polynomials, 125
AR-ARCH–model, 136, 137
ARCH(2)–model, 138
ARMA(p, q)−processes, 113
associated, 163
autocovariance, 64
autoregression, 133
autoregression, integer valued,

149

Backward operator, 111
Bernoulli scheme, 154
Bernstein blocks technique, 215
bilinear mode, 128
bootstrap, 74, 202, 206
Borel sigma-algebra, 241
Borel-Cantelli lemma, 261
branching model, 146
Brownian motion, 83, 103, 152,

188

cadlag, 257
causal, 110, 155
central Limit Theorem, 20
chaos, 124
chaos, discrete, 123

chaos, Gaussian, 6, 79
chaos, Hermite, 125
characteristic function, 244, 248
complete, 240
contrast, 36
convergence in Lp, 259
convergence in distribution, 189,

206, 257
convergence in probability, 259
convergence, almost sure, 261
coupling, 158
covariance, 13, 54, 57, 64, 67,

241
covariogram, 71, 118
cumulant, 219, 221, 222, 225,

229
cumulative empirical distribu-

tion, 161
cumulative repartition distribu-

tion, 217

decorrelation, 158, 159
density, 12, 37, 74, 234, 245,

247
dependence coefficient, αr, 203,

207, 213
dependence coefficient, ηr, 211
dependence coefficient, κr, 211
dependence coefficient, κX,q(r),
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226
dependence coefficient, λr, 211
dependence coefficient, θr, 211,

213
dependence coefficient, cX,q(r),

225

empirical cumulative distribu-
tion, 35, 98

empirical mean, 33
empirical process, 217
ergodic, 34, 174
estimation, semi-parametric, 50
estimator, histogram, 38
estimator, kernel, 39, 44, 71,

234
estimator, kernel regression, 44
estimator, Nadaraya-Watson, 44,

46, 49, 52
estimator, orthogonal projec-

tion, 39
estimator, wavelet, 38
event, 12–14, 173, 205, 240

FARIMA(0, d, 0)−processes, 117
FARIMA(p, d, q)−model, 121
fractional Brownian motion (fBm),

82
fractional filter, 197
fractional integration, 197
function, Euler Γ, 252
function, Euler B, 254

GARCH(1,1)–model, 138
Gaussian chaos, 87
Gaussian family, 80
Gaussian process, 80
Gaussian vector, 251

generalized linear model (GLM),
151, 152

Herglotz theorem, 58
Hermite expansion, 88
Hermite polynomial, 89
Hermite rank, 91, 97, 189
Hoeffding lemma, 246
Hopf maximal inequality, 177

image distribution, 241
independent, 11
inequality, Bennett, 30
inequality, Bernstein, 31
inequality, exponential, 28
inequality, Hölder, 224, 243
inequality, Hoeffding, 28
inequality, Jensen, 140, 242, 243
inequality, Marcinkiewicz-Zygmund,

25, 234
inequality, Markov, 242
inequality, Rosenthal, 25
iterative random model, 133,

152

kernel, of order p, 40
Kolmogorov consistency theo-

rem, 81

Laplace transform, 244, 248
LARCH(∞)–model, 132, 165,

196, 211
law, 241
law, χ2

k, 255
law, γ(a, b), 253
law, Bernoulli, 26, 147, 203,

244
law, binomial, 245
law, Cauchy, 245
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law, exponential, 245, 246, 255
law, Gaussian, 217, 220, 245,

247, 248
law, normal, 245
law, Poisson, 152, 245
law, Rademacher, 216
law, uniform, 245, 246
least squares estimator (LSE),

37
limit superior, 261
Lindeberg, 17, 19
Lindeberg, dependent, 214
linear process, 109
long range dependence (LRD),

64, 171, 187, 196, 198

Markov chain, 133
Markov chain, stable, 133
maximum likelihood estimator

(MLE), 37
mean, 110, 112, 149, 171, 182,

241
measured space, 239
Mehler formula, 96
memory model, 128, 133
model selection, 37
moment, 131, 139, 142, 143,

145, 153, 161, 201, 219
moment inequality, 24, 213
moment method, 142, 148
multispectral density, 219

non-linear AR–model, 73, 137,
153

operator, Steutel-van Harn, 149
operator, thinning, 149

periodogram, 70, 219

Poisson process, 121, 134, 152
probability space, 239

random measure, 60, 61
random variable, 241
range, 171, 182
regression, non-parametric, 44
regression, random design, 44
resampling, 74, 207

short range dependence (SRD),
65, 171, 183, 189

sigma-algebra, 239, 240
Skorohod space, 184, 257
spectral estimation, 71, 72, 219
spectral representation, 61
stationarity, second order, 54
stationarity, strict, 54–56, 123,

132, 135, 153, 156, 168,
171, 179, 184, 187

stationarity, weak, 54, 55, 61,
64, 67, 69

stochastic volatility model, 137
strong mixing, 145, 202, 207
subsampling, 74, 206, 217, 238

unbiased, 35, 36, 39, 68, 98

Volterra expansion, 123, 124,
128, 211

weak dependence, 159, 164, 168,
201, 202, 208, 217, 225

Weierstrass theorem, 26
Whittle estimator, 72, 140
Wold decomposition, 69

Yule-Walker equation, 115, 140
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Back Cover: Modeling nonlinear time series by Paul Doukhan.

The main focus of this book is to present examples and tools for
modeling non-linear time series. The volume is divided 3 parts and
an Appendix.
The main standard tools of probability and statistics which directly
apply to the time series case are rapidly described in order to get a
wide panel of modeling possibilities. For example functional estima-
tion and bootstrap are rapidly recalled. Stationarity is first intro-
duced and this volume will keep this assumption for clarity.
We then describe some tools from Gaussian chaos. Then we give a
fast tour on linear time series models. Nonlinearity then appears from
polynomial or chaotic models for which explicit expansions are avail-
able. Then we turn to Markov and non-Markov linear models; we
provide standard examples such as ARCH-type, integer valued mod-
els... and their estimation. We also develop an useful tool: Bernoulli
shifts time series models.
A third part addresses more theoretical tools with first the ergodic
theorem which is seen as the first step for statistics of time series.
Then distributional range is defined to get generic tools for limit
theory under Long or Short Range dependences (LRD/SRD). Exam-
ples of LRD behaviors are made explicit. More general techniques to
prove (central-)limit theorems are described under SRD; mixing and
weak dependence are also recalled. Finally moment techniques are
described together with there relations to cumulant sums as well as
an application to kernel type estimation.
A short Appendix recalls basic facts of probability theory and useful
laws issued from the Gaussian laws are discussed.
The text is illustrated with simulations and an index aims at helping
a reader. This is an advanced master course. Expected reader are
thus either mathematician intending to enter the field of time series as
well as statisticians wanting to get a more mathematical background.




