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Chapter 1

Introduction

Modern Kinetic theory is full of applications not only for the un-
derstanding of complex phenomena but also for the development of
accurate numerical schemes to resolve partial differential equations
in many areas. Let us cite for instance applications in semiconduc-
tor modeling, radiative transfer, grain and polymer flows, biological
systems, cellular mechanics, chain supply dynamics, quantitative fi-
nance, traffic models, wave propagation in random media, hydrody-
namic and quantum models, understanding of boundary and inter-
action in multi-scale phenomena, and phase transitions. The main
goal of this notes is precisely to present the reader an introduction to
modern kinetic theory. We will cover some of the influential result in
the area and give a baseline for research initiation in this topic leav-
ing, of course, many important results out due to space and time.
The list of reference is, by no means, exhaustive, yet, it is a good
initial step for further reading and cross–reference.

These notes are divided in five chapters: Introduction, derivation
of kinetic models from particle dynamics, classical Boltzmann equa-
tion, dissipative Boltzmann equation and radiative transfer equation.
After this introduction, we start covering basic ideas that help to un-
derstand the kinetic modeling point of view. This translates math-
ematically in the rigorous derivation of kinetic models from systems
of many particles. In some cases this process of going from particles
to kinetics is known as mean field limit. The third chapter begins by

5
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6 [CHAP. 1: INTRODUCTION

covering elementary material about the Boltzmann equation such as
physical interpretation, weak formulation, conservation laws and dis-
sipation of entropy. It continues with a presentation of the classical
theory of existence and uniqueness of weak solutions for the inhomo-
geneous Boltzmann equation given by Kaniel & Shinbrot and a short
discussion of the celebrated theory introduced by DiPerna & Lions
of renormalized solutions. After covering the basic material, the sec-
tion moves to the homogeneous Boltzmann equation explaining the
importance of the analysis of moments, propagation of integrability
and regularity in the study of the equation. This section ends with
a discussion on entropic methods and includes a short discussion of
the celebrated result by Toscanni & Villanni on dissipation of en-
tropy and its impact on the analysis for the long time asymptotic
of the Boltzmann model. The fourth chapter will cover several rele-
vant mathematical and physical aspects in the theory of viscoelastic
materials modeled using the dissipative Boltzmann equation. Re-
cent results on existence and uniqueness of solutions will be given
by revisiting the Kaniel & Shinbrot method adding a short discus-
sion on the discrepancies and difficulties with respect to the classical
Boltzmann theory. Interesting phenomena present in dissipative dy-
namics such as self-similar profiles, overpopulated tails, intermediate
asymptotic properties, propagation of regularity and Haff’s law will
be commented (all of them inexistent in the classical elastic theory!).
Several examples of dissipative kinetic models will be given in this
section mainly oriented to applications in biology and economics, such
as the celebrated Cucker & Smale model, wealth distribution model
and rod alignment model. The latter two fall directly in the the-
ory of dissipative Boltzmann equation in one dimension. The notes
ends with a chapter devoted to the study of the radiative transport
equation. Classical theory on integrable scattering and recent results
on the forward-peaked regime are presented. This equation will be
used to motivate the theory of hypo-elliptic operators and fractional
diffusions in mathematical physics.
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Chapter 2

From particle systems
to kinetic models

We start this notes with a generic example of a particle system
that is widely used in physics, biomechanics, biology, economy, mate-
rial sciences, traffic modeling and many other areas. The idea is sim-
ple and comes from elementary mechanics: in a system of large num-
ber of particles, particles essentially interact continuously by means
of friction and elasticity. These interactions are of different nature,
interaction by friction produces loss of mechanical energy while elas-
ticity is related to storage of mechanic energy due to deformation.
This is a generic model in material science, a typical example is the
Kelvin–Voigt model for viscoelastic materials (viscosity and friction
are equivalent terms here). Assume we have a system with N par-
ticles having position and velocity (xi, vi), the model that we briefly
study in this section is given by the ODE system

dxi
dt

= vi ,
dvi
dt

=
1

N

∑
j 6=i

Uf
(
|xj − xi|

)(
vj − vi

)
+

1

N

∑
j 6=i

U ′e
(
|xj − xi|

)(
x̂j − x̂i

)
.

(2.1)

Here Uf and Ue are the frictional and elastic potentials respectively
that we consider depending only on the distance between particles. A

7
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8 [CHAP. 2: FROM PARTICLE SYSTEMS TO KINETIC MODELS

typical elastic potential is given by Ue(s) = κ
2 s

2 which gives Hooke’s
law (linear law) in elasticity. A possible interpretation of model (2.1)
is that a given particle experiments a weighted averaged frictional
and elastic forces due to interaction with other particles, that is,
each particle experiments a mean field interaction. These averages
are presumably more influenced by close neighbors, thus, one expects
such potentials to decay. Of course, the properties of the potentials,
such as decay and smoothness, will completely determine the behav-
ior of the system and the physics it models. Thus, it is natural to
expect that the mathematical analysis will be highly dependent on
the properties assumed for the potentials. For example, we refer to
[7] for a numerical study of model (2.1) applied to cellular mechanics.

Before entering in mathematical details, let us formally discuss
a particular case of (2.1), the celebrated model in animal behavior
proposed by Cucker-Smale [36] which was first studied with mathe-
matical rigor in [49]. The Cucker-Smale model is precisely the model
(2.1) with zero elastic potential and frictional potential Uf ≥ 0 en-
joying certain properties.

2.1 Formal derivation of a mean field

The goal in this short discussion is to derive a kinetic model (mean
filed model) for the particle model (2.1). Although this discussion
is formal, it will help to introduce key ideas and concepts in kinetic
theory that can be made rigorous in many instances. We start recall-
ing that a Hamiltonian system is one that is completely described by
a scalar function H(t,x,v), the Hamiltonian. The evolution of the
system is given by

dx

dt
= ∂vH

dv

dt
= −∂xH ,

where x =
(
x1, · · · , xN

)
and v =

(
v1, · · · , vN

)
are the vectors of po-

sitions and velocities of the particles respectively. The product space
(x,v) is addressed as phase space. Many systems are Hamiltonian,
including (2.1). There is a central result for Hamiltonian systems
due to J. Gibbs: The distribution function of a Hamiltonian parti-
cle system is constant along any trajectory in phase space. Indeed,
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[SEC. 2.1: FORMAL DERIVATION OF A MEAN FIELD 9

assume that the number of particles is large enough that it becomes
meaningful to observe the N -particle density distribution

fN (t,x,v) =
number of particles at (t,x,v)

volume in phase space
.

If J is the flux of particles at any given point of phase space, one has
for any measurable set A

Variation number particles in A =
d

dt

∫
A

fN (t,x,v)dV(x,v)

=

∫
∂A

J (t,x,v) · n dS(x,v) = Net flux through ∂A .

Using the divergence theorem∫
∂A

J (t,x,v) · n dS(x,v) = −
∫
A

∇ · J (t,x,v)dV(x,v) .

It readily follows that∫
A

(
∂tf

N (t,x,v) +∇ · J (t,x,v)
)

dV(x,v) = 0 .

Two points are made here: (1) The measurable set A is arbitrary,
and (2) the flux is related to the density distribution by the formula

J (t,x,v) = fN (t,x,v)
d

dt

(
x,v

)
.

One concludes that

0 = ∂tf
N (t,x,v) +∇ · J (t,x,v)

= ∂tf
N (t,x,v)+

d

dt

(
x,v

)
· ∇fN (t,x,v) +

(
∇ · d

dt

(
x,v

))
fN (t,x,v) .

Observe that for the latter term

∇ · d
dt

(
x,v

)
= ∇ ·

(
∂vH,−∂xH

)
= ∂x∂vH− ∂v∂xH = 0 .
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10 [CHAP. 2: FROM PARTICLE SYSTEMS TO KINETIC MODELS

The conclusion is an equation known as Liouville’s equation

∂tf
N (t,x,v) +

d

dt

(
x,v

)
· ∇fN (t,x,v) = 0 , (2.2)

which is precisely Gibbs’ statement. Now, Gibbs’ statement is about
the N -particle distribution function, what we really want is a closed
equation for the single distribution function

f(t, x1, v1) :=

∫
fN (t,x,v)dV N−1(x,v) ,

where the superscript N − 1 is added to the differential to denote
an integration on the last N − 1 coordinates (xi, vi) of the phase
space. Since particles are indistinguishable, it is irrelevant which sin-
gle density distribution we choose to describe. Of course, in a general
situation finding a closed equation for the single particle distribution
is an impossible task because particle trajectories are necessarily cor-
related (particles are interacting at all times), so any mathematical
formalism will include dependence of all particles. However, it is pos-
sible to argue that in a situation of a large number of particles, one
may find a good approximating model for the evolution of the single
particle distribution. The argument goes like this for the Cucker-
Smale model: Note that Liouville’s equation in such case reduces to

∂tf
N +

∑
i

vi · ∇xifN +
1

N

∑
i

∇vi ·
(∑

j

Uf
(
|xi−xj |

)(
vj − vi

)
fN
)
.

(2.3)
Integrate equation (2.3) in (x,v)N−1 and observe that the divergence
theorem leads to

∫ ∑
i

vi · ∇xifN dV N−1(x,v) = v1 · ∇x1
f(t, x1, v1) .
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[SEC. 2.1: FORMAL DERIVATION OF A MEAN FIELD 11

Additionally,

1

N

∑
i

∫
∇vi ·

(∑
j

Uf
(
|xi − xj |

)(
vj − vi

)
fN
)
dV N−1(x,v)

=
1

N

∫
∇v1 ·

( N∑
j=2

Uf
(
|x1 − xj |

)(
vj − v1

)
fN
)
dV N−1(x,v)

=
N − 1

N

∫
∇v1 ·

(
Uf
(
|x1 − x2|

)(
v2 − v1

)
fN
)
dV N−1(x,v)

=
N − 1

N

∫
∇v1 ·

(
Uf
(
|x1 − x2|

)(
v2 − v1

)
f2
)

dx2dv2 .

In the first equality we used divergence theorem which vanishes the
last N − 1 terms of the outer sum. In the second equality we used
symmetry of fN (particles are indistinguishable), thus, the interac-
tion between particles (1, j) equals N − 1 times the interaction of
particles (1, 2). And, for the last equality we used the obvious def-
inition of the two-particle distribution function f2. Now, a central
issue rises here and it is known as molecular chaos. That is to say,
for large number of particles

f2(t, x1, v1, x2, v2) ≈ f(t, x1, v1) f(t, x2, v2) . (2.4)

This means that the specific position and velocity of one particular
particle is almost uncorrelated, at any time, to the specific position
and velocity of any other particle. Intuitively this should be the case
for particles that follow the mean field of particles rather than a sin-
gle one such us model (2.1). Molecular chaos should also holds in
systems such as billiards (related to the Boltzmann equation) where
two particles bear large number of interactions in between their par-
ticular interaction. That is, at the moment of their interaction such
particles are essentially uncorrelated.

This argument leads to the approximated closed equation

∂tf(t, x, v) + v · ∇xf(t, x, v)

+ N−1
N ∇vf(t, x, v) ·

∫
Uf
(
|x∗ − x|

)(
v∗ − v

)
f(t, x∗, v∗) dx∗dv∗ ≈ 0 ,

valid for large number of particles N . In the limit N → ∞ the
molecular chaos approximation (2.4) should become exact, thus, if
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12 [CHAP. 2: FROM PARTICLE SYSTEMS TO KINETIC MODELS

the distribution sequence f := fN converges, say to f , one finds the
kinetic description (mean field limit) of the Cucker-Smale particle
model

∂tf + v · ∇xf +∇v ·Q(f, f) = 0 , (2.5)

where,

Q(f, f)(t, x, v) := f(t, x, v)

∫
Uf
(
|x∗−x|

)(
v∗−v

)
f(t, x∗, v∗) dx∗dv∗ .

(2.6)

2.2 Rigorous derivation of a mean field

Let us give now a rigorous treatment of the mean field limit given
in previous discussion for a particle model slightly more general that
(2.1). We add some random fluctuations to the particles and per-
form the analysis following the program proposed in [70, 26]. Thus,
consider a large system of N -interacting particles having positions
(xi(t), vi(t)) ∈ R2d and following the dynamics

dxi(t) = vi(t)dt , dvi(t) =
√

2 dBi(t)

− 1

N

∑
j 6=i

H
(
xi(t)− xj(t), vi(t)− vj(t)

)
dt ,

(2.7)

with independent initial data (xi(0), vi(0)) all having the same distri-
bution law fo. The processes Bi(t) are independent standard brow-
nian motions in Rd. The interacting potential H : R2d → Rd is
assumed to be Lipschitz continuous.

The central analytical result consists in proving that such process
(xi(t), vi(t)) behave in the limit N → ∞ like a process (x̄i(t), v̄i(t))
solving the McKean-Vlasov equation on R2d

dx̄i(t) = v̄i(t)dt , dv̄i(t) =
√

2 dBi(t)−
(
H ∗ f

)
(t, x̄i(t), v̄i(t))dt ,

(2.8)
where the initial condition is given by (x̄i(0), v̄i(0)) = (xi(0), vi(0))
and f(t, x, v) is the law of (x̄i(t), v̄i(t)). It is well know from the theory
of Itô processes that the law of (x̄i, v̄i(t)) satisfies the Kolmogorov
Forward equation, see for instance the tutorial [64]

∂tf + v · ∇xf = ∆vf +∇ ·
(
f
(
H ∗ f

))
, f(0) = fo . (2.9)
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We refer to [26, Theorem 1.2] for a complete proof about existence and
uniqueness of systems (2.7) and (2.8) under suitable conditions on the
initial law fo. In particular, the fact that equation (2.9) have unique
solution implies that all processes are equally distributed which ex-
plain why we dropped the index in the law f := fi. One fact that
holds for solutions f of equation (2.9), which we will need below, is
that spatial and velocity moments of order two are propagated, in
order words∫
R2d

(
|x|2+|v|2

)
dfo(x, v) −→ sup

t∈[0,T ]

∫
R2d

(
|x|2+|v|2

)
df(t, x, v) ≤ CT .

(2.10)

Theorem 2.2.1. Let fo be a Borel probability measure having spatial
and velocity moments of order two, and the initial state (xi(0), vi(0))
be independent random variables with common law fo. Under the
aforementioned conditions, there exists a constant CT such that

sup
t∈[0,T ]

max
0≤i≤N

(
E
[
|xi(t)− x̄i(t)|2

]
+ E

[
|vi(t)− v̄i(t)|2

])
= sup
t∈[0,T ]

(
E
[
|x1(t)− x̄1(t)|2

]
+ E

[
|v1(t)− v̄1(t)|2

])
≤ CT

N
.

Proof. Define the fluctuations xei (t) := xi(t) − x̄i(t) and vei (t) :=
vi(t)− v̄i(t) for i = 1, · · · , N and introduce the total error

e(t) = max
1≤i≤N

{
E
[
|xei (t)|2 + |vei (t)|2

]}
.

Now, subtract the models (2.7) and (2.8). Thus, for the position
fluctuations one has

1

2

d

dt
E
[
|xei (t)|2

]
= E

[
xei (t) · vei (t)

]
≤ e(t)

2
. (2.11)

The velocity fluctuations require more work. One certainly has that
the velocity fluctuations satisfy

1

2

d

dt
E
[
|vei (t)|2

]
= − 1

N

∑
j 6=i

E
[
vei (t) ·

(
H(xi(t)− xj(t), vi(t)− vj(t))

−
(
H ∗ f

)
(t, x̄i(t), v̄i(t))

)]
=: I1 + I2 ,

(2.12)
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14 [CHAP. 2: FROM PARTICLE SYSTEMS TO KINETIC MODELS

where (dropping the t variable to ease notation)

I1 = − 1

N

∑
j 6=i

E
[
vei ·

(
H(xi − xj , vi − vj)−H(x̄i − x̄j , v̄i − v̄j)

)]
and,

I2 = − 1

N
E
[
vei ·

∑
j 6=i

(
H(x̄i − x̄j , v̄i − v̄j)−

(
H ∗ f

)
(t, x̄i, v̄i)

)]
=: − 1

N
E
[
vei ·

∑
j 6=i

Yi,j

]
.

The term I1 is controlled using Lipschitz continuity of H∣∣∣H(xi − xj , vi − vj)−H(x̄i − x̄j , v̄i − v̄j)
∣∣∣

≤ ‖H‖Lip
(
|xei |+ |vei |+ |xej |+ |vej |

)
,

as a consequence, a simple application of Young’s inequality leads to∣∣I1(t)
∣∣ ≤ 5

2‖H‖Lip e(t) . (2.13)

For the term I2 one has∣∣I2∣∣ ≤ 1

N

√
E
[
|vei |2

]√
E
[∣∣∣∑

j 6=i

Yi,j

∣∣∣2] .
Furthermore, for any j 6= k

E
[
Y i,j · Y i,k

]
= E

[
E
[
Y i,j · Y i,k

∣∣(x̄i, v̄i)]]
= E

[
E
[
Y i,j

∣∣(x̄i, v̄i)] · E[Y i,k∣∣(x̄i, v̄i)]]
since processes (x̄j(t), v̄j(t)) are uncorrelated. A direct computation
shows then

E
[
Y i,j

∣∣(x̄i, v̄i)]
=

∫
R2d

(
H(x̄i − x∗, v̄i − v∗)−

(
H ∗ f

)
(t, x̄i, v̄i)

)
df(t, x∗, v∗)

= (H ∗ f
)
(t, x̄i, v̄i)− (H ∗ f

)
(t, x̄i, v̄i) = 0 .
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Here we have use that the law of (x̄j(t), v̄j(t)) is precisely f(t). There-
fore,

E
[∣∣∣∑

j 6=i

Yi,j

∣∣∣2] = (N − 1)E
[∣∣Y1,2∣∣2]

≤ (N − 1)

∫
R4d

∣∣H(x− x∗, v − v∗)
∣∣2df(t, x, v)df(t, x∗, v∗)

≤ 4(N − 1)

∫
R4d

(
‖H‖2Lip

(∣∣x− x∗∣∣2 +
∣∣v − v∗∣∣2)

+
∣∣H(0, 0)

∣∣2)df(t, x, v)df(t, x∗, v∗) ≤ CT (N − 1) ,

where in the last inequality we used (2.10). In summary,

∣∣I2(t)
∣∣ ≤ CT√e(t)√

N
≤ e(t) +

C̃T
N

. (2.14)

Gathering (2.11), (2.12), (2.13) and (2.14) one gets

E
[
|xei (t)|2

]
+ E

[
|vei (t)|2

]
≤ co

∫ t

0

e(s)ds +
C̃T
N

, 1 ≤ i ≤ N . (2.15)

Here co is independent of T > 0. Since the right side of (2.15) is
independent of the particle i, we can compute the max along the
particles and use Gronwall’s lemma to conclude

sup
t∈[0,T ]

e(t) ≤ C̃T
coN

ecoT .

The proof is concluded by noticing that all single marginals of the
join probability of N–particles are equal because particles are indis-
tinguishable. Thus,

e(t) = E
[
|x1(t)− x̄1(t)|2 + |v1(t)− v̄1(t)|2

]
.

Convergence in mean square implies convergence in probability.
Thus, Theorem 2.2.1 readily implies that lim

N→∞
f1N (t) = f(t), where
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16 [CHAP. 2: FROM PARTICLE SYSTEMS TO KINETIC MODELS

f1N (t) is the single marginal of the join probability of N -particles at
time t. Furthermore, it also implies a precise quantitative version of
molecular chaos. In order to see this, let us introduce the Wasserstein
distance between Borel probability measures (µ, ν), see for instance
[73], as

d2(µ, ν) = inf
(X,Y )

√
E
[
|X − Y |2

]
, (2.16)

where the infimum is taken over all couples of random variable (X,Y )
with X having law µ and Y having law ν. Thus,

sup
t∈[0,T ]

d2(f1N (t), f(t))2

≤ E
[∣∣(x1(t), v1(t))− (x̄1(t), v̄1(t))

∣∣2]
= E

[
|x1(t)− x̄1(t)|2 + |v1(t)− v̄1(t)|2

]
≤ CT

N
.

Moreover, the k-marginal fkN converges towards the tensor f⊗k as N
increases since

sup
t∈[0,T ]

d2(fkN (t), f⊗k(t))2

≤ E
[∣∣(x1(t), v1(t), · · · , xk(t), vk(t))− (x̄1(t), v̄1(t), · · · , x̄k(t), v̄k(t))

∣∣2]
= kE

[
|x1(t)− x̄1(t)|2 + |v1(t)− v̄1(t)|2

]
≤ k CT

N
.
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Chapter 3

Classical Boltzmann
equation

We saw in the previous section that the mean field limit of parti-
cle systems interacting with smooth potentials is given by integro–
differential equations. Solutions of such equations are interpreted
as distributions of particles depending on space x (macroscopic vari-
able), velocity v (microscopic or kinetic variable) and time t (which is,
somehow, both a macro and a micro variable). The Boltzmann equa-
tion is also an integro–differential equation that represents the kinetic
description of a many–particle system interacting through collisions.
Such interaction is of different nature to that of friction or elasticity:
a collision is a discontinuous process while interactions with smooth
potentials is continuous. This seemingly banal difference proves to
be crucial in the rigorous derivation of the Boltzmann model from
particle dynamics. In fact, such derivation is still an open (and quite
important) problem in statistical physics. Let us write down the
model and try to explain it, at least, at the formal level

∂tf + v · ∇xf = Q(f, f) , (t, x, v) ∈ R+ × R2d , (3.1)

complemented with an initial configuration f(0) = fo. Here the op-
erator Q(f, f) will represent collision interactions between particles.
More specifically, its bilinear form is defined, for any suitable func-

17
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18 [CHAP. 3: CLASSICAL BOLTZMANN EQUATION

tions f and g, as

Q(f, g)(v) :=∫
Rd

∫
Sd−1

(
f(′v)g(′v∗)− f(v)g(v∗)

)
B(v − v∗, ω)dωdv∗ .

(3.2)

We need to do some explaining with the introduced notation. The
pair (v, v∗) represents velocities of two particles that just collide and
had, before collision, velocities ′v and ′v∗. In this way, the pair (′v,′v∗)
are pre-collisional velocities. Similar, it is common the notation
(v′, v′∗) to represent post-collisional velocities of a pair of particles
having velocities v and v∗ before collision. In the classical Boltz-
mann equation the collision law map Cω : (v, v∗) → (v′, v′∗) is very
special because must conserve microscopic momentum and energy, in
other words, is such that

v′ + v′∗ = v + v∗ , |v′|2 + |v′∗|2 = |v|2 + |v∗|2 . (3.3)

One concludes that it must be the case that (see [34] or Lemma 3.0.2
below)

v′ = v − (u · ω)ω , v′∗ = v∗ + (u · ω)ω , (3.4)

where ω represents the unit vector perpendicular to the collision plane
and u := v − v∗ is the relative velocity between particles. Now,
the function B ≥ 0 is commonly known as collision kernel and it
describes the physics of the collision, we refer to [34] and [71] for
extensive discussion. It is customary to assume the factorization in
the mathematics community

B(u, ω) = |u|γ b(û · ω) , γ ∈ (−d, 2] . (3.5)

It is understood that û = u/|u|. The function b is known as scatter-
ing kernel and weights the probability of scattering at certain angle
after a collision event. It is customary to assume the so-called cutoff
hypothesis ∫

Sd−1

b(û · ω)dω <∞ .

Although, cutoff is a realistic assumption, such hypothesis fails to be
true in some relevant physical situations. The last section of these
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notes is brought precisely to give an introduction to the mathematical
theory when such hypothesis is not met. The most typical example
of (3.5) is the so called hard-spheres model which describes the dy-
namics of a 3-dimensional billiard and is given by B(u, ω) = |u · ω|
which corresponds to γ = 1. Furthermore, in the mathematical lit-
erature, the cases γ ∈ (−d, 0), γ = 0, and γ ∈ (0, 1] are addressed as
soft potentials, Maxwell molecules and hard potentials respectively.
Properties of the collision law map Cω are given in the following
lemma,

Lemma 3.0.2. For any ω ∈ Sd−1 it follows that: (1) Cω ◦ Cω = Id,
(2) detCω = −1, (3) the only functions ϕ satisfying ϕ+ϕ∗ = ϕ′+ϕ′∗
are given by

ϕ(v) = a+ b · v + c |v|2 , a, c ∈ R, b ∈ Rd .

Such functions are called collision invariants (here ϕ′ = ϕ(v′) and
ϕ′∗ = ϕ(v′∗)).

Proof. Let us denote the post-collisional relative velocity as u′ =
v′−v′∗. Item (1) is clear since u′ ·ω = −u ·ω. A proof of (2) follows by
introducing the map C̃ω : (v, u) → (v′, u′). Clearly, detC̃ω = detCω,
moreover, the matrix representation for C̃ω is given by[

C̃ω
]

=

[
1 −ω ⊗ ω
0 1− 2ω ⊗ ω

]
.

Thus, det C̃ω = det
(
1−2ω⊗ω

)
= det

(
diag(−1, 1, · · · , 1)

)
= −1. For

a proof of item (3) see for instance [65].

Particles are continuously colliding, thus, one may think that they
are experiencing a birth-death process with respect to the velocity
variable: at time t two particles occupying the same spatial point
x will not longer have velocity (v, v∗) if they collide, that is, with
approximate probability

Prob. of death of a pair (v, v∗) ≈ f(t, x, v) f(t, x, v∗)B(u, ω)dωdv∗ .

Similarly, at time t two particles occupying the same spatial point
x will create two particles with velocities (v, v∗) if they just collided
having velocities (′v,′v∗), that is, with approximate probability

Prob. of birth of a pair (v, v∗) ≈ f(t, x,′v) f(t, x,′v∗)B(u, ω)dωdv∗ .
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20 [CHAP. 3: CLASSICAL BOLTZMANN EQUATION

The collision operator is just the integration of this probabilities over
all possible collision directions ω and velocities v∗. Note, that we have
used propagation of chaos in computing these approximate probabili-
ties, namely, the joint distribution of two particles is approximate the
product of the single distributions. Intuitively, this should be very
accurate since the velocity correlation between two particles is min-
imal in a large system of them sustaining numerous collisions. The
proof of this fact is a notoriously difficult problem in the Boltzmann
context. The reader can find a proof of the following proposition in
[34, 65].

Proposition 3.0.3. For a B satisfying (3.5) one has the following
properties:
(1) (Conservation) For all suitable functions f and ϕ∫

Rd
Q(f, f)(v)ϕ(v)dv =

1

4

∫
Rd
Q(f, f)(v)

(
ϕ′ + ϕ′∗ − ϕ− ϕ∗

)
dv

(2) (Boltzmann’s H-Theorem)∫
Rd
Q(f, f)(v) ln(f(v)) dv ≤ 0 .

(3) (Gaussian equilibria) And, for any B > 0 one have the equivalence

Q(F, F ) = 0←→ F (v) :=
ρ

(2πT )d/2
e−
|v−vo|2

2T .

for some ρ, T ≥ 0 and vo ∈ Rd.

Note that, thanks to Proposition 3.0.3, solutions of the Boltzmann
equation formally satisfy

∫
Rd
f(v)

 1
v
|v|2

 dv = 0 . (3.6)

Proposition 3.0.3 also leads to an important observation. Introduce
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the entropy and the dissipation of entropy as

H(f) : =

∫
Rd
f ln(f)dvdx ,

0 ≤ D(f) : =

1

4

∫
R3d

∫
Sd−1

(
f ′f ′∗ − ff∗

)(
ln(f ′f ′∗)− ln(ff∗)

)
Bdωdv∗dvdx .

(3.7)

Note the the dissipation of entropy is nonnegative because the loga-
rithm is an increasing function. Then, it follows that a solution f of
the Boltzmann equation formally satisfy

∂tH(f) +D(f) = 0 . (3.8)

In other words, the entropy of our particle system does not increase,
H(f) ≤ H(fo) .

3.1 Well-posedness. Method of Kaniel &
Shinbrot

The theory of well-posedness for the Cauchy problem of the Boltz-
mann equation for general data is incomplete despite the efforts of
the mathematics community. However, in certain circumstances it is
possible to give a complete proof of existence and uniqueness of non-
negative solutions. One of the most celebrated methods, due to its
simplicity and beauty, is the Kaniel & Shinbrot iterations, see [53],
which we present here. This method can be used for short time exis-
tence with general initial data and for global well-posedness in some
perturbative regimes. We sketch the latter by following the papers
[51, 12]. First note that, under Grad cutoff assumption, the collision
operator splits naturally in a gain and loss part (corresponding the
the birth and death process respectively)

Q(f, f) = Q+(f, f)−Q−(f, f) .

Second, obseve that using characteristics f#(t, x, v) := f(t, x+ tv, v)
it is possible to write the Boltzmann equation as

df#

dt
+Q#

−(f, f) = Q#
+(f, f) . (3.9)
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Now, for simplicity assume the factorization of the scattering kernel
(3.5). Then, it follows that the loss part of the collision operator
reduces to

Q−(f, f)(v) = f(v)

∫
Rd
f(v∗)

∣∣v − v∗∣∣γdv∗ =: f(v)R(f)(v).

Thus, integrating equation (3.9) follows that a solution of the Boltz-
mann equation satisfies the relation

f#(t, x, v) = e−
∫ t
0
R#(f)(s,x,v)dsfo(x, v)

+

∫ t

0

e−
∫ t
s
R#(f)(τ,x,v)dτQ#

+(f, f)(s, x, v)ds .
(3.10)

Finally, introduce the Banach space M of functions with Gaussian
(or Maxwellian) decay in space-velocity with norm

‖g‖M =
∥∥g e|x|2+|v|2∥∥∞ .

With these notations and definitions, we are ready to proceed and
give a well-posedness result for the Boltzmann equation in the so-
called near vacuum regime, that is, when the initial data is sufficiently
small in M. The essence of the method consist in defining the fol-
lowing nested sequences of functions {ln} and {un} as solutions of
the linear problems

dl#n
dt

+Q#
−(ln, un−1) = Q#

+(ln−1, ln−1) and

du#n
dt

+Q#
−(un, ln−1) = Q#

+(un−1, un−1) ,

(3.11)

with the terms satisfying the initial condition 0 ≤ ln(0) ≤ fo ≤ un(0).
The construction begins by choosing a pair (l0, u0) satisfying what
Kaniel and Shinbrot called the beginning condition

0 ≤ l#0 ≤ l
#
1 ≤ u

#
1 ≤ u

#
0 ∈M . (3.12)

It is precisely in the beginning condition where the methods fails for
general initial data.
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Theorem 3.1.1. Assume Grad’s cut off and factorization (3.5) hy-
potheses for the scattering kernel B. Assume also −(d− 1) < γ ≤ 1,
and let {ln} and {un} be the sequences defined by the mild solutions
of the linear problems (3.11). In addition, assume that the beginning
condition (3.12) is satisfied. Then,

(i) The sequences {ln} and {un} are well defined for n ≥ 1. In
addition, {ln}, {un} are increasing and decreasing sequences
respectively, and

l#n ≤ u#n a.e.

(ii) There exists ε > 0 such that if

‖u#0 ‖M ≤ ε and , 0 ≤ ln(0) = fo = un(0) for n ≥ 1 ,

then
lim
n→∞

ln = lim
n→∞

un = f a.e.

The nonnegative limit f ∈ C(0, T ;M), with T > 0, is the
unique solution of the Boltzmann equation and fulfills

0 ≤ l#0 ≤ f# ≤ u
#
0 ∈M a.e.

Proof. Item (i) follows by induction where the beginning condition is
exactly the first step of the induction. Assuming that {lk} and {uk}
are increasing and decreasing respectively, and such that lk ≤ uk for
1 ≤ k ≤ n − 1, we can prove that same holds for k = n. Indeed,
integration of the linear system (3.11) give us

l#n (t) = e−
∫ t
0
R#(un−1)(s)dsln(0)

+

∫ t

0

e−
∫ t
s
R#(un−1)(τ)dτQ#

+(ln−1, ln−1)(s)ds

≤ e−
∫ t
0
R#(ln−1)(s)dsun(0)

+

∫ t

0

e−
∫ t
s
R#(un−1)(τ)dτQ#

+(un−1, un−1)(s)ds

= u#n (t) .

(3.13)

Same argument proves that l#n−1 ≤ l#n and u#n ≤ u
#
n−1. Let us present

a lemma that will help us to prove item (ii).
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Lemma 3.1.2. Assume −(d − 1) < γ ≤ 1. Then, for any 0 ≤
s ≤ t and functions f#, g# that lie in L∞

(
[0, T );M

)
the following

inequality holds∫ t

s

∣∣∣Q#
+(f, g)(τ)

∣∣∣ dτ ≤
Cd,γ e

−|x|2−|v|2 ∥∥f#∥∥
L∞(0,T ;M)

∥∥g#∥∥
L∞(0,T ;M)

,

(3.14)

where the constant Cd,γ depends only on the dimension and γ. In
other words, ∫ t

0

∣∣∣Q#
+(f, g)(τ)

∣∣∣ dτ ∈M , t ≥ 0 .

Proof. An explicit calculation yields the inequality,∣∣∣Q#
+(f, g)(τ, x, v)

∣∣∣ ≤ e−|v|2 ∥∥f#∥∥
L∞(0,T ;M)

∥∥g#∥∥
L∞(0,T ;M)

×∫
Rd
e−|v∗|

2

∫
Sd−1

e−|x+τ(v−
′v)|2−|x+τ(v−′v∗)|2b(û · ω)dω |u|γdv∗.

(3.15)

Note that

|x+ τ(v −′v)|2 + |x+ τ(v −′v∗)|
2

= |x|2 + |x+ τu|2 ,

and, ∫ t

s

e−|x+τu|
2

dτ ≤
∫ ∞
−∞

e−|τu|
2

dτ ≤
√
π |u|−1.

Therefore, integrating (3.15) in [s, t]∫ t

s

∣∣∣Q#
+(f, g)(τ, x, v)

∣∣∣dτ ≤ √π exp
(
−|x|2 − |v|2

)
∥∥f#∥∥

L∞(0,T ;M)

∥∥g#∥∥
L∞(0,T ;M)

∫
Rd
e−|v∗|

2

|u|γ−1dv∗.

Finally, the proof is completed by observing that,∫
Rd
e−|v∗|

2

|u|γ−1dv∗ ≤
∫
{|v∗|<1}

|u|γ−1dv∗ +

∫
{|v∗|≥1}

e−|v∗|
2

dv∗

≤ |Sd−1|
d+ γ − 1

+ Cd .
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Let us proceed to prove item (ii). Define δ#n = u#n − l#n , thus, sub-
tracting equations (3.11) follows

dδ#n
dt
≤ Q#

+(δn−1, un−1) +Q#
+(ln−1, δn−1) +Q#

−(ln, δn−1) . (3.16)

Integrating (3.16) in time, recalling that δ#n (0) = δn(0) = 0 and using
Lemma 3.1.2, it follows that

δ#n (t) ≤ Cd,γ e−|x|
2−|v|2×(

‖u#n−1‖L∞(M) + ‖l#n−1‖L∞(M) + ‖l#n ‖L∞(M)

)
‖δ#n−1‖L∞(M)

≤ 3Cd,γ e
−|x|2−|v|2‖u#0 ‖M‖δ

#
n−1‖L∞(M) , t ≥ 0 .

(3.17)

The conclusion from (3.17) is that

‖δ#n ‖L∞(M) ≤ 3Cd,γ‖u#0 ‖M‖δ
#
n−1‖L∞(M) . (3.18)

Taking ε := 1/(4Cd,γ) it follows directly from (3.18) that

‖δ#n ‖L∞(M) ≤ (3/4)n−1‖δ#0 ‖L∞(M) ≤ (3/4)n‖u#0 ‖M ,

which proves (ii).

Theorem 3.1.3. (Well-posedness near vacuum) Let B be a scatter-
ing kernel satisfying Grad’s cut off and the factorization (3.5) with
−(d−1) < γ ≤ 1. Then, there exists εo > 0 such that if ‖fo‖M ≤ εo,
the Cauchy-Boltzmann problem has a unique global solution f satis-
fying the estimate ∥∥f#∥∥

L∞([0,T );M)
≤ 2 εo , (3.19)

for any 0 ≤ T ≤ ∞.

Proof. The key step to apply Theorem 3.1.1 is to find suitable func-
tions that satisfy the beginning condition globally. The most natural
(and simplest) choice for the first terms of the nested sequences {ln}
and {un} is

l#0 = 0 and u#0 = ε e−|x|
2−|v|2 .
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Here ε > 0 is the parameter given in Theorem 3.1.1, item (ii). Now
compute the following two terms

l#1 (t) = fo e
−

∫ t
0
R#(u0)(τ)dτ and u#1 (t) = fo +

∫ t

0

Q#
+(u0, u0)(τ)dτ.

Clearly, 0 ≤ l#0 ≤ l#1 ≤ u#1 . In addition, using Lemma 3.1.2 in the

expression for u#1 we conclude that, for all t ≥ 0,

u#1 (t) ≤
(
‖fo‖M + Cd,γ‖u#0 ‖2M

)
e−|x|

2−|v|2 .

Noting that ‖u#0 ‖M = ε, it suffices to satisfy the inequality

‖fo‖M + Cd,γε
2 ≤ ε

in order to satisfy the beginning condition globally. This is actually
possible as long as

‖fo‖M ≤ εo :=
ε

2
≤ 1

4Cd,γ
.

3.2 The method of DiPerna & Lions

3.2.1 Velocity average

One of the most influential theories in the area of mathematical
physics that has been in continuous development in the last cou-
ple of decades is the method of renormalized solutions introduced by
DiPernal & Lions. This method was first used by the authors to prove
existence of renormalized solutions for the inhomogeneous Boltzmann
equation [38]. More recently, the method and its tools have been
successfully implemented to tackle different relevant and challenging
problems in kinetic theory, for instance, showing existence of solu-
tions for kinetic equations and systems with rather general initial
data, and proving the rigorous derivation of diffusion limits (such as
Navier-Stokes equations) from kinetic models. A central result used
in this theory is the so-called average lemma or velocity averaging.
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The result is easily stated: assume f(t, x, v) satisfies the transport
equation

∂tf + v · ∇xf = g , t ≥ 0 , x , v ∈ Rd ,

with f(0, x, v) = fo(x, v). Using the explicit expression of f in terms
of fo and g one gets convinced that the regularity of f is given by
the lowest regularity between fo and g. However, a velocity average

f̄ϕ(t, x) :=

∫
Rd
f(t, x, v)ϕ(v)dv , ϕ ∈ Cc(Rd) ,

enjoys higher regularity. Velocity averages are central in kinetic the-
ory because they represent what we can observe and measure in the
macroscopic world (mass, momentum, temperature, pressure, etc).
Thus, an average lemma is the mathematical expression of the intu-
itive idea that in the macroscopic world things should be smoother
than at the kinetic level. The references in this area are extensive,
here we mention some [41, 42, 25, 23, 40, 52, 48]. Our first result is
the following classical result.

Proposition 3.2.1. Fix d ≥ 2 and let f, g ∈ L2
x,v satisfying the

equation
v · ∇xf = g .

Then, the velocity average satisfies f̄ϕ ∈ Hs
x for any s ∈

(
0, 12
)

with
estimate

‖f̄ϕ‖Hsx ≤ Cd,s(ϕ)
(
‖f‖L2

x,x
+ ‖g‖L2

x,v

)
,

where the constant Cd,s(ϕ) depends on ϕ ∈ Cc(Rd) through its supre-
mum and support.

Proof. Applying Fourier transform in the spatial variable

F{g}(ξ) = v · ξF{f}(ξ) = |v| |ξ| v̂ · ξ̂F{f}(ξ).

Then,∣∣F{f̄ϕ}(ξ)∣∣2 |ξ|2s =
∣∣∣ ∫

Rd
F{f(·, v)}(ξ)ϕ(v) dv

∣∣∣2|ξ|2s
=
∣∣∣ ∫

Rd

F{g(·, v)}(ξ)
|ξ|1−s |v| v̂ · ξ̂

ϕ(v) dv
∣∣∣2 . (3.20)
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But, ∣∣∣∣∣F{g(·, v)}(ξ)
|ξ|1−s |v| v̂ · ξ̂

∣∣∣∣∣ =

∣∣F{f(·, v)}(ξ)
∣∣1−s∣∣F{g(·, v)}(ξ)

∣∣s
|v|s|v̂ · ξ̂|s

.

Then, putting the absolute value inside the integral in equation (3.20)
and using Cauchy–Schwarz inequality one concludes∣∣F{f̄ϕ}(ξ)∣∣2 |ξ|2s
≤
(∫

Rd

∣∣F{f(·, v)}(ξ)
∣∣1−s∣∣F{g(·, v)}(ξ)

∣∣s
|v|s|v̂ · ξ̂|s

∣∣ϕ(v)
∣∣dv)2

≤
(∫

Rd

∣∣F{f(·, v)}(ξ)
∣∣2(1−s)∣∣F{g(·, v)}(ξ)

∣∣2s dv

)
×(∫

Rd

|ϕ(v)|2

|v|2s|v̂ · ξ̂|2s
dv

)
.

(3.21)

Since ϕ ∈ Cc(Rd), it follows for any d ≥ 2∫
Rd

|ϕ(v)|2

|v|2s|v̂ · ξ̂|2s
dv ≤ Cs,d(ϕ)2, s ∈

(
0, 12
)
. (3.22)

Additionally, using Young’s inequality∫
Rd

∣∣F{f(·, v)}(ξ)
∣∣2(1−s)∣∣F{g(·, v)}(ξ)

∣∣2s dv

≤ (1− s)
∫
Rd

∣∣F{f(·, v)}(ξ)
∣∣2dv + s

∫
Rd

∣∣F{g(·, v)}(ξ)
∣∣2dv .

(3.23)

Using (3.22) and (3.23) in (3.21) and integrating in ξ,∫
Rd

∣∣F{f̄ϕ}(ξ)∣∣2 |ξ|2sdξ
≤ Cs,d(ϕ)2

(∫
R2d

∣∣F{f(·, v)}(ξ)
∣∣2dv dξ +

∫
R2d

∣∣F{g(·, v)}(ξ)
∣∣2dv dξ

)
.

The result follows applying Plancherel theorem in the ξ–variable.
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The L1 space is a natural frame of work in kinetic equations since
mass conservation is the basic property one expects for solutions of
kinetic models. Thus, one may wonder if velocity averages also hap-
pen in this framework. The following result states that this is the
case. Before entering in the details, note that the equation

λ f + v · ∇xf = g , λ > 0 , x, v ∈ Rd , (3.24)

has explicit solution

f(x, t) =

∫ ∞
0

e−λsg(x− vs, v)ds . (3.25)

Therefore,

‖f̄ϕ‖L1
x
≤ ‖ϕ‖L∞‖f‖L1

x,v
≤ λ−1‖ϕ‖L∞‖g‖1 . (3.26)

Estimate (3.26) can also be obtained by direct integration in space-
velocity of the equation (3.24).

Theorem 3.2.2. Let {f ε} a weakly compact family in L1
x,v such that

v · ∇xf ε is a bounded family in L1
x,v. Then, the velocity average f̄ εϕ

is relatively compact in L1
loc,x.

Proof. We follow [48]. Let gε := v · ∇xf ε. Thus,

λf ε + v · ∇xf ε = λf ε + gε , λ > 0 .

Now, write f ε = f ε1,α + f ε2,α with α > 0, where

f ε1,α = 1{|fε|>α} f
ε , f ε2,α = 1{|fε|≤α} f

ε .

As a consequence, using linearity of (3.24) it follows that f ε = cε+ bε

with

λ cε + v · ∇xcε = λf ε2,α , λ bε + v · ∇xbε = λf ε1,α + gε .

Here c stands for compact and b for bounded. Let us estimate cε

using Proposition (3.2.1). For any s ∈
(
0,

1

2

)
one has

‖c̄εϕ‖Hsx ≤ Cs,d(ϕ)
(
λ‖f ε2,α‖L2

x,v
+ ‖cε‖L2

x,v

)
≤ Cs,d(ϕ)(1 + λ)‖f ε2,α‖L2

x,v

≤ Cs,d(ϕ)(1 + λ)
√
α
√
‖f ε‖L1

x,v
≤ C(ϕ)(1 + λ)

√
α ,

(3.27)
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where in the second inequality we used that ‖cε‖L2
x,v
≤ ‖f ε2,α‖L2

x,v
. In

the last inequality we used that {f ε} is weakly compact, and thus, it
is a bounded family. Using Rellich’s compactness theorem, the family
{c̄εϕ} is relatively compact in L1

loc,x. Furthermore, recalling (3.26)

‖b̄εϕ‖L1
x
≤ ‖ϕ‖L∞

(
‖f ε1,α‖L1

x,v
+ λ−1‖gε‖L1

x,v

)
.

Since {f ε} is weakly compact is equiintegrable. Thus, for any δ > 0

there exists α > 0 such that sup
ε
‖f ε1,α‖L1

x,v
≤
(
2‖ϕ‖L∞

)−1
δ. Ad-

ditionally, we can choose λ = 2‖ϕ‖L∞ sup
ε
‖gε‖L1

x,v
δ−1 to conclude

that

‖b̄εϕ‖L1
x
≤ δ . (3.28)

As a result of this discussion and the fact that f̄ εϕ = c̄εϕ+b̄εϕ, we have
proved that for any compact set K and δ > 0, there exists a compact
set Kδ ∈ L1

x(K) such that {f̄ εϕ} ⊂ Kδ + B(0, δ). Consequently, the

family {f̄ εϕ} is pre-compact, and since L1
x(K) is a Banach space, it

is in fact compact.

Corollary 3.2.3. Assume the conditions of Theorem 3.2.2. Then,
for every ϕ ∈ C1c (R3d) the velocity average∫

Rd
f ε(x, v∗)ϕ(x, v, v∗)dv∗

belongs to a compact set of L1
loc(R2d).

3.2.2 Renormalized solutions

The concept of renormalized solutions was introduced, at least in the
Boltzmann equation setting, in [38]. An extensive discussion is found
in the series [54, 55, 56] and, an example of the application of the
theory to systems with bounded domains can be found in [58]. The
idea goes like this: assume that f ≥ 0 is a solution of the Boltzmann
equation (3.1), thus, for any β ∈ C1(R) one should have

∂tβ(f) + v · ∇xβ(f) = β′(f)Q(f, f) , β(f(0)) = β(fo) . (3.29)
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Thus, a renormalized solution for the Boltzmann equation is any non-
negative function f ∈ C

(
[0,∞);L1(R2d)

)
satisfying (3.29), in the

sense of distributions, for any β such that β(0) = 0 and |β′(s)| ≤
C(1 + s)−1. More explicitly, for any ϕ ∈ D

(
[0, T )× R2d

)
∫ T

0

∫
R2d

(
β(f)

(
∂tϕ+ v · ∇xϕ

)
+ β′(f)Q(f, f)ϕ

)
dvdxdt

+

∫
R2s

β(fo)ϕdvdx = 0 .

(3.30)

Such suitable functions β are called renormalization functions. Renor-
malized solutions must also satisfy the natural a priori estimates
coming from the conservation laws and entropy dissipation, see [38]

sup
t∈[0,T ]

∫
R2d

f
(
1 + |v|2 + |x|2 + | log(f)|

)
dvdx

+

∫ T

0

D(f)dt ≤ C(fo, T ) <∞ .

(3.31)

In addition to time T > 0, the constant C(fo, T ) depends on the
mass, second moments and entropy of fo. A central result in the
theory of renormalized solutions for the Boltzmann equation is that
they form a weakly stable set.

Theorem 3.2.4. Fix any finite time T > 0 and, let {fn} be a se-
quence of renormalized solutions such that {fn(0)} satisfies (3.31)
uniformly in n ∈ Z+ and converges weakly in L1(R2d) to some fo.
Then, up to extraction of a subsequence, {fn} converges weakly in
L1
(
[0, T ]×R2d

)
to a renormalized solution f having initial value fo.

Proof. Let us present the argument of proof as discussed in [38, 56, 58]
filling only the most relevant details. Since {fn(0)} satisfies (3.31)
uniformly in n ∈ Z+, using Dunford-Pettis lemma one concludes that
{fn} is weakly compact in Lp(L1

x,v

)
for any p ∈ [1,∞). Thus, up to

subsequence, one has the weak limit fn ⇀ f ∈ Lp
(
[0, T ];L1(R2d)

)
.

A convexity argument shows that f satisfies the estimate (3.31).
Now, for any fixed δ > 0 define βδ(s) := s

1+δs . Then, β′δ =

(1 + δs)−2 and βδ is a valid renormalization function. It follows, in
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the sense of distributions, that

∂tβδ(f
n) + v · ∇xβδ(fn) = β′δ(f

n)Q(fn, fn) . (3.32)

Since βδ ≤ δ−1, we may assume that

βδ(f
n) ⇀ fδ , weakly- ? in L∞

(
(0, T )× R2d

)
. (3.33)

The importance of the renormalization is that the sequences

{β′δ(fn)Q±(fn, fn)}

are weakly compact in L1
t,x,v. This fact can be proved using only the

natural estimate (3.31). Thus, we may also assume that

β′δ(f
n)Q(fn, fn) =

Q(fn, fn)

(1 + δfn)2
⇀ Qδ , weakly in L1

(
(0, T )× R2d

)
.

We can pass to the limit in (3.32) and obtain the equation in the
sense of distributions

∂tfδ + v · ∇xfδ = Qδ , (3.34)

complemented with initial condition wδ := lim
n
βδ(f

n(0)) (weak-?

limit in L∞x,v). The remainder of the proof consists in passing to
the limit δ → 0 in equation (3.34). Note that for any M > 0

0 ≤ s− βδ(s) =
δs2

1 + δs
≤ δMs+ s1{s≥M} ,

hence, 0 ≤ f − fδ. Thus, for any ε > 0, there exists no := no(ε) such
that

‖f − fδ‖L1
t,x,v
≤ ‖fno − βδ(fno)‖L1

t,x,v
+ ε

≤ δM‖fno‖L1
t,x,v

+ ‖fno1{fno≥M}‖L1
t,x,v

+ ε .

Send δ → 0 and then M →∞ to conclude that

lim sup
δ
‖f − fδ‖L1

t,x,v
≤ ε .
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This proves the strong limit

lim
δ
fδ = f , strongly in L1

(
(0, T )× R2d

)
. (3.35)

Similarly, the initial condition in equation (3.34) satisfies the strong
L1
x,v limit wδ → fo as δ → 0. Therefore, we may pick an arbitrary

renormalization function β and renormalize equation (3.34) to obtain

∂tβ(fδ) + v · ∇xβ(fδ) = β′(fδ)Qδ . (3.36)

Sending δ → 0 and using (3.35) one obtains the limit in the sense of
distributions for the left-side in equation (3.36)

∂tβ(fδ) + v · ∇xβ(fδ)→ ∂tβ(f) + v · ∇xβ(f) , (3.37)

and also, for the initial condition

β(wδ)→ β(fo) . (3.38)

In order to finish the proof of Theorem 3.2.4 we need the following
important result.

Lemma 3.2.5. Let BR ⊂ Rd be the ball with center at the origin and
radius R ∈ (0,∞). Then, under previous setting

β′(fδ)Qδ → β′(f)Q(f, f) , strongly in L1
(
(0, T )×BR×BR

)
. (3.39)

Assuming for the moment the validity of Lemma 3.2.5 and using
(3.37-3.38) we can take the limit δ → 0 in (3.36) to obtain that

∂tβ(f) + v · ∇xβ(f) = β′(f)Q(f, f) , β(f(0)) = β(fo) . (3.40)

We are allow to use the evaluation f(0) because solutions, in the
sense of distributions, of the transport equation with a L1

t,x,v right

side (and L1
x,v initial data) are in fact f ∈ C

(
[0, T );L1(R2d)

)
. This

proves that f is a renormalized solution.

Proof of Lemma 3.2.5

We prove Lemma 3.2.5 assuming a Boltzmann collision operator hav-
ing a smooth collision kernel B(u, ω) = Φ(u)b(û ·ω) with Φ ∈ C1c (Rd).



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 34 — #34 i
i

i
i

i
i

34 [CHAP. 3: CLASSICAL BOLTZMANN EQUATION

This assumption simplifies the technicalities and keeps the essential
ideas of the argument intact. We consider separately Q±δ correspond-
ing to the weak L1

t,x,v limits of {β′δ(fn)Q±(fn, fn)}n respectively
starting with the loss part of the collision operator. Recall that

β′δ(f
n)Q−(fn, fn) =

fn

(1 + δfn)2

∫
Rd
fn(t, x, v∗)Φ(v − v∗)dv∗ .

Using a version of Corollary 3.2.3 for the transport equation, one
concludes that the velocity average is strongly convergent locally in
L1
t,x,v∫
Rd
fn(t, x, v∗)Φ(v − v∗)dv∗

−→
∫
Rd
f(t, x, v∗)Φ(v − v∗)dv∗ , strongly in L1((0, T )×BR ×BR) .

In addition,

fn

(1 + δfn)2
−→ f̃δ , weakly- ? in L∞

(
(0, T )× R2d

)
.

Therefore,

β′δ(f
n)Q−(fn, fn) −→

f̃δ

∫
Rd
f(t, x, v∗)Φ(v − v∗)dv∗ , weakly in L1((0, T )×BR ×BR) .

Clearly f̃δ ≤ fδ and, as a consequence, for any renormalization func-
tion β

|β′(fδ)f̃δ| ≤
Cβ f̃δ
1 + fδ

≤ Cβ . (3.41)

The same argument given for fδ also proves that f̃δ converges to f
strongly in L1

t,x,v. Thus, these convergences are almost everywhere as

well. The conclusion is lim
δ
β′(fδ)f̃δ = β′(f)f a.e. in (0, T )×BR×BR.
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Using (3.41) and Lebesgue’s dominated convergence theorem

β′(fδ)Q
−
δ = β′(fδ)f̃δ

∫
Rd
f(t, x, v∗)Φ(v − v∗)dv∗ −→

β′(f)f

∫
Rd
f(t, x, v∗)Φ(v − v∗)dv∗ ,

strongly in L1((0, T )×BR ×BR) .

(3.42)

This proves the result for the negative collision operator. Now, de-
termining the limit for {β′(fδ)Q+

δ } is a bit more involved. It relies
in the following averaging result which is a direct consequence of the
average lemmas, refer to [38, pg. 341–343] for a proof.

Lemma 3.2.6. Fix T < ∞ and ϕ ∈ L∞
(
(0, T ) × Rd × Rd

)
. Then,

under the conditions of Theorem 3.2.4 it follows that∫
Rd
Q±(fn, fn)ϕdv →

∫
Rd
Q±(f, f)ϕdv , in measure on (0, T )×BR .

Having at hand Lemma 3.2.6 we finish the argument as presented
in [56]. The strategy to prove strong convergence in L1 for the se-
quence {β′(fδ)Q+

δ } and identify its limit consists in showing that
such sequence converges L1–weakly and almost everywhere. Indeed,
it is easily proved using Egorov’s theorem and the equiintegrability
characterization of weakly compact sets in L1 that sequences enjoy-
ing weak and a.e. limits, in fact, converge L1–strong. Of course, such
limits agree. A first step is to use Arkeryd’s inequality

Q+(fn, fn) ≤ KQ−(fn, fn) +
e(fn)

log(K)
, K > 1 , (3.43)

where

0 ≤ e(f) := 1
4

∫
Rd

∫
Sd−1

(
f ′f ′∗ − ff∗

)
log
(f ′f ′∗
ff∗

)
B dωdv∗ ,

is the entropy dissipation rate at (t, x, v). Indeed, note that using
estimate (3.31)∫ T

0

∫
R2d

e(f) =

∫ T

0

D(f) ≤ C(fo, T ) <∞ ,
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and therefore, we may assume that e(fn) is converging in the sense of
measures to some nonnegative and bounded measure e in [0, T )×R2d.
As a consequence, multiplying (3.43) by β′δ(f

n) and taking the limit,
it is concluded that

Q+
δ ≤ KQ

−
δ +

eo
log(K)

. (3.44)

Here, eo is the regular part of the measure e. This is allowed because
we know that Q+

δ lies in L1
t,x,v, thus, it is a regular measure. Thus,

that the sequence {β′(fδ)Q+
δ } is weakly compact follows from the

weak compactness of {β′(fδ)Q−δ }. Now, note the easy inequality

Q+(fn, fn) ≥ β′δ(fn)Q+(fn, fn) . (3.45)

Multiplying inequality (3.45) by a nonnegative ϕ ∈ C1o(Rd), integrat-
ing in velocity and sending to the limit, it follow from Lemma 3.2.6
that ∫

Rd
Q+(f, f)ϕdv ≥

∫
Rd
Q+
δ ϕdv , (0, T )×BR ,

which readily implies that Q+(f, f) ≥ Q+
δ a.e on (0, T )×R2d. Thus,

Q+(f, f) ≥ lim sup
δ

Q+
δ , a.e on (0, T )× R2d . (3.46)

For the opposite inequality set

L(f) :=

∫
Rd
f(v∗)Φ(v − v∗)dv∗ ,

and observe that (3.43) leads to

(1 + δR)−2
Q+(fn, fn)

1 + νL(fn)

≤ β′δ(fn)Q+(fn, fn) +
Q+(fn, fn)1{fn≥R}

1 + νL(fn)

≤ β′δ(fn)Q+(fn, fn) +
K

ν
fn1{fn≥R} +

e(fn)

log(K)
.

(3.47)
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Furthermore, a slight variation of Lemma 3.2.6 implies that∫
Rd

Q+(fn, fn)

1 + νL(fn)
ϕdv −→

∫
Rd

Q+(f, f)

1 + νL(f)
ϕdv,

in measure on (0, T )×BR .

The key observation to prove this limit is the fact that average lemmas
imply that L(fn) is converging strongly in L1

t,x,v. Thus, multiplying
inequality (3.47) by ϕ ≥ 0, integrating in velocity, and sending to the
limit

(1 + δR)−2
∫
Rd

Q+(f, f)

1 + νL(f)
ϕdv ≤∫

Rd
Q+
δ ϕdv +

K

ν

∫
Rd
fR ϕdv +

∫
Rd

e

log(K)
ϕdv ,

where fR is the weak limit of fn1{fn≥R}. And thus,

(1 + δR)−2
Q+(f, f)

1 + νL(f)
≤ Q+

δ +
K

ν
fR +

eo
log(K)

, a.e on (0, T )× R2d .

Take, in this order, the limits δ → 0, R→∞, K →∞ and ν → 0 to
conclude that

Q+(f, f) ≤ lim inf
δ

Q+
δ , a.e on (0, T )× R2d . (3.48)

Using estimates (3.46) and (3.48) one concludes that

lim
δ
β′(fδ)Q

+
δ = β′(f)Q+(f, f) , a.e on (0, T )× R2d .

This concludes the proof. �

Theorem 3.2.4 is the essential tool to prove existence of renormal-
ized solutions for the Boltzmann equation with initial data having fi-
nite second moments and entropy [38]. The main idea of the argument
is to approximate the collision operator by a simpler operator involv-
ing some type of truncation and for which all conservation laws hold.
The approximating problem is simple enough to find, using standard
fixed point theory, existence of classical solutions. These classical
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solutions are, of course, renormalized solutions to the approximat-
ing problem. This method provides of a sequence of renormalized
solutions that, by Theorem 3.2.4, should converge to a renormalized
solution of the original problem. This is in fact the case provided the
approximating operator converges sufficiently strong to the original
collision operator.

3.3 Theory of moments

One of the most important quantities to be studied for a solution f
of the Boltzmann equation, as for any probability distribution, are
its moments

mk(f)(x, t) =

∫
Rd
f(t, x, v)|v|kdv . (3.49)

Moments are associated to macroscopical quantities or observables.
For example, the zero moment (k = 0) is the spatial density and
the second moment (k = 2) is associated to the spatial temperature
of the system. Moments are the basic quantities to study when one
wants to pass from the kinetic scale to the macroscopical scale, in
fact, they are the central quantities when deriving fluid equations
(for instance, Navier-Stokes equations) from Boltzmann equation. In
a general setting, the study of moments is a very difficult task due to
the ample physical situations that may be modeled with the Boltz-
mann equation. However, in some particular regimes such as spa-
tial homogeneous or quasi-homogeneous systems, the theory that has
been developed in recent years is quite complete, see the seminal pa-
pers [18, 22]. Let us present here an introduction to this theory in
the homogeneous case, that is, when spatial variations are completely
neglected in the model

∂tf = Q(f, f) , (t, v) ∈ R+ × Rd . (3.50)

A central tool of the moment analysis is the so called σ–representation
which consists in performing the change of variables in the sphere

σ(ω) = û− 2(û · ω)ω ∈ Sd−1 ,
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where û is an arbitrary, but fixed, unitary vector. One can compute
the Jacobian of this transformation as 1

dσ

dω
= 2d−1|û · ω|d−2 . (3.51)

The computations can be found in the appendix Lemma 6.0.1. Thus,
it readily follows the identity∫

Sd−1

b(û · ω)ϕ
(
(u · ω)ω

)
dω

=
1

2d−1

∫
Sd−1

(√
1−û·σ

2

)2−d
b
(√

1−û·σ
2

)
ϕ
(u− |u|σ

2

)
dσ .

As a conclusion, the following weak representation holds∫
Rd
Q(f, g)(v)ϕ(v)dv =

∫
R2d

f(v)g(v∗)S(ϕ)(v, v∗)|u|γdv∗dv , (3.52)

where

S(ϕ)(v, v∗) :=

∫
Sd−1

bo(û·σ)
(
ϕ(v′)+ϕ(v′∗)−ϕ(v)−ϕ(v∗)

)
dσ . (3.53)

Here, the new scattering kernel bo is related to the original through
the formula

bo(û · σ) = 1
2d

(√
1−û·σ

2

)2−d
b
(√

1−û·σ
2

)
,

and, the collision laws in the σ-coordinates are given by the expres-
sions

v′ = v − u− |u|σ
2

and v′∗ = v∗ +
u− |u|σ

2
. (3.54)

For simplicity we consider only Grad’s cutoff angular kernels nor-

malized to unity, that is,

∫
Sd−1

bo(û · σ)dσ = 1. Observe carefully

that Grad’s cutoff assumption is stronger than the cutoff assumption

1Such change of variables was introduced in [17] for the relevant case of 3-
dimensions.



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 40 — #40 i
i

i
i

i
i

40 [CHAP. 3: CLASSICAL BOLTZMANN EQUATION

introduced at the beginning of Section 3. Also, note that the collision
kernel in the σ–representation for the important case of hard spheres
simply reads

B(u, σ) = cd |u| ,
with cd a constant depending only on the dimension. One applica-
tion of the σ–representation is the following result known as Povzner
lemma. It is specifically designed to study both propagation and
generation of moments for solutions of the Boltzmann equation.

Lemma 3.3.1. Fix q ≥ 1 and let the angular scattering kernel satisfy
bo ∈ Lq(Sd−1). Then, for any real k ≥ 1, there exists an explicit
constant ck > 0 such that

S
(
| · |2k

)
(v, v∗) ≤ −(1− ck)

(
|v|2k + |v∗|2k

)
+ ck

((
|v|2 + |v∗|2

)k − |v|2k − |v∗|2k) . (3.55)

The map k → ck has the following properties:

(1) ck is strictly decreasing with c1 = 1. In particular, ck < 1 for
k ∈ (1,∞).

(2) When q > 1, one has ck = O
(
k−1/q

′)
for large k. Here 1/q +

1/q′ = 1. For the case q = 1, it still follows that lim
k→∞

ck = 0.

Proof. Set ϕ(v) = |v|2k =: ψk(|v|2), with k ≥ 1. With obvious
definitions for S± we can write

S(ϕ)(v, v∗) = S+(ϕ)(v, v∗)− S−(ϕ)(v, v∗) .

Let us focus in the term S+. Introduce the velocity of the center of

mass U =
v + v∗

2
to write the collision laws as

v′ = U +
|u|
2
σ , and v′∗ = U − |u|

2
σ .

Expanding the squares,

ψk
(
|v′|2

)
+ ψk

(
|v′∗|2

)
= ψk

(
|U |2 +

|u|2

4
+ |u||U |Û · σ

)
+ ψk

(
|U |2 +

|u|2

4
− |u||U |Û · σ

)
= ψk

(
E

1 + ξ Û · σ
2

)
+ ψk

(
E

1− ξ Û · σ
2

)
,



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 41 — #41 i
i

i
i

i
i

[SEC. 3.3: THEORY OF MOMENTS 41

where we have set

E := |v|2 + |v∗|2 = 2|U |2 +
|u|2

2
, and ξ := 2

|U | |u|
E

.

Since ψk(·) is convex for k ≥ 1, the mapping ψ̃k(s) := ψk(x + sy) +
ψk(x−sy) is even and nondecreasing for s ≥ 0 and x, y ∈ R, see [22].
Therefore, using that ξ ≤ 1 it follows that

ψk
(
|v′|2

)
+ ψk

(
|v′∗|2

)
≤ ψk

(
E

1 + Û · σ
2

)
+ ψk

(
E

1− Û · σ
2

)
= Ek

(
ψk

(1 + Û · σ
2

)
+ ψk

(1− Û · σ
2

))
.

Hence,

S+
(
ϕ
)
(v, v∗)

≤ Ek
∫
Sd−1

bo
(
û · σ

)(
ψk

(1 + Û · σ
2

)
+ ψk

(1− Û · σ
2

))
dσ

=: Ek ck
(
Û , û

)
.

(3.56)

Define ck := sup
Û, û

ck
(
Û , û

)
. Note that substituting k = 1 in (3.56)

readily implies that

c1
(
Û , û

)
=

∫
Sd−1

bo
(
û · σ

)
dσ = 1 .

Furthermore, using Hölder inequality in (3.56) and then computing
explicitly

ck ≤ ‖b0‖Lq
(
|Sd−2|

∫ 1

−1

(
ψk

(1 + s

2

)
+ ψk

(1− s
2

))q′
ds

)1/q′

≤ Cd,q k−1/q
′
.

The fact that ck is strictly decreasing follows observing that the inte-
grand in (3.56) strictly decreases as k increases. For the case q = 1,
the fact that lim

k→∞
ck = 0 follows by dominated convergence theo-

rem. Estimate (3.55) follows directly from the definition of ck and
(3.56).
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Let us explain how Povzner lemma help us to study the genera-
tion of moments in the Boltzmann model, namely, solutions of the
Boltzmann equation have all moment finite, for any positive time,
regardless the initial configuration. There is a caveat though, such
property is exclusive for hard potentials with initial configurations
having finite mass and energy

m0(fo) =

∫
Rd
fo(v)dv = 1 , m2(fo) =

∫
Rd
fo(v)|v|2dv <∞ , (3.57)

where the mass is normalized to one for simplicity. In contrast, this
property does not hold for soft potentials and Maxwell molecules.
Let us consider k ∈ (1, 2) for simplicity, thus, we can write k = 2ξ
for some ξ < 1. It follows that(
|v|2 + |v∗|2

)k ≤ (|v|2ξ + |v∗|2ξ
)2

= |v|2k + |v∗|2k + 2|v|k|v∗|k .

Therefore, using (3.52) and (3.55) one concludes that∫
Rd
Q(f, f)(v)|v|2kdv

= 2ck

∫
Rd

∫
Rd
f(v)|v|kf(v∗)|v∗|k|u|γdv∗dv

− 2(1− ck)

∫
Rd
f(v)|v|2k

(∫
Rd
f(v∗)|u|γdv∗

)
dv .

(3.58)

Note how Povzner lemma helped canceling the higher order moments
contributing positively. Using the inequality |u|γ ≥ |v|γ − |v∗|γ valid
for γ ∈ (0, 1], one concludes that∫

Rd
f(v∗)|u|γdv∗ ≥ m0(f)|v|γ −mγ(f) .

Additionally, using the inequality |u|γ ≤ |v|γ + |v∗|γ in the first term
of (3.58)∫

Rd

∫
Rd
f(v)|v|kf(v∗)|v∗|k|u|γdv∗dv ≤ 2mk+γ(f)mk(f) .
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Using the last two estimates in (3.58) gives the estimate∫
Rd
Q(f, f)(v)|v|2kdv ≤ 4ckmk+γ(f)mk(f)+

+ 2(1− ck)m2k(f)mγ(f)− 2(1− ck)m0(f)m2k+γ(f) .

(3.59)

Now it is a matter of massaging inequality (3.59), mainly by using
Lebesgue’s interpolation, to obtain a suitable estimate. The key in-
gredient is that the Boltzmann model conserves mass and energy.
Therefore,

m0(f) = m0(fo) = 1 ,

mγ(f) ≤ m0(f)
2−γ
2 m2(f)

γ
2 = m0(fo)

2−γ
2 m2(fo)

γ
2 ,

mk(f) ≤ m0(fo)
1− k2m2(fo)

k
2 .

As a consequence, estimate (3.59) turns into∫
Rd
Q(f, f)(v)|v|2kdv ≤

C(fo)
(
ckmk+γ(f) +m2k(f)

)
− 2(1− ck)m2k+γ(f) ,

(3.60)

where the constant C(fo) depends only on mass and energy of the
initial configuration (we continue with such notation in the sequel).
A priori the moments k + γ and 2k are not controlled by the mass
and the energy, however, they can be absorbed using the moment
2k + γ and Young’s inequality

mk+γ(f) ≤ ε−
2k+γ
k m0(fo) + ε

2k+γ
k+γ m2k+γ(f) ,

m2k(f) ≤ ε−
2k+γ
γ m0(fo) + ε

2k+γ
2k m2k+γ(f) ,

(3.61)

valid for any ε > 0. Choosing the parameter ε sufficiently small, it
follows that (3.60) reduces to∫

Rd
Q(f, f)(v)|v|2kdv ≤ Ck(fo)− (1− ck)m2k+γ(f)

≤ Ck(fo)− (1− ck)m2k(f)
2k+γ
2k .

(3.62)
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This estimate will allow us to conclude the generation of moments
result up to moment 2k < 4. Indeed, assume f being a solution
of the homogeneous Boltzmann equation (3.50) with initial condi-
tion fo satisfying (3.57). We assume such solution conserves mass
and energy, then, multiplying equation (3.50) by |v|2k, integrating in
velocity, and using estimate (3.62)

m2k(f)′(t) + (1− ck)m2k(f)
2k+γ
2k (t) ≤ Ck(fo) . (3.63)

Invoking a classical comparison result in ODE’s, estimate (3.63) im-
plies that

m2k(f)(t) ≤ C(fo)
(

1 +
1

t1+
2k
γ

)
, 1 < k < 2 .

It is important when invoking such comparison result for ODE’s that
the exponent 2k+γ

2k > 1. Of course, this only happens for hard po-
tentials. The result for higher moments follows using the same ideas
and a little bit more work. Many of the ideas exposed here can be
found in [22, 74, 10].

Theorem 3.3.2. Let fo ≥ 0 an initial datum with finite mass and
energy. Then, any solution f of the Boltzmann equation (for hard
potentials) conserving mass and energy has all moments bounded for
any positive time

mk(f)(t) ≤ C(fo)
(

1 +
1

t1+
k
γ

)
, k > 2 .

Furthermore, if mk(fo) <∞, then

sup
t≥0

mk(f)(t) ≤ max
{
mk(fo), Ck(fo)

}
, k > 2 .

The latter result is known as propagation of moments.

3.4 Propagation of regularity

We study in this section the propagation of Lp-integrability and
Sobolev regularity for the homogeneous Boltzmann equation. Al-
though, moments are truly the physically meaningful quantities to
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study, propagation of regularity is an important mathematical issue
that has ripple effects in the physics. For instance, it will be central
in the study of long time behavior of the equation which is presented
later on. In fact, rates of convergence in the long run are quite de-
pendent of the smoothness of the initial data.

The following presentation will borrow ideas that can be found in
the references [39, 11, 63] and started in [47]. Additional treatment
about the integrability properties of the collision operator including
discussion of sharp constants can be found in [6]. Essentially, there
are 3 steps in the study of propagation of integrability: (1) proving
an estimate for the operator Q+ which is closely related to Young’s
inequality for convolutions, (2) proving a sharp lower bound for the
operator Q− which helps as absorption term (similar to the case of
moment analysis) and (3) proving the so-called gain of integrability
for the operator Q+ which is related to a compactness property due to
the angular averaging in Sd−1. Recall that the angular averaging was
essential in the Povzner’s lemma. Furthemore, for the propagation
of Sobolev regularity we will need an additional, and quite technical,
result that essentially remarks that higher derivatives of the operator
Q+ can be controlled with lower derivatives. This was a result first
observed for the collision operator by Lions [54, 55], but, simpler
proofs can be found in [75, 63]. In fact, we will use an even simpler
approach given in [24] suited to our purpose.

3.4.1 Step 1. Lp-bounds for Q+

In this exposition the framework will be the weighted Lebesgue’s
space

Lpk(Rd) =
{
f : f〈v〉k ∈ Lp(Rd)

}
,

where 〈v〉 :=
√

1 + |v|2. To ease the notation we may write ‖ · ‖Lpk =

‖ · ‖p,k. We continue working with hard potential kernels of the form

B(u, σ) = |u|γbo(û · σ) , γ ∈ (0, 1] .

Finally, let us observe an important issue in the Boltzmann equation
that will help us with the proofs: it is a fact that the angular kernel bo
can be assumed to be supported in Sd−1+ due to symmetry of collisions.
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Indeed, for any fixed vector u∫
Sd−1

f(′v)f(′v∗)bo(û · σ)dσ =
∑
±

∫
{±û·σ≥0}

f(′v)f(′v∗)bo(û · σ)dσ

=

∫
{û·σ≥0}

f(′v)f(′v∗)
(
bo(û · σ) + bo(−û · σ)

)
dσ ,

where for the last identity we used the change of variables σ → −σ in
the integral performed in the set {û ·σ ≤ 0}. Note that this change of
variables implies that (′v,′v∗)→ (′v∗,

′v). Thus, this accounts to have
an equivalent scattering kernel defined as

b̃o(z) :=
(
bo(z) + bo(−z)

)
1{û·σ≥0} .

We drop the tilde to ease the notation and continue considering an
angular scattering kernel with normalized Grad’s cut off assumption.

Lemma 3.4.1. The positive scattering operator

S+(ϕ)(v, v∗) =

∫
Sd−1

ϕ(v′)bo(û · σ)dσ

is a bounded operator S+ : Lp(Rd) → L∞
(
Rdv∗ , L

p(Rdv)
)

with norm
estimated as

‖S+‖p ≤ ‖S+‖1/p1 ≤ 2d/p‖bo‖1/pL1(Sd−1)
,

where ‖S+‖1 is defined in (3.64)

Proof. Let us prove the result for L1 and L∞, and then, conclude
using Marcinkiewicz interpolation theorem. We address the L1 esti-
mate since the L∞ estimate is clear. Observe that,∥∥S+(ϕ)

∥∥
L1(Rdv)

=

∫
Rd

∫
Sd−1

ϕ(v′)bo(û · σ)dσdv

=

∫
Sd−1

∫
Rd
ϕ(v′)bo(û · σ)dudσ .

Use the change of variables ξ = 1
2

(
u + |u|σ

)
, for any fixed unitary

vector σ, in the integral performed in the u variable noticing that the
collision law can be written as

v′ = v − u− |u|σ
2

= v∗ + ξ .
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The Jacobian of the transformation ξ(u) is easily computed as, see
appendix Lemma 6.0.2

dξ

du
=

1 + û · σ
2d

,

and therefore,

∥∥S+(ϕ)
∥∥
L1(Rdu)

= 2d
∫
Rd
ϕ(v∗ + ξ)

∫
Sd−1

bo(û · σ)

1 + û · σ
dσdξ

= 2d
∣∣Sd−2∣∣ ∫ π/2

0

bo(cos(θ))
sin(θ)d−2

1 + cos(θ)
dθ ‖ϕ‖1 =: ‖S+‖1‖ϕ‖1 .

(3.64)

Note that the integration in angle is performed in the interval θ ∈
[0, π/2] due to the support of bo. This makes the norm bounded with
estimate ‖S+‖1 ≤ 2d‖bo‖L1(Sd−1).

Proposition 3.4.2. For every p ∈ [1,∞], γ ≥ 0 and k ≥ −γ,∥∥Q+
(
f, g
)∥∥
p,k
≤ 2γ/2‖S+‖1/p

′

1 ‖f‖p,k+γ‖g‖1,k+2γ .

Proof. Let us deal first with the case k = 0. Fix nonnegative func-
tions f and g and use duality to conclude that∥∥Q+

(
f, g
)∥∥
p

= sup
‖ϕ‖p′≤1

∫
Rd
Q+
(
f, g
)
(v)ϕ(v)dv

= sup
‖ϕ‖p′≤1

∫
Rd

∫
Rd
f(v)g(v∗)|u|γS+(ϕ)(v, v∗)dv∗dv .

Using the inequality |u| ≤ 〈v〉〈v∗〉 and Lemma 3.4.1 one finds that
the latter integral is bounded by∫

Rd

∫
Rd
f(v)g(v∗)|u|γS+(ϕ)(v, v∗)dv∗dv

≤
∫
Rd
g(v∗)〈v∗〉γ

(∫
Rd
f(v)〈v〉γS+(ϕ)(v, v∗)dv

)
dv∗

≤ ‖S+‖1/p
′

1 ‖g‖1,γ‖f‖p,γ‖ϕ‖p′ .
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This proves the case k = 0. To incorporate weights fix k ≥ −γ, in-

troduce u+ :=
u+ |u|σ

2
, and note the manipulation for the potential

|u|γ = |u+|γ
(
|u|
|u+|

)γ
= |u+|γ

( 2

1 + û · σ

)γ/2
≤ 2γ/2|u+|γ ,

where last inequality is valid in the support of bo, namely, {û ·σ ≥ 0}.
Now, u+ = v −′v∗, then

〈v〉k|u|γ ≤ 2γ/2〈v〉k|v −′v∗|γ

≤ 2γ/2〈v〉k+γ〈′v∗〉γ ≤ 2γ/2〈′v〉k+γ〈′v∗〉k+2γ ,

where we used 〈v〉 ≤ 〈′v〉〈′v∗〉 by conservation of energy, and the fact
that k + γ ≥ 0. Therefore,

Q+
γ

(
f, g
)
(v)〈v〉k ≤ 2γ/2Q+

o

(
f〈·〉k+γ , g〈·〉k+2γ

)
(v) .

The subscript in the operators indicate the potential order. The proof
follows using the case k = 0.

3.4.2 Step 2. Sharp lower bound for Q−

Lemma 3.4.3. Let f be a solution of the homogeneous Boltzmann
equation having initial datum fo with zero momentum and moment
2 + µ finite

m2+µ(fo) <∞ for some µ > 0 .

Then, (
f ∗ | · |γ

)
(v) ≥ C(fo)〈v〉γ , (3.65)

with C(fo) > 0 depending only on the mass and the moment 2 +µ of
fo.

Proof. Notice that in the ball B(0, r) one has for any R > 0 and
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µ > 0,∫
|v−w|≤R

f(t, w)|v − w|2dw

=

∫
Rd
f(t, w)|v − w|2dw −

∫
|v−w|≥R

f(t, w)|v − w|2dw

=

∫
Rd
fo(w)|v − w|2dw −

∫
|v−w|≥R

f(t, w)|v − w|2dw

≥ C0(fo) 〈v〉2 −
1

Rµ

∫
|v−w|≥R

f(t, w)|v − w|2+µdw.

For the last inequality we expanded the square in the first integral of
the right side and used momentum zero. We now use in the second
integral the inequality |v−w| ≤ 〈v〉〈w〉 and the uniform propagation
of the moment 2 + µ to conclude∫

|v−w|≤R
f(t, w)|v − w|2dw ≥ C0(fo)〈v〉2 −

C1

Rµ
〈v〉2+µ

≥ C0(fo)

2
, ∀ v ∈ B(0, r) .

We have taken R := R(C1, r) sufficiently large recalling that C1 is a
constant depending only on the mass and m2+µ(fo) thanks to Theo-
rem 3.3.2. Therefore,∫
Rd
f(t, w)|v−w|γdw ≥ 1

R2−γ

∫
|v−w|≤R

f(t, w)||v−w|2dw ≥ C0(fo)

2R2−γ ,

valid for any v ∈ B(0, r). Moreover,∫
Rd
f(t, w)|v − w|γdw ≥ m0(fo)|v|γ − C2(fo) ,

as a consequence,∫
Rd
f(t, w)|v − w|γdw

≥ C0(fo)

2R2−γ 1B(0,r) +
(
m0(fo)|v|γ − C2(fo)

)
1B(0,r)c .

(3.66)

Inequality (3.65) follows from (3.66) choosing r sufficiently large and
then R := R(C1, r).
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3.4.3 Step 3. Gain of integrability of Q+

The gain of integrability of the positive collision operator is referred
to the property in which its Lp-norm is controlled by lower norms of
its entries, that is, by Lq-norms with q ∈ [1, p). In fact more is true,
under certain conditions on the collision kernel, higher Sobolev norms
of Q+ are controlled by lower ones of its entries. This compactness
fact is not easy to prove and we will postpone it for later. Instead,
we follow a simple approach developed in [11] which avoids many
technicalities.

Let f and g be suitable nonnegative functions. First, we introduce
the Carleman’s representation for Q+(f, g)

Q+(f, g)(v) =

2n−1
∫
Rd

g(x)

|v − x|

∫
{(v−x)·z=0}

τ−xf(z + (v − x))

|z + (v − x)|n−2
B̃ (z, v − x) dπz dx ,

where B̃ (z, v − x) := B
(
|z + (v − x)|, 1− 2 |z|2

|z+(v−x)|2

)
. (3.67)

Here τ is the translation operator and dπz is the Lebesgue measure
in the plane. The Carleman’s representation has been quite used to
study the collision operator, it is some sort of stereographic projection
which allow to perform computations easier. In the appendix Lemma
6.0.3 we give a proof for such representation. Note that if g = δo, it
follows that

Q+(f, δo)(v) =

2n−1

|v|

∫
{v·z=0}

f(z + v)

|z + v|n−2
B

(
|z + v|, 1− 2|z|2

|z + v|2

)
dπz .

(3.68)

Therefore combining (3.67) and (3.68) we obtain the double mixing
convolution formula for the collision operator

Q+(f, g)(v) =

∫
Rd
g(x)τxQ

+
(
τ−xf, δo

)
(v)dx . (3.69)

Differences and similarities between a regular convolution and the
positive collision operator are observed through identity (3.69). Let
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us compute,

∥∥Q+(f, g)
∥∥
2

=

(∫
Rd

(∫
Rd
g(x)τxQ

+(τ−xf, δo)(v)dx

)2

dv

)1/2

≤
∫
Rd
g(x)

(∫
Rd

(
τxQ

+(τ−xf, δo)(v)
)2

dv

)1/2

dx .

(3.70)

Thus, we need to compute the L2-norm of the bilinear gain operator
with the second entry a Dirac point mass. In the sequel we adopt
the notation Q+

γ , where we allow any γ ≥ 0 in this notation, to make
explicit the kinetic scattering potential |u|γ in the operator.

Proposition 3.4.4. Fix d ≥ 2 and let f ∈ L
2d

2d−1

d−1 (Rd). Then,∥∥Q+
d−1(f, δo)(v)

∥∥
2
≤ Cd‖bo‖∞‖f‖ 2d

2d−1 ,d−1
,

with Cd some explicit constant depending only on the dimension.

Proof. Using the expression of the scattering kernel

B(u, σ) = |u|γbo(û · σ)

in (3.68), we write

Q+
γ (f, δo)(v) =

2d−1

|v|

∫
{z·v=0}

f(z + v)

|z + v|d−2−γ
bo

(
1− 2|z|2

|z + v|2

)
dπz .

Since bo(s) is supported in {s ≥ 0}, it follows that |v| ≥ |z|. As a
consequence,

|v|2

|z + v|2
=

|v|2

|z|2 + |v|2
≥ 1

2
.

Then,

Q+
γ (f, δo)(v) ≤ 2d−1/2‖bo‖∞

∫
{z·v=0}

f(z + v)

|z + v|d−1−γ
dπz .



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 52 — #52 i
i

i
i

i
i

52 [CHAP. 3: CLASSICAL BOLTZMANN EQUATION

Set γ = d− 1 and use polar coordinates v = rσ. Thus, it is possible
to estimate its L2-norm in the following way(

2d−1/2
∥∥bo∥∥∞)−2 ∫

Rd

(
Q+
d−1(f, δo)(v)

)2
dv ≤∫

Sd−1

∫
R+

∫
{z1·σ=0}

∫
{z2·σ=0}

f(z1 + rσ)f(z2 + rσ)dπz1dπz2r
d−1drdσ

=: I.

Next, perform the change of variables for fixed σ, x := z1 + rσ and
note that r = x · σ. Therefore,

I ≤
∫
Sd−1

∫
Rd

∫
{z2·σ=0}

f(x)f(z2 + (x · σ)σ)dπz2 |x · σ|d−1dxdσ .

Writing

z2 + (x · σ)σ = x+ (z2 + (x · σ)σ − x) := x+ z3 ,

it easy to check that z3 ∈
{
z : z · σ = 0

}
. Hence,

I ≤
∫
Sd−1

∫
Rd

∫
{z3·σ=0}

f(x)f(x+ z3)dπz3 |x · σ|d−1dxdσ .

Using the identity∫
Rd
δo(z · y)ϕ(z) dz = |y|−1

∫
{z·y=0}

ϕ(z) dπz

valid for any smooth ϕ, we transform the integration in the hyper-
plane {z3 · σ = 0} into an integration in Rd,∫

{z3·σ=0}
f(x+ z3)dπz3 =

∫
Rd
δo(z · σ)f(x+ z)dz

=

∫
Rd
δo(ẑ · σ)

f(x+ z)

|z|
dz .

Hence,

I ≤ Cd
∫
Rd

∫
Rd

f(x)|x|d−1f(z)

|z − x|
dzdx,
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where the constant can be taken as

Cd =

∫
Sd−1

δo(ẑ · σ)dσ =
∣∣Sd−2∣∣ ∫ 1

−1
δo(s)(1− s2)

d−3
2 ds =

∣∣Sd−2∣∣ .
Finally, recalling the Hardy-Littlewood-Sobolev inequality we have
for any r ∈ (1,∞),

I ≤ Cd
∥∥f | · |d−1∥∥

r′

∥∥f ∗ | · |−1∥∥
r
≤ Cd,r

∥∥f | · |d−1∥∥
r′
‖f‖p,

where 1/p+ 1/d = 1 + 1/r. Choosing p = r′, that is p = 2d
2d−1 , yields

I ≤ Cd,r
∥∥f | · |d−1∥∥ 2d

2d−1

∥∥f∥∥ 2d
2d−1

≤ Cd,r ‖f‖2 2d
2d−1 ,d−1

.

Since r := r(d) the result follows.

Let us come back to the estimation of the L2-norm of Q+. Fix
a dimension d ≥ 2 and recall that the physical accepted values of γ
satisfy 0 < γ ≤ 1 ≤ d− 1. Thus,

|u|γ ≤ εs
′

s′
+

1

sεs
|u|γs s = d−1

γ , ε > 0 . (3.71)

Additionally, we write the scattering kernel bo = b1o + b∞o with

(1) b1o ≥ 0 having small mass, say ‖b1o‖L1(Sd−1) = δ > 0.

(2) And, b∞o ≥ 0 essentially bounded and such that b∞o ≤ b1o. Of
course, ‖b∞o ‖∞ will depend in general on δ.

Therefore, for any k ≥ −γ it follows that∥∥Q+
γ (f, g)

∥∥
2,k

=
∥∥Q+

γ,b1o
(f, g) +Q+

γ,b∞o
(f, g)

∥∥
2,k

≤
∥∥Q+

γ,b1o
(f, g)

∥∥
2,k

+
∥∥Q+

γ,b∞o
(f, g)

∥∥
2,k

≤
∥∥Q+

γ,b1o
(f, g)

∥∥
2,k

+ εs
′

s′

∥∥Q+
o,b∞o

(f, g)
∥∥
2,k

+ 1
sεs

∥∥Q+
d−1,b∞o

(f, g)
∥∥
2,k
.

(3.72)
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For the last inequality we have used (3.71). Using Proposition 3.4.2
it follows that∥∥Q+

γ,b1o
(f, g)

∥∥
2,k
≤ 2

d+γ
2 ‖b1o‖

1/2
1 ‖f‖2,k+γ‖g‖1,k+2γ

= 2
d+γ
2

√
δ ‖f‖2,k+γ‖g‖1,k+2γ ,∥∥Q+

o,b∞o
(f, g)

∥∥
2,k
≤ 2

d+γ
2 ‖b∞o ‖

1/2
1 ‖f‖2,k+‖g‖1,k+

≤ 2
d+γ
2 ‖f‖2,k+‖g‖1,k+ ,

where, in the last inequality, we introduced k+ := max{0, k}. For the
latter term in (3.72) use (3.70) and Proposition 3.4.4. Thus, when
k = 0∥∥Q+

d−1,b∞o
(f, g)

∥∥
2
≤
∫
Rd

∥∥τxQ+
d−1,b∞o

(τ−xf, δo)
∥∥
2
g(x)dx

≤ Cd‖b∞o ‖∞
∫
Rd

∥∥τ−xf∥∥ 2d
2d−1 ,d−1

g(x)dx

≤ Cd,δ‖f‖ 2d
2d−1 ,d−1

‖g‖1,d−1 .

Therefore, when a weight k ≥ −γ is used∥∥Q+
d−1,b∞o

(f, g)
∥∥
2,k
≤
∥∥Q+

d−1,b∞o
(f〈·〉k

+

, g〈·〉k
+

)
∥∥
2

≤ Cd,δ‖f‖ 2d
2d−1 ,k

++d−1‖g‖1,k++d−1 .

This proves the following proposition.

Proposition 3.4.5. Fix d ≥ 2 and γ ∈ (0, 1]. The collision operator
satisfies the estimate for any ε > 0, δ > 0 and k ≥ −γ

‖Q+
γ (f, g)‖2,k ≤ 2

d+γ
2

√
δ ‖f‖2,k+γ‖g‖1,k+2γ +

2
d+γ
2
εs
′

s′
‖f‖2,k+‖g‖1,k+ +

Cd,δ
sεs
‖f‖ 2d

2d−1 ,k
++d−1‖g‖1,k++d−1 ,

where s = d−1
γ , k+ = max{0, k}, and Cd,δ depends only on d and

δ. In the case s = 1, the second term in the right side vanishes and
ε = 1.

We have all the ingredients to prove the main result of this sec-
tion, propagation of L2 integrability for the Boltzmann homogeneous
equations.
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Theorem 3.4.6. Fix a dimension d ≥ 2 and potential γ ∈ (0, 1].
Assume Grad’s cutoff in the angular kernel (normalized to one). Ad-
ditionally, fix k ≥ 0 and assume an initial estate fo ∈ L1

ko∩L
2
k. Then,

the solution f to the homogeneous Boltzmann equation propagates L2
k

integrability
sup
t≥0

∥∥f(t)
∥∥
2,k
≤ C(fo) .

The constant depends on the mass, mko(fo) and ‖fo‖2,k, where

ko = max
{
k + 3γ

2 , k + γ + d
d−1
(
d− 1− γ

)}
.

Proof. Fix k ≥ 0 and multiply the Boltzmann equation (3.50) by
f〈·〉k and integrate in velocity. This process leads to

d

dt
‖f(t)‖2

2, k2
=

∫
Rd
Q+(f, f)(v)f(v)〈v〉kdv

−
∫
Rd
Q−(f, f)(v)f(v)〈v〉kdv .

(3.73)

Using Lemma 3.4.3 one obtains∫
Rd
Q−(f, f)(v)f(v)〈v〉kdv

=

∫
Rd
f(v)2〈v〉k

(
f ∗ | · |γ

)
(v)dv ≥ C(fo)

∥∥f∥∥2
2, k+γ2

.

(3.74)

For the first term in (3.73) use Proposition 3.4.5, with f = g, to
conclude∫

Rd

(
Q+(f, f)(v)〈v〉

k−γ
2

)
f(v)〈v〉

k+γ
2 dv ≤

2
d+γ
2

(√
δ ‖f‖2, k+γ2 ‖f‖1, k+3γ

2
+
εs
′

s′
‖f‖

2,
(
k−γ
2

)+‖f‖
1,
(
k−γ
2

)+
+
Cd,δ
sεs
‖f‖

2d
2d−1 ,

(
k−γ
2

)+
+d−1

‖f‖
1,
(
k−γ
2

)+
+d−1

)∥∥f∥∥
2, k+γ2

.

(3.75)

Since 2d
2d−1 < 2, it is possible to use Lebesgue’s interpolation

‖f‖
2d

2d−1 ,
(
k−γ
2

)+
+d−1

≤ ‖f‖
1
d

2, k+γ2
‖f‖

d−1
d

1, k2+γ+
d
d−1 (d−1−γ)

. (3.76)
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Therefore, using (3.76) and propagation of moments Theorem 3.3.2
in (3.75), it follows that there exists constants C1(fo) and C2

δ (fo)
depending on the initial datum only through the mass and mko(fo),
with

ko = max
{
k+3γ

2 , k2 + γ + d
d−1
(
d− 1− γ

)}
,

and such that∫
Rd
Q+(f, f)(v)f(v)〈v〉kdv

≤ C1(fo)
(√
δ + εs

′)
‖f‖2

2, k+γ2
+
C2
δ (fo)

εs
‖f‖1+

1
d

2, k+γ2
.

(3.77)

Choosing δ and ε such that C1(fo)
(√
δ+εs

′)
= C(fo)/2 we can absorb

every right side term in (3.77) with (3.74). For the latter right side
term of (3.77) one can use Young’s inequality because 1+ 1

d < 2. The

conclusion is that there exists a constant C3(fo) such that

d

dt
‖f(t)‖2

2, k2
≤ C3(fo)−

C(fo)

4
‖f‖2

2, k+γ2
≤ C3(fo)−

C(fo)

4
‖f‖2

2, k2
.

Simple integration of this differential inequality leads to the result.

In the important physical cases d = 2, 3 this theorem gives a
satisfactory result in terms of the initial datum moment order ko
needed for L2-propagation. In higher dimension such order can sen-
sibly be lowered by refining the analysis, see [63]. The result for
Lp-propagation follows by interpolation, see for instance [63, 11]. Let
us just state the general result here.

Theorem 3.4.7. Fix a dimension d ≥ 2, p ∈ (1,∞), and potential
γ ∈ (0, 1]. Assume Grad’s cutoff in the angular kernel (normalized
to one). Additionally, fix k ≥ 0 and assume an initial estate fo ∈
L1
ko ∩L

p
k for some ko := ko(k) sufficiently large. Then, the solution f

to the homogeneous Boltzmann equation propagates Lpk integrability

sup
t≥0

∥∥f(t)
∥∥
p,k
≤ C(fo) .

The constant depends on the mass, mko(fo) and ‖fo‖p,k.
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3.4.4 Step 4. Propagation of Sobolev regularity

Before entering in details about propagation of regularity for the ho-
mogeneous Boltzmann equation, we will need a result very much re-
lated to Proposition 3.4.4, yet, of slightly different nature. It is about
the fact that under certain integrability condition on the angular ker-
nel, higher Sobolev norms can be controlled by lower ones. There are
several versions of this fact, see for instance [54, 55, 75, 63]. For our
purpose, it will suffice to follow a neat result that was brought in [24].

Proposition 3.4.8. Let bo ∈ L2(Sd−1). Then∥∥Q+
γ (f, g)

∥∥
Ḣ
d−1
2 (Rd)

≤ Cd‖bo‖2 ‖f‖2,γ+1‖g‖2,γ+1 , γ ≥ 0 .

Proof. The proof is based on the Fourier transform of the gain oper-
ator Q+ using the weak formulation

F
{
Q+(f, g)

}
(ξ) =

∫
Rd
Q+(f, g)(v)e−iv·ξdv

=

∫
R2d

f(v)g(v∗)|u|γ
(∫

Sd−1

e−iv
′·ξbo(û · σ)dσ

)
dv∗dv .

For the average in the sphere, it follows that∫
Sd−1

e−iv
′·ξb(û · σ)dσ = e−i(v−

u
2 )·ξ

∫
Sd−1

e−i
|u||ξ|

2 ξ̂·σbo(û · σ)dσ

= e−i(v−
u
2 )·ξ

∫
Sd−1

e−i
|u||ξ|

2 û·σbo(ξ̂ · σ)dσ .

The last equality results after interchanging û ↔ ξ̂ which is allowed
since the integral on the sphere is a function of the inner product û · ξ̂
only (and the norms |u| and |ξ|). Thus,

F
{
Q+(f, g)

}
(ξ) =∫

Sd−1

(∫
R2d

f(v)g(v∗)|u|γe−i(
ξ+|ξ|σ

2 )·ve−i(
ξ−|ξ|σ

2 )·v∗dv∗dv
)
bo(ξ̂ · σ)dσ

=

∫
Sd−1

F
{
F
}( ξ+|ξ|σ

2 , ξ−|ξ|σ2

)
bo(ξ̂ · σ)dσ . (3.78)
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where F (v, v∗) := f(v)g(v∗)|u|γ . The use of the Fourier transform in
the Boltzmann equation was proposed in [17] for Maxwell molecules
and later refined to other potentials. Thus, using Cauchy-Schwarz’s
inequality∣∣F{Q+(f, g)

}
(ξ)
∣∣2 ≤ ‖bo‖22 ∫

Sd−1

∣∣∣F{F}( ξ+|ξ|σ2 , ξ−|ξ|σ2

)∣∣∣2dσ .

(3.79)
Now, compute∫

Sd−1

∣∣∣F{F}( ξ+|ξ|σ2 , ξ−|ξ|σ2

)∣∣∣2dσ

=

∫
Sd−1

∫ ∞
|ξ|
−∂r

∣∣∣F{f(v)g(v∗)|u|γ
}(

ξ+rσ
2 , ξ−rσ2

)∣∣∣2drdσ

=

∫
Sd−1

∫ ∞
|ξ|
F
{
F
}(
∇2F

{
F
}
−∇1F

{
F
})(

ξ+rσ
2 , ξ−rσ2

)
· σdrdσ

=

∫
{|η|≥|ξ|}

F
{
F
}
F
{
− i(v∗ − v)F

}(
ξ+η
2 , ξ−η2

)
· η̂ dη

|η|d−1
.

(3.80)

As a consequence from (3.79) and (3.80)

‖bo‖−22

∥∥Q+(f, g)
∥∥2
Ḣ
d−1
2

=

∫
Rd

∣∣∣F{Q+(f, g)
}

(ξ)|ξ|
d−1
2

∣∣∣2dξ

≤
∫
R2d

∣∣∣F{F}F{− i(v∗ − v)F
}(

ξ+η
2 , ξ−η2

)∣∣∣dηdξ

= 2d
∥∥F{F}F{(v∗ − v)F}

∥∥
L1(R2d)

≤ 2d
∥∥F{F}∥∥

L2(R2d)

∥∥F{(v∗ − v)F}‖L2(R2d) .

Fourier isometry give us

∥∥F{F}∥∥
L2(R2d)

= (2π)2d
∥∥F∥∥

L2(R2d)
≤ (2π)2d

∥∥f∥∥
2,γ
‖g
∥∥
2,γ

,∥∥F{(v∗ − v)F}
∥∥
L2(R2d)

= (2π)2d
∥∥(v∗ − v)F

∥∥
L2(R2d)

≤ (2π)2d
∥∥f∥∥

2,γ+1
‖g
∥∥
2,γ+1

.
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Now, the way one uses Proposition 3.4.8 to prove propagation
of Sobolev regularity is the following. Set the dimension d = 3 for
simplicity and consider an initial datum fo ∈ L1

k(γ) ∩ L
2
1+γ , with

k(γ) sufficiently large, belonging to H1(Rd). Then, differentiating
the Boltzmann equation by vi

∂tfi = ∂viQ
+(f, f)− fi

(
f ∗ | · |γ

)
− f

(
f ∗ ∂vi | · |γ

)
. (3.81)

Here of course fi := ∂vif . Recall the lower bound on the Q− given
in Lemma 3.4.3, and also note the simple estimate

f ∗ ∂vi | · |γ ≤ cγ
(
‖f‖2 +m(fo)

)
≤ C(fo) , γ ∈ (0, 1] .

The last inequality follows from Theorem 3.4.6 since fo ∈ L2(Rd).
As a consequence, multiplying equation (3.81) by fi and integrating
in velocity one concludes

1
2

d

dt
‖fi‖22 ≤ ‖∂viQ+(f, f) fi‖1 + C(fo)‖fi f‖1 − c(fo)‖fi‖22,γ/2 .

(3.82)
Using Proposition 3.4.8 it follows that (here d−1

2 = 1)

‖∂viQ+(f, f) fi‖1 ≤ ‖∂viQ+(f, f)‖2‖fi‖2
≤ Cd‖bo‖2‖f‖22,γ+1‖fi‖2 ≤ C(fo)‖fi‖2 .

(3.83)

In summary, gathering (3.82) and (3.83)

1
2

d

dt
‖fi‖22 ≤ C(fo)‖fi‖2 − c(fo)‖fi‖22,γ/2 . (3.84)

This a priori estimate readily implies that

sup
t≥0
‖f‖Ḣ1 ≤ C(fo) . (3.85)

The dependence of the constant is written in terms of the L1
k(γ)∩L

2
1+γ

norms and the H1-regularity of the initial data. Higher Sobolev regu-
larity is implemented with induction using the differentiation Leibniz
rule holding for the collision operator

∂νvQ(f, g) =

ν∑
η=0

(
ν
η

)
Q
(
∂ηvf, ∂

ν−η
v g

)
,
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where ν and η are multi-indexes. The details are left to the reader
or can be found in [63].

Theorem 3.4.9. Let γ ∈ (0, 1] and bo ∈ L2(Sd−1). Assume fo ∈
L1
2 ∩ Hk

k(1+γ). Then, the solution of the homogeneous Boltzmann
equation satisfies

sup
t≥0
‖f‖Hk ≤ Ck(fo) , k ∈ N.

3.5 Entropy dissipation method and time
asymptotic

The starting point of this section is an essential process in physics: the
Ornstein–Uhlenbeck process. Such process is describing the velocity
of a particle that experiences friction and Brownian forces (thermal-
ization)

dv(t) = −ν v(t)dt+ η dB(t) , v(0) = vo . (3.86)

Here the non negative parameters ν and η are the friction and ther-
malization coefficients respectively. The Brownian motion is added
to the equation to model the influence of a smaller scale physics
influencing the particle, such as, small molecules in continuous col-
lision with this macroscopic particle. As a consequence, the friction
term decreases the kinetic energy of the particle while the thermal-
ization increases it. The Ornstein–Uhlenbeck stochastic equation has
Kolmogorov forward equation (commonly known as Fokker–Planck
equation)

∂tf = ν∇v · (vf) +
η2

2
∆vf , f(0) = fo . (3.87)

Equation (3.87) does not conserves momentum or energy, due to colli-
sions with the micro-scale, only conserves mass. However, it is easy to
see that energy will remain uniformly bounded. Furthermore, given
the physics of the problem one expects a non trivial relaxation of this
process as time evolve. Let us prove this by introducing the relative
entropy (compare with 3.7)

H
(
f
∣∣M) =

∫
Rd
f(v) log

f(v)

M(v)
dv , M(v) =

e−
|v|2
2

(2π)
d
2

. (3.88)
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Thus, set ν = 1 and η =
√

2 for simplicity and multiply the Fokker–

Planck equation (3.87) by log
( f(v)
M(v)

)
, one finds2

d

dt
H
(
f
∣∣M) = −I

(
f
∣∣M) , (3.89)

where I is the relative Fisher information

I
(
f
∣∣M) :=

∫
Rd
f(v)

∣∣∣∇v log
f(v)

M(v)

∣∣∣2dv . (3.90)

Using the Stam–Gross logarithmic Sobolev inequality, see [69]

H
(
f
∣∣M) ≤ 1

2
I
(
f
∣∣M) , (3.91)

valid for any f ∈ L1(Rd) having unit mass since M is a normalized
Gaussian. Therefore, using (3.91) in (3.89) one gets

H
(
f
∣∣M) ≤ e−2tH(fo∣∣M) .

With this at hand it is possible to invoke Csiszár–Kullback–Pinsker
inequality

‖f −M‖1 ≤
√

2H
(
f
∣∣M) ,

to deduce that the distribution of the Ornstein–Uhlenbeck process
experiments an exponential relaxation in the L1-metric, provided the
initial datum fo has finite second moment (energy) and entropy, to-
wards a Gaussian distribution. We refer to [71] for an ample discus-
sion on the topic and references. Let us conclude this short discussion
by noticing that multiplying equation (3.87) by log(f), it is concluded
after integration by parts that

d

dt
H(f) = −I(f) + d = −I(f) + I(M) .

Here I is the Fisher information (given by (3.90) with M ≡ 1). Now,
integrate in the time interval [0,∞), use that f(t) → M in L1 and

2Simply observe that v = −
∇M(v)

M(v)
.
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the fact that f has second moment uniformly bounded, to conclude
that

H(fo)−H(M) =

∫ ∞
0

(
I(f(s))− I(M)

)
ds . (3.92)

Representation formula (3.92) will be important in the next subsec-
tion and it is valid for any function fo ∈ L1(Rd) with unitary mass
and finite energy.

3.5.1 Relaxation of the linear Boltzmann model

The Ornstein–Uhlenbeck process, as important as it is, does not
present big analytic challenges. In fact, the machinery just intro-
duced previously it is not needed to prove relaxation to a Gaussian
state. The reason is that one can easily compute the Green function
of the Fokker-Planck equation (3.87): Assume a initial particle dis-
tribution fo(v) = δo(v −w), then, the probability distribution of the
Ornstein–Uhlenbeck process evolves as

ht(v, w) =
e
− 1

2
|v−e−tw|2

1−e−2t(
2π(1− e−2t)

) d
2

.

Thus, the semigroup St of the Fokker-Planck equation has the explicit
form

Stf(v) =

∫
Rd
ht(v, w) f(w)dw = edt

(
Ht ∗ Ft

)
(v) ,

where Ht(v) :=
e
− 1

2
|v|2

1−e−2t(
2π(1− e−2t)

) d
2

, Ft(v) := f(et v) .

(3.93)

From here it is clear that Stf → M as t → ∞ at exponential
rate. This observation, however, does not mean that the Ornstein–
Uhlenbeck process is just a simple example to introduce advanced
tools, we will see next that it plays a central role in more compli-
cated processes having distributions evolving to Gaussians.

Let us try to apply the entropy relaxation method to the linear
Boltzmann model with Maxwell molecules interactions, that is, when
the collision operator has potential γ = 0. This problem is quite
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interesting because the Boltzmann model represents a jump process
in contrast with the Fokker–Planck equation. The linear Boltzmann
equation reads

∂tf = Qo(f,M) =: L(f) , f(0) = fo . (3.94)

The physics representing this equation is a cloud of particles collid-
ing with an homogeneous background (of particles) having a Gaus-
sian distribution. This model approximates a regime where the back-
ground particles are many in comparison with the particles distributed
with f . In such a case, particle–particle interaction is a secondary
phenomena compared to the particle–background interaction. Thus,
thermodynamics tells us that it should be the case that f → M as
time evolves. A first indication that this is in fact the case comes
from the equations for the momentum and energy of f

dv̄(f)

dt
= − 1−λ

2 v̄(f) , v̄(f)(t) :=

∫
Rd
f(t, v) v dv ,

dm2(f)

dt
= − 1−λ

2

(
m2(f)−m2(M)

)
,

(3.95)

where the parameter λ is given by

λ :=

∫
Sd−1

(û · σ) bo(û · σ)dσ ∈ (0, 1) . (3.96)

Equations (3.95) follows after multiplying (3.94) with v and |v|2 and
integrating in velocity. Thus, v̄(f) → v̄(M) and m2(t) → m2(M)
at exponential rate 1−λ

2 . We observe that closed equations for mo-
ments is a benefit only happening for Maxwellian interactions due to
homogeneity of the potential.

The problem of exponential converge of the equation (3.94) to-
wards the Gaussian background has been nicely treated in [16] for
Maxwell molecules and other potentials as well. We follow here their
presentation and argument only in the case of Maxwell molecules and
refer to [16] for a complete discussion to more general potentials and
links to logarithmic Sobolev inequalities. The idea is, as presented
previously, to control the relative entropy with the entropy dissipa-
tion which is the analogous of the Fisher information in the case of
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Boltzmann

d

dt
H
(
f(t)

∣∣M) =

∫
Rd
L(f(t))(v) log

f(t, v)

M(v)
dv = −D

(
f(t)

)
, (3.97)

where

D(f) := 1
2

∫
R2d

M(v)M(v∗)×(∫
Sd−1

Φ
( f(v)

M(v)
,
f(v′)

M(v′)

)
bo(û · σ)dσ

)
dv∗dv ,

(3.98)

and Φ(x, y) := (x− y) log(x/y) ≥ 0.

Theorem 3.5.1. The functional inequality

D(f) ≥ 1−λ
2 H

(
f
∣∣M)

holds for any probability distribution f ∈ L1(Rd). The constant λ is
given in (3.96).

There are several interesting steps in proving Theorem 3.5.1, each
of them important in their own right. The first step consists in the
following commutativity property: Let St be the semigroup generated
by the Fokker-Planck equation (3.93), then

Q+(Stf,Stg) = StQ+(f, g) , t ≥ 0 , (3.99)

valid for any f ∈ L1(Rd) with finite energy. This commutativity
property looks odd, as one would expect such property holding for
the generator of the Ornstein–Uhlenbeck process (the adjoint of St)
related to the Kolmogorov backward equation rather than for St (re-
lated to the Kolmogorov forward equation). Indeed, propagating
two particles backward in time using the Ornstein–Uhlenbeck process
and, then, perform a collision looks the same as collide the particles
and, then, propagate backwards in time. However, one recalls that
for elastic interactions the collision law is time symmetric, pre/pos
collision laws are interchangeable, which explains, at least intuitively,
identity (3.99). The proof of (3.99) goes by direct computation using
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Fourier transform in velocity. Indeed, recalling formula (3.78)

F
{
Q+
(
Ht ∗ Ft, Ht ∗Gt

)}
(ξ)

=

∫
Sd−1

F
{
Ht ∗ Ft

}
(ξ+)F

{
Ht ∗Gt

}
(ξ−) bo(ξ̂ · σ)dσ

=

∫
Sd−1

F
{
Ht}(ξ+)F

{
Ht}(ξ−)F

{
Ft
}

(ξ+)F
{
Gt
}

(ξ−) bo(ξ̂ · σ)dσ .

Here ξ± = 1
2 (ξ ± |ξ|σ). Now, Ht is a normalized Gaussian, so its

Fourier transform is a unitary Gaussian. In addition, note that |ξ|2 =
|ξ+|2 + |ξ−|2, therefore

F
{
Ht}(ξ+)F

{
Ht}(ξ−) = F

{
Ht}(ξ) .

As a consequence,

F
{
Q+
(
Ht ∗ Ft, Ht ∗Gt

)}
(ξ) = F

{
Ht}F

{
Q+
(
Ft, Gt

)}
(ξ) .

And thus,

Q+(Stf,Stg) = Ht ∗Q+
(
Ft, Gt

)
= edt

(
Ht ∗Q+

(
f, g
)
t

)
= StQ+

(
f, g
)
.

The second step is further proof of the importance of the Ornstein–
Uhlenbeck process, the complete proof can be found in [57].

Proposition 3.5.2. Let I be the Fisher information and Q+ be the
Boltzmann collision operator with Maxwellian interactions. Then,

I
(
Q+(f, g)

)
≤ 1+λ

2 I(f) + 1−λ
2 I(g) ,

valid for any sufficiently smooth probability densities f, g. The con-
stant λ is given in (3.96).

Corollary 3.5.3. Let Q+ be the Boltzmann collision operator with
Maxwellian interactions. Then,

H
(
Q+(f, g)

)
≤ 1+λ

2 H(f) + 1−λ
2 H(g)

for any probability densities f, g.
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Proof. Note that identity (3.92) can be written in terms of the Fokker-
Planck semigroup St

H(f)−H(M) =

∫ ∞
0

(
I(Stf)− I(M)

)
dt

for any probability density f ∈ L1(Rd) with finite energy. Thus,
taking f ≡ Q+(f, g) it follows that

H(Q+(f, g))−H(M) =

∫ ∞
0

(
I(StQ+(f, g))− I(M)

)
dt

=

∫ ∞
0

(
I(Q+(Stf,Stg))− I(M)

)
dt

≤ 1+λ
2

∫ ∞
0

(
I(Stf)− I(M)

)
dt+ 1−λ

2

∫ ∞
0

(
I(Stg)− I(M)

)
dt

= 1+λ
2 H(f) + 1−λ

2 H(g)−H(M) .

where we used the commutativity property (3.99) and Proposition
3.5.2.

Corollary 3.5.4. Let L be the linear Boltzmann collision operator
with Maxwellian interactions. Then,

H
(
L+(f)

∣∣M) ≤ 1+λ
2 H

(
f
∣∣M)

for any probability density f . Here, of course, L(f) =: L+(f)− f .

Proof. Let us use Corollary 3.5.3 with g ≡M to estimate

H
(
L+(f)

∣∣M) = H
(
L+(f)

)
−
∫
Rd
L+f logMdv

≤ 1+λ
2 H

(
f
)

+ 1−λ
2 H

(
M
)
−
∫
Rd
L+f logMdv

= 1+λ
2 H

(
f
∣∣M)+ 1−λ

2

∫
Rd

(
M − f

)
logMdv −

∫
Rd
L(f) logMdv

= 1+λ
2 H

(
f
∣∣M) .

We used conservation of mass and the equation for the energy given
in (3.95) to conclude that the last two terms cancel out.
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Proof of Theorem 3.5.1

Estimate the dissipation of entropy as follows

D(f) = −
∫
Rd
L(f) log

f

M
dv

= H
(
f
∣∣M)−H

(
L+(f)

∣∣M)+H
(
L+(f)

∣∣f)
≥ H

(
f
∣∣M)−H

(
L+(f)

∣∣M) ≥ 1−λ
2 H

(
f
∣∣M) .

In the first inequality we used thatH
(
L+(f)

∣∣f) ≥ 0 because the mass
of f and L+f are both one. The second inequality follows from Corol-
lary 3.5.4. �

As a consequence of Theorem 3.5.1, the solution of (3.94) satisfies
the exponential relaxation

H
(
f
∣∣M) ≤ H(fo∣∣M)e− 1−λ

2 t ,

which seems to be the sharp rate of relaxation (by comparing with the
relaxation rate of the momentum and energy). Furthermore, Csiszár–
Kullback–Pinsker inequality implies the relaxation in the L1-metric

‖f −M‖1 ≤
√

2H
(
f
∣∣M) ≤√2H

(
fo
∣∣M)e− 1−λ

4 t .

Let us finishing this discussion by mentioning that the nonlinear
Boltzmann equation relaxation has already been studied with en-
tropy methods, we refer to [67, 71] and their related references, by
solving the so-called Cercignani’s conjecture. Needless to say, in the
nonlinear cases an entropy functional becomes more valuable since
it is unique to the process in question as opposed to the linear case
where there may be plenty of entropy functionals. Interestingly, the
program presented here for the linear case follows essentially the same
steps of the program given in [67] for the nonlinear case (up to math-
ematical technicalities).
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3.6 More on the Cauchy theory for Boltz-
mann

There is a vast literature for the Cauchy problem treating kinetic
equations. In particular, the theory of existence and uniqueness of
solutions for the Boltzmann equation in a Gaussian–perturbative
regime has been pursued quite successfully by an number of au-
thors. The methods include linearization of the collision operator
and the development of a mathematical machinery used to control
the non linear dynamic of the model using the linear dynamics.
These ideas are far reaching and have many applications, we refer
to [32, 33, 44, 45, 46] for an initiation on this theory.
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Chapter 4

Dissipative Boltzmann
equation

4.1 Cucker-Smale model and self organi-
zation

We start this discussion on dissipative systems with an example that
we discussed at the beginning of this note (Section 1), the Cucker-
Smale (CS) model. We recall that the CS model represents a system
of N particles interacting by an average law of friction through a
friction potential

dxi
dt

= vi ,
dvi
dt

=
1

N

∑
j 6=i

Uf
(
|xj − xi|

)
(vj − vi) , (4.1)

where (xi, vi) represents the position and velocity of the i-particle.
In the applied literature, the CS model has been used to explain
“flocking” of birds, school of fish, swarming of bacteria and other
biological organisms. The word flocking represents a phenomenon
in which self-propelled individuals organize into an ordered motion.
In the following lines we present a simple analysis on the particle
system (4.1) and its kinetic equation to represent, up to some extent,
mathematically this phenomenon. The main assumption simply read:

69
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Uf is Lipschitz continuous, decreasing and such that

c

(1 + |x|2)β
≤ Uf (|x|) ≤ C , β ≥ 0 . (4.2)

The position and velocity of the center of mass of the particles is
given by

xc(t) :=
1

N

N∑
i=1

xi(t) , vc(t) :=
1

N

N∑
i=1

vi(t) . (4.3)

Summing over all velocities in the equation for the velocity in (4.1)
and using the symmetry of the interaction it follows that

vc(t) = vc(0) , xc(t) = xc(0) + t vc(0) . (4.4)

That is, the system conserves momentum, and hence, the trajectory
of the center of mass is just a straight line. Define the fluctuations
of the particles around the center of mass as x̃i(t) := xi(t) − xc(t)
and ṽi(t) := vi(t) − vc(t) and introduce the variance, or fluctuation,
functions

X(t) :=

N∑
i=1

|x̃i(t)|2 , V (t) :=

N∑
i=1

|ṽi(t)|2 . (4.5)

Then, we can show the formation of a flock by showing that V (t)
decays towards zero and X(t) remains uniformly bounded. In other
words, in the long run particles will travel in one group and sharing
the same velocity. Moreover, if the decay on V (t) is sufficiently fast,
this behavior will be stable under external perturbations, refer to [49]
for ample discussion. First, let us investigate the spatial fluctuation
with the following computation

dX

dt
=

2

N

N∑
i=1

(
xi − xc

)
·
(dxi
dt
− dxc

dt

)
=

2

N

N∑
i=1

(
xi − xc

)
·
(
vi − vc

)
≤ 2
√
X
√
V ,

(4.6)
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where the last estimate follows from Cauchy-Schwarz inequality. Sec-
ond, let us estimate the velocity fluctuation in the following way

dV

dt
= − 1

N2

∑
1≤i,j≤N

Uf (|xj − xi|)|vj − vi|2

≤ −
Uf
(
2
√
X
)

N2

∑
1≤i,j≤N

|vj − vi|2

= −2Uf
(
2
√
X
)( 1

N

N∑
i=1

|vi|2 − v2c
)

= −2Uf
(
2
√
X
)
V ≤ 0 .

(4.7)

For the inequality we have used that Uf (|xj − xi|) ≥ Uf
(
2
√
X
)
, for

any i, j, since Uf (·) is decreasing. Thus, thanks to (4.7) and (4.6) it
follows that

V (t) ≤ Vo ,
√
X(t) ≤

√
Xo +

√
Vo t . (4.8)

Theorem 4.1.1. (Flock formation) Let (xi, vi) be solutions to the CS
model (4.1) with Uf satisfying (4.2). Then, the fluctuation functions
satisfy √

X(t) ≤
√
Xo + C , V (t) ≤ Vo e−c1t , β ∈ [0, 12 ] .

The constants C and c1 are positive, finite and explicit in terms of the
initial fluctuation (Xo, Vo), the model parameter β and the constant
c defining the lower bound for Uf .

Proof. Integrating inequality (4.7) gives

V (t) ≤ Vo e−2
∫ t
0
Uf

(
2
√
X(s)

)
ds . (4.9)

Assume first that β ∈ [0, 1/2). Thus, using estimate (4.8) on the
spatial fluctuation and assumption (4.1), it is not very difficult to
estimate the time integral

2

∫ t

0

Uf
(
2
√
X(s)

)
ds ≥ c

(1− 2β)V βo
t1−2β .
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Plugging this estimate in (4.9), one upgrades the estimate on the
velocity fluctuation to

V (t) ≤ Vo e
− c

(1−2β)V
β
o

t1−2β

,

and bootstrapping into estimate (4.6) gives us√
X(t) ≤

√
Xo +

∫ t

0

√
V (s) ds ≤

√
Xo + C(Vo, β, c) .

This in turn implies that 2Uf (2
√
X(t)) ≥ c1 := c1(Xo, Vo, β, c) > 0

which together with (4.9) gives

V (t) ≤ Vo e−c1t .

The case β =
1

2
follows the same lines: First, using (4.9) we upgrade

the estimate on the velocity fluctuation to

V (t) ≤ Vo
(
1 + 2

√
Vo

1+2
√
Xo
t
)− c

2
√
Vo .

Second, we use (4.6) and (4.9) successively to improve the estimate
on fluctutions√

X(t) ≤
√
Xo + C t

1− c
4
√
Vo −→ V (t) ≤ Vo exp

(
− c t

c
4
√
Vo

)
−→

√
X(t) ≤

√
Xo + C −→ V (t) ≤ Voe−c1t .

This completes the proof for any β ∈ [0, 12 ].

Now that we have shown that the CS model exhibit flocking dy-
namics, it would be interesting to look at the mean field limit search-
ing for similar behavior. Recall that such limit is given by the equa-
tions (2.5–2.6). Here, we write it in non conservative form as

∂tf+v · ∇xf + L(f) · ∇vf = −f ∇ · L(f) ,

L(f)(t, x, v) : =

∫
R2d

Uf
(
|x∗ − x|

)(
v∗ − v

)
f(t, x∗, v∗)dx∗dv∗ .

(4.10)

The characteristics or trajectories (x(t), v(t)) for equation (4.10) are
defined by the ODE system

dx(t)

dt
= v(t) ,

dv(t)

dt
= L(f)(t, x(t), v(t)) , (4.11)
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and complemented with initial conditions (xo, vo). The characteris-
tics have the natural interpretation of being the pair position-velocity
of a particle at time t provided it started from position xo and veloc-
ity vo. Such particle evolves through the mean field force L(f) which
is given by the superposition of the interactions with every other par-
ticle. The characteristics (4.11) are well defined provided we have a
sufficiently smooth solution f , say Lipschitz continuous. We refer to
[49] for a well-posedness theory of equation (4.10) in C1 in time, space
and velocity. Observe that we can estimate the velocity of a particle
in the mean field limit similarly as we estimated velocity in the dis-
crete model. Indeed, multiplying the velocity characteristic equation
by v(t) we obtain

1
2

d|v(t)|2

dt
= v(t) · L(f)(t, x(t), v(t))

=

∫
R2d

Uf
(
|x∗ − x(t)|

)(
v(t) · v∗ − |v(t)|2

)
f(t, x∗, v∗)dx∗dv∗

≤ 1
2

∫
R2d

Uf
(
|x∗ − x(t)|

)(
|v∗|2 − |v(t)|2

)
f(t, x∗, v∗)dx∗dv∗ .

Observe something quite interesting here: If the distribution of par-
ticles f at some time t > 0 is compactly supported in velocity (uni-
formly in space), we can define a finite maximum speed as

vmax(t) := sup
x∈Rd
{|v| : f(t, x, v) > 0} .

Then, any particle velocity v(t) such that |v(t)| ≥ vmax(t) will satisfy

d|v(t)|2

dt
≤ 0 ,

because in the support of f , at time t, one has that |v∗|2−|v(t)|2 ≤ 0.
In other words, at every time t, the ball with radii vmax(t), denoted as
Bv
(
vmax(t)

)
, is an attractive set for the velocity trajectories v(t). As

a consequence, if the initial configuration fo is such that vmax(0) <
∞, then, at any further time vmax(t) ≤ vmax(0) < ∞. Indeed,
the initial particle velocity vo belongs to the support of fo, that is,
it belongs to the stable set Bv

(
vmax(0)

)
, henceforth, the particle

velocity v(t) will remain in such set at all times t > 0. The rigorous
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proof of this fact is left as exercise. This reasoning leads us to the
estimate for the velocity trajectories

|v(t)| ≤ vmax(0) , t ≥ 0 . (4.12)

The estimate on the spatial trajectories follows from (4.11)

1

2

d|x(t)|2

dt
= x(t) · v(t) ≤ |x(t)||v(t)| ,

thus,

|x(t)| ≤ |xo|+ vmax(0) t , t ≥ 0 . (4.13)

Estimates (4.12–4.13) lead us to conclude that if fo is compactly
supported in both space and velocity, the velocity support remains
bounded and the spatial support grows linearly with time

sup
v∈Rd

diameter
{

spatial support of f(t, v, x)
}
≤ Do + 2 vmax(0) t ,

(4.14)
where Do is the supremum (in velocity) of the initial spatial support
diameters. Let us proceed now presenting proof for flocking dynamics
in the mean field model by introducing the fluctuations

X(f)(t) :=

∫
R2d

|x− xc(t)|2f(t, x, v)dvdx ,

xc(t) :=

∫
R2d

x f(t, x, v) dvdx .

V (f)(t) :=

∫
R2d

|v − vc(t)|2f(t, x, v)dvdx ,

vc(t) :=

∫
R2d

v f(t, x, v) dvdx .

(4.15)

Here, (xc(t), vc(t)) are the position and velocity of the center of mass.
Using the equation (4.10), it is clear that vc(t) = vc(0) and xc(t) =
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xc(0) + vc(0) t. Furthermore,

dV (f)

dt
=

∫
R2d

|v − vc|2∂tf dvdx

= −
∫
R2d

|v − vc|2v · ∇xf dvdx−
∫
R2d

|v − vc|2∇v ·
(
fL(f)

)
dvdx

= −
∫
R4d

Uf
(
|x∗ − x|

)
|v∗ − v|2f∗ f dv∗dx∗dvdx .

(4.16)

For the last identity, we have used the divergence theorem and the
symmetry of the expressions. Thus, in light of (4.14) and (4.16) one
concludes that

dV (f)

dt
≤ −2Uf

(
Do + 2 vmax(0) t

)
V (f)(t)

≤ − 2c

(1 +Do + vmax(0) t)2β
V (f)(t) .

(4.17)

In this inequality we have assumed implicitly that the particle distri-
bution f has unitary mass, thus

2V (f)(t) =

∫
R4d

|v∗ − v|2f∗ f dv∗dx∗dvdx .

Theorem 4.1.2. Let f be a classical solution of the kinetic model
(4.10) with compactly supported initial datum fo ∈ C1 having unitary
mass. Then, the spatial fluctuation satisfies√

X(f)(t) ≤
√
X(fo) + C , β ∈ [0, 12 ) ,

and the velocity fluctuation satisfies

V (f)(t) ≤ V (fo)×
{
C e−c1t

1−2β

if β ∈ [0, 12 )

(1 + t)−c2 if β = 1
2 .

The constants C, c1 and c2 are positive, finite and depending only on
the support of the initial configuration fo, the parameter β and the
constant c defining a lower bound for Uf in (4.2).
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Proof. The estimate for the velocity fluctuation follows after direct
integration of the differential inequality (4.17). The estimate for the
spatial fluctuation is concluded first noticing the identity

dX(f)

dt
= −

∫
R2d

∇x · (vf)|x− xc|2 dvdx

= 2

∫
R2d

f(v − vc) · (x− xc) dvdx .

Therefore, using Cauchy–Schwarz inequality

d
√
X(f)

dt
≤
√
V (f) −→

√
X(f)(t) ≤

√
X(fo) +

∫ t

0

√
V (f)(s)ds .

The result follows using the estimate for the velocity fluctuation.

4.2 Modeling a granular material using
Boltzmann equation

We have introduced and studied the Boltzmann model in previous
sections. Recall, that such model is used to describe a large number
of particles interacting elastically. That is, the total energy of a pair
of interacting particles is unchanged in the interaction process. A
typical situation where this is not the case is when particles deform
in the process of interaction. Such deformation transforms kinetic
energy in other type of energy such as heat. This is the typical case
in granular materials where particles interact by physical contact.
The key parameter introduced by physicist to model this issue is the
restitution coefficient, defined as the proportion of relative impact
velocity lost in a collision. The formula is

e := −u
′ · ω
u · ω

, with e ∈ [0, 1] . (4.18)

General speaking, the restitution coefficient may have a complicate
dependence on the state of the system and on the microscopic vari-
ables, in particular, it may depend on the temperature of the system
and on the relative velocity of particles. The so-called viscoelastic



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 77 — #77 i
i

i
i

i
i

[SEC. 4.2: MODELING A GRANULAR MATERIAL USING BOLTZMANN EQUATION 77

particles model is a simplification of this fact. Here, the restitution
coefficient depends inversely of the impact velocity e = e(u · ω), see
[28]. This particular dependence is intuitive, since the deformation
will be greater for higher impact velocity. In the following discus-
sion we mostly assume, for simplicity, that the restitution coefficient
is constant [61, 62] and give a short and intuitive discussion for the
more interesting viscoelastic case, [10, 9]. One can deduce from (4.18)
and momentum conservation that the collision laws are given by the
formulas

v′ = v − 1 + e

2

(
u · ω

)
ω

v′∗ = v∗ +
1 + e

2

(
u · ω

)
ω .

(4.19)

In particular, the rate of kinetic energy dissipation is

|v′|2 + |v′∗|2 − |v|2 − |v′|2 = −1− e2

4

(
u · ω

)2 ≤ 0 . (4.20)

Note then, that e = 1 reduces to the elastic Boltzmann equation
and e = 0 corresponds to sticky particles, that is, after collision
particles travel together. Contrary to the elastic case, the collision
law (4.19) does not have unitary Jacobian. In fact, after elementary
calculations, one can prove that

dv∗dv = edv′∗dv
′ . (4.21)

Formula (4.21) is valid only for a constant restitutions coefficient,
we refer to [4] for a more general situation that includes viscoelastic
particles. Thus, the collision operator writes

Qin(f, g) =

∫
R3

∫
S2

(f(′v)g(′v∗)

e2
− f(v)g(v∗)

)
|u · ω|dωdv∗ . (4.22)

We have chosen to work in the notes with the relevant case of hard
spheres interactions (recall that in granular material interactions hap-
pen through physical contact of the particles) in 3-D. Also, the form
(4.22) has to be the correct one by conservation of mass and momen-



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 78 — #78 i
i

i
i

i
i

78 [CHAP. 4: DISSIPATIVE BOLTZMANN EQUATION

tum. Indeed, the weak formulation follows readily as∫
R3

Qin(f, g)(v)ψ(v)dv =

1
2

∫
R3

f(v)g(v∗)

(∫
S2
|u · ω|

(
ϕ(v′) + ϕ(v′∗)− ϕ(v)− ϕ(v∗)

)
dω

)
dv∗dv .

(4.23)

Although, the form of the weak formulations for the elastic and in-
elastic interactions looks the same, they are not due to the collision
laws defining the processes. In particular taking ϕ ≡ 1, ϕ(v) = v
and ϕ(v) = |v|2 successively in (4.23) and using (4.20), one obtains
conservation of mass and momentum and dissipation of energy∫

R3

Qin(f, g)(v)dv =

∫
R3

Qin(f, g)(v) v dv = 0 ,∫
R3

Qin(f, g)(v)|v|2dv = −co
1− e2

8

∫
R3

f(v)g(v∗)|u|3dv∗dv ,

(4.24)

with co :=

∫
S2
|e1 · ω|3dω > 0. A central observation is made when

one tries to find a dissipation of entropy for Qin by choosing ϕ(v) =
log
(
f(v)

)
,∫

R3

Qin(f, f)(v) log
(
f(v)

)
dv = −Din(f)

+ c1
1− e2

e2

∫
R3

f(v)f(v∗)|u|dv∗dv ,
(4.25)

where c1 :=

∫
S2
|e1 · ω|dω > 0 and

Din(f) :=

∫
R3

f(v)g(v∗)

(∫
S2
|u · ω|Ψ

(f(v′)f(v′∗)

f(v)f(v∗)

)
dω

)
dv∗dv ,

(4.26)
with Ψ(x) = x− log(x)− 1 ≥ 0. In other words, as long as the resti-
tution coefficient e ∈ [0, 1), the dissipation of entropy does not have
a sign and therefore the Boltzmann equation for granular materials

∂tf + v · ∇xf = Qin(f, f) , (t, x, v) ∈ R+ × R6 , (4.27)
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does not have a priori bounded entropy. This is a major set back for
the Cauchy problem as we recall that DiPerna & Lions theory was
based on the compactness brought by the entropy estimate. More-
over, near equilibria theories which rely heavily in linearization are
difficult to apply as Gaussian distributions are not stationary solu-
tions of equation (4.27). There are at least two instances in which
problem (4.27) can be solved globally, one is in the so-called weakly
inelastic regime, see [68], which reduces to assume e ≈ 1. This regime
is quite important as many important systems fall in this category,
in addition, the validity of model (4.27) should hold precisely in this
regime. Thus, the weakly inelastic regime is a perturbation of the
elastic Boltzmann model and many of the machinery created for it
can be applied. A second example is the near vacuum case, see [4].
Interestingly, the near vacuum case can be solved by the classical it-
eration of Kaniel & Shinbrot for general restitution coefficients using
a Gaussian upper barrier. The reader can easily verify that all steps
given in section 3.1 are valid for the inelastic model (4.27), in particu-
lar, the important Lemma 3.1.2. Apart from this, the in-homogenous
granular Boltzmann equation continues being a big mystery, refer to
[72] for additional comments and references.

In the sequel, we consider only the homogenous granular Boltz-
mann model, that is, the spatial dependence will be neglected in the
model. In contrast to elastic systems, inelastic systems can develop
strong spatial inhomogeneity even departing from homogenous con-
figurations. Still, the homogeneous problem is quite relevant from
both physical and mathematical point of view. It is an accurate
approximation of weakly inelastic systems and thermalized systems
presenting diffusive effects. Furthermore, for a vico-elastic system,
numerical simulations and theoretical results [28, 10] show that the
system tends to homogenize as it cools down. As a consequence, the
homogeneous equation is a valid model in the long time asymptotic.
Rigorous results for the homogeneous granular Boltzmann equation
can be found for instance in [19, 20, 22, 39, 61, 62, 59, 8, 9, 10].
In these references the reader will find a mathematical analysis of
phenomena happening exclusively of dissipative Boltzmann such as
overpopulated tails and optimal cooling rate as well as the use of
contracting distances and entropy in the inelastic context.
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4.3 Rescaled problem and self-similar pro-
file

Let us start by fixing an initial datum fo having unitary mass, zero
momentum and finite energy. Since mass and momentum are con-
served for granular Boltzmann, it follows that for all t ≥ 0∫

R3

f(t, v)dv = 1 ,

∫
R3

f(t, v) v dv = 0 .

As a consequence of Jensen’s inequality

∫
R3

f(t, v∗)|u|3dv∗ ≥ |v|3.

Plugging this estimate into the dissipation of energy given in (4.24)
it follows that

d

dt
m2(f) ≤ −co

1− e2

8
m2(f)

3
2 =: −c̃om2(f)

3
2 .

Simple integration leads to

m2(f)(t) ≤ 4m2(fo)(
2 + c̃o

√
m(fo) t

)2 , t ≥ 0 . (4.28)

This proves that f(t)→ δo as time increases. Note, that such cooling
effect is at odds with the in-homogenous granular Boltzmann model
for near vacuum where Kaniel & Shinbrot iteration shows that the
solution remains controlled by a Gaussian (in space and velocity!).
Now, we want to understand better this cooling down process. For
this matter, it is introduced a closely related problem where the sta-
tionary state is not a singular measure but rather a regular function.
The key idea is to stop the continuous loss of energy of the dissipa-
tive problem using scaling: the scaling method can be interpreted
as a “zooming in” process in the velocity variable at a very precise
rate, so that, the rescaled function has a stationary state which is a
function (no concentration of mass at zero velocity). Indeed, define
the function g with the scaling formula

f(t, v) =: (1 + t)3 g
(

ln(1 + t), (1 + t)v
)
, (4.29)

then, it is not difficult to prove that g(s, ξ) solves

∂sg +∇ξ · (ξ g) = Qin(g, g) , (s, ξ) ∈ R+ × R3 , (4.30)
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where s = ln(1 + t) and ξ = (1 + t)v. Note that effectively the
variable ξ is a “zoom in” version of the physical variable v. Trivially,
the scaled function g has unitary mass and zero momentum for all
time s ≥ 0. In fact, the energy of g is simply estimated by the
differential inequality

d

ds
m2(g) ≤ −co

1− e2

8
m2(g)

3
2 + 2m2(g) .

Thus,

sup
s≥0

m2(g)(s) ≤ max
{
m2(fo),

( 16

co(1− e2)

)2}
. (4.31)

Given that the second moment of the rescaled problem remains finite,
the machinery developed for the elastic Boltzmann equation can be
proven to work also for the inelastic interaction operator Qin, see
[62].

Theorem 4.3.1. Let g be a solution to the rescaled problem (4.30)
with nonnegative initial datum fo having unitary mass, zero momen-
tum and finite energy. Then,

sup
s≥0

mk(g)(s) ≤ max
{
mk(fo), Ck

}
, k ≥ 2 ,

where the constant Ck depends only on the mass and energy of fo and
e. Moreover, if in addition fo ∈ Lp(R3) it follows that

sup
s≥0
‖g(s)‖p ≤ max

{
‖fo‖p, C̃p

}
, p ≥ 1 ,

where Cp depends only on the mass and energy of fo and e.

Proof. With the exception of one, all the results given for Q(f, f) in
section 3.3 and 3.4 can be easily extended to Qin(f, f) in the case e
constant. For more general restitution coefficient is technically more
challenging, see [8]. The exception is the lower bound of Lemma 3.4.3
which is based on propagation of energy. There is not conservation
of energy for g, thus, the best we can say at the moment is (using
Jensen’s inequality) (

g ∗ | · |
)
(ξ) ≥ |ξ| .
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At this point is where the term ∇ξ · (ξ g) comes to the rescue. Recall
that this term is present due to the scaling. Thus, after integration
by parts, it follows for any p ≥ 1∫

R3

∇ξ · (ξ g)gp−1dξ =
3

p′
‖g‖pp , (4.32)

which translates in the estimate∫
R3

(
Q−
(
g, g
)

+∇ · (ξ g)
)
gp−1dξ ≥ cp‖g‖pp,1/p .

This observation leads to the propagation of the Lp-norm for g but
not for f . Indeed, the physical solution f cannot propagate uniformly
the Lp-norm for p > 1 since it is converging to δo as time increases.

The uniform propagation of the Lp-norm for g obtained in The-
orem 4.3.1 readily implies that g cannot converge (if converges) to a
singular measure. In particular, it cannot converge to δo. Further-
more, it also implies that

inf
s≥0

m2(g)(s) ≥ c ,

for some constant c > 0, depending only on sup
s≥0
‖g(s)‖p, which to-

gether with estimate (4.31) give us

c ≤ m2(g)(s) ≤ C .

This translates into the optimal rate of cooling for the physical solu-
tion f . This rate is known as Haff’s law

c

(1 + t)2
≤ m2(f)(t) ≤ C

(1 + t)2
.

This discussion lead us to believe that g must be converging, in some
sense, to a L1-solution of the stationary problem

∇ξ · (ξ G) = Qin(G,G) , ξ ∈ R3 . (4.33)
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Such a stationary solution is called self-similar profile because the
fact that g ≈ G for large time, translates into

f(t, v) ≈ (1 + t)3G
(
(1 + t)v

)
in the physical solution, that is, there exists a profile G attracting f .
Unfortunately, it is quite hard to prove the convergence of the rescale
function g to the self-similar profile G even without explicit rate of
convergence. Furthermore, uniqueness of solutions of equation (4.33)
is not always guarantee. There are some instances where this can be
done relatively easy such as in the example that we discuss in the
next section, see also [10].

4.4 1-D inelastic Boltzmann

A good introductory example that helps understanding the tools
used in the analysis of converge of dissipative systems is dissipative
Maxwell particles interacting in the real line. In such a case, the
interaction law (4.19) reduces to

v′ =
1− e

2
v +

1 + e

2
v∗ , v′∗ =

1 + e

2
v +

1− e
2

v∗ , (4.34)

and thus, the Boltzmann model reduces to

∂tf(v) = Qin(f, f)(v)

=

∫
R

(
f(′v)f(′v∗)− f(v)f(v∗)

)
dv∗ , v ∈ R .

(4.35)

The weak formulation follows directly from here as

d

dt

∫
R
f(v)ϕ(v)dv =

1
2

∫
R2

f(v)f(v∗)
(
ϕ(v′) + ϕ(v′∗)− ϕ(v)− ϕ(v∗)

)
dv∗dv ,

(4.36)

valid for any suitable ϕ. The weak formulation shows that two con-
servation laws hold: conservation of mass mo(f)(t) = mo(fo) and
conservation of momentum

m(f)(t) :=

∫
R
f(t, v)vdv = m(fo) , t ≥ 0 .
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It also shows the explicit dynamics of the global energy of the particles

m2(f)(t) =

∫
R
f(t, v)|v|2dv = m2(fo)e

− 1−e2
2 t . (4.37)

Thus, rescaling the velocity variable as

g(t, ξ) :=
√
m2(f)(t) f

(
t,
√
m2(f)(t) ξ

)
, (4.38)

one obtains the rescaled equation as

∂tg(ξ) +
1− e2

4
∂ξ
(
ξ g
)
(ξ) = Qin(g, g)(ξ) . (4.39)

Note that the rescaling (4.38) is exactly the one used in (4.29). It
is given now in terms of the dissipation rate of the energy. This is
quite intuitive as the “zooming in” process should be related with
the exact rate of the dissipation of energy occurring in the system.
Furthermore, scaling (4.38) is unique in the sense that give us conser-
vation of energy for g(t, v), that is, equation (4.39) conserves energy
in addition to mass and momentum. Thus, philosophically speak-
ing one uses rescaling to gain a conservation law in the dynamics.
Observe, however, that such rescaling is well defined if the dynam-
ics of the global energy m2(f) is known a priori. More complicated
models such as hard spheres do not render such explicit forms. This
issue complicate matters in non Maxwellian interactions. Now, tak-
ing advantage that we are in the Maxwell case, it is possible to apply
Fourier transform in the scaled velocity variable ξ in equation (4.39)
and obtain, using the shorthand ĝ := F{g}, that

∂tĝ(k)− 1− e2

4
k ∂kĝ(k) = ĝ

(
1−e
2 k
)
ĝ
(
1+e
2 k
)
− ĝ(k)ĝ(0) . (4.40)

Thus, in the Maxwell case it is possible to find a close form for the
equation solved by the Fourier transform of the physical solution and,
in addition, such equation is simpler than the original. The associated
steady state problem to (4.40) is given by

−1− e2

4
k ∂kĝ∞(k) = ĝ∞

(
1−e
2 k
)
ĝ∞
(
1+e
2 k
)
− ĝ∞(k)ĝ∞(0) . (4.41)
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Interestingly, this problem has explicit solution that can be found by
Taylor expansion, we refer to [20] for details. Indeed, normalizing g∞
to have unitary mass and zero momentum it follows that

ĝ∞(k) =
(
1 + |k|

)
e−|k| ←→ g∞(ξ) =

2/π

(1 + ξ2)2
. (4.42)

Thus, the problem of existence of stationary solutions is a relatively
simple matter for 1-D homogenous Maxwell particles. Let us address
now the convergence of the time dependent problem towards the sta-
tionary problem by following the discussion given in [31]. One of the
main tools helping us here will be a Fourier-based metric ds defined
on suitable subspaces of L1(R)

ds(f, g) := sup
k∈R

∣∣f̂(k)− ĝ(k)
∣∣

|k|s
, s ≥ 0 . (4.43)

That the Fourier-based metric is well defined depends on the modulus
of continuity at the origin of the Fourier transform of a given function.
This is closely related to the moments such function has.

Definition 4.4.1. Fix N ∈ N. We say that two functions f, g ∈
L1
N (R) have equal moments up to N if∫

R

(
f(ξ)− g(ξ)

)
ξndξ = 0 , 0 ≤ n ≤ N .

Proposition 4.4.2. [31, Proposition 2.6] Consider two functions
f, g ∈ L1

s(R) with s > 0 and equal moments up to N where

N =

{
s− 1 if s ∈ N ,

[s] otherwise .

Then, ds(f, g) <∞.

Proposition 4.4.3. Given functions fn, gn ∈ L1
s(R), with n = 1, 2

and s > 0, having equal moments up to N (as defined in Proposition
4.4.2). Then, ds enjoys the following properties:
(1) Scaling

ds
(
αf1(α ·), αg1(α ·)

)
= α−sds(f1, g1) , α > 0 . (4.44)
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(2) Convexity

ds
(
αf1 + (1− α)f2, αg1 + (1− α)g2

)
≤ αds(f1, g1) + (1− α)ds(f2, g2) , α ∈ [0, 1] . (4.45)

(3) Super additivity with respect to convolution

ds
(
f1 ∗ f2, g1 ∗ g2

)
≤ ‖f2‖1 ds(f1, g1) + ‖g1‖1 ds(f2, g2) . (4.46)

Proof. This is an easy exercise. For example for item (3)∣∣F{f1 ∗ f2} − F{g1 ∗ g2}∣∣
|k|s

=

∣∣f̂1f̂2 − ĝ1ĝ2∣∣
|k|s

≤
∣∣(f̂1 − ĝ1)f̂2

∣∣
|k|s

+

∣∣ĝ1(f̂2 − ĝ2)
∣∣

|k|s
.

The result follows since ‖f̂‖∞ ≤ ‖f‖1.

Let us use the Fourier-based metric to prove stability of the 1-
D inelastic Boltzmann with Maxwell interactions by assuming that
for any T < ∞ there exist solutions f1 and f2 in C

(
[0, T );L1(R)

)
of

(4.35) associated to nonnegative initial data f1o and f2o respectively.
The initial data is assumed with unitary mass and zero momentum
for simplicity. Then, Fourier transform implies that

∂tf̂n(k) = f̂n
(
1−e
2 k
)
f̂n
(
1+e
2 k
)
− f̂n(k) , n = 1, 2 .

Subtracting these equations and integrating in time

f̂1(k)− f̂2(k) =
(
f̂1o (k)− f̂2o (k)

)
e−t

+

∫ t

0

e−(t−t
′)F (f̂1, f̂2)(t′, k)dt′ ,

(4.47)

where

F (f̂1, f̂2)(t, k) : = f̂1
(
1−e
2 k
)
f̂1
(
1+e
2 k
)
− f̂2

(
1−e
2 k
)
f̂2
(
1+e
2 k
)

=
(
f̂1
(
1−e
2 k
)
− f̂2

(
1−e
2 k
))
f̂1
(
1+e
2 k
)

+ f̂2
(
1−e
2 k
)(
f̂1
(
1+e
2 k
)
− f̂2

(
1+e
2 k
))
.
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Therefore, for any s > 0∣∣∣∣F (f̂1, f̂2)(t, k)

|k|s

∣∣∣∣ ≤ (( 1−e2 )s +
(
1+e
2

)s)
ds(f1, f2) =: κe,s ds(f1, f2) ,

where we used conservation of mass to estimate ‖f̂n‖∞ ≤ ‖fo‖1 = 1
for n = 1, 2. As a consequence, estimate (4.47) implies that

ds(f1, f2)(t) ≤ ds(f1o , f2o )e−t + κe,s

∫ t

0

e−(t−t
′)ds(f1, f2)(t′)dt′ .

Hence, Gronwall’s lemma readily gives that

ds(f1, f2)(t) ≤ ds(f1o , f2o )e−(1−ke,s)t . (4.48)

Thus, the dynamics of the inelastic Boltzmann for Maxwell inter-
actions is contractive in any Fourier based norm with s > 1 since
clearly κe,s < 1 for any e ∈ [0, 1). Such restriction in s is natu-
ral since solutions f1 and f2 at least should share same mass and
momentum, that is, the conserved quantities. Observe that (4.48)
can be proved by working directly in the velocity space. This is the
case because the collision operator can be written as a convolution of
rescaled functions

Qin(f, f) =
(

2
1−ef

(
2

1−e ·
))
∗
(

2
1+ef

(
2

1+e ·
))
− f .

Thus, the result follows using the properties of ds given in Proposition
(4.4.3). In fact, estimate (4.48) and the scaling property of ds give
for the rescaled solutions g1 and g2

ds(g1, g2)(t) ≤ ds(f1o , f2o )e−(1−ke,s)tθ(t)−s/2 = ds(f
1
o , f

2
o )e−Ce,st ,

(4.49)
provided the initial data share the same initial energy m2(f1o ) =
m2(f2o ) = 1, so that, m2(f1)(t) = m2(f2)(t) =: θ(t) for all times t
(recall equation (4.37)). The rate of contraction is given by

Ce,s = ps + qs − 1− s

2

(
p2 + q2 − 1

)
, p := 1−e

2 , q := 1+e
2 , (4.50)

which can be shown to be positive, for any e ∈ [0, 1), in the range
s ∈ (2, 3). Thus, recalling that equation (4.39) also conserves energy,
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one naturally must have two solutions g1 and g2 sharing same mass,
momentum and energy to obtain a contractive dynamics between
them.

Theorem 4.4.4. Let g be a solution of the rescaled problem (4.39)
with initial data fo having unitary mass and energy, and zero mo-
mentum. Then, for any e ∈ [0, 1)

ds(g, g∞)(t) ≤ ds(fo, g∞)e−Ce,st , s ∈ (2, 3) ,

where g∞ and Ce,s > 0 are given by (4.42) and (4.50) respectively.

Proof. Simply take g1 ≡ g and g2 ≡ g∞ in (4.49). Note that this
is allowed since g∞ is solution of the stationary problem, thus, it is
solution of the time dependent problem with initial datum g∞ which
has unitary mass and energy, and zero momentum.

As a corollary, Theorem 4.4.4 implies uniqueness for the station-
ary problem (4.41). Of course, a uniqueness result for such problem
must be stated up to functions having a given mass, momentum and
energy.

Corollary 4.4.5. The function g∞ given in (4.42) is the unique
solution of the stationary problem (4.41) in the class of functions in
L1(R) having unitary mass and energy, and zero momentum.

Proof. Given any other solution g̃∞ having the desired properties one
can take g ≡ g̃∞ in Theorem 4.4.4. Thus, for any fixed s ∈ (2, 3)

0 ≤ ds(g∞, g̃∞) ≤ ds(g∞, g̃∞)e−Ce,st , t ≥ 0 .

Since Ce,s > 0, it must be the case that ds(g∞, g̃∞) = 0.
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Chapter 5

Radiative transfer
equation

In the last section section of this note we bring an example of highly
diffusive phenomena happening in kinetic equations. Diffusion com-
monly happens in particle systems due to interactions and, there are
specific instances when one can see the action of the diffusion phenom-
ena playing a central role in a specific proof. For example, a classical
result in the homogeneous Boltzmann equation is: given any initial
state in L1

2 ∩ L2, then, the solution of the homogeneous Boltzmann
equation has an uniform lower Gaussian barrier depending only on
the mass, energy, and the L2-norm of the initial state for any positive
time. In other words, there is an infinite speed of propagation for the
homogeneous Boltzmann equation (in the velocity variable), we refer
to [66] for a proof of this fact. Now, if the interactions are sufficiently
strong, it is reasonable to expect that stronger diffusive properties,
such as instantaneous regularization, will appear in the model. This
is the case for example in radiative transport in the forward peaked
regime, see [13] and references therein.

Radiative transfer is the physical phenomenon of energy trans-
fer/propagation in the form of electromagnetic radiation. The prop-
agation of radiation through an inhomogeneous medium is described
by absorption, emission, and scattering processes. In the case that

89
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the medium is free of absorption and emission, the radiative transfer
equation (RTE) in free space reduces to

∂tu+ θ · ∇xu = I(u) , (t, x, θ) ∈ (0,∞)× Rd × Sd−1 . (5.1)

The equation is complemented with an initial data uo ≥ 0. The non
negative solution u := u(t, x, θ) to equation (5.1) is understood as
the radiation distribution at time t > 0, spatial location x ∈ Rd,
and propagation direction θ ∈ Sd−1. As usual, the operator I is the
interaction operator which in the radiative transfer literature is called
scattering operator. More explicitly,

I(u) := Ibs(u) =

∫
Sd−1

(
u(θ′)− u(θ)

)
bs(θ · θ′)dθ′. (5.2)

The function bs is called scattering kernel (or phase function) and
has the purpose of describing the scattering pattern of the waves
in a specific medium. It is commonly assumed that bs satisfies the
normalized integrability condition

1 =

∫
Sd−1

bs(θ · θ′)dθ′ . (5.3)

Assumption (5.3) is satisfactory in diverse physical situations and
many of the mathematical theory was built around it, we refer to [37,
Chapter XXI]. However, it is common to find a propagation regime
where the scattering pattern is highly peaked in the direction of prop-
agation, the so-called highly forward-peaked regime. Such regime can
be found in neutron transport, atmospheric radiative transfer and
optical imaging of animal tissue among others. This peak in the
scattering pattern is modeled as a quasi-singularity in the scatter-
ing kernel bs happening at θ · θ′ = 1 which is barely integrable. As
a consequence, for practical purposes condition (5.3) is not correct.
Indeed, in the scattering physics literature it is customary to use
the Henyey-Greenstein angular scattering kernel, introduced in [50],
which in 3D reads

bgHG(θ · θ′) =
1− g2(

1 + g2 − 2 g θ · θ′
) 3

2

.
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The anisotropic factor g ∈ (0, 1) measures the strength of forward-
peakedness of the scattering kernel. As an example, typical values
for this factor in animal tissues are in the range 0.9 ≤ g ≤ 0.99. At
this point, the reader may argue that as long as g < 1 the Henyey-
Greenstein angular scattering kernel is integrable in S2, thus, it falls
in the category given by assumption (5.3). This is correct from the
mathematical point of view, yet, unsatisfactory from the modeling
point of view. The reason is that waves are usually traveling long
distances (measured in wavelengths) through the media, as a conse-
quence, the peaked scattering will have a sizable cumulative effect on
the radiation profile. To see this, let uHG be the solution of the RTE
with Henyey-Greenstein kernel and introduce the rescaled radiation
profile ug as

ug(t, x, θ) := 1
(1−g)d uHG

(
t

1−g ,
x

1−g , θ
)
,

where the time-space variables (t, x) are order one quantities. This
rescaling is natural in order to observe the large spatial-time radiation
profile (of the original problem) so that the highly forward-peaked
scattering has a visible effect. A simple computation shows that ug

solves the radiative transfer equation (5.1) with new scattering kernel
given by

bgs(θ · θ′) :=
bgHG(θ · θ′)

1− g
=

1 + g(
1 + g2 − 2 g θ · θ′

) 3
2

,

and new initial condition ugo := uHG(0). Since

lim
g→1

bgs(θ · θ′) =
1√

2(1− θ · θ′) 3
2

=: bHG(θ · θ′) ,

it is reasonable to expect that the profile ug is converging, in the limit
g → 1, to a solution of the equation (5.1) having scattering kernel
bHG which, in particular, does not satisfies assumption (5.3).

In the remainder of the discussion we consider scattering kernels
of the form

bs(θ ·θ′) =
D(

1− θ · θ′
) d−1

2 +s
+h(θ ·θ′), s ∈

(
0,min{1, d−12 }

)
, (5.4)
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where D > 0 will be the scattering diffusion coefficient and h ∈
L1(Sd−1). This decomposition is commonly used to separate the
forward-peaked scattering from others such as the Rayleigh scattering
(modeled by h). Observe that the operator I in (5.2) is not well
defined unless the radiation distribution u has sufficient regularity. A
sufficient condition is u being twice continuously differentiable in the
variable θ. This motivate the introduction of the weak formulation
for the scattering operator I: for any sufficiently regular functions u
and ϕ,∫

Sd−1

I(u)(θ)ϕ(θ) dθ :=

− 1
2

∫
Sd−1

∫
Sd−1

(
u(θ′)− u(θ)

)(
ϕ(θ′)− ϕ(θ)

)
bs(θ, θ

′)dθ′dθ

= lim
ε→0

∫
Sd−1

u(θ)

∫
{1−θ·θ′≥ε}

(
ϕ(θ′)− ϕ(θ)

)
bs(θ, θ

′)dθ′dθ .

(5.5)

The presentation that follows is borrowed from [13] where a detailed
exposition of the techniques and a good list references can be found.

5.1 Scattering operator as a fractional dif-
fusion

Interestingly we start this discussion with the stereographic projec-
tion S : Sd−1 → Rd−1. Using subscripts to denote the coordinates of
a vector, we write the stereographic projection as

S(θ)i =
θi

1− θd
, 1 ≤ i ≤ d− 1 .

The stereographic projection is surjective and smooth (except in the
north pole) with its inverse J : Rd−1 → Sd−1 given by

J (v)i = 2
vi
〈v〉2

, 1 ≤ i ≤ d− 1 , and J (v)d =
|v|2 − 1

〈v〉2
,
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where 〈v〉 :=
√

1 + |v|2. The Jacobian of such transformations can
be computed respectively as

dv =
dθ

(1− θd)d−1
, and dθ =

2d−1 dv

〈v〉2(d−1)
.

Using the notation θ = J (v) and θ′ = J (v′), it follows that

1− θ · θ′ = 2
|v − v′|2

〈v〉2〈v′〉2
. (5.6)

These simple facts about the stereographic projection are enough to
prove the following result about the scattering operator in the peaked
regime and its diffusive nature in the angular variable.

Proposition 5.1.1. Let bs be a scattering kernel satisfying (5.4) and
write the scattering operator as Ibs = ID + Ih. Then, for any suf-
ficiently regular function u in the sphere the stereographic projection
of the operator ID is given by[
ID(u)

]
J

〈·〉d−1
= D

2
d−1
2 −s

cd−1,s
〈v〉2s

(
− (−∆v)

swJ + uJ (−∆v)
s 1

〈·〉d−1−2s
)

= D
2
d−1
2 −s

cd−1,s
〈v〉2s

(
− (−∆v)

swJ + cd,s
uJ

〈v〉d−1+2s

)
,

(5.7)

where uJ = u ◦ J (the projected function) and wJ :=
uJ

〈·〉d−1−2s
. In

particular, one has the formula

1

D

∫
ID(u)(θ)u(θ) dθ =

− cd,s
∥∥(−∆v)

s/2wJ
∥∥2
L2(Rd−1)

+ Cd,s ‖u‖2L2(Sd−1) ,

(5.8)

for some explicit positive constants cd,s and Cd,s depending on s and
d. Furthermore, defining the differential operator (−∆θ)

s acting on
functions defined on the sphere by the formula[

(−∆θ)
su
]
J := 〈·〉d−1+2s (−∆v)

swJ , (5.9)
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the scattering operator simply writes as the sum of a singular and a
L2
θ-bounded parts

Ibs = −Do (−∆θ)
s + cd,s 1 + Ih , (5.10)

where Do =
2
d−1
2 −s

cd−1,s
D is the diffusion parameter.

Before entering in the details of the proof recall the characteriza-
tion of the fractional Laplacian (−∆v)

s using the Fourier transform

F
{

(−∆v)
sϕ
}

(ξ) = |ξ|2s F{ϕ}(ξ) , s ∈ (0, 1) , (5.11)

valid for any suitable function ϕ. This characterization is equivalent
to the singular integral relation

(−∆v)
sϕ(v) = cd,s

∫
Rd−1

ϕ(v)− ϕ(v + z)

|z|d−1+2s
dz , (5.12)

where the constant is given by

1

cd,s
=

∫
Rd

1− e−iξ̂·z

|z|d+2s
dz > 0 .

Thus, Proposition 5.1.1 essentially claims that the scattering operator
in the forward-peaked regime acts as a fractional Laplacian in angle.
The degree of the fractional diffusivity is completely determined by
the non integrable singularity of the scattering kernel which in our
case is measured by s ∈ (0, 1).

Proof. The decomposition I = ID + Ih is assured by assumption
(5.4) on bs. Cauchy-Schwarz inequality shows that the operator Ih
is a bounded operator in L2(Sd−1)∥∥Ih(u)

∥∥
L2(Sd−1)

≤ 2
∥∥h∥∥

L1(Sd−1)
‖u‖L2(Sd−1) . (5.13)

Let us concentrate on the operator ID. Using the stereographic pro-
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jection and (5.6)[
ID(u)

]
J (v) = 2

d−1
2 −sD 〈v〉d−1+2s

∫
Rd−1

uJ (v′)− uJ (v)

|v − v′|d−1+2s

dv′

〈v′〉d−1−2s

= 2
d−1
2 −sD 〈v〉d−1+2s

(∫
Rd−1

wJ (v′)− wJ (v)

|v − v′|d−1+2s
dv′

+ uJ (v)

∫
Rd−1

1
〈v〉d−1−2s − 1

〈v′〉d−1−2s

|v − v′|d−1+2s
dv′

)

=
2
d−1
2 −sD

cd−1,s
〈v〉d−1+2s

(
− (−∆v)

swJ + uJ (−∆v)
s 1

〈·〉d−1−2s
)

=
2
d−1
2 −sD

cd−1,s
〈v〉d−1+2s

(
− (−∆v)

swJ + cd,s
uJ

〈v〉d−1+2s

)
.

(5.14)

For the last inequality we have used the identity which can be proved
through elementary Bessel potential theory

(−∆v)
s 1

〈·〉d−1−2s
(v) =

cd,s
〈v〉d−1+2s

.

This proves (5.7) and as a direct consequence,∫
Sd−1

ID(u)(θ)u(θ) dθ = 2d−1
∫
Sd−1

[
ID(u)

]
J

(v)uJ (v)
dv

〈v〉2(d−1)

= 2
3(d−1)

2 −s D

cd−1,s

[
−
∥∥(−∆v)

s/2wJ
∥∥2
L2(Rd−1)

+
cd,s
2d−1

‖u‖2L2(Sd−1)

]
,

(5.15)

which completes the proof.

Proposition 5.1.1 readily implies the following central a priori
energy estimate

1
2

∫
Rd

∫
Sd−1

∣∣u(t, x, θ)
∣∣2dθdx+ D̃o

∫ t

t′

∫
Rd

∥∥(−∆v)
s/2wJ

∥∥2
L2(Rd−1)

dxdτ

≤ 1
2

∫
Rd

∫
Sd−1

∣∣u(t′, x, θ)
∣∣2dθdx+ C

∫ t

t′

∫
Rd

∫
Sd−1

∣∣u(τ, x, θ)
∣∣2dθdxdτ ,

(5.16)
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valid for any 0 < t′ ≤ t <∞. Here the parameters D̃o and C depend
on d, s and D with C additionally depending on ‖h‖L1(Sd−1).

5.2 Regularization mechanism of the RTE

Energy estimate (5.16) is essentially pointing out the diffusive nature
of the radiative transport equation in the angular variable due to the
cumulative effect of the forward-peaked scattering. Such estimate is
enough to prove instantaneous fractional Sobolev regularization in
the angular variable for solutions of the RTE having quite general
initial data say in L1

x,θ. In fact, L1
x,θ (as opposed to L2

x,θ) is a natural
space for the initial configuration since mass is the only conserved
quantity for the RTE model (5.1). Interestingly, estimate (5.16) says
nothing about the spatial variable. In order to shown instantaneous
regularization in space, one is forced to dig deeper into the equation,
namely, to use the action of the transport operator θ · ∇x. We saw
previously that the transport operator has some weak regularizing
effects that can be manifested, for instance, in the form of an average
lemma or some type of compactness result as in the theory of DiPerna
& Lions. In our particular case, such weak regularization will be
amplified because of the a priori regularity in the angular variable
which is transported to the spatial variable.

Theorem 5.2.1. Fix any dimension d ≥ 3 and assume that u ∈
C
(
[t0, t1), L2(Rd × Sd−1)

)
solve the transport problem

∂tu+ θ · ∇xu = I(u) , t ∈ [t0, t1) . (5.17)

Then, for any s ∈ (0, 1) there exists a constant C := C(d, s) indepen-
dent of time such that∥∥(−∆x)

s0
2 u
∥∥
L2([t0,t1)×Rd×Sd−1)

≤ C
(∥∥u(t0)

∥∥
L2(Rd×Sd−1)

+
∥∥u∥∥

L2([t0,t1)×Rd×Sd−1)

+
∥∥(−∆v)

s/2wJ
∥∥
L2([t0,t1)×Rd×Rd−1)

)
, s0 := s/4

2s+1 .

(5.18)

Proof. A proof for this theorem can be found in [13] which follows a
technique based heavily on average lemmas [23, 25].
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Although the proof of Theorem 5.2.1 is a bit technical, it is based
in the following simple observation (recall Proposition 3.2.1): Con-
sider a function f(x, θ) ∈ L2(Rd × Sd−1) with d ≥ 3 and such that

θ · ∇xf ∈ L2
x,θ .

Consider now the average in angle of such function

f̄ϕ(x) :=

∫
Sd−1

f(x, θ)ϕ(θ) dθ ,

with function ϕ bounded. Then,

‖f̄ϕ‖Hsx ≤ Cs,d‖ϕ‖∞
(
‖f‖L2

x,θ
+ ‖θ · ∇xf‖L2

x,θ

)
, s ∈

(
0, 12
)
. (5.19)

Indeed, define g := θ · ∇xf and compute its Fourier transform in the
spatial variable

F{g(·, θ)}(ξ) = iθ · ξF{f(·, θ)}(ξ) = i|ξ|θ · ξ̂F{f(·, θ)}(ξ) .

As a consequence,∣∣F{f̄ϕ}(ξ)∣∣2 |ξ|2s =
∣∣∣ ∫

Sd−1

F{f(·, θ)}(ξ)ϕ(θ) dθ
∣∣∣2|ξ|2s

=
∣∣∣ ∫

Sd−1

F{g(·, θ)}(ξ)
|ξ|1−sθ · ξ̂

ϕ(θ) dθ
∣∣∣2 . (5.20)

But, ∣∣∣∣∣F{g(·, θ)}(ξ)
|ξ|1−s θ · ξ̂

∣∣∣∣∣ =

∣∣F{f(·, θ)}(ξ)
∣∣1−s∣∣F{g(·, θ)}(ξ)

∣∣s
|θ · ξ̂|s

.

Then, permuting the absolute value and the integral in equation
(5.20), and using Cauchy–Schwarz inequality∣∣F{f̄ϕ}(ξ)∣∣2 |ξ|2s ≤(∫

Sd−1

∣∣F{f(·, θ)}(ξ)
∣∣1−s∣∣F{g(·, θ)}(ξ)

∣∣s
|θ · ξ̂|s

∣∣ϕ(θ)
∣∣ dθ)2

≤
(∫

Sd−1

∣∣F{f(·, θ)}(ξ)
∣∣2(1−s)∣∣F{g(·, θ)}(ξ)

∣∣2s dθ

)
×(∫

Sd−1

|ϕ(θ)|2

|θ · ξ̂|2s
dθ

)
.

(5.21)
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Each term in the right can be estimated as follows,∫
Sd−1

|ϕ(θ)|2

|θ · ξ̂|2s
dθ ≤ ‖ϕ‖2∞

∣∣Sd−2∣∣ ∫ π

0

sind−2(z)

| cos(z)|2s
dz

≤ C2
d,s‖ϕ‖2∞ , s ∈

(
0, 12
)
.

(5.22)

Meanwhile, Young’s inequality implies∫
Sd−1

∣∣F{f(·, θ)}(ξ)
∣∣2(1−s)∣∣F{g(·, θ)}(ξ)

∣∣2s dθ

≤ (1− s)
∫
Sd−1

∣∣F{f(·, θ)}(ξ)
∣∣2dθ + s

∫
Sd−1

∣∣F{g(·, θ)}(ξ)
∣∣2dθ .

(5.23)

Using (5.22) and (5.23) in (5.21), and integrating in ξ ∈ Rd,∫
Rd

∣∣F{f̄ϕ}(ξ)∣∣2 |ξ|2sdξ
≤ C2

d,s‖ϕ‖2∞
(∫ ∣∣F{f(·, θ)}(ξ)

∣∣2dθ dξ +

∫ ∣∣F{g(·, θ)}(ξ)
∣∣2dθ dξ

)
.

As a consequence, estimate (5.19) follows after applying Plancherel
theorem in the ξ–variable on previous inequality. Stronger results,
such as Theorem 5.2.1, which state regularization on the function f
can be proven from the regularization of the averages f̄ϕ and the a
priori angle regularity. In essence, the proof is obtained by choosing
ϕ := {ϕε}ε>0 as an approximation to the identity, and then, finding
uniform estimates in the mollification index ε > 0. Finding such
uniform estimate for ‖f̄ϕε‖Hsx is a trade-off process, thus, a fraction
of regularization s must be lost.

Using Theorem 5.2.1 and the energy estimate (5.16) we obtain a
complete a priori energy inequality

1
2

∫
Rd

∫
Sd−1

∣∣u(t, x, θ)
∣∣2dθdx+

D

∫ t

t′

∫
Rd

(∥∥(−∆v)
s/2wJ

∥∥2
L2(Rd−1)

+
∥∥(−∆x)s0/2u

∥∥2
L2(Sd−1)

)
dxdτ ≤

Co

∫
Rd

∫
Sd−1

∣∣u(t′, x, θ)
∣∣2dθdx+ C1

∫ t

t′

∫
Rd

∫
Sd−1

∣∣u(τ, x, θ)
∣∣2dθdxdτ ,

(5.24)
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valid for any 0 < t′ ≤ t <∞. The parameters D, Co and C1 depend
on d, s and D with C1 additionally depending on ‖h‖L1(Sd−1). Having
at hand estimate (5.24), classical arguments used for parabolic equa-
tions imply instantaneous fractional Sobolev regularization of solu-
tions for the RTE in the forward-peaked regime, we refer to [13]. Let
us present here only the initial step of a regularization proof which is
quite natural, namely, solutions in L1

x,θ are in fact in L2
x,θ. Before en-

tering into the details observe that (5.24) implies the following more
standard version of parabolic energy estimate

sup
t′≤t≤ 1

4C1

1
4‖u(t)‖2L2

x,θ

+ D

∫ t

t′

∫
Rd

(∥∥(−∆v)
s/2wJ

∥∥2
L2(Rd−1)

+
∥∥(−∆x)s0/2u

∥∥2
L2(Sd−1)

)
dxdτ

≤ 3Co ‖u(t′)‖L2
x,θ
, t′ ≤ t ≤ 1

4C1
.

(5.25)

Proposition 5.2.2. Suppose u is a solution to the transport equa-
tion (5.1) on [0, 1

4C1
]. Then, there exists constants ω := ω(s) > 1

and C := C(mo,D, s) such that

‖u(t)‖2L2
x,θ
≤ C

t
1

ω−1

, 0 < t ≤ 1

4C1
,

where mo =

∫
Rd

∫
Sd−1

uo(x, θ)dxdθ is the mass of u and C1 is the

constant appearing in (5.24).

Proof. Using Sobolev embedding on has that∫
Rd

(∥∥(−∆v)
s/2wJ

∥∥2
L2(Rd−1)

+
∥∥(−∆x)s0/2u

∥∥2
L2(Sd−1)

)
dx

≥ c ‖u(t)‖2Lpx,θ ,

for some p := p(s) > 2. Also, note that Lebesgue’s interpolation gives

‖u(t)‖L2
x,θ
≤ ‖u(t)‖1−1/ω

L1
x,θ
‖u(t)‖1/ω

Lpx,θ
= m1−1/ω

o ‖u(t)‖1/ω
Lpx,θ

,
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for some 1/ω ∈ (0, 1) depending only on p (so, ω depends only on s).
Putting these two together in estimate (5.25) it follows that∫ t

t′
‖u(τ)‖2ωL2

x,θ
dτ ≤ C1/ω‖u(t′)‖2L2

x,θ
, t′ ≤ t ≤ 1

4C1
, (5.26)

for some constant C > 0 depending on the mass and D. Denote
X(t) := ‖u(t)‖2ωL2

x,θ
, then, estimate (5.26) becomes(∫ t

t′
X(τ)dτ

)ω
≤ C X(t′) , t′ ≤ t ≤ 1

4C1
.

If we fix t = 1
4C1

and further denote Y (t′) :=

∫ 1
4C1

t′
X(τ)dτ , it is

concluded that

C
dY (t′)

dt
+ Y ω(t′) ≤ 0 .

Such differential inequality leads to the estimate∫ 1
4C1

t′
‖u(τ)‖2ωL2

x,θ
dτ = Y (t′) ≤ C

t′
1

ω−1

, 0 < t′ ≤ 1

4C1
, (5.27)

where the constant C may have changed from line to line. Now, it is
quite easy to show that solutions of the RTE do not increase its L2

x,θ

norm, hence

‖u(t)‖2ωL2
x,θ
≤ ‖u(τ)‖2ωL2

x,θ
, 0 < t′ ≤ τ ≤ t ≤ 1

4C1
. (5.28)

Taking the average in τ ∈ (t′, t) in (5.28) and using (5.27) we have

‖u(t)‖2ωL2
x,θ
≤ 1

t− t′

∫ t

t′
‖u(τ)‖2ωL2

x,θ
dτ

≤ C

t− t′
1

t′
1

ω−1

, 0 < t′ < t ≤ 1

4C1
.

In particular, if we take t′ = t/2 it follows that

‖u(t)‖2ωL2
x,θ
≤ 2

w
w−1

C

t
w
w−1

, 0 < t ≤ 1

4C1
,

which is the desired result.
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5.3 On the Cauchy problem for singular
scattering

As a final comment let us just mention that the Cauchy problem
for the inhomogeneous Boltzmann equation with singular scattering,
usually regarded to as without angular cutoff, has been studied by
some authors in the community, refer for example to [1, 2, 3, 43, 35].
As good as these references are, these works are a first step towards
a more complete strategy leading to a theory of well-posedness of
solutions, in the singular case, for the inhomogeneous Boltzmann
equation with general initial data.
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Chapter 6

Appendix

Lemma 6.0.1. Fix a unitary vector û. The map σ : Sd−1 → Sd−1
given by

σ(ω) = û− 2(û · ω)ω

has Jacobian
dσ

dω
= 2d−1

∣∣û · ω∣∣d−2 .
Proof. Let Oû be the orthogonal space to û, α be the angle between
û and ω, and β be the angle between û and σ. In this way one may
write

ω = cos(α)û+ ωo , σ = cos(β)û+ σo

where ωo, σo ∈ Oû. Using spherical coordinates with north pole given
by û, the measures dω and dσ are given by

dω = sin(α)d−2 dω̂o dα , dσ = sin(β)d−2 dσ̂o dβ .

Here the measures dω̂o and dσ̂o are the Lebesgue measure in Sd−2
parameterized with the vectors ωo and σo respectively. Directly from
the expression of the map one has

cos(β) = û · σ = 1− 2
(
û · ω

)2
= 1− 2 cos(α)2 .

Then, it follows by direct differentiation that

− sin(β)dβ = 4 cos(α) sin(α)dα .
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Now, choose a orthonormal base {ξi}d−2i=1 for Oû. Compute again
using the explicit expression of the map

σo =
∑
i

(
σ · ξi

)
ξi = −2

(
û · ω

)∑
i

(
ω · ξi

)
ξi

= −2
(
û · ω

)
ωo = −2 cos(α)ωo .

Thus, ŵo = σ̂o, and as a consequence, dŵo = dσ̂o . Gathering these
relations all together and using basic trigonometry

dω =

(
sin(α)

sin(β)

)d−3
dσ

4
∣∣ cos(α)

∣∣ =
dσ

2d−1
∣∣ cos(α)

∣∣d−2 .
This completes the proof.

Lemma 6.0.2. Fix σ ∈ Sd−1. The map z : Rd → Rdgiven by

z(u) = 1
2

(
u+ |u|σ

)
has Jacobian

dz

du
=

1 + û · σ
2d

.

Proof. Choose an orthonormal base {σ, ξi}, with 2 ≤ i ≤ d. Then,
the coordinates of this change of variables are

z1 = z · σ = 1
2

(
u · σ + |u|

)
= 1

2

(
u1 + |u|

)
,

zi = z · ξi = 1
2ui , i = 2, · · · , d .

Thus,

∂u1
z1 = 1

2

(
1 + û · σ

)
, ∂ujzi = 1

2δij , i = 2, · · · , d ,

and, therefore
dz

du
=
∏
i

∣∣∂uizi∣∣ =
1 + û · σ

2d
.
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Lemma 6.0.3. (Carlemman representation) For any sufficiently smooth
functions f and g the gain collision operator has the representation

Q+(f, g)(v) = 2d−1
∫
Rd

g(x)

|v − x|

∫
{y·(v−x)=0}

τ−xf(y + (v − x))

|y + (v − x)|d−2
×

B
(
− y + (v − x),

y + (v − x)

|y + (v − x)|

)
dπydx .

Proof. We start with the identity∫
Sd−1

ϕ(σ)dσ =

∫
Rd
ϕ(k)δo

( |k|2 − 1

2

)
dk ,

and write

Q+(f, g)(v) =

∫
R2d

f(′v)g(′v∗)B(u, k)δo

( |k|2 − 1

2

)
dkdu .

recalling that ′v = v′ and ′v∗ = v′∗ (for elastic interactions) one has

′v = v − u+
u+ |u|k

2
, ′v∗ = v − u+ |u|k

2
.

Using the change of variables z = −u+ |u|k
2

, for fixed u, it follows

that

Q+(f, g)(v)

=

∫
R2d

g(v + z)f(v − u− z)B
(
u,−2z + u

|u|

)
δo

(2z · (z + u)

|u|2
) 2d

|u|d
dzdu

= 2d−1
∫
R2d

g(v + z)
f(v − u− z)
|u|d−2

B
(
u,−2z + u

|u|

)
δo
(
z · (z + u)

)
dzdu

= 2d−1
∫
R2d

g(v + z)
f(v + y)

|y + z|d−2
B
(
− y − z, y − z

|y + z|

)
δo
(
z · y

)
dydz

Using the identity∫
Rd
δo
(
z · y

)
ϕ(y)dy =

1

|z|

∫
{z·y=0}

ϕ(y)dπy ,
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one finds

Q+(f, g)(v)

= 2d−1
∫
Rd

g(v + z)

|z|

∫
{y·z=0}

f(v + y)

|y + z|d−2
B
(
− y − z, y − z

|y + z|

)
dπydz

= 2d−1
∫
Rd

g(x)

|v − x|

∫
{y·(v−x)=0}

τ−xf(y + (v − x))

|y + (v − x)|d−2
×

B
(
− y + (v − x),

y + (v − x)

|y + (v − x)|

)
dπydx .

In the last inequality we used the change of variables x = z + v and
the fact that y · z = 0 to write |y + z| = |y − z| .



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 106 — #106 i
i

i
i

i
i



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 107 — #107 i
i

i
i

i
i

Bibliography

[1] Alexandre, R., Desvillettes, L., Villani, C. &
Wennberg, B. Entropy dissipation and long-range interactions.
Arch. Ration. Mech. Anal. 152, (2000) 327–355.

[2] Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J. &
Yang T. Regularizing effect and local existence for non-cutoff
Boltzmann equation. Arch. Ration. Mech. Anal. 198, (2010) 39–
123.

[3] Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J. &
Yang, T. Global existence and full regularity of the Boltzmann
equation without angular cutoff. Commun. Math. Phys. 304,
(2011) 513–581.

[4] Alonso, R. Existence of global solutions to the Cauchy problem
for the inelastic Boltzmann equation with near-vacuum data.
Ind. Univ. Math. Jour. 58, no. 3, (2009) 999–1022.

[5] Alonso, R., Bagland, V., Cheng, Y. & Lods, B. On the
kinetic theory of rods alignment. Preprint.

[6] Alonso, R., Carneiro, E. & Gamba, I. Classical inequalities
for the Boltzmann collision operator. Comm. Math. Phys. 298,
no. 2, (2010) 293–322.

[7] Alonso, R., Young J. & Chen, Y. A Particle Interaction
Model for the Simulation of Biological, Cross-Linked Fiber Net-
works Inspired From flocking Theory. Cellular and Molecular
Bioengineering 7, (2014) 58–72.

107



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 108 — #108 i
i

i
i

i
i

108 BIBLIOGRAPHY

[8] Alonso, R. & Lods, B. Uniqueness and regularity of steady
states of the Boltzmann equation for viscoelastic hard-spheres
driven by thermal bath. Commun. Math. Sci. 11, no. 3, (2013)
807–862.

[9] Alonso, R. & Lods, B. Two proofs of Haff’s law for dissipative
gases: The use of entropy and the weakly inelastic regime. J.
Math. Anal. Appl. 397, (2013) 260–275.

[10] Alonso, R. & Lods, B. Boltzmann model for viscoelastic par-
ticles: Asymptotic behavior, pointwise lower bounds and regu-
larity. Comm. Math. Phys. 331, no. 2, (2014) 545–591.

[11] Alonso, R. & Gamba, I. M. Gain of integrability for the
Boltzmann collisional operator Kinetic Rel. Mod. 4 (2011), 41–
51.

[12] Alonso, R. & Gamba, I. Distributional and classical solu-
tions to the Cauchy Boltzmann problem for soft potentials with
integrable angular cross section. J. Statist. Phys. 137, no. 5–6,
(2010) 1147–1165.

[13] Alonso, R. & Sun, W. The radiative transfer equation in the
forward-peaked regime. Preprint in arXiv:1411.0163.

[14] Aranson, I. S. & Tsimring, L. S. Pattern formation of mi-
crotubules and motors: Inelastic interaction of polar rods. Phys.
Rev. E. 71 050901(R), 2005.

[15] Arkeryd, L. Loeb solution’s of the Boltzmann equation. Arch.
Rational Mech. Anal. 86, (1984) 85–97.

[16] Bisi, M., Canizo J. A. & Lods B. Entropy dissipa-
tion estimates for the linear Boltzmann operator. Preprint in
arXiv:1405.0366.

[17] Bobylev, A. Fourier transform method in the theory of the
Boltzmann equation for Maxwell molecules. Dokl. Akad. Nauk
USSR 225, (1975) 1041–1044.



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 109 — #109 i
i

i
i

i
i

BIBLIOGRAPHY 109

[18] Bobylev, A. Moment inequalities for the Boltzmann equation
and application to spatially homogeneous problems. J. Statist.
Phys. 88, (1997) 1183–1214.

[19] Bobylev, A. V., Carrillo, J. A. & Gamba, I. M. On some
properties of kinetic and hydrodynamic equations for inelastic
interactions. J. Statist. Phys. 98, (2000) 743–773. Erratum in:
J. Statist. Phys. 103, (2001) 1137–1138.

[20] Bobylev, A. V. & Cercignani, C. Self-similar asymptotics
for the Boltzmann equation with inelastic and elastic interac-
tions. J. Statist. Phys. 110, (2003) 333–375.

[21] Bobylev, A. V., Cercignani, C. & Gamba, I. M. On
the self-similar asymptotics for generalized non-linear kinetic
Maxwell models, Comm. Math. Phys. 291, (2009) 599–644.

[22] Bobylev, A. V., Gamba, I. M. & Panferov, V. A. Moment
inequalities and high-energy tails for Boltzmann equations with
inelastic interactions. J. Statist. Phys. 116, (2004) 1651–1682.

[23] Bouchut, F. Hypoelliptic regularity in kinetic equations. J.
Math. Pures Appl. 81, (2002) 1135–1159.

[24] Bouchut, F. & Desvillettes, L. A proof of the smoothing
properties of the positive part of Boltzmann’s kernel. Rev. Mat.
Iberoamericana 14, (1998) 47–61.

[25] Bouchut, F. & Desvillettes, L. Averaging lemmas with-
out time Fourier transform and application to discretized kinetic
equations. Proc. of the Royal Soc. of Edinburgh. 129A, (1999)
19–36.

[26] Bolley, F., Canizo J. A. & Carrillo, J. A. Stochastic
Mean-Field Limit: Non-Lipschitz Forces & Swarming. Math.
Mod. Meth. App. Sci. 21, (2011) 2179–2210.

[27] Bolley, F., Canizo J. A. & Carrillo, J. A. Mean-field limit
for the stochastic Vicsek model. Appl. Math. Lett. 25, (2011)
339–343.



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 110 — #110 i
i

i
i

i
i

110 BIBLIOGRAPHY

[28] Brilliantov, N., & Poschel, T. Kinetic theory of granular
gases. Oxford Graduate Texts. Oxford University Press, 2004.

[29] Brugna, C. & Toscani, G. Wealth redistribution in
Boltzmann-like models of conservative economies, in Econo-
physics & Economics of Games, Social Choices and Quantita-
tive Techniques. B. Basu, B.K. Chackabarti, S.R. Chackavarty,
K. Gangopadhyay (Eds.) Springer Verlag, Milan (2010), 71–82.

[30] Caffarelli, L. & Vasseur, A. Drift diffusion equations with
fractional diffusion and the quasi-geostrophic equation. Ann.
Math. 171, (2010) 1903–1930.

[31] Carrillo, J. A. & Toscani, G Contractive probability met-
rics and asymptotic behavior of dissipative kinetic equations. In
Notes of the Porto Ercole School, June 2006 Riv. Mat. Univ.
Parma, 7, (2007) 75–198.

[32] Caflisch, R. The Boltzmann equation with a soft potential (I).
Comm. Math. Phys. 74, (1980) 71–96

[33] Caflisch, R. The Boltzmann equation with a soft potential
(II). Comm. Math. Phys. 74, (1980) 97–109

[34] Cercignani, C., Illner, R. & Pulvirenti, M. The Mathe-
matical Theory of Dilute Gases. Springer, (1994).

[35] Chen, Y. & He, L. Smoothing Estimates for Boltzmann
Equation with Full-range Interactions: Spatially Inhomogeneous
Case. Arch. Rational Mech. Anal. 203, (2012) 343–377.

[36] Cucker, F. & Smale, S. Emergent behavior in flocks, IEEE
Trans. Automat. Control 52, (2007) 852–862.

[37] Dautray, R. & Lions, J.-L. Mathematical Analysis and Nu-
merical Methods for Science and Technology, Berlin–Springer 6,
(1993) 209–408.

[38] DiPerna, R. & Lions, P.-L. On the Cauchy problem for the
Boltzmann equation : Global existence and weak stability. Ann.
of Math. 2, (1989) 312–366.



i
i

“Alonso˙kinetic” — 2015/5/11 — 12:43 — page 111 — #111 i
i

i
i

i
i

BIBLIOGRAPHY 111

[39] Gamba, I. M., Panferov, V. & Villani, C. On the Boltz-
mann equation for diffusively excited granular media. Comm.
Math. Phys. 246, (2004) 503–541.

[40] Golse, F., & Saint-Raymond, L. Velocity averaging in L1

for the transport equation, C. R. Acad. Sci. Paris Sér. I Math
334, (2002) 557–562.

[41] Golse, F., Perthame, B., & Sentis, R. Un résultat de com-
pacité pour les équations de transport et application au calcul
de la limite de la valeur propre principale dÕun opérateur de
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