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Preface

It is customary to say that a given phenomenum is chaotic if it cannot
be predicted. This is what currently occurs in many circuntances like
in weather prediction, particle behavior in physic or financial marked.
But what the meanning of predictiblity is? A simple manner to an-
swer this question is to model the given phenomenum as the trajecto-
ries of a dynamical system and, then, reinterpret the predictibility as
the knowledgement of where trajectories go. For instance, in weather
prediction or particle behavior or financial marked it is known that
nearby initial conditions can produce very different outputs thus char-
acterizing a very high degree of unpredictibility. Such a situation is
easily described in dynamics with the notion of sensitivity to initial
conditions in which every face point can be approached by points for
which the corresponding trayectories eventually separate in the future
(or in the past for invertible systems). The worst scenario appears
precisely when the trajectory of every nearby point separate from
the initial one, and this is what is commonly denominated as expan-
sive system. In these terms expansivity manifests the most chaotic
scenario in which predictions may have no sense at all.

The first researcher who considered the expansivity in dynamics
was Utz in his seminal paper [86]. Indeed, he defined the notion
of unstable homeomorphisms (nowadays known as expansive homeo-
morphisms [39]) and studied their basic properties. Since then an ex-
tensive literature about these homeomorphisms has been developed.

For instance, [90] proved that the set of points doubly asymptotic
to a given point for expansive homeomorphisms is at most countable.
Moreover, a homeomorphism of a compact metric space is expansive
if it does in the complement of finitely many orbits [91]. In 1972 Sears
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proved the denseness of expansive homeomorphisms with respect to
the uniform topology in the space of homeomorphisms of a Cantor
set [80]. An study of expansive homeomorphisms using generators
is given in [20]. Goodman [38] proved that every expansive homeo-
morphism of a compact metric space has a (nonnecessarily unique)
measure of maximal entropy whereas Bowen [11] added specification
to obtain unique equilibrium states. In another direction, [76] studied
expansive homeomorphisms with canonical coordinates and showed
in the locally connected case that sinks or sources cannot exist. Two
years later, Fathi characterized expansive homeomorphisms on com-
pact metric spaces as those exhibiting adapted hyperbolic metrics
[34] (see also [78] or [30] for more about adapted metrics). Using this
he was able to obtain an upper bound of the Hausdorff dimension and
upper capacity of the underlying space using the topological entropy.
In [54] it is computed the large deviations of irregular periodic orbits
for expansive homeomorphisms with the specification property. The
C0 perturbations of expansive homeomorphisms on compact metric
spaces were considered in [24]. Besides, the multifractal analysis of
expansive homeomorphisms with the specification property was car-
ried out in [84]. We can also mention [23] in which it is studied a new
measure-theoretic pressure for expansive homeomorphisms.

From the topological viewpoint we can mention [67] and [74] prov-
ing the existence of expansive homeomorphisms in the genus two
closed surface, the n-torus and the open disk. Analogously for com-
pact surfaces obtained by making holes on closed surfaces different
from the sphere, projective plane and Klein bottle [51]. In [46] it was
proved that there are no expansive homeomorphisms of the compact
interval, the circle and the compact 2-disk. The same negative result
was obtained independently by Hiraide and Lewowicz in the 2-sphere
[42], [59]. Mañé proved in [62] that a compact metric space exhibit-
ing expansive homeomorphisms must be finite dimensional and, fur-
ther, every minimal set of such homeomorphisms is zero dimensional.
Previously he proved that the C1 interior of the set of expansive dif-
feomorphisms of a closed manifold is composed by pseudo-Anosov
(and hence Axiom A) diffeomorphisms. In 1993 Vieitez [87] obtained
results about expansive homeomorphisms on closed 3-manifolds. In
particular, he proved that the denseness of the topologically hyper-
bolic periodic points does imply constant dimension of the stable and
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unstable sets. As a consequence a local product property is obtained
for such homeomorphisms. He also obtained that expansive homeo-
morphisms on closed 3-manifolds with dense topologically hyperbolic
periodic points are both supported on the 3-torus and topologically
conjugated to linear Anosov isomorphisms [88].

In light of these results it was natural to consider another notions
of expansiveness. For example, G-expansiveness, continuouswise and
pointwise expansiveness were defined in [29], [50] and [75] respectiv-
elly. We also have the entropy-expansiveness introduced by Bowen
[10] to compute the metric and topological entropies in a large class
of homeomorphisms.

In this monograph we will consider a notion of expansiveness,
located in between sensitivity and expansivity, in which Borel proba-
bility measures μ will play fundamental role. Indeed, we say that μ is
an expansive measure of a homeomorphism f if the probability of two
orbits remain close each other up to a prefixed radius is zero. Anal-
ogously, for continuous maps, we define positively expansive measure
by considering positive orbits instead. The corresponding concepts
for certain topological spaces (e.g. uniform spaces) likewise flows or
topological group actions have been considered elsewhere [22], [66].

These concepts are closely related (and sometimes equivalent to)
the concepts of pairwise sensitivity [27] and the μ-sensitivity [44] in
which the sensitivity properties of these systems are emphasized.
Here we give emphasize not in the sensitivity but, rather, in the
expansivity properties of these systems.

In Chapter 1 we will give the precise definition of expansive mea-
sures for homeomorphisms f as well as some basic properties closely
related to the expansive systems. For instance, we characterize the
expansive measures as those for which the diagonal is almost invari-
ant for f ×f with respect to the product measure μ2. In addition, we
prove that the set of heteroclinic points has measure zero with respect
to any expansive measure. In particular, the set of periodic orbits for
these homeomorphisms is also of measure zero for such measures. We
also prove that there are expansive measures for homeomorphisms in
any compact interval and, in the circle, we prove that they exists
solely for the the Denjoy maps. As an application we obtain proba-
bilistic proofs of some result of expansive systems.

In Chapter 2 we will analyze the n-expansive systems which rep-



vi PREFACE

resent a particular (an interesting) example of nonexpansive systems
for which every non-atomic Borel measure is expansive.

In Chapter 3 we study the class of positively expansive measures
and prove that every ergodic invariant measure with positive entropy
of a continuous map on a compact metric space is positively expan-
sive. We use this property to prove, for instance, that the stable
classes have measure zero with respect to any ergodic invariant mea-
sure with positive entropy. Moreover, continuous maps which either
have countably many stable classes or are Lyapunov stable on their
recurrent sets have zero topological entropy. We also apply our results
to the Li-Yorke chaos.

Finally, in Chapter 4, we will extend the notion of expansivity to
include measurable maps on measure spaces. Indeed, we study count-
able partitions for measurable maps on measure spaces such that for
all point x the set of points with the same itinerary of x is negli-
gible. We prove that in non-atomic probability spaces every strong
generator [69] satisfies this property but not conversely. In addition,
measurable maps carrying partitions with this property are aperi-
odic and their corresponding spaces are non-atomic. From this we
obtain a characterization of nonsingular countable to one mappings
with these partitions on non-atomic Lebesgue probability spaces as
those having strong generators. Furthermore, maps carrying these
partitions include the ergodic measure-preserving ones with positive
entropy on probability spaces (thus extending a result by Cadre and
Jacob [27]). Applications of these results will be given. At the end
of each chapter we include some exercices whose difficulty was not
estimated. Some basics of dynamical systems, ergodic and measure
theory will be recommendable for the comprension of this text.

September 2012 C. A. M. & V. F. S.

UFRJ, USB Rio de Janeiro, Caracas.
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Aplicada (IMPA) and the Simón Boĺıvar University for their kindly
hospitality. They also thank their colleagues professors Alexander Ar-
bieto, Dante Carrasco-Olivera, José Carlos Martin-Rivas and Laura
Senos by the invaluable mathematical conversations.

C.A.M. was partially supported by FAPERJ, CAPES, CNPq,
PRONEX-DYN. SYS. from Brazil and the Simón Boĺıvar University
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Chapter 1

Expansive measures

1.1 Definition and examples

In this section we introduce the definition of expansive measures for
homeomorphisms and present some examples. To motivate let us
recall the concept of expansive homeomorphism.

Definition 1.1. A homeomorphism f : X → X of a metric space
X is expansive if there is δ > 0 such that for every pair of different
points x, y ∈ X there is n ∈ Z such that d(fn(x), fn(y)) > δ.

An important remark is given below.

Remark 1.2. Equivalently, f is expansive if there is δ > 0 such that
Γδ(x) = {x} for all x ∈ X where

Γδ(x) = {y ∈ X : d(f i(x), f i(y)) ≤ δ,∀i ∈ Z}.

(Notation Γf
δ (x) will indicate dependence on f .)

This definition suggests further notions of expansiveness involving
a given property (P) of the closed sets in X. More precisely, we say
that f is expansive with respect to (P) if there is δ > 0 such that
Γδ(x) satisfies (P) for all x ∈ X.

For example, a homeomorphism is expansive it is expansive with
respect to the property of being a single point. Analogously, it is

1



2 [CAP. 1: EXPANSIVE MEASURES

h-expansive (c.f. [10]) if it is expansive with respect to the property
of being a zero entropy set. In this vein it is natural to consider the
property of having zero measure with respect to a given Borel prob-
ability measure μ of X. By Borel measure we mean a non-negative
σ-additive function μ defined in the Borel σ-algebra of X which is
non-zero in the sense that μ(X) > 0.

Definition 1.3. A expansive measure of homeomorphism f : X → X
of a metric space X is a Borel measure μ for which there is δ > 0
such that μ(Γδ(x)) = 0 for all x ∈ X. The constant δ will be referred
to as an expansivity constant of μ.

Let us present some examples related to this definition. Recall
that a Borel measure μ of a metric space X is a probability if μ(X) = 1
and non-atomic if μ({x}) = 0 for all x ∈ X.

Example 1.4. Every expansive measure is non-atomic. Therefore,
every metric space carrying homeomorphisms with expansive (prob-
ability) measures also carries a non-atomic Borel (probability) mea-
sure.

In the converse direction we have the following relation between
expansive homeomorphisms and expansive measures for homeomor-
phisms.

Example 1.5. If f : X → X is an expansive homeomorphism of
a metric space X, then every non-atomic Borel measure of X (if it
exists) is an expansive measure of f . Moreover, all such measures
have a common expansivity constant.

Example 1.5 motivates the question whether a homeomorphism
is expansive if it satisfies that every non-atomic Borel measure (if it
exists) is expansive with a common expansivity constant. We shall
give a partial positive answer based on the following definition (closely
related to that of expansive homeomorphism).

Definition 1.6. A homeomorphism f : X → X of a metric spaces X
is countably-expansive if there is δ > 0 such that Γδ(x) is countable,
∀x ∈ X.
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Clearly, every expansive homeomorphism is countably-expansive
but not conversely (as we shall see in Chapter 2). In addition, ev-
ery countably-expansive homeomorphism satisfies that all non-atomic
Borel probability measures (if they exist) are expansive with common
expansivity constant. The following result proves the converse of this
last assertion for Polish metric spaces, i.e., metric spaces which are
both complete and separable.

Proposition 1.7. The following properties are equivalent for every
homeomorphism f : X → X of a Polish metric space X:

1. f is countably-expansive.

2. All non-atomic Borel probability measures of X (if they exit)
are expansive with a common expansivity constant.

Proof. By the previous discussion we only have to prove that (2) im-
plies (1). Suppose by contradiction that all non-atomic Borel prob-
ability measures are expansive measures with a common expansivity
constant (say δ) but f is not countably-expansive. Then, there is
x ∈ X such that Γδ(x) is uncountable. Since Γδ(x) is also a closed
subset of X which is a Polish metric space, we have that Γδ(x) is
a Polish metric space too. Then, we can apply a result in [73] (e.g.
Theorem 8.1 p. 53 in [72]) to obtain a non-atomic Borel probability
μ of X supported on Γδ(x). For such a measure we would obtain
μ(Γδ(x)) = 1 a contradiction.

In light of this proposition it is natural to ask what can happen
if we still assume that all non-atomic Borel probability measure (if it
exist) are expansive but without assuming that they have a common
expansivity constant.

This question emphasizes the role of metric spaces for which there
are non-atomic Borel probability measures. For the sake of conve-
nience we call these spaces non-atomic metric spaces. The aforemen-
tioned result in [73] (stated in Theorem 8.1 p. 53 in [72]) implies that
every uncountable Polish metric space is a non-atomic metric space.
This includes the compact metric space containing perfect subsets
[55]. Every non-atomic metric space is uncountable.

Another related definition is as follows.
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Definition 1.8. A homeomorphism f : X → X of a non-atomic
metric space X is measure-expansive if every non-atomic Borel prob-
ability measure is expansive for f .

It is clear that every expansive homeomorphism of a non-atomic
metric space is measure-expansive. Moreover, as discussed in Exam-
ple 1.5, every countably-expansive homeomorphism of a non-atomic
metric space is measure-expansive. Although we obtain in Example
3.44 that there are measure-expansive homeomorphisms of compact
non-atomic metric spaces which are not expansive, we don’t know
any example of one which is not countably-expansive (see Problem
1.46). Some dynamical consequences of measure-expansivity resem-
bling expansivity will be given later on.

Further examples of homeomorphisms without expansive mea-
sures can be obtained as follows. Recall that an isometry of a metric
space X is a map f : X → X satisfying d(f(x), f(y)) = d(x, y) for
all x, y ∈ X.

Example 1.9. Every isometry of a separable metric space has no ex-
pansive measures. In particular, the identity map in these spaces (or
the rotations in R

2 or translations in R
n) are not measure-expansive

homeomorphisms.

Proof. Suppose by contradiction that there is a an expansive measure
μ for some isometry f of a separable metric space X. Since f is an
isometry we have Γδ(x) = B[x, δ], where B[x, δ] denotes the closed
δ-ball around x. If δ is an expansivity constant, then μ(B[x, δ]) =
μ(Γδ(x)) = 0 for all x ∈ X. Nevertheless, since X is separable (and
so Lindelöf), we can select a countable covering {C1, C2, · · · , Cn, · · · }
of X by closed subsets such that for all n there is xn ∈ X such that
Cn ⊂ B[xn, δ]. Thus, μ(X) ≤ ∑∞

n=1 μ(Cn) ≤ ∑∞
n=1 μ(B[xn, δ]) = 0

which is a contradiction. This proves the result.

Example 1.10. Endow R
n with a metric space with the Euclidean

metric and denote by Leb the Lebesgue measure in R
n. Then, Leb is

an expansive measure of a linear isomorphism f : R
n → R

n if and
only if f has eigenvalues of modulus less than or bigger than 1.

Proof. Since f is linear we have Γδ(x) = Γδ(0)+x thus Leb(Γδ(x)) =
Leb(Γδ(0)) for all x ∈ R

n and δ > 0. If f has eigenvalues of modulus
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less than or bigger than 1, then Γδ(0) is contained in a proper sub-
space of R

n which implies Leb(Γδ(0)) = 0 thus Leb is expansive.

Example 1.11. As we shall see later, a homeomorphism of a com-
pact interval has no expansive measures. In the circle the sole home-
omorphisms having such measures are the Denjoy ones.

Recall that a subset Y ⊂ X is invariant if f−1(Y ) = Y .

Example 1.12. A homeomorphism f has an expansive measure if
and only if there is an invariant borelian set Y of f such that the
restriction f/Y has an expansive measure.

Proof. We only have to prove the only if part. Assume that f/Y
has an expansive measure ν. Fix δ > 0. Since Y is invariant we
have either Γf

δ/2(x) ∩ Y = ∅ or Γf
δ/2(x) ∩ Y ⊂ Γf/Y

δ (y) for some

y ∈ Y . Therefore, either Γf
δ/2(x)∩Y = ∅ or μ(Γf

δ/2(x)) ≤ μ(Γf/Y
δ (y))

for some y ∈ Y where μ is the Borel probability of X defined by
μ(A) = ν(A ∩ Y ). From this we obtain that for all x ∈ X there is
y ∈ Y such that μ(Γf

δ/2(x)) ≤ ν(Γf/Y
δ (y)). Taking δ as an expansivity

constant of f/Y we obtain μ(Γf
δ/2(x)) = 0 for all x ∈ X thus μ is

expansive with expansivity constant δ/2.

The next example implies that the property of having expansive
measures is a conjugacy invariant. Given a Borel measure μ in X
and a homeomorphism φ : X → Y we denote by φ∗(μ) the pullback
of μ defined by φ∗(μ)(A) = μ(φ−1(A)) for all borelian A.

Example 1.13. Let μ be an expansive measure of a homeomorphism
f : X → X of a compact metric space X. If φ : X → Y is a
homeomorphism of compact metric spaces, then φ∗(μ) is an expansive
measure of φ ◦ f ◦ φ−1.

Proof. Clearly φ is uniformly continuous so for all δ > 0 there is ε > 0
such that Γφ◦f◦φ

ε (y) ⊂ φ(Γf
δ (φ−1(y))) for all y ∈ Y . This implies

φ∗(μ)(Γφ◦f◦φ
ε (y)) ≤ μ(Γf

δ (φ−1(y))).

Taking δ as the expansivity constant of μ we obtain that ε is an
expansivity constant of φ∗(μ).
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For the next example recall that a periodic point of a homeomor-
phism (or map) f : X → X is a point x ∈ X such that fn(x) = x for
some n ∈ N

+. The nonwandering set of f is the set Ω(f) of points
x ∈ X such that for every neighborhood U of x there is n ∈ N

+ satis-
fying fn(U)∩U 
= ∅. Clearly a periodic point belongs to Ω(f) but not
every point in Ω(f) is periodic. If X = M is a closed (i.e. compact
connected boundaryless Riemannian) manifold and f is a diffeomor-
phism we say that an invariant set H is hyperbolic if there are a con-
tinuous invariant tangent bundle decomposition THM = Es

H ⊕ Eu
H

and positive constants K, λ > 1 such that

‖Dfn(x)/Es
x‖ ≤ Kλ−n and m(Dfn(x)/Eu

x ) ≥ K−1λn,

for all x ∈ H and n ∈ IN (m denotes the co-norm operation in M).
We say that f is Axiom A if Ω(f) is hyperbolic and the closure of
the set of periodic points.

Example 1.14. Every Axiom A diffeomorphism with infinite non-
wandering set of a closed manifold has expansive measures.

Proof. Consider an Axiom A diffeomorphism f of a closed mani-
fold. It is well known that there is a spectral decomposition Ω(f) =
H1 ∪ · · · ∪ Hk consisting of finitely many disjoint homoclinic classes
H1, · · · ,Hk of f (see [40] for the corresponding definitions). Since
Ω(f) is infinite we have that H = Hi is infinite for some 1 ≤ i ≤ k.
As is well known f/H is expansive. On the other hand, H is compact
without isolated points since it is a homoclinic class. It follows from
Example 1.5 that f/H has an expansive measure, so, f also has by
Example 1.12.

We shall prove in the next section that every homeomorphism
with expansive measures of a compact metric space has uncountable
nonwandering set.

1.2 Expansive invariant measures

Let f : X → X be a continuous map of a metric space X. We
say that a Borel measure μ of X is invariant if f∗μ = μ. In this
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section we investigate the existence of expansive invariant measures
for homeomorphisms on compact metric spaces.

Indeed, every homeomorphism of a compact metric space carries
invariant measures, but not necessarily expansive measures (e.g. the
circle rotations). On the other hand, the homeomorphism f(x) = 2x
on the real line exhibits expansive probability measures (e.g. the
Lebesgue measure supported on the unit interval) but not expan-
sive invariant probability measures. The result of this section will
show that the situation described in this example does not occur on
compact metric spaces. More precisely, we will show that every home-
omorphism exhibiting expansive probability measures of a compact
metric space also exhibit expansive invariant probability measures.

We start with the following observation where f is assumed to be
a bijective map, namely,

f(Γδ(x)) = Γδ(f(x)), ∀(x, δ) ∈ X × R
+.

Using it we obtain the elementary lemma below.

Lemma 1.15. Let f : X → X be a homeomorphism of a metric
space X. If μ is an expansive measure with expansivity constant δ of
f , then so does f∗μ.

Proof. Applying the previous observation to f−1 we obtain

f∗μ(Γδ(x)) = μ(f−1(Γδ(x)) = μ(Γδ(f−1(x))) = 0

for all x ∈ X.

Another useful observation is as follows. Given a bijective map
f : X → X, x ∈ X, δ > 0 and n ∈ N

+ we define

V [x, n, δ] = {y ∈ X : d(f i(x), f i(y)) ≤ δ, for all − n ≤ i ≤ n},
i.e.,

V [x, n, δ] =
n⋂

i=−n

f−i(B[f i(x), δ]).

(when necessary we write Vf [x, n, δ] to indicate dependence on f .) It
is then clear that

Γδ(x) =
⋂

n∈N+

V [x, n, δ]
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and that V [x, n, δ] ⊃ V [x,m, δ] for n ≤ m. Consequently,

μ(Γδ(x)) = lim
l→∞

μ(V [x, kl, δ]) (1.1)

for every x ∈ X, δ > 0, every Borel probability measure μ of X, and
every sequence kl → ∞. From this we have the following lemma.

Lemma 1.16. Let f : X → X be a homeomorphism of a metric
space X. A Borel probability measure μ is an expansive measure of
f if and only if there is δ > 0 such that

lim inf
n→∞ μ(V [x, n, δ]) = 0, for all x ∈ X.

We shall use this information in the following lemma.

Lemma 1.17. If f : X → X is a homeomorphism of a metric space
X, then every invariant measure of f which is the limit (with respect
to the weak-* topology) of a sequence of expansive probability measures
with a common expansivity constant of f is expansive for f .

Proof. Denote by ∂A = Cl(A)\Int(A) the closure of a subset A ⊂ X.
Let μ be an invariant probability measure of f . As in the proof of
Lemma 8.5 p. 187 in [40] for all x ∈ X we can find δ

2 < δx < δ such
that

μ(∂(B[x, δx])) = 0.

This allows us to define

W [x, n] =
n⋂

i=−n

f−i(B[f i(x), δfi(x)]), ∀(x, n) ∈ X × N.

Since δ
2 < δx < δ we can easily verify that

V

[
x, n,

δ

2

]
⊂ W [x, n] ⊂ V [x, n, δ], ∀(x, n) ∈ X × N. (1.2)

Moreover, as f (and so f−i) are homeomorphisms one has

∂(W [x, n]) = ∂

(
n⋂

i=−n

f−i(B[f i(x), δfi(x)])

)
⊂
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n⋃
i=−n

∂
(
f−i(B[f i(x), δfi(x)])

)
=

n⋃
i=−n

f−i
(
∂(B[f i(x), δfi(x)])

)
,

and, since μ is invariant,

μ(∂(W [x, n])) ≤
n∑

i=−n

μ(f−i
(
∂(B[f i(x), δfi(x)])

)
) =

n∑
i=−n

μ(∂(B[f i(x), δfi(x)])) = 0,

proving
μ(∂(W [x, n])) = 0, ∀(x, n) ∈ X × N. (1.3)

Now, suppose that μ is the weak-* limit of a sequence of expansive
probability measures μn withoutcommon expansivity constant δ of f .
Clearly, μ is also a probability measure. Fix x ∈ X. Since each μn is
a probability we have 0 ≤ μm(W [x, n]) ≤ 1 for all n,m ∈ N. Then,
we can apply the Bolzano-Weierstrass Theorem to find sequences
kl, rs → ∞ for which the double limit

lim
l,s→∞

μrs
(W [x, kl])

exists.
On the one hand, for fixed l, using (1.3), μn → μ and well-known

properties of the weak-* topology (e.g. Theorem 6.1-(e) p. 40 in [72])
one has that the limit

lim
s→∞μrs

(W [x, kl]) = μ(W [x, kl])

exists.
On the other hand, the second inequality in (1.2) and (1.1) imply

for fixed s that

lim
l→∞

μrs
(W [x, kl]) ≤ lim

l→∞
μrs

(V [x, kl, δ]) = μrs
(Γδ(x)) = 0.

Consequently, the limit

lim
l→∞

μrs
(W [x, kl]) = 0
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also exists for fixed s.
From these assertions and well-known properties of double se-

quences one obtains

lim
l→∞

lim
s→∞μrs

(W [x, kl]) = lim
s→∞ lim

l→∞
μrs

(W [x, kl]) = 0.

But (1.2) implies

lim inf
n→∞ μ

(
V

[
x, n,

δ

2

])
≤ lim

l→∞
μ

(
V

[
x, kl,

δ

2

])
≤ lim

l→∞
μ(W [x, kl])

and μn → μ together with (1.3) yields

lim
l→∞

μ(W [x, kl]) = lim
l→∞

lim
s→∞μrs

(W [x, kl])

so

lim inf
n→∞ μ

(
V

[
x, n,

δ

2

])
= 0

and then μ is expansive by Lemma 1.16.

Using these lemmas we obtain the following result.

Theorem 1.18. A homeomorphisms of a compact metric space has
an expansive probability measure if and only if it has an expansive
invariant probability measure.

Proof. Let μ be an expansive measure (with expansivity constant δ)
of a homeomorphism f : X → X of a compact metric space X.
By Lemma 1.15 we have that f i

∗μ is also an expansive probability
measure with expansivity constant δ (∀i ∈ Z). Therefore,

μn =
1
n

n−1∑
i=0

f i
∗μ, n ∈ N

+

is a sequence of expansive probability measures of f with common
expansivity constant δ. As X is compact there is a subsequence
nk → ∞ such that μnk

converges to a Borel probability measure μ.
Since μ is clearly invariant we can apply Lemma 1.17 to this sequence
to obtain that μ is expansive.
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A direct consequence of Theorem 1.18 is as follows. First of all
denote by supp(μ) the support of a Borel measure μ. Given a metric
space X and a map f : X → X we define the omega-limit set of
x ∈ X,

ω(x) =
{

y ∈ X : y = lim
k→∞

fnk(x) for some sequence nk → ∞
}

.

The recurrent set of f is given by

R(f) = {x ∈ X : x ∈ ω(x)}.
With these definitions we have the following corollary. Denote by
supp(μ) the support of a Borel measure μ of a metric space X.

Corollary 1.19. The recurrent (and hence the nonwandering) sets
of every homeomorphism with expansive probability measures of a
compact metric space is uncountable.

Proof. Let f : X → X be a homeomorphism with an expansive
probability measure μ of a compact metric space X. By Theorem
1.18 we can assume that μ is invariant, and so, supp(μ) ⊂ R(f) by the
Poincaré Recurrent Theorem. If R(f) were countable we would have
μ(supp(μ)) ⊂ μ(R(f)) = 0 which is absurd thus R(f) is uncountable.

1.3 Equivalences

In this section we present some equivalences for the expansivity of a
given measure. Hereafter all metric spaces X under consideration will
be compact unless otherwise stated. We also fix a Borel probability
measure μ of X and a homeomorphism f : X → X.

To start we observe an apparently weak definition of expansive
measure saying that μ is an expansive measure of f if there is δ > 0
such that μ(Γδ(x)) = 0 for μ-a.e. x ∈ X. However, this definition
and the previous one are in fact equivalent by the following lemma.

Lemma 1.20. Let f : X → X be a homeomorphism of a com-
pact metric space X. Then, a Borel probability measure μ of X is
an expansive measure of f if and only if there is δ > 0 such that
μ(Γδ(x)) = 0 for μ-a.e. x ∈ X.



12 [CAP. 1: EXPANSIVE MEASURES

Proof. We only need to prove the if part. Let δ > 0 be such that
μ(Γδ(x)) = 0 for μ-a.e. x ∈ X. We shall prove that δ/2 is an
expansiveness constant of μ. Suppose by contradiction that it is
not so. Then, there is x0 ∈ X such that μ(Γδ/2(x0)) > 0. Denote
A = {x ∈ X : μ(Γδ(x)) = 0} so μ(A) = 1. Since μ is a probability
measure we obtain A ∩ Γδ/2(x0) 
= ∅ so there is y0 ∈ Γδ/2(x0) such
that μ(Γδ(y0)) = 0.

Now, since y0 ∈ Γδ/2(x0) we have Γδ/2(x0) ⊂ Γδ(y0). Indeed
d(f i(x), f i(x0)) ≤ δ/2 (∀i ∈ N) implies

d(f i(x), f i(y0)) ≤ d(f i(x), f i(x0)) + d(f i(x0), f i(y0)) ≤

δ/2 + δ/2 = δ, ∀i ∈ N

proving the assertion. It follows that μ(Γδ/2(x0)) ≤ μ(Γδ(y0)) = 0
which is a contradiction. This proves the result.

In particular, we have the following corollary.

Corollary 1.21. Let f : X → X be a homeomorphism of a compact
metric space X. Then, a Borel probability measure μ is an expansive
measure of f if and only if there is δ > 0 such that μ(Γδ(x)) = 0 for
all x ∈ supp(μ).

A direct application of Lemma 1.16 is the following version of a
well-known property of the expansive homeomorphisms (see Corol-
lary 5.22.1-(ii) of [89]).

Proposition 1.22. Let f : X → X a homeomorphism and μ be a
Borel probability measure of a compact metric space X. If n ∈ Z\{0},
then μ is an expansive measure of f if and only if it is an expansive
measure of fn.

Proof. We can assume that n > 0. First notice that Vf [x, n · m, δ] ⊂
Vfn [x,m, δ]. If μ is an expansive measure of fn is expansive then by
Lemma 1.16 there is δ > 0 such that for every x ∈ X there is a se-
quence mj → ∞ such that μ(Vfn [x,mj , δ]) → 0 as j → ∞. Therefore
μ(Vf [x, n ·mj , δ]) → 0 as j → ∞ yielding lim infn→∞ μ(Vf [x, n, δ]) =
0. Since x is arbitrary we conclude that μ is expansive with constant
δ.
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Conversely, suppose that μ is an expansive measure of f with
constant δ. Since X is compact and n is fixed we can choose 0 < ε < δ
such that if d(x, y) ≤ ε, then d(f i(x), f i(y)) < δ for all −n ≤ i ≤ n.
With this property one has Γfn

ε (x) ⊂ Γf
δ (x) for all x ∈ X thus μ is

an expansive measure of fn with constant ε.

One more equivalence is motivated by a well known condition for
expansiveness. Given metric spaces X and Y we always consider the
product metric in X × Y defined by

d((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2).

If μ and ν are measures in X and Y respectively we denote by μ× ν
their product measure in X × Y . If f : X → X and g : Y → Y we
define their product f × g : X × Y → X × Y ,

(f × g)(x, y) = (f(x), g(y)).

Notice that f × g is a homeomorphism if f and g are. Denote by
Δ = {(x, x) : x ∈ X} the diagonal of X × X.

Given a map g of a metric space Y we call an invariant set I
isolated if there is a compact neighborhood U of it such that

I = {z ∈ U : gn(z) ∈ U,∀n ∈ Z}.
As is well known, a homeomorphism f of X is expansive if and only
if the diagonal Δ is an isolated set of f × f (e.g. [4]). To express the
corresponding version for expansive measures we introduce the fol-
lowing definition. Let ν be a Borel probability measure of Y . We call
an invariant set I of g ν-isolated if there is a compact neighborhood
U of I such that

ν({z ∈ Y : gn(z) ∈ U,∀n ∈ Z}) = 0.

With this definition we have the following result in which we write
μ2 = μ × μ.

Theorem 1.23. Let f : X → X be a homeomorphism of a compact
metric space X. Then, a Borel probability measure μ of X is an
expansive measure of f if and only if the diagonal Δ is a μ2-isolated
set of f × f .
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Proof. Fix δ > 0 and a δ-neighborhood Uδ = {z ∈ X ×X : d(z,Δ) ≤
δ} of Δ. For simplicity we set g = f × f .

We claim that

{z ∈ X × X : gn(z) ∈ Uδ, ∀n ∈ Z} =
⋃

x∈X

({x} × Γδ(x)). (1.4)

In fact, take z = (x, y) in the left-hand side set. Then, for all
n ∈ Z there is pn ∈ X such that d(fn(x), pn) + d(fn(y), pn) ≤ δ
so d(fn(x), fn(y)) ≤ δ for all n ∈ Z which implies y ∈ Γδ(x). There-
fore z belongs to the right-hand side set. Conversely, if z = (x, y) is
in the right-hand side set then d(fn(x), fn(y)) ≤ δ for all n ∈ Z so
d(gn(x, y), (fn(x), fn(x))) = d(fn(x), fn(y)) ≤ δ for all n ∈ Z which
implies that z belongs to the left-hand side set. The claim is proved.

Let F be the characteristic map of the left-hand side set in (1.4).
It follows that F (x, y) = χΓδ(x)(y) for all (x, y) ∈ X ×X where χA if
the characteristic map of A ⊂ X. So,

μ2({z ∈ X × X : gn(z) ∈ Uδ, ∀n ∈ Z}) =

∫
X

∫
X

χΓδ(x)(y)dμ(y)dμ(x). (1.5)

Now suppose that μ is an expansive measure of f with constant δ. It
follows that ∫

X

χΓδ(x)(y)dμ(y) = 0, ∀x ∈ X

therefore μ2({z ∈ X × X : gn(z) ∈ Uδ, ∀n ∈ Z}) = 0 by (1.5).
Conversely, if μ2({z ∈ X×X : gn(z) ∈ Uδ, ∀n ∈ Z}) = 0 for some

δ > 0, then (1.5) implies that μ(Γδ(x)) = 0 for μ-almost every x ∈ X.
Then, μ is expansive by Lemma 1.20. This ends the proof.

Our final equivalence is given by using the idea of generators (see
[89]). Call a finite open covering A of X μ-generator of a homeomor-
phism f if for every bisequence {An : n ∈ Z} ⊂ A one has

μ

(⋂
n∈Z

fn(Cl(An))

)
= 0.
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Theorem 1.24. Let f : X → X be a homeomorphism of a compact
metric space X. Then, a Borel probability measure μ is an expansive
measure of f if and only if f has a μ-generator.

Proof. First suppose that μ is expansive and let δ be its expansivity
constant. Take A as the collection of the open δ-balls centered at
x ∈ X. Then, for any bisequence An ∈ A one has⋂

n∈Z

fn(Cl(An)) ⊂ Γδ(x), ∀x ∈
⋂
n∈Z

fn(Cl(An)),

so

μ

(⋂
n∈Z

fn(Cl(An))

)
≤ μ(Γδ(x)) = 0.

Therefore, A is a μ-generator of f .
Conversely, suppose that f has a μ-generator A and let δ > 0 be

a Lebesgue number of A. If x ∈ X, then for every n ∈ Z there is
An ∈ A such that the closed δ-ball around fn(x) belongs to Cl(An).
It follows that

Γδ(x) ⊂
⋂
n∈N

f−n(Cl(An))

so μ(Γδ(x)) = 0 since A is a μ-generator.

1.4 Properties

Consider any map f : X → X in a metric space X. We already
defined the omega-limit set ω(z) of z. In the invertible case we also
define the alpha-limit set

α(z) =
{

y ∈ X : y = lim
k→∞

fnk(z) for some sequence nk → −∞
}

.

Following [74] we say that z is a point with converging semiorbits
under a bijective map f : X → X if both α(z) and ω(z) reduce to
singleton.

Denote by A(f) the set of points with converging semiorbits under
f .
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An useful tool to study A(f) is as follows. For all x, y ∈ X,
n ∈ N

+ and m ∈ N we define A(x, y, n,m) as the set of points z ∈ X
satisfying

A(x, y, n,m) =
{

z : max{d(f−i(z), x), d(f i(z), y)} ≤ 1
n

, ∀i ≥ m

}
.

An useful property of this set is given by the following lemma.

Lemma 1.25. For every bijective map f : X → X of a separable
metric space X there is a sequence xk ∈ X satisfying

A(f) ⊂
⋂

n∈N+

⋃
k,k′,m∈N+

A(xk, xk′ , n,m). (1.6)

Proof. Since X is separable there is a dense sequence xk. Take z ∈
A(f) and n ∈ N

+. As z ∈ A(f) there are points x, y such that
α(z) = x and ω(z) = y. Then, there is m ∈ N

+ such that

max{d(f−i(z), x), d(f i(z), y)} ≤ 1
2n

, ∀i ≥ m.

Since xk is dense there are k, k′ ∈ N
+ such that

max{d(x, xk), d(y, xk′)} ≤ 1
2n

.

Therefore,

d(f−i(z), xk) ≤ d(f−i(z), x) + d(x, xk) ≤ 1
2n

+
1
2n

=
1
n

,

and, analogously,

d(f i(z), xk) ≤ d(f i(z), x) + d(x, xk′) ≤ 1
2n

+
1
2n

=
1
n

,

for all i ≥ m proving z ∈ A(xk, xk′ , n,m) so (1.6) holds.

An old result by Reddy [74] is stated below. For completeness we
include its proof here (for another proof see Theorem 2.2.22 in [5]).

Theorem 1.26. The set of points with converging semiorbits under
a expansive homeomorphism of a compact metric space is countable.



[SEC. 1.4: PROPERTIES 17

Proof. Let f : X → X be the expansive homeomorphism in the
statement. Since compact metric spaces are separable we can choose
a sequence xk as in Lemma 1.25. Suppose by contradiction that A(f)
is uncountable. Applying (1.6) we see that

⋃
k,k′,m∈N+

A(xk, xk′ , n,m)

is uncountable for all n ∈ N
+. Fix an expansivity constant e of f and

a positive integer n with 1
n ≤ e

2 . Then, there are k, k′,m ∈ N such
that A(xk, xk′ , n,m) is uncountable (and so infinite). Therefore, as
X is compact, there are distinct z, w ∈ A(xk, xk′ , n,m) such that

d(f i(z), f i(w)) < e, ∀|i| ≤ m.

As z, w ∈ A(xk, xk′ , n,m) we also have

d(f−i(z), f−i(w)) ≤ d(f−i(z), xk) + d(f−i(w), xk) ≤ e

2
+

e

2
= e

and
d(f i(z), f i(w)) ≤ d(f i(z), xk′) + d(f i(w), xk′) ≤

e

2
+

e

2
= e, ∀|i| ≥ m.

Consequently w ∈ Γe(z) contradicting that e is an expansivity con-
stant of f . Therefore A(f) is countable and the proof follows.

In light of this result we can ask if there is a version of it for
expansive measures. Since countable sets corresponds naturally to
zero measure sets it seems natural to prove the following result. Its
proof follows by adapting the aforementioned proof of Theorem 1.26
to the measure theoretical context.

Theorem 1.27. The set of points with converging semiorbits under
a homeomorphism of a separable metric space has zero measure with
respect to any expansive measure.

Proof. Let f : X → X the homeomorphism in the statement and xk

be a sequence as in Lemma 1.25. Suppose by contradiction that there
is an expansive measure μ such that μ(A(f)) > 0. Applying (1.6) we
get

μ

⎛
⎝ ⋃

k,k′,m∈N+

A(xk, xk′ , n,m)

⎞
⎠ > 0 ∀n ∈ N

+.
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Fix an expansivity constant e of μ and a positive integer n ≤ e
2 . By

the previous inequality there are k, k′,m ∈ N such that

μ(A(xk, xk′ , n,m)) > 0.

Let us prove that there is z ∈ A(xk, xk′ , n,m) and δ0 > 0 satisfying

μ(A(xk, xk′ , n,m) ∩ B[z, δ]) > 0, ∀0 < δ < δ0, (1.7)

where B[·, δ] indicates the closed δ-ball operation.
Otherwise, for every z ∈ A(xk, xk′ , n,m) we could find δz > 0

such that
μ(A(xk, xk′ , n,m) ∩ B[z, δz]) = 0.

Clearly {
B

(
z,

δz

2

)
: z ∈ A(xk, xk′ , n,m)

}

is an open covering of A(xk, xk′ , n,m). As X is a separable metric
space we have that A(xk, xk′ , n,m) also does, and, since separable
metric spaces are Lindelöf, we have that the above open covering has
a countable subcover {Bi : i ∈ N} (say). Therefore,

μ(A(xk, xk′ , n,m)) ≤
∑
i∈N

μ(A(xk, xk′ , n,m) ∩ Bi) = 0

which is absurd. This proves the existence of z and δ0 > 0 satisfying
(1.7).

On the other hand, as f is continuous, and both z and m are
fixed, we can also find 0 < δ1 < δ0 satisfying

d(f i(z), f i(w)) ≤ e

2
whenever |i| ≤ m and d(z, w) < δ1.

We claim that

A(xk, xk′ , n,m) ∩ B[z, δ1] ⊂ Γe(z).

Indeed, take w ∈ A(xk, xk′ , n,m) ∩ B[z, δ1].
Since w ∈ B[z, δ1] one has d(z, w) < δ1 so

d(f i(w), f i(z)) ≤ e, ∀ − m ≤ i ≤ m.



[SEC. 1.4: PROPERTIES 19

Since z, w ∈ A(xk, xk′ , n,m) and 1
n ≤ e

2 one has

d(f−i(w), f−i(z)) ≤ d(f−i(w), xk) + d(f−i(z), xk) ≤ e

and

d(f i(w), f i(z)) ≤ d(f i(w), xk′) + d(f i(z), xk′) ≤ e, ∀|i| ≥ m.

All this together yield w ∈ Γe(z) and the claim follows. Therefore,

0 < μ(A(xk, xk′ , n,m) ∩ B[z, δ1]) ≤ μ(Γe(z))

which is absurd since e is an expansivity constant. This ends the
proof.

Remark 1.28. If f is an expansive homeomorphism of a compact
metric space, then every non-atomic Borel probability measure is an
expansive measure of f . Then, Theorem 1.27 implies that the set
of points with converging semiorbits under f has zero measure with
respect to any non-atomic Borel probability measure. From this and
well-known measure-theoretical results [73] we obtain that the set of
points with converging semiorbits under f is countable. This provides
another proof of the Reddy’s result [74].

The following lemma will be useful in the next proof.

Lemma 1.29 (see Lemma 4 p. 72 in [16]). If f : X → X is a
continuous map of a compact metric space X and ω(x) is finite for
some x ∈ X, then there is a periodic point z ∈ X of f such that
d(fn(x), fn(z)) → 0 as n → ∞.

Proof. Take any nonempty proper closed subset F ⊂ ω(x). We claim
that F ∩Cl(ω(x)\F ) 
= ∅. Otherwise there are open sets O1, O2 such
that ω(x)\F ⊂ O1, F ⊂ O2 and Cl(O2)∩f(Cl(O1)) = ∅. For n large,
fn(x) belongs to O1 or O2 and in both for infinitely many n’ s. Then,
there is an infinite sequence nk with fnk(x) ∈ O1 and fnk+1(x) ∈ O2.
Any limit point y of fnk(x) satisfies y ∈ Cl(O1) ∩ f−1(Cl(O2)) thus
Cl(O2) ∩ f(Cl(O1)) 
= ∅ which is absurd. This proves the claim.

Since ω(x) is finite there is a periodic orbit P ⊂ ω(x). If P 
= ω(x)
we could apply the claim to the closed subset F = ω(x) \ P yielding
(ω(x) \P )∩P 
= ∅ which is absurd. Therefore, P = ω(x) from which
the result easily follows.
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By heteroclinic point of a bijective map f : X → X on a met-
ric space X we mean any point for which both the alpha and the
omega-limit sets reduce to periodic orbits. The lemma below relates
homoclinic and points with converging semiorbits. Denote by Het(f)
the set of heteroclinic points of f .

Lemma 1.30. If f : X → X is a homeomorphism of a compact
metric space X, then

Het(f) ⊂
⋃

n∈N+

A(fn).

Proof. If x ∈ Het(f), then both α(x) and ω(x) are finite sets. Apply-
ing Lemma 1.29 we get a periodic point y such that d(fn(x), fn(y)) →
0 as n → ∞. Denoting by ny the period of y we get d(fkny (x), y) → 0
as k → ∞ and so ωfny (x) = {y}. Analogously, αfnz (x) = {z} for
some periodic point z of period nz. Taking n = nynz we obtain
n ∈ N

+ such that αfn(x) = z and ωfn(x) = y so x ∈ A(fn) and the
inclusion follows.

Theorem 1.27 and Lemma 1.30 have the following consequence.

Theorem 1.31. The set of heteroclinic points of a homemorphism in
a compact metric space has measure zero with respect to any expansive
measure.

Proof. Let f : X → X be a homeomorphism of a compact metric
space. By Lemma 1.30 we have that the set of heteroclinic points
satisfies the inclusion Het(f) ⊂

⋃
n∈N+

A(fn). Now, take any expansive

measure μ of f . By Lemma 1.22 we have that μ is also an expansive
measure of fn, and so, μ(A(fn)) = 0 for all n ∈ N

+ by Theorem
1.27. Then, the inclusion above implies

μ(Het(f)) ≤
∑

n∈N+

μ(A(fn)) = 0

proving the result.

A consequence of the above result is given below.
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Corollary 1.32. A homeomorphism with finite nonwandering set of
a compact metric space has no expansive measures.

Proof. This follows from Theorem 1.31 since every point for such
homeomorphisms is heteroclinic.

(In the probability case this corollary is a particular case of Corol-
lary 1.19).

Another consequence is the following version of Theorem 3.1 in
[86]. Denote by Per(f) the set of periodic points of f .

Corollary 1.33. The set of periodic points of a homeomorphism of a
compact metric space has measure zero with respect to any expansive
measure.

Proof. Let μ be an expansive measure of a homeomorphism f of a
compact metric space. Denoting by Fix(f) = {x ∈ X : f(x) = x} the
set of fixed points of a map f we have Per(f) = ∪n∈N+Fix(fn). Now,
μ is an expansive measure of fn by Proposition 1.22 and every element
of Fix(fn) is a heteroclinic point of fn thus μ(Fix(fn)) = 0 for all n by
Theorem 1.27. Therefore, μ(Per(f)) ≤∑n∈N+ μ(Fix(fn)) = 0.

We finish this section by describing the expansive measures in di-
mension one. To start with we prove that there are no such measures
for homeomorphisms of compact intervals.

Theorem 1.34. A homeomorphism of a compact interval has no
expansive measures.

Proof. Suppose by contradiction that there is an expansive measure
μ for some homeomorphism f of I. Since f is continuous we have
that Fix(f) 
= ∅. Such a set is also closed since f is continuous,
so, its complement I\Fix(f) in I consists of countably many open
intervals J . It is also clear that every point in J is a point with
converging semi-orbits therefore μ(I\ Fix(f)) = 0 by Theorem 1.27.
But μ(Fix(f)) = 0 by Corollary 1.33 so μ(I) = μ(Fix(f)) + μ(I\
Fix(f)) = 0 which is absurd.

Next, we shall consider the circle S1. Recall that an orientation-
preserving homeomorphism of the circle S1 is Denjoy if it is not
topologically conjugated to a rotation [40].
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Theorem 1.35. A circle homeomorphism has expansive measures if
and only if it is Denjoy.

Proof. Let f be a Denjoy homeomorphism of S1. As is well known
f has no periodic points and exhibits a unique minimal set Δ which
is a Cantor set [40]. In particular, Δ is compact without isolated
points thus it exhibits a non-atomic Borel probability meeasure ν (c.f.
Corollary 6.1 in [73]). On the other hand, one sees as in Example 1.2
of [25] that f/Δ is expansive so ν is an expansive measure of f/Δ.
Then, we are done by Example 1.12.

Conversely, let μ be an expansive measure of a homeomorphism
f : S1 → S1 and suppose by contradiction that f is not Denjoy. Then,
either f has periodic points or is conjugated to a rotation (c.f. [40]).
In the first case we can assume by Proposition 1.22 that f has a fixed
point. Then, we can cut open S1 along the fixed point to obtain an
expansive measure for some homeomorphism of I which contradicts
Theorem 1.34. In the second case we have that f is conjugated to
a rotation. Since μ is expansive it would follow from Example 1.13
that there are circle rotations with expansive measures. However,
such rotations cannot exist by Example 1.9 since they are isometries.
This contradiction proves the result.

In particular, there are no expansive measures for C2 diffeomor-
phisms of S1. Similarly, there are no such measures for diffeomor-
phisms of S1 with derivative of bounded variation.

1.5 Probabilistic proofs in expansive sys-
tems

The goal of this short section is to present the proof of some results
in expansive systems using the ours.

To start with we shall prove the following result.

Proposition 1.36. The set of periodic points of a measure-expansive
homeomorphism f : X → X of a compact metric space X is count-
able.

Proof. Since Per(f) = ∪n∈N+Fix(fn) it suffices to prove that Fix(fn)
is countable for all n ∈ N

+. Suppose by contradiction that Fix(fn) is
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uncountable for some n. Since f is continuous we have that Fix(fn)
is also closed, so, it is complete and separable with respect to the
induced topology. Thus, by Corollary 6.1 p. 210 in [73], there
is a non-atomic Borel probability measure ν in Fix(fn). Taking
μ(A) = ν(Y ∩ A) for all borelian A of X we obtain a non-atomic
Borel probability measure μ of X satisfying μ(Fix(fn)) = 1. Since
Fix(fn) ⊂ Per(f) we conclude that μ(Per(f)) = 1. However, μ is
an expansive measure of f thus μ(Per(f)) = 0 by Corollary 1.33, a
contradiction. This contradiction yields the result.

Since every expansive homeomorphism of a compact metric space
is measure-expansive the above proposition yields another proof of
the following result due to Utz (see Theorem 3.1 in [86]).

Corollary 1.37. The set of periodic points of an expansive homeo-
morphism of a compact metric space is countable.

A second result is as follows.

Proposition 1.38. Measure-expansive homeomorphisms of compact
intervals do not exist.

Proof. Suppose by contradiction that there is a measure-expansive
homeomorphism of a compact interval I. Since the Lebesgue measure
Leb of I is non-atomic we obtain that Leb is an expansive measure
of f . However, there are no such measures for such homeomorphisms
by Theorem 1.34.

From this we obtain another proof of the following result by Ja-
cobson and Utz [46] (details in [19]).

Corollary 1.39. There are no expansive homeomorphisms of a com-
pact interval.

The following lemma is motivated by the well known property
that for every homeomorphism f of a compact metric space X one
has that supp(μ) ⊂ Ω(f) for all invariant Borel probability measure
μ of f . Indeed, we shall prove that this is true also for all expansive
measure oif every homeomorphism of S1 even in the noninvariant
case.
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Lemma 1.40. If f : S1 → S1 is a homeomorphism, then supp(μ) ⊂
Ω(f) for every expansive measure μ of f .

Proof. Suppose by contradiction that there is x ∈ supp(μ) \Ω(f) for
some expansive measure μ of f . Let δ be an expansivity constant of
μ. Since x /∈ Ω(f) we can assume that the collection of open intervals
fn(B(x, δ)) as n runs over Z is disjoint. Therefore, there is N ∈ N

such that the length of fn(B(x, δ)) is less than δ for |n| ≥ N .
From this and the continuity of f we can arrange ε > 0 such that

B(x, ε) ⊂ Γδ(x) therefore μ(Γδ(x)) ≥ μ(B(x, ε)) > 0 as x ∈ supp(μ).
This contradicts the expansiveness of μ and the result follows.

A direct consequence of this lemma is the following.

Corollary 1.41. A homeomorphism of S1 has no expansive measures
supported on S1.

Proof. Suppose by contradiction that there is a homeomorphism f :
S1 → S1 exhibiting an expansive measure μ with supp(μ) = S1. By
Theorem 1.35 we have that f is Denjoy, and so, Ω(f) is nowhere
dense. However, we have by Lemma 1.40 that supp(μ) ⊂ Ω(f) so S1

is nowhere dense too which is absurd.

This corollary implies immediately the following one.

Corollary 1.42. There are no measure-expansive homeomorphisms
of S1.

Proof. If there were such homeomorphisms in S1, then the Lebesgue
measure would be an expansive measure of some homeomorphism of
S1 contradicting Corollary 1.41.

From this we obtain the following classical fact due to Jacobsen
and Utz [46]. Classical proofs can be found in Theorem 2.2.26 in [5],
Subsection 2.2 of [25], Corollary 2 in [74] and Theorem 5.27 of [89].

Corollary 1.43. There are no expansive homeomorphisms of S1.
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1.6 Exercices

Exercice 1.44. Prove that the set of heteroclinic points of a homeomorphism

of a compact metric space is Borel measurable.

Exercice 1.45. Are there homeomorphisms of compact metric spaces exhibiting

a unique expansive measure? (Just in case prove that such a measure is invariant).

Exercice 1.46. Are there measure-expansive homeomorphisms of compact non-

atomic metric spaces which are not countably-expansive?

Exercice 1.47. Prove (or disprove) that every homeomorphism possessing an

expansive probability measure on a compact metric space also possesses ergodic ex-

pansive invariant probability measures.

Exercice 1.48. Are there measure-expansive homeomorphisms of S2?

Exercice 1.49. It is well known that, for expansive homeomorphisms f on com-

pact metric spaces, the entropy map μ �→ hμ(f) is uppersemicontinuous [89]. Are

the expansive measures for homeomorphisms on compact metric space uppersemi-

continuity points of the corresponding entropy map?

Exercice 1.50. It is well known that every compact metric space supporting

expansive homeomorphisms has finite topological dimension [62]. Is the support

of an expansive measure of a homeomorphisms of a compact metric space finite

dimensional?

Exercice 1.51. A bijective map f : X → X of a metric space X is distal if

inf
n∈Z

d(fn(x), fn(y)) > 0, ∀x ∈ X.

It is well known that a distal homeomorphism has zero topological entropy ([8],[36],

[68]). Are there distal homeomorphisms with expansive measures of compact metric

spaces.

Exercice 1.52. A generalization of the previows problem can be stated as fol-

lows. A Li-Yorke pair of a continuous map f : X → X is a pair (x, y) ∈ X × X

which is proximal (i.e. lim infn→∞ d(fn(x), fn(y)) = 0) but not asymptotic (i.e.

lim supn→∞ d(fn(x), fn(y)) > 0). We say that f is almost distal if it has no Li-

Yorke pairs. Every distal homeomorphism is almost distal but not conversely. On the

other hand, almost distal maps on compact metric space have some similarities with

the distal ones as, in particular, all of them have zero topological entropy [15]. Prove

(or disprove) that every almost distal homeomorphism of a compact metric space has

expansive measures.
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Exercice 1.53. Prove that the space of expansive measures Mexp(f) of a mea-
surable map f : X → X on a metric space X is a cone, i.e., αμ + ρ ∈ Mexp(f)
whenever α ∈ R

+ and μ, ρ ∈ Mexp(f). Furthermore, if φ : X → Y is a conjugation
between f and another measurable map g : Y → Y of a metric space Y , then

f∗(Mexp(f)) = Mexp(g).

Exercice 1.54. Prove that if f : S1 → S1 is a local homeomorphism of the

circle S1, then the Lebesgue measure is expansive for f if and only if f is expansive.

Exercice 1.55. Given metric spaces (X, dX) and (Y, dY ) we define the metric

dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, y1), dY (x2, y2)} in X × Y . With respect

to this metric prove that if μ and ν are expansive measures of the homeomorphisms

f : X → X and g : Y → Y , then so is the product measure μ × ν of X × Y for the

product map f × g. Give a counterexample for the converse (see Exercice 1.56).

Exercice 1.56. Let f : X → X be a homeomorphism of a metric space X.

Prove that a Borel measure μ of X is expansive for f if and only if the product

measure μ × Leb of μ with the Lebesgue measure Leb of [0, 1] is expansive for the

product map f × Id : X × [0, 1] → X × [0, 1], where Id is the identity map of [0, 1].

Exercice 1.57. Prove that a homeomorphim f : D → D of the closed unit

2-disk D ⊂ R
2 for which the alpha-limit set α(x) = (0, 0) for all x ∈ Int(D) has no

expansive measures.

Exercice 1.58. We say that a homeomorphism f : X → X of a metric space

X is proximal if infn∈Z d(fn(x), fn(y)) = 0 for every x, y ∈ X. Find examples

of proximal homeomorphisms of compact metric spaces with and without expansive

measures.

Exercice 1.59. Motivated by [75] we call a non-trivial Borel measure μ of a

metric space X pointwise expansive for a homeomorphism f : X → X if for every

x ∈ X there is δx > 0 such that μ(Γδx(x)) = 0. Investigate the vality (or not) of the

results of this chapter for pointwise expansive measures instead of expansive ones.

Exercice 1.60. Prove that the property of being an expansive measure is a

metric invariant in the following sense: If f : X → X is a homeomorphism of a

metric space (X, d) and d′ is a metric of X equivalent to d, then a Borel measure is

expansive for f if and only if it does for f : (X, d′) → (X, d′).



Chapter 2

Finite expansivity

2.1 Introduction

We already seem that every expansive homeomorphism of a non-
atomic metric space is measure-expansive (i.e. it satisfies that every
non-atomic Borel probability measure is an expansive measure). It is
then natural to ask if the converse property holds, i.e., is a measure-
expansive homeomorphism of a non-atomic metric space expansive?
The results of this chapter will provide negative answer for this ques-
tion even on compact metric spaces (see Exercice 3.44).

2.2 Preliminaries

In this section we establish some topological preliminaries. Let X a
set and n be a nonnegative integer. Denote by #A the cardinality of
A. The set of metrics of X (including ∞-metrics [32]) will be denoted
by M(X). Sometimes we say that ρ ∈ M(X) has a certain property
whenever its underlying metric space (X, ρ) does. For example, ρ is
compact whenever (X, ρ) is, a point a is ρ-isolated in A ⊂ X if it is
isolated in A with respect to the metric space (X, ρ), etc.. The closure
operation in (X, ρ) will be denoted by Clρ(·). A map f : X → X
is a ρ-homeomorphism if it is a homeomorphism of the metric space
(X, ρ). If x ∈ X and δ > 0 we denote by Bρ[x, δ] the closed δ-ball

27
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around x (or B[x, δ] if there is no confusion).
Given ρ ∈ M(X) and A ⊂ X we say that ρ is n-discrete on A if

there is δ > 0 such that #(B[x, δ]∩A) ≤ n for all x ∈ A. Equivalently,
if there is δ > 0 such that #(B[x, δ] ∩ A) ≤ n for all x ∈ X. When
necessary we emphasize δ by saying that ρ is n-discrete on A with
constant δ. We say that ρ is n-discrete if it is n-discrete on X. Clearly
ρ is n-discrete on A if and only if the restricted metric ρ/A ∈ M(A)
defined by ρ/A(a, b) = ρ(a, b) for a, b ∈ A is n-discrete.

Evidently, there are no 0-discrete metrics and the 1-discrete met-
rics are precisely the discrete ones. Since every n-discrete metric is
m-discrete for n ≤ m one has that every discrete metric is n-discrete.
There are however n-discrete metrics which are not discrete. More-
over, we have the following example (1).

Example 2.1. Every infinite set X carries an n-discrete metric
which is not (n − 1)-discrete.

Indeed, if n = 1 we simply choose ρ as the standard discrete
metric δ(x, y) defined by δ(x, y) = 1 whenever x 
= y. Otherwise, we
can arrange n disjoint sequences x1

k, x2
k · · · , xn

k in X and define ρ by
ρ(x, y) = 1

4+k (if (x, y) = (xi
k, xj

k) for some k ∈ N and 1 ≤ i 
= j ≤ n)
and ρ(x, y) = δ(x, y) (if not).

On the one hand, ρ is n-discrete with constant δ = 1
4 since B

[
x, 1

4

]
is either {x1

k, · · · , xn
k} or {x} (depending on the case) and, on the

other, ρ is not (n − 1)-discrete since for all δ > 0 the set of points x
for which #B[x, δ] = n is infinite (e.g. take x = x1

k with k large).

Remark 2.2. None of the metrics in Example 2.1 can be compact
for, otherwise, we could cover X with finitely many balls of radius
δ = 1/4 which would imply that X is finite.

In the sequel we present some basic properties of n-discrete met-
rics. Clearly if ρ is n-discrete on A, then it is also n-discrete on B for
all B ⊂ A. Moreover, if ρ is n-discrete on A and m-discrete on B,
then it is (n + m)-discrete on A∪B. A better conclusion is obtained
when the distance between A and B is positive.

Lemma 2.3. If ρ is n-discrete on A, m-discrete on B and ρ(A,B) >
0, then ρ is max{n,m}-discrete on A ∪ B.

1communicated by professors L. Florit and A. Iusem.
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Proof. Choose 0 < δ < ρ(A,B)
2 such that #(B[x, δ] ∩ A) ≤ n (for x ∈

A) and #(B[x, δ]∩B) ≤ m (for x ∈ B). If x ∈ A then B[x, δ]∩B = ∅
because δ < ρ(A,B)

2 so #(B[x, δ] ∩ (A ∪ B)) = #(B[x, δ] ∩ A) ≤ n ≤
max{n,m}. If x ∈ B then B[x, δ] ∩ A = ∅ because δ < ρ(A,B)

2 so
#(B[x, δ]∩ (A∪B)) = #(B[x, δ]∩B) ≤ m ≤ max{n,m}. Then, ρ is
max{n,m}-discrete on A ∪ B with constant δ.

Lemma 2.4. If ρ is n-discrete on A, then A is ρ-closed and so
ρ(A,B) > 0 for every ρ-compact subset B with A ∩ B = ∅.
Proof. We only have to prove the first part of the lemma. By hypoth-
esis there is δ > 0 such that #(B[x, δ]∩A) ≤ n for all x ∈ A. Let xk

be a sequence in A converging to some y ∈ X. It follows that there is
k0 ∈ N

+ such that xk ∈ B[y, δ/2] for all k ≥ k0. Triangle inequality
implies {xk : k ≥ k0} ⊆ B[xk0 , δ] ∩ A and so {xk : k ≥ k0} is a finite
set. As xk → y we conclude that y ∈ A hence A is closed.

Now we prove that n-discreteness is preserved under addition of
finite subsets.

Proposition 2.5. If ρ is n-discrete on A, then ρ is n-discrete on
A ∪ F for all finite F ⊂ X.

Proof. We can assume that A∩F = ∅. As F is finite (hence compact)
we can apply Lemma 2.4 to obtain ρ(A,F ) > 0. As F is finite one
has that ρ is 1-discrete on F so ρ is n-discrete on A ∪ F by Lemma
2.3.

For the next result we introduce some basic definitions. Let f :
X → X be a map. We say that A ⊂ X is invariant if f(A) = A. If
f is bijective and x ∈ X we denote by Of (x) = {fn(x) : n ∈ Z} the
orbit of x. An isometry (or ρ-isometry to emphasize ρ) is a bijective
map f satisfying ρ(f(x), f(y)) = ρ(x, y) for all x, y ∈ X.

The following elementary fact will be useful later one: If f is a
ρ-isometry and a ∈ X satisfies that a is ρ-isolated in Of (a), then ρ is
discrete on Of (a). Indeed, if ρ were not discrete on Of (a), then there
are integer sequences nk 
= mk such that ρ(fnk(a), fmk) → 0 as k →
∞. As f is an isometry one has that ρ(fnk(a), fmk(a)) = ρ(a, f lk(a)),
where lk = mk−mk, so ρ(a, f lk(a)) → 0 for some sequence lk ∈ Z\{0}
thus a is not ρ-isolated in Of (a).
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Given d, ρ ∈ M(X) we write d ≤ ρ whenever d(x, y) ≤ ρ(x, y) for
all x, y ∈ X. We write ρ � d to indicate lower semicontinuity of the
map ρ : X × X → [0,∞] with respect to the product metric d × d in
X × X. Equivalently, the following property holds for all sequences
xk, yk in X and all δ > 0, where xk

d→ x indicates convergence in
(X, d):

xk
d→ x, yk

d→ y and yk ∈ Bρ[xk, δ] =⇒ y ∈ Bρ[x, δ].
(2.1)

Hereafter we denote by Fix(f) = {x ∈ X : f(x) = x} the set
of fixed points of f , and by Per(f) =

⋃
m∈N+ Fix(fm) the set of

periodic points of f .
The following proposition is inspired on Lemma 2 p. 176 of [89].

Proposition 2.6. Let d, ρ ∈ M(X) be such that d is compact and
d ≤ ρ � d. Let f : X → X be a map which is simultaneously
a d-homeomorphism and a ρ-isometry. If A is an invariant set
with countable complement which is n-discrete with respect to ρ and
Per(f) ∩ A is countable, then ρ is n-discrete on A ∪ Of (a) for all
a ∈ X.

Proof. We can assume a 
∈ A (otherwise A∪Of (a) = A) so ρ(A, a) >
0 by Lemma 2.4. Since f is a ρ-isometry and A is invariant one has
ρ(A, f i(a)) = ρ(A, a) so ρ(A,Of (a)) > 0. Then, by Lemma 2.3, it
suffices to prove that ρ is n-discrete on Of (a).

Suppose that it is not so. Then, as previously remarked, a is non
ρ-isolated in Of (a). Since d ≤ ρ we have that a is also non ρ-isolated
in Of (a). As f is a d-homeomorphism we conclude that Of (a) is a
nonempty ρ-perfect set. As d is compact (and so FII) we obtain that
Cld(Of (a)) is uncountable. As X \ A is countable we conclude that
Cld(Of (a)) ∩ A is uncountable. Choose x ∈ Cld(Of (a)) ∩ A. Then,
there is a sequence lk ∈ Z such that

f lk(a) d→ x. (2.2)

Let δ > 0 be such that ρ is n-discrete on A with constant δ.
Since ρ is not n-discrete on Of (a) we can arrange different integers
N1, · · · , Nn+1 satisfying

fNj (a) ∈ Bρ[fN1(a), δ], ∀j ∈ {1, · · · , n + 1}.
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On the other hand, f is a ρ-isometry so the above inclusions yield

fNj (f lk(a)) ∈ Bρ[fN1(f lk(a)), δ], ∀j ∈ {1, · · · , n + 1}, ∀k ∈ N.

By taking limit as k → ∞ in the above inclusion, keeping j fixed and
applying (2.1) and (2.2) to obtain

fNj (x) ∈ Bρ[fN1(x), δ], ∀j ∈ {1, · · · , n + 1}.

Now observe that fNj (x) ∈ A for all j ∈ {1, · · · , n + 1} because A is
invariant. Therefore,

{fN1(x), · · · , fNn+1(x)} ⊂ Bρ[fN1(x), δ] ∩ A.

But #(Bρ[fN1(x), δ]∩A) ≤ n by the choice of δ so the above inclusion
implies fNj (x) = fNr (x) for some different indexes j, r ∈ {1, · · · , n+
1}. As the integers N1, · · · , Nn+1 are different we conclute that x ∈
Per(f) and so x ∈ Per(f) ∩ A. Therefore,

Cld(Of (a)) ∩ A ⊂ Per(f) ∩ A.

As Cld(Of (a)) ∩ A is uncountable we conclude that Per(f) ∩ A also
is thus we get a contradiction. This proves the result.

Corollary 2.7. Let d, ρ ∈ M(X) be such that d is compact and d ≤
ρ � d. Let f : X → X be a map which is simultaneously a d-
homeomorphism and a ρ-isometry. If Per(f) is countable and there
are a1, · · · , al ∈ X such that ρ is n-discrete on X \⋃l

i=1 Of (ai), then
ρ is n-discrete.

Proof. Define the invariant sets Aj = X \⋃l
i=j Of (ai) for 1 ≤ j ≤ l.

As X \Aj =
⋃l

i=j Of (ai) one has that Aj has countable complement
for all 1 ≤ j ≤ l. On the other hand, ρ is n-discrete on A1 by
hypothesis and Per(f) ∩ A1 is countable (since Per(f) is) so ρ is
n-discrete on A2 = A1 ∪ Of (a1) by Proposition 2.6. By the same
reasons if ρ is n-discrete on Aj , then ρ also is on Aj+1 = Aj ∪Of (ai).
Then, the result follows by induccion.
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2.3 n-expansive systems

In this section we define and study the class of n-expansive systems.
To motivate the definition we recall some classical definitions. Let
(X, d) be a metric space and A ⊂ X. A map f : X → X is positively
expansive on A if there is δ > 0 such that for every x, y ∈ A with
x 
= y there is i ∈ N such that d(f i(x), f i(y)) > δ, or, equivalently,
if {y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈ N} = {x} for all x ∈ A. On the
other hand, a bijective map f : X → X is expansive on A if there is
δ > 0 such that {y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈ Z} = {x} for all
x ∈ A. If A = X we recover the notions of positively expansive and
expansive maps respectively. These definitions suggest the following
one.

Definition 2.8. Given n ∈ N
+ a bijective map (resp. map) f is n-

expansive (resp. positively n-expansive) on A if there is δ > 0 such
that

#{y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈ Z} ≤ n

(resp. #{y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈ N} ≤ n)

∀x ∈ A. If case A = X we say that f is n-expansive (resp. positively
n-expansive).

Clearly the 1-expansive bijective maps are precisely the expansive
ones (which in turn are n-expansive for all n ∈ N

+).
In the sequel we introduce two useful operators. For every f :

X → X and d ∈ M(X) we define the pull-back metric

f∗(d)(x, y) = d(f(x), f(y))

(clearly f∗(d) ∈ M(X) if and only if f is 1-1). Using it we can define
the operator L+

f : M(X) → M(X) by

L+
f (d) = sup

i∈N

f i
∗(d), ∀d ∈ M(X).

If f is bijective we can define Lf : M(X) → M(X) by

Lf (d) = sup
i∈Z

f i
∗(d), ∀d ∈ M(X).
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Lemma 2.9. If f is bijective, then d ≤ Lf (d) and f is a Lf (d)-
isometry. If, in addition, f is a d-homeomorphism, then Lf (d) � d.

Proof. The first inequality is evident. As

f∗(Lf (d))(x, y) =

sup
i∈Z

d(f i+1(x), f i+1(y)) = sup
i∈Z

d(f i(x), f i(y)) = Lf (d)(x, y)

(∀x, y ∈ X) one has f∗(Lf (d)) = Lf (d) hence f is an Lf (d)-isometry.
Now we prove Lf (d) � d whenever f is a d-homeomorphism. Suppose

that xk
d→ x, yk

d→ y and Lf (d)(xk, yk) ≤ δ for all k ∈ N. Fixing
i ∈ Z the latter inequality implies d(f i(xk), f i(yk)) ≤ δ for all k. As
f is a d-homeomorphism one can take the limit as k → ∞ in the last
inequality to obtain d(f i(x), f i(y)) ≤ δ. As i ∈ Z is arbitrary we
obtain Lf (d)(x, y) ≤ δ which together with (2.2) implies the result.

These operators give the link between discreteness and expansive-
ness by the following result. Hereafter we shall write f is (positively)
n-expansive (on A) with respect to d in order to emphazise the metric
d in Definition 2.8.

Lemma 2.10. The following properties hold for all f : X → X,
A ⊂ X and d ∈ M(X):

1. f is positively n-expansive on A with respect to d if and only if
L+

f (d) is n-discrete on A.

2. If f is bijective, f is n-expansive on A with respect to d if and
only if Lf (d) is n-discrete on A.

Proof. Clearly for all x ∈ X and δ > 0 one has

BL+
f (d)[x, δ] ∩ A = {y ∈ A : d(f i(x), f i(y)) ≤ δ, ∀i ∈ N},

so
#(BL+

f (d)[x, δ] ∩ A) ≤ n ⇐⇒
#({y ∈ A : d(f i(x), f i(y)) ≤ δ, ∀i ∈ N}) ≤ n

which proves the equivalence (1). The proof of the equivalence (2) is
analogous.
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As a first application of the above equivalence we shall exhibit
non-trivial examples of positively n-expansive maps. More precisely,
we prove that every bijective map f : X → X with at least n non-
periodic points (n ≥ 2) carries a metric ρ making it continuous pos-
itively n-expansive but not positively (n − 1)-expansive. Indeed, by
hypothesis there are x1, · · · , xn ∈ X such that f i(xj) 
= fk(xj), for
all 1 ≤ j ≤ n and i 
= k ∈ N, and f i(xj) 
= f i(xk) for all i ∈ N and
1 ≤ j 
= k ≤ n. Define the sequences x1

k, · · · , xn
k in X by xi

k = fk(xi)
for 1 ≤ i ≤ n and k ∈ N. Clearly these sequences are disjoint thus
they induce a metric ρ in X which is n-discrete but not (n − 1)-
discrete as in Example 2.1. On the other hand, a straightforward
computation yields L+

f (ρ) = ρ thus f is continuous (in fact Lips-
chitz) for ρ. Since ρ is n-discrete and ρ = L+

f (ρ) one has that L+
f (ρ)

is n-discrete so f is positively n-expansive by Lemma 2.10. Since ρ
is not (n − 1)-discrete and ρ = L+

f (ρ) the same lemma implies that
f is not positively (n − 1)-expansive.

Notice however that none of the above metrics is compact (see
for instance Remark 2.2). This fact leads the question as to whether
a bijective map can carry a compact metric making it positively n-
expansive but not positively (n− 1)-expansive. Indeed, the following
result gives a partial positive answer for this question.

Proposition 2.11. For every k ∈ N
+ there is a homeomorphism fk

of a compact metric space (Xk, ρk) which is positively 2k-expansive
but not positively (2k − 1)-expansive.

Proof. To start with we recall that a Denjoy map of the circle S1 is a
nontransitive homeomorphism of S1 with irrational rotation number.
As is well known [40] every Denjoy map h exhibits a unique minimal
set Eh which is also a Cantor set.

Hereafter we fix the standard Riemannian metric l of S1. We shall
prove that h/Eh is positively 2-expansive with respect to l/Eh. Let
α be half of the length of the largest interval I in the complement
S1 \ Eh and 0 < δ < α.

We claim that Int(BL+
h (l)[x, δ]) ∩ Eh = ∅ for all x ∈ Eh. Oth-

erwise, there is some z ∈ Int(BL+
h (l)[x, δ]) ∩ Eh. Pick w ∈ ∂I (thus

w ∈ Eh). Since Eh is minimal there is a sequence nk → ∞ such
that h−nk(w) → z. Now, the interval sequence {h−n(I) : n ∈ N}
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is disjoint so we have that the length of the intervals h−nk(I) → 0
as k → ∞. It turns out that there is some integer k such that
h−nk(I) ⊂ BL+

h (l)[x, δ]. From this and the fact that h(BL+
h (l)[x, δ]) ⊂

BL+
h (l)[h(x), δ] one sees that I ⊂ BL+

h (l)[hnk(x), δ] which is clearly
absurd because the length of I is greather than α > 2δ. This contra-
diction proves the claim.

Since BL+
h (l)[x, δ] reduces to closed interval (possibly trivial) the

claim implies that BL+
h (l)[x, δ] ∩ Eh consists of at most two points.

It follows that L+
h (l) is 2-discrete on Eh (with constant δ), so, h/Eh

is positively 2-expansive with respect to l/Eh by Lemma 2.10. Since
there are no positively expansive homeomorphisms on infinite com-
pact metric spaces (e.g. [28]) one sees that h/Eh cannot be positively
expansive with respect to l/Eh. Taking X1 = Eh, ρ1 = l/Eh and
f1 = h/Eh we obtain the result for k = 1. To obtain the result for
k ≥ 2 we shall proceed according to the following straightforward
construction.

Take copies E1, E2 of Eh and recall the map

max{·, ·} : M(E1) × M(E2) → M(E1 × E2)

defined by

max{d1, d2}(x, y) = max{d1(x1, y1), d2(x2, y2)}
for all x = (x1, x2) and y = (y1, y2) in E1 ×E2. One clearly sees that

Bmax{d1,d2}[x, δ] = Bd1 [x1, δ] ×Bd2 [x2, δ], ∀x ∈ E1 ×E2,∀δ > 0.

Afterward, take copies h1, h2 of h/Eh and define the product h1×
h2 : E1 × E2 → E1 × E2, (h1 × h2)(x) = (h1(x1), h2(x2)). It turns
out that

(h1 × h2)∗(max{d1, d2}) = max{h1∗(d1), h2∗(d2)}
so

L+
h1×h2

(max{d1, d2}) = max{L+
h1

(d1),L+
h2

(d2)}
thus

BL+
h1×h2

(max{d1,d2})[x, δ] = BL+
h1

(d1)[x1, δ] × BL+
h2

(d2)[x2, δ].
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Finally, take copies d1, d2 of the metric l/Eh each one in E1, E2

respectively. As hi is positively 2-expansive with respect to di one
has that L+

hi
(di) is 2-discrete for i = 1, 2. We can choose the same

constant for i = 1, 2 (δ say) thus,

#(BL+
h1×h2

(max{d1,d2})[x, δ]) =

#(BL+
h1

(d1)[x1, δ]) · #(BL+
h2

(d2)[x2, δ]) ≤ 22, ∀x ∈ E1 × E2. (2.3)

Now, consider the compact metric space (E1 × E2,max{d1, d2}).
It follows from (2.3) and Lemma 2.10 that h1 × h2 (which is clearly
a homeomorphism) is positively 22-expansive map with respect to
max{d1, d2}. One can see that #(BL+

h1×h2
(max{d1,d2})[x, δ]) = 22 for

infinitely many x’s and arbitrarily small δ thus h1 × h2 cannot be
positively 22 − 1-expansive. Taking X2 = E1 ×E2, ρ2 = max{d1, d2}
and f2 = h1 × h2 we obtain the result for k = 2.

By repeating this argument we obtain the result for arbitrary
k ∈ N

+ taking X2 = E1 × · · · × Ek, ρk = max{d1, · · · , dk} and
fk = h1 × · · · × hk.

As a second application of the equivalence in Lemma 2.10 we
establish the following lemma which is well-known among expansive
systems (e.g. Lemma 1 in [89]).

Lemma 2.12. If a homeomorphism f of a metric space (X, d) is
n-expansive on A, then Per(f) ∩ A is countable.

Proof. It follows from the hypothesis and Lemma 2.10 that there is
δ > 0 such that #(BLf (d)[x, δ] ∩ A) ≤ n for all x ∈ X.

First we prove that fm is n-expansive on A, ∀m ∈ N
+. Observe

that f is continuous since d is compact so there is ε > 0 such that
d(x, y) ≤ ε implies d(f i(x), f i(y)) ≤ δ for all integer −m ≤ i ≤ m.
Then, BLfm (d)[x, ε] ⊂ BLf (d)[x, δ] for all x ∈ X, so, #(BLfm (d)[x, ε]∩
A) ≤ #(BLf (d)[x, δ] ∩ A) ≤ n for all x ∈ A. Therefore, Lfm(d) is n-
discrete on A (with constant ε) which implies that fm is n-expansive
on A by Lemma 2.10. This proves the assertion.

Since Per(f) =
⋃

m∈N+ Fix(fm) by the previous assertion we
only have to prove that Fix(f)∩A is finite whenever f is n-expansive
on A. To prove it suppose that there is an infinite sequence of fixed
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points xk ∈ A. Since d is compact one can assume that xn
d→ x

for some x ∈ X. On the other hand, one clearly has Lf (d) = d in
Fix(f) thus, by the triangle inequality on x, there is n0 ∈ N such that
xn ∈ BLf (d)[xn0 , δ] for all n ≥ n0. Thus, #(BLf (d)[xn0 , δ] ∩ A) = ∞
which contradicts the choice of δ above. This ends the proof.

2.4 The results

In this section we state and prove our main results. The first one
establishes that there are arbitrarily large values of n for which there
are infinite compact metric spaces carrying positively n-expansive
homeomorphisms. As is well known, this is not true in the positively
expansive case (see for instance [28]).

Theorem 2.13. For every k ∈ N
+ there is an infinite compact met-

ric space (Xk, ρk) carrying positively 2k-expansive homeomorphisms
which are not positively (2k − 1)-expansive.

Proof. Take Xk, ρk and fk as in Proposition 2.11. As fk is not posi-
tively (2k − 1)-expansive one has that Xk is infinite.

From this we obtain the following corollary.

Corollary 2.14. There are compact metric spaces without isolated
points exhibiting homeomorphism which are not positively expansive
but for which every non-atomic Borel probability measure is positively
expansive.

Our second result generalizes the one in [12].

Theorem 2.15. A map (resp. bijective map) of a metric space (X, d)
is positively n-expansive (resp. n-expansive) if and only if it is posi-
tively n-expansive (resp. n-expansive) on X \F for some finite subset
F .

Proof. Obviously we only have to prove the if part. We do it in
the positively n-expansive case as the n-expansive case follows analo-
gously. Suppose that a map f of X is positively n-expansive on X \F
for some finite subset F . Then, L+

f (d) is n-discrete on A = X \F by
Lemma 2.10. Since F is finite Proposition 2.5 implies that L+

f (d) is
n-discrete so f is positively n-expansive by Lemma 2.10.
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Finally we state our last result which extends a well-known prop-
erty of expansive homeomorphisms (c.f. [85],[89]).

Theorem 2.16. A necessary and sufficient condition for a homem-
omorphism f of a compact metric space (X, d) to be n-expansive is
that f is n-expansive on X \⋃l

i=1 Of (ai) for some a1, · · · , al ∈ X.

Proof. We only have to prove the if part. By hypothesis f is a d-
homeomorphism so f is an Lf (d)-isometry and d ≤ Lf (d) � d by
Lemma 2.9. Since f is n-expansive on A = X \⋃l

i=1 Of (ai) one has
that Per(f)∩A is countable by Lemma 2.12. As X\A =

⋃l
i=1 Of (ai)

is clearly countable we conclude that Per(f) is countable. On the
other hand, f is n-expansive on X\⋃l

i=1 Of (ai) so Lf (d) is n-discrete
on X \ ⋃l

i=1 Of (ai) by Lemma 2.10. Then, Lf (d) is n-discrete by
Corollary 2.7 and so f is n-expansive by Lemma 2.10.

2.5 Exercices

Exercice 2.17. Prove the assertion in Remark 2.2.

Exercice 2.18. Prove that for every integer n ≥ 2 there is an n-expansive

homeomorphism of a compact metric space which is not (n − 1)-expansive.

Exercice 2.19. Prove that every compact metric space with n-expansive home-

omorphisms (for some n ∈ N
+) has finite topological dimension and that the minimal

sets of such a homeomorphism are zero-dimensional (for n = 1 see Mañé [62]).

Exercice 2.20. Prove that every n-expansive homeomorphism f : X → X of a

metric space is pointwise expansive, i.e., for every x ∈ X there is δx > 0 such that

Γδx (x) = {x} (see [75]).

Exercice 2.21. Prove that the non-expansive pointwise expansive homeomor-

phisms defined by Reddy in Section 3 of [75] are 2-expansive. Modify these examples

to find for all n ≥ 2 an n-expansive homeomorphism of a compact metric space which

is not pointwise expansive.

Exercice 2.22. Are there differentiable manifolds supporting n-expansive home-

omorphisms which are not (n − 1)-expansive?
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Exercice 2.23. Prove that an n-expansive homeomorphism f : X → X of a

compact metric space X has measures of maximal entropy, i.e., a Borel measure μ

satisfying the identity hμ(f) = h(f) where hμ(f) and h(f) denotes the metric and

topological entropies of f (for n = 1 see [38]).

Exercice 2.24. Prove (or disprove) that every n-expansive Axiom A diffeomor-

phism of a closed manifold is expansive.

Exercice 2.25. Are there n-expansive homeomorphisms of S2? (the answer is

negative for n = 1, see Hiraide [42] and Lewowicz [59]).



Chapter 3

Positively expansive
measures

3.1 Introduction

Ergodic measures with positive entropy for continuous maps on com-
pact metric spaces have been studied in the recent literature. For
instance, [14] proved that the set of points belonging to a proper
asymptotic pair (i.e. points whose stable classes are not singleton)
constitute a full measure set. Moreover, [43] proved that if f is a
homeomorphism with positive entropy hμ(f) with respect to one of
such measures μ, then there is a full measure set A such that for all
x ∈ A there is a closed subset A(x) in the stable class of x satisfying
h(f−1, A(x)) ≥ hμ(f), where h(·, ·) is the Bowen’s entropy operation
[10]. We can also mention [27] which proved that every ergodic en-
domorphism on a Lebesgue probability space having positive entropy
on finite measurable partitions formed by continuity sets is pairwise
sensitive (see also Exercice 3.48).

In this chapter we introduce the notion of positively expansive
measure and prove that every ergodic measure with positive entropy
on a compact metric space is positively expansive. Using this result
we will prove that, on compact metric spaces, every stable class has
measure zero with respect to any ergodic measure with positive en-

40
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tropy (this seems to be new as far as we know). We also prove through
the use of positively expansive measures that every continuous map
on a compact metric space exhibiting countably many stable classes
has zero topological entropy (a similar result with different techniques
has been obtained in [45] but in the transitive case). Still in the com-
pact case we prove that every continuous map which is Lyapunov
stable on its recurrent set has zero topological entropy too (this is
known but for one-dimensional maps [35], [81], [92]). Finally we use
expansive measures to give necessary conditions for a continuous map
on a complete separable metric space to be chaotic in the sense of Li
and Yorke [60]. Most results in this chapter were obtained in [6] and
[7].

3.2 Definition

In this chapter we introduce the notion of positively expansive mea-
sure. First we recall the following definition.

Definition 3.1. A continuous map f : X → X of a metric space
X is positively expansive (c.f. [33]) if there is δ > 0 such that
for every pair of distinct points x, y ∈ X there is n ∈ N such that
d(fn(x), fn(y)) > δ. Equivalently, f is positively expansive if there
is δ > 0 such that Φδ(x) = {x}, where

Φδ(x) = {y ∈ X : d(f i(x), f i(y)) ≤ δ,∀i ∈ N}
(again we write Φf

δ (x) to indicate dependence on f).

This motivates the following definition

Definition 3.2. A positively expansive measure of a measurable map
f : X → X is a Borel probability measure μ for which there is δ > 0
such that μ(Φδ(x)) = 0 for all x ∈ X. The constant δ will be referred
to an positive expansivity constant of μ.

As in the invertible case we have that a measure μ is a posi-
tively expansive measure of f if and only if there is δ > 0 such that
μ(Φδ(x)) = 0 for μ-a.e. x ∈ X. An atomic measures μ cannot be
an expansive measure of any map and every non-atomic Borel prob-
ability measure is a positively expansive measure of any is positively
expansive map.
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Example 3.3. There are nonexpansive continuous maps on certain
compact metric spaces for which every non-atomic measure is expan-
sive (e.g. an n-expansive homeomorphism with n ≥ 2). The homeo-
morphism f(x) = 2x in R exhibits positively expansive measures (e.g.
the Lebesgue measure) but not positively expansive invariant ones.

Contrary to what happen in the expansive case ([79], [77]), there
are infinite compact metric spaces supporting homeomorphisms with
positively expansive measures (extreme cases will be discussed in Ex-
ercice 3.43). On the other hand, a necessary and sufficient for a
measure to be positively expansive is given as in the homeomorphism
case.

We shall need a previous result stated as follows. Let f : X → X
be a measurable map of a metric space X. Given x ∈ X, n ∈ N

+ and
δ > 0 we define

B[x, n, δ] =
n−1⋂
i=0

f−i(B[f i(x), δ]). (3.1)

A basic property of these sets is given below.

Φδ(x) =
∞⋂

n=1

B[x, n, δ]. (3.2)

Since, in addition, B[x,m, δ] ⊂ B[x, n, δ] for n ≤ m, we obtain

μ(Φδ(x)) = lim
n→∞μ(B[x, δ, n])

for every x ∈ X and every Borel probability measure μ of X.
From this we obtain the pointwise convergence

μδ = lim
n→∞μδ,n (3.3)

where μδ, μδ,n : X → R
+ are the functions defined by

μδ(x) = μ(Φδ(x)) and μδ,n(x) = μ(B[x, δ, n]). (3.4)

Moreover, μ is positively expansive if and only if there is δ > 0 such
that

lim inf
n→∞ μ(B[x, n, δ]) = 0, for all x ∈ X. (3.5)
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It follows that if n ∈ N
+, then μ is a positively expansive measure

of f , if and only if it is a positively expansive measure of fn. The
proof of these assertions is analogous to the corresponding results for
homeomorphisms (see exercices 3.34 and 3.35).

Next we present the following lemma dealing with the measura-
bility of the map μδ.

Lemma 3.4. If f : X → X is a continuous map of a compact metric
space X and μ is a finite Borel measure of X, then μδ is a measurable
map for every δ > 0.

Proof. Fix δ > 0, n ∈ N
+ and define

Dn = {(x, y) ∈ X × X : d(f i(x), f i(y)) ≤ δ, ∀0 ≤ i ≤ n − 1}.
Denote by B(Y ) the Borel σ-algebra associated to a topological space
X. Since f is continuous we have that Dn is closed in X×X with re-
spect to the product topology. From this we obtain Dn ∈ B(X ×X).
But since X is compact the product σ-algebra B(X)⊗B(X) satisfies
B(X)⊗B(X) = B(X×X) (e.g. Lemma 6.4.2 in [17]). Therefore Dn ∈
B(X)⊗B(X). This allows us to apply the Fubini Theorem (e.g. The-

orem 3.4.1 in [17]) to conclude that the map x �→
∫

X

χDn
(x, y)dμ(y)

is measurable, where χDn
denotes the characteristic function of Dn.

But it follows from the definition of Dn that

μδ,n(x) =
∫

X

χDn
(x, y)dμ(y)

so μδ,n is measurable, ∀n ∈ N
+. It follows from (3.3) that μδ is the

pointwise limit of measurable functions and so measurable.

As in the expansive case we have the following observation for
bijective maps f : X → X, namely,

f(Φδ(x)) ⊂ Φδ(f(x)), ∀(x, δ) ∈ X × R
+.

Using it we obtain the elementary lemma below.

Lemma 3.5. Let f : X → X be a homeomorphism of a metric space
X. If μ is an expansive measure with expansivity constant δ of f ,
then so is f−1

∗ μ.
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Following the proof of Lemma 1.17 and using (3.5) (instead of
Lemma 1.16) we can obtain the following result.

Lemma 3.6. If f : X → X is a homeomorphism of a metric space
X, then every invariant measure of f which is the limit (with respect
to the weak-* topology) of a sequence of positively expansive proba-
bility measures with a common expansivity constant of f is positively
expansive for f .

Using this lemma we obtain the following result closely related to
Example 3.3.

Theorem 3.7. A homeomorphism of a compact metric space has
positively expansive probability measures if and only if it has positively
expansive invariant probability measures.

Proof. Let μ be a positively expansive measure with positive expan-
sivity constant δ of a homeomorphism f : X → X of a compact metric
space X. By Lemma 3.5 we have that f−1

∗ μ is a positively expansive
measure with positive expansivity constant δ of f . Therefore, f−i

∗ μ is
a positively expansive measure with positively expansivity constant
δ of f (∀i ∈ N), and so,

μn =
1
n

n−1∑
i=0

f−i
∗ μ, n ∈ N

+

is a sequence of positively expansive probability measures of f with
common expansivity constant δ. As X is compact there is a sub-
sequence nk → ∞ such that μnk

converges to a Borel probability
measure μ. Since μ is clearly invariant for f−1 and f is a homeomor-
phism we have that μ is also an invariant measure of f . Then, we
can apply Lemma 3.6 to this sequence to obtain that μ is a positively
expansive measure of f .

An equivalent condition for positively μ-expansiveness is given
using the idea of positive generators as in Lemma 3.3 of [26]. Call
a finite open covering A of X positive μ-generator of f if for every
sequence {An : n ∈ N} ⊂ A one has

μ

(⋃
n∈N

fn(Cl(An))

)
= 0.
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As in the homeomorphism case we obtain the following proposition.

Proposition 3.8. Let f : X → X be a continuous map of a compact
metric space X. Then, a Borel probability measure of X is a positively
invariant measure of f if and only if if f has a positive μ-generator.

We shall use this proposition to obtain examples of positively
expansive measures. If M is a closed manifold we call a differentiable
map f : M → M volume expanding if there are constants K > 0
and λ > 1 such that |det(Dfn(x))| ≥ Kλn for all x ∈ M and n ∈
N. Denoting by Leb the Lebesgue measure we obtain the following
proposition.

Proposition 3.9. The Lebesgue measure Leb is a positively expan-
sive measure of every volume expanding map of a closed manifold.

Proof. If f is volume expanding there are n0 ∈ N and ρ > 1 such
that g = fn0 satisfies |det(Dg(x))| ≥ ρ for all x ∈ M . Then, for all
x ∈ M there is δx > 0 such that

Leb(g−1(B[x, δ])) ≤ ρ−1Leb(B[x, δ]), ∀x ∈ M,∀0 < δ < δx.
(3.6)

Let δ be half of the Lebesgue number of the open covering {B(x, δx) :
x ∈ M} of M . By (3.6) any finite open covering of M by δ-balls
is a positive Leb-generator, so, Leb is positively expansive for g by
Proposition 3.8. Since g = fn0 we conclude that Leb is a positively
expansive measure of f (see the remark after (3.5)).

As in the homeomorphism case we obtain an equivalent condition
for positively expansiveness using the diagonal. Given a map g of a
metric space Y and a Borel probability ν in Y we say that I ⊂ Y is
a ν-repelling set if there is a neighborhood U of I satisfying

ν({z ∈ Y : gn(z) ∈ U,∀n ∈ N}) = 0.

As in the homeomorphism case we can prove the following.

Proposition 3.10. Let f : X → X be a continuous map of a compact
metric space X. Then, a Borel probability measure of X is a positively
expansive for f if and only if the diagonal Δ is a μ2-repelling set of
f × f .



46 [CAP. 3: POSITIVELY EXPANSIVE MEASURES

We shall use the following useful characterization of positively
expansive measures which is analogous to the expansive case (c.f.
Lemma 1.20).

Lemma 3.11. A Borel probability measure μ is positively expansive
for a measurable map f if and only if there is δ > 0 such that

μ(Φδ(x)) = 0, ∀μ-a.e. x ∈ X. (3.7)

This lemma together with the corresponding definition for expan-
sive maps suggests the following.

Definition 3.12. A positively expansive constant of a Borel proba-
bility measure μ is a constant δ > 0 satisfying (3.7).

3.3 Properties

In this section we select the properties of positively expansive mea-
sures we shall use later one. For the first one we need the following
definition.

Definition 3.13. Given a map f : X → X and p ∈ X we define
W s(p), the stable set of p, as the set of points x for which the pair
(p, x) is asymptotic, i.e.,

W s(p) =
{

x ∈ X : lim
n→∞ d(fn(x), fn(p)) = 0

}
.

By a stable class we mean a subset equals to W s(p) for some p ∈ X.

The following shows that every stable class is negligible with re-
spect to any expansive invariant measure.

Proposition 3.14. The stable classes of a measurable map have mea-
sure zero with respect to any positively expansive invariant measure.

Proof. Let f : X → X a measurable map and μ be a positively expan-
sive invariant measure. Denoting by B[·, ·] the closed ball operation
one gets

W s(p) =
⋂

i∈N+

⋃
j∈N

⋂
k≥j

f−k

(
B

[
fk(p),

1
i

])
.
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As clearly

⋃
j∈N

⋂
k≥j

f−k

(
B

[
fk(p),

1
i + 1

])
⊆
⋃
j∈N

⋂
k≥j

f−k

(
B

[
fk(p),

1
i

])
,

(∀i ∈ N
+) we obtain

μ(W s(p)) ≤ lim
i→∞

∑
j∈N

μ

⎛
⎝⋂

k≥j

f−k

(
B

[
fk(p),

1
i

])⎞⎠ . (3.8)

On the other hand,

⋂
k≥j

f−k

(
B

[
fk(p),

1
i

])
= f−j

(
Φ 1

i
(f j(p))

)

so

μ

⎛
⎝⋂

k≥j

f−k

(
B

[
fk(p),

1
i

])⎞⎠ =

μ
(
f−j

(
Φ 1

i
(f j(p))

))
= μ

(
Φ 1

i
(f j(p))

)
since μ is invariant. Then, taking i large, namely, i > 1

ε where
ε is a expansivity constant of μ (c.f. Definition 3.12) we obtain
μ
(
Φ 1

i
(f j(p))

)
= 0 so

μ

⎛
⎝⋂

k≥j

f−k

(
B

[
fk(p),

1
i

])⎞⎠ = 0.

Replacing in (3.8) we get the result.

For the second property we will use the following definition [35].

Definition 3.15. A map f : X → X is said to be Lyapunov stable on
A ⊂ X if for any x ∈ A and any ε > 0 there is a neighborhood U(x)
of x such that d(fn(x), fn(y)) < ε whenever n ≥ 0 and y ∈ U(x)∩A.
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(Notice the difference between this definition and the correspond-
ing one in [81].) The following implies that measurable sets where the
map is Lyapunov stable are negligible with respect to any expansive
measure (invariant or not).

Proposition 3.16. If a measurable map of a separable metric space
is Lyapunov stable on a measurable set A, then A has measure zero
with respect to any positively expansive measure.

Proof. Fix a measurable map f : X → X of a separable metric space
X, a positively expansive measure μ and Δ > 0. Since μ is regular
there is a closed subset C ⊂ A such that

μ(A \ C) ≤ Δ.

Let us compute μ(C).
Fix a positive expansivity constant ε of μ (c.f. Definition 3.12).

Since f is Lyapunov stable on A and C ⊂ A for every x ∈ C there is
a neighborhood U(x) such that

d(fn(x), fn(y)) < ε ∀n ∈ N,∀y ∈ U(x) ∩ C. (3.9)

On the other hand, C is separable (since X is) and so Lindelöf with
the induced topology. Consequently, the open covering {U(x) ∩ C :
x ∈ C} of C admits a countable subcovering {U(xi) ∩ C : i ∈ N}.
Then,

μ(C) ≤
∑
i∈N

μ (U(xi) ∩ C) . (3.10)

Now fix i ∈ N. Applying (3.9) to x = xi we obtain U(xi) ∩ C ⊂
Φε(xi) and then μ (U(xi) ∩ C) ≤ μ(Φε(x)) = 0 since ε is a positive
expansivity constant. As i is arbitrary we obtain μ(C) = 0 by (3.10).

To finish we observe that

μ(A) = μ(A \ C) + μ(C) = μ(A \ C) ≤ Δ

and so μ(A) = 0 since Δ is arbitrary. This ends the proof.

From these propositions we obtain the following corollary. Recall
that the recurrent set of f : X → X is defined by R(f) = {x ∈ X :
x ∈ ωf (x)}, where

ωf (x) =
{

y ∈ X : y = lim
k→∞

fnk(x) for some sequence nk → ∞
}

.
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Corollary 3.17. A measurable map of a separable metric space which
either has countably many stable classes or is Lyapunov stable on its
recurrent set has no positively expansive invariant measures.

Proof. First consider the case when there are countably many stable
classes. Suppose by contradiction that there exists a positively ex-
pansive invariant measure. Since the collection of stable classes is a
partition of the space it would follow from Proposition 3.14 that the
space has measure zero which is absurd.

Now consider the case when the map f is Lyapunov stable on
R(f). Again suppose by contradiction that there is a positively ex-
pansive invariant measure μ. Since μ is invariant we have supp(μ) ⊂
R(f) by Poincaré recurrence. However, since f is Lyapunov stable on
R(f) we obtain μ(R(f)) = 0 from Proposition 3.16 so μ(supp(μ))) =
μ(R(f)) = 0 which is absurd. This proves the result.

3.4 Applications

We start this section by proving that positive entropy implies expan-
siveness among ergodic invariant measures for continuous maps on
compact metric spaces. Afterward we include some short applica-
tions.

To star with we introduce the following basic result due to Brin
and Katok [18]. Let μ be an invariant measure of a measurable map
f : X → X of a metric space X. The entropy of μ with respect to f
is defined by

hμ(f) = sup{hμ(f, P ) : P is a finite measurable partition of X},
where

hμ(f, P ) = − lim
n→∞

1
n

∑
ξ∈Pn−1

μ(ξ) log μ(ξ)

and Pn is the pullback partition of P under fn.

Theorem 3.18 (Brin-Katok Theorem). If μ is a non-atomic er-
godic invariant measure of a continuous map f : X → X of a compact
metric space, then

sup
δ>0

lim inf
n→∞ − log(μ(B[x, n, δ]))

n
= hμ(f), μ-a.e. x ∈ X.
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Next we state the main result of this section.

Theorem 3.19. Every ergodic invariant probability measure with
positive entropy of a continuous map on a compact metric space is
positively expansive.

Proof. Let μ be an ergodic invariant measure μ with positive entropy
hμ(f) > 0 of a continuous map f : X → X on a compact metric
space X. Fix δ > 0 and define

Xδ = {x ∈ X : μ(Φδ(x)) = 0}.
Clearly Xδ = μ−1

δ (0) (where μδ is defined in (3.4) and so Xδ is mea-
surable by Lemma 3.4. Then, we are left to prove by Lemma 3.11
that there is δ > 0 such that μ(Xδ) = 1.

Fix x ∈ X. It follows from the definition of Φδ(x) that Φδ(x) ⊂
f−1(Φδ(f(x))) so

μ(Φδ(x)) ≤ μ(Φδ(f(x)))

since μ is invariant. Then, μ(Φδ(x)) = 0 whenever x ∈ f−1(Xδ)
yielding

f−1(Xδ) ⊂ Xδ.

Denote by AΔB the symmetric difference of the sets A,B. Since
μ(f−1(Xδ)) = μ(Xδ) the above implies that Xδ is essentially invari-
ant, i.e., μ(f−1(Xδ)ΔXδ) = 0. Since μ is ergodic we conclude that
μ(Xδ) ∈ {0, 1} for all δ > 0. Then, we are left to prove that there is
δ > 0 such that μ(Xδ) > 0. To find it we proceed as follows.

For all δ > 0 we define the map φδ : X → IR ∪ {∞},

φδ(x) = lim inf
n→∞ − log μ(B[x, n, δ])

n
.

Take h = hμ(f)
2 (thus h > 0) and define

Xm =
{

x ∈ X : φ 1
m

(x) > h
}

, ∀m ∈ IN+.

Notice that φδ(x) ≥ φδ′(x) whenever 0 < δ < δ′.
From this it follows that Xm ⊂ Xm′

for m ≤ m′ and further{
x ∈ X : sup

δ>0
φδ(x) = hμ(f)

}
⊂

⋃
m∈IN+

Xm.
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Then,

μ

({
x ∈ X : sup

δ>0
φδ(x) = hμ(f)

})
≤ lim

m→∞μ(Xm).

But μ is non-atomic for it is ergodic invariant with positive entropy.
So, the Brin-Katok Theorem implies

μ

({
x ∈ X : sup

δ>0
φδ(x) = hμ(f)

})
= 1

yielding
lim

m→∞μ(Xm) = 1.

Consequently, we can fix m ∈ IN+ such that

μ(Xm) > 0.

We shall prove that δ = 1
m works.

Let us take x ∈ Xm. It follows from the definition of Xm that
μ(B[x, n, δ]) < e−hn for all n large. Since h > 0 we conclude that
limn→∞ μ(B[x, n, δ]) = 0. Since μδ,n(x) = μ(B[x, n, δ]) we conclude
from (3.3) that μ(Φδ(x)) = 0 thus x ∈ Xδ. As x ∈ Xm is arbitrary
we obtain Xm ⊂ Xδ whence

0 < μ(Xm) ≤ μ(Xδ)

and the proof follows.

The converse of the above theorem is false, i.e., a positively ex-
pansive measure may have zero entropy even in the ergodic invariant
case. A counterexample is as follows.

Example 3.20. There are continuous maps in the circle exhibiting
ergodic invariant measures with zero entropy which, however, are pos-
itively expansive.

Proof. Since all circle homeomorphisms have zero topological entropy
it remains to prove that every Denjoy map h exhibits positively ex-
pansive measures. As is well-known h is uniquely ergodic and the
support of its unique invariant measure μ is a minimal set, i.e., a
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set which is minimal with respect to the property of being compact
invariant. We shall prove that this measure is positively expansive.
Denote by E the support of μ. It is well known that E is a Cantor
set. Let α be half of the length of the biggest interval I in the com-
plement S1 − E of E and take 0 < δ < α/2. Fix x ∈ S1 and denote
by Int(·) the interior operation. We claim that Int(Φδ(x)) ∩ E = ∅.
Otherwise, there is some z ∈ Int(Φδ(x)) ∩ E. Pick w ∈ ∂I (thus
w ∈ E). Since E is minimal there is a sequence nk → ∞ such that
h−nk(w) → z. Since μ is a finite measure, the interval sequence
{h−n(I) : n ∈ IN} is disjoint, we have that the length of the intervals
h−nk(I) → 0 as k → ∞. It turns out that there is some integer k
such that h−nk(I) ⊂ Φδ(x).

From this and the fact that h(Φδ(x)) ⊂ Φδ(h(x)) one sees that
I ⊂ B[hnk(x), δ] which is clearly absurd because the length of I is
greather than α > 2δ. This contradiction proves the claim. Since
Φδ(x) is either a closed interval or {x} the claim implies that Φδ(x)∩
E = Φδ(x) ∩ E consists of at most two points. Since μ is clearly
non-atomic we conclude that μ(Φδ(x)) = 0. Since x ∈ S1 is arbitrary
we are done.

A first application of Theorem 3.19 is as follows.

Theorem 3.21. The stable classes of a continuous map of a compact
metric space have measure zero with respect to any ergodic invariant
measure with positive entropy.

Proof. In fact, since these measures are positively expansive by The-
orem 3.19 we obtain the result from Proposition 3.14.

We can also use Theorem 3.19 to compute the topological entropy
of certain continuous maps (for the related concepts see [3] or [89]).
As a motivation let us mention the known facts that both transitive
continuous maps with countably many stable classes on compact met-
ric spaces and continuous maps of the interval or the circle which are
Lyapunov stable on their recurrent sets have zero topological entropy
(see Corollary 2.3 p. 263 in [45], [35], Theorem B in [81] and [92]).
Indeed we improve these result in the following way.
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Theorem 3.22. A continuous map of a compact metric space which
either has countably many stable classes or is Lyapunov stable on its
recurrent set has zero topological entropy.

Proof. If the topological entropy were not zero the variational princi-
ple [89] would imply the existence of ergodic invariant measures with
positive entropy. But by Theorem 3.19 these measures are positively
expansive against Corollary 3.17.

Example 3.23. An example satisfying the first part of Theorem 3.22
is the classical pole North-South diffeomorphism on spheres. In fact,
the only stable sets of this diffeomorphism are the stable sets of the
poles. The Morse-Smale diffeomorphisms [40] are basic examples
where these hypotheses are fulfilled.

Now we use positively expansive measures to study the chaoticity
in the sense of Li and Yorke [60]. Recall that if δ ≥ 0 a δ-scrambled
set of f : X → X is a subset S ⊂ X satisfying

lim inf
n→∞ d(fn(x), fn(y)) = 0 and lim sup

n→∞
d(fn(x), fn(y)) > δ

(3.11)
for all different points x, y ∈ S. The following result relates scrambled
sets with positively expansive measures.

Theorem 3.24. A continuous map of a Polish metric space carrying
an uncountable δ-scrambled set for some δ > 0 also carries positively
expansive probability measures.

Proof. Let X a Polish metric space and f : X → X be a continuous
map carrying an uncountable δ-scrambled set for some δ > 0. Then,
by Theorem 16 in [13], there is a closed uncountable δ-scrambled set
S. As S is closed and X is Polish we have that S is also a Polish metric
space with respect to the induced metric. As S is uncountable we have
from [73] that there is a non-atomic Borel probability measure ν in S.
Let μ be the Borel probability induced by ν in X, i.e., μ(A) = ν(A∩S)
for all Borelian A ⊂ X. We shall prove that this measure is positively
expansive. If x ∈ S and y ∈ Φ δ

2
(x) ∩ S we have that x, y ∈ S and

d(fn(x), fn(y)) ≤ δ
2 for all n ∈ N therefore x = y by the second

inequality in (3.11). We conclude that Φ δ
2
(x)∩S = {x} for all x ∈ S.
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As ν is non-atomic we obtain μ(Φ δ
2
(x)) = ν(Φ δ

2
(x)∩S) = ν({x}) = 0

for all x ∈ S. On other hand, it is clear that every open set which
does not intersect S has μ-measure 0 so μ is supported in the closure
of S. As S is closed we obtain that μ is supported on S. We conclude
that μ(Φ δ

2
(x)) = 0 for μ-a.e. x ∈ X, so, μ is positively expansive by

Lemma 3.11.

Corollary 3.25. Every homeomorphism of a compact metric space
carrying an uncountable δ-scrambled set for some δ also carries pos-
itively expansive invariant probability measures.

Proof. Every compact metric space is Polish so Theorem 3.24 yields
positively expansive probability measures. Now apply Theorem 3.7.

Now recall that a continuous map is Li-Yorke chaotic if it has an
uncountable 0-scrambled set.

Until the end of this section M will denote either the interval
I = [0, 1] or the unit circle S1.

Corollary 3.26. Every Li-Yorke chaotic map in M carries positively
expansive measures.

Proof. Theorem in p. 260 of [31] together with theorems A and B in
[57] imply that every Li-Yorke chaotic map in M has an uncountable
δ-scrambled set for some δ > 0. Then, we obtain the result from
Theorem 3.24.

It follows from Example 3.20 that there are continuous maps with
zero topological entropy in the circle exhibiting positively expansive
invariant measures. This leads to the question whether the same
result is true on compact intervals. The following consequence of the
above corollary gives a partial positive answer for this question.

Example 3.27. There are continuous maps with zero topological en-
tropy in the interval carrying positively expansive measures.

Indeed, by [47] there is a continuous map of the interval, with zero
topological entropy, exhibiting a δ-scrambled set of positive Lebesgue
measures for some δ > 0. Since sets with positive Lebesgue measure
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are uncountable we obtain a positively expansive measure from The-
orem 3.24.

Another interesting example is the one below.

Example 3.28. The Lebesgue measure is an ergodic invariant mea-
sure with positive entropy of the tent map f(x) = 1 − |2x − 1| in I.
Therefore, this measure is positively expansive by Theorem 3.19.

It follows from this example that there are continuous maps in
I carrying positively expansive measures μ with full support (i.e.
supp(μ) = I). These maps also exist in S1 (e.g. an expanding map).
Now, we prove that Li-Yorke and positive topological entropy are
equivalent properties among these maps in I. But previously we
need a result based on the following well-known definition.

A wandering interval of a map f : M → M is an interval J ⊂ M
such that fn(J) ∩ fm(J) = ∅ for all different integers n,m ∈ N and
no point in J belongs to the stable set of some periodic point.

Lemma 3.29. If f : M → M is continuous, then every wandering
interval has measure zero with respect to every positively expansive
measure.

Proof. Let J a wandering interval and μ be a positively expansive
measure with expansivity constant ε (c.f. Definition 3.12). To prove
μ(J) = 0 it suffices to prove Int(J) ∩ supp(μ) = 0 since μ is non-
atomic. As J is a wandering interval one has limn→∞ |fn(J)| = 0,
where | · | denotes the length operation.

From this there is a positive integer n0 satisfying

|fn(J)| < ε, ∀n ≥ n0. (3.12)

Now, take x ∈ Int(J). Since f is clearly uniformly continuous and
n0 is fixed we can select δ > 0 such that B[x, δ] ⊂ Int(J) and
|fn(B[x, δ])| < ε for 0 ≤ n ≤ n0. This together with (3.12) im-
plies |fn(x) − fn(y)| < ε for all n ∈ N therefore B[x, δ] ⊂ Φε(x) so
μ(B[x, δ]) = 0 since ε is an expansivity constant. Thus x 
∈ supp(μ)
and we are done.

From this we obtain the following corollary.
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Corollary 3.30. A continuous map carrying positively expansive
measures with full support of the circle or the interval has no wander-
ing intervals. Consequently, a continuous map of the interval carry-
ing positively expansive measures with full support is Li-Yorke chaotic
if and only if it has positive topological entropy.

Proof. The first part is a direct consequence Lemma 3.29 while, the
second, follows from the first since a continuous interval map without
wandering intervals is Li-Yorke chaotic if and only if it has positive
topological entropy [82].

3.5 The smooth case

Now we turn our attention to smooth ergodic theory. The motivation
is the well-known fact that a diffeomorphism restricted to a hyper-
bolic basic set is expansive. In fact, it is tempting to say that every
hyperbolic ergodic measures of a diffeomorphism is positively expan-
sive (or at least expansive) but the Dirac measure supported on a
hyperbolic periodic point is a counterexample. This shows that some
extra hypotheses are necessary for a hyperbolic ergodic measure to
be positively expansive. Indeed, by the results above, we only need
to recognize which conditions imply positive entropy. Let us state
some basic definitions in order to present our result.

Assume that X is a compact manifold and that f is a C1 diffeo-
morphism. We say that point x ∈ X is a regular point whenever there
are positive integers s(x) and numbers {λ1(x), · · · , λs(x)(x)} ⊂ IR
(called Lyapunov exponents) such that for every v ∈ TxM \ {0} there
is 1 ≤ i ≤ s(x) such that

lim
n→∞

1
n

log ‖Dfn(x)v‖ = λi(x).

An invariant measure μ is called hyperbolic if there is a measurable
subset A with μ(A) = 1 such that λi(x) 
= 0 for all x ∈ A and all
1 ≤ i ≤ s(x).

On the other hand, the Eckmann-Ruelle conjecture [9] asserts that
every hyperbolic ergodic measure μ is exac-dimensional, i.e., the limit
below

d(x) = lim
r→0+

μ(B(x, r))
r
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exists and is constant μ-a.e. x ∈ X. This constant is the so-called
dimension of μ.

With these definitions we can state the following result.

Theorem 3.31. Let f be a C2 diffeomorphism of a compact mani-
fold.

1. Every hyperbolic ergodic measure of f which either has positive
dimension or is absolutely continuous with respect to Lebesgue
is positively expansive.

2. If f has a non-atomic hyperbolic ergodic measure, then f also
has a positively expansive ergodic invariant measure.

Proof. Let us prove (1). First assume that the measure has positive
dimension. As noticed in [9] p. 761 Theorem C′ p. 544 in [58] implies
that if the entropy vanishes, then the stable and unstable dimension
of the measure also do. In such a case we have from Theorem F
p. 548 in [58] that the measure has zero dimension, a contradiction.
Therefore, the measure has positive entropy and then we are done by
Theorem 3.19.

Now assume that the measure is absolutely continuous with re-
spect to the Lebesgue measure. Then, it is non-atomic so the ar-
gument in the proof of Theorem 4.2 p. 167 in [56] implies that it
has at least one positive Lyapunov exponent. Therefore, the Pesin
formula (c.f. p. 139 in [52]) implies positive entropy so we are done
by Theorem 3.19.

To prove (2) we only have to see that Corollary 4.2 in [52] implies
that every diffeomorphism as in the statement of (2) has positive
topological entropy. Then, we are done by the variational principle
and Theorem 3.19 (see Exercice 3.39).

3.6 Exercices

Exercice 3.32. Prove that the Lebesgue measure of S2 is an expansive measure

of the Bernoulli diffeomorphism in S2 found in [53] (therefore Corollary 1.41 is false

for S2 instead of S1). Is such a diffeomorphism measure-expansive?
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Exercice 3.33. Is it true that every continuous map f : X → X exhibiting

positively expansive probability measures of a compact metric space also exhibits

positively expansive invariant measures?

Exercice 3.34. Let f : X → X be a measurable map of a metric space X.
Prove that a Borel probability measure μ of X is positively expansive for f if and
only if if there is δ > 0 such that

lim inf
n→∞ μ(B[x, n, δ]) = 0, for all x ∈ X,

where B[x, n, δ] is defined in 3.1.

Exercice 3.35. Prove the equivalence of the following properties for every con-
tinuous map f : X → X of compact metric space and every Borel probabiltity
measure μ of X:

• μ is positively expansive for f ;

• there is n ∈ N
+ such that μ is positively expansive for fn;

• μ is positively expansive for fn, ∀n ∈ N
+.

Exercice 3.36. Prove that the constant map cannot have positively expansive

measures.

Exercice 3.37. Prove lemmas 3.5, 3.11, 3.6 and Proposition 3.10.

Exercice 3.38. Prove that e Borel probability measure μ is positively expansive

for a measurable map f : X → X of a metric space X if and only if there are δ > 0

and a negligible set X0 of X such that μ(Φδ(x)) = 0 for every x ∈ X0 (negligible

means that μ(A) = 0 for every measurable subset A ⊂ X0).

Exercice 3.39. Prove that every continuous map of a compact metric space
f : X → X satisfies the variational principle,

h(f) = sup
μ∈M∗

exp(f)
hμ(f),

where M∗
exp(f) denotes the space of expansive invariant probability measures of f

(of course, with the supremum being zero if M∗
exp(f) = ∅).

Exercice 3.40. Following [21] we say that a Borel measure μ of a metric space

X is almost expansive for a Borel isomorphism f : X → X if there is δ > 0 such

that Γδ(x) = {x} for μ-a.e. x ∈ X. Find examples of homeomorphisms of compact

metric spaces exhibiting expansive ergodic invariant measures which are not almost

expansive.

Exercice 3.41. Prove that a circle homeomorphism exhibits positively expansive

measures if and only if it is Denjoy.
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Exercice 3.42. Investigate the parameter values 0 ≤ β ≤ 1 for which the

Lebesgue measure is positively expansive for the map gβ(x) = β(1− |2x− 1|) of the

unit interval I. Analogously for the family fλ(x) = λx(1 − x) , 0 ≤ λ ≤ 4.

Exercice 3.43. Call a continuous map f : X → X of a non-atomic metric

space X positively measure-expansive if every non-atomic Borel measure is positively

expansive for f . Find examples of positively measure-expansive homeomorphisms of

non-atomic compact metric spaces.

Exercice 3.44. Find a homeomorphism of a compact non-atomic metric space

which is positively measure-expansive (and so measure-expansive) but not expansive.

Exercice 3.45. Prove that there are no Li-Yorke chaotic homeomorphisms of

the circle. Conclude that there are continuous maps of compact metric spaces with

positively expansive measures which are not Li-Yorke chaotic.

Exercice 3.46. Does every Li-Yorke chaotic map of a compact metric space

carry positively expansive measures?

Exercice 3.47. Are there diffeomorphisms of closed manifolds exhibiting non-

atomic hyperbolic measure which are neither expansive nor positively expansive?

Exercice 3.48. A measurable map f : X → X of a metric is called pairwise
sensitive for a Borel measure μ if there is δ > 0 such that

μ2 ({(x, y) ∈ X × X : ∃n ∈ N such that d(fn(x), fn(y)) ≥ δ}) = 1

(c.f. [27]). Prove that a Borel probability measure μ of X is positively expansive for

f if and only if f is pairwise sensitive for μ.



Chapter 4

Measure-sensitive maps

4.1 Introduction

In this chapter we will try to extend the notion of measure ex-
pansivity from metric to measurable spaces. For this we introduce
the auxiliary definition of measure-sensitive partitions and measure-
sensitive spaces. We prove that every non-atomic standard proba-
bility spaces is measure-sensitive and that every measure-sensitive
probability spaces is non-atomic. With this concept we introduce the
notion of measure-sensitive partition which will play a role similar
to the expansivity constant for expansive maps. We prove that in
a non-atomic probability space every strong generator is a measure-
sensitive partition but not conversely (results about strong generators
can be found in [41], [48], [69], [70] and [71]). We exhibit exam-
ples of measurable maps in non-atomic probability spaces carrying
measure-sensitive partitions which are not strong generators. Moti-
vated by these examples we shall study the measure-sensitive maps(1)
i.e. measurable maps on measure spaces carrying measure-sensitive
partitions. Indeed, we prove that every measure-sensitive map is ape-
riodic and also, in the probabilistic case, that its corresponding space
is non-atomic.

From this we obtain a characterization of nonsingular countable

1Called measure-expansive maps in [64]

60
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to one measure-sensitive mappings on non-atomic Lebesgue proba-
bility spaces as those having strong generators. Furthermore, we
prove that every ergodic measure-preserving map with positive en-
tropy is a probability space is measure-sensitive (thus extending a
result in [27]). As an application we obtain some properties for er-
godic measure-preserving maps with positive entropy (c.f. corollaries
4.14 and 4.20). A reference for the results in this chapter is [64].

4.2 Measure-sensitive spaces

Hereafter the term countable will mean either finite or countably in-
finite.

A measure space is a triple (X,B, μ) where X is a set, B is a σ-
algebra of subsets of X and μ is a positive measure in B. A probability
space is one for which μ(X) = 1.

A partition is a disjoint collection P of nonempty measurable sets
whose union is X. We allow μ(ξ) = 0 for some ξ ∈ P . Given
partitions P and Q we write P ≤ Q to mean that each member of Q
is contained in some member of P (mod 0). A sequence of partitions
{Pn : n ∈ N} (or simply Pn) is increasing if Pi ≤ Pj for i ≤ j.

Motivated by the concept of Lebesgue sequence of partitions (c.f.
p. 81 in [61]) we introduce the following definition.

Definition 4.1. A measure-sensitive sequence of partitions of a mea-
sure space (X,B, μ) is an increasing sequence of countable partitions
Pn such that

μ

(⋂
n∈N

ξn

)
= 0

for all sequence of measurable sets ξn satisfying ξn ∈ Pn, ∀n ∈ N. A
measure-sensitive space is a measure space carrying measure-sensitive
sequences of partitions.

Let us present a sufficient condition for sequences of partitions to
be measure-sensitive. Recall that the join of finitely many partitions
P0, · · · , Pn is the partition defined by

n∨
k=0

Pk =

{
n⋂

k=0

ξk : ξk ∈ Pk,∀0 ≤ k ≤ n

}
.
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Certainly

Pn =
n∨

k=0

f−k(P ), n ∈ N, (4.1)

defines an increasing sequence of countable partitions satisfying

Pn(x) =
n⋂

k=0

f−k(P (fk(x)), ∀x ∈ X.

Since for all x ∈ X one has

{y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N} =

∞⋂
n=0

f−n(P (fn(x))) =
∞⋂

n=0

Pn(x),

we obtain that the identity below

lim
n→∞ sup

ξ∈Pn

μ(ξ) = 0 (4.2)

is sufficient condition for an increasing sequence Pn of countable par-
titions to be measure-sensitive. It is also necessary in probability
spaces (see Exercice 4.27).

Let us state basic properties of the measure-sensitive spaces. For
this recall that a measure space is non-atomic if it has no atoms, i.e.,
measurable sets A of positive measure satisfying μ(B) ∈ {0, μ(A)}
for every measurable set B ⊂ A. Recall that a standard probability
space is a probability space (X,B, μ) whose underlying measurable
space (X,B) is isomorphic to a Polish space equipped with its Borel
σ-algebra (e.g. [1]).

The class of measure-sensitive spaces is broad enough to include
all non-atomic standard probability spaces. Precisely we have the
following proposition.

Proposition 4.2. Every non-atomic standard probability spaces is
measure-sensitive.

Proof. It is well-known that if (X,B, μ) is a non-atomic standard
probability space, then there are a measurable subset X0 ⊂ X with
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μ(X \ X0) = 0 and a sequence of countable partitions Qn of X0

such that
⋂

n∈N
ξn contains at most one point for every sequence of

measurable sets ζn in X0 satisfying ζn ∈ Qn, ∀n ∈ N (c.f. [61] p.
81). Defining Pn = {X \X0} ∪Qn we obtain an increasing sequence
of countable partitions of (X,B, μ). It suffices to prove that this
sequence is measure-sensitive. For this take a fixed (but arbitrary)
sequence of measurable sets ξn of X with ξn ∈ Pn for all n ∈ N. It
follows from the definition of Pn that either ξn = X \ X0 for some
n ∈ N, or, ξn ∈ Qn for all n ∈ N. Then, the intersection

⋂
n∈N

ξn

either is contained in X \X0 or reduces to a single measurable point.
Since both X \X0 and the measurable points have measure zero (for
non-atomic spaces are diffuse [10]) we obtain μ

(⋂
n∈N

ξn

)
= 0. As ξn

is arbitrary we are done.

Although measure-sensitive probability spaces need not be stan-
dard (Exercice 4.26) we have that all of them are non-atomic. Indeed,
we have the following result of later usage.

Proposition 4.3. Every measure-sensitive probability spaces is non-
atomic.

Proof. Suppose by contradiction that a measure-sensitive probability
space (X,B, μ) has an atom A. Take a measure-sensitive sequence of
partitions Pn. Since A is an atom one has that ∀n ∈ N ∃!ξn ∈ Pn

such that μ(A ∩ ξn) > 0 (and so μ(A ∩ ξn) = μ(A)). Notice that
μ(ξn ∩ ξn+1) > 0 for, otherwise, μ(A) ≥ μ(A ∩ (ξn ∪ ξn+1)) = μ(A ∩
ξn) + μ(A∩ ξn+1) = 2μ(A) which is impossible in probability spaces.
Now observe that ξn ∈ Pn and Pn ≤ Pn+1, so, there is L ⊂ Pn+1

such that

μ

⎛
⎝ξn �

⋃
ζ∈L

ζ

⎞
⎠ = 0. (4.3)

If ξn+1 ∩
(⋃

ζ∈L ζ
)

= ∅ we would have ξn ∩ ξn+1 = ξn ∩ ξn+1 \
⋃

ζ∈L ζ

yielding

μ(ξn ∩ ξn+1) = μ

⎛
⎝ξn ∩ ξn+1 \

⋃
ζ∈L

ζ

⎞
⎠ ≤ μ

⎛
⎝ξn \

⋃
ζ∈L

ζ

⎞
⎠ = 0
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which is absurd. Hence ξn+1 ∩
(⋃

ζ∈L ζ
)

= ∅ and then ξn+1 ∈ L for

Pn+1 is a partition and ξn+1 ∈ Pn+1. Using (4.3) we obtain ξn+1 ⊂ ξn

(mod 0) so A ∩ ξn+1 ⊂ A ∩ ξn (mod 0) for all n ∈ N
+.

From this and well-known properties of probability spaces we ob-
tain

μ

(
A ∩

⋂
n∈N

ξn

)
= μ

(⋂
n∈N

(A ∩ ξn)

)
= lim

n→∞μ(A ∩ ξn) = μ(A) > 0.

But Pn is measure-sensitive and ξn ∈ Pn, ∀n ∈ N, so μ
(⋂

n∈N
ξn

)
= 0

yielding μ
(
A ∩⋂n∈N

ξn

)
= 0 which contradicts the above expression.

This contradiction yields the proof.

4.3 Measure-sensitive maps

Let (X,B) be a measure space. If f : X → X is measurable and
k ∈ N we define for every partition P the pullback partition f−k(P ) =
{f−k(ξ) : ξ ∈ P} which is countable if P is.

Definition 4.4. A measure-sensitive partition of a measurable map
f : X → X is a countable partition P satisfying

μ({y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N}) = 0, ∀x ∈ X, (4.4)

where P (x) stands for the element of P containing x ∈ X.

The basic examples of measure-sensitive partitions are given as
follows. A strong generator of a measurable map f : X → X is a
countable partition P for which the smallest σ-algebra of B containing⋃

k∈N
f−k(P ) equals B (mod 0) (see [69]).

The result below is the central motivation of this chapter.

Theorem 4.5. Every strong generator of a measurable map f in a
non-atomic probability space is a measure-sensitive partition of f .

Proof. Let P be a strong generator of a measurable map f : X → X
in a non-atomic probability space (X,B, μ). Then, the sequence (4.1)
generates B (mod 0).
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From this and Lemma 5.2 p. 8 in [61] we obtain that the set of
all finite unions of elements of these partitions is everywhere dense in
the measure algebra associated to (X,B, μ). Consequently, Lemma
9.3.3 p. 278 in [10] implies that the sequence (4.1) satisfies (4.2) and
then (4.4) holds.

We shall see in Example 4.13 that the converse of this theorem is
false, i.e., there are certain measurable maps in non-atomic probabil-
ity spaces carrying measure-sensitive partitions which are not strong
generators. These examples motivates the study of measure-sensitive
partitions for measurable maps in measure spaces.

The following equivalence relates both measure-sensitive parti-
tions for maps and measure-sensitive sequences of partitions of mea-
surable spaces

Lemma 4.6. The following properties are equivalent for measurable
maps f : X → X and countable partitions P on measure spaces
(X,B, μ):

(i) The sequence Pn in (4.1) is measure-sensitive for X.

(ii) The partition P is measure-sensitive for f .

(iii) The partition P satisfies

μ({y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N}) = 0,∀μ-a.e. x ∈ X.

Proof. Previously we state some notation. Given a partition P and
f : X → X measurable we define

P∞(x) = {y ∈ X : fn(y) ∈ P (fn(x)),∀n ∈ N}, ∀x ∈ X.

Notice that
P∞(x) =

⋂
n∈N+

Pn(x) (4.5)

and

Pn(x) =
n⋂

i=0

f−i(P (f i(x))) (4.6)



66 [CAP. 4: MEASURE-SENSITIVE MAPS

so each P∞(x) is a measurable set. For later use we keep the following
identity (

n∨
i=0

f−i(P )

)
(x) = Pn(x), ∀x ∈ X. (4.7)

Clearly (4.4) (resp. (iii)) is equivalent to μ(P∞(x)) = 0 for every
x ∈ X (resp. for μ-a.e. x ∈ X).

First we prove that (i) implies (ii). Suppose that the sequence
(4.1) is measure-sensitive and fix x ∈ X. By (4.5) and (4.7) we have
P∞(x) =

⋂
n∈N

ξn where ξn = Pn(x) ∈ Pn. As the sequence Pn is
measure-sensitive we obtain μ(P∞(x)) = μ

(⋂
n∈N

ξn

)
= 0 proving

(ii). Conversely, suppose that (ii) holds and let ξn be a sequence of
measurable sets with ξn ∈ Pn for all n. Take y ∈ ⋂n∈N

ξn. It follows
that y ∈ Pn(x) for all n ∈ N whence y ∈ P∞(x) by (4.1). We con-
clude that

⋂
n∈N

ξn ⊂ P∞(x) therefore μ
(⋂

n∈N
ξn

) ≤ μ(P∞(x)) = 0
proving (i).

To prove that (ii) and (iii) are equivalent we only have to prove
that (iii) implies (i). Assume by contradiction that P satifies (iii)
but not (ii). Since μ is a probability and (3) holds the set X ′ =
{x ∈ X : μ(P∞(x)) = 0} has measure one. Since (ii) does not hold
there is x ∈ X such that μ(P∞(x)) > 0. Since μ is a probability
and X ′ has measure one we would have P∞(x) ∩ X ′ 
= ∅ so there
is y ∈ P∞(x) such that μ(P∞(y)) = 0. But clearly the collection
{P∞(x) : x ∈ X} is a partition (for P is) so P∞(x) = P∞(y) whence
μ(P∞(x)) = μ(P∞(y)) = 0 which is a contradiction. This ends the
proof.

Recall that a measurable map f : X → X is measure-preserving if
μ◦f−1 = μ. Moreover, it is ergodic if every measurable invariant set A
(i.e. A = f−1(A) (mod 0)) satisfies either μ(A) = 0 or μ(X \A) = 0;
and totally ergodic if fn is ergodic for all n ∈ N

+.

Example 4.7. If f is a totally ergodic measure-preserving map of a
probability space, then every countable partition P with 0 < μ(ξ) < 1
for some ξ ∈ P is measure-sensitive with respect to f (this follows
from the equivalence (iii) in Lemma 4.6 and Lemma 1.1 p. 208 in
[61]).
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Hereafter we fix a measure space (X,B, μ) and a measurable map
f : X → X. We shall not assume that f is measure-preserving unless
otherwise stated.

Using the Kolmogorov-Sinai’s entropy we obtain sufficient condi-
tions for the measure-sensitivity of a given partition. Recall that the
entropy of a finite partition P is defined by

H(P ) = −
∑
ξ∈P

μ(ξ) log μ(ξ).

The entropy of a finite partition P with respect to a measure-
preserving map f is defined by

h(f, P ) = lim
n→∞

1
n

H(Pn−1).

Then, we have the following lemma.

Lemma 4.8. A finite partition with finite positive entropy of an er-
godic measure-preserving map f in a probability space is a measure-
sensitive partition of f .

Proof. Since f is ergodic, the Shannon-Breiman Theorem (c.f. [61]
p. 209) implies that the partition P (say) satisfies

− lim
n→∞

1
n

log(μ(Pn(x))) = h(f, P ), μ-a.e. x ∈ X, (4.8)

where Pn(x) is as in (4.6). On the other hand, Pn+1(x) ⊂ Pn(x) for
all n so (4.5) implies

μ(P∞(x)) = lim
n→∞μ(Pn(x)), ∀x ∈ X. (4.9)

But h(f, P ) > 0 so (4.8) implies that μ(Pn(x)) goes to zero for μ-a.e.
x ∈ X. This together with (4.9) implies that P satisfy the equivalence
(iii) in Lemma 4.6 so P is measure-sensitive.

It follows at once from Lemma 4.6 that measure-sensitive maps
only exist on measure-sensitive spaces. Consequently we obtain the
following result from Proposition 4.3.
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Theorem 4.9. Every probability space carrying measure-sensitive
maps is non-atomic.

A simple but useful example is as follows.

Example 4.10. The irrational rotations in the circle are measure-
sensitive maps with respect to the Lebesgue measure. This follows
from Example 4.7 since all such maps are measure-preserving and
totally ergodic.

On the other hand, it is not difficult to find examples of measure-
sensitive measure-preserving maps which are not ergodic. These ex-
amples together with Example 4.10 suggest the question whether an
ergodic measure-preserving map is measure-sensitive. However, the
answer is negative by the following example.

Example 4.11. If (X,B, μ) is a measure space with B = {X, ∅}, then
no map is measure-sensitive although they are all ergodic measure-
preserving.

In spite of this we can give conditions for the measure-expansivity
of ergodic measure-preserving maps as follows.

Recall that the entropy (c.f. [61], [89]) of f is defined by

h(f) = sup{h(f,Q) : Q is a finite partition of X}.

We obtain a result closely related to Theorem 3.19 and Theorem 3.1
in [27].

Theorem 4.12. Every ergodic measure-preserving maps with posi-
tive entropy of a probability space is measure-sensitive.

Proof. Let f be one of such a map with entropy h(f) > 0. We can
assume that h(f) < ∞. It follows that there is a finite partition Q

with 0 < h(f,Q) < ∞. Taking P =
∨n−1

i=0 f−i(Q) with n large we
obtain a finite partition with finite positive entropy since h(f, P ) =
h(f,Q) > 0. It follows that P is measure-sensitive by Lemma 4.8
whence f is measure-sensitive by definition.

A first consequence of the above result is that the converse of
Theorem 4.5 is false.
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Example 4.13. Let f : X → X be a homeomorphism with posi-
tive topological entropy of a compact metric space X. By the vari-
ational principle [89] there is a Borel probability measures μ with
respect to which f is an ergodic measure-preserving map with posi-
tive entropy. Then, by Theorem 4.12, f carries a measure-sensitive
partition which, by Corollary 4.18.1 in [89], cannot be a strong gener-
ator. Consequently, there are measurable maps in certain non-atomic
probability spaces carrying measure-sensitive partitions which are not
strong generators.

On the other hand, it is also false that ergodic measure-sensitive
measure-preserving maps on probability spaces have positive entropy.
The counterexamples are precisely the irrational circle rotations (c.f.
Example 4.10). Theorems 4.9 and 4.12 imply the probably well-
known result below.

Corollary 4.14. Every probability spaces carrying ergodic measure-
preserving maps with positive entropy is non-atomic.

4.4 Aperiodicity

In this section we analyse the aperiodicity of measure-sensitive maps.
According to [69] a measurable map f is aperiodic whenever for all
n ∈ N

+ if n ∈ N
+ and fn(x) = x on a measurable set A, then

μ(A) = 0. Let us extend this definition in the following way.

Definition 4.15. We say that f is eventually aperiodic whenever
the following property holds for every (n, k) ∈ N

+ × N: If A is a
measurable set such that for every x ∈ A there is 0 ≤ i ≤ k such that
fn+i(x) = f i(x), then μ(A) = 0.

It follows easily from the definition that an eventually periodic
map is aperiodic. The converse is true for invertible maps but not
in general (e.g. the constant map f(x) = c where c is a measurable
point of zero mass).

With this definition we can state the following result.

Theorem 4.16. Every measure-sensitive map is eventually aperiodic
(and so aperiodic).
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Proof. Let f be a measure-sensitive map of X. Take (n, k) ∈ N
+ ×N

and a measurable set A such that for every x ∈ A there is 0 ≤ i ≤ k
such that fn+i(x) = f i(x). Then,

A ⊂
k⋃

i=0

f−i(Fix(fn)), (4.10)

where Fix(g) = {x ∈ X : g(x) = x} denotes the set of fixed points
of a map g. Let P be a measure-sensitive partition of f . Then,∨k+n

m=0 f−m(P ) is a countable partition. Fix x, y ∈ A∩ξ. In particular

ξ =

(
k+n∨
m=0

f−m(P )

)
(x)

whence

y ∈
(

k+n∨
m=0

f−m(P )

)
(x).

This together with (4.6) and (4.7) yields

fm(y) ∈ P (fm(x)), ∀0 ≤ m ≤ k + n. (4.11)

But x, y ∈ A so (4.10) implies f i(x), f j(y) ∈ Fix(fn) for some i, j ∈
{0, · · · , k}. We can assume that j ≥ i (otherwise we interchange the
roles of x and y in the argument below).

Now take m > k + n. Then, m > j + n so m − j = pn + r for
some p ∈ N

+ and some integer 0 ≤ r < n. Since 0 ≤ j + r < k + n
(for 0 ≤ j ≤ k and 0 ≤ r < n) one gets

fm(y) = fm−j(f j(y)) = fpn+r(f j(y))
= fr(fpn(f j(y)))
= f j+r(y)

(4.11)∈ P (f j+r(x)).

But

P (f j+r(x)) = P (f j+r−i(f i(x))) = P (f j+r−i(fpn(f i(x))))
= P (fm−i(f i(x)))
= P (fm(x))
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so
fm(y) ∈ P (fm(x)), ∀m > k + n.

This together with (4.11) implies that fm(y) ∈ P (fm(x)) for all
m ∈ N whence y ∈ P∞(x). Consequently A ∩ ξ ⊂ P∞(x). As P is
measure-sensitive, Lemma 4.6 implies

μ(A ∩ ξ) = 0, ∀ξ ∈
k+n∨
i=0

f−i(P ).

On the other hand,
∨k+n

i=0 f−i(P ) is a partition so

A =
⋃

ξ∈∨k+n
i=0 f−i(P )

(A ∩ ξ)

and then μ(A) = 0 since
∨k+n

i=0 f−i(P ) is countable. This ends the
proof.

By Lemma 4.5 we have that, in non-atomic probability spaces, ev-
ery measurable map carrying strong generators is measure-sensitive.
This motivates the question as to whether every measure-sensitive
map has a strong generator. We give a partial positive answer for
certain maps defined as follows. We say that f is countable to one
(mod 0) if f−1(x) is countable for μ-a.e. x ∈ X. We say that f
is nonsingular if a measurable set A has measure zero if and only if
f−1(A) also does. All measure-preserving maps are nonsingular. A
Lebesgue probability space is a complete measure space which is iso-
morphic to the completion of a standard probability space (c.f. [1],
[10]).

Corollary 4.17. The following properties are equivalent for non-
singular countable to one (mod 0) maps f on non-atomic Lebesgue
probability spaces:

1. f is measure-sensitive.

2. f is eventually aperiodic.

3. f is aperiodic.
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4. f has a strong generator.

Proof. Notice that (1) ⇒ (2) by Theorem 4.16 and (2) ⇒ (3) follows
from the definitions. On the other hand, (3) ⇒ (4) by a Parry’s
Theorem (c.f. [69], [71], [70]) while (4) ⇒ (1) by Lemma 4.5.

Denote by Fix(g) = {x ∈ X : g(x) = x} the set of fixed points of
a mapping g.

Corollary 4.18. If fk = f for some integer k ≥ 2, then f is not
measure-sensitive.

Proof. Suppose by contradiction that it does. Then, f is eventu-
ally aperiodic by Theorem 4.16. On the other hand, if x ∈ X
then fk(x) = f(x) so fk−1(fk(x)) = fk−1(f(x)) = fk(x) there-
fore fk(x) ∈ Fix(fk−1) whence X ⊂ f−k(Fix(fk−1)). But since f
is eventually aperiodic, n = k− 1 ∈ N

+ and X measurable we obtain
from the definition that μ(X) = 0 which is absurd. This ends the
proof.

Example 4.19. By Corollary 4.18 neither the identity f(x) = x nor
the constant map f(x) = c are measure-sensitive (for they satisfy
f2 = f). In particular, the converse of Theorem 4.16 is false for the
constant maps are eventually aperiodic but not measure-sensitive.

It is not difficult to prove that an ergodic measure-preserving map
of a non-atomic probability space is aperiodic. Then, Corollary 4.14
implies the well-known fact that all ergodic measure-preserving maps
with positive entropy on probability spaces are aperiodic. However,
using theorems 4.12 and 4.16 we obtain the following stronger result.

Corollary 4.20. All ergodic measure-preserving maps with positive
entropy on probability spaces are eventually aperiodic.

Now we study the following variant of aperiodicity introduced in
[41] p. 180.

Definition 4.21. We say that f is HS-aperiodic (2) whenever for
every measurable set of positive measure A and n ∈ N

+ there is a
measurable subset B ⊂ A such that μ(B \ f−n(B)) > 0.

2called aperiodic in [41].
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Notice that HS-aperiodicity implies the aperiodicity used in [48]
or [83] (for further comparisons see p. 88 in [56]).

On the other hand, a measurable map f is negative nonsingular
if μ(f−1(A)) = 0 whenever A is a measurable set with μ(A) = 0.
Some consequences of the aperiodicity on negative nonsingular maps
in probability spaces are given in [56]. Observe that every measure-
preserving map is negatively nonsingular.

Let us present two technical (but simple) results for later usage.
We call a measurable set A satisfying A ⊂ f−1(A) (mod 0) a posi-
tively invariant set (mod 0). For completeness we prove the following
property of these sets.

Lemma 4.22. If A is a positively invariant set (mod 0) of finite
measure of a negative nonsingular map f , then

μ

( ∞⋂
n=0

f−n(A)

)
= μ(A). (4.12)

Proof. Since μ(A) = μ(A\f−1(A))+μ(A∩f−1(A)) and A is positively
invariant (mod 0) one has μ(A) = μ(A ∩ f−1(A)), i.e.,

μ

(
1⋂

n=0

f−n(A)

)
= μ(A).

Now suppose that m ∈ N
+ satisfies

μ

(
m⋂

n=0

f−n(A)

)
= μ(A).

Since

μ

(
m+1⋂
n=0

f−n(A)

)
=

μ

(
m⋂

n=0

f−n(A)

)
− μ

((
m⋂

n=0

f−n(A)

)
\ f−m−1(A)

)
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and

μ

((
m⋂

n=0

f−n(A)

)
\ f−m−1(A)

)
≤ μ(f−m(A) \ f−m−1(A))

= μ(f−m(A \ f−1(A)))
= 0

because f is negative nonsingular and A is positively invariant (mod
0), one has μ

(⋂m+1
n=0 f−n(A)

)
= μ(A). Therefore

μ

(
m⋂

n=0

f−n(A)

)
= μ(A), ∀m ∈ N, (4.13)

by induction. On the other hand,

∞⋂
n=0

f−n(A) =
∞⋂

m=0

m⋂
n=0

f−n(A)

and
⋂m+1

n=0 f−n(A) ⊂ ⋂m
n=0 f−n(A). As μ(A) < ∞ we conclude that

μ

( ∞⋂
n=0

f−n(A)

)
= lim

m→∞μ

(
m⋂

n=0

f−n(A)

)
(4.13)
= lim

m→∞μ(A) = μ(A)

proving (4.12).

We use the above lemma only in the proof of the proposition
below.

Proposition 4.23. Let P be a measure-sensitive partition of a nega-
tive nonsingular map f . Then, no ξ ∈ P with positive finite measure
is positively invariant (mod 0).

Proof. Suppose by contradiction that there is ξ ∈ P with 0 < μ(ξ) <
∞ which is positively invariant (mod 0). Taking A = ξ in Lemma
4.22 we obtain

μ

( ∞⋂
n=0

f−n(ξ)

)
= μ(ξ). (4.14)
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As μ(ξ) > 0 we conclude that
⋂∞

n=0 f−n(ξ) 
= ∅, and so, there is x ∈ ξ
such that fn(x) ∈ ξ for all n ∈ N. As ξ ∈ P we obtain P (fn(x)) = ξ
and so f−n(P (fn(x))) = f−n(ξ) for all n ∈ N. Using (4.6) we get

Pm(x) =
m⋂

n=0

f−n(ξ).

Then, (4.5) yields

P∞(x) =
∞⋂

m=0

Pm(x) =
∞⋂

m=0

m⋂
n=0

f−n(ξ) =
∞⋂

n=0

f−n(ξ)

and so μ(P∞(x)) = μ(ξ) by (4.14). Then, μ(ξ) = 0 by Lemma
4.6 since P is measure-sensitive which is absurd. This contradiction
proves the result.

We also need the following lemma resembling a well-known prop-
erty of the expansive maps.

Lemma 4.24. If k ∈ N
+, then f is measure-sensitive if and only if

fk is.

Proof. The notation P f
∞(x) will indicate the dependence of P∞(x)

on f .
First of all suppose that fk is an measure-sensitive with measure-

sensitive partition P . Then, μ(P fk

∞ (x)) = 0 for all x ∈ X by Lemma
4.6. But by definition one has P f

∞(x) ⊂ P fk

∞ (x) so μ(P f
∞(x)) = 0 for

all x ∈ X. Therefore, f is measure-sensitive with measure-sensitive
partition P . Conversely, suppose that f is measure-sensitive with ex-
pansivity constant P . Consider Q =

∨k
i=0 f−i(P ) which is a count-

able partition satisfying Q(x) =
⋂k

i=0 f−i(P (f i(x))) by (4.7). Now,
take y ∈ Qfk

∞ (x). In particular, y ∈ Q(x) hence f i(y) ∈ P (f i(x)) for
every 0 ≤ i ≤ k. Take n > k so n = pk + r for some nonnegative
integers p and 0 ≤ r < k. As y ∈ Qfk

∞ (x) one has fpk(y) ∈ Q(fpk(x))
and then fn(y) = fpk+i(y) = f i(fpk(y)) ∈ P (f i(fpk(x)) = P (fn(x))
proving fn(y) ∈ P (fn(x)) for all n ∈ N. Then, y ∈ P∞(x) yielding
Qfk

∞ (x) ⊂ P∞(x). Thus μ(Qfk

∞ (x)) = 0 for all x ∈ X by the equiva-
lence (ii) in Lemma 4.6 since P is measure-sensitive. It follows that
fk is measure-sensitive with measure-sensitive partition Q.
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With these definitions and preliminary results we obtain the fol-
lowing.

Theorem 4.25. Every measure-sensitive negative nonsingular map
in a probability space is HS-aperiodic.

Proof. Suppose by contradiction that there is a measure-sensitive
map f which is negative nonsingular but not HS-aperiodic. Then,
there are a measurable set of positive measure A and n ∈ N

+ such
that μ(B \ f−n(B)) = 0 for every measurable subset B ⊂ A. It
follows that every measurable subset B ⊂ A is positively invariant
(mod 0) with respect to fn. By Lemma 4.24 we can assume n = 1.

Now, let P be a measure-sensitive partition of f . Clearly, since
μ(A) > 0 there is ξ ∈ P such that μ(A∩ ξ) > 0. Taking η = A∩ ξ we
obtain that η is positively invariant (mod 0) with positive measure.
In addition, consider the new partition Q = (P \ {ξ}) ∪ {η, ξ \ A}
which is clearly measure-sensitive (for P is). Since this partition also
carries a positively invariant (mod 0) member of positive measure
(say η) we obtain a contradiction by Proposition 4.23. The proof
follows.

4.5 Exercices

Exercice 4.26. Find non-standard measure-sensitive probability spaces.

Exercice 4.27. Prove that the condition (4.2) for a sequence of partitions to be

measure-sensitive is also necessary in probability spaces.

Exercice 4.28. Is the converse of Proposition 4.3 true among probability spaces,

namely, is every non-atomic probability space measure-sensitive?

Exercice 4.29. Prove the assertion in Example 4.7.

Exercice 4.30. Prove that if Pn is a measure-sensitive sequence of partitions

of a probability space (X,B, μ), then limn→∞ h(f, Pn) exists for every measure-

preserving map f : X → X. Prove that this limit may depend on the measure-

sensitive sequence Pn.
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Exercice 4.31. Prove that every measurable map of a separable metric space

which is pairwise sensitive with respect to a Borel probability measure μ is measure-

sensitive with respect to μ. Find a counterexample for the converse of this statement.

Exercice 4.32. Prove that every expansive map of a separable non-atomic metric

space is measure-sensitive with respect to any non-atomic Borel probability measure.
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[63] Mañé, R., Expansive diffeomorphisms, Dynamical systems—
Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical
Systems, Univ. Warwick, Coventry, 1973/1974; presented to E.
C. Zeeman on his fiftieth birthday), pp. 162–174. Lecture Notes
in Math., Vol. 468, Springer, Berlin, 1975.

[64] Morales, C.A., Partition sensitivity for measurable maps, Math.
Bohem. (to appear).

[65] Morales, C., A., A generalization of expansivity, Discrete Contin.
Dyn. Syst. 32 (2012), 293–301.

[66] Morales, C.A., Sirvent, V., Expansivity for measures on uniform
spaces, Preprint 2012 (to appear).

[67] O’Brien, T., Expansive homeomorphisms on compact manifolds,
Proc. Amer. Math. Soc. 24 (1970), 767–771.

[68] Parry, W., Zero entropy of distal and related transformations,
1968 Topological Dynamics (Symposium, Colorado State Univ.,
Ft. Collins, Colo., 1967) pp. 383–389 Benjamin, New York.

[69] Parry, W., Aperiodic transformations and generators, J. London
Math. Soc. 43 (1968), 191–194.

[70] Parry, W., Principal partitions and generators, Bull. Amer.
Math. Soc. 73 (1967), 307–309.

[71] Parry, W., Generators and strong generators in ergodic theory,
Bull. Amer. Math. Soc. 72 (1966), 294–296.

[72] Parthasarathy, K. R., Probability measures on metric spaces,
Probability and Mathematical Statistics, No. 3 Academic Press,
Inc., New York-London 1967.



BIBLIOGRAPHY 85

[73] Parthasarathy, K., R., Ranga Rao, R., Varadhan, S., R., S.,
On the category of indecomposable distributions on topological
groups, Trans. Amer. Math. Soc. 102 (1962), 200–217.

[74] Reddy, W., The existence of expansive homeomorphisms on
manifolds, Duke Math. J. 32 (1965), 627–632.

[75] Reddy, W., Pointwise expansion homeomorphisms, J. London
Math. Soc. (2) 2 (1970), 232–236.

[76] Reddy, W., Robertson, L., Sources, sinks and saddles for expan-
sive homeomorphisms with canonical coordinates, Rocky Moun-
tain J. Math. 17 (1987), no. 4, 673–681.

[77] Richeson, D., Wiseman, J., Positively expansive homeomor-
phisms of compact spaces, Int. J. Math. Math. Sci. (2004), no
53-56, 2907–2910.

[78] Sakai, K., Hyperbolic metrics of expansive homeomorphisms,
Topology Appl. 63 (1995), no. 3, 263–266.

[79] Schwartzman., S., On transformation groups, Ph.D. thesis, Yale
Univ., New Haven, CT, 1952.

[80] Sears, M., Expansive self-homeomorphisms of the Cantor set,
Math. Systems Theory 6 (1972), 129–132.

[81] Sindelarova, P., A counterexample to a statement concerning
Lyapunov stability Acta Math. Univ. Comenianae 70 (2001),
265–268.

[82] Smital, J., Chaotic functions with zero topological entropy,
Trans. Amer. Math. Soc. 297 (1986), no. 1, 269–282.

[83] Steele, J., M., Covering finite sets by ergodic images, Canad.
Math. Bull. 21 (1978), no. 1, 85–91.

[84] Takens, F.,Verbitski, E., Multifractal analysis of local entropies
for expansive homeomorphisms with specification, Comm. Math.
Phys. 203 (1999), no. 3, 593–612.



86 BIBLIOGRAPHY

[85] Utz, W., R., Expansive mappings, Proceedings of the 1978 Topol-
ogy Conference (Univ. Oklahoma, Norman, Okla., 1978), I.
Topology Proc. 3 (1978), no. 1, 221–226 (1979).

[86] Utz, W., R., Unstable homeomorphisms, Proc. Amer. Math. Soc.
1 (1950), 769–774.

[87] Vietez, J., L., Three-dimensional expansive homeomorphisms,
Dynamical systems (Santiago, 1990), 299–323, Pitman Res.
Notes Math. Ser., 285, Longman Sci. Tech., Harlow, 1993.

[88] Vieitez, J., L., Expansive homeomorphisms and hyperbolic dif-
feomorphisms on 3-manifolds, Ergodic Theory Dynam. Systems
16 (1996), no. 3, 591–622.

[89] Walters, P., An introduction to ergodic theory, Graduate Texts
in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

[90] Williams, R., Some theorems on expansive homeomorphisms,
Amer. Math. Monthly 73 (1966), 854–856.

[91] Williams, R., On expansive homeomorphisms, Amer. Math.
Monthly 76 (1969), 176–178.

[92] Zhou, Z., L., Some equivalent conditions for self-mappings of a
circle, Chinese Ann. Math. Ser. A 12 (1991), suppl., 22–27.



Index

μ-generator, 14
positive, 44

Atom, 62

Class
stable, 46

Conjecture
Eckmann-Ruelle, 56

Constant
expansivity, 2
positive expansivity, 41
positively expansive, 46

Diffeomorphism
Axiom A, 6
Bernoulli, 57
Morse-Smale, 53

Entropy
Kolmogorov-Sinai, 67
zero, 2, 51

Exponent
Lyapunov, 56

Generator
strong, 64

Homeomorphism
ρ-homeomorphism, 27

countably-expansive, 2
Denjoy, 5
expansive, 1

with respect to (P), 1
h-expansive, 2
measure-expansive, 4
pointwise expansive, 38
proximal, 26

Interval
wandering, 55

Manifold
closed, 6

Map
ρ-isometry, 29
almost distal, 25
aperiodic, 69

eventually, 69
bijective

n-expansive, 32
n-expansive on A, 32
distal, 25

contably to one (mod 0),
71

continuous
Li-Yorke chaotic, 54

Denjoy, 34
entropy, 25

87



88 INDEX

entropy of, 68
ergodic, 66

totally, 66
HS-aperiodic, 72
isometry, 4
Lyapunov stable on A, 47
measure-preserving, 66
measure-sensitive, 60
negative nonsingular, 73
nonsingular, 71
pairwise sensitive, 59
positively n-expansive, 32
positively n-expansive on

A, 32
positively expansive, 41
uniformly continuous, 5
uppersemicontinuous, 25
volume expanding, 45

Measure
almost expansive, 58
Borel, 2, 5, 6
dimension, 57
entropy, 49, 50
exact-dimensional, 56
expansive, 2

positively, 41
hyperbolic, 56, 59
Lebesgue, 4
maximal entropy, 39
pointwise expansive, 26
pullback, 5
space

measure-sensitive, 60
support, 11

Metric
n-discrete on A, 28
n-discrete on A

with constant δ, 28

compact, 27
product, 13
restricted, 28

Number
Lebesgue, 15

Pair
asymptotic, 25, 46
Li-Yorke, 25
proximal, 25

Partition, 61
entropy, 67
measure-sensitive, 60, 64
sequence

increasing, 61
Lebesgue, 61
measure-sensitive, 61

Point
ρ-isolated, 27
converging semiorbits, 15
heteroclinic, 20
periodic, 6
regular, 56

Principle
variational, 58

Set
δ-scrambled, 53
countable, 61
hyperbolic, 6
invariant, 5
negligible, 58
nonwandering, 6
positively invariant, 73
recurrent, 48
stable, 46

Space



INDEX 89

Lindelöf, 4
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