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Abstract

The purpose of this book is to present for math students some of
the main ideas and issues which are considered in Ergodic Optimiza-
tion. This text is also helpful for a mathematician with no experience
in the area.

Our focus here are the questions which are associated to selection
of probabilities when temperature goes to zero.

We believe that concrete examples can be very useful for any
person which is reading this topic for the first time. We care about
this point. The reader will realize that the use of the so called Max-
Plus Algebra resulted in a very helpful tool for computing explicit
solutions for the kind of problems we are interested here.

We are not concerned in our text in presenting results in their
more general form nor point out who were the person that did this or
that first. By the other hand, in the bibliography, we try to mention
all results which appear in the literature. The reader can look there,
and find other references which complement our short exposition. We
are sorry for the case we eventually do not mention some paper in
the area. Simply we were not aware of the work.

We believe there is a need for a kind of text like ours. The purpose
is to present some of the basic ideas of this beautiful theory for a more
broad audience.

We would like to thank several colleagues who read drafts of this
book and made several suggestions for improvement.

A. T. Baraviera
R. Leplaideur
A. O. Lopes

Rio de Janeiro, may 7, 2013.
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Chapter 1

Preliminaires

1.1 The configuration’s space

1.1.1 Topological properties

We consider the space Ω = {1, 2, ..., k}N where the elements are se-
quences x = (x0, x1, x2, x3...), in which xi ∈ {1, 2, ..., k}, i ∈ N. An
element in Ω will also be called an infinite word over the alphabet
{1, . . . , k}, and xi will be called a digit or a symbol.

The distance between two points x = x0, x1, . . . and y = y0, y1, . . .
is given by

d(x, y) =
1

2min{n, xn 6=yn}
.

Example. In the case k = 4, d(1, 2, 1, 3, 4..), (1, 2, 1, 2, 3, ..)) = 1
23 .

We can represent this distance graphically as shown in figure 1.1.

5
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6 [CAP. 1: PRELIMINAIRES

x0 = y0

�
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@
@

n − 1

xn−1 = yn−1

y

x

Figure 1.1: The sequence x and y coincide from the digit 0 up to the
digit n− 1, and then split.

A finite string of symbols x0 . . . xn−1 is also called a word, of length
n. For a word w, its length is denoted by |w|. A cylinder (of length
n) is denoted by [x0 . . . xn−1] ⊂ Ω. It is the set of points y such that
yi = xi for i = 0, . . . n − 1. For example, the cylinder [2, 1, 1] is the
set of y = (y0, y1, y2, y3, y4, ...) such that y0 = 2, y1 = 1, y2 = 1.

Note that cylinders of length n form a partition of Ω. Given x ∈ Ω,
then Cn(x) will denote the unique element of this partition which
contains x. That is, Cn(x) = [x0 . . . xn], when x = x0x1x2x3 . . ..
The cylinder Cn(x) also coincides with the ball B(x, 1

2n ). The set of
cylinders of length n will be denoted by Cn(Ω).

If ω = ω0 . . . ωn−1 is a finite word of length n and ω′ = ω′
0ω

′
1 . . .

is a word (of any length possibly infinite), then ωω′ is the word

ω0 . . . ωn−1ω
′
0ω

′
1 . . .

It is called the concatenation of ω and ω′.

The set (Ω, d) is a compact metric space. Compactness also fol-
lows from the fact that Ω is a product of compact spaces. Note that
the topology induced by the distance d coincides with the product
topology. The cylinders are clopen (closed and open) sets and they
generate the topology.

The general subshifts of finite type

We will need to consider later the general subshift of finite type. A
good reference for symbolic dynamics is [95].
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[SEC. 1.1: THE CONFIGURATION’S SPACE 7

Definition 1.1. A transition matrix is a d × d matrix with entries
in {0, 1}.

If T = (Tij) is a d×d transition matrix, the subshift of finite type
ΣT associated to T is the set of sequences x = x0x1x2 . . . xn . . . such
that for every j,

Txjxj+1
= 1.

It is exactly the set of infinite words such that a subword ij appears
only if Tij = 1. Equivalently, it is the set of words such that the
subword ij never appears if Tij = 0.

Example. The full shift Ω = {1, . . . d}N is the subshift of finite type
associated to the d× d matrix with all entries equal to 1.

The best way to understand what is the subshift of finite associ-
ated to a matrix T is to consider paths: for a given i, the set of j
such that Tij = 1, is the set of letters j authorized to follow i. Then,
ΣT is the set of infinite words we can write respecting theses rules,
or equivalently, the set of infinite paths that we can do.

Example. The transition matrix is T =




1 0 1 0
1 1 0 1
1 1 1 1
0 1 1 0


.

When there are more 1’s than 0’s in T it is simpler to describe
ΣT (there are less restrictions). In the present case we get the set of
infinite words x with letters in the alphabet 1, 2, 3 and 4, such that,
12, 14, 23, 41 and 44, never appear in each sequence x = x0x1x2x3 . . ..

Definition 1.2. Let T be a d× d transition matrix, and ΣT be the
associated subshift of finite type. Two digits i and j are said to be
associated, if there exists a path from i to j, and, another from j to
i. We set i ∼ j.

Equivalently, i ∼ j means that there exists a word in ΣT of the
form

i . . . j . . . i.

Obviously ∼ is an equivalence relation, and this defines classes of
equivalence. It can happen that there are equivalence classes strictly
contained in {1, . . . d}.
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8 [CAP. 1: PRELIMINAIRES

Exercise 1
Find examples of transition matrices such that one digit is associated
only to itself and not to any other digit.

Definition 1.3. The subsets of words in ΣT such that all their digits
belong to the same equivalence classes of ∼ are called the irreducible
components of ΣT .

1.1.2 Dynamics

Definition 1.4. The shift σ : Ω → Ω, is defined by

σ(x0x1x2x3 . . .) = x1x2x3 . . . .

The shift expands distance by a factor 2:

d(σ(x), σ(y)) = 2 d(x, y).

Hence, it is Lipschitz and thus continuous.

Definition 1.5. Given x ∈ Ω the set {σn(x), n ≥ 0} is called the
orbit of x. It is denoted by O(x).

The main goal in Dynamical Systems is to describe orbits and
their behaviors. Let us first present the simplest of all.

Definition 1.6. A point x ∈ Ω is said to be periodic if there exists
k > 0, such that, σk(x) = x. In that case the period of x is the
smaller positive integer k with this property.

A periodic point of period 1 is called a fixed point.

Examples
111 . . . is a fixed point.
In {1, 2, 3, 4}N, x := 1323132313231323 . . . has period 4 and the four
points

13231323 . . . , 32313231 . . . , 23132313 . . . , 31323132 . . .

form the orbit of x.
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[SEC. 1.1: THE CONFIGURATION’S SPACE 9

A n-periodic point is entirely determined by its first n-digits; ac-
tually it is the infinite concatenation of these first digits:

x = x0 . . . xn−1︸ ︷︷ ︸ x0 . . . xn−1︸ ︷︷ ︸ x0 . . . xn−1︸ ︷︷ ︸ . . . .

As a notation we shall set x = (x0 . . . xn−1)
∞.

Definition 1.7. Given a point x in Ω, a point y ∈ Ω, such that,
σ(y) = x is called a preimage of x.

A point y such that σn(y) = x is called a n-preimage of x. The set
{y | there exists an n such that σn(y) = x } is called the preimage
set of x.

For the case of the full shift in Ω = {1, . . . k}N, each point x has
exactly k-preimages. They are obtained by the concatenation process
ix, with i = 1, . . . , k. The set of 1-preimage is σ−1({x}). The set of
n-preimages is (σn)−1({x}) which is simply denoted by σ−n({x}).

Definition 1.8. A Borel set A is said to be σ-invariant if it satisfies
one of the following equivalent properties:

1. For any x ∈ A, σ(x) belongs to A.

2. σ−1(A) ⊃ A.

Example. If x is periodic, O(x) is σ-invariant.

Exercise 2
Show equivalence of both properties mentioned in Definition 1.8.

Exercise 3
If x is periodic, do we have σ−1(O(x)) = O(x) ?

Back to the general subshifts of finite type

We have defined above the general subshift of finite type. For such
a subshift, we have also defined the irreducible components. Here,
we give a better description of these components with respect to the
dynamics.
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10 [CAP. 1: PRELIMINAIRES

Definition 1.9 (and proposition1). A σ-invariant compact set K is
called transitive if it satisfies one of the two equivalent properties:

(i) For every pair of open sets of K, U and V , there exists n > 0,
such that, σ−n(U) ∩ V 6= ∅.

(ii) There exists a dense orbit.

Exercise 4
Show that if K is transitive, then the set of points in K with dense
orbit is a Gδ-dense set.

We claim that irreducible components are also transitive components.
Indeed, any open set contains a cylinder and it is thus sufficient to
prove (i) with cylinders. Now, considering two cylinders of the form
[x0 . . . xk] and [y0 . . . yn], the relation defining irreducible components
shows that there exists a connection

x0 . . . xkz1 . . . zmy0 . . . yn,

remaining in K.

1.1.3 Measures

We refer the reader to [18] and [57] for general results in measure
theory.

We denote by B the Borel σ-algebra over Ω, that is, the one
generated by the open sets.

We will only consider signed measures (probabilities) µ on Ω over
this sigma-algebra B, which we call Borel signed measures (probabil-
ities). Due to the fact that cylinders are open sets and generate the
topology, they also generate the σ-algebra B. Therefore, the values
µ(Cn), where Cn runs over all the cylinders of length n, and n runs
over N, determine uniquely µ.

We remind the relation between Borel measures and continuous
functions:

1We do not prove the proposition part.
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[SEC. 1.1: THE CONFIGURATION’S SPACE 11

Theorem 1.10 (Riesz). The set of Borel signed measures is the dual
of the set C0(Ω).

In other words, this means that any linear bounded transforma-
tion G : C0(Ω) → R, is of the form

G : f 7→ G(f) =

∫
f dν,

where ν is a fixed signed measure. The map G→ ν is a bijection.

Probabilities ν are characterized by the two properties: for any
f ≥ 0, we have that G(f) ≥ 0, and G(1) = 1.

A subset K of a linear space is convex, if, for any given x, y ∈ K,
and any λ, such that 0 ≤ λ ≤ 1, we have that λx + (1 − λ) y is in
K.

Corollary 1.11. The set of all probabilities on a compact space is
compact and convex for the weak*-topology.

We remind that µn
w*
−→ µ means that for every continuous func-

tion f : Ω → R, ∫
f dµn →n→∞

∫
f dµ.

We point out that any indicator function of a cylinder, 1ICn
, is con-

tinuous. We recall that the support of a (probability) measure µ is
the set of points x such that

∀ ε, µ(B(x, ε)) > 0.

In our case, x belongs to the support, if and only, if µ(Cn(x)) > 0,
for every n. The support is denoted by supp (µ).

Exercise 5
Show that supp (µ) is compact.

We recall that a probability over Ω is a measure µ such that
µ(Ω) = 1. In this book we shall only consider probabilities. Moreover,
most of the time, we shall be interested in properties holding almost
everywhere, that is, properties which are true for all points x ∈ Ω, up
to a set of probability zero.
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12 [CAP. 1: PRELIMINAIRES

Definition 1.12. We say that a probability µ is invariant for the
shift σ, if for any A ∈ B,

µ(σ−1(A)) = µ(A).

We will also say that µ is σ-invariant, or simply invariant (as σ is the
unique dynamics we shall consider).

To consider invariant measure means the following thing: if we
see the action of N as a temporal action on the system, the systems
is closed, in the sense that along the time, there is neither creation
nor disappearance of mass in the system. In other words, the mass
of a certain given set is constant along the time evolution.

Using the vocabulary from Probability Theory, the study of in-
variant probabilities correspond to the study of Stationary Processes
(see [86] [112]).

Exercise 6
Show that if µ is invariant, suppµ is invariant. Is it still the case if
µ is not invariant ?

In Ergodic Theory one is mainly interested in invariant probabil-
ities, and the properties that are true for points x which are in a set
which have mass equal to one.

1.2 Invariant measures

In this section we present some particular invariant measures in our
setting and we will also present some more general results.

1.2.1 Examples of invariant measures

Periodic measures

If x is a point in Ω, δx is the Dirac measure at x, that is

δx(A) =

{
1 if x ∈ A,

0 otherwise.
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[SEC. 1.2: INVARIANT MEASURES 13

Then, if x is n-periodic,

µ :=
1

n

n−1∑

j=0

δσj(x)

is σ-invariant.

The Bernoulli product measure

Let consider Ω = {1, 2}N, pick two positive numbers p and q such
that p+ q = 1. Consider the measure P on {1, 2} defined by

P({1}) = p, P({2}) = q.

Then, consider the measure µ := ⊗P on the product space {1, 2}N.
We remind that such µ is defined in such way that

µ([x0 . . . xn−1]) = p# of 1’s in the word x q# of 2’s in the word x,

where x is the finite word x0 . . . xn−1.
We claim that such µ is an invariant measure. Indeed, we have

for any cylinder [x0 . . . xn−1],

σ−1([x0 . . . xn]) = [1x0 . . . xn] ⊔ [2x0 . . . xn].

Then,
µ([1x0 . . . xn]) = pµ([1x0 . . . xn])

and
µ([2x0 . . . xn]) = qµ([1x0 . . . xn]).

In this way µ(σ−1[x0 . . . xn]) = µ([x0 . . . xn]).

This example corresponds to the model of tossing a coin (head
identified with 1 and tail identified with 2) in an independent way a
certain number of times. We are assuming that each time we toss the
coin the probability of head is p and the probability of tail is q.

Therefore, µ([211]) describes the probability of getting tail in the
first time and head in the two subsequent times we toss the coin,
when we toss the coin three times.

Remark 1.13. The previous example shows that there are uncount-
ably many σ-invariant probabilities on {1, 2}N. �
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14 [CAP. 1: PRELIMINAIRES

Markov chain

Let us start with some example. Again, we consider the case Ω =
{1, 2}N. Pick p and q two positive numbers in ]0, 1[, and set

P =

(
p 1 − p

1 − q q

)
=

(
P (1, 1) P (1, 2)
P (2, 1) P (2, 2)

)
.

The first writing of P shows that 1 is an eigenvalue. If we solve the
equation

(x, y).P = (x, y),

we find a one-dimensional eigenspace (directed by a left eigenvector)

with y =
1 − p

1 − q
x. Therefore, there exists a unique left eigenvector

(π1, π2) such that

(π1, π2).P = (π1, π2) and π1 + π2 = 1.

Note that π1 and π2 are both positive.
The measure µ is then defined by

µ([x0 . . . xn]) = πx0
P (x0, x1)P (x1, x2) . . . P (xn−2, xn−1).

A simple way to see the measure µ is the following: a word
ω = ω0 . . . ωn−1 has to be seen as a path of length n, starting at
state ω0 ∈ {1, 2} and finishing at state ωn−1. The measure µ([ω]) is
the probability of this space among all the paths of length n. This
probability is then given by the initial probability of being in state
ω0 (given by πω0

) and then probabilities of transitions from the state
ωj to ωj+1 (equal to P (ωj , ωj+1)), these events being independent.

A probability of this form is called the Markov measure obtained
from the 2× 2 line stochastic matrix P and the initial vector of prob-
ability π.

Exercise 7
Show that the Bernoulli measure constructed above is also a Markov
measure.

More generally we have:
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[SEC. 1.2: INVARIANT MEASURES 15

Definition 1.14. A d× d matrix P such that all entries are positive
and the sum of the elements in each line is equal to 1 is called a line
stochastic matrix.

One can show2 that for a line stochastic matrix (with all entries
strictly positive) there exist only one vector π = (π1, π2, ..., πd), such

that all πj > 0, j ∈ {1, 2, .., d},
∑d
j=1 πj = 1, and

π = π P.

π is called the left invariant probability vector for the Markov
Chain defined by P .

Definition 1.15 (and proposition). Given a d × d line stochastic
matrix P , and its left invariant probability vector π = (π1, π2, ..., πd),
we define, µ on Ω = {1, 2, . . . , d}N, in the following way: for any
cylinder [x0x1 . . . xk]

µ([x0, x1 · · ·xk]) = πx0
P (x0, x1)P (x1, x2)P (x2, x3) ... P (xk−1, xk).

This measure µ is invariant for the shift and it is called the Markov
measure associated to P and π. For a fixed d we denote the set of
Markov measures over Ω = {1, 2, .., d}N by G

Note that for a Markov probability any cylinder set has positive
measure

1.2.2 General results on invariant measures

The definition of invariant measure involves Borel sets. The next
result gives another characterization of invariant measures (see [127]):

Proposition 1.16. The measure µ is invariant, if and only if, for
any continuous function f

∫
f(x) dµ(x) =

∫
f(σ(x)) dµ(x).

2Actually we will give a proof of that result in Theorem 2.14.
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16 [CAP. 1: PRELIMINAIRES

It is easy to see from the above that in the case µn
w*
−→ µ, and

each µn is invariant, then, µ is invariant.

We denote by Mσ the set of invariant probabilities on Ω. It is
a closed subset of probabilities for the weak*-topology, hence it is
compact and convex.

We say that a point z in a convex compact set C is extremal, if
it is not a trivial convex combination of other elements in the set C.
That is, we can not write z as z = λx + (1 − λ)y, where 0 < λ < 1,
and x, y are in the convex set C.

Definition 1.17. An extremal measure in Mσ is called ergodic.

This definition is however not useful and clearly not easy to check.
The next proposition gives other criteria for a measure to be ergodic.

Proposition 1.18. A probability µ is ergodic, if and only if, it sat-
isfies one of the following properties:

1. Any invariant Borel set has full measure or zero measure.

2. For any continuous f : Ω → R, if f = f ◦ σ µ-a.e., then, f is
constant.

Exercise 8
Show that a Markov measure is ergodic.

We can now state the main theorem in Ergodic Theory:

Theorem 1.19. (Birkhoff Ergodic Theorem) Let µ be σ-invariant
and ergodic. Then, for every continuous function f : Ω → R there
exist a Borel set K, such that µ(K) = 1, and for every x in K

lim
n→+∞

1

n

n∑

k=1

f(σk−1(x)) =

∫
f dµ.

The Birkhoff Theorem says that, under the assumption of ergod-
icity, a time average is equal to a spatial average. Here is an example
of application:
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“Average cost of car ownership rises to $8,946 per year.”
What does the term average mean ? One can imagine that we

count how much a certain person spends every year for its car, and
then do the average cost. This is a time-average. The main problem
of this average is to know if it representative of the cost of anybody.

On the contrary, one can pick some region, then count how many
people spend in 1 year for their car, and take the average amount.
This is a spatial average. The main problem is to know if it represents
how much each person is going to spend along the years (at beginning
the car is new, and then get older !).

The ergodic assumption means that the repartition of old and new
cars in the space is “well” distributed and/or that the chosen person
in the first way to compute the average cost is “typical”. Then, the
Birkhoff theorem says that both averages are equal.

Notation. We set Sn(f)(x) := f(x) + . . .+ f ◦ σn−1(x).

Example. In a previous example we considered a Bernoulli measure
modeling the tossing of a coin with probabilities p of head and q of
tail. Consider the indicator function 1I[2] of the cylinder [2]. For a

fixed n and for a fixed x = x0x1x2 . . . the value
∑n
k=1 1I[2](σ

k−1(x)),
counts the number of times we get tail (or, the value 2) in the finite
string x0x1x2 . . . xn−1.

Note that
∫

1I[2] dµ by definition is equal to µ([2]) = q. One can
show that the measure µ we get is ergodic.

Therefore, from Birkhoff Theorem, we can say that for µ-almost
every x, we have that

lim
n→+∞

1

n

n∑

k=1

1I[2](σ
k−1(x)) =

∫
1I[2] dµ = q.

The value 1
n

∑n
k=1 1I[2](σ

k−1(x)) is the empirical mean value of
number of times we get tail if the sequence of events is obtained
from flipping the coin n times, which is described by x0x1x2 . . . xn−1,
where x = (x0, x1, x2, ...).

We finish this section with another application of ergodicity:
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Proposition 1.20. Let µ be an invariant ergodic probability. Let
x be a “generic ” point in suppµ. Then, x returns infinitely many
times, as closed as wanted, to itself.

Proof. Pick ε > 0, and consider the ball B(x, ε). It is a clopen
set, hence 1IB(x,ε) is continuous. The point x is generic for µ, then

lim
n→∞

1

n
Sn(1IB(x,ε))(x) = µ(B(x, ε)), and this last term is positive.

Therefore, there are infinitely many n such that 1IB(x,ε)(σ
n(x)) =

1.

Remark 1.21. Actually, one can get a stronger result than the one
claimed by the above Birkhoff Theorem: for every µ ergodic, there
exists a set Gµ of full µ-measure, such that for every x ∈ Gµ and for
every continuous function f ,

lim
n→∞

1

n
Sn(f)(x) =

∫
f dµ.

A very important property is that for two distinct ergodic probabili-
ties µ and ν, Gµ ∩Gν = ∅ (see [127]). �

1.3 Ergodic optimization and temperature

zero

The set Mσ of invariant measures is quite large. It is thus natural to
ask about measures with special properties. In this direction, a well
known class is the one which can be obtained from Thermodynamic
Formalism. The first results on this topic are from the 70’s. We will
briefly describe some basic results on this setting below and we will
present some more details in Chapter 2. Anyway, our goal here is to
focus on Ergodic Optimization.

Definition 1.22. Let A : Ω → R be a continuous function. An
invariant measure µ is said to be A-maximizing if

∫
Adµ = max

{∫
Adν, ν ∈ Mσ

}
=: m(A).
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Note that this maximum is well defined because A is continuous
and Mσ is compact for the weak*-topology.

Examples

• Consider Ω = {1, 2}N and A =
1

2
1I[1,2] +

1

2
1I[2,1]. In this case the

maximizing probability is unique and has support in the periodic
orbit of period two 12121212 . . .. This maximizing measure is µ :=
1

2
δ(12)∞ +

1

2
δ(21)∞....

• There can be several maximizing measures. Consider A(x) =
−min(d(x, 1∞), d(x, 2∞)) 6 0. The two measures µ1 := δ1∞ and
µ2∞ := δ2∞ are A-maximizing. Consequently, any convex combina-
tion

µt := tµ1∞ + (1 − t)µ2∞ , t ∈ [0, 1],

is also A-maximizing. It can be shown, in this particular case, that
any maximizing probability is of this form. Note that µt is not ergodic
if t 6= 0, 1.

• Suppose Ω = {1, 2, 3, 4}N and consider A = 1I[1]∪[2]. any measure

with support in {1, 2}N is A-maximizing. This example shows that
there can be uncountably many ergodic maximizing measures.

Chapters 3 and 4 are devoted to more general results and tools
for the study of maximizing measures. Chapter 7 is devoted to the
study of an explicit example.

As we mentioned above, another important class of invariant mea-
sures appears in Thermodynamic Formalism. This will be the topic
of Chapter 2.

Consider a fixed function A : Ω → R, which is called a potential.
Without entering too much into the theory, for a real parameter β
we shall associate to β.A a functional P(β), and for each β some
measure µβ called equilibrium state for the potential β.A. In Statis-
tical Mechanics, β represents the inverse of the temperature. Then,
β → +∞ means that the temperature goes to 0.

We want to point out the relations between the two different ways
to singularize measures:
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20 [CAP. 1: PRELIMINAIRES

1. β 7→ P(β) is convex and admits an asymptote for β → +∞.

The slope is given by m(A) = max

∫
Adµ.

2. Any accumulation point for µβ , as β → +∞, is A-maximizing.
Then, the main question is to know if there is convergence, and,
in the affirmative case, how does µβ select the limit ?

These are the mains points which we consider in Chapter 3 (gen-
eral results) and Chapter 7 (an specific example).
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Chapter 2

Thermodynamic

Formalism and

Equilibrium states

2.1 General results

2.1.1 Motivation and definitions

A dynamical system, in general, admits a large number of different
ergodic measures. A natural problem would be to find a way to
singularize some special ones among the others.

Given A : Ω → R, the thermodynamic formalism aims to singu-
larize measures via the following principle:

P(A) := sup
µ∈Mσ

{
hµ +

∫
Adµ

}
. (2.1)

The quantity hµ is called the Kolmogorov entropy. It is a non-
negative real number, bounded by log d if Ω = {1, . . . d}N. Roughly
speaking, it measures the chaos seen by the measure µ. It is a con-
cept defined for invariant probabilities. If some measure has positive
and large entropy, this means that the system ruled by this measure

21



“livreutf8V5_Final”
2013/6/4
page 22

i

i

i

i

i

i

i

i

22 [CAP. 2: THERMODYNAMIC FORMALISM AND EQUILIBRIUM STATES

is very complex. If the invariant measure has support in a periodic
orbit its entropy is zero.

Definition 2.1. Any measure which realizes the maximum in (2.1)
is called an equilibrium state for A. The function A is called the
potential and P(A) is the pressure of the potential.

For a given σ-invariant measure µ, the quantity hµ +

∫
Adµ is

called the free-energy of the measure (with respect to the potential
A).

This study is inspired by Statistical Mechanics: the set Ω :=
{1, . . . k}N is the one-dimensional lattice with k possible values for the
spin in each site. The potential A measures the interaction between
sites. At a macroscopic level, the lattice has a stable behavior, at the
microcosmic scale, due to internal agitation, the configuration of the
material changes. Therefore, a state of the system is a probability
on Ω, the set of possible configurations; it is obtained by a principle
of the kind of the law of large numbers. The equilibrium at the
macroscopic scale is exactly given by the states which maximize the
free energy.

In Statistical Mechanics people usually consider the influence of
the temperature T by introducing a term β := 1

T
and studying the

equilibrium for β.A. For some fixed A : Ω → R and β ∈ R , we
shall write P(β) instead of P(β.A). It is an easy exercise to check
that β 7→ P(β) is convex and continuous. Therefore, the slope is
non-decreasing and a simple computation shows that it converges to

m(A) := sup
µ

∫
Adµ as β → ∞.

It seems clear that a motivation for people who introduced the
thermodynamic formalism theory into the Dynamical systems (Bowen,
Ruelle and Sinai) was to study the functional P(β), β ∈ R. Given
that, one natural question is to understand the limit of P(β), when
β goes to +∞, that is the zero temperature case. This is one of the
purposes of this text.
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2.1.2 Entropy and existence of equilibrium states

We refer the reader to [29][124] [11] [87] [97] for the some of the
results we use from Thermodynamic Formalism. We present here
some results which are related to optimization in ergodic theory.

We emphasize that the results we present here are stated for Ω
but they holds for any general irreducible subshift of finite type.

Entropy

For general results on entropy see also [13] and [110]. The complete
description of entropy is somehow complicated and not relevant for
the purpose of this course. A simple definition for the general case
could be the following:

Theorem 2.2 (and definition). Let µ be a σ-invariant ergodic prob-
ability. Then, for µ-a.e. x = x0x1x2 . . .,

lim
n→∞

−
1

n
log µ([x0x1 . . . xn])

exists and is independent of x. It is equal to hµ.
If µ0 and µ1 are both invariant and ergodic probabilities, for every

α ∈ [0, 1] set µα := α.µ1 + (1 − α).µ0. Then,

hµα
= αhµ1

+ (1 − α)hµ0
.

Roughly speaking, for µ ergodic and for µ-typical x = x0x1 . . .,
hµ is the exponential growth for µ([x0 . . . xn−1]), with n→ ∞.

Examples
• Let us consider Ω = {1, 2}N and µ the Bernoulli measure given by

the line stochastic matrix P =

(
p q
p q

)
. We have seen before that

µ([x0 . . . xn−1]) = p# of 1’s in the wordq# of 2’s in the word.

We also have seen before that
1

n
# of 1’s in the word →n→∞ µ([1]) =

p, and,
1

n
# of 2’s in the word →n→∞ µ([2]) = q. Therefore,

hµ = −p log p− q log q.
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24 [CAP. 2: THERMODYNAMIC FORMALISM AND EQUILIBRIUM STATES

• More generally, if µ is the Markov measure associated to a line
stochastic matrix P , and, π = (π1, π2, , , , πd) is the stationary vector,
then,

h(µ) = −
n∑

i,j=1

πi P (i, j) logP (i, j).

Proposition 2.3. The (metric) entropy is upper-semicontinuous :
If µn converges to µ in the weak*-topology, then

hµ > lim sup
n→∞

hµn
.

Existence of equilibrium states

This is an immediate consequence of Proposition 2.3.

Theorem 2.4. If A is continuous, then there exists at least one
equilibrium state for A.

Proof. The function µ → hµ +
∫
Adµ is upper-semicontinuous in

the compact set of the invariant probabilities. Therefore attains the
maximal value in at least one invariant probability.

At the end of this chapter we will study the special case where A
depend just on the two first coordinates. In particular, we will be able
to exhibit an explicit expression for the corresponding equilibrium
state.

2.2 Uniqueness of the Equilibrium State

Uniqueness does not always hold. Nevertheless a key result is the
following:

Theorem 2.5. If A : Ω → R is Hölder continuous, then there is a
unique equilibrium state for A. Moreover, it is a Gibbs measure and
β → P(β) is analytic.

The concept of Gibbs measure will be explained below. We recall
that A : Ω → R is said to be α-Hölder, 0 < α < 1, if there exists
C > 0, such that, for all x, y we have |A(x) −A(y) | ≤ C d(x, y)α.
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For a fixed value α, we denote by Hα the set of α-Hölder functions
A : Ω → R. Hα is a vector space.

For a fixed α, the norm we consider in the set Hα of α-Hölder
potentials A is

||A||α = sup
x6=y

|A(x) −A(y)|

d(x, y)α
+ sup
x∈Ω

|A(x)|.

For a fixed α, the vector space Hα is complete for the above norm.

We want to emphasize Theorem 2.5. If existence of equilibrium
state is done via a general result of maximization of a semi-continuous
function, uniqueness, by the other hand, is obtained for Hölder con-
tinuous potential via a completely different way: the key tool is an op-
erator acting on continuous and Hölder continuous functions. Then,
the pressure and the equilibrium state are related to the spectral prop-
erties of this operator which had its origin in Statistical Mechanics
where is called the transfer operator.

The hypothesis of A being Hölder continuous means (in the Sta-
tistical Mechanics setting) that the interactions described by it decay
very fast (in an exponential way) for spins which are located more
and more distant in the lattice N. This decay is not so fast for a
potential which is continuous but not Hölder.

In the general case, for a fixed Hölder potential A, given β1 6= β2,
we have that µβ1

6= µβ2
. In this case the generic sets of Remark 1.21

are disjoint. Moreover, for any β, the probability µβ has support on
the all set Ω.

Remark 2.6. The non-uniqueness of the equilibrium state for a po-
tential A is associated to the phenomena of phase transition (see [69]
[65] [108] [58] [16]). �

2.2.1 The Transfer operator

In this section we consider a fixed α-Hölder potential A : Ω → R.

Definition 2.7. We denote by LA : C0(Ω) → C0(Ω) the Transfer
operator corresponding to the potential A, which is given in the fol-
lowing way: for a given φ we will get another function LA(φ) = ϕ,
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such that,

ϕ(x) =
∑

a∈{1,2,...,d}

eA(ax) φ(ax).

In another form

ϕ(x) = ϕ(x0x1 · · · ) =
∑

a∈{1,2,...,d}

eA(ax0x1x2,...) φ(ax0x1x2...).

The transfer operator is also called the Ruelle-Perron-Frobenius
operator.

It is immediate to check that LA acts on continuous functions. It
also acts on α-Hölder functions if A is α-Hölder.

If µ is a probability, f 7→

∫
LA(f) dµ is a bounded linear form

on C0(Ω). Therefore, by Riesz Theorem (see Theorem 1.10), there

exists ν such that for every f ∈ C0(Ω),

∫
fdν =

∫
LA(f) dµ. We set

L∗
A(µ) = ν, and we call L∗

A : µ 7→ ν the dual operator of LA.

Note that if LA(1) = 1, then, L∗
A(µ) is a probability, in the case

µ is a probability.

Theorem 2.8 (see [123]). Let λA be the spectral radius of LA. Then,
λA is an eigenvalue for L∗

A: there exists a probability measure νA such
that

L∗
A(νA) = λAνA.

This probability is called the eigenmeasure and/or the conformal mea-
sure.

We remind that the spectral radius is given by

λA := lim sup
n→∞

1

n
log |||LnA|||, and |||LnA||| = sup

||ψ||=1

||Ln(ψ)||∞.

Note that the Schauder-Tychonov Theorem shows that there ex-
ists an eigenmeasure. Indeed, consider the function acting on the

convex and compact set of probabilities µ→ L∗

A(µ)∫
LA(1) dµ

. It is however

not clear that the associated eigenvalue is the spectral radius of LA.

The main ingredient to prove uniqueness of the equilibrium state
is:
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Theorem 2.9. The operator LA is quasi-compact on Hα: λA is
simple isolated and the unique eigenvalue with maximal radius. The
rest of the spectrum is contained in a disk D(0, ρλA) with 0 < ρ < 1.

>From Theorem 2.9 we get a unique HA, up to the normalization∫
HA dνA = 1, such that

LA(HA) = λAHA.

Exercise 9
Show that the measure defined by µA = HAνA is σ-invariant.

It can be proved that this measure is actually a Gibbs measure:
which means, there exists CA > 0 such that for every x = x0x1 . . .
and for every n,

e−CA 6
µA([x0 . . . xn−1])

eSn(A)(x)−n log λA
6 eCA . (2.2)

Actually, these two inequalities yields that the free energy for µA
is log λA. Moreover, the left-side inequality yields that for any other
ergodic measure ν,

hν +

∫
Adν < log λA.

In particular we get P(A) = λA and µA is the unique equilibrium
state for A.

The same kind of results can be get for β.A instead of A. Now,
the spectral gap obtained in Theorem 2.9 and general results for
perturbations of spectrum of operators yield that β 7→ P(β) is locally
analytic. A simple argument of connectness shows that it is globally
analytic.

Remark 2.10. The corresponding theory when A is just continuous
(not Hölder) is quite different (see [137]) �

We point out that different kinds of Transfer operators has been
used in other areas and other settings: Differential and Complex
Dynamics, Differential Geometry, Number Theory, Eigenvalues of the
Laplacian, Zeta functions, C∗-Algebras, Computer Science, Quantum
Computing, Economics, Optimization, etc... (see [124], [29], etc...)
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2.2.2 Some more results

The theory described above can be generalized to other cases. In the
special case of Ω (the full shift Bernoulli space) we can actually prove
that λA is the unique dominating eigenvalue. Moreover, we get for
every ψ Hölder continuous,

LnA(ψ) = enP(A)

∫
ψ dνβ .φ+ en(P(A)−ε)ψn, (2.3)

where ε is a positive real number (depending on A), ψn is continuous
and ||ψn||∞ 6 C.||ψ||∞, for every n and C is a constant (depending
on A). >From this one gets

P(A) = lim
n→∞

1

n
logLnA(1I),

which yields
dP

dβ
(β) =

∫
Adµβ .

We have already mentioned in the beginning of this chapter that
for convexity reason, if β goes to +∞, the slope of the graph of P(β)

goes to m(A) = sup

∫
Adµ. We can now give a more precise result:

Proposition 2.11. The graph of P(β) admits an asymptote if β goes

to +∞. The slope is given by m(A) = sup

∫
Adµ. Any accumulation

point for µβ is a A-maximizing measure.

Proof. Convexity is a consequence of the definition of the pressure
via a supremum. Let µ∞ be any A-maximizing measure. Since the
entropy is bounded we immediately get

m(A) 6
hµ∞

β
+

∫
Adµ∞ 6

P(β)

β
6

log d

β
+

∫
Adµβ 6

log d

β
+m(A).

This proves that the asymptotic slope for P(β) is m(A):

lim
β→+∞

P(β)

β
= m(A). (2.4)
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Figure 2.1:

Now, β 7→ P(β) − βm(A) has non-positive derivative, and, it is
thus a decreasing function. It is non-negative too (as the previous
series of inequalities shows), and then it admits a non-negative limit
as β → +∞.

We have mentioned above
dP

dβ
(β) =

∫
Adµβ . If we consider any

accumulation point µ∞ for µβ ,

∫
Adµβ converges to the slope of the

asymptote, that is, to m(A), and then, µ∞ is A-maximizing.

We finish this subsection with an important remark. We have
seen the double-inequality (2.2)

e−CA 6
µA([x0 . . . xn−1])

eSn(A)(x)−n log λA
6 eCA .

We emphasize here that CA is proportional to ||A||∞. Therefore,
replacing A by β.A, and letting β → +∞, this implies that Cβ.A →
+∞. In other words, we will get that the constant explodes when
β → +∞,.

Nevertheless we have:

Proposition 2.12. Assume that A is α-Hölder. There exists a

universal constant C such that
1

β
logHβ.A is α-Hölder with norm

bounded by C.||A||α.
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Consequently, “at the scale ”
1

β
log we recover bounded quantities.

We will elaborate more on this point in the future.

2.2.3 An explicit computation for a particular case

Let us now assume that A depends on two coordinates, that is

A(x0x1x2 . . .) = A(x0, x1).

The exact form of the equilibrium state

Here we show how we get an explicit expression for the equilibrium
state using the Transfer Operator. Our computation does not prove
that the measure we construct is an equilibrium state, and neither
proves uniqueness of the equilibrium state. However, the example
gives a good intuition of the main issues on this class of problems.

We denote by A(i, j) the value of A in the cylinder [ij], i, j ∈
{1, 2, .., d}. In this case, the Transfer operator takes a simple form:

LA(φ)(x0x1x2 . . .) =
∑

a∈{1,2,...,d}

eA(ax0) φ(ax0x1x2 . . .).

Let M be the matrix will all positive entries given by Mi,j =
eA(i,j).

Lemma 2.13. The spectral radius of LA is also the spectral radius
of M .

Proof. Assume that φ is a function depending only on one coordinate,
i.e.,

φ(x0x1x2 . . .) = φ(x0).

Then, by abuse of notation, the function φ is described by the vector
(φ(1), φ(2), ..., φ(d)). For every j

LA(φ)(j) =

s∑

j=1

Mij .φ(i),
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which can be written as the matrixM acting on the line vector φ, that
is, LA(φ) = φM. In an alternative way we can also write LA(φ) =
M∗.φ, where M∗ denotes de transpose of the matrix M . This yields
that the spectral radius λM of M is lower or equal to λA.

We remind that the spectral radius is given by

λA := lim sup
n→∞

1

n
log |||LnA|||, and |||LnA||| = sup

||ψ||=1

||Ln(ψ)||∞.

The operator LA is positive and this shows that for every n, |||LnA||| =
||LnA(1I)||∞. Now, 1I depends only on 1 coordinate, which then shows
LnA(1I) = Mn(1I). This yields λA 6 λM .

Theorem 2.14. (Perron-Frobenius) Suppose B = (bij) is a d× d
matrix with all entries strictly positive, 1 ≤ i, j ≤ d. Then, there
exists λ > 0, and, vectors l = (l1, · · · , ld) and r = (r1, · · · , rd) such
that

1. for all i li > 0, and ri > 0.

2. For all i
∑d
j=1 bijrj = λri and for all j

∑d
i=1 libij = λlj.

(i.e., r is a right eigenvector of B and l is a left eigenvector for B).

Proof. We first show that there exists at least one vector r with all

coordinates positive, and λ ≥ 0, such that
d∑

j=1

bijrj = λri.

Consider the convex set H of vectors h = (h1, · · · , hd) such that

hi ≥ 0, 1 ≤ i ≤ d and
∑d
i=1 hi = 1. The matrix B determines a

continuous transformation G : H → H, given by Gh = h′, where

h′i =

∑d
j=1 bijhj∑d

i=1

∑n
j=1 bijhj

Note that h′ has all entries strictly positive. In this way the image
of H by G is strictly inside H.

The Brouwer fixed point (see cap VII [113]) assures that there
exists at least on fixed point.
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As the image of H by G is strictly inside H we have that the fixed
point has all entries positive.

If r is such fixed point, that is, G(r) = r, which means,

ri =

∑d
j=1 bijrj∑n

i=1

∑d
j=1 bijrj

Taking λ =
∑d
i=1

∑d
j=1 bijrj , we get the right eigenvector.

Considering B∗ (the transpose of B) instead of B, we get another
eigenvector l. Note that 〈r, l〉 is a positive number. Then,

λ〈r, l〉 = 〈Br, l〉 = 〈r, B∗
l〉 = λ∗〈r, l〉

and λ = λ∗.

Remark 2.15. 1. Actually, it is possible to prove more. The
eigenvalue λ is the spectral radius of the matrix B and r and l

are simple eigenvectors.

2. We have seen that in the case A depends only on 2 coordinates,
the Transfer operator acts as a matrix. In the general case,
Theorem 2.9 extends Theorem 2.14.

3. A line stochastic matrix (see Subsec. 1.2.1) has spectral radius
equal to 1 and satisfies hypotheses of Theorem 2.14. It thus
admits a left-eigenvector associated to the eigenvalue 1.

�

Let us consider the matrix d × d matrix M such that for each
entry Mi,j = eA(i,j). By Theorem 2.14, there exist left and right
eigenvectors l = (l1, . . . ld) and r = (r1, . . . rd), both associated to the
spectral radius of LA (due to Lemma 2.13), say λA.

Let us define the 2 × 2 matrix PA = PA(i, j) with

PA(i, j) =
eA(i,j)rj
λAri

. (2.5)

Note that PA is a line stochastic matrix:

∑

j

PA(i, j) =

∑
j e
A(i,j)rj

λAri
= 1.
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Let us fix the normalization in the following way:
∑
j rj = 1 and∑

i liri = 1. Then, the vector π = (π1, . . . πd) defined by πi = liri
satisfies

π.PA = π.

That is, such π is the stationary vector for PA.
The right-eigenvector r has to be seen as the eigenmeasure νA

from Theorem 2.8, and actually rj = νA([j]). The normalized left-
eigenvector l has to be seen as the eigenfunction HA from Theorem

2.9, with normalization

∫
HA dνA = 1.

The associated invariant Markov measure µA is defined by

µA([x0 . . . xn−1]) = πx0
PA(x0, x1) . . . PA(xn−2, xn−1).

The exact computation yields

µA([x0 . . . xn−1]) = φA(x0)e
Sn(A)(x)−n log λA .νA([xn−1]).

Since ν and φA have positive entries, this shows that µA is a Gibbs
measure.

Things can be summarized as follows:

Let M = (Mij) be the matrix with entries eA(i,j). Let r =
(r1, . . . rd) be the right-eigenvector associated to λ with normal-
ization

∑
ri = 1. Let l = (l1, . . . , ld) be the left-eigenvector for

λ with renormalization
∑
liri=1. Then, r gives the eigenmeasure

νA, and l gives the density HA.
The Gibbs measure of the cylinder [x0 . . . xn−1] is
µA([x0 . . . xn−1]) = lx0

eSn(A)(x)−n log λrxn−1

Remark 2.16. Note that in the case A ≡ 0, the measure µA is the
Markov probability associated to the line stochastic matrix with all
entries equal to 1

d
. We denote by the probability µtop the measure of

maximal entropy. It is the unique invariant probability with entropy
log d. �

About uniqueness

This subsection can be avoid in a first lecture. The reasoning bellow
can be seen as the description of a simple computable way to get an
equilibrium state, and, moreover, to show that it is the unique one.
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First, we remind

µA([i0 . . . in−1]) = li0e
Sn(A)(x)−n log λArin−1

.

Taking the logarithm of this equality and dividing by n, we get

1

n
log µA([x0 . . . xn−1]) =

1

n
Sn(A)(x)− log λA+

1

n
(log lx0

+log rxn−1
).

If n → +∞, the left hand side term goes to −hµA
(for µ generic

x). The first summand in the right hand side goes to

∫
AdµA, by

Birkhoff theorem. The last summand goes to zero because lx0
is a

constant and r has all its entries bound away from 0. This shows
that

hµA
+

∫
AdµA = log λA.

We will now show that for every Markov measure µ

h(µ) +

∫
Adµ ≤ λ(A). (2.6)

This will show that the probability µA realizes the supremum of
the free energy among the Markov measures (see [134]). This is a
restrictive result (with respect to the initial problem of maximization
of the free energy among "all" invariant probabilities) but this gives
a hint of the main issues and ideas we are interested here. Actually,
the key point is the relative entropy of two measures (see [89]).

We need the next lemma whose proof can be obtained in [127].

Lemma 2.17. If p1, · · · , pd and q1, · · · , qd, satisfy1

d∑

j=1

pi =

d∑

j=1

qj = 1,

with pi ≥ 0, qi ≥ 0, i = 1, · · · , d, then,

d∑

i=1

qi log qi −
d∑

i=1

qi log pi =

d∑

i=1

qi log
qi
pi

≥ 0,

and the equality holds, if and only if, pi = qi, i = 1 · · · , d.

1By convention 0 log 0 = 0.
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Consider µ a Markov measure. We fix the vector π = (π1, ..., πd),
and the matrix P , satisfying π P = π (which defines this Markov
measure µ).

Equation (2.5) yields A(i, j) = logPA(i, j)+log λA+log ri−log rj .
By abuse of notation we set ri = r(x) if x ∈ [i]. Then, we get

hµ +

∫
Adµ = −

∑

i

πiPij logPij +

∫
logPA(x0, x1)

+ log λA +

∫
log r − log r ◦ σ dµ

= −
∑

i,j

πiPij logPij +
∑

i,j

πiPij logPA(i, j) + log λA

= −
∑

i

πi
∑

j

Pij logPij − Pij logPA(i, j) + log λA

6 log λA,

by Lemma 2.17. Then, (2.6) holds.
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Chapter 3

Maximizing measures and

Ground states

3.1 Selection at temperature zero

3.1.1 The main questions

We remind Definition 1.22 which address to the concept of A-maximizing
measure: it is a σ-invariant probability µ such that

∫
Adµ = max

ν∈Mσ

∫
Adν.

Existence of maximizing probabilities follows from the compactness
of Mσ (and the continuity of the map ν 7→

∫
Adν).

The first kind of problems we are interested in are related to
maximizing measures. We can for instance address the questions:

1. For a given potential A, how large is the set of maximizing
measures ?

2. How can we construct/get maximizing measures ?

3. For a given maximizing measure, what we can say about its
support ?

36
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We have already mentioned above the relation between maximiz-
ing measures and equilibrium states (see Proposition 2.11). Assume
that A is Hölder continuous, then, any accumulation point for µβ is a
A-maximizing measure. We point out that, for simplicity, from now
on, we replace all the subscribed β.A by β.

The relation between equilibrium states and maximizing measures
motivates a new definition:

Definition 3.1. Let A be Hölder continuous. A σ-invariant probabil-
ity measure µ is called a ground state (for A) if it is an accumulation
point for µβ , as β goes to +∞.

Remark 3.2. The Hölder continuity of A is only required to get
uniqueness for the equilibrium state for β.A. �

After last chapter, clearly a ground state is a A-maximizing mea-
sure, but a priori a maximizing measure is not necessarily a ground
state. The natural questions we can address are then:

1. Is there convergence of µβ , as β goes to +∞ ?

2. If there is convergence, how does the family of measures µβ
select the limit ?

If the limit for µβ , as β goes to +∞, exists, we say that µ =
limβ→+∞ µβ is selected when temperature goes to zero.

We remind that if µ∞,1 and µ∞,2 are two invariant maximizing
probabilities, then any convex combinations of these two measures
is also a maximizing measure. This gives a hint of how difficult the
problem of selection is. There are too many possibilities.

In case of convergence, one natural question is then to study the
speed of convergence for µβ . More precisely, if C is a cylinder such
that C ∩ A = ∅, then lim

β→+∞
µβ(C) = 0 (because any possible accu-

mulation point gives 0-measure to C). It is thus natural to study the
possible limit:

lim
β→+∞

1

β
log(µβ(C)).

We will see that this question is related to the behavior of
1

β
logHβ .

Then we address the question:
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1. Is there convergence of the family
1

β
logHβ , as β goes to +∞?

2. If there is convergence, how does the family of functions
1

β
logHβ

select the limit ?

In the case V = limβ→∞
1

β
logHβ we say that V was selected

when temperature goes to zero.

3.1.2 A naive computation. The role of subactions

We explore here a different but related question: consider A : Ω → R

Lipschitz and β > 0. The transfer operator yields for every x,

eP(β)Hβ(x) =
d∑

i=1

eβ.A(ix)Hβ(ix), (3.1)

where all the subscribed β.A have been replaced by β for simplicity.
Hβ denotes the main eigenfunction (properly normalized) for βA.

We have seen that, if β goes to +∞, there is control on the Lips-
chitz (or, Hölder) constant, more precisely, this control exists at the
1

β
log-scale.

Actually, Proposition 2.12 shows that the
1

β
logHβ form an equicon-

tinuous family. There are different choices for normalizing the family
of eigenfunction of the Ruelle operator in order to get that the family
is bounded (independent of β), but we will not elaborate on this in the
moment. We can consider an accumulation point of this sequence,
say V , and we can show it is Lipschitz continuous. For simplicity
we keep writing β → +∞, even if we actually consider subsequences.

Then, taking
1

β
log of (3.1), considering β → +∞, equality (2.4) (and

some more effort) implies

m(A) + V (x) = max
i

{V (ix) +A(ix)} . (3.2)

We will show in a moment a proof of this result in a particular
case
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Definition 3.3. A continuous function u : Ω → R is called a cali-
brated subaction for A : Ω → R, if for any x ∈ Ω, we have

u(x) = max
σ(y)=x

[A(y) + u(y) −m(A)]. (3.3)

We will show the proof of a particular case of the general result
we mentioned above.

Theorem 3.4. Assume A is a potential which depends on two coor-
dinates. Suppose βn is such that for each j

lim
βn→∞

1

βn
log lβn A(j) = V (j).

Then, V is a calibrated subaction.

To get this result we consider the eigenvalue equation: for each β
and for each 1 ≤ j ≤ d, we have

d∑

i=1

lβAi eβ A(i,j)

λ(β A) lβAj
= 1.

For each j and βn, there exist a in = ijn, such that,
l
βA
in

eβ A(in,j)

λ(β A) lβA
j

attains the maximal possible value among the i ∈ {1, 2., , .d}.
For a fixed j there exists a ij ∈ {1, 2., , .d} such that the value ijn

is attained an infinite number of times.

Remember that limβ→∞
P (β A)
β

= limβ→∞
log(λ(β A))

β
= m(A).

Therefore,

0 =
1

βn
log(

d∑

i=1

lβnA
i eβn A(i,j)

λ(βnA) lβnA
j

) ≤

1

βn
log(d

lβnA
ij

eβn A(ij ,j)

λ(βnA) lβnA
j

) ≤

A(ij , j) +
1

βn
log lβn A(ij) −

1

βn
log lβn A(j) −

1

βn
log λ(βnA).
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Now, taking limit in the above expression, when n → ∞, we get
for each fixed j

0 ≤ A(ij , j) + V (ij) − V (j) −m(A).

In this way, for each j we get

V (j) + m(A) ≤ max
i∈{1,2,...,d}

{A(i, j) + V (i)} .

In the case, for a given j there exists i and ǫ > 0, such that,

V (j) + m(A) + ǫ < A(i, j) + V (i) ,

then,

1 <
lβnA
i eβn A(i,j)

λ(βnA) lβnA
j

,

for some large n. But, this is a contradiction.

In the case the maximizing probability for A is unique, then, from
[48] [59], there exists the limit

lim
β→∞

1

β
log lβ A = V.

Consequently, any accumulation point for
1

β
logHβ is a calibrated

subaction. Now, Equality (3.2) yields for every i and every x,

A(ix) 6 m(A) + V (x) − V (ix),

which can be rewritten as A(y) = m(A) + V ◦ σ(y) − V (y) + g(y),
where g is a non-positive function. By Proposition 2.12 it is also
Lipschitz continuous.

Note that in the case u is a calibrated subaction, then, u + c,
where c is a constant, is also a calibrated subation. We say that
the calibrated subaction is unique, if it is unique up to an additive
constant. One can show that in the case there is more than one
maximizing probability, the calibrated subaction is not unique.
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A calibrated subaction u satisfies

u(σ(x)) − u(x) −A(x) +m(A) ≥ 0.

Remember that if ν is invariant for σ, then for any continuous
function u : Ω → R we have

∫
[u(σ(x)) − u(x)] dν = 0.

Suppose µ is maximizing for A and u is a calibrated subaction for
A. It follows that for any x in the support of µ∞ we have

u(σ(x)) − u(x) −A(x) +m(A) = 0. (3.4)

Indeed, g(x) = u(σ(x)) − u(x) −A(x) +m(A) ≥ 0, and the integral∫
g(x)dµ(x) = 0.

In this way if we know the valuem(A), then a calibrated subaction
u for A help us to identify the support of maximizing probabilities.
The equality to zero in the above equation can be true outside the
union of the supports of the maximizing probabilities µ (see example
of R. Leplaideur in [111]). It is known that generically on the Holder
class on A the equality is true just on the support of the maximizing
probability.

The study of the ergodic properties of maximizing probabilities is
the purpose of Ergodic Optimization.

Now we recall some questions already stated in the introduction
of this chapter:

1. Is there convergence for
1

β
logHβ as β goes to +∞ ?

2. If there is convergence, how does the family of functions
1

β
logHβ

select the limit ?

We also remind the reader that in the case V = limβ→∞
1

β
logHβ

we say that V was selected when temperature goes to zero.
Given a general Hölder potential A can be exist calibrated subac-

tions which are not selected. The ones that are selected are special
among the calibrated subactions.
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Example. For Ω = {1, 2}N we study the convergence and the selec-
tion at temperature zero.

Suppose A is a two by two matrix.
If A(1, 1) is strictly bigger than the other A(1, j) there is a unique

maximizing probability with support on δ1∞ . There is only one cali-
brated subaction up to an additive constant, therefore we get selection
of subaction and probability. A similar result happen when A(2, 2)
is strictly bigger than all the other A(i, j).

Suppose now that A(1, 1) = 0 = A(2, 2), and, moreover that
A(1, 2), A(2, 1) < 0.

Using the notation of previous sections we have that Hβ
i = lβi ,

i = 1, 2. The equation for the right eigenvalue rβi of A is the equation
of the left eigenvalue for the symmetric matrix At.

Then, we get the system

(λβ − 1)Hβ
1 = eβA(2,1)Hβ

2 , (3.5)

(λβ − 1)Hβ
2 = eβA(1,2)Hβ

1 (3.6)

The trace of the matrix with entries eβA(i,j) is 2 and the determi-
nant is 1 − eβ (A(1,2)+A(2,1)). Solving a polynomial of degree two we
get the maximal eigenvalue

λβ = 1 +
√
eβ[A(1,2)+A(2,1)].

We can take Hβ
2 = 1 and Hβ

1 = eβ
1
2 [A(2,1)−A(1,2)].

In this case V (2) = limβ→∞
1
β

logHβ
2 = 0 and, moreover, we have

V (1) = limβ→∞
1
β

logHβ
1 = 1

2 [A(2, 1) −A(1, 2)].
In this case we have selection of subaction assuming the normal-

ization Hβ
2 = 1 for all β.

An easy computation shows that in this case lβ1 = rβ2 and lβ2 = rβ1 .

We can assume the normalization rβ1 + rβ2 = 1 and lβ1 r
β
1 + lβ2 r

β
2 = 1.

Therefore, µβ([1]) = lβ1 r
β
1 = lβ2 r

β
2 = µβ([2]). In this case we have

selection of the probability 1
2δ1∞+ 1

2δ2∞ in the zero temperature limit.

Concerning the first question which concerns measures (question
1), there is one known example of non-convergence (see [46]), when
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β → ∞. Let us now gives some more details in the last question.
Obviously, if there exists a unique maximizing measure, we have con-
vergence because there is a unique possible accumulation point. In
this case the question is not so interesting.

Let us then assume that there are at least two different maxi-
mizing measures µmax,1 and µmax,2. Just by linearity, any convex
combination of both measure µt = tµmax,1 + (1 − t)µmax,2, t ∈ [0, 1],
is also a A-maximizing measure. The question of selection is then to
determine why the family (or, even a subfamily) choose to converge
to some specific limit, if there are so many possible choices.

Among maximizing measures a special subset is the one whose
elements are ground states, a notion (and a terminology) that comes
from Statistical Mechanics, as we said before. One of the most fa-
mous examples is the so called spontaneous magnetization: consider
a one-dimensional lattice with spins which can be up (say +1) or
down (say -1). At high temperature there is a lot of randomness in
the spins. But, if the temperature decreases, then, the behavior of
the spins change in the lattice, and, at very low temperature, a given
arrangement of spins in the lattice, is such that they are all up or they
are all down. This procedure modifies the magnetic properties of the
material. In Statistical Mechanics β is the inverse of the temperature,
thus, β → +∞ means to approximate zero temperature. The main
goal is thus to develop mathematical tools for understanding why
materials have a strong tendency to be highly ordered at low tem-
perature. They reach a crystal or quasi crystal configuration. This
is also called the spontaneous magnetization when temperature de-
creases. An invariant probability with support in a union of periodic
orbits plays the role of a "magnetic state".

A main conjecture in Ergodic Optimization claims that for a
generic potential in the Holder topology the maximizing probabil-
ity is a unique periodic orbit (for a partial result see [48]).

Note that Gibbs states for Hölder potentials give positive mass to
any cylinder set. In this case, for any positive temperature, there is no
magnetization. In the limit when temperature goes to zero the Gibbs
state may, or may not, split in one or more ground states (which
can have, or not, support in periodic orbits). All these questions are
important issues here.
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We point out that when the potential is not of Hölder class it is
possible to get "Gibbs states" which have support in periodic orbits
even at positive temperature.

Questions about selection of subactions naturally appears in this
problem.

3.1.3 Large deviations for the family of Gibbs mea-

sures

In the study of Large Deviations when temperature goes to zero one
is interested in the limits of the following form:

lim
β→∞

1

β
log µβ(C), (3.7)

where C is a fixed cylinder set on Ω.
In principle, the limit may not exist. We remind that general

references in Large deviations are [52] [53]).

Definition 3.5. We say there exists a Large Deviation Principle for
the one parameter family µβ , β > 0, if there exists a non-negative
function I, where I : Σ → R ∪ {∞} (which can have value equal
to infinity in some points), which it is lower semi-continuous, and
satisfies the property that for any cylinder set C ⊂ Σ,

lim
β→+∞

1

β
log µβ A(C) = − inf

x∈C
I(x).

In the affirmative case an important point is to be able to identify
such function I.

Theorem 3.6 (see [12, 109]). Assume that A admits a unique max-
imizing measure. Let V be a calibrated subaction. Then, for any
cylinder [i0i1...in], we have

lim
β→∞

1

β
log µβ([i0i1...in]) = − inf

x∈[i0i1...in]
{I(x)},

where

I(x) =

∞∑

n=0

[V ◦ σ − V − (A−m(A)) ]σn (x).
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In the proof of the above theorem in [12] it is used the involution
kernel which will be briefly described in a future section. For a proof
of this result without using the involution kernel see [109].

In the case the potential A depends on two coordinates and the
maximizing probability is unique we get

I(x) = I(x0, x1..., xk, ..) =

∞∑

j=0

[V (xj+1)−V (xj)−A(xj , xj+1)+m(A) ].

Example. Assume that the potential A depends only on two coor-
dinates, say A(x) = A(x1, x2).

We have seen that in that case

µβ = ([i0 . . . in−1]) = lβi0e
β.Sn(A)(x)−n log λβ.Arβin−1

,

where l
β = (lβ1 , . . . , l

β
d ) and r

β = (rβ1 , . . . , r
β
d ) are respectively the

left eigenvector and the right eigenvector for the matrix with entries
eβ.A(i,j) and λβ.A is the associated eigenvalue (and the spectral radius
of the matrix).

Studying the Large Deviation, we are naturally led to set

lim
β→∞

1

β
log µβ([i0i1...in−1]) = [A(i0, i1) + ...+A(in−2, in−1) ]+

lim
β→∞

1

β
log lβ(i0)i0 − lim

β→∞

1

β
log rβin−1

− n.m(A). (3.8)

The main problem in the above discussion is the existence of the
limits, when β → ∞.

In the case there exists the limits

lim
β→∞

1

β
log lβ = V

and

lim
β→∞

1

β
log rβ = V ∗,
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we get the explicit expression

lim
β→∞

1

β
log µβ([i0i1...in−1]) =

[A(i0, i1) + ...+A(in−2, in−1) ] + V (i0)− V ∗(in−1)− n.m(A). (3.9)

There is a need for understanding better the relation of lβ and
rβ . This is sometimes not so easy as we will see in an example which
will be presented in the last chapter.

3.1.4 Uniqueness and lock-up on periodic orbits

One can ask questions about the behavior of typical trajectories of
maximizing probabilities. From the classical result given by Birkhoff’s
we know that in the case µ is a maximizing measure, then, for µ-
almost every x,

lim
n→∞

1

n

n−1∑

j=0

A ◦ σj(x) = m(A) =

∫
Adµ.

In this case we say that this orbit beginning in x is A-maximizing.
It is natural to analyze the problem under this viewpoint:

1. How can we detect that an certain given orbit is A-maximizing?

2. What is the relation of maximizing measures with maximizing
orbits?

3. What are the main properties of the A-maximizing orbits?

We will see that this point of view will produce methods which will
help to solve the cohomological inequality:

A > m(A) + V ◦ T − V. (3.10)

Definition 3.7. A coboundary is a function of the form ψ ◦ σ − ψ.

Exercise 10
Show that a coboundary has zero integral for any σ−invariant mea-
sure.
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We mentioned above the notion of crystals or quasi-crystals. In
our settings crystals means periodic orbits; we will not deal with the
question of quasi-crystal in this text. Consequently, an important
point we want to emphasize here is the role of the periodic orbits.
Nevertheless, the regularity of the potential is of prime importance
in that study. The analogous results for the class of Continuous
potentials and the class of Hölder Continuous potentials can be very
different.

Theorem 3.8 (see [27]). Generically for the C0-norm the potential
A has a unique maximizing measure. This measure is not-supported
in a periodic orbit.

We shall give the proof of this theorem inspired from [27]. We
emphasize that this proofs can be extended (concerning the unique-
ness of the maximizing measure) to any separable space. A proof of
generic uniqueness for Hölder continuous functions can be found in
[48].

Proof. The set C0(Ω) is separable. Let (ψn) be a dense sequence
in C0(Ω). Two different measures, say µ and ν, must give different
values for some ψn. This means

{A, #Mmax > 1} =

{
A, ∃n ∃µ, ν ∈ Mmax

∫
ψn dν 6=

∫
ψn dµ

}

=
⋃

n

{
A, ∃µ, ν ∈ Mmax

∫
ψn dν 6=

∫
ψn dµ

}

=
⋃

n

⋃

m

{
A, ∃µ, ν ∈ Mmax

∣∣∣∣
∫
ψn dν −

∫
ψn dµ

∣∣∣∣ >
1

m

}
.

Set Fn,m :=

{
A, ∃µ, ν ∈ Mmax

∣∣∣∣
∫
ψn dν −

∫
ψn dµ

∣∣∣∣ >
1

m

}
. We

claim that theses sets are closed. For this we need a lemma:

Lemma 3.9. Let (Ak) be a sequence of continuous potentials con-
verging to A. Let µk be any maximizing measure for Ak and µ be an
accumulation point for µk.

Then, lim
k→+∞

m(Ak) = m(A) and µ is a A-maximizing measure.
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Proof of Lemma 3.9. For any ε > 0, and for k sufficiently large,

A− ε 6 Ak 6 A+ ε.

This shows m(A) − ε 6 m(Ak) 6 m(A) + ε. Furthermore, we have

m(Ak) =

∫
Ak dµk, m(A) =

∫
Adµ and (up to a subsequence),

lim
k→+∞

∫
Ak dµk =

∫
Adµ, because µk converges to µ on the weak*

topology and Ak goes to A on the strong topology.

We can thus show that the set Fn,m is closed in C0(Ω). Indeed,
considering a sequence Ak converging to A (for the strong topology),
we get two sequences (µk) and (νk) of Ak-maximizing measures such
that ∣∣∣∣

∫
ψn dµk −

∫
ψn dνk

∣∣∣∣ >
1

m
.

We pick a subsequence such that µk and νk converge for this sub-
sequence. Lemma 3.9 shows that the two limits, say µ and ν, are
A-maximizing and they satisfy

∣∣∣∣
∫
ψn dµ−

∫
ψn dν

∣∣∣∣ >
1

m
.

To complete the proof concerning generic uniqueness, we need to
prove that the sets Fn,m have empty interior.

For such A, we claim that the function ε 7→ m(A+ε.ψn) is convex
but not differentiable at ε = 0. Indeed, assume µ and ν are A-
maximizing and ∫

ψn dµ >

∫
ψn dν +

1

m
,

then the right derivative is bigger than

∫
ψn dµ, and, the left deriva-

tive is lower than

∫
ψn dν.

It is known that a convex function is differentiable Lebesgue every-
where (actually everywhere except on a countable set), which proves
that there are infinitely many ε accumulating on 0 such that A+ε.ψn
cannot be in Fn,m.
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Let us now prove that, generically, the unique maximizing mea-
sure is not supported on a periodic orbit.

Let us consider some periodic orbit O and µO the associated in-
variant measure. If A is such that µO is not A-maximizing, then
for every Aε closed, µO is still not Aε-maximizing (see the proof
of Lemma 3.9). This proves that the set of A such that µO is A-
maximizing is a closed set in C0.

In order to prove that it has empty interior, let consider A such
that µO is A-maximizing, and some measure µ closed to µO in the

weak* topology. This can be chosen in such way that

∫
Adµ >

m(A) − ε, with ε > 0 as small as wanted.
There exists a set Kε such that µO(Kε) < ε and µ(Kε) > 1 − ε,

and, then, we can find a continuous function 0 6 ψε 6 1, null on the

periodic orbit O, and, such that,

∫
ψε dµ > 1 − 2ε.

Then,
∫
A+ 2εψε dµO = m(A) < m(A) − ε+ 2ε− 4ε2 6

∫
A+ 2ε.ψε dµε.

This shows that µO is not A + 2εψε-maximizing, thus the set of
potentials such that µO is maximizing has empty interior.

As there are only countably many periodic orbits, this proves that
generically, a periodic orbit is not maximizing.

It is known that generically on the Holder class the maximizing
probability for A is unique (see [48]).

Let us thus mention an important conjecture:

Conjecture. Generically for the Lipschitz norm, the potential A
has a unique maximizing measure and it is supported by a periodic
orbit.

The main results in that direction are:

Theorem 3.10 (see [138]). Let µ be a maximizing measure for the
Lipchitz potential A. Assume µ is not supported by a periodic orbit.
Then, for any ε > 0, there exists Aε ε-closed to A for the Lipschitz
norm such that µ is not Aε-maximizing.
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Theorem 3.11 (see [48]). Let A be Lipschitz which has a unique A-
maximizing measure µ. Assume that µ has periodic support. Then,
there exists ε such that for every Aε ε-closed to A (for the Lipschitz
norm), µ is the unique Aε-maximizing measure.

Theorems 3.11 and 3.10 show that the unique possibility for a
maximizing measure to keep being maximizing for small perturbation
in the Lipschitz norm is that it is supported by a periodic orbit. This
is the lock-up on periodic orbits. The extended version of Theorem
3.8 for the Lipschitz norm would imply that generically there is a
unique maximizing measure. Nevertheless, this conjecture is not yet
proved on the full extent. A partial result in this direction is [48].

Questions about ground states which have support on periodic
orbits are questions about magnetization at temperature zero.

On the other hand, it is extremely simple to get an example
with non-uniqueness for the maximizing measure. Let K be any σ-
invariant compact set such that it contains the support of at least
two different invariant measure (in other words K is not uniquely
ergodic). Then set

A := −d(.,K).

Then, A is Lipschitz and any measure with support in the set K is
A-maximizing. It is so simple to get examples where uniqueness fails
that generic uniqueness cannot be seen as sufficient to consider the
problem as solved.

The problem of selection is so fascinating, that, in our opinion, is
interesting in itself.

3.1.5 First selection: entropy criterion

In this section we consider A : Ω → R a Lipschitz continuous po-
tential. Note that in that specific case, results also hold for Hölder
continuous potentials. We denote by Mmax the set of maximizing
measures.

Definition 3.12. The Mather set of A is the union of the support
of all the A-maximizing measures.
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Theorem 3.13. Any ground state has maximal entropy among the
set of maximizing measures. In other words, any accumulation point
µ∞ for µβ satisfies

hµ∞
= max {hν , ν ∈ Mmax} .

Proof. First, note that Mmax is closed, thus compact in Mσ. The en-
tropy is upper-semi-continuous, then, there exists measures in Mmax

with maximal entropy.
Let µ∞ be such a measure, and set hmax = hµ∞

. Then, we get

hmax + β.m(A) = hµ∞
+ β.

∫
Adµ∞ 6 P(β). (3.11)

We remind that β 7→ P(β) admits an asymptote as β → +∞,
which means that there exists some h such that

P(β) = h+ β.m(A) + o(β),

with lim
β→+∞

o(β) = 0. Then, Inequality (3.11) shows that hmax 6 h.

Now consider µ∞ any accumulation point for µβ . Theorem 2.11 says
that µ∞ is A-maximizing. On the other hand,

h+ β.m(A) + o(β) = P(β) = hµβ
+ β.

∫
Adµβ 6 hµβ

+ β.m(A)

yields hmax > hµ∞
> lim sup

β→+∞
hµβ

> h > hmax.

Remark 3.14. In Statistical Mechanics, hmax is called the residual
entropy: it is the entropy of the system at temperature zero, when it
reaches its ground state. �

Consequently, if the Mather set admits a unique measure of max-
imal entropy, µβ converges to this measure, as β → +∞.

We have seen in Proposition 2.11 that the pressure function β 7→
P(β) admits an asymptote as β → +∞. Actually this asymptote is
given by

hmax + β.m(A).

Theorem 3.13 justifies the study of the set of maximizing orbits.
This is the goal of the next section.
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3.2 The Aubry set and the subcohomolog-

ical inequality

3.2.1 The Aubry set and the Mañé potential

Theorem 3.15. There exists an invariant set A, called the Aubry
set, which satisfies the following properties:

1. A contains the Mather set, or, equivalently, any A-maximizing
measure has its support in A.

2. Restricted to A, A−m(A) is equal to a Lipschitz coboundary.

This theorem helps to answer the question: how can one detect
maximizing orbits ? The terminology is borrowed from the Aubry-
Mather Theory (see [115] [47] [56] [114] [66]).

Definition 3.16. Given A, the Mañé potential is:

SA(x, y) :=

lim
ǫ→0

[
sup

{ n−1∑

i=0

[
A(σi(z)) −mA

] ∣∣∣ n ∈ N, σn(z) = y, d(z, x) < ǫ
}]
.

The Mañé potential SA(x, y) describes in some sense the "optimal
way" to go from x to y, following the dynamics, and also maximizing
the “cost” given by A. For a fixed ǫ, the supremum may be not
attained by a finite piece of orbit.

We point out that for a fixed x the function y 7→ S(x, y) is Holder.
Nevertheless, for a fixed y the function x 7→ S(x, y) is not necessarily
continuous.

Proof of Theorem 3.15 . The proof has several steps. We set A :=
{x ∈ Ω |SA(x, x) = 0 }. Let us check that A satisfies the required
conditions.

• some useful equations.
Let us pick any calibrated subaction V . We remind that this means

V (σ(x)) > A(x) −m(A) + V (x),
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which can be written on the form

A(x) = m(A) + V ◦ σ(x) − V (x) + g(x), (3.12)

where g is a non-positive Lipschitz-continuous function.
Let z be in Ω. Equality (3.12) yields

Sn(A−m(A))(z) = Sn(g)(z) + V ◦ σn(z) − V (z). (3.13)

Now, pick y and consider z such that σn(z) = y. This yields

Sn(A−m(A))(z)=Sn(g)(z) + V (y) − V (z)≤

g(z) + V (y) − V (z)≤ V (y) − V (z). (3.14)

Therefore, for every x and y, the continuity of V shows

SA(x, y) 6 g(x) + V (y) − V (x) 6 V (y) − V (x). (3.15)

• The Aubry set contains the Mather set.
We show that if µ is a A-maximizing ergodic measure, then, suppµ ⊂
A. This will imply, in particular, that A is not empty. Consider x a
generic point for µ (and, also in the support of µ). As V is Lipschitz,

then, Equality (3.13) used for z := x yields lim
n→∞

1

n
Sn(A−m(A))(x) =

0. Consequently, g is a non-positive function satisfying

∫
g dµ = 0.

Since µ is ergodic and g is continuous, we have that g|suppµ ≡ 0.
This implies, as we have shown before,

A(x) = m(A) + V ◦ σ(x) − V (x),

for every x ∈ suppµ.
Now, x returns infinitely many times as closed as wanted to itself

(see Proposition 1.20). This yields that for a given ε = 1
2N , there are

infinitely many ni such that

x = x0x1 . . . xni−1x0x1 . . . xN−1 . . . .

Equivalently, this means that the word x0 . . . xN−1 appears infinitely
many times into x = x0x1 . . ..
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This yields that for such ni, the word

z = x0x1 . . . xni−1x,

coincides with x for at least ni +N digits. Lipschitz regularity for A
and g yields

|Sni
(A)(z) − Sni

(A)(x)| 6 C.
1

2N
, and |Sni

(g)(z) − Sni
(g)(x)| 6 C.

1

2N
.

Remind that g ◦ σk(x) = 0 for every k because x belongs to suppµ.
Remember that V is Lipschitz continuous. Therefore, we get

|Sni
(A−m(A))(z)| 6 C

1

2N
, σni(z) = x and d(z, x) 6

1

2ni+N
.

This yields that SA(x, x) > 0 and Inequality (3.15) yields SA(x, x) 6

0. Therefore, x belongs to A.
• We prove that A−m(A) restricted to A is a coboundary.

Let x be in A. Note that Inequality (3.15) yields

0 6 SA(x, x) 6 g(x) 6 0,

which shows that g is equal to 0 on A. Therefore, A − m(A) is a
coboundary on A.

The last point to check is that A is σ-invariant. Let x be in
A. Take a fixed ε0 > 0 and suppose that z satisfies σn(z) = x and
d(x, z) < ε. Then,

Sn(A)(z) = A(z) +A ◦ σ(z) + . . .+A ◦ σn−1(z)

= A(σ(z)) + . . .+A ◦ σn−2(σ(z)) +A(z)

= A(σ(z)) + . . .+A ◦ σn−2(σ(z)) +A(x) +A(z) −A(x)

= Sn(A)(σ(z)) +A(z) −A(x).

Note that d(σ(z), σ(x)) = 2d(z, x) < 2ε and |A(z)−A(x)| 6 C.d(z, x) 6

2Cε. Taking the supremum over all the possible n, for fixed ε, and
then letting ε→ 0 we get

SA(x, x) = SA(σ(x), σ(x)).
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Proposition 3.17. The Aubry set is compact.

Proof. The definition of SA yields

SA(x, x) = lim
ε→0

sup
n

{Sn(g)(z), σ
n(z) = x d(x, z) < ε}.

The function g is non-positive, thus Sn(g)(z) is always non-positive.
We claim that SA(x, x) = 0 holds, if and only if, for every n, there
exists z, such that σn(z) = x and Sn(g)(z) = 0. Now, Lipschitz
continuity of g shows that this condition is closed: if x does not
satisfies this condition, there exists n such that for every z, satisfying
σn(z) = x, we get Sn(g)(z) < 0. This is obviously true for every x′

sufficiently close to x. Therefore, the set of x such that S(x, x) = 0
is a closed set.

We now prove the claim. If the later condition is not satisfied,
then pick n0 such that for every n0-preimage z of x, Sn0

(g)(z) < 0.
The set of n0-preimages is finite, thus, there exists ε such that for
every z

σn0(z) = x =⇒ Sn0
(g)(z) < −ε.

Now, for n > n0 and z such that σn(z) = x,

Sn(g)(z) = Sn−n0
(g)(z)+Sn0

(g)(σn−n0(z)) 6 Sn0
(g)(σn−n0(z)) < −ε.

This shows SA(x, x) 6 −ε < 0.
Conversely, assume that SA(x, x) = 0. Pick n0 and then consider

a sequence of n-preimages zn of x converging to x such that

Sn(g)(zn) →n→∞ 0.

Consider the new sequence of points ξn := σn−n0(zn). Each ξn is a
n0-preimage of x, then, there exists z, such that, σn0(z) = x, and for
infinitely many n, we have ξn = z. Therefore, considering only these
n’s we get

0 > Sn0
(g)(z) > Sn(g)(zn),

and the right hand side term goes to 0, if n → +∞. This yields
Sn0

(g)(z) = 0, and this holds for every n.
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3.2.2 The Aubry set for locally constant poten-

tials

Here we consider a potential A depending on 2 coordinates, that is:
A(x0x1x2 . . .) = A(x0, x1). We set A(i, j) for A(x) with x = ij . . ..

Note that in that case Hβ is constant in each 1-cylinder set [i].

This also holds for
1

β
logHβ , and, then, for any accumulation point

V . Indeed, recall that LHβ = λβHβ . We can get the function Hβ by
the expression

Hβ(x) = lim
n→+∞

1

n

n−1∑

k=0

Lk1(x)

λkβ
.

Note that

L1(x0x1 . . .) =
∑

i∈{1,...,d}

eβA(i,x0)1(x0x1 . . .) =
∑

i∈{1,...,d}

eβA(i,x0).

Iterating k times the action of the operator L, we get

Lk1(x0x1 . . .) =
∑

ik,ik−1,...,i1∈{1,...,d}

eβ(A(ik,ik−1)+···+A(i1,x0))

Then, the function Hβ(x0x1 . . .) depends only on x0 and so it is
constant in each cylinder of size one [i], as claimed.

If x is in Ω and z is such that σn(z) = x and, moreover, d(x, z) < 1,
then, V (x) = V (z). Hence,

Sn(A−m(A))(z) = Sn(g)(z) 6 0.

If y is in A, g|A ≡ 0, then Sn(A−m(A))(y) = V ◦ σn(y) − V (y).
If σn(y) and y are in the same 1-cylinder, then Sn(A−m(A))(y) = 0.
Furthermore, if z is the periodic orbit given by the concatenation
of y0y1 . . . yn−1, then, we get Sn(A−m(A))(z) = Sn(A−m(A))(y),
because all the transitions zi → zi+1 are the same as for y (for i 6

n− 1).
This shows that m(A) is reached by periodic orbits.

Definition 3.18. A periodic orbit obtained as the concatenation of
z0 . . . zn−1 is said to be simple if all the digits zi are different.
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Example. 123123123 . . . is a simple periodic orbit of length 3. By
the other hand 121412141214 . . . is not a simple periodic orbit.

One simple periodic orbit of length n furnishes n bricks, which
are the words producing the n points of the orbit :

Example. The bricks of 123123123 . . . are 123, 231 and 312.

Then, the Aubry set A is constructed as follows :

1. List all the simple periodic orbits. This is a finite set.

2. Pick the ones such that their Birkhoff means are maximal. This
maximal value is m(A). Such a simple periodic orbit is also
called maximizing.

3. Consider the associated bricks for all these simple maximizing
periodic orbits.

4. The set A is the subshift of finite type constructed from these
bricks:

(a) Two bricks can be combined if they have a common digit.
On one of the simple loops one glues the other simple loop.
The bricks x0x1 . . . xn and xny1 . . . yk produce the periodic
orbit x0x1 . . . xny1y2 . . . ykxnx0x1 . . . xny1y2 . . . ykxn . . .

Example. It is easy to see that 123 and 345 produce the
new orbit 123453123453 . . ..

(b) A is the closure of the set of all the periodic orbits obtained
by this process.

We can also define A from its transition matrix. If i does not
appear in any of the bricks, we set Tij = 0, for every j. If i appears
in a brick, set Tij = 1, if ij appears in a brick (for j 6= i). If i is also a
brick (that means that the fixed point iiiiii . . . is a maximizing orbit)
set also Tii = 1. Set Tij = 0 otherwise. Then, A = ΣT .

Example. If the bricks are (up to permutations) abc, cde, fgh, gi
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and fj, the transition matrix restricted to these letters is

T =




0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0




.

j

d e

c

b a
f

g

i

h

Figure 3.1: The graph for T

The set A is a subshift of finite type. It can thus be decomposed
in irreducible components, say A1 . . . ,Ar. Each component admits
a unique measure of maximal entropy, say µ1, . . . , µr. Let hi be the
associated entropies. We assume that the order has been chosen in
such way that

h1 > h2 > . . . > hr.

In that case, the topological entropy for A is h1. More precisely,
assume that j0 is such that

h1 = h2 = . . . = hj0 > hj0+1 > hj0+2 . . . .
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Then, A admits exactly j0 ergodic measures of maximal entropy h1.
Any ground state is a convex combination of these j0 ergodic mea-
sures.

In that special case, it is proved that there is only one ground
state:

Theorem 3.19 (see [33, 91, 45]). If A depends only on two coordi-
nates, then µβ converges, as β → +∞.

Example. In the previous example, A has two irreducible compo-
nents. The first one has entropy 1

3 log 2 ∼ 0.23. The second one has
entropy ∼ 0.398. In that case the ground state is the unique mea-
sure of maximal entropy, which has support in the second irreducible
component.

3.2.3 Some consequences of Theorem 3.19

A dual viewpoint for the selection problem is the following: for every
β the probability µβ has full support. One can say that a measure, in
our case the probability µβ , can be represented by its set of generic
points (see Remark 1.21). This set of points is dense in Ω.

For each β > 0, this set remains dense in Ω, but in the limit, when
β → +∞, this set accumulates on the Aubry set A. More precisely,
it is going to accumulate on the irreducible components which have
positive weight for some ground state.

The selection problem is thus to determine what are the compo-
nents of A where this set of generic points for µβ accumulates.

It may happen that an irreducible component of A has maximal
entropy but has no weight at temperature zero. In [91], the author
introduced the notion of isolation rate between the irreducible compo-
nents and showed that only the most isolated component have weight
at temperature zero.



“livreutf8V5_Final”
2013/6/4
page 60

i

i

i

i

i

i

i

i

Chapter 4

The Peierl’s barrier

4.1 Irreducible components of the Aubry

set

4.1.1 Definition of the Peierl’s barrier

We have seen above that if A depends on two coordinates the Aubry
set A is a subshift of finite type. It thus has well-defined irreducible
components, each one being the support of a unique measure of (rel-
ative) maximal entropy. In the case of a more general potential A,
there are no reasons why A should be a subshift of finite type. Actu-
ally it can be any invariant subset as it was shown above : pick any
compact set A and consider A := −d(.,A).

Given that, it is not obvious how define the irreducible compo-
nents of A and how to determine the measures of maximal entropy.

Definition 4.1. The Peierl’s barrier between x and y is defined by

h(x, y) := lim
ε→0

lim sup
n→∞

{Sn(A−m(A))(z), σn(z) = y d(x, z) < ε} .

We remind that we got A = m(A) + V ◦ σ − V + g, where V
is a calibrated subaction (obtained via a converging subsequence for
1

β
logHβ) and g is a non-positive Lipschitz function. Replacing this

60
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expression for A into the definition of the Peierl’s barrier we get

h(x, y)=lim
ε→0

lim sup
n→∞

{Sn(g)(z) + V (y) − V (z), σn(z) = y d(x, z) < ε}

= lim
ε→0

lim sup
n→∞

{Sn(g)(z), σ
n(z) = y d(x, z) < ε} + V (y) − V (x).

This shows that to compute h(x, y), we morally have to find a
sequence of pre-images for y which converges as fast as possible to x.
We shall see later that it is of prime importance the equality h(x, y)+
h(y, x) = h(x, x).

Theorem 4.2. For any x, the Peierl’s barrier y 7→ h(x, y) is a Lip-
schitz calibrated subaction. Moreover, h(x, x) = 0, if and only if, x
belongs to A.

Proof. Pick x and y. Consider z such that σn(z) = y, d(x, z) < ε.
Note that in Ω, z is just the concatenation z0 . . . zn−1y. For y′ close
to y (namely y0 = y′0), we consider z′ := z0 . . . zn−1y

′ ; the Lipschitz
regularity for g yields

|Sn(g)(z) − Sn(g)(z
′)| 6 C.d(y, y′),

for some constant C. If we consider a sequence of z realizing the
lim sup and then take ε→ 0, we get

h(x, y) 6 h(x, y′) + C.d(y, y′).

The same argument shows h(x, y′) 6 h(x, y) + C.d(y, y′), and, then
y 7→ h(x, y) is Lipschitz continuous.

Let us show that this function is a calibrated subaction. In this
way, consider y, n and ε, such that, σn(z) = y and d(x, z) < ε. Then,
d(x, z) < ε and σn+1(z) = σ(y). Moreover,

Sn+1(A−m(A))(z) = Sn(A−m(A))(z) +A(y) −m(A). (4.1)

Consider a sequence of z realizing the lim sup for h(x, y), now taking
the limit along the subsequence, and, considering ε→ 0, we get

h(x, y) +A(y) −m(A) 6 h(x, σ(y)).

This shows that y 7→ h(x, y) is a subaction. It remains to show that
for a fixed value for y′ = σ(y), the equality is achieved by one of
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the preimages of y′. This follows from taking the z’s and the n’s in
Equality (4.1) which realize the lim sup for the left hand-side of the
equality. Then, we get

h(x, y′) 6 h(x, y) +A(y) −m(A),

with σ(y) = y′. As the reverse inequality holds, the global equality
follows.

Both definitions of the Mañé potential and the Peierl’s barrier are
very similar, except that in the first case we consider the supremum,
and in the other case we consider the lim sup. This immediately
shows that

h(x, y) 6 SA(x, y),

and then, h(x, x) = 0 yields SA(x, x) = 0 (due to Inequality 3.15),
thus x belongs to A.

Let us prove the converse. Take x in A. Consider ρ > 0 small
and ε0, such that, for every ε < ε0,

sup
n

{Sn(A−m(A))(z), σn(z) = x d(z, x) < ε} > −ρ. (4.2)

In the following, we assume for simplicity that x is not periodic, but
the proof can be easily extended to that case.

Inequality(4.2) holds for every ε. We will construct a subsequence
(nk) by induction. We pick any ε and consider n0 realizing the supre-
mum up to −ρ:

Sn0
(A−m(A))(z0) > −2ρ with σn0(z0) = x and d(x, z0) < ε.

Now we use Inequality(4.2) but with1

ε1 < min {d(x, z), σn(z) = y, n 6 n0} .

We get n1 > n0 and z1, such that,

Sn1
(A−m(A))(z1) > −2ρ with σn1(z1) = x and d(x, z1) < ε1.

We then proceed by induction with

εk+1 < min {d(x, z), σn(z) = y n 6 nk} .

1Here we use that this distance is positive, that is that x is not periodic.
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Then, we have

−2ρ < Snk
(A−m(A))(zk), with σnk(zk) = y and d(x, zk) < ε

then

−2ρ 6 lim sup
n→∞

{Sn(A−m(A))(z), σn(z) = x d(x, z) < ε} .

This holds for every 0 < ε < ε0, and then h(x, x) > −2ρ. Now, we
take ρ → 0, and we get h(x, x) > 0. The reverse equality is always
true, so h(x, x) = 0.

4.1.2 The irreducible components of the Aubry

set

Now, we show that the Peierl’s barrier allows to define “irreducible”
components of the Aubry set.

Lemma 4.3. For any x, y and z

h(x, y) > h(x, z) + h(z, y). (4.3)

Proof. Let ε > 0 be fixed. Consider a preimage y′ of y close to z and
a preimage z′ of z close to x. For small ε, z′ satisfies z′ = z′0 . . . z

′
n−1z

and then y′′ := z′0 . . . z
′
n−1y

′ is also a preimage of y. The cocycle
relation yields, if σm(y′) = y,

Sn+m(A−m(A))(y′′) = Sn(A−m(A))(y′′) + Sm(A−m(A))(y′).

The Lipschitz regularity shows that Sn(A −m(A))(y′′) differs from
Sn(A − m(A))(z′) by the term ±C.ε. If we assume that the n’s
and the m′s are chosen to realize the respective lim sup, the term
on the left-hand side is lower than the lim sup. Then, the Lemma is
proved.

Lemma 4.4. For any x in A, h(x, σ(x)) + h(σ(x), x) = 0.

Proof. Lemma 4.3 and Theorem 4.2 show that

h(x, σ(x)) + h(σ(x), x) 6 h(x, x) = 0.
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It remains to prove it is non-negative. The Peierl’s barrier is a sub-
action thus

h(x, σ(x)) > A−m(A) + h(x, x) = A−m(A).

Pick ε > 0 and consider y, a preimage of x ε-close to σ(x). Suppose
y = y0 . . . yn−1x. Then, x′ := x0y0 . . . yn−1x is a preimage of x ε-
close2 to x. In particular A(x′) = A(x) ± C.ε. We emphasize that it
is equivalent to have x′ → x or y → σ(x).

We assume that these quantities are chosen in such way that
Sn+1(A−m(A))(x′) converges to the lim sup, if n goes to +∞. Now,

Sn+1(A−m(A))(x′) = A(x′) −m(A) + Sn(A−m(A))(y).

Taking n → +∞ and then ε → 0, the right-hand side term is lower
than h(σ(x), x) + A(x) −m(A) and the left-hand side term goes to
h(x, x) = 0. This yields

0 6 h(σ(x), x) +A(x) −m(A) 6 h(σ(x), x) + h(x, σ(x)).

Lemma 4.5. Let x y and z be in A. If h(x, y) + h(y, x) = 0 and
h(y, z) + h(z, y) = 0, then h(x, z) + h(z, x) = 0.

Proof. Inequality (4.3) shows

h(x, z) + h(z, x) > h(x, y) + h(y, z) + h(z, y) + h(y, x) = 0 + 0 = 0.

It also yields h(x, z) + h(z, x) 6 h(x, x) = 0.

Lemma 4.5 proves that h(x, y)+h(y, x) = 0 is a transitive relation.
Since it is obviously symmetric and reflexive, then it is an equivalence
relation on A.

Definition 4.6. The equivalence classes for the relation

h(x, y) + h(y, x) = 0,

are called irreducible components of A.

Note that x and σ(x) belong to the same class, which shows that
the classes are invariant. The continuity for the Peierl’s barrier has
been proved with respect to the second variable for a fixed first vari-
able. It is thus not clear that an irreducible component is closed.

2Actually ε

2
-close to x.



“livreutf8V5_Final”
2013/6/4
page 65

i

i

i

i

i

i

i

i

[SEC. 4.1: IRREDUCIBLE COMPONENTS OF THE AUBRY SET 65

4.1.3 The locally constant case

If the potential is locally constant, we have seen in Subsection 3.2.2
that the Aubry set A is a subshift of finite type, for which the notion
of irreducible component has already been defined (see 1.3). We have
to check that the two notions coincide.

We have seen that the irreducible components of a subshift of
finite type are exactly the transitive components. We shall use this
description to show that irreducible components of the Aubry (in the
sense of the Peierl’s barrier) set are the irreducible components (with
respect to subshifts).

Lemma 4.7. Assume A depends only on two coordinates. Let x and
y be in Ω. Assume that d(z, x) 6 1

4 , σn(z) = y, and, moreover, that
there exists 1 6 k < n, such that, d(σk(z), x) 6 1

4 . Then,

Sn(A−mA)(z) 6 Sn−k(A−mA)(σk(z)).

Proof. We consider a calibrated subaction V . We have seen that it
depends only on one coordinate. We remind that for every ξ,

A(ξ) = mA + V ◦ σ(ξ) − V (ξ) + g(ξ) (4.4)

holds, where g is a non-positive function (depending only on 2 coor-
dinates). Now we have

Sk(A−mA)(z) = Sk(g)(z) + V (σk(z)) − V (z) = Sk(g)(z) 6 0.

From Lemma 4.7 we claim that for every x and y,

h(x, y) = SA(x, y) = max

{
Sn(A−mA)(z)σn(z) = y d(z, x) 6

1

4

}
.

(4.5)

Lemma 4.8. Consider some fixed y in Ω. The map x 7→ h(x, y) is
continuous

Proof. Consider a sequence (xn) converging to x. Assume that all
these xn and x coincide for at least 2 digits. Then,

d(z, xn) 6
1

4
⇐⇒ d(z, x) 6

1

4
.
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For y and n, consider any z realizing the maximum into the definition
of SA(xn, y). It also realizes the maximum for SA(x, y) and more
generally for every SA(xk, y).

Lemma 4.8 shows that any irreducible components of the Aubry
in the sense of definition 4.6 is closed. It is also invariant. We thus
have to show it is transitive.

Let us consider some components and pick two open sets U and
V (for the components). We still assume that Equality (4.4) holds.
Consider x ∈ U ∩ A and y ∈ V ∩ A. By definition

h(x, y) + h(y, x) = 0.

By Equality (4.5), h(x, y) is realized by some Sn(A − mA)(z) and
h(y, x) is realized by some Sm(A −mA)(z′). Moreover, we can also
assume that z belongs to U and z′ belongs to V .

Indeed, if it is not the case, we can always follow preimages of x
in the component A which are exactly on the set g−1({0}).

>From the two pieces of orbits which are z, σ(z), . . . , σn(z) and
z′, σ(z′), . . . , σm(z′) we can construct a periodic orbit. Denote by ξ
the point of this periodic orbit in U . Then, we claim that

h(y, ξ) = h(y, x) = Sm(A−mA)(z′)

and,

h(ξ, y) = h(x, y) = Sn(A−mA)(z).

This shows that ξ belongs to A and to the same component than
y. Therefore σ−m(U) ∩ V 6= ∅ and the component is transitive.

4.2 On the road to solve the subcohomo-

logical inequality

4.2.1 Peierl’s barrier and calibrated subactions

From properties of the Peierl’s barrier we get the following result: a
calibrated subaction is entirely determined by its values on the Aubry
set.
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Theorem 4.9 (see [59]Th. 10). Any calibrated subaction u satisfies
for any y

u(y) = sup
x∈A

[h(x, y) + u(x)], (4.6)

Proof. We show that any calibrated subaction u is entirely deter-
mined by its values on the Aubry set A.

Let us thus consider some calibrated subaction u. Let y be in Ω.
Let y−1 be any preimage of y such that

u(y) = A(y−1) −m(A) + u(y−1).

More generally we consider a sequence y−n such that σ(y−n) = y−n+1

and
u(y−n+1) = A(y−n) −m(A) + u(y−n).

We claim that any accumulation point for (y−n) belongs to A.
Indeed, let us consider some converging sequence y−nk

, converging to
x.

For k′ > k we get σnk′−nk(y−nk′
) = y−nk

. Therefore, we have

Snk′−nk
(A−m(A))(y−nk′

) = u(y−nk
) − u(y−nk′

),

and, ynk
→ x yields

SA(x, x) > 0.

As SA(x, x) 6 0 always holds (see Inequality (3.15)) we get that
the limit point x belongs to A.

Now we have that Snk
(A − m(A))(ynk

) = u(y) − u(ynk
), which

yields
h(x, y) > u(y) − u(x).

In particular u(y) 6 supx′∈A{h(x
′, y) + u(x′)} holds.

Actually, the reasoning we have just done allows to get a stronger
result. Consider z in Ω, then we can write

A(z) = m(A) + u ◦ σ(z) − u(z) + g(z),

where g is a non-positive Lipschitz function. Now, consider zn such
that σn(z) = y. Therefore,

Sn(A−m(A))(zn) = u(y) − u(z) + Sn(g)(z) 6 u(y) − u(z).
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This shows that
h(x′, y) 6 u(y) − u(x′)

always holds (consider any x′ and take a subsequence of zn converging
to it). Then, Equality (4.6) holds.

Moreover, the irreducible component get a special importance :

Theorem 4.10. If x and z are in the same irreducible component of
A, then for any y,

h(x, y) + u(x) = h(z, y) + u(z).

Proof. We remind two inequalities and an important equality:

h(x, y) > h(x, z) + h(z, y),

u(x) > h(z, x) + u(z),

0 = h(x, z) + h(z, x).

Then,

u(x) + h(x, y) > u(x) + h(x, z) + h(z, y)

> u(x) − h(z, x) + h(z, y) + u(z) − u(z)

> u(x) − u(z) − h(z, x) + h(z, y) + u(z)

> h(z, y) + u(z).

Exchanging the roles of x and z we get that the reverse inequality
also holds.

4.2.2 Selection of calibrated subactions

We remind that for a given β > 0, the equilibrium state µβ is also
a Gibbs measure obtained by the product of the eigenfunction Hβ

and the eigenprobability3 νβ . We also remind that any accumulation

point for the family
1

β
logHβ is a calibrated subaction.

Uniqueness of the maximizing measure gives a partial answer to
these questions:

3which is also the conformal measure.
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Theorem 4.11. Assume that there is a unique A-maximizing mea-
sure, then all the calibrated subactions are equal up to an additive
constant.

Proof. In that case A is uniquely ergodic and has thus a single irre-
ducible component. If x0 is any point of A, Theorems 4.10 and 4.9
show that any calibrated subaction is entirely determined by its value
on x0.

We point out that even in that simple case, the convergence for
1

β
logHβ is not clear.

In that direction we mention one of the results in [93]. For sim-
plicity we state it using the setting of [15].

Theorem 4.12 (see [93]). Assume that Ω = {1, 2, 3}N and A satisfies

A(x) :=





−d(x, 1∞) if x = 1 . . . ,

−3d(x, 2∞) if x = 2 . . . ,

−α < 0 if x = 3 . . . .

Then, νβ → δ1∞ , as β → +∞, and, moreover,
1

β
logHβ converges.

This theorem shows that flatness is a criterion for selection: the
Aubry set in that case is reduced to {1∞}∪{2∞} and the two unique
ergodic maximizing measures are the Dirac measures δ1∞ and δ2∞ .
The potential is “more flat” in 1∞ than in 2∞. Therefore, this Theo-
rem says that the locus where the potential is flatter gets all the mass
in the limit of the eigenmeasure, when β → ∞. In that case this is
sufficient to determine all the calibrated subactions.

More generally if the Aubry set A is not a subshift of finite type,
the problem concerning selection is that

1. there is no satisfactory theory for the analysis of the measure
of maximal entropy for general subshifts.

2. we do not know about the existence or uniqueness of confor-
mal measures (one of the key points in Theorem 4.12 in the
procedure of selection of calibrated subactions).

We shall also see that the problem of selection of subaction is related
to the multiplicity of an eigenvector in the Max-Plus formalism.
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Chapter 5

The Involution Kernel

5.1 Introduction and main definitions

In this section we will present the involution kernel which is a con-
cept that is sometimes useful for understanding problems of different
areas: large deviations ([12]), issues of differentiability of the main
eigenfunction and piecewise differentiability of the subaction [111]
[110], optimal transport (see [49] [106],[99],[100]), etc... It is also
related to the Gromov distance on hyperbolic spaces (see [101]).

The main issue here is that is sometimes helpful for understanding
a problem to look for the dual problem.

We recall that the Bernoulli space is the set {1, 2, ..., d}N = Ω. A
general element x in the Bernoulli space Ω will be denoted in this
section by x = (x0, x1, .., xn, ..). The function σ denotes the shift
acting on Ω.

We will consider another copy of Ω which will be denoted by Ω̃.
Points in this set are denoted by w = (w0, w1, w2, .., wn, ..).

We denote {1, 2, ..., d}Z = Ω̂ = Ω̃×Ω = {1, 2, ..., d}N×{1, 2, ..., d}N.
Points in this set are denoted by

(w |x) = (w, x) = (...wn...w3, w2, w1, w0 |x0, x1, .., xn, ..).

For a fixed i ∈ {1, 2, .., d}, the function ψi : Ω → Ω indicates
the i-th inverse branch of σ, i ∈ {1, 2, .., d}. This means ψi(x) =

70
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(i, x0, x1, .., xn, ..). We can also use the notation

ψw(x) = (w0, x0, x1, .., xn, ..),

w ∈ Ω, in the case, w = (w0, w1, .., wn, ..). In other words ψw = ψw0
.

We also denote by σ̃ the shift on Ω̃. Finally, T
−1 is the backward

shift on Ω̂ given by

T
−1(w, x) = (σ̃(w), ψw0

(x)).

We will present some general results for a Hölder function A which
does not necessarily depends on two coordinates. Later, in this sec-
tion, we will assume that A depends on two coordinates.

It is known [12] [110] that given A : Ω → R Hölder, in the variable
A(x), there exists a dual function A∗ : Ω̃ → R, in the variable A∗(w),
and W : Ω̃ × Ω → R, such that

A∗(w) = A ◦ T
−1(w, x) +W ◦ T

−1(w, x) −W (w, x).

The functions A∗ : Ω̃ → R and W : Ω̃ × Ω → R are both Hölder.
We say that W is the involution kernel and A∗ is the dual po-
tential for A.

The A∗and W are not uniquely defined.
The expression for A∗ can be also written as

A∗(w) = A(w0, x0, x1, ..)+

W (...w2, w1 |w0, x0, x1, ..) −W (.., w1, w0 |x0, x1, ..).

We say that A is symmetric if A = A∗.
Suppose A is fixed, and W and A∗ are also fixed. For a given real

parameter β we have

β A∗(w) = βA ◦ T
−1(w, x) + βW ◦ T

−1(w, x) − βW (w, x).

It follows that for any real β we have that βW is the involution
kernel and βA∗ is the dual potential for βA
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Given A, we denote

∆(x, x′, w) =
∑

n≥1

A ◦ τw,n(x) −A ◦ τw,n(x
′).

The involution kernel W can be explicitly computed in the fol-
lowing way: for any (w, x) we define W by W (w, x) = ∆A(x, x′, w),
where we choose a point x′ for good [12].

It is known the following relation: for any x, x′, w ∈ Ω, we have
that W (w, x) −W (w, x′) = ∆(x, x′, w).

We denote φβA = φβ : Ω → R the main eigenfunction of the
Ruelle operator for βA and λ(βA) = λ(β) the main eigenvalue. In
the same way we denote φβA∗ = φ∗β , where, φβA∗ : Ω̃ → R, the main
eigenfunction of the Ruelle operator for βA∗ and λ(βA)∗, which is
the corresponding main eigenvalue.

One can show (see [110]) that λ(βA) = λ(βA)∗.
νβ = νβA denotes the normalized eigenprobability for the Ruelle

operator for βA, and, ν∗β = νβA∗ denotes the normalized eigenproba-
bility for the Ruelle operator for βA∗.

Finally, the probabilities µβ = µβA = φβAνβA and µ∗
β = µβA∗ =

φ∗Aν
∗
A, are, respectively, the equilibrium states for βA and βA∗.

In the case A is symmetric we have νβ = ν∗β , µβ = µ∗
β , etc...

We denote the β normalizing constant by

c(β) = log

∫ ∫
eβW (w,x) dνβA∗(w) dνβA(x),

and

γ = lim
β→∞

1

β
c(β).

Therefore,

γ = lim
β→∞

1

β
c(β) = supw,x {W (w, x)−V (x)−V ∗(w)−I(x)−I∗(w)}.

The probability eβW (w,x) dνβA∗(w) dνβA(x) (after normalization)
is invariant for the shift σ̂ acting on {1, 2, .., d}Z.
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It is known (see [12]) that

φβA(x) =

∫
eβW (w,x)−c(β) dνβA∗(w), (5.1)

is the normalized eigenfunction for the Ruelle operator of βA.
Moreover,

φβA∗(w) =

∫
eβW (w,x)−c(β) dνβA(x), (5.2)

Note from above that we also get

φβA(x) =

∫
eβW (w,x)−c(β) (φβA∗(w))−1 dµβA∗(w), (5.3)

and this is a relation between φβA∗ and φβA.
The main point above is that, via an integral Kernel eW , one can

get information of the eigenfunction via the eigenmeasure of the dual
problem.

We denote respectively by V and V ∗ any calibrated subaction for
A and A∗.

If the maximizing probability for A is unique, the maximizing
probability for A∗ is also unique (see [110]). We can also get a large
deviation principle for µβA∗ .

We denote by I∗ the deviation function for A∗ (see [12]). We
presented on the previous section 3.1.3 some basic properties of the
deviation function I for A. The only difference now is that we con-
sider the same for A∗.

Suppose V is the limit of a subsequence 1
βn

log φβn
, where φβn

is an eigenfunction of the Ruelle operator for βnA. Suppose V ∗ is
obtained in an analogous way for A∗ (using a common subsequence).
Then, there exists γ such that

γ + V (x) = sup
w∈Ω

[W (w, x) − V ∗(w) − I∗(w) ]. (5.4)

This follows from Varadhan’s Integral Lemma (see [52]) and the
fact that I is the Large deviation function for the family µβ A (see
[100] [111] [48]).
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Then, V is the W (w, x)− I∗(w)−γ transform of V ∗ (see [136] for
definitons)

There is a dual expression

γ + V ∗(w) = sup
x∈Ω

[W (w, x) − V (x) − I(x) ]. (5.5)

Note that the above equation is not for a general pair of calibrated
subactions V and V ∗, it is an equation for selected subactions.

We point out that when A = A∗ any calibrated subaction V
obtained via the limit of eigenfunction of the Ruelle operator when
β to ∞ will satisfy the equation

γ + V (w) = sup
x∈Ω

[W (w, x) − V (x) − I(x) ] (5.6)

for some constant γ.

In the general case (A 6= A∗) we have that the limit calibrated
subaction V satisfies the equation

V (x) = max
y∈Ω

{
W (y, x) − max

z∈Ω̃
{W (y, z) − V (z)}

}
.

Note that there is no γ in the above equation.

Under the hypothesis of twist condition for A (to be defined bel-
low), and in the case the maximizing probability has support in a
periodic orbit, the above equation can help to obtain explicit expres-
sion for subactions (see [111] [49]).

We consider now on Ω = {1, ..., d}N the lexicographic order. This
order is obtained from the order 1 ≤ 2 ≤ 3 ≤ ... ≤ d.

Following [100] we define:

Definition 5.1. We say a continuous G : Ω̂ = Ω̃×Ω → R satisfies the
twist condition on Ω̂, if for any (a, b) ∈ Ω̂ = Ω̃×Ω and (a′, b′) ∈ Ω̃×Ω,
with a′ > a, b′ > b, we have

G(a, b) +G(a′, b′) < G(a, b′) +G(a′, b). (5.7)
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Definition 5.2. We say a continuous A : Ω → R satisfies the twist
condition, if some of its involution kernels W satisfies the twist con-
dition.

The twist condition plays in Ergodic Optimization, in some sense,
the same role as the "convexity hypothesis of the Lagrangian" which
is of fundamental importance in Aubry-Mather theory (see [115], [47],
[56] or [63]).

An alternative definition for the twist condition would be to claim
that for any a′ > a, b′ > b we have

G(a, b) +G(a′, b′) > G(a, b′) +G(a′, b). (5.8)

This will make no difference in the nature of the results we will
get.

Several examples of potentials satisfying the twist condition ap-
pear in [100].

Linear combination with positive coefficients of potentials A which
satisfy the twist condition also satisfies the twist condition.

Given x, we denote wx ∈ Ω̃ any point such that

γ + V (x) = [W (wx, x) − V ∗(wx) − I∗(wx) ].

The proof of the above appears in [111].

Proposition 5.3. If A is twist, then x → wx is monotonous non-
increasing, where wx was chosen to be optimal.

For a proof see [111].

The results above were used to show how to get subactions in
an explicit form for potentials A which satisfy some restrictions (see
[111] [100].
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5.2 Examples

We point out that, for some kind of questions, it is more easy to ma-
nipulate expressions with the involution kernel than with the Peierl’s
barrier.

For example, note that if A1 and A2 are two potentials and

A∗
1(w) = A1 ◦ T

−1(w, x) +W1 ◦ T
−1(w, x) −W1(w, x),

A∗
2(w) = A2 ◦ T

−1(w, x) +W2 ◦ T
−1(w, x) −W2(w, x),

then the involution kernel for (A1 + A2) is (W1 + W2) and its dual
potential is (A∗

1 +A∗
2).

We use the notation W (w, x) = W (...w2, w1, w0 |x0, x1, x2, ..) and

χ̂[zk,..z2,z1,z0 | x0,x1,...xn](w, x),

denotes the indicator function in Ω̂ of the cylinder set

[zk, ..z2, z1, z0 |x0, x1, ...xn].

All the above was for case of general potentials. Now, we analyze
briefly the case where the potential depends on two coordinates.

The real function on Ω̃ denoted by χ̃[a1,a0] is such that is 1, if
w = (...w2, w1, w0) = (...w2, a0, a1), and, zero otherwise.

Example.
Given A = χ[a0,a1], the indicator function of the cylinder [a0, a1],

defined on Ω, then, for any

(w, x) = (...w2, w1, w0 |x0, x1, x2, ...),

we have

χ̃[a1,a0](...w2, w1, w0) = A(w0, x0, ...)+
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χ̂[a0 | a1](...w2, w1 |w0, x0, x1, ...) − χ̂[a0 | a1](...w2, w1, w0 |x0, x1..).

Therefore the dual potential of A = χ[a0,a1] is A∗ = χ̃[a1,a0] and
its involution kernel is W = χ̂[a0 | a1].

We point out that in the case the potential depends on infinite
coordinates there is no simple expression for the dual potential (and
the involution kernel)

Any potential A which depends on two coordinates on the full
shift Ω = {1, ..., d}N can be written in the form

A =
∑

i,j∈{1,...,d}

αi,j χ[i,j]

and therefore, has involution kernel

W =
∑

i,j∈{1,...,d−}

αi,j χ̂[i,j],

and dual potential

A∗ =
∑

i,j∈{1,...,d}

αi,j χ[j,i].

In this way if we consider A as a matrix, the dual A∗ is the
transpose of A.

Example. If A : {1, 2}N → R, which depends on two coordinates,
satisfies: A(1, 1) = 2, A(2, 2) = 5, A(1, 2) = 7, and A(2, 1) = 6, then,
the involution kernel W is

W = 2 χ̂[1 | 1] + 5 χ̂[2 | 2] + 7 χ̂[1 | 2] + 6 χ̂[2,1].

This involution kernel W satisfies the twist condition.

The dual A∗ of A (via the involution kernel W ∗) increase the
scope of the concept of transpose for the case A depends on an infinite
number of coordinates.
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Example.
When Ω = {0, 1}N we we denote Mk the cylinder [1111...111︸ ︷︷ ︸

k

0],

k ∈ N, k ≥ 1.
A well known class of potentials (see [69] [108] [58] [16]) which are

not Hölder is the following: suppose γ is a real positive parameter,
then take A = Aγ such that

Aγ(x) = −γ log

(
k + 1

k

)
if x ∈Mk, k 6= 0

Aγ(x) = − log(ζ(γ)) if x ∈ [0]

Aγ(11...)) = 0,

where ζ(γ) = 1−γ + 2−γ + · · · .
We denote bellow by W (k, j) the value of the involution kernel in

the set of points (w|x) = (...w1w0 |x0x1x2...) such that w ∈ Mk and
x ∈Mj , k, j ∈ N.

The involution kernel W for these potentials satisfy

eW (k,j) =
(j + 1 + k)−γ

(j + 1)−γ(k + 1)−γ
ζ(γ),

k, j ∈ N. Note that

W (k, j) = W (j, k).

The dual potential A∗ satisfies A∗ = A. This involution kernel
satisfies the twist condition.

These class of potentials Aγ present the phenomena of phase tran-
sition on the one dimensional lattice Ω = {0, 1}N.

The above example came from discussions with A. Araujo.

Example. Suppose the maximizing probability is unique for A.
Suppose V is the limit of 1

β
log φβn

, where φβ is the eigenfunction
of the Ruelle operator for βA. Suppose V ∗ is the subaction for A∗.

If µ̂max is the natural extension of the maximizing probability
µ∞A, then for all (p∗, p) in the support of µ̂max we have the following
expression taken from Proposition 10 in [12]
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V (p) + V ∗(p∗) = W (p∗, p) − γ .

The above expression appears in a natural way in problems in
transport theory (see [136]). It is called the complementary slackness
condition. In this case the involution kernel is the natural dynami-
cally defined cost to be considered in the problem (see [100] [111] [49]
[107] [61]). The subactions V and V ∗ define the dual Kantorovich
pair associated to the problem.

We denote by I∗ the deviation function for the family of Gibbs
states µβA∗ , β → ∞, according to what was described in section 3.1.3.
Remember that I∗ is zero over the support of the limit measure µ∗

∞A.
If (p∗, p) in the support of µ̂max (then, p ∈ [0, 1] is in the support

of µ∞A and p∗ ∈ Ω is in the support of µ∗
∞A), then

V (p) = sup
w∈Ω

W (w, p) − V ∗(w) − I∗(w) − γ =

W (p∗, p) − V ∗(p∗) − I∗(p∗) − γ = W (p∗, p) − V ∗(p∗) − γ.

Remember that V ∗ is the W − I∗ − γ transform of V .
We point out that in problems on Ergodic Transport the following

question is important. It is known that if V is calibrated for A, then,
it is true that, for any z in the support of the maximizing probability
µ∞A, we have V (z) + A(z) −m(A) = V (T (z). Generically (on the
Holder class) on A, one can show that this equality it true just on
the support of the maximizing probability. An important issue is to
know if this last property is also true for the maximizing probability
of A∗ (see [49] for a generic result).
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Chapter 6

Max Plus algebra

In this chapter we will not consider dynamical systems and invariant
measures for a while in order to introduce the so called Max Plus
algebra. The results of this section will be used in the next one.

6.1 Motivation

The Max-plus algebra is essentially the algebra of the real numbers
with two binary operations, a⊕b = max(a, b) and a⊗b = a+b; there
are many distinct motivations to introduce this mathematical object,
some of them being, for example, from problems in operational re-
search. Let us imagine, for example, a factory where some worker i
needs to wait for some of his colleagues j and k to finish their tasks,
which takes the times, respectively, Tij and Tik, in order to do his job
(of the worker i) which takes the time ai. Hence, in the factory, the
total time of this work is given by ai + max {Tij , Tik}; this value can
be rewritten in the max-plus notation as ai⊗ (Tij ⊕Tik). This shows
that in a larger system involving a larger number of workers and dis-
tinct steps, the max-plus algebra is a convenient and elegant way to
formulate the problem of distribution of tasks in order. One can use
the techniques of this theory in order to make the whole process more
efficient.

80



“livreutf8V5_Final”
2013/6/4
page 81

i

i

i

i

i

i

i

i

[SEC. 6.2: NOTATION AND BASIC PROPERTIES 81

From a pure mathematical point of view we can also see this
algebra, for example, as the structure of the exponential growth of
real functions. Given a function h : R → R we define the exponential
growth of h as the limit (if, of course, the limit exists)

e(h) = lim
x→+∞

1

x
log h(x).

To fix ideas, consider the simple case

f(x) = eax and g(x) = ebx.

From the definition it is easy to see that e(f) = a and e(g) = b.
Now, what is the exponential growth of fg or f + g? For fg =
eaxebx = ea+b we have that the function fg grows with a rate of
a + b, say e(f) + e(g). Hence e(fg) = e(f) + e(g) = e(f) ⊗ e(g).
For f + g, we have that f + g = eax + ebx = emax {a,b}x(1 + o(1)).
Hence, e(f+g) = max {e(f), e(g)} = e(f)⊕e(g). For this reason, it is
not a surprise that this technique appears also in the setting of zero
temperature limits, where we are exactly talking about comparing
certain exponential growth rates.

General references on Max-Plus Algebra are [4], [5], [41], [42], [10],
[43], [55] and [44].

6.2 Notation and basic properties

In this text we use

R̄ = R ∪ −∞

with the convention that x+ (−∞) = ∞ for any x ∈ R̄.
We endow this set with two operations:

a⊕ b = max(a, b)

a⊗ b = a+ b.

With this notation, the convention above is rewritten as a ⊗ −∞ =
−∞ and we also have a⊕−∞ = a, showing that −∞ is the neutral
element for the binary operation ⊕.
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For the operation ⊗ we have that a⊗0 = a+0 = a for any a ∈ R̄,
showing that 0 is its neutral element.

The so called max-plus algebra is then the semi-ring over R̄ defined
by the operations ⊕ and ⊗.

Some of the main properties of this algebra are listed below:

Lemma 6.1. given a, b and c in R̄ ,we have

1- Associativity: a⊕(b⊕c) = (a⊕b)⊕c and a⊗(b⊗c) = (a⊗b)⊗c

2- Commutativity: a⊕ b = b⊕ a and a⊗ b = b⊗ a

3- Distributivity: a⊗ (b⊕ c) = (a⊗ b) ⊕ (a⊗ c)

4- Additive identity: a⊕ (−∞) = (−∞) ⊕ a = a

5- Multiplicative identity: a⊗ 0 = 0 ⊗ a = a

6- Multiplicative inverse: if a 6= −∞ then there exists a unique b
such that a⊗ b = 0

7- Absorbing element: a⊗−∞ = −∞⊗ a = −∞

8- Idempotency of addition: a⊕ a = a.

Proof. We will show just some of the above properties, leaving the
others to the reader.

Distributivity, for example, follows from

a⊗ (b⊕ c) = a+ max(b, c) = max(a+ b, a+ c) = (a⊗ b) ⊕ (a⊗ c).

For the multiplicative inverse, just notice that for any a we can
take b = −a and so

a⊗ b = a+ (−a) = 0.



“livreutf8V5_Final”
2013/6/4
page 83

i

i

i

i

i

i

i

i

[SEC. 6.3: LINEAR ALGEBRA 83

6.3 Linear algebra

6.3.1 Vectors

A d-dimensional vector v is an element of R̄
d, which is denoted by

v = (v1, v2, . . . , vd), or, as is usual, represented as a column vector

v =




v1
v2
...
vd


 .

Given two vectors u and v in R̄
d and λ ∈ R̄

d, we can define the
sum of two vectors as

u⊕ v := (u1 ⊕ v1, u2 ⊕ v2, . . . , ud ⊕ vd),

and, the product by an scalar as

λ⊗ u := (λ⊗ u1, λ⊗ u2, . . . , λ⊗ ud).

6.3.2 Matrices

An m× n matrix A is defined as in the usual case. Given two m× n
matrices A and B, we define A⊕B as the matrix whose entries are

(A⊕B)ij := Aij ⊕Bij = max {Aij , Bij}.

Given λ ∈ R̄, we also define the matrix λ⊗A as

(λ⊗A)ij = λ⊗Aij = λ+Aij .

>From the basic properties of the operations ⊕ and ⊗, it is not
hard to see that the matrix operations above satisfies the following
properties:

Lemma 6.2. Given m × n matrices A,B and C, and some λ ∈ R̄

we have:
There exists a matrix [−∞] such that

A⊕ [−∞] = A,
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A⊕B = B ⊕A,

A⊕ (B ⊕ C) = (A⊕B) ⊕ C,

λ⊗A = A⊗ λ,

λ⊗ (A⊕B) = (λ⊗A) ⊕ (λ⊗B).

Given an m × n matrix A and an n × l matrix B we can define
the matrix product AB as

(AB)ij =
⊕

k

(Aik ⊗Bkj) = max
k

(Aik +Bkj) .

Lemma 6.3. Moreover,

(AB)C = A(BC),

λ⊗AB = A(λ⊗B) = AB ⊗ λ.

If m = n we say that the matrix A is a square matrix of order n.
Consider the matrix

In =




0 −∞ −∞ . . . −∞
−∞ 0 −∞ . . . −∞

...
...

...
...

...
−∞ . . . . . . −∞ 0


 .

Then, we can show that

AIn = InA = A,

for any order n matrix A.

6.3.3 Eigenvectors and eigenvalues

Now consider a n× n matrix A whose entries are elements of R̄ and
a column vector v.

We define the product Av such that

(Ax)i =
⊕

j

(Aij ⊗ vj) = max
j

(Aij + vj).
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For a given λ ∈ R̄ we also define

λv = (λ⊗ v1, . . . , λ⊗ vn) = (λ+ v1, . . . , λ+ vn).

In this setting it is a very natural question to look for max plus
eigenvectors and eigenvalues for A, in the sense that, Av = λv; this
notation can be translated in terms of our usual operations as

max
j

(Aij + vj) = λ+ vi for any i = 1, . . . , n.

Example.

[
1 0
0 1

] [
0
−1

]
=

[
max (1,−1)
max (0, 0)

]
=

[
1
0

]
= 1

[
0
−1

]
.

We also have
[

1 0
0 1

] [
−1
0

]
=

[
max (0, 0)

max (−1, 1)

]
=

[
0
1

]
= 1

[
−1
0

]
.

In this case we see that 1 is an eigenvalue associated with two
distinct eigenvectors.

Example. Consider [
−∞ a
b ∞

]
,

which has eigenvalue λ = (a+ b)/2 and eigenvector

[
x

x+ (b− a)/2

]
= x⊗

[
0

(b− a)/2

]

(where any choice of x is allowed).

The most important result, with respect to our purposes, is that
matrices with real entries have a unique eigenvalue.

Theorem 6.4. Let A be a d × d matrix with all entries aij ∈ R;
then, there exists a real number λ and a vector v, such that, Av = λv;
moreover, the eigenvalue λ is unique.
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Proof. First of all, notice that if Mu = µu, then λMv = λ ⊗ µv =
(λ+ µ)v. Note that

λM =




λ+m11 λ+m12 · · · λ+m1d

λ+m21 λ+m22 · · · λ+m2d

...
...

...
...

λ+md1 · · · · · · λ+mdd




Hence, there is no loss of generality if we assume that the entries of
A are all non-negative. So, we get

0 ≤ aij ≤ L.

Now, let us define the map T : R
n → R

n as

(Tx)i = max
j

(Aij + xj) − min
k

max
j

(Akj + xj).

It is easy to see that the expression depends continuously on the
vector x. It is also clear from the definition that (Tx)i ≥ 0. On the
other hand, we have

(Tx)i ≤ max
j

(L+ xj) − min
k

max
j

(0 + xj) =

max
j

(L+ xj) − max
j

(xj) = L.

In particular, this shows that the region {xj : 0 ≤ xj ≤ L} is mapped
inside itself by T ; since T is continuous, this implies (by means of
Brouwer fixed point theorem) that T has at least one fixed point v.
Hence,

v = T (v) ⇒ vi = (Tv)i = max
j

(Aij + vj) − min
k

max
j

(Akj + vj).

Denoting
λ = min

k
max
j

(Akj + vj),

then, the expression above implies

v = Av − λ⇒ λ+ v = Av ⇒ λv = Av,
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in the max-plus sense, as claimed.
For the uniqueness, let us assume, by contradiction, that we have

two distinct eigenvalues λ and µ. In other words, there exists vectors
v and u, such that,

Av = λv and Au = µu.

Without loss of generality we can assume λ < µ. It is possible to
take a large t, such that, tv ≥ u (in the sense that tvi ≥ ui, for each
i ∈ {1, . . . , d}). Then,

tv ⊕ u = tv.

Hence,
An(tv ⊕ u) = An(tv) ⊕An(u) = An(tv) ⇒

tAn(v) ⊕An(u) = tAn(v) ⇒ tλnv ⊕ µn = tλnv,

which is equivalent to say that for any n, we have tλnv ≥ µnu, and
this is a contradiction, since λ < µ. Then, we get λ = µ and the
max-plus eigenvalue is unique.

If we drop the hypothesis of real entries the situation is quite
different. Consider, for example,

A =




1 1 −∞ −∞
1 1 −∞ −∞

−∞ −∞ 2 2
−∞ −∞ 2 2


 .

Then, it is not very hard to see that

A




−∞
−∞
1
1


 =




−∞
−∞
3
3


 = 2 ⊗




−∞
−∞
1
1


 ,

and, that

A




1
1

−∞
−∞


 =




2
2

−∞
−∞


 = 1 ⊗




1
1

−∞
−∞


 .

Hence, 1 and 2 are max-plus eigenvalues ofA showing that the unique-
ness of the eigenvalue does not hold for matrices with −∞ entries.
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6.4 Final remarks

There exists some variations of the max-plus algebra, one of then
being the min-plus algebra, where the binary operation ⊕ is replaced
by a ⊕ b = min(a, b); this algebra is also known as tropical algebra.
In this context its interesting, for example, to study the behavior of
polynomials like

p(x) = a0 ⊕ (a1 ⊗ x) ⊕ (a2 ⊗ x⊗ x) = min {a0, a1 + x, a2 + 2x}.

Its graph, for instance, is a union of the segments (some of them
of infinite length) and the reader is invited to sketch this picture.
The geometrical investigation of those objects is known as tropical
geometry.
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Chapter 7

An explicit example with

all the computations

We consider the following particular case: Ω := {1, 2, 3}N and A is a
non-positive potential depending only on two coordinates. For each
pair (i, j) we set A(i, j) = −εij . We assume that

ε11 = ε22 = 0,

and for every other pair εij > 0.
Note that there are only two ergodic A-maximizing measures,

namely, δ1∞ and δ2∞ , which are the Dirac measures at 1∞ := 111 . . .
and at 2∞ := 222 . . .. The Aubry set is exactly the union of these
two fixed points and each one is an irreducible component.

We remind that for each β, the unique equilibrium state is given
by

µβ = Hβνβ ,

where Hβ and νβ are the eigenvectors for the transfer operator. Its

spectrum is eP(β).

We have seen in Subsection 2.2.2 that P ′(β) =

∫
Adµβ . This

quantity is negative because A is non-positive and negative on a set
of positive measure (for µβ and for any β). We have seen (see the

89
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comments after Remark 3.14) that the asymptote of the pressure is
of the form

hmax + β.m(A),

where hmax is the residual entropy and is the entropy of the Aubry
set. In our case, we have hmax = 0 andm(A) = 0. Then, lim

β→+∞
P(β) =

0. The first role of the max-plus algebra seems to determine how the
pressure goes to 0 as β goes to +∞.

Proposition 7.1. There exists a positive sub exponential function g
and a positive real number ρ such that P(β) = g(β)e−ρ.β.

Proof. First we consider any accumulation point −ρ for
1

β
logP(β).

We shall prove that this −ρ is actually unique, namely, it does not
depend on the chosen subsequence.

Considering the subsequence which realizes the expression for −ρ,

we can always extract another subsequence such that
1

β
logHβ con-

verges. We denote by V this limit, and we have seen above that V is
indeed a calibrated subaction.

For simplicity we shall write β → +∞ even if we consider a re-
stricted subsequence.

Moreover, Hβ and V only depend on one coordinate, and we shall
write Hβ(i) or V (i) for Hβ(x) and V (x) with x = i . . ..

The eigenfunction Hβ is an eigenvector for Lβ and this yields

eP(β)Hβ(1) = eβ.A(1,1)Hβ(1) + eβ.A(2,1)Hβ(2) + eβ.A(3,1)Hβ(3)

eP(β)Hβ(2) = eβ.A(1,2)Hβ(1) + eβ.A(2,2)Hβ(2) + eβ.A(3,2)Hβ(3).

Replacing with the values for A we get the two following equations:

(eP(β) − 1)Hβ(1) = e−βε21Hβ(2) + e−βε31Hβ(3), (7.1a)

(eP(β) − 1)Hβ(2) = e−βε12Hβ(1) + e−βε32Hβ(3). (7.1b)

Now,
P(β)

β
→β→+∞ 0, which yields lim

β→+∞

eP(β) − 1

P(β)
= 1 and,

finally, lim
β→+∞

1

β
log(eP(β) − 1) = −ρ.
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Taking
1

β
log and doing β → +∞ in (7.1a) and (7.1b) we get

−ρ+ V (1) = max(−ε21V (2),−ε31V (3)), (7.2a)

−ρ+ V (2) = max(−ε12V (1),−ε32V (3)), (7.2b)

which can be written under the form

−ρ⊗

(
V (1)
V (2)

)
=

(
−∞ −ε21 −ε31
−ε12 −∞ −ε32

)
⊗




V (1)
V (2)
V (3)


 . (7.3)

Now, we use Theorem 4.9 to get an expression of V (3) in terms
of V (1) and V (2). Indeed, we have

V (3) = max(V (1) + h(1∞, 3), V (2) + h(2∞, 3)),

where h is the Peierl’s barrier and 3 means any point starting with
3. Copying the work done to get Equality (4.5), we claim that

h(1∞, 3) = −ε13 and h(2∞, 3) = −ε23.

This yields,



V (1)
V (2)
V (3)


 =




0 −∞
−∞ 0
−ε13 −ε23


⊗

(
V (1)
V (2)

)
. (7.4)

Merging (7.3) and (7.4) we finally get

−ρ⊗

(
V (1)
V (2)

)
=

(
−ε13 − ε31 −ε21 ⊕ (−ε31 − ε23)

−ε12 ⊕ (−ε32 − ε13) −ε23 − ε32

)
⊗

(
V (1)
V (2)

)
.

(7.5)

This last equation shows that −ρ is an eigenvalue for the above
matrix. We have seen (see Theorem 6.4) that such matrix admits
an unique eigenvalue (but not necessarily an unique eigenvector).

This shows that
1

β
logP(β) admits a unique accumulation point as

β → +∞, thus converges.
Setting g(β) := P(β).eρβ we get the proof of the proposition.
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Remark 7.2. We point out that the max-plus algebra allows to
determine the value for −ρ, but the function g(β) remains unknown.
For the convergence or, not, of µβ ,β → ∞, it is necessary a better
understanding of the behavior of g(β).

�

Following the reasoning we did before, we get

−ρ = max





A(1, 3) +A(3, 1) = −ε13 − ε31,

A(3, 2) +A(2, 3) = −ε32 − ε23,

A(2, 1) +A(1, 2)

2
= −

ε12 + ε21
2

,

A(2, 1) +A(1, 3) +A(3, 2)

2
= −

ε21 + ε13 + ε32
2

,

A(1, 2) +A(2, 3) +A(3, 1)

2
= −

ε12 + ε23 + ε31
2

,

A(2, 3) +A(3, 1) +A(1, 3) +A(3, 2)

2
.

(7.6)
We emphasize that the last quantity is actually the mean value of

the two first ones, and then −ρ >
A(2,3)+A(3,1)+A(1,3)+A(3,2)

2 always
holds, as soon as, −ρ > A(1, 3) +A(3, 1) and −ρ > A(3, 2) + A(2, 3)
hold.

We can now finish the proof of the convergence of µβ . We recall
that any accumulation point must be of the form

α.δ1∞ + (1 − α)δ2∞ ,

with α ∈ [0, 1]. It is thus sufficient to show that
µβ([1])

µβ([2])
converges

as β → +∞ to prove the convergence of µβ . However, we emphasize
that this is very particular to our case (two ergodic A-maximizing
measures). This reasoning may not work for a more general case.
Nevertheless, one of the by-product results of our proof is that for
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the general case, it seems possible to determine the convergence we
get here, in a similar (but more complex) way. The complexity is
an issue which is due, essentially, to the large amount of possible
combinatorics.

First, we get some equations for the measure νβ . We remind that
this measure is β.A-conformal. This yields,

νβ([1]) = νβ

(
∞⊔

n=1

[1n2] ⊔ [1n3]

)

=

+∞∑

n=1

νβ([1
n2]) + νβ([1

n3])

=

+∞∑

n=1

eβ.Sn(A)(1n2)−nP(β)νβ([2]) +

+∞∑

n=1

eβ.Sn(A)(1n3)−nP(β)νβ([3])

=
e−βε12−P(β)

1 − e−P(β)
νβ([2]) +

e−βε13−P(β)

1 − e−P(β)
νβ([3]).

We remind that νβ([1]) + νβ([2]) + νβ([3]) = 1, then, we get a linear
equation between νβ([1]) and νβ([2]). Doing the same work with the

cylinder [2] =

+∞⊔

n=1

[2n1] ⊔ [2n3] we get the following system:

{
(eP(β) − 1 + e−β.ε13)νβ([1]) + (e−β.ε13 − e−β.ε12)νβ([2]) = e−β.ε13 ,

(e−β.ε23 − e−β.ε21)νβ([1]) + (eP(β) − 1 + e−β.ε23)νβ([2]) = e−β.ε23 .

(7.7)
The determinant of the system is

∆(β) := (eP(β) − 1)2 + (eP(β) − 1)(e−β.ε13 + e−β.ε23) +

e−β(ε12+ε23) + e−β.(ε21+ε13) − eβ.(ε12+ε21),

and, we get

νβ([1])

νβ([2])
=

(eP(β) − 1)e−β.ε13 + e−β.(ε12+ε23)

(eP(β) − 1)e−β.ε23 + e−β.(ε21+ε13)
. (7.8)

On the other hand, Equations (7.2a) and (7.2a) yield the following
formula:
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Hβ(1)

Hβ(2)
=

(eP(β) − 1)e−β.ε31 + e−β.(ε21+ε32)

(eP(β) − 1)e−β.ε32 + e−β.(ε12+ε31)
. (7.9)

Therefore, from Equations (7.8) and (7.9) we get

µβ([1])

µβ([2])
=

Hβ(1)

Hβ(2)

νβ([1])

νβ([2])

=
(eP(β) − 1)e−β.ε13 + e−β.(ε12+ε23)

(eP(β) − 1)e−β.ε23 + e−β.(ε21+ε13)
(eP(β) − 1)e−β.ε31 + e−β.(ε21+ε32)

(eP(β) − 1)e−β.ε32 + e−β.(ε12+ε31)

=

(
(eP(β) − 1)eβ.(ε12+ε21−ε13) + eβ.(ε21−ε23)

)

(
(eP(β) − 1)eβ.(ε12+ε21−ε23) + eβ.(ε12−ε13)

) ×

(
(eP(β) − 1)eβ.(ε12+ε21−ε31) + eβ.(ε12−ε32)

)

(
(eP(β) − 1)eβ.(ε12+ε21−ε32) + eβ.(ε21−ε31)

) .

(7.10)

Convergence will follow from the next proposition.

Proposition 7.3. The function g admits a limit as β goes to +∞.

Proof. We remind that νβ is the eigenmeasure for the dual transfer
operator. This yields:

eP(β) =

∫
Lβ(1I) dνβ

=(1 + e−β.ε21 + e−β.ε31)νβ([1]) + (1 + e−β.ε12 + e−β.ε32)νβ([2])

+(e−β.ε13 + e−β.ε23 + e−β.ε33)νβ([3]).

(7.11)
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Let us set 



X := eP(β),

A := e−β.ε13 ,

A′ := e−β.ε23 ,

B := e−β.(ε12+ε23),

B′ := e−β.(ε21+ε13),

C := e−β.(ε12+ε21),

a := e−β.ε21 + e−β.ε31 ,

b := e−β.ε12 + e−β.ε32 ,

c := e−β.ε13 + e−β.ε23 + e−β.ε33 .

From the system (7.7), we get exact values for νβ([1]), νβ([2]) and
νβ([3]). Replacing these values in (7.11), this yields

X=
(1+a)(A(X−1)+B)+(1+b)(A′(X−1)+B′) + c((X−1)2 −C)

(X − 1)2 + (A+A′)(X − 1) +B +B′ − C
.

(7.12)
This can also be written

X−1=
a(A(X−1)+B)+b(A′(X−1)+B′)+(c− 1)((X−1)2 − C)

(X − 1)2 + (A+A′)(X − 1) +B +B′ − C
,

and this yields

(X − 1)3 + (A+A′ + 1 − c)(X − 1)2

+(B +B′ − C − a.A− b.A′)(X − 1) + C(c− 1) − a.B − b.B′ = 0.

(7.13)

Remember that all the terms A,A′, B, . . . go exponentially fast to 0
as β → +∞, X − 1 behaves like g(β)e−ρ.β , and, moreover g is sub-
exponential. We can thus use Taylor development to replace X − 1
by g(β)e−ρ.β , and, keep in each summand of (7.13) the largest term;
larger here means that we are comparing it to other terms, if there
is a sum, but also to terms of the other summands.

It is for instance clear that (A+A′ + 1− c)(X − 1)2 has as dom-
inating term g2(β)e−2ρ.β , whereas (X − 1)3 has as dominating term
g3(β)e−3ρ.β , which is exponentially smaller than g2(β)e−2ρ.β .
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In the same direction, note that the term B is killed by part of
b.A′ and similarly B′ is killed by part of a.A. The term in X − 1 is
actually equal to

e−β.(ε12+ε23) + e−β.(ε21+ε13) − e−β(ε12+ε21)

−e−β.(ε21+ε13) − e−β(ε13+ε31) − e−β.(ε12+ε23) − e−β(ε23+ε32)

= −e−β(ε12+ε21) − e−β(ε13+ε31) − e−β(ε23+ε32).

Note that this term will be multiplied by g(β)e−ρ.β and compared

to g2(β)e−2ρ.β . The fact that ρ 6
ε12 + ε21

2
shows that the term

−e−β(ε12+ε21) can also be forgotten because it will furnish a quantity
exponentially smaller than g2(β)e−2ρ.β .

The term without (X − 1) is (with change of sign)

e−β.(ε12+ε21) ⊕ e−β(ε12+ε23+ε21) ⊕ e−β(ε12+ε23+ε31)

⊕e−β(ε21+ε12+ε13) ⊕ e−β(ε21+ε13+ε32)

= e−β.(ε12+ε21) ⊕ e−β(ε12+ε23+ε31) ⊕ e−β(ε21+ε12+ε13)

from the max-plus formalism. Comparing all these terms with the
term in g2(β)e−2ρ.β , we actually recover 7.6: comparing the terms
in 2ρ and the terms in ρ, leads to compare −ρ with −(ε13 + ε31) ⊕
(−ε23−ε32), and comparing the term with 2ρ, with the terms without
ρ, leads to compare −2ρ with −(ε12+ε21)⊕(−ε12−ε23−ε31)⊕(−ε21−
ε31 − ε32).

Now, considering the dominating term at exponential scale in
(7.13) yields an equality of the form

ãg2(β) − b̃g(β) − c̃ = term exponentially small, (7.14)

where ã is either 0 or 1, b̃ ∈ {0, 1, 2, 3} and c̃ ∈ {0, 1, 2, 3} and not

all the coefficients ã, b̃ and c̃ are zero1. As g is positive and all
the coefficient are not zero, we get that necessarily ã = 1. Now,
considering any accumulation point G for g(β), as β goes to +∞, we
get

G2 − b̃G− c̃ = 0. (7.15)

1because we exactly consider the dominating exponential scale.
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Such equation admits all its roots in R, and, at least one of them is
non-negative. But, the key point here is that the roots form a finite
set, and this set contains the set of accumulation points for g(β) as
β → +∞. On the other hand, g is a continuous function, thus the
set of accumulation points for g is an interval. This shows that it is
reduced to a single point, and then g(β) converges as β → +∞.

We remind that P(β) goes to 0 as β goes to +∞, and then eP(β)−1
behaves like g(β)e−β.ρ. We replace this in Equation (7.10). The final
expression is thus:

µβ([1])

µβ([2])
=

(
g(β)eβ.(ε12+ε21−ε13−ρ) + eβ.(ε21−ε23)

)

(
g(β)eβ.(ε12+ε21−ε23−ρ) + eβ.(ε12−ε13)

)

×

(
g(β)eβ.(ε12+ε21−ε31−ρ) + eβ.(ε12−ε32)

)

(
g(β)eβ.(ε12+ε21−ε32−ρ) + eβ.(ε21−ε31)

) .

(7.16)

We know by Proposition 7.3 that g(β) converges to a nonnegative
limit, then Equality (7.16) has a limit if β → +∞ (in [0,+∞]). If
the limit is 0, this means that µβ goes to δ2∞ , if the limit is +∞ this
means that µβ goes to δ1∞ , if it is equal to α ∈]0,+∞[, then µβ goes

to
α

α+ 1
δ1 +

1

α+ 1
δ2∞ .
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