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Chapter 1

Introduction

“Wovon man nicht sprechen kann, darüber muss man schweigen”
Ludwig Wittgenstein

The (surface or internal) water wave equations are too complicated to
hope to describe the long time dynamics of the solutions except in trivial
situations (perturbations of the flat surface). A natural idea is to “zoom” at
some specific regimes of wavelengths, amplitudes, steepness,..., in order to
derive asymptotic models that will describe interesting dynamics. One has
first to define one or several “small” parameters and then to expand ad hoc
quantities with respect to them. A similar situation occurs in other physical
contexts, nonlinear optics, plasma physics,...

Actually this idea goes back to Lagrange (1781) who derived the water
waves system for potential flows and obtained at the first order approxima-
tion the linear wave equation:

∂ 2u
∂ t2 −gh

∂ 2u
∂x2 = 0,

where g is the constant of gravity and h the mean depth of the fluid layer.

5
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6 [CAP. 1: INTRODUCTION

It is only nearly one century after that Boussinesq derived in 1871 a
weakly nonlinear dispersive model, the Korteweg-de Vries equation.

This explains why most of nonlinear dispersive equations or systems
(see a definition below) such as the Korteweg -de Vries (KdV), Kadomtsev-
Petviashvili (KP), Benjamin-Ono (BO), Boussinesq, nonlinear Schrödinger
NLS), Davey-Stewartson (DS),... are not derived from first principles but
through some asymptotic expansion from more complicated systems (water
waves system, nonlinear Maxwell equations, plasmas equations...). Conse-
quently, they are not supposed to be “good” models for all time. This
fact leads to mathematical questions that are not in general addressed when
considering them as just mathematical objects. For instance the classical
dichotomy local well-posedness versus finite time blow-up should often be
replaced by questions on long time existence (with respect to some parame-
ters). To answer those questions using the methods of dispersive equations
(even the more sophisticated ones) seem to be insufficient...

The situation for classical one-way propagation waves (KdV, KP, BO..)
where local well-posedness in sufficiently large classes combined with the
conservation of “charge” and energy implies global well-posedness does
not generalize to the more (physically) relevant two-ways models which
are systems and do not possess (in general) useful conserved quantities.

Moreover in many relevant water waves models, the dispersion is “weak”
and cannot be efficiently used to derive the (linear) dispersive estimates
that are a basic tool to study the Cauchy problem for “strongly” dispersive
equations such as the KdV, NLS, KP, BO equations we were alluding to.

The aim of these Notes is an attempt to describe some aspects of clas-
sical and non classical dispersive equations and systems from the point of
view of asymptotic models, that is by trying to keep in mind the origin of the
equations. We will thus barely touch topics that have an interest per se for
the equations as mathematical objects but relatively little for our viewpoint,
for instance the issues of obtaining the solvability of the Cauchy problem
in the largest possible space. We refer to the books [162, 230, 44, 50] for
an extensive treatment of those issues.

We will consider mainly dispersive waves. For linear equations or sys-
tems posed in the whole space Rn, this means that the solutions of the
Cauchy problem corresponding to localized initial data disperse (in the sup
norm) in large times. For constant coefficients equations this is easily ex-
pressed in terms of plane wave solutions ei(x·ξ−ωt), ξ ∈ Rn. This gives the
dispersion relation, that writes G(ω ,ξ ) = 0 and leads to one or several



“master_livre_New”
2013/6/13
page 7

i

i

i

i

i

i

i

i

7

equations of the form ω = ω(ξ ). The equation is said dispersive if ω(ξ )

is real and det
∣∣∣∣ ∂ 2ω

∂ξi
∂ξ j

∣∣∣∣ 6≡ 0. This means that the group velocity depends on

the wave numbers, that is different Fourier modes travel at different speeds
and thus wave packets tend to disperse.

To give a precise sense to this notion, consider for instance a linear
equation

{
i ∂u

∂ t +P(D)u = 0, u = u(x, t), x ∈ Rn, t ∈ R+

u(·,0) = u0,
(1.1)

where P(D) is defined in Fourier variables by

P̂(D)u(ξ ) = p(ξ )û(ξ ),

p being a real valued, homogeneous of degree d function, that is

p(λξ ) = λ d p(ξ ), λ > 0, ξ ∈ Rn.

We moreover assume that the function

G(x) =

∫

Rn
eix·ξ+ip(ξ )dξ

is bounded. 1

The solution of (1.1) is given (using Fourier transform) as a convolution

u(·, t) = Gt ?x u0, where Gt(x) =
∫

Rn
eit p(ξ )+ix·ξ dξ .

Using the homogeneity of p one has

Gt(x) = t−n/dG(x),

which with the boundedness of G and a classical convolution estimate
yields

sup
x∈Rn
|u(x, t)| ≤ C

tn/d ||u0||L1 , t 6= 0. (1.2)

1We will see later how the Van der Corput lemma can be used to prove the boundedness of
such oscillatory integrals.
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8 [CAP. 1: INTRODUCTION

This expresses that a sufficiently localized initial data leads to a solution
that disperse as t→ ∞ as 1

tn/d .

A typical example is when P(D) = ∆ (the linear Schrödinger equation)
for which

G(x) = C1ei|x|2/4

leading to a decay in t−n/2 of solutions emanating from a localized initial
data.

Actually estimates like (1.2) are fundamental to derive the “Lp− Lq”
Strichartz estimates that are used to solve the Cauchy problems for many
semilinear dispersive equations such as the semilinear Schrödinger equa-
tions.

The importance of water waves equations and more generally dispersive
equations should not be underestimated. As V. E. Zakharov expresses in the
Introduction of [250] :

In spite of the fact that the mathematical aspect of wave propa-
gation is one of the classical subjects of Mathematical Physics,
the theory of surface waves for many decades was an isolated
island, just weakly connected with the main continent, the the-
ory of sound and the theory of electromagnetic waves. One of
the reasons for this was a dispersion. In contrary to the light
and to the sound, the waves on the surface of an incompress-
ible fluid are strongly dispersive. Their phase velocity depends
essentially on a wave number. Another reason was a belief
that the theory of surface waves is not a normal subject of pure
mathematics. The basic equations describing waves on a sur-
face of an ideal fluid in their classical formulation are neither
ordinary nor partial differential equations. They look like an
orphan in a society of normal PDE equations, like the Maxwell
equations or linearized Navier-Stokes equations describing the
ordinary waves. Nevertheless, the theory of surface waves be-
came a cradle of the modern theory of waves in nonlinear dis-
persive media. It was Stokes who formulated the concept of a
progressive stationary wave and calculated the nonlinear cor-
rection to dispersion relation. Another fundamental concept
of modern nonlinear physics, the soliton, was also born in the
theory of surface waves. The isolation of the theory of surface
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9

waves was broken in the fifties and sixties of this century. The
fast development of plasma and solid state physics showed that
a strong dispersion is a common thing for waves in real media,
and non-dispersive sound and light waves are just very special
exclusions in the world of waves, which mostly are strongly
dispersive. In the last three decades the surface waves became
a subject of intense study.

The Notes are roughly divided into three parts as follows. The two first
Chapters are introductory. We give generalities on the Cauchy problem for
infinite dimensional equations, emphasizing the notion of well/ill-posedness.
We also present standard facts on the compactness method which might
have been forgotten by the younger generation! As an application we treat
in some details and as a paradigm the case of the Burgers equation since
the method adapts at once to its skew-adjoint perturbations.

Finally we recall various classical tools: interpolation, oscillatory inte-
grals,.. which will be of frequent use in the subsequent chapters.

Part two consisting of three Chapters is devoted to the presentation of
the equations of both surface and internal waves, together with the deriva-
tion of their asymptotic models. The aim is to show how various, classical
and less classical, many often dispersive, equations and systems can be rig-
orously derived as asymptotic models.

In Part three consisting of eight Chapters, we treat various mathemat-
ical problems related to some of the asymptotic models. Our choice is
somewhat arbitrary, but we have tried to cover topics that have not be con-
sidered in books, and to maintain as possible some links with the origin of
the models.

One advantage of the theory of PDE’s with respect to other domains of
Mathematics is that it benefits of a continuous flux of new problems arising
for the real world. We hope that these Notes will show the richness of the
mathematical problems stemming from the modeling of water waves and
that they will inspire further work.

Part of the material of this book has its origin in joint works with var-
ious colleagues and friends. I thus express my heartful thanks to Anne
de Bouard, Matania Ben-Artzi, Jerry Bona, Min Chen, Vassilis Dougalis,
Jean-Michel Ghidaglia, Philippe Guyenne, Christian Klein, Herbert Koch,
David Lannes, Felipe Linares, Dimitri Mitsotakis, Luc Molinet, Didier
Pilod, Gustavo Ponce, Roger Temam, Nikolay Tzvetkov, Li Xu for our
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10 [CAP. 1: INTRODUCTION

friendly and fruitful collaboration.
Special thanks are due to David Lannes who shared with me his vast

and deep knowledge of water waves theory and to Felipe Linares for useful
remarks and suggestions and for his help during the technical preparation
of the book.

Notations

The Fourier transform in Rn will be denoted F or ·̂.

The norm of Lebesgue spaces Lp(Rn),1≤ p≤∞, will be denoted | · |p.
We will mainly use the L2 based Sobolev spaces Hs(Rn) =
{ f ∈ L2(Rn);(1 + |ξ 2)s/2 f̂ ∈ L2(Rn)} with their standard norms
|(1+ | · |2)s/2 f̂ |2 denoted by || · ||s or || · ||Hs . The Schwartz space of rapidly
decaying C∞ functions is denoted S (Rn) and its dual (tempered distribu-
tions) S ′(Rn).
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Chapter 2

The Cauchy problem

2.1 Generalities

Solving the Cauchy problem locally in time is the first step of our under-
standing of nonlinear PDE’s. Note however that -though it might be very
difficult- one should not overestimate its importance to understand the dy-
namics of the underlying equations or systems. After all, this step is nothing
more than the equivalent of the Cauchy-Lipchitz theorem for ODE’s and it
tells nothing on the long time dynamics of the solution and actually there is
little hope for most physically relevant systems to describe this dynamics.
This is the reason why (starting actually from Lagrange [153] who derived
the water wave system and from it the linear wave equation in the linear,
infinite long wave regime)1 one is led to “zoom” at a specific domain of
amplitudes, frequencies,...in order to derive simpler asymptotic equations
or systems which approximate the solutions of the original system on rele-
vant time scales. We will precise this strategy in the subsequent chapters.

1Lagrange derived the linear wave equation for the horizontal velocity u of the wave

utt −ghuxx = 0 (2.1)

where h is a typical depth of the fluid and g the modulus of acceleration. This equation
gives the correct order of magnitude for the speed of propagation of a tsunami in the ocean...

11
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12 [CAP. 2: THE CAUCHY PROBLEM

Nevertheless the fact that one has to work in infinite dimensional spaces
leads to difficulties even in the definition of a well-posed problem. This
fact was first put forward by J. Hadamard in the beginning of the twentieth
century and we recall his classical example of an ill-posed problem.

We aim to solving the Cauchy problem in the upper half-plane for the
Laplace equation :

{
utt +uxx = 0, in D = {(x, t), x ∈ R, t > 0}
u(x,0) = 0, ut(x,0) = f (x). (2.2)

By Schwarz reflexion principle, the data f has to be analytic if u is
required to be continuous on D̄. We consider the sequence of initial data
φn, n ∈ N :

φn(x) = e−
√

n nsin(nx), φ0 (x)≡ 0 .

It is easily checked that for any k ≥ 0 , φn→ 0 in the Ck norm. In fact
for any ε > 0, there exist Nε,k ∈ N such that

sup
x

∑
j≤k
|φ ( j)

n (x)| ≤ ε if n≥ Nε,k .

Note that φn oscillates more and more as n→ +∞. On the other hand one
finds by separation of variables that for any n ∈ N, the Cauchy problem
(2.2) with f = φn has the unique solution

vn (x, t) = e−
√

n sin(nx) sinh(nt) ,

and of course v0 (x, t)≡ 0.
Things seem going well but for any t0 > 0 (even arbitrary small), and

any k ∈ N,

sup
x
|v(k)

n (x, t0)|= nk e−
√

n sinh(nt0)→+∞

as n→ +∞. In other words, the map T : ϕn→ vn (·, t0). is not continuous
in any Ck topology. This catastrophic instability to short waves is called
Hadamard instability. It is totally different from instability phenomenon
one encounters in ODE problems, eg the exponential growth in time of
solutions.

Consider for instance the PDE
{

ut + cux−u = 0
u(x,0) = einx, n ∈ N.

(2.3)
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[SEC. 2.1: GENERALITIES 13

The initial data is thus a plane wave of wave length 1
n . The solution is

un (x, t) = et ein(x−ct) . It is clear that for any reasonable norm, ‖un (·, t)‖
grows exponentially to infinity as t → +∞. However, if one restricts to
an interval [0,T ], the same reasonable norms are uniformly controlled in t
with respect to those of the initial data.

Remark 2.1. The fact that norms in an infinite dimensional space are not
equivalent implies of course that the asymptotic behavior of solutions to
PDE’s depends on the topology as shows the elementary but striking exam-
ple.

Let consider the Cauchy problem
{

ut + xux = 0
u(x,0) = u0,

(2.4)

where u0 ∈S (R).

The Lp norms of the space derivatives u(k)
x = ∂ k

x u of the solution u(x, t)=
u0(xe−t) are

|u(k)
x |p = et( 1

p−k)|u(k)
0 |p.

For instance, the L∞ norm of u is constant while the Lp norms, 1 ≤
p < ∞ grow exponentially. On the other hand all the homogeneous Sobolev
norms Ẇ k,p, k ≥ 1, p > 1 decay exponentaily to zero.

One can state a general concept of a well-posed problem for any PDE
problem (P). Let be given three topolological vector spaces (most often
Banach spaces!) U,V,F, with U ⊂ V . Let f be the vector of data (initial
conditions, boundary data, forcing terms,...) and u be the solution of (P).
One says that (P) is well-posed (in the considered functional framework)
if the three following conditions are fullfilled

1 - For any f ∈ F , there exists a solution u ∈U of P .

2 - This solution is unique in U .

3 - The mapping f ∈ F 7→ u ∈V is continuous from F to V .

To be more specific, consider for instance scalar 2 Cauchy problems of

2The same considerations apply of course to systems



“master_livre_New”
2013/6/13
page 14

i

i

i

i

i

i

i

i

14 [CAP. 2: THE CAUCHY PROBLEM

type {
∂tu = u′(t) = iLu(t)+F(u(t)),
u(0) = u0.

(2.5)

Here u = u(x, t), x ∈ Rn, t ∈ R. L is a skew-adjoint operator defined in
Fourier variables by

L̂ f (ξ ) = p(ξ ) f̂ (ξ ),

where the symbol p is a real function (not necessary a polynomial). F is a
nonlinear term depending on u and possibly on its space derivatives. The
linear part of (2.5) thus generates a unitary group S(t) in L2(Rn) (and in all
Sobolev spaces) which is unitary equivalent to û0 7→ eit p(ξ )û0.

Classical examples involve the nonlinear Schrödinger equation (NLS),
where here u is complex-valued

iut +∆u±|u|pu = 0,

the generalized Korteweg- de Vries equation

ut +upux +uxxx = 0,

or the Benjamin-Ono equation (BO)

ut +uux−H uxx = 0,

where H is the Hilbert transform, and many of the classical nonlinear
dispersive equations.

Definition 2.1. The Cauchy problem (2.5) is said to be (locally) well posed
-in short LWP- for data in Hs(Rn) if for any bounded set B in Hs(Rn)
there exist T > 0 and a Banach space XT continuously embedded into
C([−T,+T ];Hs(Rn)) such that for any u0 ∈ B there exists a unique solution
u of (2.5) in the class XT . Moreover, the flow map

u0 7→ u(t)

from B to Hs(Rn) is continuous.

Remark 2.2. 1. One might add the persistency property : if u0 ∈ Hs′(Rn)
with s′ > s then the corresponding solution belongs to the corresponding
class XT with the same T.
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[SEC. 2.1: GENERALITIES 15

2. In some critical cases, T does not depend only on B (that is only on
the Hs norm of u0), but on u0 itself in a more complicated way.

3. We will see below that for hyperbolic equations or systems (for in-
stance the Burgers equation) one cannot have a better definition (that is the
flow map cannot be smoother).

4. Of course very relevant equations or systems arising in the theory of
water waves cannot be written under the simple form (2.5). This is the case
for instance for the Green-Nagdhi or full dispersion systems (see Chapter
4) but the notion remains the same.

A natural way to prove LWP, inspired from the ODE case is to try to
implement a Picard iterative scheme on the integral Duhamel formulation
of (2.5), that is

u(t) = S(t)u0 +
∫ t

0
S(t− s)F(u(s))ds. (2.6)

where as already mentioned S(t) denotes the unitary group in L2(Rn) gen-
erated by L.

We are thus reduced to finding a functional space Xτ ⊂ C([−τ ,+τ ];
Hs(Rn)), τ > 0, such that for any bounded B⊂ Hs(Rn), there exists T > 0
such that for any u0 ∈ B, the right hand side of (2.6) is a contraction in a
suitable ball of XT .

It is only in very special situations that the choice Xτ = C([−τ ,+τ ];
Hs(Rn)) is possible, for instance when F is lipschitz if s = 0 , or in the case
of NLS when n = 1 and s > 1/2 (exercice!).

So, in this approach, the crux of the matter is the choice of an appropri-
ate space Xτ . This can be carried out by using various dispersive estimates
(see Chapter on the KdV equation) or by using a Bourgain type space (see
[96] and below for a short description).

This method has the big advantage (on a compactness one that we will
describe below for instance) of providing “for free” the uniqueness of the
solution, the strong continuity in time and the “smoothness” of the flow
(actually the only limitation of the smoothness of the flow is that of the
smoothness of the nonlinearity).

This leads us to the
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16 [CAP. 2: THE CAUCHY PROBLEM

Definition 2.2. The Cauchy problem (2.5) is said (locally) semilinearly
well-posed for data in Hs(Rn) if it is LWP in the previous sense and if
moreover the flow map is smooth (at least locally lipschitz).

The Cauchy problem is said quasilinearly well-posed if it is well-posed,
the flow map being only continuous.

Remark 2.3. The Cauchy problems which can be solved by a Picard itera-
tive scheme on the Duhamel formulation with a suitable functional setting
are thus semilinearly well-posed. As we noticed before, the Cauchy prob-
lems associated to quasilinear hyperbolic equations or systems (such as the
Burgers equation) are only quasilinearly well-posed.

For dispersive equations, the situation is a bit more involved. For in-
stance the KdV equation leads to a semilinear Cauchy problem, while the
BO equation leads to a quasilinear one (see [185] and the discussion in
Chapter VII ).

2.2 The compactness method
We recall here some classical results which were very popular in the seven-
ties but which might less known to the younger generation.

The rough idea is to construct approximate solutions, by regularizing
the equation, the data or the unknown (for instance by truncating high fre-
quencies) and then to get a priori bounds on those approximate solutions.
The fact that closed balls in infinite dimensional normed spaces are not
relatively compact gives obviously some trouble.

The starting technical point of the method is thus to look for conditions
insuring that a bounded sequence un in Lp(0,T ;B), 1≤ p≤ ∞, where B is
a Banach space, is relatively compact in Lp(0,T ;B).

This will allow to pass to the limit on a subsequence of approximate
solutions and to get hopefully a solution to the problem.

As a simple example we will treat in some details the case of the Cauchy
problem for the Burgers equation and some of its skew-adjoint perturba-
tions.

The Aubin-Lions theorem

We will prove here a basic compactness result well suited to treat PDE
problems.
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Before stating it we recall two standard compactness results in normed
spaces (see [211] chapter 7) :

1. A normed space is reflexive if and only if its unit ball is weakly
compact.

2. For a normed space E, the weak* topology on its dual E’ is that of
the simple convergence on E. The unit ball B’ of E’ is weakly* compact.

Theorem 2.3. Let B0 ⊂ B⊂ B1, with Bi reflexive, i = 0,1 be three Banach
spaces with B0 ⊂ B compact. Let

W = {v ∈ Lp0(0,T ;B0),v′

=
dv
dt
∈ Lp1(0,T ;B1), 0 < T < ∞,1 < pi < ∞, i = 0,1},

equipped with its natural Banach norm.
Then the embedding

W ⊂ Lp0(0,T ;B)

is compact.

Proof. Let (vn) be a bounded sequence in W . Since Bi is reflexive
and 1 < pi < ∞, i = 0,1, Lpi(0,T ;Bi) is reflexive. One can thus extract a
subsequence (vµ) such that vµ ⇀ v in W weakly. One can assume that v =
0, reducing thus to showing (possibly after extraction of a subsequence):

vn ⇀ 0 in W weak =⇒ vn −→ 0 in Lp0(0,T ;B) strong.

Let admit for the moment the

Lemma 2.4. Let three Banach spaces B0 ⊂ B⊂ B1, with B0 ⊂ B compact.
Then, for any η > 0, there exists Cη > 0 such that for all v ∈ B0,

||v||B ≤ η ||v||B0 +Cη ||v||B1 .

It results from the lemma that for any η > 0, there exists dη > 0 such
that

||vn||Lp0 (0,T ;B) ≤ η ||vn||Lp0 (0,T ;B0) +dη ||vn||Lp0 (0,T ;B1).
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18 [CAP. 2: THE CAUCHY PROBLEM

Let ε > 0 be fixed. Since ||vn||Lp0 (0,T ;B0) ≤C, one has

||vn||Lp0 (0,T ;B) ≤
ε
2

+dη ||vn||Lp0 (0,T ;B1),

provided we take η such that ηC ≤ ε
2 .

One is thus reduced to proving that

vn→ 0 in Lp0(0,T ;B1) strongly. (2.7)

By Sobolev embedding theorem in dimension 1, W ⊂ C0([0,T ],B1),
and thus ||vn(t)||B1 ≤C, ∀t ∈ [0,T ]. From Lebesgue theorem, (2.7) will be
established if one proves that

vn(s)→ 0 in B1 strong,∀s ∈ [0,T ] (2.8)

As s plays no special role, we are reduced to proving that

vn(0)→ 0, B1 strong.

Let then wn(t) = vn(λ t), λ > 0 to be determined. One has




vn(0) = wn(0),

||wn||Lp0 (0,T ;B0) ≤C1λ−
1

p0 ,

||w′n||Lp1 (0,T ;B1) ≤C2λ 1− 1
p1 .

(2.9)

Let φ ∈C1([0,T ]), φ(0) =−1, φ(T ) = 0. It results

wn(0) =

∫ T

0
(φwn)

′dt = βn + γn,

βn =
∫ T

0
φw′ndt, γn =

∫ T

0
φ ′wndt.

From (2.9) we deduces

||vn(0)||B1 ≤ ||βn||B1 + ||γn||B1 ≤C3λ 1− 1
p1 + ||γn||B1 .

If ε > 0 is fixed, we choose λ such that C3λ 1− 1
p1 ≤ ε

2 and (2.7) will be
established provided ones prove that γn→ 0 in B1 strongly.
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But wn ⇀ 0 in Lp0(0,T ;B0) weak (λ is fixed and one may assume that
it is ≤ 1). Thus γn ⇀ 0 in B0 weak. Since B0 ⊂ B1 is compact, one deduces
that γn→ 0 in B1 strong.

Proof of lemma. By contradiction. Assume thus that there exist η > 0,
vn ∈ B0, cn→+∞, such that

||vn||B ≥ η ||vn||B0 + cn||vn||B1 .

Let wn = vn
||vn||B0

. One has thus

||wn||B ≥ η + cn||wn||B1

and
||wn||B ≤C||wn||B0 ≤C.

One deduces
||wn||B1 → 0. (2.10)

But since ||wn||B0 = 1 and B0 ⊂ B is compact, one can extract a subse-
quence wµ converging strongly in B to w.

Since ||wµ−w||B1 ≤C||wµ−w||B, one has w = 0 from (2.10), which is
absurd since ||wµ ||B ≥ η . ¤

2.2.1 Application to PDE problems
The considerations above apply in general as follows. In order to solve (for
instance) a Cauchy problem posed in Rn, one constructs (by smoothing the
equation, or the unknown function,..) a sequence of approximated solutions
(um), bounded in a space L∞(0,T ;Hs(Rn)),s > 0.

We recall that the space L∞(0,T ;Hs(Rn)),s > 0 is the dual of L1(0,T ;
H−s(Rn)). By the weak ? compactness of the closed balls of the dual of
a normed space, it thus results that, modulo extraction of a subsequence,
um ⇀ u in L∞(0,T ;Hs(Rn)) weak?.

On the other hand, the equation provides a bound on (u′m) = ( d
dt um)

in L∞(0,T ;Hs−d(Rn)). Aubin-Lions theorem implies that for any bounded
subset B⊂Rn, and all p≥ 1, there exists a subsequence (still denoted (um))
such that for any integer k such that k < [s] the derivatives of order k,∂ k(um)
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converge to ∂ ku in Lp(0,T ;L2(B)) strongly and almost everywhere in B×
[0,T ]. By the Cantor diagonal process (write Rn =

⋃
N∈N? BN where BN =

B(0,N)), one may assume that ∂ k(um) converges to ∂ ku almost everywhere
in Rn × [0,T ]. This argument suffices in general to pass to the limit in
the nonlinear terms (the convergence in the linear terms does not pose any
problem thanks to the weak convergence). Since all convergences also hold
in the sense of distributions one obtains a solution u ∈ L∞(0,T ;Hs(Rn))
with du

dt ∈ L∞(0,T ;Hs−d(Rn)).
In order to prove that the trace u(.,0) makes sense in H s(Rn) one uses

a classical result of W. Strauss.
We first recall that if Y is a Banach space, Cw([0,T ];Y ) denotes the

subspace of L∞(0,T ;Y ) of functions which are continuous from [0,T ] in Y
equipped with the weak topology. One has ([222]):

Theorem 2.5. Let V and Y be two Banach spaces, V reflexive, the embed-
ding V ⊂ Y being continuous and dense. Then

L∞(0,T ;V )∩Cw([0,T ];Y ) = Cw([0,T ];V )

Proof. Let u be in the LHS space. It suffices to prove that there exists a
constant M such that :

u(t) ∈V and |u(t)|V ≤M, ∀t ∈ [0,T ]. (2.11)

In fact, if (2.11) is true, one can extract from any converging sequence
tn → t0 in [0,T ] a subsequence tm such that u(tm) converges weakly in V .
Since u is weakly continuous with values in V , the limit must be u(t0). Thus
u(tn) ⇀ u(t0) weakly in V .

To show (2.11), one considers a regularizing sequence ηε(t) in the usual
way : let η0(t) an even, positive function, C ∞ compactly supported and
with integral 1; one then defines for ε > 0, ηε(t) = ε−1η0(t/ε). Let us
consider 0 < t < T such that (ηε ∗u)(t) ∈V for ε small enough. Let M be
the norm of u in L∞(0,T ;V ). Then

|(ηε ∗u)(t)|V ≤
∫

ηε(s)|u(t− s)|V ds≤M.

There exists therefore a “subsequence” of ε such that (ηε ∗ u)(t) con-
verges weakly in V . On the other hand, for all v in the dual V ′ of V ,

((ηε ∗u)(t)−u(t),v)→ 0 when ε → 0,
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since (u(s),v) is a continuous function of s. It results that u(t) ∈V ,

(ηε ∗u)(t) ⇀ u(t)

weakly in V , and that |u(t)|V ≤M.
To prove (2.11) in the case t = 0, one applies a similar argument with

(ηε ∗ u)(t) replaced by (ηε ∗ u)(ε); for t = T , one considers
(ηε ∗u)(T − ε). ¤

Corollary 2.6. Let V and W be Banach spaces, V reflexive, both contained
in a vectorial space, such that V ∩W is dense in V and W. If u∈ L∞(0,T ;V )
and u′ = du

dt ∈ L1(0,T ;W ), there exists a weakly continuous function from
[0,T ] with values in V which is equal to u almost everywhere.

Proof. The space Y = V +W satisfies the conditions of Theorem 2.5.
The hypotheses on u imply in particular that u ∈ L1(0,T ;Y ) and u′ ∈
L1(0,T ;Y ). u is thus weakly continuous with values in Y , and Theorem
2.5 applies. ¤

In the present situation, one applies Strauss Theorem with V = H s(Rn)
and Y = Hs−d(Rn) (notice that by Sobolev in dimension 1 one already
knows that u ∈C([0,T ],Y )).

Remark 2.4. Contrary to a method based on an iterative scheme à la Picard,
the compactness method does not provide either the (possible) uniqueness
of the solution, neither the strong continuity in time, neither the continuity
of the flow. One has to establish those properties separately.

The uniqueness (when it holds!) is usually obtained by a direct argu-
ment based on Gronwall’s lemma.

In some situations (for instance for symmetric hyperbolic systems) on
can prove the strong continuity in time, (i.e that u ∈C([0,T ],V )) by using
the uniqueness in L∞(0,T ;V ) and the fact that the equation is reversible in
time (see for instance [236] Chapter 16).

One can also prove the strong time continuity and the continuity of the
flow map by an approximation process (the “Bona-Smith trick”, [36], see
below).
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2.2.2 J. Simon Theorem.

We mention here for the sake of completeness a more general compactness
result. In [215] J. Simon caracterizes the relatively compact subsets of
Lp(0,T ;B) where 1≤ p≤ ∞ and B is a Banach space.

The result is the following:

Theorem 2.7. Let F ⊂ Lp(0,T ;B). F is relatively compact in Lp0(0,T ;B)
for 1 < p < ∞, or in C(0,T ;B) if p = ∞ if and only if

{
∫ t2

t1
f (t)dt : f ∈ F} is relatively compact in B, ∀ 0 < t1 < t2 < T.

||τh f − f ||Lp(0,T−h;B)→ 0, when h→ 0, uni f ormly f or f ∈ F.

(we have denoted τh f (t) = f (t +h) for h > 0).
If one has a second Banach space X such that X ⊂ B is compact, Theo-

rem 2.7 implies:

Theorem 2.8. Let F ⊂ Lp(0,T,B) with 1≤ p≤ ∞. One assumes that F is
bounded in L1

loc(0,T ;X) and that

||τh f − f ||Lp(0,T−h,B)→ 0, when h→ 0, uni f ormly f or f ∈ F.

Then F is relatively compact in Lp(0,T,B) (and then C(0,T ;B) if p = ∞).

One can deduce useful sufficient conditions of compactness. For in-
stance

Proposition 2.9. Let B and X two Banach spaces such that X ⊂ B is com-
pact and let m be an integer.

Let F be a bounded subset of W−m,1
loc (0,T ;X) such that ∂F/∂ t = {∂ f /∂ t :

f ∈F} be bounded in L1(0,T ;B). Then F is relatively compact in Lp(0,T ;B),
1≤ p < ∞.

Let F bounded in W−m,1
loc (0,T ;X) with ∂F/∂ t bounded in Lr(0,T ;B),

where r > 1. Then F is relatively compact in C(0,T ;B).

The article [215] contains many variants of this result.
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2.3 The Burgers equation and related equations.
This example is elementary but typical of the compactness method; it adapts
easily to more general contexts such as the symmetrizable quasilinear hy-
perbolic systems. 3

We recall that |.|p will denote the norm in Lp, 1≤ p≤+∞.
We consider the Cauchy problem:

{
∂tu+u∂xu = 0,

u(x,0) = u0,
(2.12)

where u0 ∈ BR = {v ∈ Hs(R), ||v||Hs ≤ R} ,s > 3
2 .

We approximate the equation by “truncating the high frequencies”. Let
χ ∈C∞

0 (R) even, 0≤ χ ≤ 1, χ ≡ 1 on [−1,+1].
We introduce for j ∈N the operator χ j = χ( j−1D) (notation of Fourier

multipliers), χ̂ j( f )(ξ ) = χ( j−1ξ ) f̂ (ξ ).
It is clear that χ j : Hs(R)→ Hr(R) is continuous for all s,r ∈ R, and

that it is self-adjoint and commutes with all derivations (of integer order or
not).

We approximate (2.12) by
{

∂tU j + χ j(U jχ j(∂xU j)) = 0,

U j(x,0) = u0,
(2.13)

The properties of χ j imply easily that

U 7→ χ j(Uχ j(∂xU))

is locally Lipschitz on Hs(R), s > 3
2 . Cauchy-Lipschitz theorem in Banach

spaces implies the existence of a maximal solution U j ∈C([0,Tj];Hs(R)).
The following estimates show that Tj depends only on R and provide

bounds on U j.
One applies Ds = (I−∂ 2

x )
s
2 to (2.13) setting DsU j = V j :

∂tV j + χ j(U jχ j(∂xV j)) = χ j([U j,Ds]χ j(∂xU j)), (2.14)

3We will see in Chapter 10 an approach via characteristics which explicits the finite time
blow-up of the solution.
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and one takes the L2 scalar product of (2.14) with V j to obtain (we do not
indicate the t dependence):

1
2

d
dt
|V j|22 +

∫

R
χ j(U jχ j(∂xV j))V jdx =

∫

R
χ j([U j,Ds]χ j(∂xU j))V jdx.

(2.15)
Using that χ j is self-adjoint and commutes with ∂x, the integral in the

LHS of (2.15) writes

1
2

∫

R
U j∂x[χ j(V j)]2dx =−1

2

∫

R
∂x(U j)[χ j(V j)]2dx. (2.16)

We recall the Kato-Ponce commutator lemma [130] :

Lemma 2.10. Let s > 0 and 1 < p < +∞ and Ds = (I−∆)
s
2 . There exists

C > 0 such that
|Ds( f g)− f (Dsg)|p ≤C(|∇ f |∞|Ds−1g|p + |Ds f |p|g|∞).

One deduces from (2.15), (2.16) and from Lemma (2.10) (applied with
f = U j and g = χ j(∂xU j)) that

1
2

d
dt
|V j|22 ≤

1
2
|∂xχ j(U j)|∞

∫

R
(V j)2dx+

+C|V j|2{|∂xU j|∞|Ds−1χ j(∂xU j)|2 + |DsU j|2|χ j(∂xU j)|∞}
≤C|V j|2{|∂xU j|∞|V j|2 + |V j|2|χ j(∂xU j)|∞}
= C|V j|22{|∂xU j|∞ + |χ j(∂xU j)|∞}

We therefore deduce with Gronwall’ s lemma that, for all t ∈ [0,Tj) :

||U j(., t)||Hs ≤ ||U0||Hs exp(C||∂xU j||L1(0,Tj ; L∞(R))+ ||χ j(∂xU j)||L1(0,Tj ; L∞(R))).

Since s > 3
2 , Sobolev theorem implies that the argument in the expo-

nential is majorized by

CTj||U j||L∞(0,Tj ; Hs(R)).

On the other hand, y j(t) = ||V j(t)||22 is majorized by the solution of

y′(t) = Cy(t)
3
2 , y(0) = ||u0||2Hs
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on its maximal interval of existence. The solution of this Cauchy problem
being y(t) = 4y0

(2−FCty(0)
1
2 )2

,

we deduce that Tj = T does not depend on j, that T = O( 1
||u0||Hs

) and one
has the bound

||U j||L∞(0,T ; Hs(R)) ≤C(||u0||Hs(R)). (2.17)

This is the key estimate. Using the equation, one deduces that ∂tU j

is bounded (at least!) in L∞(0,T ; L2(R)) and thus converges to ∂tU in
L∞(0,T ; L2(R)) weak* and in L2(0,T ; L2(R)) weakly. As a consequence,
(modulo extraction of a subsequence still denoted U j), U j converges in
L∞(0,T ; Hs(R)) weak-star to U . Aubin-Lions theorem insures that, for any
interval Im = (−m,m), m ∈ N, a subsequence U( j,m) converges in
L2(0,T ; L2(Im)) strongly and almost everywhere. Cantor diagonal pro-
cedure then implies that another subsequence (still denoted U j) converges
to U almost everywhere in R× (0,T ).

It is then easy, using estimate (2.17) to show with Lebesgue domi-
nated convergence theorem that (U j)2 converges to U2 (at least !) in the
sense of distributions and thus that ∂x(U j)2 converges to ∂xU2. Passing to
the limit in the linear terms giving no trouble because of the weak con-
vergences, one deduces that U satisfies (2.12) in the sense of distribu-
tions and in fact in L∞(0,T ; Hs−1(R)). Strauss result above implies that
U ∈Cw([0,T ]; Hs(R)) and thus that the initial data is taken into account in
Hs(R). In fact we have a much more precise result as we will see below.

Uniqueness in the class L∞(0,T ; Hs(R)) is very easily obtained. Let u
and v be two solutions corresponding to the same initial data u0 ∈ Hs(R)
and let w = u− v. w satisfies the equation

wt +wux + vwx = 0.

Taking the L2 scalar product with w one obtains after an integration by
parts (justified thanks to the regularity of the solutions) :

1
2

d
dt
|w(., t)|22 +

∫

R
[w2(x, t)ux(x, t)− 1

2
vx(x, t)w2(x, t)]dx = 0,

so that
1
2

d
dt
|w(., t)|22 ≤C

∫

R
w2(x, t)dx

and one concludes with Gronwall’s lemma.
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Remark 2.5. One has a persistency result, immediate consequence of the
proof above : if u0 ∈Hr(R) with r > s, the corresponding solution belongs
to L∞(0,T ; Hr(R)), on the same interval [0,T ).

We will use freely this property in the following argument (“Bona-
Smith trick”) which proves the strong continuity in time and the continuity
of the flow map.

Let ρ ∈S (R), ρ̂ ∈C∞
0 (R), ρ̂(ξ )≡ 1 in a neighborhood of 0. For ε > 0

we denote ρε(x) = ε−1ρ( x
ε ).

We consider then the solution of (2.12) corresponding to an initial data
u0 ∈ BR. We denote uε the solution of (2.12) with initial data u0ε = ρ ? u0.

Since
||u0ε ||Hs ≤C||u0||Hs , ε ∈ (0,1],

uε satisfies the bounds
{
||uε

x ||L1(0,T ; L∞) ≤C,

||uε ||L∞(0,T ; Hs) ≤C,
(2.18)

on the existence interval of de u. Let us also notice that from the persistency
property, the equation and Sobolev embedding theorem in dimension one,
that uε belongs (in particular) to C([0,T ]; Hs(R)). We will prove that uε is
a Cauchy sequence in this space. For ε > ε ′ > 0 we set v = uε − uε ′ . One
easily checks that
||v(0)||2 = O(εs) and ||v(0)||Hs = o(1) as ε → 0.
On the other hand, v satisfies the equation

2vt +(uε
x +uε ′

x )v+(uε +uε ′)vx = 0. (2.19)

Taking the L2 scalar product of (2.19) with v and using the bounds
(2.18) on uε and uε ′ , one obtains the estimate

|v(., t)|22 ≤Cεs, (2.20)

for t in the interval of existence [0,T = T (R)) of u.
Proceeding as in the existence proof, we apply Ds to (2.19), then takes

the L2 scalar product with Dsv and uses Kato-Ponce lemma to end with :

d
dt
||v(., t)||2Hs ≤C{||uε(., t)||Hs + ||uε ′(., t)||Hs}||v(., t)||2Hs

+C{||uε(., t)||Hs+1 + ||uε ′(., t)||Hs+1}||v(., t)||Hs−1 ||v(., t)||Hs .
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One deduces from (2.18) that, for 0≤ t < T ,

||uε(., t)||Hs+1 ≤C||uε
0||Hs+1 ≤Cε−1. (2.21)

On the other hand, a classical interpolation inequality 4 and (2.20) imply
that

||v(., t)||Hs−1 ≤ ||v(., t)||
1
s
2 ||v(., t)||

1− 1
s

Hs ≤Cε ||v(., t)||1−
1
s

Hs (2.22)

Gathering those inequalities one deduces with Gronwall’s lemma that

||uε(., t)−uε ′(., t)||Hs = o(1) (2.23)

when ε → 0.
A similar argument leads to the continuity of the flow map u0 7→ u(., t)

on bounded subsets of Hs. It suffices to consider u0 as above and a sequence
u0n converging to u0 in Hs(R); we denote un the corresponding solutions.
One proves that

||uε(., t)−uε ′(., t)||Hs ≤C||u0n−u0||Hs +o(1) (2.24)

as ε → 0.
One easily deduces with (2.23) the continuity of the flow.

Remark 2.6. From Sobolev embedding theorem we deduce that u, ux and ut
are continuous on [0,T ]×R, and thus that u is C1 and satisfies the equation
in the classical sense.

Remark 2.7. It is straightforward to check that all the considerations above
apply mutatis mutandi, with minor modifications, to linear skew-adjoint
perturbations of the Burgers equation, for instance to the Korteweg- de
Vries

ut +uux +uxxx = 0

or Benjamin-Ono
ut +uux−H uxx = 0,

equations.
Recall that H is the Hilbert transform, H = . ? vp( 1

x ), Ĥ f (ξ ) =

−isign ξ f̂ (ξ ).

4If s = (1−θ)s1 +θs2, 0≤ θ ≤ 1, then || f ||Hs(Rn) ≤ || f ||
(1−θ)
Hs1 (Rn)

|| f ||θHs2 (Rn)
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In those two examples, the equation is of course no more satisfied in the
classical sense and the result is far from being optimal as for the minimal
regularity assumptions on the initial data.

One can actually obtain global results with the following observation
made in [215, 1] (this could also result from the Brezis-Galloüet inequality
[46] : assuming that one has local well-posedness in H s(Rn),s > n

2 and a
global a priori bound in H

n
2 (Rn), then one has global well-posedness in

Hs(Rn),s > n
2 .

Consider for example the Cauchy problem for the Benjamin-Ono equa-
tion :

ut +uux−H uxx = 0, u(·,0) = u0. (2.25)

We have the following global existence result.

Theorem 2.11. Let u0 ∈Hs(R), s > 3
2 . Then there exists a unique solution

u of (2.25) such that u ∈C([0,+∞;Hs(R)).

Proof. We will just prove the key a priori bound, the computations below
can be justified on a smooth local solution emanating from a regularization
of u0.

We recall first that the Benjamin-Ono equation being integrable by the
Inverse Scattering method possesses an infinite number of conserved quan-
tities. Besides the “trivial” ones

I0(u) =
∫

R
u2(x, t)dx = const., I1(u)

=
∫

R
[
1
2

D1/2u(x, t)2− 1
6

u3(x, t)]dx = const.,

where Ds is defined by Dsu(x) = F−1|ξ |sû(ξ ), it has in particular the in-
variants (see [1])

I2(u) =
∫

R
[
1
4

u4− 3
2

u2
H (ux)+2u2

x ]dx,

I3(u) =

∫

R
[{−1

5
u5 +[

4
3

u3
H (ux)+u2

H (uux)]

−[2uH (ux)
2 +6uu2

x ]−4uH (uxxx)}dx.



“master_livre_New”
2013/6/13
page 29

i

i

i

i

i

i

i

i

[SEC. 2.3: THE BURGERS EQUATION AND RELATED EQUATIONS. 29

We leave as an exercise that I0, I1 provide a global a priori H
1
2 (R)

bound, I0, I1, I2 a global a priori H1(R) bound, and I0, I1, I2, I3 a global a
priori H

3
2 (R) bound.

Lemma 2.12. For any T > 0 there exists C(T, ||u0||3/2)||u0||s), such that

||u||L∞(0,T ;Hs(R)) ≤C(T, ||u0||3/2)||u0||s. (2.26)

Proof. We take the L2 scalar product of (2.25) by Dsu to obtain

1
2

d
dt

∫

R
|Dsu|2dx+

∫

R
Ds(uux)Dsu dx = 0. (2.27)

We observe now (see [204] for instance that for s ≥ γ = 1 > 3
2 and

u,v ∈ Hs(R), there exists a positive constant c(γ,s) = c′(s)/
√

γ− 1
2 such

that
|Ds(uv)−uDsv|2 ≤ c(γ,s)(||u||s||v||γ + ||u||γ+1||v||s−1).

Since s > 3
2 there exists η > 0 such that s > 3

2 + η . We apply the ele-
mentary commutator estimate above with v = ux and γ = 1

2 = η to obtain
that

|Ds(uux)−uDsux|0 ≤
c√η
||u||3/2+η ||u||s. (2.28)

On the other hand,

(uDs
x,Dsu) =−1

2
(uxDsu,Dsu),

and since (at it is easily checked using Fourier transforms) for any η > 0

|ux|∞ ≤
c√η
||u||3/2+η ,

one derives the inequality

|(uDsux,Dsu)| ≤ c√η
||u||3/2+η |Dsu|22. (2.29)

We deduce from (2.28) and (2.29) that for any η>0 such that 3
2+η<s,

|(Ds(uux),Dsu)| ≤ c√η
||u||3/2+η ||u||2s . (2.30)



“master_livre_New”
2013/6/13
page 30

i

i

i

i

i

i

i

i

30 [CAP. 2: THE CAUCHY PROBLEM

Since H3/2+η(R) = [Hs(R),H3/2(R)]θ with θ = 1− 2η
(2s−3) =: 1−2γη ,

we have the interpolation inequality

||u||3/2+η ≤ c||u||2γη
s ||u||

1−2γη
3/2 ,

where c does not depend on η .
We also recall the a priori bound

||u||L∞(R+;H3/2(R)) ≤ ca(||u0||3/2).

Combining all those inequalities yields

1
2

d
dt
||u||2s ≤C

(
1√η
||u||2+2η

s

)

for all η > 0 such that 3
2 +η < s, where C = [ca(||u0||3/2)]

1−2γη .
One thus deduces that

||u(·, t)||2s ≤ y(t),

where y(t) is the solution of the differential equation

y′(t) =
C√η

[y(t)]1+δη , y(0) = ||u0||2s ,

on its maximal interval of existence [0,T (η)), where δ = 1/(2s−3).

One finds easily that y(t) = (||u0||−2δη
s −δ√ηCt)−1/δη , whence

T (η) =
1

δC
√η
||u0||−2δη

s →+∞, as η → 0.

For any fixed T > 0, we can choose η > 0 so small that T < 1
2 T (η). It

then follows that for 0≤ t ≤ T,

y(t)≤ c(T ; ||u0||3/2)||u0||2s ,

achieving the proof of Lemma 2.12.
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Remark 2.8. As we will see in Chapter 4, many equations obtained as
asymptotic models in a suitable regime write

ut +ux + ε(uux−Lux) = 0, (2.31)

where L is a skew-adjoint linear operator and ε > 0 is a small parameter.
The method of proof developed above gives for the Cauchy problem an
interval of existence of order [0,O( 1

ε )), that is existence on the “hyperbolic
time” 1

ε .

Remark 2.9. The method above applies also ([236]) , with some extra tech-
nical difficulties to symmetric or symmetrizable hyperbolic quasilinear sys-
tems in Rn of the form

A(x, t,U)∂tU +
n

∑
j=1

A j(x, t,U)∂x jU +B(x, t,U) = 0,

where A, A j are real symmetric p× p smooth matrices, A being moreover
positive definite, uniformly with respect to (x, t,U), that is there exists C >
0 such that

(A(x, t,ξ ),ξ )≥C|ξ |2, ∀ξ ∈ Rn,x ∈ Rn, t ∈ R.

One also assume that B is smooth.
In general, A arises from symmetrization of a non symmetric system,

the idea being then to replace the L2 scalar products in the energy estimates
by

(w,S(x, t,U)w)L2 ,

where the symmetrizer S is a symmetric, positive definite matrix.
As example we consider the one-dimensional version of the Saint-Venant

system that we will encounter in Chapter 4 as a model of certain surface
water waves: {

∂tη +div(u+ηu) = 0

∂tu+∇η +
1
2

∇|u|2 = 0,
(2.32)

where u = (u1,u2) and η are functions of (x, t) ∈ R2×R.
This system writes in space dimension one :

{
∂tη +ux +(uη)x = 0
∂tu+ηx +uux = 0,

(2.33)
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Setting U = (η ,u)T , (2.33) writes also

∂tU +C(U)Ux = 0,

where

C(U) =

(
u 1+η
1 u

)

is of course not symmetric. However, setting

S(U) =

(
1 0
0 1+η

)
,

we notice that

A1(U) = S(U)C(U) =

(
u 1+η

1+η u(1+η)

)

is symmetric. We thus get the system

A(U)∂tU +A1(U)Ux = 0,

which is of the desired form, provided we restrict to the region where 1 +
η > 0, which is physically meaningful, this condition ensuring that the “non
cavitation” : the free surface does not touch the bottom.

Exercise : give the details of the proof for local well-posedness with
initial data in Hs(R), s > 3

2 .
Remark 2.10. Again if one considers the Saint-Venant system involving a
small parameter ε > 0

{
∂tη +div(u+ εηu) = 0

∂tu+∇η +
ε
2

∇|u|2 = 0,
(2.34)

the interval of existence for the Cauchy problem will be of order [0,O( 1
ε )).

We conclude this Section by proving that the flow map associated to
the Burgers equation is no more regular than continuous. This displays the
“quasilinear” character of the associated Cauchy problem, a property that
is typical of quasilinear symmetric hyperbolic systems but that we will also
encounter for some nonlinear dispersive equations, a typical example being
the Benjamin-Ono equation.

The following result is based on the property of finite speed of propa-
gation of the Burgers solutions and is due to T. Kato [132].
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Theorem 2.13. The flow map associated to the Cauchy problem for the
Burgers equation is not (locally) Hölder continuous in H s, s > 3

2 , for any
Hölder exponent. In particular it is not (locally) Lipschitzian.

Proof. We recall ( classical result obtained by the method of characteris-
tics, see Chapter 10) that for any C1 initial data, bounded together with
its derivative, that is u0 ∈ C1

b(R) (2.12) has a unique C1 solution which is
defined for

t <
1

||∂xu0||∞
. (2.35)

It is implicitly defined by

u = u0(x− tu) (2.36)

Let φ ∈C∞
0 (R) such that φ ≡ 1 for |x| ≤ 2 and α ∈ R such that

s− 3
2

< α < s− 1
2

.

In order to avoid technical details, we will restrict to the case where s is
integer ≥ 2.

We consider the sequence of initial data

uλ
0 (x) = (λ + xα+1

+ )φ(x), −1≤ λ ≤ 1, (2.37)

where x+ = sup(x,0).
It is clear (choice of α > s− 3

2 ) that uλ
0 ∈ Hs(R) ⊂ C1

b(R), the norms
Hs being uniformly bounded in λ .

From (2.35), there exists T > 0 such that the solutions uλ of (2.12)
associated to uλ

0 exist for |t| ≤ T , for all λ ∈ [−1,+1]. Choosing T small
enough, one can furthermore assume that

|tuλ (x, t)| ≤ 1, x ∈ R, |t| ≤ T, |λ | ≤ 1. (2.38)

Lemma 2.14.

uλ (x, t) = λ +(x−λ t)α+1
+ p(t(x−λ t)α

+, |x| ≤ 1, |λ | ≤ 1,

where p(z) is a power series in z with p(0) = 1 with a stricltly positive
radius of convergence.
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Proof. Set y = x− tuλ (x, t). One deduces from (2.38) that |y| ≤ 2 for |x| ≤
1, |t| ≤ 1 and |λ | ≤ 1. So we have φ(y) = 1. It then results from (2.36) and
(2.37) that

uλ (x, t) = uλ
0 (y) = λ + yα+1

+ .

One therefore deduces successively, for t small enough the sequence of
equalities :

y = x−λ t− tyα+1
+ , (1+ tyα

+)y = x−λ t, (1+ tyα
+)y+ = (x−λ t)+.

One gets the result by solving the last equation.

Coming back to the proof of the Theorem 2.13, Lemma 2.14implies
that for t small enough,

(uλ −u0)(x, t) = λ +(x−λ t)α+1
+ − xα+1

+ + ... (2.39)

∂ s
x (u

λ −u0)(x, t) = (α +1)...(α− s+2)[(x−λ t)α−s+1
+ − xα−s+1

+ ]+ ...
(2.40)

for |x| ≤ 1, the ... indicating the higher order terms.
Observe now that

||uλ (., t)−u(0(., t)||Hs ≥ ||∂ s
x (u

λ (., t)−u(0(., t))||2

≥ [
∫ 1

−1
|∂ s

x (u
λ −u0)(x, t)|2] 1

2
(2.41)

One easily checks that the contribution of the first term in the RHS of
(2.40) in the RHS of (2.41) is of order at least |λ t|α−s+ 3

2 .The contribution
of the remaining terms is of higher order. It results that there exists c > 0
such that

||uλ (., t)−u(0(., t)||Hs ≥ c|λ t|α−s+ 3
2 , (2.42)

for |t| and |λ | sufficiently small.
On the other hand, uλ

0 −u0 = λφ so that ||uλ
0 −u0||Hs = |λ ||φ ||Hs .

Since one can choose α such that α− s+ 3
2 > 0 is arbitrarily small and

have again u0 in Hs, (2.42) proves that the mapping u0 7→ u(., t) for t 6= 0
cannot be Hölderian for any prescribed exponent.
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Chapter 3

Varia. Some classical facts

We recall here some useful tools that we will freely use in the subsequent
chapters.

3.1 Vector-valued distributions
If X is a Banach space, we denote (see [212], [165])

D ′(0,T ;X) = L (D(]0,T [;X) equipped with the topology of uniform
convergence on bounded sets of D(]0,T [) the space of distributions on
]0,T [ with values in X .

If T ∈D ′(0,T ;X), its distribution derivative is thus defined as

∂T
∂ t

(φ) =−T (
dφ
dt

), ∀φ ∈D(]0,T [).

To f ∈ Lp(0,T ;X), corresponds a distribution, still denoted f on ]0,T [
with values in X , by

f (φ) =−
∫ T

0
f (t)φ(t)dt, φ ∈D(]0,T [).

Observe (vectorial version of Sobolev embedding theorem in one di-
mension), that if f ∈ Lp(0,T ;X) and ∂ f

∂ t ∈ Lp(0,T ;X), then, after possibly
a modification on a subset of measure zero of, ]0,T [, that f is continuous
from [0,T ] to X .

The following result is useful (see a proof in [232], Chapitre III, 1).

35
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Lemma 3.1. Let V and H be two Hilbert spaces, the inclusion being con-
tinuous and dense V ⊂ H. One thus can identify H to its dual and write
V ⊂ H ≡ H ′ ⊂V ′. Then, if w ∈ L2(0,T ;V ) and w′ = dw

dt ∈ L2(0,T ;V ′),

1
2

d
dt
|w(t)|2H = 〈w(t),w′(t)〉, a.e. t.

For instance, if u ∈ L2(0,T,H1
0 (Ω)) is a solution of the heat equation

∂u
∂ t
−∆u = 0,

one can justify the energy equality :

1
2

d
dt
|u(., t)|L2 + |∇u(., t)|2L2 = 0

by taking the (H1
0 ,H−1) duality of the equation with u.

3.2 Some interpolation results and applications
We consider here the triple (X ,A , µ), where the set X is equipped with the
σ -algebra A and with the measure µ .

We shall denote Lp(X ,A , µ) the associated Lebesgue spaces. We con-
sider also another triple (Y,B,ν).

We state the Riesz-Thorin interpolation theorem :

Theorem 3.2. Assume that 1≤ p0 6= p1 ≤ ∞, 1≤ q0 6= q1 ≤ ∞.

If T ∈L (Lp0(X ,A , µ),Lq0(Y,B,ν)) with norm M0 and

T ∈L (Lp1(X ,A , µ),Lq1(Y,B,ν)) with norm M1,

then T ∈L (Lpθ (X ,A , µ),Lqθ (Y,B,ν)) with norm Mθ ,

where Mθ ≤M1−θ
0 Mθ

1 and

1
pθ

= 1−θ
p0

+ θ
p1

, 1
qθ

= 1−θ
q0

+ θ
q1

, θ ∈ (0,1).
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We refer to [220], [27] for the proof, based on Phragmen-Lindelöf, itself
based on the three lines theorem of Hadamard.

We now indicate some important consequences. Let X = Y = Rn eand
µ = ν = dx, the Lebesgue measure. We say that a map T ∈ L (Lp(Rn),
Lq(Rn)) is of type (p,q) and we will denote f ? g the convolution of f by
g. The following result is known as Young theorem.

Theorem 3.3. Let f ∈ Lp(Rn), g ∈ Lq(Rn), 1≤ p,q≤ ∞, with 1
p + 1

q ≥ 1.

Then f ?g∈Lr(Rn) where 1
r = 1

p + 1
q−1. Moreover, || f ?g||r ≤ || f ||p||g||q.

Proof. For g fixed, let Tg f = f ? g. From Minkowsky inequality, ||Tg f ||q ≤
||g||q|| f ||1. On the other hand Hölder inequality implies that ||Tg f ||∞ ≤
||g||q|| f ||q′ .

Tg is thus of type (1,q) with norm ≤ ||g||q and of type (q′,+∞) with
norm ≤ ||g||q. From Riesz-Thorin theorem, Tg is of type (p,r) with 1

p =
1−θ

1 + θ
q′ = 1− θ

q et 1
r = 1−θ

q +0 = 1
q +(1− θ

q )−1 = 1
p + 1

q −1, with norm
≤ ||g||q.

Another consequence is the Hausdorff-Young theorem (we denote f̂ the
Fourier transform of f ).

Theorem 3.4. Let f ∈ Lp(Rn), 1 ≤ p ≤ 2. Then f̂ ∈ Lp′(Rn), 1
p + 1

p′ = 1,
with

|| f̂ ||p′ ≤ || f ||p.

Proof. It is a classical fact that the Fourier transform is of type (1,∞) and
(2,2), with norms 1. The result follows readily from Riesz-Thorin theorem.

We will need a generalization of Theorem 3.3 that necessitates the use
of Lebesgue weak- Lp spaces which we define now in the content of a
measured space (U, µ) (it will be (Rn,dx) for us actually).

Definition 3.5. For any measurable function f on U , almost everywhere,
we define its distribution function as

m(σ , f ) = µ({x : | f (x) > σ}).
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For 1≤ p < ∞, the weak- Lp space, denoted Lp
w, consists in the f ′s such

that
|| f ||Lp

w
= sup

σ
σm(σ , f )1/p < ∞.

Remark 3.1. 1. For 1 ≤ p < ∞, the weak-Lp space is only quasi- normed.
In fact, the inequality (a+b)1/p ≤ a1/p +b1/p implies that

|| f +g||Lp
w
≤ 2(|| f ||Lp

w
+ ||g||Lp

w
).

2. Obviously :
|| f ||Lp

w
≤ || f ||Lp .

3. It is easily checked that the function f defined on Rn by f (x) =

1/|x|
n
p belongs to Lp

w(Rn,dx) but does not belong to any Lr(Rn), for any
1≤ r ≤+∞.

4. The Lp
w spaces are particular examples of two- parameters space, Lpq,

1≤ p,q≤+∞, the Lorentz spaces. The space Lp
w is the Lorentz space Lp,∞.

A linear map T : Lp→ Lq
w is said to be bounded if ||T f ||Lp

w
≤C|| f ||Lp .

The infimum on all C′s is by definition the norm of T . We will denote then
T ∈L (Lp,Lq

w).
We state now the Marcinkiewicz interpolation theorem. A proof can be

found in [27].

Theorem 3.6. Let 1≤ p0 6= p1 ≤ ∞, 1≤ q0 6= q1 ≤ ∞, 0 < θ < 1 and

T ∈L (Lp0(U, µ),Lq0
w (V,ν)), with norm M0,

T ∈L (Lp1(U, µ),Lq1
w (V,ν)), with norm M1.

Set
1
p

=
1−θ

p0
+

θ
p1

,
1
q

=
1−θ

q0
+

θ
q1

,

and assume thatp≤ q.
Then T ∈L p(U, µ),Lq(V,ν)).

Another useful result is Hunt interpolation theorem (see [198]).
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Theorem 3.7. Let 1 ≤ p0 6= p1 ≤ ∞, 1 ≤ q0 6= q1 ≤ ∞. We assume that
T is linear continuous from Lp0(U, µ) to Lq0(V,ν) and from Lp1(U, µ) to
Lq1(V,ν).

Then, if p and q are defined as in Theorem 3.6, T extends to a linear
continuous map from Lp

w(U, µ) into Lq
w(V,ν).

Moreover, ||T f ||Lq
w
≤C|| f ||Lp

w
.

One deduces from Hunt and Marcinkiewicz theorems the generalized
Young inequality, see [198] :

Theorem 3.8. Let 1 < p,q < ∞ and f ∈ Lp(Rn), g ∈ Lq
w(Rn).

Then f ? g ∈ Lr(Rn), 1
p + 1

q −1 = 1
r et

|| f ? g||Lr ≤C|| f ||Lp ||g||Lq
w
.

Proof. Fix f ∈ Lp(Rn) and set Tf = f ? ·. From Young’s inequality, Tf ∈
L (Lq(Rn),Lr(Rn)), with 1

r = 1
p + 1

q −1.

One takes successively q = 1 then q = p′ proving that

||Tf g||p ≤ || f ||p||g||1 and ||Tf g||∞ ≤ || f ||p||g||p′ and from Hunt’s theo-
rem,

||Tf g||Lr
w ≤C||g||Lq

w
,

for 1 < q < p′ and 1
p + 1

q −1 = 1
r .

Fix now g ∈ Lq(Rn). From what precedes, Tg : Lp(Rn)→ Lr
w(Rn) is

continuous and from Marcinkiewicz theorem, f ? g ∈ Lr(Rn) with the de-
sired estimate.

The following corollary, a direct consequence of the above considera-
tions is known as the Hardy-Littlewood-Sobolev inequality.

Corollary 3.9. Let 0 < α < n, 1≤ p < q < +∞ avec 1
q = 1

p − α
n .

Set Iα(x) =
∫
Rn

f (y)
|x−y|n−α dy. Then

||Iα( f )||Lq(Rn) ≤C(α, p,n)|| f ||Lp(Rn).

Proof. It suffices to apply Young generalized inequality, recalling that the
function φ defined by φ(x) = 1

xn−α belongs Ln/(n−α)
w (Rn).

Two excellent references on the theory of interpolation are the books
[27] and [220].
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3.3 The Van der Corput lemma

The Van der Corput lemma is a basic tool to evaluate oscillatory integrals
that occur often in the analysis of linear dispersive equations.

We follow here the excellent treatment in [219]. We want to study the
behavior for large positive λ of the oscillatory integral

I(λ ) =
∫ b

a
eiλφ(x)ψ(x)dx, (3.1)

where the phase φ is a smooth real-valued function and the amplitude ψ is
complex -valued and smooth. We first consider the case where the phase
has no stationary points (critical points).

Lemma 3.10. Assume that φ and ψ are smooth, that ψ has compact sup-
port in (a,b) and that φ ′(x) 6= 0 for all x ∈ [a,b].

Then
I(λ ) = O(λ−N) as λ →+∞

Proof. Let D denote the differential operator

D f (x) = (iλφ ′(x))−1 · d f
dx

and let tD its transpose,

tD f (x) =− d
dx

(
f

iλφ ′(x)

)
.

Then DN(eiλφ ) = eiλφ for avery N and by integration by parts,

∫ b

a
eiλφ ψdx =

∫ b

a
DN(eiλφ )ψdx =

∫ b

a
eiλφ · (tD)N(ψ)dx

which implies clearly |I(λ )| ≤ ANλ−N .

The Van der Corput lemma deals with the case where φ has critical
points.
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Proposition 3.11. Suppose that φ is real-valued and smooth on (a,b), and
that |φ (k)(x)| ≥ 1 for all x ∈ (a,b). Then

∣∣∣∣
∫ b

a
eiλφ(x)dx

∣∣∣∣≤ ckλ−1/k

holds when:

(i) k ≥ 2, or

(ii) k = 1 and φ ′ is monotonic.

The bound ck is independent of φ and λ .

Proof. We first prove (ii). One has
∫ b

a
eiλφ dx =

∫ b

a
D(eiλφ )dx =

∫ b

a
eiλφ · tD(1)dx+(iλφ ′)−1eiλφ |ba

≤ λ−1
∫ b

a

∣∣∣∣
d
dx

(
1
φ ′

)∣∣∣∣dx = λ−1
∣∣∣∣
∫ b

a

d
dx

(
1
φ ′

)
dx
∣∣∣∣ ,

where we have used that d
dx

(
1
φ ′

)
= φ ′′
−φ ′2 has a sign.

The last expression equals

λ−1
∣∣∣∣

1
φ ′(b)

− 1
φ ′(a)

∣∣∣∣≤
1
λ

.

This gives the conclusion with c1 = 3.
We now prove (ii) by induction on k. Supposing that the case k is known

we may assume (replacing possibly φ by −φ ) that

φ (k+1) ≥ 1 for all x ∈ [a,b].

Let x = c the unique point in [a,b] where |φ (k)(x)| achieves its minimum
value. If φ (k)(c) = 0 then, outside some interval (c− δ ,c + δ ) we have
|φ (k)(x)| ≥ δ (and of course, φ ′(x) is monotonic in the case k = 1). We
decompose the integral as

∫ b

a
=

∫ c−δ

a
+

∫ c+δ

c−δ
+

∫ b

c+δ
.
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By the inductive hypothesis,
∣∣∣∣
∫ c−δ

a
eiλφ dx

∣∣∣∣≤ ck(λδ )−1/k.

Similarly, ∣∣∣∣
∫ b

c+δ
eiλφ dx

∣∣∣∣≤ ck(λδ )−1/k.

Since
∣∣∣
∫ c+δ

c−δ eiλφ dx
∣∣∣≤ 2δ , we conclude that

∣∣∣∣
∫ b

a
eiλφ dx

∣∣∣∣≤
2ck

(λδ )1/k +2δ .

If φ (k)(c) 6= 0, and so c is one of the endpoints of [a,b], a similar argu-
ment shows that the integral is majored by ck(λδ )1/k +δ . In both situations,
the case k +1 follows by taking

δ = λ−1/(k+1),

which proves the claim with ck+1 = 2ck + 2. Since c1 = 3, we have ck =
5 ·2k−1−2.

As a consequence, we obtain the following result on integrals of type
(3.1). We do not assume that ψ vanishes near the endpoints of [a,b].

Corollary 3.12. Under the assumptions on φ in Proposition 3.11,
∣∣∣∣
∫ b

a
eiλφ(x)ψ(x)dx

∣∣∣∣≤ ckλ−1/k
[
|ψ(b)|+

∫ b

a
|ψ ′(x)|dx

]
.

Proof. We write (3.1) as
∫ b

a F ′(x)ψ(x)dx, with

F(x) =

∫ x

a
eiλφ(t)dt.

Then we integrate by parts, and use the estimate

|F(x)| ≤ ckλ 1/k, for x ∈ [a,b],

obtained in Van der Corput lemma.
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As example of application of the van der Corput Lemma, we will, fol-
lowing [162] (see [137] for a more general result) indicate how it can be
used to prove that the function (“half derivative of the Airy function”) de-
fined by

F(x) =
∫

R
|ξ |1/2ei(xξ+ξ 3)dξ ,

belongs to L∞(R).

Proposition 3.13. Let β ∈ [0,1/2] and

Iβ (x) =
∫ ∞

−∞
|η |β ei(xη+η3)dη .

Then Iβ ∈ L∞(R).

Proof. Let us first fix φ0 ∈C∞(R) with

φ0(η) =

{
1, |η |> 2
0, |η | ≤ 3/2.

Since the function F1(η) = (1− φ0)(η)eiη3 |η |β ∈ L1(R), its Fourier
transform belongs to L∞(R) and it suffices to consider

Ĩβ (x) =
∫ ∞

−∞
ei(xη+η3)|η |β φ0(η)dη .

• For x≥−3, the phase Φx(η) = xη +η3 satisfies

|φ ′x(η)|= |x+3η2| ≥ (|x|/2+η2) on the support of φ0,

and the result follows by integration by parts.

• For x <−3, one takes (φ1,φ2) ∈C∞
0 (R)×C∞(R) such that

φ1(η)+φ2(η) = 1 with

Supp φ1 ⊂ A = {η , |x+3η2| ≤ |x|/2},

φ2 ≡ 0 in B = {η , |x+3η2|< |x|/3.
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We set

Ĩ j
β (x) =

∫ ∞

−∞
ei(xη+η3)|η |β φ0(η)φ j(η)dη , j = 1,2.

so that
|Ĩβ (x)| ≤ |Ĩβ

1
(x)|+ |Ĩβ

2
(x)|.

When φ2(η) 6= 0, the triangle inequality implies that

|φ ′x(η)|= |x+3η2| ≥ 1
6
(|x|+η2).

One integrate by parts to obtain

|Ĩ2
β (x)|=

∣∣∣∣∣
∫ ∞

−∞

|η |β
φ ′x(η)

φ0(η)φ2(η)
d

dη
[ei(xη+η3

]dη

∣∣∣∣∣≤C.

If now η ∈ A, we have |x|/2≤ 3η2 ≤ 3|x|/2 and
∣∣∣∣
d2φx

dη2 (η)

∣∣∣∣= 6|η | ≥ |x|1/2.

Corollary 3.12 together with the definition of φ0,φ1 then implies that
there exists a constant c independent of x >−3 such that

|Ĩ1
β (x)|=

∣∣∣∣
∫ ∞

−∞
ei(xη+η3 |η |β φ0(η)φ1(η)dη

∣∣∣∣≤ c|x|−1/4|x|β/2

and the proof is complete.

We will encounter in Chapter 9 another typical application of the Van
der Corput lemma.
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Chapter 4

Surface water waves

Most of the equations or systems that will be considered in those Notes can
be derived from many physical systems, showing their universal nature as
a kind of normal forms1. For the sake of simplicity we will consider only
their derivation from the water wave system, for one or two layers of fluid.
We consider in this Chapter the case of surface waves.

4.1 The Euler equations with free surface
We recall here briefly the derivation of the water wave system, that is the
Euler equations with a free surface. A much more complete discussion of
these topics can be found in the excellent book by D. Lannes [155] which
contains also an extensive treatment of the justification of the asymptotic
models. Historical aspects of water waves and other fluid mechanics topics
can be found in [69].

We consider a irrotational flow of an incompressible, inviscid (non vis-
cous) fluid (say water) submitted to the gravitation field. The final goal is
to describe the evolution of surface gravity (or gravity-capillary waves if
surface tension effects are taken into consideration). One assume that the
bottom of the fluid layer is flat and that the fluid cannot penetrates it. 2

1In analogy with the ODE theory where a normal form describes the dynamics in the
neighborhood of a critical point

2Of course it is important in most oceanographic situations to consider non flat bottoms

45
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46 [CAP. 4: SURFACE WATER WAVES

The flows will be bi or tri-dimensional, d = 1,2 denoting the horizontal
dimension of the flow. We will denote X = x or X = (x,y) the horizontal
variables and z the vertical variable. The height of the fluid at rest is h
and the free surface will be parametrized by z = ζ (X , t), t being the time
variable. The fluid domain is thus Ω(t) =: {(X ,z)−h < z < ζ (X , t)}.

We denote v = (V,w) the velocity field, p the (scalar) pressure field,
g = (0,0,−g) the acceleration of gravity, ρ the volumic mass of the fluid.

The Euler equations (1755) are a set of equations based on conservation
principles.

1. Conservation of mass.

ρt +div (ρv) = 0 (4.1)

which by incompressibility reduces to

div v = 0. (4.2)

2. Newton’s law which implies here (assuming that the forces are just
due to the isotropic pressure and to exterior forces)

vt +v ·∇X ,zv =− 1
ρ

∇X ,z p+g. (4.3)

We have denoted ∇X ,z the gradient with respect to (X ,z), ∇ the gradient
with respect to X .

Moreover the irrotationality condition curl v = 0 implies that there ex-
ists a velocity potential φ such that v = ∇X ,zφ .

We have to impose boundary conditions on the upper (free) surface and
on the bottom. Both surfaces should be “bounding”, that is no fluid par-
ticle should cross them. For a surface given implicitely by the equation
Σ(X ,z, t) = 0 this fact expresses that the material derivative vanishes iden-
tically, that is

Σt +v ·∇X ,zΣ = 0.

For the lower (resp. upper) surfaces one has Σ(X ,z, t) = z + h, (resp.
Σ(X ,z, t) = z− ζ (X , t),) and the bounding condition yields the two equa-
tions

v3 = 0 at z =−h (4.4)

but this leads to technical difficulties that we want to avoid here.
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ζt = (−∇ζ ,1)T ·v|z=ζ (X ,t) (4.5)

Finally, we need a boundary condition at the free surface. In case of a
air-water interface and for a not too thin layer, one can ignore the effects of
surface tension and then the pressure at the free surface is a constant, equal
to the air pressure. The pressure p being defined up to an additive constant,
one may assume

p = 0 at z = ζ (X , t). (4.6)

The free surface Euler system (4.2)- (4.3)- (4.4)- (4.5)- (4.6) can be
greatly simplified for potential flows. First the incompressibility condition
(4.2) writes

∆X ,zφ = 0 in Ω(t). (4.7)

Next, (4.3) implies that

∇X ,z(φt +
1
2
|∇X ,zφ |2 +

p
ρ

+gz) = 0 −h≤ z≤ ζ (X , t), (4.8)

which yields after integration

φt +
1
2
|∇X ,zφ |2 +

p
ρ

+gz = f (t) −h≤ z≤ ζ (X , t). (4.9)

By changing φ by φ +
∫ t

0 f (s)ds one may assume that f ≡ 0. Taking the
trace at z = ζ (X , t) and using (4.6) one gets

φt +
1
2
|∇X ,zφ |2 +gz = 0, z = ζ (X , t). (4.10)

Lastly the boundary conditions (4.4) and (4.5) write in terms of φ :

∂zφ = 0 at z = 0 (4.11)

and
∂tζ +∇ζ ·∇φ|z=ζ (X ,t) = ∂zφ|z=ζ (X ,t). (4.12)

The system (4.7)-(4.10)-(4.11)-(4.12) is the formulation of the Euler
equations with free boundary which was established in 1781 by Lagrange
[153]. A drawback is that the Laplace equation is posed in the moving
domain Ω(t) which is an unknown of the problem.
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To overcome this difficulty we recall the strategy of Zakharov [248] and
Craig-Sulem [64, 65] which leads to a system posed on a fixed domain, and
eventually to the Hamiltonian form of the system.

The idea is to use as independent variables the elevation ζ and the trace
of the potential φ at the free surface, that is ψ(X , t) = φ(X ,ζ (X , t), t).

When ψ is known one reconstruct φ by solving the Laplace equation
in Ω(t) with Neumann condition on the bottom and the Dirichlet condition
φ = ψ on the free surface.

The linear map
Z(ζ ) : ψ → ∂zφ|z=ζ

is called the Dirichlet-Neumann operator. It is easily checked that if Γ =
{z = ζ} is a smooth surface, then Z(ζ ) ∈L (H3/2(Rd−1),H1/2(Rd−1)).

A precise functional setting will be given for similar operators in the
next Chapter.

Using that

∂tψ = ∂tφ|z=ζ +∂tζ Z(ζ )ψ and ∇ψ = ∇φz=ζ +Z(ζ )ψ∇ζ ,

it is easily checked that one can express (4.11) and (4.12) as




∂tψ +gζ +
1
2
|∇ψ|2− 1

2
(1+ |∇ζ |2)(Z(ζ )ψ)2 = 0

∂tζ +∇ψ ·∇ζ − (1+ |∇ζ |2)Z(ζ )ψ = 0,
(4.13)

which is the Zakharov-Craig-Sulem formulation of the water wave prob-
lem.

Remark 4.1. Another definition of the Dirichlet-Neumann operator leading
to a slightly different but equivalent formulation is

G[ζ ] : ψ →
√

1+ |∇ζ |2∂nφ|z=ζ (4.14)

where ∂n denotes the unit normal derivative to the free surface.

Remark 4.2. When surface tension effects are taken into account, (4.6)
should be replaced by

p = σ∇.

(
∇ζ√

1+ |∇ζ |2

)
,
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where σ ≥ 0 is the surface tension parameter. This leads to the gravity-
capillary water waves system




∂tψ +gζ +
1
2
|∇ψ|2− 1

2
(1+ |∇ζ |2)(Z(ζ )ψ)2 +

σ
ρ

K(ζ ) = 0

∂tζ +∇ψ ·∇ζ − (1+ |∇ζ |2)Z(ζ )ψ = 0,

(4.15)

where K(ζ ) = ∇ζ√
1+|∇ζ |2

.

Remark 4.3. Although this will not be used in the sequel, one should recall
that Zakharov [248] used the above formulation to derive the Hamiltonian
form of the water waves system. More precisely (4.15) can be written as

∂t

(
ζ
ψ

)
=

(
0 I
−I 0

)(
∂ζ H
∂ψ H

)
,

where the Hamiltonian H = K + E is the sum of kinetic and potential en-
ergy,

K =
1
2

∫ d

R

∫ ζ (X)

−h
|∇X ,zφ(X ,z)|2dzdX = (by Green’s formula)

=
1
2

∫

Rd
ψZ[ζ ]ψdX ,

and
E =

1
2

∫

Rd
gζ 2dX .

Solving the Cauchy problem for (4.13) is not an easy task. We refer to
S. Wu [241, 242] D. Lannes [155, 12], Iguchi [114],T. Alazard, N. Burq, C.
Zuily [4, 5, 6, 7, 8], M.Ming, P. Zhang, Z. Zhang [178, 179] for local well-
posedness results in various functional settings and to [243, 244], [90, 91, 9]
for global or almost global well-posedness with small initial data.

In any case those results do not provide information on the dynamics
of solutions on relevant time scales. To this purpose one should focus on
specific regimes and try to derive and justify asymptotic models which will
describe the dynamics in those regime.

To have an insight on the nature of (4.13) let us have a look at the lin-
earization of (4.13) at the trivial solution (ζ ,ψ) = (0,0), that is the system

{
∂tψ +gζ = 0
∂ζ −Z(0)ψ = 0.

(4.16)
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The solution of Laplace equation in the strip R2× [−h,0] with boundary
conditions φ(X ,0) = ψ and ∂zφ|z=−h = 0 is

φ(X ,z) =
cosh((z+h)|D|)

cosh(h|D|) ψ,

which implies that Z(0)ψ = ∂zφ|z=0 = |D| tanh(h|D|)ψ, so that (4.16) writes

∂ 2
t ζ +g|D| tanh(h|D|)ζ = 0. (4.17)

A plane wave cos(k ·X−ωt),k ∈ Rd , is solution if and only if

ω2 = g|k| tanh(|k|h), (4.18)

which is the dispersion relation of surface gravity waves.
Where surface tension is taken into account, the dispersion relation be-

comes
ω2 = (g+

σ
ρ
|k|2)|k| tanh(|k|h). (4.19)

In the infinite depth case (h→+∞) , (4.17) reduces to

∂ 2
t ζ +g|D|ζ = 0, (4.20)

which can be seen as the product of two nonlocal Schrödinger type equa-
tions

(i∂t +g1/2|D|1/2)(i∂t −g1/2|D|1/2)ζ = 0.

On the other hand, when |k|h¿ 1 so that ω(k)' √gh, (4.17) reduces
formally to the linear wave equation

∂ 2
t ζ −gh∆ζ = 0.

It is amazing that Lagrange already derived this equation in the very
same context in 1781. Also it is worth noticing that this simple linear PDE
retains some relevant physics : in case of a tsunami propagating in an ocean
of mean depth 4 km, it predicts a velocity of about

√
4000×10 m/s = 720

k/h, which is the correct order of magnitude for such a wave in the ocean.
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4.2 Asymptotic models

Because of the complexity of the system, it is almost hopeless to get rig-
orous informations on the long time dynamics of the water wave equations
except in trivial situations such as the perturbation of the state of rest. 3.

One can however, by restricting the range of wavelength, amplitude,
steepness,...get information on the dynamics of water waves on physically
relevant time scales. The resulting asymptotic systems are mathematically
simpler and allow to perform easier numerical simulations. This method
is in fact general and can be applied in various physical contexts (nonlin-
ear optics, plasmas physics,...). It leads to canonical equations or systems,
which are in some sense universal.

We explain here how to obtain asymptotic models from the full water
wave system (4.13). A thorough and complete discussion can be found in
[155].

We first define parameters that will be used to obtain a dimensionless
form of the equations, and-when small- to derive the asymptotic models.

a will denote a typical amplitude of the wave, h the mean depth of the
fluid layer, λ a typical horizontal wave length (we will not distinguish for
the moment the x and y variables in the horizontal two-dimensional case).

We now adimensionalize the variables and unknowns as follows

ζ̃ =
ζ
a

, z̃ =
z
h

, X̃ =
X
λ

t̃ =
t

λ/
√

gh
, φ̃ =

φ
aλ
√

g/h
.

We introduce two important dimensionless parameters

ε =
a
h

and µ =

(
h
λ

)2

which measure respectively the amplitude and the shallowness of the flow.
The adimensionalized version of the water waves system write in those

3this leads however to interesting and difficult mathematical problems (see for instance [9]
and the references therein)
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variables (dropping the tilde) :




µ∆φ +∂ 2
z φ = 0, −1 < z < εζ

∂zφ = 0, z = 1,

∂tφ +ζ +
ε
2
|∇φ |2 +

ε
2µ
|∂zφ |2 = 0, z = εζ ,

∂tζ + ε∇ζ ·∇φ − 1
µ

∂zφ = 0, z = εζ .

(4.21)

When ε = 0, the nonlinear terms vanish while when µ = 0, the two first
equations yield ∂zφ = 0 and the dispersive terms vanish.

We define (always dropping the tilde)

ψ(X , t) = φ(X ,εζ (X , t), t)) and Zµ(εζ )ψ = ∂zφ|z=εζ ,

allowing to write the adimensionalized version of (4.13)





∂tψ +ζ +
ε
2
|∇ψ|2− ε

2

(
1
µ

+ ε2|∇ζ |2
)

(Zµ(εζ )ψ)2 = 0

∂tζ + ε∇ψ ·∇ζ −
(

1
µ

+ ε2|∇ζ |2
)

Zµ(εζ )ψ = 0.

(4.22)

When one (or both) parameter ε or µ is small, one can find asymptotic
expansions of Zµ(εζ )· and thus replace it in (4.22) by simpler (often local)
operators. Expansions with respect to µ (supposed to be small) amounts
to studying how the solution of a linear elliptic equation depends on the
boundary.

Of course several regimes can be considered. We recall a few typical
ones.

1. Let S = ε
µ , the Stokes number. When ε , µ ¿ 1 with S ∼ 1, one has

the Boussinesq regime which eventually will lead to the Korteweg-de Vries
equation.

2. When µ¿ 1 and ε ∼ 1, say ε = 1, (thus SÀ 1) one has the nonlinear
regime.
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3. One could also define the steepness parameter ε = h
λ . The case ε ¿

1, (which allows large amplitudes, that is ε ∼ 1) leads to full-dispersion
models.

We describe briefly now the classical systems that are obtained in those
regimes (see [12, 155] for details).

4.2.1 The Boussinesq regime
Since here ε ∼ µ¿ 1 we can take ε = µ. The strategy is first to strengthen
the fluid domain to the flat strip {−1 < z < 0} and to look for a WKB
expansion for the velocity potential

φapp = φ0 + εφ1 + ε2φ2

where

φ0|z=0 = ψ, φ j |z=0 = 0 , j = 1,2, φ j |z=−1 = 0, j = 0,1,2.

One finds (see [155])

Zε(εζ ) =−ε∆ψ− ε2(
1
3

∆2ψ +ζ ∆ψ)+O(ε3).

Reporting in (4.22) one obtains a first Boussinesq system




∂tψ +ζ +
ε
2
|∇ψ|2 = 0(ε2)

∂tζ + ε∇ψ ·∇ζ +∆ψ + ε(
1
3

∆2ψ +ζ ∆ψ) = 0(ε2).
(4.23)

Setting U = ∇ψ , taking the gradient of the first equation and dropping
the 0(ε2) terms, one gets





∂tU +∇ζ +
ε
2

∇|U |2 = 0,

∂tζ +∇ ·U + ε(∇ · (ζU)+
1
3

∆∇ ·U) = 0.
(4.24)

Remark 4.4. 1. Since by definition U = ∇φ|z=εζ , the expansion of Zε(εζ )

implies that U = ∇|z=εζ + 0(ε2) and is therefore an approximation of the
vertical component of the velocity at the interface.
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2. The system (4.24) has the big shortcoming of being linearly ill-posed
to short waves. In fact the linearization at (ζ ,U) = (0,0) is equivalent to
the equation ζtt−∆ζ + 1

3 ∆2ζ = 0 and plane wave solutions ei(k·x−ωt) should
satisfy

w(k)2 = |k|2(1− 1
3 |k|2) which is not real for large |k|.

One can nevertheless obtain an equivalent 3-parameters family of Boussi-
nesq systems with better mathematical properties. One parameter arises
from considering an approximation of the horizontal component of the ve-
locity at the height z = θ − 1. It turns out that such an approximation is
given by

Uθ = (1+
ε
2
(1−θ 2)∆)U +0(ε2).

Two more parameters are introduced by a double use of the so-called
BBM (Benjamin-Bona-Mahony [20]) trick, that is to write

∂tU =−∇ζ +O(ε) and ∂tζ =−∇ ·U +O(ε),

leading to {
∂tU = (1−µ)∂tU−µ∇ζ +O(ε)

∇ ·U = λ∇ ·U− (1−λ )∂tζ +O(ε).
(4.25)

Plugging these relations into (4.24) one obtains (dropping the error
terms O(ε2) and denoting U = Uε ,) the Sθ ,λ ,µ family of Boussinesq sys-
tems ([34, 35, 30])





∂tU +∇ζ + ε(
1
2

∇|U |2 +a∆∇ζ −b∆∂tU) = 0

∂tζ +∇ ·U + ε(∇ · (ζU)+ c∆∇ ·U−d∆∂tζ ) = 0,
(4.26)

where

a =
1−θ 2

2
µ, b =

1−θ 2

2
(1−µ),

c = (
θ 2

2
− 1

6
)λ , d = (

θ 2

2
− 1

6
)(1−λ ),

so that a+b+ c+d = 1
3 .
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Remark 4.5. 1. The Boussinesq systems can be conveniently classified ac-
cording to the linearization at the null solutions which display their disper-
sive properties [35]. More precisely, the dispersion matrix writes in Fourier
variables,

Â(ξ1,ξ2) = i




0 ξ1(1−εa|ξ |2)
1+εb|ξ |2

ξ2(1−εa|ξ |2)
1+εb|ξ |2

ξ1(1−εc|ξ |2)
1+εd|ξ |2 0 0

ξ2(1−εc|ξ |2)
1+εd|ξ |2 0 0




.

The corresponding non zero eigenvalues are

λ±(ξ ) =±i|ξ |
(

(1− εa|ξ |2)(1− εc|ξ |2)
(1+ εd|ξ |2)(1+ εb|ξ |2)

) 1
2

.

One deduces that the Boussinesq systems are linearly well-posed when
b≥ 0, d ≥ 0 and a≤ 0, c≤ 0, (or a = c).

2. Although all equivalent (see below for a precise notion), the Boussi-
nesq systems have different mathematical properties because of the various
behavior of the dispersion (that is of the λ ′±s) for large frequencies. In par-
ticular, λ±(ξ ) can have order 3,2,1,0,−1,−2 depending on the values of
(a,b,c,d).

Remark 4.6. When surface tension is taken into account, one obtains a
similar class of Boussinesq systems, [68] with a changed into a−T where
T ≥ 0 is the Bond number which measures surface tension effects. The
constraint on the parameters a,b,c,d is the same and the conditions for
linear well-posedness read now





a−T ≤ 0, c≤ 0, b≥ 0, d ≥ 0,
or
a−T = c > 0, b≥ 0, d ≥ 0.

(4.27)

The Boussinesq systems can be simplified when one restricts the al-
lowed motion. First for a one dimensional wave propagating to the right
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and weakly modulated, one looks for u and ζ of the form

u(x, t) = ũ(x− t,εt), ζ (x, t) = ζ̃ (x− t,εt).

Denoting τ = εt and ξ = x− t, and considering firstly the original
Boussinesq system (4.24) ũ and ζ̃ satisfy





ε∂τ ũ−∂ξ ũ+∂ξ ζ̃ + ε ũ∂ξ ũ = 0

ε∂τ ζ̃ −∂ξ ζ̃ +∂ξ ũ+ ε(∂ξ (ζ̃ ũ)+
1
3

∂ 2
ξ ũ) = 0

(4.28)

One thus has ∂ξ ũ = ∂ξ ζ̃ + 0(ε) and one can replace ũ by ζ̃ in the dis-
persive and nonlinear terms, the resulting error being 0(ε2). Adding then
the equation and neglecting the 0(ε2) terms one arrives to the Korteweg-de
Vries equation

∂τ ζ̃ +
1
6

∂ 3
ξ ζ̃ +

3
2

ζ̃ ∂ξ ζ̃ = 0.

One easily check that starting from a Sθ ,λ ,µ system would have led to

∂τ ζ̃ +
a+b+ c+d

2
∂ 3

ξ ζ̃ +
3
2

ζ̃ ∂ξ ζ̃ = 0,

that is to the same equation since a+b+ c+d = 1
3 .

4.2.2 The weakly transverse “KP” regime
Another interesting motion is the weakly transverse one. We assume that
the scales in two horizontal variables (x,y) are different, more precisely,
we introduce a new scaling, denoting again by a a typical amplitude, h the
mean depth, λ1 the typical wavelength along the longitudinal direction x
and λ2, the wavelength along the transverse direction y. We still denote
ε = a

h ¿ 1 but we will assume now that

h2

λ 2
1
∼ ε ,

h2

λ 2
2
∼ ε2.

The KP equation is obtained by decomposing the elevation as the sum
of two counter propagating waves following the ansatz

ζ KP
ε (x,y, t) =

1
2
(ζ+(x− t,

√
εy,εt)+ζ−(x− t,

√
εy,εt)).
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Neglecting the O(ε2) terms, one checks that ζ±(X ,Y,τ) solves the
Kadomtsev-Petviashvili II (KP II) equation :

∂τ ζ±±
1
2

∂−1
X ∂ 2

Y ζ±±
1
6

∂ 3
X ζ±±

3
2

ζ±∂X ζ± = 0. (4.29)

When strong surface tension effects are present (Bond number > 1
3 one

obtains the KP I equation (the sign of the 1
2 ∂−1

X ∂ 2
Y ζ± term is ∓).

It turns out that the precision of the KP approximation is much worse
than the KdV or Boussinesq one : in general o(1) instead of O(ε2t) (see
[155, 159]). It has been established rigorously in [154], [159] that the KP
II equation yields a poor error estimate when used as an asymptotic model
of the water wave system. Roughly speaking, the error estimates with the
relevant solution of the (Euler) water waves system writes :

||UEuler−UKP||= o(1).

So the error is o(1), (O(
√

ε) with some additional constraint) instead
of O(ε2t), which should be the optimal rate in this regime (as it is the
case for the KdV, Boussinesq, equations or systems.). Nevertheless the KP
II equation reproduces (qualitatively) observed features of the water wave
theory. For instance the well-known picture below displays the interaction
of two oblique “line solitary waves” in the Oregon coast which shows a
striking resemblance with the so-called KP II 2-soliton.

Figure 1: Interaction of line solitons. Oregon coast
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This is due to the singularity of the dispersion relation ξ 3
1 +

ξ 2
2

ξ1
at ξ1 = 0

which of course is not present in the original water wave dispersion. This
implies a constraint on the x-mean of u which is not physical (see however
Chapter 9 below).

One can however derive a five parameters family of weakly transverse
Boussinesq systems which are consistent with the Euler system, do not suf-
fer from the unphysical zero-mass constraint and have the same precision
as the isotropic ones (see [36]) :





∂tv+∂xζ + ε(a∂ 3
x ζ −b∂ 2

x ∂tv+ v∂xv+
1
2

w∂xw)+
1
2

ε3/2w∂yw = 0

∂tw+
√

ε∂yζ + ε(−e∂ 2
x ∂tw+w∂yw+

1
2

v∂xw)+ ε3/2( f ∂ 2
x ∂yζ +

1
2

v∂yv) = 0

∂ζ +∂xv+
√

ε∂yw+ ε(v∂xζ +ζ ∂xv+ c∂ 3
x v−d∂ 2

x ∂tζ )

+ ε3/2(w∂yζ +ζ ∂yw+g∂ 2
x ∂yw) = 0,

(4.30)
where ∇ψ = (v,w) and





a = 1−θ 2

2 µ, b = 1−θ 2

2 (1−µ),

c = ( θ 2

2 − 1
6 )λ , d = ( θ 2

2 − 1
6 )(1−λ )

e = 1
2 (1−σ 2)(1−ν), f = 1

2 (1−σ 2)ν
g = (σ2

2 + 1
6 )− ( θ 2

2 − 1
6 )(1−λ ),

(4.31)

0≤ θ ≤ 1, λ , µ,σ ,ν ∈ R.

A similar system for capillary-gravity waves has been obtained in [180].

Remark 4.7. The ∂−1
x ∂ 2

y u term of the KP equation comes from the strong
uni-directionalization made in its derivation. In the weakly transverse Boussi-
nesq systems, the uni-directionalization is less strong (it is modelled by the
introduction of the larger transverse wavelength in the nondimensionaliza-
tion); this yields less disastrous consequences: the zero mass constraints are
replaced by the possible growth in the second component of the velocity,
taken into account by the assumption that

√
ε∂yψ is bounded (see [159]).

The family of a,b,c,d isotropic Boussinesq systems cannot be used
in the “KP scaling” considered here. In fact, as observed in [159], these
isotropic systems do not provide a good convergence rate in the present
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case: indeed, it is shown in [30] that the error made by these models in ap-
proximating the full water-waves equations is of size ε2C(||ζ 0||Hs , ||∇ψ0||Hs)t,
for s large enough, and where (ζ 0,ψ0) is the initial condition. For weakly
transverse initial conditions of the form

ζ 0(x,y) = ζ̃ 0(x,
√

εy), ψ0(x,y) = ψ̃0(x,
√

εy),

with ζ̃ 0 and ψ̃0 bounded in Hs(R2),, the error estimates of [30] are there-
fore ε2C(ε−1/4)t and may thus grow to infinity when ε → 0, justifying the
introduction of the weakly transverse systems which give the correct error
estimate O(ε2t).

For the sake of completeness we recall the original derivation of Kadomt-
sev and Petviashvili [122] that displays the universal nature of the KP ap-
proximation. The argument is a linear one. Actually the (formal) analysis
in [122] consists in looking for a weakly transverse perturbation of the one-
dimensional transport equation

ut +ux = 0. (4.32)

As observed in [130] the correction to (4.32) due to weak transverse
effects is independent of the dispersion in x and is related only to the finite
propagation speed properties of the transport operator M = ∂t +∂x. Recall
that M gives rise to one-directional waves moving to the right with speed
one; i.e., a profile ϕ(x) evolves under the flow of M as ϕ(x− t). A weak
transverse perturbation of ϕ(x) is a two-dimensional function ψ(x,y) close
to ϕ(x), localized in the frequency region

∣∣η
ξ

∣∣¿ 1, where ξ and η are the
Fourier modes corresponding to x and y, respectively. We thus look for a
two-dimensional perturbation M̃ = ∂t +∂x +ω(Dx,Dy) of M such that, sim-
ilarly to above, the profile of ψ(x,y) does not change much when evolving
under the flow of M̃. Here ω(Dx,Dy) denotes the Fourier multiplier with
symbol the real function ω(ξ ,η). Natural generalizations of the flow of
M in two dimensions are the flows of the wave operators ∂t ±

√
−∆ which

enjoy the finite propagation speed property.
Since, by a Taylor expansion of the dispersion relation ω(ξ ,η) =√

ξ 2 +η2 = ±ξ (1 + η2

ξ 2 )1/2 ∼ ±(ξ + 1
2

η2

ξ ) of the two-dimensional linear

wave equation assuming |ξ | and |η |
|ξ | ¿ 1, we deduce that

∂t +∂x +
1
2

∂−1
x ∂ 2

y ∼ ∂t ±
√
−∆,
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which leads to the correction ω(Dx,Dy) = 1
2 ∂−1

x ∂ 2
y in (4.32) thus to the

equation

ut +ux +
1
2

∂−1
x uyy = 0. (4.33)

Here the operator ∂−1
x is defined via Fourier transform,

̂∂−1
x f (ξ ) =

i
ξ1

f̂ (ξ ), where ξ = (ξ1,ξ2).

Of course when the transverse effects are two-dimensional, the correc-
tion is 1

2 ∂−1
x ∆⊥, where ∆⊥ = ∂ 2

y +∂ 2
z .

Remark 4.8. Equation (4.33) is reminiscent of the linear diffractive pulse
equation

2utx = ∆yu,

where ∆y is the Laplace operator in the transverse variable y, studied in
[11].

The same formal procedure is applied in [122] to the KdV equation
(10.24), assuming that the transverse dispersive effects are of the same or-
der as the x-dispersive and nonlinear terms, yielding the KP equation in the
form

ut +ux +uux +(
1
3
−T )uxxx +

1
2

∂−1
x uyy = 0. (4.34)

where T is the Bond number which measures the surface tension effects.
By change of frame and scaling, (4.34) reduces to

ut +uux +uxxx±∂−1
x uyy = 0

with the + sign (KP II) when T < 1
3 and the − sign (KP I) when T > 1

3 .
Note however that T > 1

3 corresponds to a layer of fluid of depth smaller
than 0.46 cm, and in this situation viscous effects due to the boundary layer
at the bottom cannot be ignored. One could then say that “the KP I equation
does not exist in the context of water waves”, but it appears naturally in
other contexts, for instance in the long wave approximation of the Gross-
Pitaevskii equation, see [54].

Of course the same formal procedure could also be applied to any one-
dimensional weakly nonlinear dispersive equation of the form

ut +ux + f (u)x−Lux = 0, x ∈ R, t ≥ 0, (4.35)
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where f (u) is a smooth real-valued function (most of the time polynomial)
and L a linear operator taking into account the dispersion and defined in
Fourier variable by

L̂u(ξ ) = p(ξ )Fu(ξ ), (4.36)

where the symbol p(ξ ) is real-valued. The KdV equation corresponds for
instance to f (u) = 1

2 u2 and p(ξ ) = −ξ 2. Examples with a fifth order dis-
persion in x are considered in [3], [125], [126].

This leads to a class of generalized KP equations

ut +ux + f (u)x−Lux +
1
2

∂−1
x uyy = 0, x ∈ R, t ≥ 0. (4.37)

The Cauchy problem for the KP I type equation associated to a fifth
order KdV equation is studied in [205].

4.2.3 The Camassa-Holm regime

This medium amplitude regime corresponds to µ ¿ 1 and ε = O(
√µ). It

is therefore more nonlinear than the Boussinesq one. For one-directional
one-dimensional waves it leads (see[155]) to the Camassa-Holm equation :

Ut +κUx +3UUx−Uxxt = 2UxUxx +UUxxx, (4.38)

with κ ∈ R. We refer to [59] for a rigorous derivation.

4.2.4 The Saint-Venant (nonlinear) regime

In this regime, one has ε ∼ 1 and µ¿ 1. One can prove (see [155]) that the
Dirichlet-Neumann operator has the expansion

Zµ(ζ )ψ =−µ(1+ζ )∆ψ +0(µ2),

leading to the system




∂tψ +ζ +
1
2
|∇ψ|2 = O(µ)

∂tζ +∇ψ ·∇+(1+ζ )∆ψ = O(µ).
(4.39)
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Setting U = ∇ψ and dropping the O(µ) terms we obtain the Saint-
Venant system 




∂tU +∇ζ +
1
2

∇|U |2 = 0

∂tζ +∇ ·U +∇ · (ζU) = 0.
(4.40)

Note that this system contains no dispersive terms and is purely hyper-
bolic (in the domain 1+ζ > 0).

One obtains dispersive terms by going one order further in the expan-
sion of Zµ(ζ )ψ . This leads to the Green-Naghdi system [101] (see [12, 13]
for a complete rigorous derivation).




(h+ µT[h])∂tU +h∇ζ +h(U ·∇)U +
µ
3

∇(h3DU div U) = 0

∂tζ +∇ ·U +∇ · (ζU) = 0,
(4.41)

where h = 1+ζ , T[h] =− 1
3 ∇(h3∇ ·U) and DU =−(U ·∇U)+div U.

Remark 4.9. 1. One recovers the Saint-Venant system when µ = 0.

=
2. The choice ε =

√µ instead of ε = 1 would have led to the Serre
system (see [12, 13]).

4.2.5 The full dispersion regime.

In this regime, the shallowness parameter µ = h2

λ 2 is allowed to be large
(deep water) but the steepness parameter ε̃ = ε√µ is supposed to be small.
This leads to the Full dispersion system, derived formally in [172, 173, 55]
(see [155] for a rigorous derivation):





∂tζ −TµU + ε̃(Tµ(ζ ∇TµU)+∇ · (ζU)) = 0,

∂tU +∇ζ + ε̃
(

1
2

∇|U |2−∇ζTµ ∇ζ
)

= 0,
(4.42)

where Tµ is the Fourier multiplier defined by

T̂µU(ξ ) =− tanh(
√µ|ξ |)
|ξ | (iξ ) ·Û(ξ ).



“master_livre_New”
2013/6/13
page 63

i

i

i

i

i

i

i

i

[SEC. 4.3: THE MODULATION REGIME 63

In the infinite depth case, (4.42) simplifies to




∂tζ −H V + ε̃(H (ζ ∇H V )+∇ · (ζV )) = 0,

∂tV +∇ζ + ε̃
(

1
2

∇|V |2−∇ζH ∇ζ
)

= 0,
(4.43)

where H =− 1
|D|∇

T .

4.3 The modulation regime

This regime is somewhat different from the previous ones since the asymp-
totic models approximate wave packets, that is fast oscillating waves whose
amplitude is slowly varying. One obtains equations or systems of nonlinear
Schrödinger type, the real part of the unknown being an approximation of
the slowly varying amplitude of the wave.

The first derivation of a nonlinear Schrödinger equation (NLS) as equa-
tion of the envelope of wave trains with slowly varying amplitudes was
performed in the pioneering paper [21].

The formal derivation of the nonlinear Schrödinger equation in this
regime in the context of water waves has been obtained by Zakharov in
[248]. Benney and Roskes [22] derived the so-called Benney-Roskes sys-
tem. 4 Davey and Stewartson [70] and Djordjevic and Redekopp [71]
when surface tension is included (see also Ablowitz and Segur [2]) derived
the Davey-Stewartson systems in the context of water waves. A rigorous
derivation (in the sense of consistency) of the Davey-Stewartson system is
made in [64, 65]. A complete rigorous treatment is given [155] and the
sketch below follows closely this reference.

One starts from the water waves equations on the form





∂tζ −
1√µ

G ψ = 0,

∂tψ +ζ +
ε̃
2
|∇ψ|2− ε̃

( 1√µ G ψ + ε̃∇ζ ·∇ψ)2

2(1+ ε̃2|∇ζ |2) = 0,

(4.44)

4A similar system was derived by Zakharov and Rubenchik [252] as a “universal” system
to describe the interaction of short and long waves.
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where the version G of the Dirichlet-Neumann operator is defined by

G [ζ ]ψ =
√

1+ |∇ζ |2∂nφ|z=ζ .

and, as in the Full dispersion regime, ε̃ = ε√µ = typical amplitude
typical horizontal scale = a

λ
denotes again the steepness parameter.

The linearization of (4.44) around the trivial solution is

∂tU +A0(D)U = 0, with A0(D) =

(
0 − 1√µ G0(D)

1 0

)
, (4.45)

where G0(D) =
√µ|D| tanh(

√µ|D|) and U = (ζ ,ψ)T .
Equation (4.45) admits real-valued plane wave solutions

U(X , t) =

(
iωψ01

ψ01

)
eiθ + complex conjugate,

where ψ01 is a constant and

θ = X ·k−ωt, ω = ω(k) = (|k| tanh(
√

µ|k|))1/2.

The idea is to look for approxlmate solutions of (4.44) under the form
of wave packets.

We will drop the tilde on the ε’s for the rest ot the Section.

U(X , t) =

(
iωψ01(εX ,εt)

ψ01(εX ,εt)

)
eiθ + complex conjugate. (4.46)

Since the nonlinearities in (4.44) do not preserve the structure of (4.46)
and create higher order harmonics, one must in fact look for approximate
solutions of a more general form, that is

Uapp(X , t) = U0(X , t)+ εU1(X , t)+ ε2(X , t), (4.47)

where the leading term U0 is the sum of a wave packet similar to (4.46) and
of a non oscillating term necessary to describe the creation of a mean mode
by nonlinear interaction of oscillating modes. More precisely,

U0(X , t) =

(
iωψ01(εX ,εt)

ψ01(εX ,εt)

)
eiθ + c.c.+

(
0

ψ00(εX ,εt)

)
.
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The corrector terms U1,U2 are sought under the form

U1(X , t) =

(
ζ11(εX ,εt)eiθ +ζ12(εX ,εt)e2iθ + c.c.+ζ10(εX ,εt)

ψ11(εX ,εt)eiθ +ψ12(εX ,εt)e2iθ + c.c.

)
,

U2(X , t) =
3

∑
n=1

U2n(εX ,εt)einθ + c.c.+U20(εX ,εt).

The strategy is now to plug the ansatz into (4.44) and to cancel the
leading order terms in ε .

This involves a multiscale expansion of the Dirichlet-Neumann operator
and leads eventually to the following Full dispersion Benney-Roskes system
(see [155]), where τ = εt and the spatial derivatives are taken with respect
to the slow space variable X̃ = εX .





∂τ ψ01 + i
ω(k+ εD)−ω(k)

ε
ψ01

+ εi[k ·∇ψ00 +
|k|2
2ω

(1−σ 2)ζ10 +2
|k|4
ω

(1−α)|ψ01|2]ψ01 = 0

∂τ ζ10−|D|
tanh(ε√µ|D|)

ε
ψ00 = 2ωk ·∇|ψ01|2,

∂τ ψ00 +ζ10 =−|k|2(1−σ 2)|ψ01|2,

(4.48)

where σ = tanh(
√µ|k|) and α =− 9

8σ2 (1−σ 2)2.

The classical Benney-Roskes system, derived formally in [22], in [252]
in the context of acoustic waves, in [193] for plasma waves and in [253]
as a “universal model” for interaction of short and long waves is deduced
from (4.48) by approximating the nonlocal operator iω(k + εD) by its
Taylor expansion in ε at order two, that is by the differential operator
iω + ε∇ω(k) ·∇− ε2 i

2 ∇Hω(k)∇.

The resulting system takes a simple form if one assume (without loss of
generality) that k is oriented along the x-axis, that is k = |k|ex. Following
[155] we also use the notations

ω(k) = ω̃(|k|), with ω̃(r) = (r tanh(
√

µr))1/2,

ω = ω̃(|k|), ω ′ = ω̃ ′(|k|), ω ′′ = ω̃ ′′(|k|)
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and obtain




∂τ ψ01 +ω ′∂xψ01− iε
1
2
(ω ′′∂ 2

x +
ω ′

|k|∂
2
y )ψ01

+ εi[|k|∂xψ00 +
|k|2
2ω

(1−σ 2)ζ10 +2
|k|4
ω

(1−α)|ψ01|2]ψ01 = 0

∂τ ζ10 +
√

µ∆ψ00 =−2ω |k|∂x|ψ01|2,

∂τ ψ00 +ζ10 =−|k|2(1−σ 2)|ψ01|2.
(4.49)

We will study the local Cauchy problem for Benney-Roskes systems in
Chapter 13.

One can derived a simplified system from the Benney-Roskes system
using the fact that at leading order, Ψ01 travels at the group velocity cg =
∇ω(k). We refer to [155] for details. This amounts in particular in replac-
ing ∂τ in the two last equations of (4.48) by −cg∇, where ∇ denotes here
the gradient with respect to the variable x− cgt.

One finally arrives at (see [155])





∂τ ψ01−
i
2

(
ω

′′
∂ 2

x +
ω ′

|k|∂
2
y

)
ψ01 + i(β∂xψ00 +2

|k|4
ω

(1− α̃|ψ01|2)ψ01 = 0

[(
√

µ−ω
′2)∂ 2

x +
√

µ∂ 2
y ]ψ00 =−2ωβ∂x|ψ01|2,

(4.50)
where

β = |k|(1+(1−σ 2)
ω ′|k|
2ω

, α̃ +
1
4
(1−σ 2)2,

α as previously while ζ10 is given by

ζ10 = ω̃ ′(|k|)∂xψ00−|k|2(1−σ 2)|ψ01|2.

The system (4.50) belongs to the family of Davey-Stewartson systems
{

i∂τ +a∂ 2
x ψ +b∂ 2

y ψ = (ν1|ψ|2 +ν2∂xφ)ψ,

c∂ 2
x φ +∂ 2

y φ =−δ∂x|ψ|2,
(4.51)

where b > 0 (after a possible change of unknown) and δ > 0. Those con-
ditions are satisfied by (4.50). The nature of (4.51) depends on the sign of
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a and c, leading in particular to the so-called DS I and DS II systems (see
Chapter 12).

Using the terminology in [92], (4.50) can be classified into four types :

• elliptic-elliptic if (sign a, sign c) = (+1,+1)

• hyperbolic-elliptic if (sign a, sign c) = (-1,+1)

• elliptic-hyperbolic if (sign a, sign c) = (+1,-1)

• hyperbolic-hyperbolic if (sign a, sign c) = (-1,-1).

For the gravity water waves problem, a = 1
2 ω ′′ < 0 since ω ′′ = ω̃ ′′(|k|)

and ω̃ ′′ defined by ω̃(r) = (r tanh(
√µr))1/2 is concave.

We also have that c =
√µ −ω ′2 > 0. In variables with dimensions,

this is equivalent to M < 1 where M = cg/
√

gh is the Mach number, with
cg = d

dr

√
gr tanh(hr)|r=|k| the group velocity in dimensional form.

As noticed in [215, 71] the Mach number M can be ≥ 1 in presence of
surface tension, and then c≤ 0.

The Davey-Stewartson systems with c < 0 (“DS I type Davey-Stewartson
systems”) have quite different mathematical properties than the “DS II
type” (when c > 0.) In particular the equation for φ is hyperbolic and one
should instead of a Dirichlet condition prescribes a radiation condition of
type

φ(x,y, t)→ 0 as x+ y, x− y→+∞.

This implies that in the term ∂xφψ which can be written as R(|ψ |2)ψ ,
the nonlocal operator R has order one (and not zero as in the elliptic-elliptic
or hyperbolic-elliptic cases).

Remark 4.10. The derivation of the Davey-Stewartson system breaks down
when cg =

√
gh ([71, 155]). This corresponds to a long-wave/short-wave

resonance in which the group velocity of the short (capillary) wave matches
the phase velocity of the long (gravity) wave. A different scaling and anal-
ysis are required and one obtains a coupled pair of equations of type (see
[71]) {

iAτ +λAξ ξ = BA

Bτ =−α(|A|2)ξ .
(4.52)
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The Cauchy problem for elliptic-hyperbolic or hyperbolic-hyperbolic 5

Davey Stewartson systems is studied in [163]. More results for the elliptic-
hyperbolic case are proven in [106, 53]. All these results are established
under a smallness condition on the initial data.

For purely gravity waves one thus encounters only the hyperbolic-elliptic
Davey-Stewartson systems. Some mathematical results will be presented in
Chapter 2.

5Note that the hyperbolic-hyperbolic Davey-Stewartson systems do not seem to arise in
any physical context.
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Chapter 5

Internal waves

5.1 The internal waves system

Oceans are often stratified in two (or several) layers of different densities,
due to differences of salinity or temperature (see [107]). Gravity waves
are generated at the interface (s) and the goal of this Chapter is present
a brief overview of the mathematical modeling of those phenomena. We
refer to [32, 203] (and to [62] for a different approach) for a more complete
description and we just recall the equations and the different regimes. We
will consider only the two-layers case with a flat bottom.

Here is the geometry of the two-layer system with flat bottom and rigid
lid.

69
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d

d

(t,X)

1

Fluid 1

Fluid 2

2

z

0

X

g

5.1.1 The Equations
As in Figure 1, the origin of the vertical coordinate z is taken at the rigid top
of the two-fluid system. Assuming each fluid is incompressible and each
flow irrotational, there exists velocity potentials Φi (i = 1,2) associated to
both the upper and lower fluid layers which satisfy

∆X ,zΦi = 0 in Ωi
t (5.1)

for all time t, where Ωi
t denotes the region occupied by fluid i at time t,

i = 1,2. As above, fluid 1 refers to the upper fluid layer whilst fluid 2 is the
lower layer (see again Figure 1). Assuming that the densities ρi, i = 1,2, of
both fluids are constant, we also have two Bernoulli equations, namely,

∂tΦi +
1
2
|∇X ,zΦi|2 =− P

ρi
−gz in Ωi

t , (5.2)

where g denotes the acceleration of gravity and P the pressure inside the
fluid. These equations are complemented by two boundary conditions stat-
ing that the velocity must be horizontal at the two rigid surfaces Γ1 := {z =
0} and Γ2 := {z =−d1−d2}, which is to say

∂zΦi = 0 on Γi, (i = 1,2). (5.3)

Finally, as mentioned earlier, it is presumed that the interface is given as
the graph of a function ζ (t,X) which expresses the deviation of the inter-
face from its rest position (X ,−d1) at the spatial coordinate X at time t.
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As in the case of surface waves, the interface Γt := {z = −d1 + ζ (t,X)}
between the fluids is taken to be a bounding surface, or equivalently it is
assumed that no fluid particle crosses the interface. This condition, writ-
ten for fluid i, is expressed by the relation ∂tζ =

√
1+ |∇ζ |2vi

n, where vi
n

denotes the upwards normal derivative of the velocity of fluid i at the sur-
face. Since this equation must of course be independent of which fluid is
being contemplated, it follows that the normal component of the velocity is
continuous at the interface. The two equations

∂tζ =
√

1+ |∇ζ |2∂nΦ1 on Γt , (5.4)

and
∂nΦ1 = ∂nΦ2 on Γt , (5.5)

with
∂n := n ·∇X ,z and n :=

1√
1+ |∇ζ |2

(−∇ζ ,1)T

follow as a consequence. A final condition is needed on the pressure to
close this set of equations, namely,

P is continuous at the interface. (5.6)

When surface tension between the two layers is taken into account (see
Cung The Anh [66]), the continuity of pressure across the interface should
then be replaced by

P1−P2 = σ∇.(
∇ζ√

1+ |∇ζ |2
),

where σ ≥ 0 is the surface tension parameter.

Though the case σ = 0 is physically very relevant, σ > 0 plays a ma-
jor role to establish the well-posedness of the full system ( see D. Lannes
[158]).

5.1.2 Transformation of the Equations
In this subsection, a new set of equations is deduced from the internal-wave
equations (5.1)-(5.6). Introduce the trace of the potentials Φ1 and Φ2 at the
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interface,

ψi(t,X) := Φi(t,X ,−d1 +ζ (t,X)), (i = 1,2).

One can evaluate Eq. (5.2) at the interface and use (5.4) and (5.5) to obtain
a set of equations coupling ζ to ψi (i = 1,2), namely

∂tζ −
√

1+ |∇ζ |2∂nΦi = 0,(5.7)

ρi

(
∂tψi +gζ +

1
2
|∇ψi|2−

(
√

1+ |∇ζ |2(∂nΦi)+∇ζ ·∇ψi)
2

2(1+ |∇ζ |2)
)

=−P,(5.8)

where in (5.7) and (5.8), (∂nΦi) and P are both evaluated at the interface
z = −d1 + ζ (t,X). Notice that ∂nΦ1 is fully determined by ψ1 since Φ1
is uniquely given as the solution of Laplace’s equation (5.1) in the upper
fluid domain, the Neumann condition (5.3) on Γ1 and the Dirichlet condi-
tion Φ1 = ψ1 at the interface. Following the formalism introduced for the
study of surface water waves in [65, 64, 248], we can therefore define the
Dirichlet-Neumann operator G[ζ ]· by

G[ζ ]ψ1 =
√

1+ |∇ζ |2(∂nΦ1)|z=−d1+ζ
.

Similarly, one remarks that ψ2 is determined up to a constant by ψ1 since
Φ2 is given (up to a constant) by the resolution of the Laplace equation (5.1)
in the lower fluid domain, with Neumann boundary conditions (5.3) on Γ2
and ∂nΦ2 = ∂nΦ1 at the interface (this latter being provided by (5.5)). It
follows that ψ1 fully determines ∇ψ2 and we may thus define the operator
H[ζ ]· by

H[ζ ]ψ1 = ∇ψ2.

Using the continuity of the pressure at the interface expressed in (5.6),
we may equate the left-hand sides of (5.8)1 and (5.8)2 using the operators
G[ζ ] and H[ζ ] just defined. This yields the equation

∂t(ψ2− γψ1)+g(1− γ)ζ +
1
2
(
|H[ζ ]ψ1|2− γ |∇ψ1|2

)
+N (ζ ,ψ1) = 0

where γ = ρ1/ρ2 and

N (ζ ,ψ1) :=
γ
(
G[ζ ]ψ1 +∇ζ ·∇ψ1

)2−
(
G[ζ ]ψ1 +∇ζ ·H[ζ ]ψ1

)2

2(1+ |∇ζ |2) .
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Taking the gradient of this equation and using (5.7) then gives the system
of equations





∂tζ −G[ζ ]ψ1 = 0,

∂t(H[ζ ]ψ1− γ∇ψ1)+g(1− γ)∇ζ
+ 1

2 ∇
(
|H[ζ ]ψ1|2− γ |∇ψ1|2

)
+∇N (ζ ,ψ1) = 0,

(5.9)

for ζ and ψ1. This is the system of equations that will be used in the next
sections to derive asymptotic models.

Remark 5.1. More precise definitions of the operators G[ζ ] and H[ζ ] will
be presented in Subsection 5.1.3 and in Section ??.

Remark 5.2. Setting ρ1 = 0, and thus γ = 0, in the above equations, one
recovers the usual surface water-wave equations written in terms of ζ and
ψ as in [65, 64, 248].

5.1.3 Non-Dimensionalization of the Equations
The asymptotic behaviour of (5.9) is more transparent when these equations
are written in dimensionless variables. Denoting by a a typical amplitude of
the deformation of the interface in question, and by λ a typical wavelength,
the following dimensionless indendent variables

X̃ :=
X
λ

, z̃ :=
z

d1
, t̃ :=

t
λ/
√

gd1,
,

are introduced. Likewise, we define the dimensionless unknowns

ζ̃ :=
ζ
a

, ψ̃1 :=
ψ1

aλ
√

g/d1
,

as well as the dimensionless parameter‘s

γ :=
ρ1

ρ2
, δ :=

d1

d2
, ε :=

a
d1

, µ :=
d2

1
λ 2 .

Though they are redundant, it is also notationally convenient to introduce
two other parameter‘s ε2 and µ2 defined as

ε2 =
a
d2

= εδ , µ2 =
d2

2
λ 2 =

µ
δ 2 .
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Remark 5.3. The parameters ε2 and µ2 correspond to ε and µ with d2 rather
than d1 taken as the unit of length in the vertical direction.

Before writing (5.9) in dimensionless variables, a dimensionless Dirichlet-
Neumann operator Gµ [εζ ]· is needed, associated to the non-dimensionalized
upper fluid domain

Ω1 = {(X ,z) ∈ Rd+1,−1+ εζ (X) < z < 0}.

Throughout the discussion, it will be presumed that this domain remains
connected, so there is a positive value H1 such that

1− εζ ≥ H1 on Rd . (5.10)

Definition 5.1. Let ζ ∈W 2,∞(Rd) be such that (5.10) is satisfied and let
ψ1 ∈ H3/2(Rd). If Φ1 is the unique solution in H2(Ω1) of the boundary-
value problem

{
µ∆Φ1 +∂ 2

z Φ1 = 0 in Ω1,
∂zΦ1 |z=0 = 0, Φ1 |z=−1+εζ (X)

= ψ1,
(5.11)

then Gµ [εζ ]ψ1 ∈ H1/2(Rd) is defined by

Gµ [εζ ]ψ1 =−µε∇ζ ·∇Φ1 |z=−1+εζ
+∂zΦ1 |z=−1+εζ

.

Remark 5.4. Another way to approach Gµ is to define

Gµ [εζ ]ψ1 =
√

1+ ε2|∇ζ |2∂nΦ1 |z=−1+εζ

where ∂nΦ1 |z=−1+εζ
stands for the upper conormal derivative associated to

the elliptic operator µ∆Φ1 +∂ 2
z Φ1.

In the same vein, one may define a dimensionless operator Hµ,δ [εζ ]·
associated to the non-dimensionalized lower fluid domain

Ω2 = {(X ,z) ∈ Rd+1,−1−1/δ < z <−1+ εζ (X)},

where it is assumed as in (5.10) that there is an H2 > 0 such that

1+ εδζ ≥ H2 on Rd . (5.12)
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Definition 5.2. Let ζ ∈W 2,∞(Rd) be such that (5.10) and (5.12) are sat-
isfied, and suppose that ψ1 ∈ H3/2(Rd) is given. If the function Φ2 is the
unique solution (up to a constant) of the boundary-value problem

{
µ∆Φ2 +∂ 2

z Φ2 = 0 in Ω2,
∂zΦ2 |z=−1−1/δ

= 0, ∂nΦ2 |z=−1+εζ (X)
= 1

(1+ε2|∇ζ |2)1/2 Gµ [εζ ]ψ1,

(5.13)
then the operator Hµ,δ [εζ ]· is defined on ψ1 by

Hµ,δ [εζ ]ψ1 = ∇(Φ2 |z=−1+εζ
) ∈ H1/2(Rd).

Remark 5.5. In the statement above, ∂nΦ2 |z=−1+εζ
stands here for the up-

wards conormal derivative associated to the elliptic operator µ∆Φ2 +∂ 2
z Φ2,

√
1+ ε2|∇ζ |2∂nΦ2 |z=−1+εζ

=−µε∇ζ ·∇Φ2 |z=−1+εζ
+∂zΦ2 |z=−1+εζ

.

The Neumann boundary condition of (5.13) at the interface can also be
stated as ∂nΦ2 |z=−1+εζ

= ∂nΦ1 |z=−1+εζ
.

Remark 5.6. Of course, the solvability of (5.13) requires the condition∫
Γ ∂nΦ2dΓ = 0 (where dΓ =

√
1+ ε2|∇ζ |2dX is the Lebesgue measure

on the surface Γ = {z = −1 + εζ}). This is automatically satisfied thanks
to the definition of Gµ [εζ ]ψ1. Indeed, applying Green’s identity to (5.11),
one obtains

∫

Γ
∂nΦ2dΓ =

∫

Γ
∂nΦ1dΓ =−

∫

Ω1

(µ∆Φ1 +∂ 2
z Φ1) = 0.

Example 5.3. The operators Gµ [εζ ]· and Hµ,δ [εζ ]· have explicit expres-
sions when the interface is flat (i.e. when ζ = 0). In that case, taking
the horizontal Fourier transform of the Laplace equations (5.11) and (5.13)
transforms them into ordinary differential equations with respect to z which
can easily be solved to obtain

Gµ [0]ψ =−√µ|D| tanh(
√

µ|D|)ψ and Hµ,δ [0]ψ =− tanh(
√µ|D|)

tanh(
√µ
δ |D|)

∇ψ .
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The equations (5.9) can therefore be written in dimensionless variables
as




∂t̃ ζ̃ −
1
µ

Gµ [εζ̃ ]ψ̃1 = 0,

∂t̃
(
Hµ,δ [εζ̃ ]ψ̃1− γ∇ψ̃1

)
+(1− γ)∇ζ̃

+
ε
2

∇
(
|Hµ,δ [εζ̃ ]ψ̃1|2− γ |∇ψ̃1|2

)
+ ε∇N

µ,δ (εζ̃ , ψ̃1) = 0,

(5.14)
where N µ,δ is defined for all pairs (ζ ,ψ) smooth enough by the formula

N
µ,δ (ζ ,ψ) := µ

γ
( 1

µ Gµ [ζ ]ψ +∇ζ ·∇ψ
)2−

( 1
µ Gµ [ζ ]ψ +∇ζ ·Hµ,δ [ζ ]ψ

)2

2(1+ µ |∇ζ |2) .

When surface tension is present, one just adds − σ
ρ2

∇K(ζ̃ ) to the LHS

of the second equation, where K(ζ̃ ) = ( ∇ζ̃√
1+|∇ζ̃ |2

).

We will later derive models describing the asymptotics of the non-
dimensionalized equations (5.14) in various physical regimes correspond-
ing to different relationships among the dimensionless parameter‘s ε , µ and
δ .
Remark 5.7. Linearizing the equations (5.14) around the rest state, one
finds the equations





∂tζ −
1
µ

Gµ [0]ψ1 = 0,

∂t
(
Hµ,δ [0]ψ1− γ∇ψ1

)
+(1− γ)∇ζ = 0.

The explicit formulas in Example 5.3 thus allow one to calculate the lin-
earized dispersion relation

ω2 = (1− γ)
|k|√µ

tanh(
√µ|k|) tanh(

√µ
δ |k|)

tanh(
√µ|k|)+ γ tanh(

√µ
δ |k|)

; (5.15)

corresponding to plane-wave solutions eik·X−iωt . In particular, the expected
instability is found when γ > 1, corresponding to the case wherein the heav-
ier fluid lies over the lighter one. One also checks that the classical disper-
sion relation

ω2 =
1√µ
|k| tanh(

√
µ|k|)
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for surface water waves is recovered when γ = 0 and δ = 1.
Thus the linearization around the rest state is Hadamard well posed

when γ ≤ 1 but the linearization around a state presenting a discontinuity
of the horizontal velocities at the interface leads to Kelvin-Helmholtz insta-
bilities (see [49, 113] and the experiments in [234]), possibly stabilized by
surface tension ( [115, 158]).

It is worth to consider the related problem of the linear stability of hor-
izontal shear flows. It is well known (see [49], §100), that for horizontal
shear flows with constant horizontal velocities U1 and U2 the flat interface
develops instabilities for perturbations in the direction of streaming having
wave numbers k such that (in variables with dimension)

|k| ≥ kmin =
g(ρ2

2 −ρ2
1 )

ρ1ρ2(U2−U1)2 (5.16)

This formula shows in particular the stabilizing role of gravity on long
waves. However, the surface tension effects are very weak or negligible
in oceanographic situations. Furthermore, one observes “stable” waves
both in experiments and in oceans (see the above pictures) in relevant, long
enough, time scales.

In a recent paper which we will comment on in Section 6, D. Lannes
[158] studies the Cauchy problem for the two-layer system with surface
tension under a condition which extends both the classical Taylor sign con-
dition and the Chandrasekhar condition. This allows for sufficiently large
time existence and justification of some of the asymptotic models.

On the other hand, in presence of surface tension, the dispersion relation
of the two-layer system reads :

ω2 = (1− γ + ε
√

µν |k|2) |k|√µ
tanh(

√µ|k|) tanh(
√µ
δ |k|)

tanh(
√µ|k|)+ γ tanh(

√µ
δ |k|)

,

where
ν =

σ
ρ2λ 2 .

5.2 Asymptotic models
As in the case of surface waves one has to derive asymptotic models to
describe the long time dynamics in various regimes. There are however
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complications here due to the large number of parameters. We will only
sketch the description of the relevant regimes and write down the asymp-
totic systems they lead to. We refer to [32, 203] for details.

Here is a summary of the different asymptotic regimes investigated in
this paper. It is convenient to organize the discussion around the parame-
ters ε and ε2 = εδ (the nonlinearity, or amplitude, parameters for the upper
and lower fluids, respectively), and in terms of µ and µ2 = µ

δ 2 (the long-
wavelength parameters for the upper and lower fluids). Notice that the as-
sumptions made about δ are therefore implicit.

The interfacial wave is said to be of small amplitude for the upper fluid
layer (resp. the lower layer) if ε ¿ 1 (resp. ε2 ¿ 1) and the upper (resp.
lower) layer is said to be shallow if µ¿ 1 (resp. µ2¿ 1). This terminology
is consistent with the usual one for surface water waves (recovered by tak-
ing ρ1 = 0 and δ = 1). In the discussion below, the notation regime 1/regime
2 means that the wave motion is such that the upper layer is in regime 1
(small amplitude or shallow water) and the lower one is in regime 2.

1. The small-amplitude/small-amplitude regime: ε¿ 1, ε2¿ 1. This
regime corresponds to interfacial deformations which are small for both the
upper and lower fluid domains. Various sub-regimes are defined by making
further assumptions about the size of µ and µ2.

2. The Full Dispersion /Full Dispersion (FD/FD) regime: ε ∼ ε2¿ 1
and µ ∼ µ2 = O(1) (and thus δ ∼ 1). In this regime, the shallowness pa-
rameters are not small for either of the fluid domains, and the full dispersive
effects must therefore be kept for both regions; the asymptotic model cor-
responding to this situation is





∂tζ + 1√µ
∇
|D| ·

( Tµ Tµ2
γTµ2 +Tµ

v
)

+ ε2√µ
∇
|D| ·

( Tµ Tµ2
γTµ2+Tµ

B(ζ ,
Tµ2

γTµ2 +Tµ
v)
)

− ε∇ · (ζ Tµ2
γTµ2 +Tµ

v)+ ε|D|Tµ
(
ζ ∇
|D| · (

Tµ Tµ2
γTµ2 +Tµ

v)
)

= 0
∂tv+(1− γ)∇ζ

+ ε
2 ∇
(∣∣ Tµ

γTµ2 +Tµ
v
∣∣2− γ

∣∣ Tµ2
γTµ2 +Tµ

v
∣∣2)+ ε γ−1

2 ∇
( ∇
|D| · (

Tµ Tµ2
γTµ2 +Tµ

v)
)2

= 0,

(5.17)
where, Tµ = tanh(

√µ|D|), Tµ2 = tanh(
√µ2|D|) and the bilinear mapping
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B(·, ·) is given by

B(ζ ,∇ψ1) =
√

µ2
|D|

tanh(
√µ2|D|)

Π
[
ζ (1+

tanh(
√µ|D|)

tanh(
√µ2|D|)

)∇ψ1
]

+
√

µ2∇
[(

1+
tanh(

√µ|D|)
tanh(

√µ2|D|)
)
(ζ

tanh(
√µ|D|)
|D| ∆ψ1)

]
. (5.18)

3. The Boussinesq / Full dispersion (B/FD) regime: µ ∼ ε ¿ 1, µ2 ∼
1. This regime corresponds to the case where the flow has a Boussinesq
structure in the upper part (and thus dispersive effects of the same order as
nonlinear effects), but with a shallowness parameter not small in the lower
fluid domain. This configuration occurs when δ 2 ∼ ε , that is, when the
lower region is much larger than the upper one. A further analysis of the
asymptotic model yields a three-parameter family of equivalent systems




(
1−µb∆

)
∂tζ +

1
γ

∇ ·
(
(1− εζ )vβ

)

−
√µ
γ2 |D|coth(

√
µ2|D|)∇ ·vβ

+ µ
γ

(
a− 1

γ2 coth2(
√µ2|D|)

)
∆∇ ·vβ = 0

(1−µd∆)∂tvβ +(1− γ)∇ζ − ε
2γ

∇|vβ |2 + µc(1− γ)∆∇ζ = 0,

(5.19)
where vβ = (1−µβ∆)−1v and the constants a, b, c and d are defined by

a =
1
3
(1−α1−3β ), b =

1
3

α1, c = βα2, d = β (1−α2),

with α1 ≥ 0, β ≥ 0 and α2 ≤ 1.

Remark 5.8. The dispersion relation associated to (5.19) is

ω2 =
1− γ

γ
|k|2(1−µc|k|2)

×
1−

√µ
γ |k|coth(

√µ2|k|)−µ|k|2
(
a− 1

γ2 coth2(
√µ2|k|)

)

(1+ µb|k|2)(1+ µd|k|2) ,

and (5.19) is therefore linearly well-posed when b,d ≥ 0 and a,c≤ 0. No-
tice that in the case α1 = α2 = β = 0, one has a = 1

3 and b = c = d = 0 and
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the corresponding system is thus linearly ill-posed. The freedom to choose
a well-posed model is just one of the advantages of a three-parameter family
of formally equivalent systems. The same remark has already been made
about the Boussinesq systems for wave propagation in the case of surface
gravity waves [34, 30]).

It has been shown in [67] that the linearly well-posed B/FD systems are
also locally nonlinearly well-posed provided one at least of the coefficients
b, d is strictly positive.

4. The Boussinesq/Boussinesq (B/B) regime: µ ∼ µ2 ∼ ε ∼ ε2¿ 1. In
this regime, one has δ ∼ 1 and the flow has a Boussinesq structure in both
the upper and lower fluid domains. Here again, a three-parameter family of
asymptotic systems is obtained.




(
1−µb∆

)
∂tζ +

1
γ +δ

∇ ·vβ + ε
δ 2− γ

(γ +δ )2 ∇ · (ζ vβ )+ µa∇ ·∆vβ = 0

(
1−µd∆

)
∂tvβ +(1− γ)∇ζ +

ε
2

δ 2− γ
(δ + γ)2 ∇|vβ |2 +(1− γ)µc∆∇ζ = 0,

(5.20)
where vβ = (1−µβ∆)−1v, and where the coefficients a,b,c,d are provided
by

a =
(1−α1)(1+ γδ )−3δβ (γ +δ )

3δ (γ +δ )2 , b = α1
1+γδ

3δ (γ+δ ) ,

c = βα2, d = β (1−α2),

with α1 ≥ 0, β ≥ 0 and α2 ≤ 1.
Remark 5.9. Taking γ = 0 and δ = 1 in the Boussinesq/Boussinesq equa-
tions (5.20), reduces them to the system





(
1−µ

α1

3
∆
)
∂tζ +∇ · ((1+ εζ )v)+ µ

1−α1−3β
3

∇ ·∆v = 0
(
1−µβ (1−α2)∆

)
∂tv+∇ζ +

ε
2

∇|v|2 + µβα2∆∇ζ = 0,

which is exactly the family of formally equivalent Boussinesq systems de-
rived in [?, 30].
Remark 5.10. The dispersion relation associated to (5.20) is

ω2 = (1− γ)|k|2
( 1

γ+δ −µa|k|2)(1−µc|k|2)
(1+ µb|k|2)(1+ µd|k|2) .
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It follows that (5.20) is linearly well-posed when a,c ≤ 0 and b,d ≥ 0.
The system corresponding to α1 = α2 = β = 0 is ill-posed (one can check
that a = 1+γδ

3δ (γ+δ )2 > 0). This system corresponds to a Hamiltonian system
derived in [62] (see their formula (5.10)). As mentioned before, the present,
three-parameter family of systems allows one to circumvent the problem of
ill-posedness without the need of taking into account higher-order terms in
the expansion, as in [62]).

The Boussinesq/Boussinesq systems (5.20) are essentially similar to the
familly of classical Boussinesq systems for surface waves which were de-
rived in [34], [30] and we have seen in the Surface waves Section. It was
proved in [35], [72] ( see also [67]) that the linearly well-posed systems are
also locally nonlinearly well-posed in suitable Sobolev classes. Moreover
they are Hamiltonian systems when b = d.

5. The Shallow Water/Shallow Water (SW/SW) regime: µ ∼ µ2¿ 1.
This regime, which allows relatively large interfacial amplitudes (ε ∼ ε2 =
O(1)), does not belong to the regimes singled out above. The structure of
the flow is then of shallow water type in both regions; in particular, the
asymptotic model





∂tζ + 1
γ+δ ∇ ·

(
h1Q[ γ−1

γ+δ εδζ ](h2v)
)

= 0,

∂tv+(1− γ)∇ζ
+ ε

2 ∇
(∣∣v− γ

γ+δ Q[ γ−1
γ+δ εδζ ](h2v)

∣∣2

− γ
(γ+δ )2

∣∣Q[ γ−1
γ+δ εδζ ](h2v)

∣∣2
)

= 0,

(5.21)

where h1 = 1− εζ , h2 = 1+ εδζ , and the operator Q is defined in Lemma
?? below is a nonlinear, but non-dispersive system, given in (5.21), which
degenerates into the usual shallow water equations when γ = 0 and δ = 1.
It is very interesting in this case that a non-local term arises when d = 2.
Such a nonlocal term does not appear in the one-dimensional case, nor in
the two-dimensional shallow water equations for surface waves.

Lemma 5.4. Assume that ζ ∈ L∞(Rd) is such that |ε2ζ |∞ < 1. Let also
W ∈ L2(Rd)d . Then
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i. One can define the mapping Q[ε2ζ ] as

Q[ε2ζ ] :
L2(Rd)d → L2(Rd)d

U 7→
∞

∑
n=0

(−1)n(Π(ε2ζ Π·))n(ΠU)

ii. There exists a unique solution V ∈ L2(Rd)d to the equation

∇ · (h2V ) = ∇ ·W, (h2 = 1+ ε2ζ )

such that ΠV = V and one has V = Q[ε2ζ ]W;
iii- If moreover ζ ∈Hs(Rd) and W ∈Hs(Rd)d (s > d/2+1) then Q[ε2ζ ]W ∈
Hs(Rd)d and

|Q[ε2ζ ]W |Hs ≤C(|ε2ζ |Hs ,
1

1−|ε2ζ |∞
)|W |Hs .

Remark 5.11. Taking γ = 0 and δ = 1 in the SW/SW equations (5.21)
yields the usual shallow water equations for surface water waves (recall
that it follows from Lemma 5.4 that ∇ · [(1− εζ )Q[−εζ ]((1 + εζ )v)] =
∇ · ((1+ εζ )v)).

Remark 5.12. In the one-dimensional case d = 1, one has

1
γ +δ

Q[
γ−1
γ +δ

εδζ ](h2v) =
h2

δh1 + γh2

and the equations (5.21) take the simpler form




∂tζ +∂x
( h1h2

δh1+γh2
v
)

= 0,

∂tv+(1− γ)∂xζ + ε
2 ∂x
( (δh1)2−γh2

2
(δh1+γh2)2 |v|2

)
= 0,

which coincides of course with the system (5.26) of [62]. The presence of
the nonlocal operator Q, which does not seem to have been noticed before,
appears to be a purely two dimensional effect.

1. The Shallow Water/Small Amplitude (SW/SA) regime: µ ¿ 1 and
ε2¿ 1. In this regime, the upper layer is shallow (but with possibly large
surface deformations), and the surface deformations are small for the lower
layer (but it can be deep). Various sub-regimes arise in this case also.
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2. The Shallow Water/Full dispersion (SW/FD) regime: µ ∼ ε2
2 ¿ 1,

ε ∼ µ2 ∼ 1. The dispersive effects are negligible in the upper fluid, but the
full dispersive effects must be kept in the lower one to get





∂tζ +
1
γ

∇ · (h1v)−
√µ
γ2 ∇ ·

(
h1|D|coth(

√
µ2|D|)Π(h1v)

)
= 0,

∂tv+(1− γ)∇ζ − ε
2γ

∇
[
|v|2−2

√µ
γ

v ·
(
|D|coth(

√
µ2|D|)Π(h1v)

)]
= 0,

(5.22)
where h1 = 1− εζ and Π =−∇∇T

∆ .

3. The Intermediate Long Waves (ILW) regime: µ ∼ ε2 ∼ ε2 ¿ 1,
µ2 ∼ 1. In this regime, the interfacial deformations are also small for the
upper fluid (which is not the case in the SW/FD regime). This allows some
simplifications, and it is possible (see (5.23)) to derive a one-parameter
family of equivalent systems.

These depend upon the parameter α and have the form





[1+
√

µ
α
γ
|D|coth(

√
µ2|D|)]∂tζ +

1
γ

∇ · ((1− εζ )v)

− (1−α)

√µ
γ2 |D|coth(

√
µ2|D|)∇ ·v = 0,

∂tv+(1− γ)∇ζ − ε
2γ

∇|v|2 = 0.

(5.23)

Remark 5.13. The ILW equation derived in [?, 133] is obtained as the uni-
directional limit of the one dimensional (d = 1) version of (5.23) – see for
instance §5.5 of [62].

4. The Benjamin-Ono (BO) regime: µ ∼ ε2 ¿ 1, µ2 = ∞. For com-
pleteness, we investigate the Benjamin-Ono regime, characterized by the
assumption δ = 0 (the lower layer is of infinite depth). Taking µ2 = ∞
in (5.23) leads one to replace coth(

√µ2|D|) by 1. The following two-
dimensional generalization of the system (5.31) in [62] emerges in this
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situation.
{

[1+
√µ α

γ |D|]∂tζ + 1
γ ∇ · ((1− εζ )v)− (1−α)

√µ
γ2 |D|∇ ·v = 0,

∂tv+(1− γ)∇ζ − ε
2γ ∇|v|2 = 0.

(5.24)
Neglecting the O(

√µ) = O(ε) terms, one finds that ζ must solve a wave

equation (with speed
√

1−γ
γ ). Thus, in the case of horizontal dimension

d = 1, any interfacial perturbation splits up at first approximation into two
counter-propagating waves. If one includes the O(

√µ,ε) terms, one ob-
tains the one-parameter family

(1+
√

µ
α
γ
|∂x|)∂tζ +c∂xζ−ε

3
4

c∂xζ 2−
√µ
2γ

c(1−2α)|∂x|∂xζ = 0, (5.25)

of regularized Benjamin-Ono equations (see ??). Here, c =
√

1−γ
γ . The

usual Benjamin-Ono equation is recovered by taking α = 0. (5.25).

The range of validity of these regimes is summarized in the following
table.

ε = O(1) ε ¿ 1
µ = O(1) Full equations δ ∼ 1: FD/FD eq’ns
µ ¿ 1 δ ∼ 1: SW/SW eq’ns µ ∼ ε and δ 2 ∼ ε: B/FD eq’ns

δ 2 ∼ µ ∼ ε2
2 : SW/FD eq’ns µ ∼ ε and δ ∼ 1: B/B eq’ns

δ 2 ∼ µ ∼ ε2: ILW eq’ns
δ = 0 and µ ∼ ε2: BO eq’ns

Remark 5.14. The small amplitude/shallow water regime is not considered
here. It corresponds to the situation where the upper fluid domain is much
larger than the lower one, which is more of an atmospheric configuration
than an oceanographic case.

Remark 5.15. The two-layer system is an idealization. In the actual ocean
the density varies rapidly but continuously between two or more layers of
nearly constant densities in a narrow layer called the pycnocline. We do
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not know of a rigorous and systematic derivation of asymptotic models for
this situation. In [151] (see also [171] when shear is taken into account),
one-dimensional weakly nonlinear models are formally derived. They write

ut + c0ux +αuux− c0∂ 2
x

∫ ∞

−∞
G(x−ξ )u(ξ , t)dξ , (5.26)

where

G(x) =
β1

2H1
{coth

(
πx

2H1

)
− sign (x)}+ β1

2H2
{coth

(
πx

2H2

)
− sign (x)}

where H1 and H2 are the dimensionless (scaled by wave length) depths of
the two layers and the constants α and c0 depend on the density stratifica-
tion ρ(z). Note that (5.26) is reminiscent of the ILW equation obtained as
the unidirectional limit of the one dimensional (d = 1) and one directional
version of (5.23). We refer to [10] for mathematical issues concerning
(6.3) (and its extension of a system derived in [166, 167] for the transfer of
energy between waves running along neighbouring pycnoclines): Cauchy
problem, existence and stability of solitary waves.

It would be interesting to derive rigorously asymptotic models in this
situation and to investigate the limit as the width of the pycnocline tends to
zero, that is the discontinuous limit of a continuous stratification.
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Chapter 6

Justification of the
asymptotic equations

6.1 Justification of the asymptotic equations
As we have seen in the previous chapters, the asymptotic equations or sys-
tems derived from the Euler equations with free surface (or surfaces) are
supposed to describe the long time dynamics of the original systems in spe-
cific regimes.

A not too bad analogy is the convergence theory of finite difference
schemes (Lax-Richtmeyer theorem):

A finite difference scheme approximating a PDE problem P is conver-
gent if and only if

• P is well-posed.

• The scheme is consistent with P. This is not a dynamical notion
(just algebraic).

• The scheme is stable. This is a dynamical notion (well-posedness).

For the water waves asymptotic models the full rigorous justification
involves four steps that are in the same spirit.

86
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6.1.1 Consistency
The various approximations of the non local Dirichlet-Neumann or inter-
face operators lead to consistent systems in the sense of the following defi-
nitions

Definition 6.1. The water wave equations (4.13) are consistent with a sys-
tem S of of d + 1 equations for ζ and v if for all sufficiently smooth solu-
tions (ζ ,ψ1), the pair ζ ,v solves S up to a small residual called the preci-
sion of the asymptotic model.

It can be rigorously established (see [32]) that the internal-wave equa-
tions (5.14) are consistent with the asymptotic models for (ζ ,v) described
in Chapter 5 in the following precise sense.

Definition 6.2. The internal wave equations (5.14) are consistent with a
system S of d + 1 equations for ζ and v if for all sufficiently smooth so-
lutions (ζ ,ψ1) of (5.14) such that (5.10) and (5.12) are satisfied, the pair
(ζ ,v = Hµ,δ [εζ ]ψ1− γ∇ψ1) solves S up to a small residual called the pre-
cision of the asymptotic model.

Remark 6.1. 1. The rigorous approximations of the non local operators
provides Sobolev type norms to evaluate the residual terms.

2. The definition of consistency does not require the well-posedness
of the water wave or the internal wave equations, neither of the asymptotic
systems, and of course does not fully justify the asymptotic systems. It does
not involve any Dynamics of the underlying systems and as aforementioned
is similar to the notion of consistency for a finite difference scheme (which
of course needs not to be convergent, even if it is consistent!).

On the other hand, the other properties involves the dynamics of the
systems and ate the counterparts of stability for a finite difference scheme
(and of the well-posedness of the system the scheme is supposed to approx-
imate).

6.1.2 Long time existence for the Euler systems
This is the more difficult step, since even the local-wellposedness of the
corresponding Cauchy problems gives serious difficulties.
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The water wave systems

A pioneering result is the work by W. Craig [61] who treated the one di-
mensional water waves problem in the KdV scaling. For most asymptotic
regimes excluding the modulation one, long time existence for the water
wave problem has been established in [12].

Long time existence in the modulation regime (the Schrödinger one)
has been established in [233] in the infinite depth case. The finite depth
case seems to be open.

The Cauchy problem for the two-layer system

The Cauchy problem for the two-layer system leads to serious difficulties
because of the possible Hadamard type instabilities due to shearing at the
interface.

We sketch here the solution given by D. Lannes [158] to the apparent
paradox mentioned in the Introduction : the presence of Kelvin-Helmholtz
instabilities for the two-layer system in absence of surface tension, while
stable (in the sense of “observable on a relevant time scale”) internal waves
are observed in the ocean or in the laboratory despite the fact that surface
tension effects are physically negligible.

To sum up, the solution of the aforementionned “paradox” is, as ex-
pressed in [158], that “the Kelvin-Helmholtz instabilities appear above the
frequency threshold for which surface tension is relevant, while the main
(observable) part of the wave is located below this threshold. The Kelvin-
Helmholtz instabilities are regularized by surface tension, while the main
part of the wave is unaffected by it. This is gravity that prevent Kelvin-
Helmholtz instabilities for low fequencies”.

This scenario is rigorously proved in [158] and we sketch below its
precise mathematical expression.

We will use here the notation− (resp. +) to index the quantities related
to the upper (resp. lower) layer, so that for instance ρ+ > ρ−.

An important result in the analysis of [158] is a new nonlinear criterion
for the stability of two-fluids interfaces. It expresses a condition on the
jump of the vertical derivative of the pressure P across the interface and
reads

−∂zP± |z=ζ >
1
4

(ρ+ρ−)2

σ(ρ+ +ρ−)2 c(ζ )|ω|4∞, (6.1)
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where ω = V± |z=ζ is the jump of the horizontal velocity at the interface,
c(ζ ) is a constant that depends on the geometry of the problem and that can
be estimated quite precisely and σ is the surface tension coefficient.

This criterion is somewhat reminiscent, (but stronger) of the classical
Rayleigh-Taylor criterion for surface water waves (thus ρ− = 0) which
writes in absence of surface tension and in infinite depth,

−∂zP |surface > 0. (6.2)

We recall that the linearization of the Rayleigh-Taylor criterion around
the rest state is just g > 0 where g is the vertical acceleration of gravity.

Both quantities −∂zP± |z=ζ and |ω|∞ are not easy to evaluate experi-
mentally. D. Lannes establishes a practical criterion in the shallow water
regime (the wave length of the perturbation is large relatively to the depths
of the layers). In this regime one can use the hydrostatic approximation
with a fairly good precision, that is evaluate the jump in the vertical deriva-
tive of the pressure by

−∂zP∼ (ρ+−ρ−)g

One can also prove that ω has a typical size of order a
H
√

g′H, where g′

is the reduced gravity, g′ = ρ+−ρ−
ρ++ρ− g, a a typical amplitude of the interface

and H = (ρ+ + ρ−) H+H−
ρ+H−+ρ−H+ . Plugging those expressions into (6.1)

shows the relevance of the dimensionless parameter T ,

T =
(ρ+ρ−)2

(ρ+ +ρ−)3
a4

H2
g′

4σ
.

This leads to a very simple practical stability criterion in the shallow
water regime,

T ¿ 1 : Stable configuration; T À 1 : Unstable configuration.

When T ∼ 1, one should consider the exact criterion (6.1).

The stability criterion (6.1) (or its practical version above) ensures the
existence of a “stable” solution of the two-layer system, that is a solution
that exists on a time scale which does not vanish as the surface tension
parameter tends to zero, and which is uniformly bounded from below with
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respect to the physical parameters ε and µ . This leads in particular to the
full justification of the SW/SW system studied in Section 4.

One also finds in [158] interesting comparisons of the theoretical results
with the experiments of [176], [123], [102].

6.1.3 Large time existence for the asymptotic models
The aim is here to establish the well-posedness of the asymptotic models on
time scales at least as large as the ones on which the solutions of the original
systems are proved to exist. As we already noticed, this question is a trivial
one when the asymptotic models are, in the case of unidirectional waves,
scalar equations for which the global existence can be established. This is
not so however for most of two-directional waves systems, and this has to
be done case by case. We will go back to this issue in Chapter 11, where
we will study in some detail three systems of surface or internal waves.

6.1.4 Stability
Assuming that both the original system and the asymptotic model are well-
posed on the relevant time scales, it remains to prove the optimal error
estimates between the exact solution and the approximate one provided by
the asymptotic system. This is done in detail in [156]. For instance, for the
(a,b,c,d) Boussinesq systems for surface waves, this error is shown in [30]
to be of order ε2t.
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Chapter 7

The Cauchy problem for
the KdV and the BBM
equation

7.1 The Cauchy problem for the KdV equation

We will state and essentially prove here a global well-posedness result for
the Korteweg -de Vries equation due to Kenig Ponce and Vega [139]. Al-
though it does not give the optimal result for the regularity of the initial
data, it implies the global well-posedness in H1(R) which is required to
study the dynamics of the equation (in particular the orbital stability of the
solitary waves). We recall that as far as the rigorous connexion with the
water wave system is concerned, only a local well-posedness in H s with
s large is required, this implies well-posedness on time intervals of length
O( 1

ε ), see Section 2.3 of Chapter 2.

The result we will set is also interesting in that it is a typical example
of how to use the dispersive properties of the linear group to get non trivial
results on the Cauchy problem.

We recall that the Lp norm, 1≤ p≤+∞ is denoted | · |p.

91
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For α ∈ R, we set

Dα
x f (x) = cα

∫ ∞

−∞
eixξ |ξ |α f̂ (ξ , t)dξ

where f̂ denotes the Fourier transform with respect to x.

We first recall the dispersive properties of the Airy group S(t) = et∂ 3
x

(not all of them will be used in the sequel). We refer for instance to the
book [162] for a presentation of various dispersive estimates, in particular
the ones used here.

1. Unitarity.
|S(t)u0|2 = |u0|2, ∀t ∈ R. (7.1)

2. Dispersion (consequence of Ai ∈ L∞(R) where the Airy function is
defined here byAi = F−1(eiξ 3

)).

|S(t)u0|∞ ≤
C

t1/3 |u0|1, t 6= 0. (7.2)

3. Strichartz estimates (consequence of 2.)
For any admissible pair (q,r), that is 2 ≤ r ≤ +∞ and 1

q = 1
3 ( 1

2 − 1
r ),

one has for Λ f (t) =
∫ t

0 e(t−s)∂ 3
x f (s)ds,

• ||S(t) f ||Lq
t (Lr

x)
≤C|| f ||2.1

•||Λ f ||Lq
t (Lr

x
≤C|| f ||

L
q′1
t L

r′1
x

, for any couple of admissible pairs (q,r),(q1,r1).

•||Λ f ||L∞
t (L2

x) ≤ || f ||Lq′
t Lr′

x
.

•||Λ f ||Lq
t (Lr

x)
≤C|| f ||L1

t L2
x
.

4. Strichartz estimates with smoothing [137] . They are consequence
of |Dx|1/2Ai ∈ L∞(R)) which implies with a complex interpolation result of
Stein ([220])

|DxS(t)u0|2/(1θ) ≤C|t|−θ(α+1)/3|u0|2/(1+θ),

1Lq
t means Lq(Rt). Lr

x means Lr(Rx). Lq
T means Lq(−T,T ).
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for any (α,θ) ∈ [0,1]× [0, 1
2 ].

For any (α,θ) as above and (q, p) = ( 6
θ(α+1) ,

α
1−θ ),

•||Dαθ/2
x S(t)u0||Lq

t Lp
x
≤C|u0|2.

•||∫ ∞
−∞ Dαθ

x S(t− s)g(·,s)ds||Lq
t (Lp

x ) ≤C||g||
Lq′

t Lp′
x

.

•||∫ t
0 Dαθ

x S(t− s)g(·,s)ds||Lq
T Lp

x
≤C||g||

Lq′
T Lp′

x
.

Remark 7.1. For an operator L with symbol p(ξ ),the smoothing for the
free group is given (in Fourier space) by the square root |H(p(ξ ))|1/2of the
hessian determinant [137], thus no such global smoothing effect is true for
the Schrödinger group.

5. Local smoothing.

•||∂xS(t)u0||L∞
x (L2

t ) ≤C||u0||2.

•||∂ 2
x

∫ t
0 S(t− s) f (s)ds||L∞

x L2
t
≤C|| f ||L1

x L2
t
.

Remark 7.2. (i) In term of L2 space in x the smoothing is local : for almost
every t, S(t)u0 ∈ L2

loc(R). It cannot be global since S(t) is unitary in L2(R).

(ii) For general symbols p(ξ ) the local gain of smoothness is given by
|∇p(ξ )|1/2.

6. Maximal function estimate (see [138]).
Let s > 3

4 . Then, ∀u0 ∈ Hs(R), ∀ρ > 3
4

•||S(t)u0||L2
x L∞

T
≤C(1+T )ρ ||u0||Hs .

7. For u0 in the homogeneous Sobolev space Ḣ
1
4 (R) = { f ∈ S′,

|ξ | 14 f̂ (ξ ) ∈ L2
ξ (R)},

•||S(t)u0||L4
x L∞

t
≤C|D1/4

x u0|2.
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Let us sketch the proof. The estimate is equivalent to

||D−1/4
x S(t)u0||L4

x L∞
t
≤C|u0|2,

and by duality to

||
∫ ∞

−∞
D−1/4

x S(t)g(·, t)||L2
x
≤C||g||

L4/3
x L1

t
.

Squaring the left hand side and applying a trick used in the proof of
Strichartz estimates (the so-called P.Tomas argument), we arrive at the in-
tegrals are taken from minus to plus infinity:

||
∫ ∞

−∞
D−1/4

x S(t)g(·, t)||2L2
x
=

∫∫
g(x, t)

∫
D−1/2

x S(t− s)g(x,s)dsdxdt.

We are thus reduced to proving

||
∫ ∞

−∞
D−1/2

x S(t− s)g(x·,s)ds||L4
xL∞

t
≤ c||g||

L4/3
x L1

t
. (7.3)

This will be a consequence of the

Lemma 7.1. ∣∣∣∣∣
∫ ∞

−∞

ei(xξ+tξ 3)

|ξ |1/2 dξ

∣∣∣∣∣= |It(x)| ≤
C
|x|1/2 .

Proof of lemma.

• t = 0. It suffices to recall that the Fourier transform of the distribution
(in Rn) 1

|x|α , 0 < α < 1, is equal to Cn,α
|ξ |n−α .

• t 6= 0. We observe by scaling that

It(x) =
1

t1/6 I1

( x
t1/3

)

and it suffices to prove that

|I1(x)| ≤
C
|x|1/2 .
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This results from the van der Corput lemma, by a proof similar to that
we used in Chapter 3 to prove that the function of x

∫

R
|ξ |1/2ei(xξ+ξ 3)dξ

is bounded.

From the lemma, it results that

||
∫ ∞

−∞
D−1/2

x S(t− s)g(x·,s)ds||L4
xL∞

t
≤ c
|x|1/2 ?

∫ ∞

−∞
|g(·,s)ds.

Noticing that c
|x|1/2 ∈L2

w(R) (7.3) follows since by the generalized Young
convolution inequality

L2
w ? L4/3 ⊂ L4.

We can now state a LWP result for the KdV equation.

Theorem 7.2. Let s > 3
4 and u0 ∈Hs(R). Then there exist T = T (||u0||Hs) >

0 (T (ρ → +∞ when ρ → 0) and a unique solution u of the corresponding
Cauchy problem for the KdV equation such that

(i) u ∈C([−T,T ];Hs(R))

(ii) ∂xu ∈ L4
T (L∞

x )

(iii) ||Ds
x

∂u
∂x ||L∞

x (L2
T ) < +∞

(iv) ||u||L2
x(L∞

T ) < +∞

Moreover :

• ∀T ′ ∈ (0,T ), there exists a neighborhood V of u0 in Hs such that
the mapping v0 7→ v from V into the class above with T ′ instead of T is
lipschitz.

• If u0 ∈ Hs′(R) with s′ > s, the above result holds true with s′ instead
of s, on the same time interval (−T,T ).
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•|u(·, t)|2 = |u0|2, ∀t ∈ (−T,T ).

When s≥ 1 one has the additional properties:
The energy E(t) = 1

2
∫
R |∂xu(x, t)|2dx− 1

6
∫
R u3(x, t)dx is independent of

t on (−T,T ) and the solution is globally defined.

Remark 7.3. Theorem 7.2 provides the ad hoc framework to justify fully
theH1 orbital stability of the KdV solitary wave (see [19, 26].

Proof. We will a complete proof only in the case s = 1 which corresponds
to the spaceH1(R), the energy space for the KdV equation.

(i) We let the conservation of the L2 norm as an exercice.

(ii) Conservation of energy and globalization.

The conservation of energy is obtained formally by multiplying the
equation by uxx + 1

2 u2 and integration by parts. The argument can be made
rigorous by smoothing the initial data by u0ε = u0 ? ρε ∈ H∞(R) where
ρε(x) = ρ(x/ε), ρ ∈D(R), ρ ≥ 0,

∫
R ρ(x)dx = 1 and then passing to the

limit when ε → 0.
To get the a priori H1 bound which leads to global-well posedness we

write first using the conservation of energy
∫

R
u2

x(x, t)dx = 2E(0)+
1
3

∫

R
u3(x, t)dx.

Then

|
∫

R
u3(x, t)dx| ≤ |u(·, t)|∞ |u(·, t)|22 = |u(·, t)|∞|u0|22

≤C|u(·, t)|1/2
2 |ux(·, t)|1/2

2 |u0|22 = |u0|3/2
2 |ux(·, t)|1/2

2 ,

(7.4)

where we have used the well-known inequality for f ∈ H1(R)

| f |∞ ≤
√

2|ux|1/2
2 |u|

1/2
2 .

Using Young’s inequality

ab≤ 1
2ε

a
1
α +

ε
2

b
1

1−α , for any ε > 0, 0 < α < 1,
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one deduces (with α = 1
4 ) that

|
∫

R
u3(x, t)dx| ≤ ε|u(·, t)|22 +C(ε, |u0|2),

and thus that
||u(·, t)||H1 ≤C(||u0||H1).

(iii) Local well-posedness.

Definition of the space XT .
For f : R× [−T,T ]→ |R, we set

λ T
1 ( f ) = max

t∈[−T,T ]
|| f (·, t)||H1 (7.5)

λ T
2 ( f ) =

(∫ T

−T
| fx(·, t)|4∞dt

) 1
4

(7.6)

λ T
3 ( f ) = ||∂

2 f
∂x2 ||L∞

x (L2
T ) (7.7)

λ T
4 ( f ) = (1+T )−ρ || f ||L2

x(L∞
T ) for a fixed ρ >

3
4

(7.8)

ΛT ( f ) = max
j=1,...,4

λ T
j ( f ). (7.9)

Finally,
XT = { f ∈C([−T,T ];H1(R)), ΛT ( f ) < +∞}.

The linear estimates above insure that if u0 ∈ H1(R), then S(t)u0 ∈
XT , ∀T > 0.

For v0 ∈ H1(R) we denote u = φu0(v) = φ(v) the unique solution of

ut +uxxx =−vvx, u(x,0) = u0(x)

or, in the Duhamel representation

u(t) = S(t)u0−
∫ t

0
S(t− s)vvx(s)ds. (7.10)
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We shall prove that there exist T = T (||u0||H1) > 0 and a = a(||u0||H1) >
0 such that if v ∈ Xa

T = { f ∈ XT ,ΛT ( f ) ≤ a}, then u = Φ(v) ∈ Xa
T and

φ : Xa
T → Xa

T is a contraction.
One proves first that

||∂x(vvx)||L2
x L2

T
+ ||vvx||L2

x L2
T
≤C(1+T )ρ(ΛT (v))2. (7.11)

In fact,

||vvx||L2
x L2

T
=

(∫ T

−T

∫ ∞

−∞
|v|2|vx|2dxdt

) 1
2

≤
(∫ T

−T
|vx(·, t)|2∞dt

) 1
2

sup
t∈[−T,T ]

|v(·, t)|2

≤
(∫ T

−T
|vx(·, t)|2∞dt

) 1
2

sup
t∈[−T,T ]

||v(·, t)||2H1

≤ (by Hölder in time)

≤CT
1
4 ||vx||L4

T (L∞
x )λ

T
1

≤CT
1
4 λ T

2 λ T
1

≤C(1+T )ρ(ΛT (v))2.

(7.12)

On the other hand, again by Hölder inequality in time,

||∂x(vvx)||L2
x L2

T
≤
(∫ T

−T
|vx(·, t)|2∞|vx(·, t)|22dt

) 1
2
+

(∫ T

−T
|v(·, t)vxx(·, t)|2dxdt

) 1
2

≤CT
1
4 ||vx||L4

T L∞
x

sup
t∈[−T,T ]

|vxx(·, t)|2 + ||v||L2
x L∞

T
||vxx||L∞

x L2
T

≤CT
1
4 λ T

2 (v)λ T
1 (v)+C(1+T )ρ λ T

4 (v)λ T
3 (v)

≤C(1+T )ρ(ΛT (v))2

(7.13)

which achieves to prove (11.6).
Using the Duhamel formulation (7.10), the linear estimates on S(t)u0,
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(11.6) and Hölder inequality in time, one gets

ΛT (u)≤C||u0||Hs +C
∫ T

−T
||vvx||Hs(t)dt

≤C||u0||Hs +CT 1/2
(∫ T

−T
||vvx||2Hs(t)dt

)1/2

≤C||u0||Hs +CT 1/2(1+T )ρ(ΛT v))2.

(7.14)

Now we choose a = 2C||u0||Hs , then T such that

4CT 1/2(1+T )ρ a < 1.

Verify (exercice) that if v ∈ Xa
T , then u = φ(v) ∈ C([−T,T ];Hs(R)).

One then concludes that φ : Xa
T → Xa

T .
One can establish in a similar way that

ΛT (φ(v)−φ(ṽ))≤CT 1/2(1+T )ρ{ΛT (v)+ΛT (ṽ)}Λ(v− ṽ), (7.15)

and that for T1 ∈ (0,T ),

ΛT1(φu0(v)−φũ0(ṽ≤C||u0− ũ0||H1

+CT 1/2
1 (1+T1)

ρ ΛT1(v− ṽ){ΛT1(v)+ΛT 1
(ṽ)}.

(7.16)

We have thus proven (see (7.14), (7.15)) the existence of a unique u ∈
Xa

T such that φu0(u)≡ u, that is

u(t) = S(t)u0−
∫ t

0
S(t− s)(uux)(s)ds.

Moreover (7.16), together with our choice of T and a shows that for any
T1 ∈ (0,T ) the map ũ0 7→ ũ on a neighborhood V of u0 in H1 depending on
T1 to Xa

T1
is lipschitz.

One easily checks that u satisfies the KdV equation (at least) in the
distribution sense.

To prove uniqueness in XT , we suppose that w ∈ XT1 for some T1 ∈
(0,T ) is a solution of the KdV equation. The argument leading to (7.14)
shows that for some T2 ∈ (0,T1), w ∈ Xa

T2
. Hence our choice of T implies

that w ≡ u in R× [−T2,T2]. By reapplying the argument this result can be
extended to the whole interval [−T,T ].
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Remark 7.4. The general case s > 3
4 is proven by similar arguments. An ex-

tra technical difficulty arises when one evaluates a term like Ds
x(vvx) when

s is not an integer. For 3
4 < s < 1 one must use the following fractional

Leibniz formula (see [139]):

Theorem 7.3. Let α ∈ (0,1), α1,α2 ∈ [0,α] with α = α1 +α2. Let p, p1, p2,
q,q1,q2 ∈ (1,+∞) be such that 1

p = 1
p1

+ 1
p2

, 1
q = 1

q1
+ 1

q2
. Then

||Dα
x ( f g)− f Dα

x g−gDα
x f ||Lp

x Lq
T
≤ c||Dα1

x f ||Lp1
x L

q1
T
||Dα2

x g||Lp2
x L

q2
T

.

Moreover, for α1 = 0 the value q1 = +∞ is allowed.

Remark 7.5. The method we used in proving the theorem is robust. Similar
arguments (with extra technical difficulties) can be applied to the resolu-
tion of the Cauchy problem with data in Hsk(R) for the generalized KdV
equations

ut +ukux +uxxx = 0, k = 1,2, ...

They give essentially optimal results as far as the value of sk is con-
cerned for k ≥ 2. On the other hand since the method relies heavily on dis-
persive properties of et∂ 3

x on R it cannot be applied in the periodic case, for
instance when u0 ∈ H1(T). One should then use Bourgain’s method which
implements a Picard scheme with a totally different choice of the space XT
(see [96] and below).

This method applies as well in the case of nonperiodic initial data, lead-
ing to LWP for the KdV equation with data in H s(R), s >− 3

4 (the solution
is in fact global...).

The (rough) idea of the method is to use a classical space for S(−t)u,
that is use to implement the contraction argument a (possibly localized in
time) space X with norm ||u||X = ||S(−t)u||H , where H is a classical space
(Sobolev, Lebesgue, Besov,..). A typical choice for the KdV equation is

X s,b = { f ∈S
′(R2);

∫

R2
(1+ |τ−ξ 3|)2b(1+ |ξ |)2s| f̂ (ξ ,τ)|2dξ dτ < +∞}.

Here ξ (resp. τ) is the Fourier dual variable of x (resp. t).
Denoting by < ·>= (1+ | · |2) 1

2 the “Japanese bracket”, one sees that

X s,b = {u;S(−t)u ∈ Hs,b},
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where
Hs,b = {u; ||< ξ >s< τ >b û||L2 < +∞},

where û is the Fourier transform of u with respect to x and t.
This choice of space somehow evacuates the free evolution term and all

the difficulties are concentrated on a bilinear estimate which writes for the
KdV equation (that is S(t) = et∂ 3

x ) :

Theorem 7.4. (i) Let s >− 3
4 . There exists b > 1

2 such that if v ∈ X s,b, then
v∂xv ∈ X s,b−1 and

||v∂xv||X s,b−1 ≤ c||v||2X s,b .

(ii) For s≤− 3
4 , the above bilinear estimate is false for any b ∈ R.

Note that s measures the regularity in space and thus the bilinear esti-
mate “regains” the derivative in the nonlinear term by loosing a degree of
regularity in time. See [140] for details.

7.1.1 Remarks on the Inverse Scattering Transform method
As we already emphasized, the global solvability of the Cauchy problem
does not give any qualitative information on the solutions. We comment
here briefly on the Inverse Scattering method see [86, 160] which allows to
describe very precisely the long time behavior of the KdV solutions.

We follow the treatment in Schuur [210] and consider the KdV equation
written in the form

ut −6uux +uxxx = 0, u(·,0) = u0. (7.17)

We recall that (7.17) has the classical soliton solution

u(x, t) =−2k2
0sech [k0(x− x0−4k2

0t],

where k0,x0 are constants and sech = 1/cosh .
The crux of the method is the direct and inverse spectral problems for

the Schrödinger operator

L(t) =−d2ψ
dx2 +u(·, t)ψ,
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considered as an unbounded operator in L2(R). We thus consider the spec-
tral problem

ψxx +(k2−u(x, t))ψ = 0, −∞ < x < +∞.

Given u0 = u(·,0) sufficiently smooth and decaying at ±∞, say in the
Schwartz space S (R), one associates to L(0) its spectral data, that is a
finite possibly empty) set of negative eigenvalues −κ2

1 < −κ2
2 · ·· < −κ2

N ,
together with right normalization coefficients cr

j and right reflection co-
efficients br(k) (see [210] for precise definitions and properties of those
objects).

The spectral data consists thus in the collection of {br(k),κ j,cr
j}. It

turns out that if u(x, t) evolves according to the KdV equation, the scattering
data evolves in a very simple way :

κ j(t) = κ j.

cr
j(t) = cr

j exp(4κ3
j t), j = 1,2, · · ·,N

br(k, t) = br(k)exp(8ik3t), −∞ < k < +∞.

The potential u(x, t) is recovered as follows. Let

Ω(ξ ; t) = 2
N

∑
j=1

[cr
j(t)]

2e−2κ jξ +
1
π

∫ ∞

−∞
br(k, t)e2ikξ dk.

One then solve the linear integral equation (Gel’fand-Levitan equation):

β (y;x, t)+Ω(x+y; t)+
∫ ∞

0
Ω(x+y+z; t)β (z;x, t)dz = 0, y > 0, x∈R, t > 0.

(7.18)
The solution of the Cauchy problem (7.17) is then given by

u(x, t) =− ∂
∂x

β (0+;x, t), x ∈ R, t > 0.

One obtains explicit solutions when br = 0. A striking case is obtained
when the scattering data are {0,κ j,cr

j(t)}. It corresponds to the so-called
N−soliton solution according to its asymptotic behavior obtained by Tanaka
[229]:

lim
t→∞

sup
x∈R

∣∣∣∣∣ud(x, t)−
N

∑
p=1

(
−2κ2

psech2[κp(x− x+
p −4κ2

pt)]
)
∣∣∣∣∣= 0, (7.19)
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where

x+
p =

1
2κp

log

{[
cr

p
]2

2κp

p−1

∏
l=1

(
κl−κp

κl +κp

)2
}

.

In other words, ud(x, t) appears for large positive time as a sequence
of N solitons, with the largest one in the front, uniformly with respect to
x ∈ R.

For u0 ∈S (R)2, the solution of (7.17) has the following asymptotics

sup
x≥−t1/3

|u(x, t)|= O(t−2/3), as t→ ∞ (7.20)

in the absence of solitons (that is when L(0) has no negative eigenvalues)
and

sup
x≥−t1/3

|u(x, t)−ud(x, t)|= O(t−1/3), as t→ ∞ (7.21)

in the general case, the N in ud being the number of negative eigenvalues
of L(0). One has moreover the convergence result

lim
t→+∞

sup
x≥−t1/3

∣∣∣∣∣u(x, t)−
N

∑
p=1

(
−2κ2

psech2[κp(x− x+
p −4κ2

pt)]
)
∣∣∣∣∣= 0. (7.22)

In both cases, a “dispersive tail” propagates to the left.

Remark 7.6. The shortcoming of those remarkable results is of course that
they apply only to the integrable KdV equation (and also to the modified
KdV equation)

ut +6u2ux +uxxx = 0.

However, though they are of reach of “classical” PDE methods, they
give hints on the behavior of other, non integrable, equations whose dy-
namics could be in some sense similar.

7.2 The Cauchy problem for the BBM equation
The BBM equation can be viewed as an ODE in any H s(R) space, s ≥ 0
which makes the local Cauchy theory easy. The global theory for 0≤ s < 1
however needs a little care.

2This condition can be weakened, but a decay property is always needed.
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Observing that the Fourier transform of φ(ξ ) = ξ
1+ξ 2 is equal to F(x) =

C sign xe−|x| the Cauchy problem for the BBM equation

ut +ux +uux−uxxt = 0, u(·,0) = u0 (7.23)

is equivalent to

ut +F ?x

(
u+

u2

2

)
= 0, u(·,0) = u0. (7.24)

Theorem 7.5. Let s≥ 0 and u0 ∈Hs(R). Then (7.24) or (7.23) has a unique
solution u ∈C([0,∞;Hs(R)).

Moreover, if s≥ 1 the energy
∫

Rn
[u2(x, t)+ux(x, t)2]dx (7.25)

is independent of time.

Proof. We give details for the case 0≤ s≤ 1 and refer to [38] for a complete
proof.

Lemma 7.6. For any s ≥ 0 the map Φ : u → F ? (u + u2

2 ) belongs to
C1(Hs(R),Hs(R)).

Proof. One has

DΦ(u) · v =
d

dε
[F ? (u+ εv+

(u+ εv)2

2
)]|ε=0 = F ? (v+uv)

and we just have to prove that the map v→F ?(v+uv) belongs to L (H s(R),
Hs(R)), 0≤ s≤ 1.

This results from the convolutions inequalities

|F ? (vx +uv)|2 ≤C(|F |1|vx|2 + |F |2|uv|1 ≤C(|F |1|v|2 + |F |2|u|2|v|2,

|F ? (v+(uv)x)|2 ≤C(|F |1|v|2 + |F |2 |(uv)x|1
≤C(|F |1|vx|2 + |F |2(|ux|2|v|2 + |u|2|vx|2)

and interpolating between L2 and H1..
This proves that Φ is differentiable from Hs(R) to Hs(R). A similar

argument proves that Φ is actually C1 (observe that DΦ(u) · v is a sum of a
continuous linear map in u and a bilinear continuous map in (u,v)).
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By the Cauchy-Lipschitz theorem in Banach spaces, (7.24) possesses
for any u0 ∈ Hs(R),0 ≤ s ≤ 1, a unique solution u ∈C([0,T (||u0||s)] with
T (||u0||s)→+∞ as ||u0||s→ 0.

The fact that this solution is global when s = 1 results trivially from the
conservation law (7.25).

To prove that the solution is global in L2 (actually in Hs,s ≥ 0), we
sketch the argument of [38].

Fix T > 0 and let u0 ∈ Hs(R). In what follows we will use the notation
X s

T = { f ∈C([0,T ];Hs(R))} equipped with the standard norm. We want to
prove that the unique local solution of (7.23) lies in X s

T and that u depends
continuously upon u0. By the local well-posedness result this is true if the
initial data is small enough in Hs. We write u0 = v0 + w0 according to the
decomposition

û0(ξ ) = χ|ξ |≥N û0(ξ )+ χ|ξ |≤N û0(ξ ),

with N > 0 large enough in order that the solution of (7.23) with initial data
v0 belongs to XT . This is possible since

∫

|ξ |≥N
(1+ |ξ |2)s|û0(ξ )|2dξ

is as small as we wish for N large enough.
We consider the Cauchy problem

{
wt +wx−wxxt +wwx +(vw)x = 0,
w(·,0) = w0.

(7.26)

If there exists a solution of (7.26) in X s
T , then v+w will solve (7.23) in

XT and the result will be established. Note that w0 ∈ Hr(R) for any r and
in particular w0 ∈ H1(R).

One establishes easily following the lines of the local H s theory that,
v being fixed, (7.26) has a unique local solution in X 1

τ for some positive
τ and it suffices to prove that we can extend this solution up to τ = T.
This is established by an a priori bound on w. Multiplying (7.26) by w and
integrating by parts we get

1
2

d
dt

(∫

R
[w2(x, t)+w2

x(x, t))]dx
)
−

∫

R
v(x, t)w(x, t)wx(x, t)dx = 0.
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One obtains by Sobolev and Hölder inequalities

‖
∫

R
v(x, t)w(x, t)w(x, t)dx‖ ≤C||w(·, t)||1|v(·, t)|2

and we deduce with Gronwall’s lemma that

||w(·, t||1 ≤ ||w0||1 exp
(∫ t

0
|v(·, t ′)dt ′

)

proving that w(·, t) exists up to T.
The proof of Theorem 7.5 is complete.
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Chapter 8

Some semilinearly ill-posed
dispersive equations

8.1 Some semilinearly ill-posed dispersive equa-
tions

Deciding whether a nonlinear dispersive equation is semilinearly well-posed
is somewhat subtle. To start with we consider the case of the Benjamin-Ono
equation following [185].

8.1.1 “Ill-posedness” of the Benjamin-Ono equation

We thus consider the Cauchy problem
{

ut −Huxx +uux = 0, (t,x) ∈ R2,
u(0,x) = φ(x).

(8.1)

Setting S(t) = eitH∂ 2
x , we write (8.1) as an integral equation:

u(t) = S(t)φ −
∫ t

0
S(t− t ′)(ux(t ′)u(t ′))dt ′. (8.2)

The main results is the following

107
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Theorem 8.1. Let s ∈ R and T be a positive real number. Then there does
not exist a space XT continuously embedded in C([−T,T ],Hs(R)) such that
there exists C > 0 with

‖S(t)φ‖XT ≤C‖φ‖Hs(R), φ ∈ Hs(R), (8.3)

and
∥∥∥∥
∫ t

0
S(t− t ′)

[
u(t ′)ux(t ′)

]
dt ′
∥∥∥∥

XT

≤C‖u‖2
XT

, u ∈ XT . (8.4)

Note that (8.3) and (8.4) would be needed to implement a Picard itera-
tive scheme on (8.2), in the space XT . As a consequence of Theorem 14.1
we can obtain the following result.

Theorem 8.2. Fix s ∈ R. Then there does not exist a T > 0 such that (8.1)
admits a unique local solution defined on the interval [−T,T ] and such that
the flow-map data-solution

φ 7−→ u(t), t ∈ [−T,T ],

for (8.1) is C2 differentiable at zero from Hs(R) to Hs(R).

Remark 8.1. This result implies that the Benjamin-Ono equation is “quasi-
linear”. It has been precised in [150] where it is shown that the flow map
cannot even be locally Lipschitz in Hs for s≥ 0.

Proof of Theorem 14.1

Suppose that there exists a space XT such that (8.3) and (8.4) hold. Take
u = S(t)φ in (8.4). Then

∥∥∥∥
∫ t

0
S(t− t ′)

[
(S(t ′)φ)(S(t ′)φx)

]
dt ′
∥∥∥∥

XT

≤C‖S(t)φ‖2
XT

.

Now using (8.3) and that XT is continuously embedded in C([−T,T ],H s(R))
we obtain for any t ∈ [−T,T ] that

∥∥∥∥
∫ t

0
S(t− t ′)

[
(S(t ′)φ)(S(t ′)φx)

]
dt ′
∥∥∥∥

Hs(R)

. ‖φ‖2
Hs(R). (8.5)
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We show that (8.13) fails by choosing an appropriate φ .

Take φ defined by its Fourier transform as1

φ̂(ξ ) = α−
1
2 1lI1(ξ )+α−

1
2 N−s1lI2(ξ ), NÀ 1, 0 < α ¿ 1,

where I1, I2 are the intervals

I1 = [α/2,α ], I2 = [N,N +α ].

Note that ‖φ‖Hs ∼ 1. We will use the next lemma.

Lemma 8.3. The following identity holds:

∫ t

0
S(t− t ′)

[
(S(t ′)φ)(S(t ′)φx)

]
dt ′

= c
∫

R2
eixξ+it p(ξ ) ξ φ̂(ξ1)φ̂(ξ −ξ1)

eit(p(ξ1)+p(ξ−ξ1)−p(ξ ))−1
p(ξ1)+ p(ξ −ξ1)− p(ξ )

dξ dξ1,

where p(ξ ) = ξ |ξ |.

Proof of Lemma 8.6. Taking the inverse Fourier transform with respect
to x, it is easily seen that

According to the above lemma,

∫ t

0
S(t− t ′)

[
(S(t ′)φ)(S(t ′)φx)

]
dt ′ = c( f1(t,x)+ f2(t,x)+ f3(t,x)),

where, from the definition of φ , we have the following representations for

1The analysis below works as well for Reφ instead of φ (some new harmless terms ap-
pear).
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f1, f2, f3:

f1(t,x) =
c
α

∫
ξ1∈I1

ξ−ξ1∈I1

ξ eixξ+itξ |ξ | eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ |ξ |)−1
ξ1|ξ1|+(ξ −ξ1)|ξ −ξ1|−ξ |ξ |dξ dξ1,

f2(t,x) =
c

αN2s

∫
ξ1∈I2

ξ−ξ1∈I2

ξ eixξ+itξ |ξ | eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ |ξ |)−1
ξ1|ξ1|+(ξ −ξ1)|ξ −ξ1|−ξ |ξ |dξ dξ1,

f3(t,x) =
c

αNs

∫
ξ1∈I1

ξ−ξ1∈I2

ξ eixξ+itξ |ξ | eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ |ξ |)−1
ξ1|ξ1|+(ξ −ξ1)|ξ −ξ1|−ξ |ξ |dξ dξ1

+
c

αNs

∫
ξ1∈I2

ξ−ξ1∈I1

ξ eixξ+itξ |ξ | eit(ξ1|ξ1|+(ξ−ξ1)|ξ−ξ1|−ξ |ξ |)−1
ξ1|ξ1|+(ξ −ξ1)|ξ −ξ1|−ξ |ξ |dξ dξ1.

Set
χ(ξ ,ξ1) := ξ1|ξ1|+(ξ −ξ1)|ξ −ξ1|−ξ |ξ |.

Then clearly

Fx 7→ξ ( f1)(t,ξ ) =
cξ eitξ |ξ |

α

∫
ξ1∈I1

ξ−ξ1∈I1

eitχ(ξ ,ξ1)−1
χ(ξ ,ξ1)

dξ1,

Fx 7→ξ ( f2)(t,ξ ) =
cξ eitξ |ξ |

αN2s

∫
ξ1∈I2

ξ−ξ1∈I2

eitχ(ξ ,ξ1)−1
χ(ξ ,ξ1)

dξ1,

Fx 7→ξ ( f3)(t,ξ ) =
cξ eitξ |ξ |

αNs

(∫
ξ1∈I1

ξ−ξ1∈I2

eitχ(ξ ,ξ1)−1
χ(ξ ,ξ1)

dξ1 +
∫

ξ1∈I2
ξ−ξ1∈I1

eitχ(ξ ,ξ1)−1
χ(ξ ,ξ1)

dξ1

)
.

Since the supports of Fx 7→ξ ( f j)(t,ξ ), j = 1,2,3, are disjoint, we have
∥∥∥∥
∫ t

0
S(t− t ′)

[
(S(t ′)φ)(S(t ′)φx)

]
dt ′
∥∥∥∥

Hs(R)

≥ ‖ f3(t, ·)‖Hs(R).

We now give a lower bound for ‖ f3(t, ·)‖Hs(R). Note that for (ξ1,ξ −ξ1) ∈
I1× I2 or (ξ1,ξ − ξ1) ∈ I2× I1 one has |χ(ξ ,ξ1)| = 2|ξ1(ξ − ξ1)| ∼ αN.
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Hence it is natural to choose α and N so that αN = N−ε , 0 < ε ¿ 1. Then
∣∣∣∣∣
eitχ(ξ ,ξ1)−1

χ(ξ ,ξ1)

∣∣∣∣∣= |t|+O(N−ε)

for ξ1 ∈ I1, ξ −ξ1 ∈ I2 or ξ1 ∈ I2, ξ −ξ1 ∈ I1. Hence for t 6= 0,

‖ f3(t, ·)‖Hs(R) &
N Ns α α 1

2

αNs = α
1
2 N.

Therefore we arrive at

1∼ ‖φ‖2
Hs(R) ≥ ‖ f3(t, ·)‖Hs(R) ≥ α

1
2 N ∼ N

1−ε
2 ,

which is a contradiction for NÀ 1 and ε ¿ 1. This completes the proof of
Theorem 14.1.

8.1.2 Proof of Theorem 8.2
Consider the Cauchy problem

{
ut −Huxx +uux = 0,
u(0,x) = γφ , γ ¿ 1, φ ∈ Hs(R) .

(8.6)

Suppose that u(γ , t,x) is a local solution of (8.6) and that the flow map is
C2 at the origin from Hs(R) to Hs(R). We have successively

u(γ, t,x) = γS(t)φ +
∫ t

0
S(t− t ′)u(γ , t ′,x)ux(γ , t ′,x)dt ′

∂
∂γ

(0, t,x) = S(t)φ(x) =: u1(t,x)

∂ 2u
∂γ2 (0, t,x) =−2

∫ t

0
S(t− t ′)

[
(S(t ′)φ)(S(t ′)φx)

]
dt ′.

The assumption of C2 regularity yields
∥∥∥∥
∫ t

0
S(t− t ′)

[
(S(t ′)φ)(S(t ′)φx)

]
dt ′
∥∥∥∥

Hs(R)

. ‖φ‖2
Hs(R).

But the above estimate is (8.13), which has been shown to fail in section
8.1.1.
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Remark 8.2. The previous results are in fact valid in a more general context.
We consider now the class of equations

ut +uux−Lux = 0, u(0,x) = φ(x), (t,x) ∈ R2, (8.7)

where L is defined via the Fourier transform

L̂ f (ξ ) = ω(ξ ) f̂ (ξ ).

Here ω(ξ ) is a continuous real-valued function. Set p(ξ ) = ξ ω(ξ ). We
assume that p(ξ ) is differentiable and such that, for some γ ∈ R,

|p′(ξ )|. |ξ |γ , ξ ∈ R. (8.8)

The next theorem shows that (8.7) shares the bad behavior of the
Benjamin–Ono equation with respect to iterative methods.

Theorem 8.4. Assume that (8.8) holds with γ ∈ [0,2[. Then the conclusions
of Theorems 14.1, 8.2, are valid for the Cauchy problem (8.7).

The proof follows the considerations of the previous section. The main
point in the analysis is that for ξ1 ∈ I1, ξ −ξ1 ∈ I2 one has

|p(ξ1)+ p(ξ −ξ1)− p(ξ )|. αNγ , α ¿ 1, NÀ 1.

We choose α and N such that αNγ = N−ε , 0 < ε¿ 1. We take the same φ
as in the proof of Theorem 14.1 and arrive at the lower bound

1∼ ‖φ‖2
Hs(R) ≥ α

1
2 N = N1− γ+ε

2 ,

which fails for 0 < ε ¿ 1, γ ∈ [0,2[.
Here we give several examples where Theorem 8.4 applies.

• Pure power dispersion:

ω(ξ ) = |ξ |γ , 0≤ γ < 2.

This dispersion corresponds to a class of models for vorticity waves in the
coastal zone (see [213]). It is interesting to notice that the case γ = 2 cor-
responds to the KdV equation which can be solved by iterative methods
as we have s(see [138]). Therefore Theorem 8.4 is sharp for a pure power
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dispersion. However, the Cauchy problem corresponding to 1 ≤ γ < 2 has
been proven in [?] to be locally well-posed by a compactness method com-
bined with sharp estimates on the linear group for initial data in H s(R),
s≥ (9−3γ)/4.

• Perturbations of the Benjamin-Ono equation:

ω(ξ ) = (|ξ |2 + 1)
1
2 . This case corresponds to an equation introduced

by Smith [217] for continental shelf waves.

ω(ξ ) = ξ coth (ξ ). This corresponds to the Intermediate long wave
equation, cf. [151, 10, 1] and Chapter 5 Section 2.

The “ill-posedness” of the Benjamin -Ono equation is due to the “bad”
interactions of small and large frequencies.

The mechanism is different for the KP I equation. Recall that the KP
equations are

ut +uux +uxxx±∂−1
x uyy = 0,

the + sign corresponding to the KP II equation, the − sign to the KP I
equation.

8.1.3 Ill-posedness of the KP I equation
The KP I equation is also semilinearly ill-posed, though for different rea-
sons.

Consider the initial value problem for the KP-I equation
{

(ut +uxxx +uux)x−uyy = 0,
u(0,x,y) = φ(x,y). (8.9)

We have the following result.

Theorem 8.5. Let (s1,s2) ∈ R2 (resp. s ∈ R). Then there exists no T > 0
such that ((8.14)) admits a unique local solution defined on the interval
[−T,T ] and such that the flow-map

St : φ 7−→ u(t), t ∈ [−T,T ]

for (8.14) is C2 differentiable at zero from Hs1,s2(R2) to Hs1,s2(R2), (resp.
from Hs(R2) to Hs(R2)).
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Remark 8.3. As in the case of the Benjamin-Ono equation, Theorem 8.14
implies that one cannot solve the KPI equation by iteration on the Duhamel
formulation for data in Sobolev spaces Hs1,s2(R2) or Hs(R2), for any value
of s,s1,s2.

This is in contrast with the KP II equation which can be solved by Bour-
gain’s method, thus by iteration for data in H s(R2), s≥ 0, see [45].2

Remark 8.4. It has been proved in [150] that the flow map cannot be uni-
formly continuous in the energy space.

Proof. We merely sketch it (see [187] for details). Let

σ(τ ,ξ ,η) = τ−ξ 3− η2

ξ
,

σ1(τ1,ξ1,η1) = σ(τ1,ξ1,η1),

σ2(τ1,ξ ,η1,τ1,ξ1,η1) = σ(τ− τ1,ξ −ξ1,η−η1).

We then define

χ(ξ ,ξ1,η ,η1) := 3ξ ξ1(ξ −ξ1)−
(ηξ1−η1ξ )2

ξ ξ1(ξ −ξ1)
.

Note that χ(ξ ,ξ1,η ,η1) = σ1 + σ2 − σ . The “resonant” function
χ(ξ ,ξ1,η ,η1) plays an important role in our analysis. The “large” set
of zeros of χ(ξ ,ξ1,η ,η1) is responsible for the ill-posedness issues. In
contrast, the corresponding resonant function for the KP II equation is

χ(ξ ,ξ1,η ,η1) := 3ξ ξ1(ξ −ξ1)+
(ηξ1−η1ξ )2

ξ ξ1(ξ −ξ1)
.

Since it is essentially the sum of two squares, its set of zeroes is small
and this is the key point to establish the crucial bilinear estimate in Bour-
gain’ s method ([45]).

We consider Hs1,s2(R2) and will indicate later the modifications for
Hs(R2).

Consider the Cauchy problem
{

(ut +uxxx +uux)x−uyy = 0,
u(0,x,y) = γφ(x,y), γ ∈ R,

(8.10)

2and even in Hs1 ,s2 (R2), s1 ≥ 1
3 , s2 ≥ 0, see [228].
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where φ ∈ Hs1,s2(R2), (s1 s2) ∈ R2 will be chosen later. Suppose that
u(γ, t,x,y) solves (8.10). We fix t 6= 0, t ∈ [−T,T ] such that St is C2. We
have

u(γ, t,x,y) = γU(t)φ(x,y)−
∫ t

0
U(t− t ′)u(γ , t ′,x,y)ux(γ , t ′,x,y)dt ′, (8.11)

where U(t) = exp(−t(∂ 3
x −∂−1

x ∂ 2
y )). Note that

∂u
∂γ

(0, t,x,y) = U(t)φ(x,y) := u1(t,x,y),

∂ 2u
∂γ2 (0, t,x,y) = −2

∫ t

0
U(t− t ′)u1(t ′,x,y)∂xu1(t ′,x,y)dt ′ := u2(t,x,y).

We could define formally, in a similar fashion uk(t,x,y) as ∂ ku
∂γk (0, t,x,y),

k = 3,4, · · · , and thus taking into account that u(0, t,x,y) = 0, write a formal
Taylor expansion

u(γ, t,x,y) =
γ
1!

u1(t,x,y)+
γ2

2!
u2(t,x,y)+

γ3

3!
u3(t,x,y)+ · · · (8.12)

The term uk(t,x,y) would correspond to the k-th iteration in an iterative
method applied to (8.11). Here the assumption of C2 regularity of St yields

u(γ, t,x,y) = γu1(t,x,y)+ γ2u2(t,x,y)+o(γ2)

and

‖u2(t, ·, ·)‖Hs1,s2 (R2) . ‖φ‖2
Hs1 ,s2 (R2). (8.13)

We look for data φ such that (8.13) fails. We define φ by its Fourier trans-
form as 3

φ̂(ξ ,η) = α−
3
2 1lD1(ξ ,η)+α−

3
2 N−s1−2s21lD2(ξ ,η).

Here the positive parameters N and α are such that NÀ 1, α ¿ 1 and D1,
D2 are the rectangles in R2

ξ ,η :

D1 = [α/2,α ]× [−6α2,6α2], D2 = [N,N +α ]× [
√

3N2,
√

3N2 +α2].

3The analysis below works as well for Reφ instead of φ (some new harmless terms ap-
pear).
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We note that ‖φ‖Hs1 ,s2 ∼ 1. We have

F(x,y)7→(ξ ,η)(u1)(t,ξ ,η) = exp(it(ξ 3 +
η2

ξ
))φ̂(ξ ,η)

and hence

u1(t,x,y) =
1

4π2 α−
3
2

∫

D1

exp(ixξ + iyη + it(ξ 3 +
η2

ξ
))dξ dη

+
1

4π2 α−
3
2 N−s1−2s2

∫

D2

exp(ixξ + iyη + it(ξ 3 +
η2

ξ
))dξ dη

The next lemma is in [187] used in order to compute u2(t,x,y). We omit its
proof.

Lemma 8.6. The following identity holds
∫ t

0
U(t− t ′)F(t ′,x,y)dt ′

= c
∫

R3
eixξ+iyη+it(ξ 3+ η2

ξ ) eit(τ−ξ 3− η2
ξ )−1

τ−ξ 3− η2

ξ

F̂(τ,ξ ,η)dτdξ dη

whenever both terms are well defined.

Using Lemma 8.6 we obtain the following representation for u2(t,x,y)

u2(t,x,y) = c
∫

R3
ξ exp(ixξ + iyη

+it(ξ 3 +
η2

ξ
))

eit(τ−ξ 3− η2
ξ )−1

τ−ξ 3− η2

ξ

(û1 ? û1)(τ ,ξ ,η)dτdξ dη .

Since û1(τ ,ξ ,η) = δ (τ − ξ 3− η2

ξ )φ̂(ξ ,η) (δ stays for Dirac delta func-
tion) we obtain that (û1 ? û1)(τ ,ξ ,η) is equal to

∫ ∞

−∞
δ (τ−ξ 3

1 −
η2

1
ξ1
− (ξ −ξ1)

3
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− (η−η1)
2

ξ −ξ1
)φ̂(ξ1,η1)φ̂(ξ −ξ1,η−η1)dξ1dη1.

Φ(t,x,y,ξ ,ξ1,η ,η1) := ξ eixξ+iyη+it(ξ 3+ η2
ξ ) e−itχ(ξ ,ξ1,η ,η1)−1

χ(ξ ,ξ1,η ,η1)
.

Then the second iteration u2(t,x,y) can be splitted in three parts

u2(t,x,y) = c( f1(t,x,y)+ f2(t,x,y)+ f3(t,x,y)).

where

f1(t,x,y) =
c

α3

∫
(ξ1 ,η1)∈D1

(ξ−ξ1 ,η−η1)∈D1

Φ(t,x,y,ξ ,ξ1,η ,η1)dξ dηdξ1dη1

f2(t,x,y) =
c

α3N2(s1+2s2)

∫
(ξ1 ,η1)∈D2

(ξ−ξ1 ,η−η1)∈D2

Φ(t,x,y,ξ ,ξ1,η ,η1)dξ dηdξ1dη1

f3(t,x,y) =
c

α3Ns1+2s2

∫
(ξ1 ,η1)∈D1

(ξ−ξ1 ,η−η1)∈D2

Φ(t,x,y,ξ ,ξ1,η ,η1)dξ dηdξ1dη1

+
c

α3Ns1+2s2

∫
(ξ1 ,η1)∈D2

(ξ−ξ1 ,η−η1)∈D1

Φ(t,x,y,ξ ,ξ1,η ,η1)dξ dηdξ1dη1
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Now we easily compute the Fourier transforms with respect to (x,y)

F(x,y)7→(ξ ,η)( f1)(t,ξ ,η) =
cξ eit(ξ 3+ η2

ξ )

α3

∫
(ξ1 ,η1)∈D1

(ξ−ξ1 ,η−η1)∈D1

e−itχ(ξ ,ξ1,η ,η1)−1
χ(ξ ,ξ1,η ,η1)

dξ1dη1

F(x,y)7→(ξ ,η)( f2)(t,ξ ,η) =
cξ eit(ξ 3+ η2

ξ )

α3N2(s1+2s2)

∫
(ξ1 ,η1)∈D2

(ξ−ξ1 ,η−η1)∈D2

e−itχ(ξ ,ξ1,η ,η1)−1
χ(ξ ,ξ1,η ,η1)

dξ1dη1

F(x,y)7→(ξ ,η)( f3)(t,ξ ,η) =
cξ eit(ξ 3+ η2

ξ )

α3Ns1+2s2

∫
(ξ1 ,η1)∈D1

(ξ−ξ1 ,η−η1)∈D2

e−itχ(ξ ,ξ1,η ,η1)−1
χ(ξ ,ξ1,η ,η1)

dξ1dη1

+
cξ eit(ξ 3+ η2

ξ )

α3Ns1+2s2

∫
(ξ1 ,η1)∈D2

(ξ−ξ1 ,η−η1)∈D1

e−itχ(ξ ,ξ1,η ,η1)−1
χ(ξ ,ξ1,η ,η1)

dξ1dη1

Actually the main contribution to the Hs1,s2 norm of u2(t, ·, ·) is given by f3.
For a fixed t the supports of F(x,y)7→(ξ ,η)( f1)(t,ξ ,η), F(x,y)7→(ξ ,η)( f2)(t,ξ ,η),
F(x,y)7→(ξ ,η)( f3)(t,ξ ,η) are disjoint and therefore

‖u2(t, ·, ·)‖Hs1,s2 (R2) ≥ ‖ f3(t, ·, ·)‖Hs1,s2 (R2).

Hence a lower bound for ‖ f3(t, ·, ·)‖Hs1,s2 (R2) is needed. We shall make use
of the following Lemma.

Lemma 8.7. Let

(ξ1,η1) ∈ D1, (ξ −ξ1,η−η1) ∈ D2

or
(ξ1,η1) ∈ D2, (ξ −ξ1,η−η1) ∈ D1

Then
|χ(ξ ,ξ1,η ,η1)|. α2N.

Proof of Lemma 8.7.
Let first (ξ1,η1) ∈ D2 and (ξ −ξ1,η−η1) ∈ D1.
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Fix (ξ1,η1) ∈ D2. Let ξ ∈ R be such that ξ − ξ1 ∈ [α/2,α ]. We look for
η?(ξ ,ξ1,η1) such that χ(ξ ,ξ1,η?(ξ ,ξ1,η1),η1) = 0 and |η?(ξ ,ξ1,η1)−
η1| ≤ 6α2. Solving χ(ξ ,ξ1,η ,η1) = 0 for fixed (ξ1,η1,ξ ) we set

η?(ξ ,ξ1,η1) := η1 +
η1(ξ −ξ1)−

√
3ξ ξ1(ξ −ξ1)

ξ1
.

Now we bound |η?(ξ ,ξ1,η1)−η1| :

|η?(ξ ,ξ1,η1)−η1| =
|(ξ −ξ1)(η1−

√
3ξ ξ1)|

|ξ1|

≤ |ξ −ξ1|
|ξ1|

|η1−
√

3ξ 2
1 −
√

3ξ1(ξ −ξ1)|.

Recall that η1 ranges in [
√

3N2,
√

3N2 +α2] and ξ1 in [N,N +α ]. Hence
√

3ξ 2
1 ∈ [
√

3N2,
√

3N2 +2
√

3Nα +
√

3α2]

and moreover
|η1−

√
3ξ 2

1 | ≤ 2
√

3Nα +
√

3α2.

Therefore

|η?(ξ ,ξ1,η1)−η1| ≤
α
N

(2
√

3Nα +
√

3α2 +
√

3α(N +α))≤ 6α2,

provided NÀ 1.

Hence we can write for (ξ1,η1) ∈ D2 and (ξ −ξ1,η−η1) ∈ D1

χ(ξ ,ξ1,η ,η1) = χ(ξ ,ξ1,η?(ξ ,ξ1,η1),η1)

+(η−η?(ξ ,ξ1,η1))
∂ χ
∂η

(ξ ,ξ1, η̄ ,η1),

where η̄ ∈ [η ,η?(ξ ,ξ1,η1)]. Thus

χ(ξ ,ξ1,η ,η1) =−(η−η?(ξ ,ξ1,η1))
2ξ1(η̄ξ1−η1ξ )

ξ ξ1(ξ −ξ1)
.
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Therefore

|χ(ξ ,ξ1,η ,η1)| = |2ξ1(η−η?(ξ ,ξ1,η1))|
∣∣∣∣
(η̄−η1)ξ1−η1(ξ −ξ1)

ξ ξ1(ξ −ξ1)

∣∣∣∣

. α2N
( |η1(ξ −ξ1)|
|ξ ξ1(ξ −ξ1)|

+
|(η̄−η1)ξ1|
|ξ ξ1(ξ −ξ1)|

)

. α2N

(√
3N2 +α2

N2 +
6α2

N · α
2

)

. α2N

(√
3N2 +1

N2 +
12
N

)

. α2N,

provided NÀ 1.

Let now (ξ1,η1) ∈ D1 and (ξ − ξ1,η −η1) ∈ D2. Since (ξ1,η1) = (ξ −
(ξ −ξ1),η− (η−η1)) ∈ D1 the previous argument yields

|χ(ξ ,ξ −ξ1,η ,η−η1)|. α2N.

The proof of Lemma 8.7 is complete by observing that

χ(ξ ,ξ1,η ,η1) = χ(ξ ,ξ −ξ1,η ,η−η1).

Choose now α and N so that α2N = N−ε , where 0 < ε ¿ 1 and N À 1.
Then due to Lemma 8.7 we obtain∣∣∣∣∣

e−itχ(ξ ,ξ1,η ,η1)−1
χ(ξ ,ξ1,η ,η1)

∣∣∣∣∣= |t|+O(N−ε)

for (ξ1,η1) ∈D1,(ξ −ξ1,η−η1) ∈D2 or (ξ1,η1) ∈D2,(ξ −ξ1,η−η1) ∈
D1. Hence

‖ f3(t, ·, ·)‖Hs1,s2 (R2) &
N Ns1+2s2 α3 α 3

2

α3Ns1+2s2
= α

3
2 N.
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Therefore we arrive at

1∼ ‖φ‖2
Hs1 ,s2 (R2) & ‖u2(t, ·, ·)‖Hs1,s2 (R2)

≥ ‖ f3(t, ·, ·)‖Hs1,s2 (R2) & α
3
2 N ∼ N

1
4− 3ε

4 .

Contradiction for NÀ 1 and ε ¿ 1. This completes the proof of Theorem
8.5 in Hs1,s2 . The proof in Hs(R2) is exactly the same with φ defined as

φ̂(ξ ,η) = α−
3
2 1lD1(ξ ,η)+α−

3
2 N−2s1lD2(ξ ,η).

8.1.4 Local well-posedness of the KP-I equation via com-
pactness arguments

In this section we shall prove local existence results for the KP-I equation,
based on the classical compactness method we have discussed in Section.
This method is quite general and does not use the dispersive nature of the
equation. One first solves a regularized version of the KP-I equation in-
volving a small parameter. Then one passes to the limit as the parameter
tends to zero using a suitable a priori estimate on the solution. Consider the
Cauchy problem for the KP-I equation

{
(ut +uxxx +uux)x−uyy = 0, (t,x,y) ∈ R3,
u(0,x,y) = φ(x,y),

(8.14)

For s ∈ R and k ∈ N, we define the Sobolev spaces H s
−k(R

2) as follows

Hs
−k(R

2) =
{

u ∈S
′(R2) : ‖u‖Hs

−k
< ∞

}
,

where

‖u‖Hs
−k

=

(∫ ∞

−∞

∫ ∞

−∞
(1+ |ξ |−k)2(1+ |ξ |2 + |η |2)s‖û(ξ ,η)|2dξ dη

)1/2

.

Hs
0(R

2) will be denoted by Hs(R2). Similarly, for s1,s2 real and k ∈ N, we
define the anisotropic Sobolev spaces Hs1,s2

−k (R2) as follows

Hs1,s2
−k (R2) =

{
u ∈S

′(R2) : ‖u‖H
s1 ,s2
−k

< ∞
}

,
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where

‖u‖H
s1 ,s2
−k

=

(∫ ∞

−∞

∫ ∞

−∞
(1+ |ξ |−k)2〈ξ 〉2s1〈η〉2s2 |û(ξ ,η)|2dξ dη

)1/2

.

We set Hs1,s2(R2) = Hs1,s2
0 (R2).

We recall a result of Iório and Nunes (cf. [118]) (see also [237], and indicate
briefly a somewhat shorter proof.

Theorem 8.8. The Cauchy problem (8.14) is locally well-posed for data in
Hs
−1(R

2), provided s > 2.

Proof of Theorem 8.8. It is based on a compactness method and relies
on commutator estimates and Sobolev embedding theorems. Let ε > 0 and
φε ∈ ∂x(C∞

0 (R2)) such that φε converges to φ in Hs
−1(R

2) as ε tends to zero.
We consider a regularized version of (8.14)

(uε
t + ε∆2uε

t +uε
xxx +uε uε

x)x−uε
yy = 0, (8.15)

where ∆ is the Laplace operator on R2. By standard Picard iteration ar-
guments the Cauchy problem associated to (8.15) has a unique solution
uε ∈C([0,T ];Hk(R2)), where k is any fixed integer. Here T depends on ε
and ‖φ‖Hk(R2). In fact T can be chosen independent of ε . Taking the H s

scalar product of (8.15) with uε yields

d
dt

(
‖uε(t)‖2

Hs + ε‖∆uε(t)‖2
Hs

)
+(uε(t)uε

x(t),uε(t))s = 0 (8.16)

where (., .)s connotes the Hs inner product. By classical arguments involv-
ing some commutator estimates proved in [130], it yields

d
dt
‖uε(t)‖2

Hs . ‖∇uε(t)‖L∞‖uε(t)‖2
Hs

. ‖uε(t)‖H2+‖uε(t)‖2
Hs .

Similarly we obtain

d
dt
‖∂−1

x uε(t)‖2
Hs . ‖∂−1

x uε(t)‖Hs‖uε(t)‖Hs‖uε(t)‖H1+ .
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From the previous inequalities one deduces by a standard compactness
method that (8.14) possesses, for each

φ ∈ Hs
−1(R

2), s > 2

a unique solution (in distributional sense) which satisfies

u ∈ L∞(0,T ;Hs
−1(R

2)),

where T = T (‖φ‖H2+(R2)). Further it can be shown by the regularization
technique of Bona-Smith (cf. [36] and Chapter 2, Section 3) that

u ∈C([0,T ];Hs
−1(R

2))

and depends continuously on the data φ . This completes the proof of The-
orem 8.8.

Remark 8.5. The previous theorem is sufficient (as it gives existence on
a time interval of length 1

ε in the weakly transverse Boussinesq regime) to
justify the KP approximation (with a “bad” error estimate though). One can
nevertheless prove the global wellposednessof the KPI Cauchy problem.
The first global well-posedness result for arbitrary large initial data in a
suitable Sobolev type space was obtained by Molinet, Saut and Tzvetkov
[188]. The solution is uniformly bounded in time and space.

The proof is based on a rather sophisticated compactness method and
uses the first invariants of the KP I equation to get global in time bounds. It
is worth noticing that, while the recursion formula in [253] gives formally
a infinite number of invariants, except the first ones, those invariants do not
make sense for functions belonging to L2(R2) based Sobolev spaces.

For instance, the invariant which should control ||uxxx(., t)||L2 contains
the L2 norm of ∂−1

x ∂y(u2) which does not make sense for a non zero func-
tion u in the Sobolev space H3(R2). Actually (see [188]), one checks easily
that if ∂−1

x ∂y(u2) ∈ L2(R2), then
∫
R2 ∂y(u2)dx = ∂y

∫
R2 u2dx ≡ 0, ∀y ∈ R,

which, with u ∈ L2(R2), implies that u≡ 0. Similar obstructions occur for
the higher order “invariants”.

One is thus led to introduce a quasi-invariant (by skipping the non de-
fined terms) which eventually will provide the desired bound. There are
also serious technical difficulties to justify rigorously the conservation of
the meaningful invariants along the flow and to control the remainder terms
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The result of [188] was extended by C. Kenig [132] (who considered
initial data in a larger space), and by Ionescu, Kenig and Tataru [117] who
proved that the KP I equation is globally well-posed in the energy space
Y = {u ∈ L2(R2);ux,∂−1

x uy ∈ L2(R2)}.

Note that the solution constructed in Theorem 8.8 satisfies equation
(8.14) in the space C([0,T ];Hs−4(R2)). In addition the energy is well-
defined and conserved. For data φ which belong only to H s(R2), s > 2,
we will obtain solutions satisfying the KP-I equation in a weaker sense by
considering the integral equation corresponding to the KP-I equation

u(t,x,y) = U(t)φ(x,y)−
∫ t

0
U(t− t ′)

[
u(t ′,x,y)ux(t ′,x,y)

]
dt ′, (8.17)

where U(t) = exp(−t(∂ 3
x − ∂−1

x ∂ 2
y )) is the unitary group defining the free

KP-I evolution. We have the following result.

Theorem 8.9. The integral equation (8.17) is locally well-posed for data
in Hs(R2), provided s > 2.

Proof of Theorem 8.9. Define H∞
−1(R

2) as

H∞
−1(R

2) :=
⋂

s∈R

Hs
−1(R

2).

Let φ ∈ Hs(R2) with s > 2. From Lemma 3.2 of [183] there exists a se-
quence {φ ε} ⊂ H∞

−1(R
2) converging to φ in Hs(R2) as ε tends to zero.

Using Theorem 8.8 there exists a unique solution uε ∈C([0,Tε ];H∞
−1(R

2))
of (8.14) with data φ ε . As in the proof of Theorem 8.8 we obtain that the
sequence {uε} is bounded in L∞(0,T ;Hs(R2)), where T only depends on
‖φ‖Hs(R2). Since uε ∈C([0,T ];Hs(R2)), uε satisfies the following integral
equation on the time interval [0,T ]

uε(t) = U(t)φ ε − 1
2

∫ t

0
U(t− t ′)∂x(uε(t ′))2dt ′ (8.18)

Set

vε(t) =
1
2

∫ t

0
U(t− t ′)∂x(uε(t ′))2dt ′.
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Note that the sequence {vε} is bounded in L∞(0,T ;Hs−1(R2)). We can
write

2∂t(vε(t)) = ∂x(uε(t))2−
∫ t

0
(∂ 3

x −∂−1
x ∂ 2

y )U(t− t ′)∂x(uε(t ′))2dt ′.

We observe that the sequence {∂t(vε)} is bounded in L∞(0,T ;Hs−4(R2)).
Therefore from Aubin-Lions compactness theorem one obtains

vε −→ v, in L2
loc((0,T )×R2)

Since
U(t)φ ε −→U(t)φ , in L∞((0,T );Hs(R2))

we infer that

uε −→ u, in L2
loc((0,T )×R2). (8.19)

Note that L∞(0,T ;Hs−1(R2)) being an algebra, {(uε)2} is bounded in
L∞(0,T ;Hs−1(R2)) and thus

(uε)2 ⇀ u2, weakly in L2(0,T ;Hs−1(R2)),

where we have identified the limit thanks to (8.19). Hence for a fixed t one
has

U(t−t ′)∂x(uε(t ′))2 ⇀U(t−t ′)∂x(u(t ′)2), weakly in L2(0,T ;Hs−2(R2))

and therefore
∫ t

0
U(t−t ′)∂x(uε(t ′))2dt ′ ⇀

∫ t

0
U(t−t ′)∂x(u(t ′))2dt ′, weakly in Hs−2(R2).

In particular

1
2

∫ t

0
U(t− t ′)∂x(uε(t ′))2dt ′ −→ 1

2

∫ t

0
U(t− t ′)∂x(u(t ′))2dt ′

in D ′((0,T )×R2) which implies

v(t) =
1
2

∫ t

0
U(t− t ′)∂x(u(t ′))2dt ′.
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The uniqueness is obtained by Gronwall lemma arguments using the above
approximation of the initial data. The strong continuity in time of the solu-
tion and the continuity of the flow -map in H s(R2) are again consequence of
Bona-Smith argument together with Lemma 3.2 of [183]. This completes
the proof of Theorem 8.9.

Let us emark that by differentiating (8.17) first with respect to x and
then with respect to t we obtain readily

∂t∂xu+∂x(uux)+∂ 4
x u−∂ 2

y u = 0 in C([0,T ];Hs−4(R2)).

However the identity ∂t∂xu = ∂x∂tu holds only in a very weak sense, for
example in D ′((0,T )×R2). Thus the KP-I equation is satisfied only in the
sense of distributions. Note also that the energy can be meaningless here.
Nevertheless the L2 conservation law is valid. This can be seen by using the
approximation of the initial data performed in the proof of Theorem 8.9.
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Chapter 9

The constraint problem for
the KP equation

When a KP type equation is written as

ut +uux−Lux±∂−1
x ∂ 2

y u = 0, (9.1)

it is implicitly assumed that the operator ∂−1
x ∂ 2

y is well defined, which a pri-
ori imposes a constraint on the solution u, which, in some sense, has to be
an x-derivative. This is achieved, for instance, if u ∈S ′(R2) is such that

ξ−1
1 ξ 2

2 û(t,ξ1,ξ2) ∈S
′(R2) , (9.2)

thus in particular if ξ−1
1 û(t,ξ1,ξ2) ∈S ′(R2). Another possibility to fulfill

the constraint is to write u as

u(t,x,y) =
∂
∂x

v(t,x,y), (9.3)

where v is a continuous function having a classical derivative with respect
to x, which, for any fixed y and t 6= 0, vanishes when x→±∞. Thus one
has ∫ ∞

−∞
u(t,x,y)dx = 0, y ∈ R, t 6= 0, (9.4)

in the sense of generalized Riemann integrals. Of course the differentiated
version of (9.1), namely

(ut +ux +uux−Lux)x +∂ 2
y u = 0, (9.5)

127
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can make sense without any constraint of type (9.2) or (9.4) on u, and so
does the Duhamel integral representation of (9.1),

u(t) = S(t)u0−
∫ t

0
S(t− s)(u(s)ux(s))ds, (9.6)

where S(t) denotes the (unitary in all Sobolev spaces H s(R2)) group asso-
ciated with (9.1),

S(t) = e−t(∂x−L∂x+∂−1
x ∂ 2

y ) . (9.7)

In view of the above discussion, all the results established for the
Duhamel form of KP-type equations (e.g., those of Bourgain [45] and Saut
and Tzvetkov [204]) do not need any constraint on the initial data u0. It
is then possible (see, for instance [186]) to check that the solution u will
satisfy (9.5) in the distributional sense but not a priori the integrated form
involving the operator ∂−1

x ∂y.
On the other hand, a constraint has to be imposed when using the

Hamiltonian formulation of the equation. In fact, the Hamiltonian for (9.5)
is

1
2

∫ [
−uLu+(∂−1

x uy)
2 +u2 +

u3

3

]
(9.8)

and the Hamiltonian associated with (9.6) is

1
2

∫ [
(∂−1

x uy)
2 +u2 +

u3

3

]
. (9.9)

Therefore, the global well-posedness results for KP-I obtained in [187, 132]
do need that the initial data satisfy (in particular) the constraint ∂−1

x ∂yu0 ∈
L2(R2), and this constraint is preserved by the flow. Actually, the global
results of [187, 132] make use of the next conservation law of the KP-I
equation whose quadratic part contains the L2-norms of uxx, uy, and ∂−2

x uyy.
The constraint ∂−2

x ∂yyu0 ∈ L2(R2) is thus also clearly needed, and one can
prove that it is preserved by the flow.

The linear case

We consider two-dimensional linear KP-type equations

(ut −Lux)x +uyy = 0, u(0,x,y) = ϕ(x,y) , (9.10)
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where
L̂ f (ξ ) = ε |ξ |α f̂ (ξ ), ξ ∈ R, (9.11)

where ε = 1 (KP-II-type equations) or ε = −1 (KP-I-type equations). We
denote by G the fundamental solution

G(t,x,y) = F
−1
(ξ ,η)→(x,y)

[
eit(εξ |ξ |α−η2/ξ )

]
.

A priori, we have only that G(t, ·, ·) ∈S ′(R2). Actually, for t 6= 0, G(t, ·, ·)
has a very particular form which is the main result of this section.

Theorem 9.1. Suppose that α > 1/2 in (9.11). Then for t 6= 0,

G(t, ·, ·) ∈C(R2)∩L∞(R2).

Moreover, for t 6= 0, there exists

A(t, ·, ·) ∈C(R2)∩L∞(R2)∩C1
x (R2)

(C1
x (R2) denotes the space of continuous functions on R2 which have a

continuous derivative with respect to the first variable) such that

G(t,x,y) =
∂A
∂x

(t,x,y).

In addition, for t 6= 0, y ∈ R, ϕ ∈ L1(R2),

lim
|x|→∞

(A ? ϕ)(t,x,y) = 0.

As a consequence, the solution of (9.10) with data ϕ ∈ L1(R2) is given by

u(t, ·, ·)≡ S(t)ϕ = G ? ϕ

and

u(t, ·, ·) =
∂
∂x

(
A ? ϕ

)
.

One therefore has
∫ ∞

−∞
u(t,x,y)dx = 0 ∀y ∈ R, ∀t 6= 0

in the sense of generalized Riemann integrals.
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Remark 9.1. It is worth noticing that the result of Theorem 9.1 is related
to the infinite speed of propagation of the KP free evolutions. Let us also
notice that the assumption α > 1/2 can be relaxed if we assume that a
sufficient number of derivatives of ϕ belong to L1. Such an assumption is,
however, not natural in the context of the KP equations.
Remark 9.2. In the case of the classical KP-II equation (α = 2, ε = +1),
Theorem 9.1 follows from an observation of Redekopp [197]. Namely, one
has

G(t,x,y) =− 1
3t

Ai(ζ )Ai′(ζ ),

where Ai is the Airy function and

ζ = c1
x

t1/3 + c2
y2

t4/3

for some real constants c1 > 0 and c2 > 0. Thus G(t,x,y) = ∂
∂x A(t,x,y)

with

A(t,x,y) =− 1
6c1t2/3 Ai2

(
c1

x
t1/3 + c2

y2

t4/3

)

and

u =
∂A
∂x

? ϕ =
∂
∂x

(
A ? ϕ

)
,

which proves the claim for the KP-II equation (the fact that
lim|x|→∞ A(t,x,y) = 0 results from a well-known decay property of the Airy
function). A similar explicit computation does not seem to be valid for the
classical KP-I equation or for KP-type equations with general symbols.

Proof of Theorem 9.1. We will consider only the case ε = 1 in (9.10).
The analysis in the case ε = −1 is analogous. It is plainly sufficient to
consider only the case t > 0. We have

G(t,x,y) = (2π)−2
∫

R2
ei(xξ+yη)+it(ξ |ξ |α−η2/ξ )dξ dη , (9.12)

where the last integral has the usual interpretation of a generalized Riemann
integral. We first check that G(t,x,y) is a continuous function of x and y.
By the change of variables

η ′ =
t1/2

|ξ |1/2 η ,
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we obtain

G(t,x,y) =
c

t1/2

∫

Rξ
|ξ |1/2

(∫

Rη
ei(y/t1/2)|ξ |1/2η−isgn(ξ )η2

dη
)

eixξ+itξ |ξ |α dξ

=
c

t1/2

∫

R
e−i(sgn(ξ )) π

4 |ξ |1/2eiy2ξ/4t eixξ+itξ |ξ |α dξ

=
c

t1/2

∫

R
e−i(sgn(ξ )) π

4 |ξ |1/2eiξ (x+y2/4t) eitξ |ξ |α dξ

=
c

t
1
2 + 3

2(α+1)

∫

R
e−i(sgn(ξ )) π

4 |ξ |1/2

× exp
(

iξ
(

x

t
1

α+1
+

y2

4t
α+2
α+1

))
eiξ |ξ |α dξ .

Let us define

H(λ ) = c
∫

R
e−i(sgn(ξ )) π

4 |ξ |1/2eiλξ eiξ |ξ |α dξ .

Then H is continuous in λ . We will consider only the worst case λ ≤ 0.
The phase ϕ(ξ ) = i(λξ + ξ |ξ |α) then has two critical points ±ξα , where
ξα =

( µ
α+1

)1/α , µ =−λ . We write, for ε > 0 small enough

H(λ ) =

∫ −ξα−ε

−∞
+

∫ ξα +ε

−ξα−ε
+

∫ ∞

ξα +ε
:= I1(λ )+ I2(λ )+ I3(λ ) .

Clearly I2(λ ) is a continuous function of λ . We consider only I3(λ ),

I3(λ ) = c
∫ ∞

ξα +ε

ξ 1/2

ϕ ′(ξ )

d
dξ

[
eϕ(ξ )

]
dξ = c

[
ξ 1/2eϕ(ξ )

λ +ξ α(α +1)

]∞

ξα +ε

+ c
∫ ∞

ξα +ε

[
1

2(λ +ξ α(α +1))ξ 1/2 −
α(α +1)ξ α−1/2

(λ +(α +1)ξ α)2

]
eϕ(ξ )dξ ,

which for α > 1/2 defines a continuous function of λ . Hence the integral
(9.12) is a continuous function of (x,y) which coincides with the inverse
Fourier transform (in S ′(R2)) of exp(it(ξ |ξ |α −η2/ξ )).

We next set for t > 0

A(t,x,y)≡ (2π)−2
∫

R2

1
iξ

ei(xξ+yη)+it(ξ |ξ |α−η2/ξ )dξ dη .



“master_livre_New”
2013/6/13
page 132

i

i

i

i

i

i

i

i

132 [CAP. 9: THE CONSTRAINT PROBLEM FOR THE KP EQUATION

The last integral is clearly not absolutely convergent not only at infinity but
also for ξ near zero. Nevertheless, the oscillations involved in its definition
will allow us to show that A(t,x,y) is in fact a continuous function. By the
change of variables

η ′ =
t1/2

|ξ |1/2 η ,

we obtain

A(t,x,y)

=
c

t1/2

∫

Rξ

sgn(ξ )

|ξ |1/2

(∫

Rη
ei(y/t1/2)|ξ |1/2η−isgn(ξ )η2

dη
)

eixξ+itξ |ξ |α dξ

=
c

t1/2

∫

R

(sgn(ξ ))e−i(sgn(ξ )) π
4

|ξ |1/2 eiy2ξ/4t eixξ+itξ |ξ |α dξ

=
c

t
α+2

2(α+1)

∫

R

(sgn(ξ ))e−i(sgn(ξ )) π
4

|ξ |1/2 exp
(

iξ
(

x

t
1

α+1
+

y2

4t
α+2
α+1

))
eiξ |ξ |α dξ .

We now need the following lemma.

Lemma 9.2. Let for α > 0

F(λ ) =
∫

R

(sgn(ξ ))e−i(sgn(ξ )) π
4

|ξ |1/2 eiλξ+iξ |ξ |α dξ .

Then F is a continuous function which tends to zero as |λ | →+∞.

Proof. Write F as

F(λ ) =
∫

|ξ |≤1
+

∫

|ξ |≥1
:= F1(λ )+F2(λ ) .

Since |ξ |−1/2 in integrable near the origin, by the Riemann–Lebesgue lemma
F1(λ ) is continuous and

lim
|λ |→∞

F1(λ ) = 0 .

We consider two cases in the analysis of F2(λ ).
Case 1. λ ≥−1.
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After an integration by parts, we obtain that

F2(λ ) =
ccos(λ +1− π

4 )

λ +α +1

+ c
∫ ∞

1
cos
(

λξ +ξ α+1− π
4

) λ +(α +1)(2α +1)ξ α

ξ 3/2(λ +(α +1)ξ α)2 dξ . (9.13)

The first term is clearly a continuous function of λ which tends to zero as
λ → ∞. Observing that

0≤ λ +(α +1)(2α +1)ξ α

ξ 3/2(λ +(α +1)ξ α)2 ≤Cα ξ−3/2

uniformly with respect to ξ ≥ 1 and λ ≥ −1, we deduce from the domi-
nated convergence theorem that the right-hand side of (9.13) is a continuous
function of λ for λ ≥−1. On the other hand, for λ ≥ 1,

λ +(α +1)(2α +1)ξ α

ξ 3/2(λ +(α +1)ξ α)2 ≤
2α +1
λξ 3/2 ,

and thus the right-hand side of (9.13) tends to zero as λ →+∞.

Case 2. λ ≤−1.
Set λ =−µ with µ ≥ 1. In the integral over |ξ | ≥ 1 defining F2(λ ), we

consider only the integration over [1,+∞[. The integration over ]−∞,−1]
can be treated in a completely analogous way. We perform the changes of
variables

ξ −→ ξ 2

and
ξ −→ µ

1
2α ξ

to conclude that

F̃2(λ ) := c
∫ ∞

1

1
ξ 1/2 eiλξ+iξ |ξ |α dξ = cµ

1
2α

∫ ∞

µ− 1
2α

eiµ1+ 1
α
[

ξ 2(α+1)−ξ 2
]
dξ .

Let us set
ϕ(ξ ) = ξ 2(α+1)−ξ 2 .

Then
ϕ ′(ξ ) = 2ξ [(α +1)ξ 2α −1] .
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Let us split

F̃2(λ ) = cµ
1

2α

∫ 1

µ− 1
2α

+cµ
1

2α

∫ ∞

1
:= I1(µ)+ I2(µ) .

Since ϕ ′(ξ ) does not vanish for ξ ≥ 1, we can integrate by parts, which
gives

I2(µ)=
1

2iµ1+ 1
2α

(
c
α

+ c
∫ ∞

1
eiµ1+ 1

α
[

ξ 2(α+1)−ξ 2
]

(α +1)(2α +1)ξ 2α −1
ξ 2((α +1)ξ 2α −1)2 dξ

)
,

which is a continuous function of µ ≥ 1 thanks to the dominated conver-
gence theorem. Moreover, it clearly tends to zero as µ →+∞.

Let us next analyze I1(µ). We first observe that thanks to the dominated
convergence theorem, I1(µ) is a continuous function of µ . It remains to
prove that I1(µ)→ 0 as µ → ∞. For ξ ∈ [µ−

1
2α ,1], the phase ϕ has a

critical point, and a slightly more delicate argument is needed. Compute

ϕ ′′(ξ ) = 2[(α +1)(2α +1)ξ 2α −1] .

Observe that ϕ ′(ξ ) is vanishing only at zero and

ξ1(α) :=
(

1
α +1

) 1
2α

.

Next, we notice that ϕ ′′(ξ ) is vanishing at

ξ2(α) :=
(

1
(α +1)(2α +1)

) 1
2α

.

Clearly ξ2(α) < ξ1(α) < 1, and we choose a real number δ such that

ξ2(α) < δ < ξ1(α) < 1 .

For µ À 1, we can split

I1(µ) = cµ
1

2α

∫ δ

µ− 1
2α

+cµ
1

2α

∫ 1

δ
:= J1(µ)+ J2(µ) .

For ξ ∈ [µ−
1

2α ,δ ], we have the lower bound

|ϕ ′(ξ )| ≥ cµ−
1

2α > 0,
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and an integration by parts shows that

J1(µ) = µ
1
α O(µ−1− 1

α )≤Cµ−1,

which clearly tends to zero as µ → ∞. For ξ ∈ [δ ,1], we have the minora-
tion

|ϕ ′′(ξ )| ≥ c > 0,

and therefore we can apply the Van der Corput lemma to conclude that

J2(µ) = µ
1

2α O(µ−
1
2− 1

2α )≤Cµ−
1
2 ,

which tends to zero as µ→∞. This completes the proof of Lemma 9.2.

It is now easy to check that ∂xA = G in the sense of distributions. Since
both A and G are continuous, we deduce that A has a classical derivative
with respect to x which is equal to G. Finally, since ϕ ∈ L1(R2), applying
Lemma 9.2 and the Lebesgue theorem completes the proof of Theorem 9.1.

The nonlinear case

After a change of frame we can eliminate the ux term and reduce the Cauchy
problem for (9.5) to

(ut +uux−Lux)x +uyy = 0, u(0,x,y) = ϕ(x,y). (9.14)

In order to state our result concerning (9.14), for k ∈ N, we denote by
Hk,0(R2) the Sobolev space of L2(R2) functions u(x,y) such that ∂ k

x u ∈
L2(R2).

Theorem 9.3. Assume that α > 1/2. Let ϕ ∈ L1(R2)∩H2,0(R2) and

u ∈C([0,T ] ; H2,0(R2)) (9.15)

be a distributional solution of (9.14). Then, for every t ∈ (0,T ], u(t, ·, ·) is
a continuous function of x and y which satisfies

∫ ∞

−∞
u(t,x,y)dx = 0 ∀y ∈ R, ∀t ∈ (0,T ]

in the sense of generalized Riemann integrals. Moreover, u(t,x,y) is the
derivative with respect to x of a C1

x continuous function which vanishes as
x→±∞ for every fixed y ∈ R and t ∈ [0,T ].
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Remark 9.3. The case α = 2 corresponds to the classical KP-I, KP-II equa-
tions. In the case of the KP-II, we have global solutions for data in L1(R2)∩
H2,0(R2) (see [45]). Thus Theorem 9.3 displays a striking smoothing ef-
fect of the KP-II equation: u(t, ·, ·) becomes a continuous function of x and
y (with zero mean in x) for t 6= 0 (note that L1(R2)∩H2,0(R2) is not in-
cluded in C0(R2)). A similar comment is valid for the local solutions of the
KP-I equation in [187] and more especially in [188].

Remark 9.4. The numerical simulations in [147] display clearly the phe-
nomena described in Theorem 9.3 in the case of the KP-I equation.

Proof of Theorem 9.3. Under our assumption on u, one has the Duhamel
representation

u(t) = S(t)ϕ−
∫ t

0
S(t− s)

(
u(s)ux(s)

)
ds, (9.16)

where

∫ t

0
S(t− s)

(
u(s)ux(s)

)
ds

=
∫ t

0
∂x

(∫

R2
A(x− x′,y− y′, t− s)(uux)(x′,y′,s)dx′dy′

)
ds .

From Theorem 9.1, it suffices to consider only the integral term in the right-
hand side of (12.8). Using the notations of Lemma 9.2,

A(x− x′,y− y′, t− s) =
c

(t− s)
α+2

2(α+1)

F

(
x− x′

(t− s)
1

α+1
+

(y− y′)2

4(t− s)
α+2
α+1

)
.

Recall that F is a continuous and bounded function on R. Next, we set

I(x,y, t− s,s)≡ ∂x

(∫

R2
A(x− x′,y− y′, t− s)(uux)(x′,y′,s)dx′dy′

)
.

Using the Lebesgue differentiation theorem and the assumption (9.15), we
can write

I(x,y, t− s,s) =
∫

R2
A(x− x′,y− y′, t− s)∂x(uux)(x′,y′,s)dx′dy′ .
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Moreover, for α > 0,
α +2

2(α +1)
< 1,

and therefore I is integrable in s on [0, t]. Therefore, by the Lebesgue dif-
ferentiation theorem,

∫ t

0

∫

R2
A(x− x′,y− y′, t− s)(uux)(x′,y′,s)dx′dy′ds (9.17)

is a C1
x function and

∫ t

0
S(t− s)

(
u(s)ux(s)

)
ds

= ∂x

(∫ t

0

∫

R2
A(x− x′,y− y′, t− s)(uux)(x′,y′,s)dx′dy′ds

)
.

Let us finally show that for fixed y and t the function (9.17) tends to zero as
x tends to±∞. For that purpose, it suffices to apply the Lebesgue dominated
convergence theorem to the integral in s,x′,y′. Indeed, for fixed s,x′,y′, the
function under the integral tends to zero as x tends to ±∞ thanks to the
linear analysis. On the other hand, using Lemma 9.2, we can write

|A(x− x′,y− y′, t− s)(uux)(x′,y′,s)| ≤ c

(t− s)
α+2

2(α+1)

|(uux)(x′,y′,s)| .

Thanks to the assumptions on u, the right-hand side of the above inequal-
ity is integrable in s,x′,y′ and independent of x. Thus we can apply the
Lebesgue dominated convergence theorem to conclude that the function
(9.17) tends to zero as x tends to ±∞. This completes the proof of Theo-
rem 9.3.

Remark 9.5. If α > 2, the assumptions can be weakened to ϕ ∈ L1(R2)∩
H1,0(R2) and u ∈C([0,T ];H1,0(R2)). This result follows from the fact that
the fundamental solution G writes

G(t,x,y) =
c

t1/2+3/2(α+1)
B(t,x,y),

where B ∈ L∞ and 1/2+3/(2(α +1)) < 1 for α > 2.
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Remark 9.6. Similar results as those in the present Chapter are established
in [186] for the KP-II/BBM equation

(ut +ux +uux−uxxt)x +uyy = 0

and for versions involving more general dispersion in x.
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Chapter 10

Blow-up issues

We review here the three different type of finite time blow-up that may
occur in the solutions of dispersive perturbations of hyperbolic nonlinear
equations or systems. One has in fact three possible scenarios for blow-up.

10.1 Hyperbolic blow-up, or blow-up by shock
formation

This phenomena is typical of quasilinear hyperbolic examples or systems,
a paradigm being the Burgers equation

ut +uux = 0, u(·,0) = u0 ∈C1(R)∩L∞(R). (10.1)

Setting v = ux, (10.1) reduces to

vt +uvx + v2 = 0,

that is
v′+ v2 = 0,

where ′= ∂
∂t

+u∂x is the derivative along the characteristics Xξ = {(x, t),x =

X(t) = tu0(ξ )+ξ}.
Integration gives

139
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v(X(t), t) =
v0(ξ )

1+ tv0(ξ )
,

showing that, provided infu′0 > −∞, ||ux(·, t)||∞ blows up at
T ? =− 1

infu′0
> 0, but u remains bounded since it is given implicitly by

u(x, t) = u0(x− tu(x, t))

(shock formation).

To display the universal nature of the nonlinear hyperbolic blow-up we
consider the case of a scalar conservation law in Rn.

{ ∂u
∂ t +∑n

j=1 ∂x j( f j(u)) = 0,

u(.,0) = u0, u0 ∈C1(RN)
(10.2)

where u : Rn×R+→ R and where, for i = 1, , , , ,n the fi : R→ R are C3

functions. We set f (u) = ( f1(u), f2(u), ..., fn(u)) and we denote F = f ′ =
( f ′1, f ′2, ..., f ′n). The local C1 theory results from the method of characteris-
tics as it is shown now.

We define the characteristic curves (X(t), t) by
{

Ẋ(t) = F(u(X(t), t),
X(0) = ξ (10.3)

when u is a C1 solution of (10.2) in Rn× [0,T ].
One checks at once that

du
dt

(X(t), t) =
∂u
∂ t

(X , t)+
n

∑
j=1

f ′j(u)(u(X(t), t)
∂u
∂x j

(X(t), t) = 0,

showing that u is constant along the characteristics, and that those are
straight lines

X(t) = tF(u0(ξ ))+ξ .

We introduce the scalar quantity D = div F(u0)= F ′(u0) ·∇u0 = ∑n
j=1 f ′′j (u0)

∂u
∂ξ j

.

Theorem 10.1. Let u0 ∈C1(Rn)∩L∞(Rn).
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(i) Assume that D ≥ 0 in Rn. Then there exists a unique solution u ∈
C1(Rn×R+) of (10.2).

(ii) Assume that D takes strictly negative values. Let

T ∗ = (sup{−D(ξ ),ξ ∈ Rn})−1 = (− inf{D(ξ ),ξ ∈ Rn})−1

If T ∗ > 0, (10.2) admits a unique C1 solution on [0,T ∗) that cannot be
extended (as a C1 solution) after T ∗.

Proof. (i) We first prove that under the assumption D≥ 0, F t defined by

F t(ξ ) = tF(u0(ξ ))+ξ

is a global diffeomorphism of Rn, for any t > 0. Note first that F ◦ u0 is
a bounded function since u0 ∈ L∞(Rn) and moreover is a proper function
(that is the inverse image of a compact set is compact). In fact there exist
R > 0 such that ξ ≥ R implies |F t(ξ )| ≥ 1

2 |ξ |.
Lemma 10.2. The jacobian determinant of F t is

1+ tD = 1+ tF ′(u0) ·∇u0.

Proof. The coefficients of the jacobian matrix J(tξ ) of F t are

(δi, j + tF ′i (u0)(ξ ))
∂u0

∂ξ j
(ξ ))i, j.

The determinant P(t,ξ ) of J(t,ξ ) is a polynomial in t of degree ≤ n.
One easily checks that its second derivative in t vanishes identically (ap-
ply the rule of differentiation of determinants and observe that all the sub-
determinants occurring in the computation of P”(t,ξ ) have proportional
columns). Since J(0,ξ ) = 0, one has P(t,ξ ) = 1 + a(ξ )t = 1 + P′(0,ξ )t.
A simple computation leads to

P′(0,ξ ) = Tr J(t,ξ ) =
n

∑
j=1

F ′j (u0(ξ ))
∂u0

∂ξ j
(ξ ) = D(ξ ).

By Hadamard Theorem (see below), F t is for any t ≥ 0, a diffeomor-
phism of Rn. For each (x, t) ∈ Rn×R+, there exists therefore a unique
ξ = ξ (x, t) ∈ Rn verifying

x = tF t(u0(ξ (x, t), t)+ξ (x, t).
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Moreover, ξ is C1 in (x, t) (the regularity in t results from the implicit
function theorem). Defining then u(x, t) = u0(ξ (x, t)), one checks as in the
classical one-dimensional case that u is the unique C1 solution on Rn ×
R+.

(ii) We assume now that D has negative values and define T ∗ as in
the Theorem. If T ∗ > 0, the formula u(x, t) = u0(ξ (x, t), t) where ξ (x, t) is
defined as above, proves that u is the unique solution in C1([0,T ∗)×Rn. Let
us check that this solution cannot extends to a C1([0,T ]×Rn) function with
T > T ∗. To this aim, we compute ∇xu(x, t) from the implicit representation

u(x, t) = u0(x− tF(u(x, t)),

which is valid as far as u is C1.
One finds

∇xu(x, t) =
∇u0(ξ )

1+ t∇u0(ξ ) ·F ′(u0(ξ ))
=

∇u0(ξ )

1+ tD(ξ )
.

This proves that along a characteristic, (that is when ξ is fixed and t
increases), ∇xu does not change direction, only its length varies.

If for some ξ D(ξ ) < 0, then necessarily ∇u0(ξ ) 6= 0, and |∇x(u(x, t)|→
+∞ as t → − 1

D(ξ )
, and thus a C1 solution cannot exists beyond the time

T ∗ = (− inf{D(ξ ),ξ ∈ Rn})−1.

As in the one dimensional case, one can prove that the blow-up of cer-
tain expression depending on u and its derivatives is governed by a Ricatti
equation. More precisely,

Proposition 10.3. If u is a C2 solution of (10.2), then the expression q =
div F(u) satisfies the equation q′+q2 = 0 along the characteristics.

Proof. We differentiate (10.2) with respect to xi, i = 1, ...,n, we multiply
the ith by F ′i (u), and sum with respect to i yielding

0 =
n

∑
i=1

F ′i (u)

[
∂uxi

∂ t
+

n

∑
i=1

Fj(u)
∂uxi

∂x j

]
+

n

∑
i=1

F ′i (u)
n

∑
i=1

F ′j (u)uxiux j ,
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that is

0 =
n

∑
i=1

F ′i (u)

[
∂uxi

∂ t
+

n

∑
i=1

Fj(u)
∂uxi

∂x j

]
+

[
n

∑
i=n

F ′i (u)uxi

]2

=
n

∑
i=1

F ′i (u)

[
∂uxi

∂ t
+

n

∑
i=1

Fj(u)
∂uxi

∂x j

]
+q2(t).

(10.4)

On the other hand, denoting here d
dt q the derivative of q along the char-

acteristics and observing that u, thus also F ′i (u) is constant along the char-
acteristics, one has

d
dt

q =
d
dt

[
n

∑
i=1

F ′i (u)uxi

]
=

n

∑
i=1

F ′i (u)
d
dt

uxi . (10.5)

Using (10.5) (10.4) writes also

q′+q2 = 0.

Integrating this Ricatti equation, one finds that for a C1 solution,

div F(u(x, t)) =
D(ξ )

1+ tD(ξ )
,

where ξ = ξ (x, t) is the foot of the characteristic passing through (x, t).
We find again the maximal existence time of the solution when D(ξ ) takes
negative values.

For the sake of completeness we present a proof of Hadamard inversion
theorem we used in the proof of Theorem 10.1.

Theorem 10.4. Let f : Rn → Rn be a C1 mapping. Then f is a global
diffeomorphism from Rn to Rn if and only if f is proper (that is the inverse
image of a compact set is compact) and the jacobian determinant J f (x) =

det
(

∂ fi(x)
∂x j

)
of f never vanishes.

Proof. The elegant proof that is sketched here is due to Gordon [99] but it
needs the extra hypothesis that f is C2.

One side of the equivalence being trivial, it suffices to prove that if f
is proper and J f (x) 6= 0,∀x ∈ Rn, then f is a diffeomorphism. The local
inversion theorem reduces to proving that f is a bijection.
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(i) f onto. Up to a translation, it is sufficient to prove that there exists
x ∈ Rn such that f (x) = 0is. Let F(x) = 1

2 | f (x)|2 = 1
2 ∑n

j=1 | f j(x)|2, so that
∂F
∂xi

= ∑n
j=1 f j(

∂ f j
∂xi

). Observe that F is proper since f is proper.
Let c strictly larger that an arbitrary value of F. Then F−1([0,c]) is non

empty and compact since F is proper. It results that F achieves its minimum
at a point p of F−1[0,c]), and this minimum is clearly an absolute minimum
(≥ 0!) of F in Rn. Thus ∇F(p) = 0 and f (p) = 0.

(ii) f is one to one. Up to a translation this amounts to proving that
S = f−1(0) reduces to one point. We proceed in several steps.

a) S is a finite set. If not, it would contains, by compactness, an accu-
mulation point q contradicting the fact that f is a local diffeomorphism in
the neighborhood of q. Thus S = {p1, ..., pm}.

We will use uses a descent method, considering the differential system

dx(t)
dt

=−∇F(x(t)), x(0) ∈ Rn,(arbitrary). (10.6)

Since ∇F is C1, the Cauchy-Lipschitz theorem guarantees the local
well-posedness of (10.6).

Observe that for any solution x(t),

dF(x(t))
dt

=−∇F(x(t)) · dx(t)
dt

=−|∇F(x, t))|2.

b) For ay i ∈ {1, ...,m}, there exists an open neighborhood Ui of pi
such that any solution of (10.6) entering in Ui remains in Ui, and in fact
converges to pi as t → +∞. In other words, every pi is an asymptotically
stable critical point of (10.6).

This follows from the fact that F is a Lyapunov function for (10.6) at
every pi : along any trajectory x(t), one has dF(x(t))

dt ≤ 0, with equality if
and only if x(t) = pi.

Let Wi be the set of q′s in Rn such that the solution of (10.6) with initial
value x(0) = q satisfies x(t)→ pi as t→+∞.
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c) One has Rn = ∪Wi (finite union of non empty disjoint sets). This is a
consequence of the surjectivity and b).

d) Each Wi is open and thus S reduces to a single element. This a con-
sequence of the continuous dependence of solutions to (10.6) with respect
to the initial values. Let ε > 0 such that the ball of center pi and tradius
2ε is contained in Ui. Let q ∈Wi and x = x(t) the solution emanating from
x(0) = q. There exists consequently some T > 0 such that |x(T )− pi| ≤ ε.
Taking q′ such that |q− q′| is small enough, one can insures that the solu-
tion y(t) starting from q′ satisfies |x(T )− y(T )|< ε , so that y(T ) ∈Ui. But
then b) implies that q′ ∈Wi.

We now go back to the one-dimensional case. An interesting question
is to investigate the influence of a dispersive perturbation on the shock for-
mation.

As a paradigm (motivated by the fact that the quadratic nonlinearity is
natural in most equations arising from Fluid Mechanics and that the dis-
persion is often “weak"’) we consider the so-called Whitham equation that
Whitham [240] introduced exactly for that purpose.

ut +uux +

∫ ∞

−∞
k(x− y)ux(y, t)dy = 0. (10.7)

This equation can also be written on the form

ut +uux−Lux = 0, (10.8)

where the Fourier multiplier operator L is defined by

L̂ f (ξ ) = p(ξ ) f̂ (ξ ),

where p = k̂.
In the original Whitham equation, the kernel k was given by

k(x) =
1

2π

∫

R

(
tanhξ

ξ

)1/2

eixξ dξ , (10.9)

that is p(ξ ) =
(

tanhξ
ξ

)1/2
.
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The dispersion is in this case that of the finite depth surface water waves
without surface tension.

A typical result (see [190], [58]) suggest that for not too dispersive
Whitham type equations that is for instance when p(ξ ) = |ξ |α , −1 < α ≤ 0,
(10.7) still presents a blow-up of Burgers type. This has been proved for
Whitham type equations, with a regular kernel k satisfying

k ∈C(R)∩L1(R), symmetric and monotonically decreasing on R+,
(10.10)

by Naumkin and Shishmarev [190] and by Constantin and Escher [58],
without an unnecessary hypothesis made in [190]. The blow-up is obtained
for initial data which are sufficiently asymmetric. More precisely :

Theorem 10.5. [58] Let u0 ∈ H∞(R) be such that

inf
x∈R
|u′0(x)|+ sup

x∈R

|u′0(x)| ≤ −2k(0).

Then the corresponding solution of (10.7) undergoes a wave breaking phe-
nomena, that is there exists T = T (u0) > 0 with

sup
(x,t)∈[0,T )×R

|u(x, t)|< ∞,while sup
x∈R

|ux(t,x)| → ∞ as t→ T.

The previous result does not include the case of the Whitham equation
(10.7) with kernel given by (10.9) since then k(0) = ∞, but it is claimed in
[58] that the method of proof adapts to more general kernels.

This has been proven recently by Castro, Cordoba and Gancedo [48]
for the equation

ut +uux +Dβ
H u = 0, (10.11)

where H is the Hilbert transform and Dβ is the Riesz potential of order
−β , i.e. Dβ is defined via Fourier transform by

D̂β f (ξ ) = |ξ |β f̂ (ξ ), (10.12)

for any β ∈ R. It is established in [48] (see also [112] for the case β = 1
2 )

that for 0≤ β < 1, there exist initial data u0 ∈ L2(R)∩C1+δ (R), 0 < δ < 1,
and T (u0) such that the corresponding solution u of (10.11) satisfies

lim
t→T
‖u(·, t)‖C1+δ (R) = +∞.
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This rules out the case −1 < α < 0 in our notation. It would be in-
teresting to extend this result to a non pure power dispersion, for instance
(10.9).

The case 0 < α < 1 is much more delicate and is open. The numerical
simulations in [145] suggest (as claimed in [152] ) that no shock like blow-
up occurs (but a blow-up in the sense of the next Section seems to occur
when 0 < α < 1

2 ).

10.2 “Nonlinear dispersive blow-up"’

.
Both nonlinear and dispersive effects are crucial for this type of blow-

up. A typical example is the L2 critical and super critical focusing NLS,
that is when p≥ 4

n in

iψt +∆ψ + |ψ|pψ = 0, ψ = ψ(x, t),x ∈ Rn, t ∈ R. (10.13)

A formal proof of blow-up was given by Vlasov-Petrishev-Talanov 1971,
Zakharov 1972; it was made rigorous by Glassey 1977, Ginibre-Velo 1979.

We refer to the book [223] for precise references and for a proof of this
blow-up based on a virial identity and to [175] for a sharp analysis of the
blow-up in the critical case p = p

2 ..
Note that both a blow-up of |∇ψ|L2 and of |ψ|∞ occur; actually the

conservation of the L2 norm and of the energy

∫

Rn
[
1
2
|∇ψ|2− 1

(p+1)(p+2)
|ψ|p+2]

imply that a control on |ψ|∞ prevents the blow-up.
A similar result is expected for the L2 critical and super critical KdV

equation
ut +upux +uxxx = 0, p≥ 4. (10.14)

This was proved in [170] for p = 4 , and conjectured for p > 4 accord-
ing to the numerical simulations of Bona-Dougalis-Karakashian-McKinney
[31]).

We consider
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10.3 Dispersive blow-up
This type blow-up may occur for most linear dispersive equations and is
due to the fact that monochromatic waves (simple waves) propagate at
speeds that vary substantially with their wavelength. Indeed, what appears
to be important is that the ratio of the phase speeds at different wave num-
bers is not suitably bounded. It can persist for nonlinear equations.

To explain the phenomenon, we consider the linear KdV equation (some
times improperly called Airy equation since it was introduced by Stokes)

{
∂u
∂ t + ∂ 3u

∂x3 = 0,

u(.,0) = φ
(10.15)

Take

φ(x) =
Ai(−x)

(1+ x2)m ,

with
1
8

< m <
1
4

,

where Ai is the Airy function defined by

Ai(z) =
1
π

∫ ∞

0
cos(

1
3

θ 3 +θz)dθ .

We recall the classical asymptotics of the Airy function (see for instance
[80]) :

• For x > 0,

0 < Ai(x)≤ 1
2π1/2x1/4 e−ξ where ξ =

2
3

x3/2,

0 <−Ai′(x)≤ x1/4

2π1/2 e−ξ (1+
7

72ξ
).

• For x < 0,

Ai(−x) =
1

2π1/2x1/4 cos
(

ξ − π
4

)(
1+O

(
1
ξ

))
,
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Ai′(−x) =
x1/4

2π1/2 sin
(

ξ − π
4

)(
1+O

(
1
ξ

))
.

Then φ ∈ L2(R)∩C∞(R)∩L∞(R).
The solution u ∈C(R+;L2(R)) is given by

c

t
1
3

∫

R
Ai(

x− y

t
1
3

)
Ai(−y)

(1+ y2)m dy.

When (x, t)→ (0,1), u(x, t)→ c
∫
R

Ai2(−y)
(1+y2)m dy = +∞.

Actually one can prove with some extra work using the previous asymp-
totics of the Airy function that (see [34]) u is continuous on R×R∗+ except
at (x, t) = (0,1). By a suitable change of variables one could have replace
(0,1) by any couple (x∗, t∗) ∈ R×R∗+.

We have thus proved

Theorem 10.6. Let (x∗, t∗) ∈ R×R∗+. There exists φ ∈ L2(R)∩C∞(R)∩
L∞(R) such that the Cauchy problem

{
∂u
∂ t + ∂ 3u

∂x3 = 0,

u(.,0) = φ
(10.16)

has a unique solution u∈C([0,∞);L2(R)∩L2
loc(R+;H1

loc(R)) which is con-
tinuous on (R×R∗+)\ (x∗, t∗) and satisfies

lim
(x,t)→(x∗,t∗)

|u(x, t)|= +∞.

Remark 10.1. We will call this type of blow-up as the dispersive blow-up.
It is a precise way to express that the Airy group et∂ 3

x is not well-posed in
L∞(R) (and actually in any Lp(R), 1≤ p≤+∞, p 6= 2.)
Remark 10.2. One establish by linearity (see [36]) that for any sequence
(xn, tn)∈R×(0,+∞) without finite acumulation points and such that {tn}∞

n=1
does not cluster at zero, thee exists an initial data φ ∈ L2(R)∩C∞(R)∩
L∞(R) such that the corresponding solution u ∈C(R+ : L2(R)) of

∂u
∂ t

+
∂ 3u
∂x3 = 0



“master_livre_New”
2013/6/13
page 150

i

i

i

i

i

i

i

i

150 [CAP. 10: BLOW-UP ISSUES

is coninuous everywhere in R×R∗+ except at the points {(xn, tn)}∞
n=1, with

lim
(x,t)→(xn,tn)

u(x, t) = +∞, n = 1,2, ..

The previous result can be extended to the generalized KdV equations

ut +upux +uxxx = 0,

but we will consider only the case of the usual KdV equation, p = 1. A
natural idea is the following.

For a solution u of the Cauchy problem corresponding to the initial data
φ ∈ L2(R) given by φ(x) = Ai(−x)

(1+x2)m , 3
16 < m ≤ 1

4 , we write the Duhamel
representation

u(x, t) = S(t)φ(x)+
∫ t

0

∫

R

1

(t− s)
1
3

Ai
( (x− y)

(t− s)
1
3

)
uux(y,s)dsdy

and integrating by parts in the integral,

u(x, t) = S(t)φ(x)+C
∫ t

0

∫

R

1

(t− s)
2
3

Ai′
( (x− y)

(t− s)
1
3

)
u2(y,s)dsdy. (10.17)

This seems silly because Ai′ grows as (−x)
1
4 as x→−∞, but actually

the initial data φ belongs to some weighted L2 space and this will be used
to compensate the behavior of Ai′ at −∞.

For σ > 0, we consider a non-decreasing, smooth function wσ such that
wσ (x) = 1 for x < 0 and wσ (x) = (1+ x2)σ ) for x > 1.

The class L2(R,ω) is the class of measurable functions which are square
integrable with respect to the measure w2(x)dx.

Theorem 10.7. Let σ > 0 and ψ ∈ L2(R,ω). There exists a solution u
to the KdV equation, with initial data ψ such that for any T > 0, u ∈
L∞(0,T ;L2(R,ω))∩L2(0,T ;H1

loc(R).

Proof. We merely sketch it. One can use a compactness method, smoothing
the initial data by a sequence ψ j ∈C∞

0 (R) , deriving appropriate bounds on
the corresponding smooth solutions u j, and passing to the limit. We only
indicate how to derive the suitable energy estimates.
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Setting v j = wσ u j, we get (dropping the j’s and the σ ′s)

vt + vxxx + v
(

6
wxwxx

w2 −6
w3

x

w3 −
wxxx

w

)
+ vx

(
6

w2
x

w2 −3
wxx

w

)

−3
wx

w
vxx +

1
w

vvx−
wx

w2 v2 = 0

(10.18)

By assumption, v(·,0) ∈ H∞(R) and moreover ||v(·,0)||k is bounded
independently of j. Observe that the following functions are smooth and
bounded

wx

w
≥ 0, 6

wxwxx

w2 −6
w3

x

w3 −
wxxx

w
, 6

w2
x

w2 −3
wxx

w
,

1
w

,
wx

w2 .

Classical results imply that there exists one (at least local) H∞(R) solu-
tion of (10.18). By the uniqueness of H∞(R) solutions of the KdV equation,
one has v/w = u.

To get the a priori estimates we take the L2 scalar product of (10.18)
with v to obtain

1
2

d
dt

∫ ∞

−∞
v2dx+3

∫ ∞

−∞

wx

w
v2

xdx =
∫ ∞

−∞
θv2dx+

2
3

∫ ∞

−∞

wx

w2 v3dx, (10.19)

where

θ =
wxxx

w
+6

w3
x

w3 −6
wxwxx

w2 − 3
2

(wxx

w

)
x
+3
(

w2
x

w2

)

x
+

3
2

(wx

w

)
xx

.

The definition of θ implies that θ is a bounded and smooth function.
On the other hand,

∫ ∞

−∞

wx

w2 v3dx =
∫ ∞

−∞

wx

w
uv2dx≤ ||u||0||v||0

∣∣∣wx

w
v
∣∣∣
∞
≤ c||v||0

∣∣∣wx

w
v
∣∣∣
∞

.

Moreover, since wx/w and (wx/w)x are bounded, it follows that
∣∣∣wx

w
v
∣∣∣
∞
≤
∥∥∥wx

w
v
∥∥∥

1/2

0

∥∥∥
(wx

w
v
)∥∥∥

1/2

0

≤ 2
∣∣∣wx

w

∣∣∣
∞
||v||1/2

0

{∥∥∥
(wx

w

)
x
v
∥∥∥

1/2

0
+
∥∥∥wx

w
vx

∥∥∥
1/2

0

}

≤ c
{
‖v‖0 +‖v‖1/2

0

∥∥∥wx

w
vx

∥∥∥
1/2

0

}
,

(10.20)
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where c denotes various constants depending on the weight w and on the
norm of the initial data ψ but not on t or j. One also has

∥∥∥wx

w
vx

∥∥∥
0
≤ c
∥∥∥∥
(wx

w

)1/2
vx

∥∥∥∥
1/2

0

and Young’s inequality implies that
∫ ∞

−∞

wx

w2 v3dx≤ c||v||20 +
3
2

∫ ∞

−∞

wx

w
v2

xdx.

We deduce from those estimates and from the boundedness of θ that

1
2

∫ ∞

−∞
v2dx+2

∫ ∞

−∞

wx

w
v2

xdx≤ c
∫ ∞

−∞
v2dx

from which one deduces the uniform bound on ||v(·, t)||0 and the local L2

one on vx.

Remark 10.3. With some extra technical details a similar result can be ob-
tained for higher values of p′s (see [36]).

The following lemma will be used in the proof of the dispersive blow-up
for the KdV equation.

Lemma 10.8. Let ψ ∈ L2(R,ω) were σ ≥ 1
16 . Let u∈ L∞(0,T ;L2(R,ω))∩

L2(0,T ;H1
loc(R)) constructed in Theorem 10.7. Then the integral

Λ(x, t) =

∫ t

0

∫ ∞

−∞

1
(t− s)2/3 Ai′

(
x− y

(t− s)1/3

)
u2(y,s)dyds

is continuous with respect to (x, t) ∈ R×R∗+.

Proof. We break the integral as follows
∣∣∣∣Λ(x, t)| ≤ |

∫ t

0

∫ m

−∞

1
(t− s)2/3 Ai′

(
x− y

(t− s)1/3

)
u2(y,s)dyds

∣∣∣∣

+|
∫ t

0

∫ m

−m

1
(t− s)2/3 Ai′

(
x− y

(t− s)1/3

)
u2(y,s)dyds|

+|
∫ t

0

∫ ∞

m

1
(t− s)2/3 Ai′

(
x− y

(t− s)1/3

)
u2(y,s)dyds|

(10.21)
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It results from the asymptotic of Ai’ that
∣∣∣∣

1
(t− s)2/3 Ai′

(
x− y)

(t− s)1/3

)∣∣∣∣≤
C

(t− s)2/3

for all t ≥ s and x− y > 0.
Hence,

∣∣∣∣Λ(x, t)| ≤ |
∫ t

0

∫ x

−∞

1
(t− s)2/3 Ai′

(
x− y

(t− s)1/3

)
u2(y,s)dyds

∣∣∣∣

≤C
∫ t

0

1
(t− s)2/3

∫ x

−∞
u2(y,s)dyds≤CT 1/3||u||2L∞(0,T ;L2(R))2 < +∞.

(10.22)

In a similar way we estimate the second integral in the right hand side
of (10.21) as

∣∣∣∣Λ(x, t)| ≤ |
∫ t

0

∫ ∞

x

1
(t− s)2/3 Ai′

(
x− y

(t− s)1/3

)
u2(y,s)dyds

∣∣∣∣

≤C
∫ t

0

∫ ∞

x

1
(t− s)3/4 (y− x)1/4u2(y,s)dyds

= C
∫ t

0

1
(t− s)3/4

∫ ∞

x

(y− x)1/4

w2
σ (y)

w2
ω(y)u2(y,s)dyds

≤C sup
y≥x

(
(y− x)1/4

w2
σ (y)

)∫ t

0

1
(t− s)3/4

∫ ∞

−∞
w2

σ (y)u2(y,s)dyds

≤CT 1/4 sup
y≥x

(
(y− x)1/4

w2
σ (y)

)
||u||2L∞(0,T ;L2(R))2 .

(10.23)

Notice that if σ ≥ 1/16

sup
y≥x

(
(y− x)1/4

w2
σ (y)

)
≤
{

C, x≥ 0,

C|x|1/4, x≤ 0.

Combining (10.22), (10.23) imply that Λ is locally bounded. The conti-
nuity follows since its defining integral has been shown above to converge
uniformly for (x, t) in bounded subsets of R×R∗+.
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We now state the dispersive blow-up for the KdV equation.

Theorem 10.9. Let (x∗, t∗) ∈ R×R∗+. There exists φ ∈ L2(R)∩C∞(R)∩
L∞(R) such that the Cauchy problem

{
∂u
∂ t + ∂ 3u

∂x3 +u ∂u
∂x = 0,

u(.,0) = φ
(10.24)

has a unique solution u∈C([0,∞);L2(R)∩L2
loc(R+;H1

loc(R)) which is con-
tinuous on (R×R∗+)\ (x∗, t∗) and satisfies

lim
(x,t)→(x∗,t∗)

|u(x, t)|= +∞.

Proof. As in the linear case we may assume that (x∗, t∗) = (0,1). Let us
take as initial value ψ(x) = Ai(−x)

(1+x2)m with 3
16 < m < 1

4 and we consider the
Duhamel formulation (10.17).

By Theorem 10.6, the free part blows up as stated in Theorem 10.9. On
the other hand, the extra hypothesis on m implies that ψ ∈ L2(R;wσ ) where
σ ≥ 1/16. In this case, Theorem 10.7 combined with Lemma 10.8 imply
that the integral term in the Duhamel formula is bounded and continuous in
R× [0,T ], for any T > 0 and the Theorem is proven.

Remark 10.4. As will be seen below, dispersive blow-up occurs for many
equations relevant to water waves for instance for the linearized water waves
equations (see [37]). The phase velocity in this later case is g

1
2 ( tanh(|k|h0)

|k| )
1
2 k̂

and thus a bounded function of k. This is contrary to the case of the linear
KdV-equations (Airy-equation) and the linear Schrödinger equation, where
both the phase velocity and the group velocity become unbounded in the
short wave limit.

The dispersive blow-up phenomenon is thus not linked to the unbound-
edness of the phase velocity, but simply to the fact that monochromatic
waves (simple waves) propagate at speeds that vary substantially with their
wavelength. Indeed, what appears to be important is that the ratio of the
phase speeds at different wavenumbers is not suitably bounded.
Remark 10.5. Once the dispersive blow-up property is established, one can
by a truncation process produce smooth and localized initial data with ar-
bitrarily small amplitude leading to solutions having an arbitrary large am-
plitude at any given point in space-time.
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Remark 10.6. Weakly dispersive equations do not display dispersive blow-
up. For instance, the Cauchy problem for the BBM equation

ut +ux +uux−uxxt = 0, u(·,0) = φ (10.25)

can be written as the convolution equation

ut = K ?

(
u+

1
2

u2
)

(10.26)

where K(x) = 1
2 (sign x)e−|x|, from which one deduces immediately that the

Cauchy problem (10.25) is locally well-posed in L∞(R).

Dispersive blow-up for the linearized water waves equations

As aforementioned dispersive blow-up occurs for the linearized surface
gravity waves as shown in [35] that we follow closely. We thus consider
the linearized gravity waves





ηtt +ω2(|D|)η = 0, x ∈ Rd , d = 1,2 t ∈ R∗+
η(x,0) = η0(x)
ηt(x,0) = η1(x)

(10.27)

for the elevation η = η(x,y, t) (or η(x, t) in case the motion does not vary
much in the y direction) of the wave (see e.g. [240] and Chapter 4). Here,
ω(|k|) is the usual linearized dispersion relation for water waves given by

ω2(|k|) = g|k| tanh(|k|h0), (10.28)

where h0 is the undisturbed depth, k = (k1,k2) and |k| = (k2
1 + k2

2)
1
2 when

d = 2. The phase velocity is therefore

c(k) =
ω(k)

|k| k̂ = g
1
2

(
tanh(|k|h0)

|k|

) 1
2

k̂

where k̂ is the unit vector in the k-direction. For waves of extreme length
wherein |k| → 0, the phase velocity tends to

√
gh0k̂. For water waves on

an infinite layer (corresponding to h0 = +∞), the phase velocity is

c(k) = g
1
2

1

|k| 12
k̂.
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Thus, on deep water, plane waves travel faster and faster as the wavelength
becomes large, contrary to the case of the Airy or Schrödinger equations
where large phase velocities occur for short waves (large wavenumbers k).

Considered also will be the case of gravity-capillary waves whose linear
dispersion relation is

ω2(|k|) = g|k| tanh(|k|h0)

(
1+

T
ρg
|k|2
)

, (10.29)

where ρ is the density and T the surface tension coefficient. In this case,
the phase velocity is

c(k) =
ω(k)

|k| k̂ = g
1
2

(
tanh(|k|h0)

|k|

) 1
2
(

1+
T
ρg
|k|2
) 1

2
k̂,

whose modulus tends to infinity as |k| tends to +∞, that is in the limit of
short wavelengths. In the infinite depth case, the phase velocity tends to
infinity in the limit of both infinitely long and infinitely short waves.

In the sequel, the equations are scaled so that the gravity constant g and
the mean depth h0 are both equal to 1.

The solution of (10.27) with the dispersion law (10.28) is easily com-
puted in Fourier transformed variables to be

η̂(k, t) = η̂0(k)cos
[
t(|k| tanh |k|) 1

2

]
+

sin
[
t(|k| tanh |k|) 1

2

]

(|k| tanh |k|) 1
2

η̂1(k).

(10.30)
In consequence, the Cauchy problem is clearly well posed in L2-based
Sobolev classes. More precisely for any (η0,η1) ∈ Hk(Rd)×Hk− 1

2 (Rd),
k ≥ 0, (10.27) possesses a unique solution η ∈C(R,Hk(Rd)).

To establish ill-posedness in L∞, it suffices to consider the situation
wherein η̂1 = 0. Ill-posedness then amounts to proving that for each t 6= 0,
the kernel

mt(k) = eit(|k| tanh |k|)
1
2

is not a Fourier multiplier in L∞, which is the same as showing that its
Fourier transform is not a bounded Borel measure.

Let t > 0 be fixed and focus on mt(k). The first point to note is that

(|k| tanh |k|) 1
2 = |k| 12

(
1− 2

1+ e2|k|

) 1
2

= |k| 12 + r(|k|) (10.31)
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where r∈C(R)∩C∞(R\{0}) and r(|k|) behaves like− |k|
1
2

1+e2|k| as |k|→+∞

and like −|k| 12 (1−|k| 12 ) as |k| → 0. Note that r ≡ 0 when the depth h0 is
infinite.

Decompose the kernel mt as follows:

eit(|k| tanh |k|)
1
2 = eir(|k|)teit|k|

1
2 = (1+ ft(|k|))eit|k|

1
2 (10.32)

where

ft(|k|) = 2isin
(

r(|k|)t
2

)
ei r(|k|)t

2

is continuous, smooth on Rd \{0}, and decays exponentially to 0 as |k| →
+∞, uniformly on bounded temporal sets, since r(k) does so. This decom-
position leads to an associated splitting of the Fourier transform It(x) of
mt(k), namely

It(x) =:
∫

Rd
eit|k|

1
2 eik·xdk+

∫

Rd
ft(|k|)eit|k|

1
2 eik·xdk = I1

t (x)+ I2
t (x).

(10.33)

• Study of I2
t (x). Because ft decays rapidly to 0 as |k| becomes large,

the Riemann-Lebesgue lemma implies that I2
t is a bounded, continuous

function of x and thus locally integrable, in both dimensions 1 and 2. In
fact, when d = 1, it is actually a continuous L1-function. To see this, re-
strict to |x| ≥ 1 and integrate by parts to reach the equation

I2
t (x) = − 1

ix

∫ +∞

−∞

d
dk

(
ft(k)eit|k|

1
2

)
eikxdk

= − 1
ix

∫ +∞

−∞
eikxeit|k|

1
2

[
f ′t (k)+

it sgnk

2|k| 12
ft(k)

]
dk.

The term in square brackets decays exponentially to 0 as |k| → ∞ and has
a singularity of order |k|− 1

2 at the origin, coming from f ′t (k) (note that
ft(k)|k|−

1
2 is bounded at 0). It is therefore the Fourier transform of an Lp-

function, where 1≤ p < 2, and so, by the Riesz-Thorin theorem, must itself
be an Lq-function where 2 < q≤+∞. Since 1

x ∈ Ls(|x| ≥ 1) for any s > 1,

the Hölder inequality thus insures that I2
t ∈ L1(R).
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• Study of I1
t (x). The analysis of I1

t relies on detailed results about the
Fourier transform of the kernel ψ(|k|)ei|k|a , for a in the range 0 < a < 1,
where ψ ∈C∞(R),0≤ψ ≤ 1,ψ ≡ 0 on [0,1],ψ ≡ 1 on [2,+∞). For 0 < a <
1 and k ∈ Rd , let Fa(x) = F (ψ(|k|)ei|k|a)(x) be the Fourier transform of
the kernel. Since k 7→ ψ(|k|)ei|k|a ∈S ′(Rd), ψ(|k|)e−ε|k|ei|k|a converges
to ψ(|k|)ei|k|a as ε→ 0, at least in the sense of distributions. It follows that
F (ψ(|k|)e−ε|k|ei|k|a)→F (ψ(|k|)ei|k|a) as ε → 0.

For the readers’ convenience, we recall the following general result (see
Wainger [240], Theorem 9 , and Miyachi, [182] Proposition 5.1).

Theorem 10.10. (Wainger, Miyachi) Let 0 < a < 1, b ∈ R and define
Fε

a,b(x) =: F
(
ψ(|k|)|k|−b exp(−ε|k|+ i|k|a)

)
(x) for ε > 0 and x ∈ Rd .

The following is true of the function F ε
a,b.

(i) Fε
a,b(x) depends only on |x|.

(ii) Fa,b(x) = limε→0+ Fε
a,b(x) exists pointwise for x 6= 0 and Fa,b is

smooth on Rd \{0}.

(iii) For all N ∈ N, and β ∈ Nd , |
(

∂
∂x

)β
Fa,b(x)| = O(|x|−N) as |x| →

+∞.

(iv) If b > d(1− 1
2 ), Fa,b is continuous on Rd .

(v) If b≤ d(1− 1
2 ), then for any m0 ∈N, the function Fa,b has the asymp-

totic expansion

Fa,b(x)∼ 1

|x| 1
1−a (d−b− ad

2 )
exp

(
iξa

|x| a
1−a

)
m0

∑
m=0

αm|x|
ma

1−a +0(|x|)
(m0+1)a
(1−a) +g(x)

(10.34)
as x→ 0, where ξa ∈ R, ξa 6= 0, and g is a continuous function.

(vi) When a > 1 and b ∈ Rd , Fa,b is smooth on Rd and has the asymp-
totic expansion

Fa,b(x)∼C(a,b,d)|x|
b−d+da/2

1−a exp(iB(a)|x|− a
1−a )+o

(
|x|

b−d+da/2
1−a

)

(10.35)
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as |x| →+∞, where C(a,b,d) and B(a) are explicit positive constants.

(vii) For any b ∈ R, F1,b is smooth on Rd \ {|x| = 1} and for every
β ∈ Nd and N ∈ N,

∣∣∣∣∣

(
∂
∂x

)β
F1,b(x)

∣∣∣∣∣= O(|x|−N) as |x| →+∞.

If b < d+1
2 , then

F1,b(x) = C(b)(1−|x|+ i0)b− d−1
2 as |x| → 1.

.

Remark 10.7. The previous theorem will be used with b = 0. For notational
convenience, set Fa,0 = Fa. If a = 1

2 , the three first terms in the asymptotic

expansion of Fa are, respectively, α0|x|
−3d

2 exp(θ), α1|x|
−3d+2

2 exp(θ) and
α2|x|

−3d+4
2 exp(θ), where θ = iξa|x|

−a
1−a . Notice that Fa /∈ L1

loc(R
d), but that

it is defined as a distribution since, because of its oscillatory nature, it is
locally integrable around 0 in the sense of generalized Riemann integration.
For example, when d = 1, one has

F1
2
(x) =

1

|x| 32
exp
(

i
ξ
|x|

)
+G(x)

where ξ 6= 0 and G ∈ L1(R). For any A > 0, integration by parts reveals
that

∫ A

−A
|x|− 3

2 exp
(

i
ξ
|x|

)
dx = 2

∫ A

0

ei ξ
r

r
3
2

dr = 2
i
ξ
√

Aei ξ
A − i

ξ

∫ A

0

1√
r

ei ξ
r dr.

The last integral exists in the L1(0,A) sense. Thus, F1
2

can be defined as a

distribution by writing it as F1
2

= G +F, where G ∈ L1
loc(R) and, for any

test function φ ∈ C ∞
0 (R),

〈F,φ〉=− i
2ξ

∫ +∞

0

ei ξ
x
√

x

[
φ(x)−φ(−x)

]
dx− i

ξ

∫ +∞

0
ei ξ

x
√

x
[
φ ′(x)−φ ′(−x)

]
dx.
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Returning to the study of I1
t (x), notice first that for dimensions d = 1,2,

I1
t (x) =

1
t2d

∫

Rd
ei|k|

1
2 eik· x

t2 dk =
1

t2d J
( x

t2

)
,

where

J(x) =
∫

Rd
ei|k|

1
2 eik·xdk.

Introducing a truncation function ψ as above which is zero near the origin
and one near infinity, the integral J can be broken down as

J(x)=
∫

Rd
ψ(|k|)ei|k|

1
2 eik·xdk+

∫

Rd
(1−ψ(|k|))ei|k|

1
2 eik·xdk =: J1(x)+J2(x).

(10.36)
Arguing as in the analysis of I2

t , one checks that in dimension d = 1,
J2 ∈ L1(R). In dimension d = 2,J2 is a bounded continuous function of x.

On the other hand, Theorem 10.10 implies that (1−ψ(|k|))ei|k|
1
2 is not

an L∞(Rd) multiplier. These considerations allow the following conclusion.

Proposition 10.11. The linearized water-wave problem (10.27) is ill-posed
in L∞(Rd), for both horizontal dimensions d = 1,2.

Proof. Take η1 ≡ 0 in (10.27) and an appropriate choice of η0 (see the
proof of Theorem 10.12 for more details).

This proposition is reinforced by the following, more specific dispersive
blow-up result.

Theorem 10.12. Let (x∗, t∗)∈Rd×(0,+∞), d = 1,2 be given. There exists
η0 ∈C∞(Rd \{0})∩C0(Rd)∩L∞(Rd)∩L2(Rd) such that the solution η ∈
Cb(R;L2(Rd)) of (10.27) with η1 ≡ 0 satisfies the three conditions

(i) η is a continuous function of x and t on R×
(
(0,+∞)\{t∗})

)
,

(ii) η(·, t∗) is continuous in x on R\{x∗},
(iii) lim (x,t)∈Rd×(0,+∞)→(x∗,t∗)

(x,t)6=(x∗,t∗)

|η(x, t)|= +∞.

Proof. One may assume that (x∗, t∗) = (0,1). Again, take η̂1 = 0 in (10.27)
so that the corresponding solution is

η(·, t) = η0 ?F
−1
(

exp i[t(|k| tanh |k|) 1
2 ]
)

.
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Using the notation introduced in our earlier ruminations, write

η(·, t) = η0 ?F
−1
(

ψ(|k|)eit|k|
1
2 +(1−ψ(|k|)eit|k|

1
2 + ft(|k|)eit|k|

1
2

)

= η0 ?F
−1( f1(t,k)+ f2(t,k)+ f3(t,k)

)

= N1(·, t)+N2(·, t)+N3(·, t).

In spatial dimension d = 1, it has already been shown that for any fixed
t ∈ (0,+∞), F−1 f2(·, t) and F−1 f3(·, t) are integrable functions of x, and,
as is easily confirmed, uniformly so on compact subsets of t ∈ (0,+∞).
Thus, the functions N2 and N3 are continuous on R× (0,+∞), for any η0 ∈
L2(R)∩L∞(R)∩C(R). On the other hand, in dimension d = 2, for a fixed
t ∈ (0,+∞), F−1 f2(·, t) and F−1 f3(·, t) are bounded continuous functions
of x, and uniformly so on compact subsets of t ∈ (0,+∞),

Choose the initial value η0 to be η0(x) = |x|β K̄(x) for x ∈ R, where
3d
2 ≤ β ≤ 2d, and

K = F
−1
(

ψ(|k|)ei|k|
1
2

)
.

In the notation arising in Theorem 10.10, this amounts to taking b = 0 and
setting K(x) = F̄1

2
(x). Using the results of Theorem 10.10 along with the

choice of β , it is easily seen that η0 ∈C(Rd)∩L∞(Rd)∩C ∞(Rd \ {0})∩
L1(Rd). In particular, η0 is an L2-function.

Note that although η0 ∈ L1(Rd), for t 6= 0, the solution η(·, t), does
not necessarily belong to Ł∞(Rd) since F−1

(
exp i[t(|k| tanh |k|) 1

2 ]
)

is not
an L∞–function. Again this is in strong contrast with what obtains for the
linear KdV-equation (10.15) or the linear Schrödinger equation.

The preceding analysis demonstrates that N2(·, t) and N3(·, t) are convo-
lutions of an L1–function with a bounded, continuous function of x. Hence,
they are themselves bounded and continuous in x, and uniformly so on
compact temporal subsets.

Theorem 10.10 applied to N1 implies that as (x, t)→ (0,1), the solution
η(x, t) tends to

C1 +C2

∫

Rd
|K(y)|2|y|β dy = +∞

since β ≤ 2d.
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It is now demonstrated that η is continuous on Rd× (0,+∞)\{(0,1)},
which is to say, everywhere except at the dispersive blow-up point. Since
N2 and N3 are continuous in x and t, it remains to consider N1(·, t) = η0 ?

F−1(ψ(|k|)eit|k|
1
2 ).

We first show that N1(·,1) is a continuous function of x on Rd \ {0}.
According to the definition of η0,

N1(x,1) =
∫

Rd
|x− y|β F̄1

2
(x− y)F1

2
(y)dy. (10.37)

Let δ > 0 be fixed and suppose that |x|> δ . Decompose the last integral in
the form

N1(x,1) =
∫

B δ
2

(0)
|x− y|β F̄1

2
(x− y)F1

2
(y)dy+

∫

B δ
2

(x)
|x− y|β F̄1

2
(x− y)F1

2
(y)dy

+
∫

Rd\B δ
2

(0)∪B δ
2

(x)
|x− y|β F̄1

2
(x− y)F1

2
(y)dy = N1

1 (x,1)+N2
1 (x,1)+N3

1 (x,1).

By Theorem 10.10, N3
1 (·,1) is a continuous function of x. By our choice of

β , N2
1 (·,1) is a continuous function of x. The treatment of N1

1 (·,1) is a bit
more delicate and makes use of the oscillatory nature of the integrand. By
Theorem 10.10, F1

2
(x) behaves like

[
α1

|x| 3d
2

+
α2

|x| 3d
2 −1

+
α3

|x| 3d
2 −2

+g(x)

]
eiC3|x|−1

(10.38)

for x near 0, where g is continuous.
When d = 1, only the first term in (10.38) gives trouble as regards the

continuity of N1
1 (·,1). Integration by parts reveals immediately that the

integral
∫

B δ
2

(0)
|x− y|β F̄1

2
(x− y)

eiC3|y|−1

|y| 32
dy

defines a continuous function of x.
When d = 2, the first two terms in (10.38) both lead to situations that

are possibly singular. We are therefore lead to consider the two integrals
∫

B δ
2

(0)
|x− y|β F̄1

2
(x− y)

eiC3|y|−1

|y|3 dy (10.39)
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and ∫

B δ
2

(0)
|x− y|β F̄1

2
(x− y)

eiC3|y|−1

|y|2 dy. (10.40)

Straightforward integration by parts shows that both these integrals define
continuous functions of x.

Attention is now turned to the region D1 = {(x, t);x ∈ Rd , t > 0,
t 6= 1}. It will be shown that N1 is continuous throughout this domain. A
first observation is that

F
−1
(

ψ(|k|eit|k|
1
2

)
(x) =

1

t
d
2
F
−1
(

ψ
( |k|

t
1
2

)
ei|k|

1
2

)(
x

t
1
2

)
(10.41)

On the other hand,

ψ(|k|)ei|k|
1
2 −ψ

( |k|
t

1
2

)
ei|k|

1
2 = ψ̃t(|k|)ei|k|

1
2

where ψ̃t is smooth, compactly supported and vanishes in a neighborhood

of 0. Thus, the inverse Fourier transform of ψ̃t(|k|)ei|k|
1
2 is smooth and

decays rapidly to 0 as |x| → ∞; it is certainly bounded and continuous on
D1. We may therefore write

N1(·, t) =
1

t
d
2

η0 ? F1
2

( ·
t

1
2

)
+G(·, t) =: Ñ1(·, t)+G(·, t), (10.42)

where G is continuous in x and t. Split Ñ1(x, t) as follows:

Ñ1(x, t) =
1

t
d
2

∫

Rd
η0(x− y)F1

2

(
y

t
1
2

)
dy

=
1

t
d
2

(∫

|y|≤1
η0(x− y)F1

2

(
y

t
1
2

)
dy+

∫

|y|≥1
η0(x− y)F1

2

(
y

t
1
2

)
dy
)

= Ñ1
1 (x, t)+ Ñ2

1 (x, t).

Since η0(x−y) behaves like C|x−y|− 3d
2 +β when y is close to x, the choice

of β and the properties of F1
2

imply that Ñ2
1 is continuous in x and t.

The choice η0 = |x|β K̄(x) entails that

Ñ1(x, t) =
1

t
d
2

∫

|y|≤1
|x− y|β F̄1

2
(x− y)F1

2

(
y

t
1
2

)
dy. (10.43)
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When x 6= 0, the singularity at y = 0 can be dealt with as in the preceding
analysis of N1

1 . Attention is thus restricted to x = 0 and the aim is to prove
that the integral

Ñ1(0, t) =
1

t
d
2

∫

|y|≤1
|y|β F̄1

2
(y)F1

2

(
y

t
1
2

)
dy, (10.44)

taken in the sense of generalized Riemann integration, is finite when t 6=
1. According to Theorem 10.10, the singular part of the integral defining
Ñ1(0, t) is

Γ(t) = t
d
4

∫

|y|≤1
|y|β−3dei C3

|y| (t
1
2−1)dy.

This integral is finite, as seen by integration by parts, provided β > 2d−1,
which is compatible with the restriction

3d
2
≤ β ≤ 2d

on β . The proof is complete.

Remark 10.8. It is proven in [35, 33] that dispersive blow-up holds true for
a general class of nonlinear Schrödinger type equations in Rn (including
the “hyperbolic" one and the Davey-Stewartson systems).
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Chapter 11

Long time existence issues

11.1 Long time existence issues
As we have seen in the previous chapters, a basic issue for the rigorous
justification of the asymptotic model is to establish long time existence
results for the solutions, that is on time scales on which the models are
meaningful.

This issue is of course irrelevant when, for simple models like KdV,
KP, Benjamin-Ono,..., local well-posedness in large spaces combined with
conservation laws insure the global well-posedness.

For most of asymptotic models however this strategy does not work.
Either no conservation laws exist or they cannot control a useful norm. For
instance, the Boussinesq systems (4.26) are hamiltonian only when b = d.
In fact (4.26) can be then rewritten in the 2D caseon the form

∂tu+Aε u+ εN (u) = 0, (11.1)

where

u =




ζ
v1
v2


 ,

Aε = (I− εb∆)−1




0 (1+aε∆)∂x1 (1+aε∆)∂x2
(1+ cε∆)∂x1 0 0
(1+ cε∆)∂x2 0 0


 ,

(11.2)

165
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and

N (u) = (I− εb∆)−1




∂x1(ζ v1)+∂x2(ζ v2)
1
2 ∂x1(v

2
1 + v2

2)
1
2 ∂x2(v

2
1 + v2

2)


 .

We will denote by (·, ·) the scalar product on L2(R2;R3), i.e

(u, ũ) =
∫

R2

(
ζ ζ̃ + v1ṽ1 + v2ṽ2

)
dx1dx2

and by J the skew adjoint matrix operator

J = (I− εb∆)−1




0 ∂x1 ∂x2
∂x1 0 0
∂x2 0 0


 .

Then, the system (11.1) is equivalent to

∂tu =−J




(1+ ε∆)η + ε
2 |v|2

(1+ ε∆)v1 + εζ v1
(1+ ε∆)v2 + εζ v2


= J(gradHε)(u),

where Hε(u) is the functional given by 1

Hε(u) =
1
2

∫

R2

(
−aε |∇ζ |2− cε |∇v|2−ζ 2−|v|2− εζ |v|2

)
dx1dx2.

Therefore, it follows that Hε is a conserved quantity by the flow of (11.1),
since

d
dt

Hε(u) = H ′
ε(u)∂tu =

(
(gradHε)(u),∂tu

)

=
(
(gradHε)(u),J(gradHε)(u)

)
= 0,

where we used the fact that J is skew adjoint.
On the other hand one easily check that the Hamiltonian H does not

control any Sobolev norm and one cannot use it to obtain useful a priori
bounds.2

1Recall that the linear well-posedness of the Boussinesq systems implies that a ≤ 0 and
c≤ 0 or a = c.

2In 1D however, due to the Sobolev embedding H1(R) ⊂ L∞(R) one can nevertheless
prove global existence results for some specific systems for small enough initial data, see
[14, 209, 37].
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Another example is the dispersive Burgers equation (10.9) when α < 1.
We have already seen that the associated blow-up issues are delicate. So are
the long time existence problems. For the Burgers equation

ut + εuux = 0,

the maximal existence time is O(1/ε) and one can ask whether and how
this existence time is affected by a weak dispersive perturbation (0<α<1).

This question is not a simple one, as shows the related example of the
Burgers-Hilbert equation

ut + εuux +H u = 0, u(·,0) = u0, (11.3)

where H is the Hilbert transform.
In fact, Hunter and Ifrim [110] (see a different proof in [111]) have

shown the rather unexpected result :

Theorem 11.1. Suppose that u0 ∈ H2(R). There are constants k > 0 and
ε0 > 0, depending only on |u0|H2 , such that for every ε with |ε| ≤ ε0, there
exists a solution u ∈C(Iε ;H2(R))∩C1(Iε ;H1(R)) of (11.3) defined on the
time-interval Iε = [−k/ε2,k/ε2] .

As explained in [110], this enhanced lifespan is due to the fact that
the quadratic nonlinear term of order ε in (11.3) is nonresonant for the
linearized equation. To see this, note that the solution of the linearized
equation

ut = H [u]]

is given by u = etH u0, or

u(x, t) = u0(x)cos t +h0(x)sin t, h0 = H [u0],

as may be verified by use of the identity H 2 = −I. This solution oscil-
lates with frequency one between the initial data and its Hilbert transform,
and the effect of the nonlinear forcing term uux on the linearized equation
averages to zero because it contains no Fourier component in time whose
frequency is equal to one.

11.1.1 Long time existence for the Boussinesq systems
Since the Boussinesq systems (4.26) are not skew-adjoint perturbations of
symmetric quasilinear systems, one cannot use the classical energy method
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(see Chapter ) to get “for free” well-posedness on time scales of order
O(1/ε).

It has been nevertheless observed in [30] that, when a = c, one can
find an equivalent (in the sense of consistency) family of fully symmetric
systems that can be solved by the aforementioned method. More precisely,
by performing the change of variables

ṽ = v(1+
ε
2

ζ )

one gets (up to terms of order ε2) systems having a symmetric nonlinear
part. Those transformed systems can be viewed as skew-adjoint perturba-
tions of symmetric first order hyperbolic systems (when v is curlfree up to
0(ε)) and existence on time scales of order 1/ε follows classically. But
of course the transformed systems are not members of the a,b,c,d class of
Boussinesq systems and this does not solve the long time existence problem
for this class.

This question is addressed in [206] (see also [177]) for all Boussinesq
systems except the case a = c = 1

6 ,b = d = 0. We first need a technical
definition.

Definition 11.2. For any s∈R, k∈N, ε ∈ (0,1), the Banach space X s
εk(R

n)

is defined as Hs+k(Rn) equipped with the norm:

|u|2X s
εk

= |u|2Hs + εk|u|2Hs+k . (11.4)

k, and later k′ are positive numbers which depend on (a,b,c,d).

For instance (k,k′) = (3,3) when a,c < 0, b,d > 0,b 6= d.

Theorem 11.3. Let t0 > n
2 , s≥ t0 + 2 if b + d > 0, s≥ t0 + 4 if b = d = 0.

Let a,b,c,d satisfy the condition (7.7). Assume that ζ0 ∈ X s
εk(R

n),v0 ∈
X s

εk′ (R
n) satisfy the (non-cavitation) condition

1− εζ0 ≥ H > 0, H ∈ (0,1), (11.5)

Then there exists a constant c̃0 such that for any ε ≤ ε0 = 1−H
c̃0(|ζ0|Xs

εk
+|v0|Xs

εk′
)
,

there exists T > 0 independent of ε and a unique solution (ζ ,v)T with
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ζ ∈C([0,T/ε ];X s
εk(R

n)) and v ∈C([0,T/ε ];X s
εk′ (R

n)). Moreover,

max
t∈[0,T/ε]

(|ζ |X s
εk

+ |v|X s
εk′

)≤ c̃(|ζ0|X s
εk

+ |v0|X s
εk′

). (11.6)

Here c̃ = C(H−1) and c̃0 = C(H−1) are nondecreasing functions of their
argument.

Proof. We only sketch it (see [206] for details).

• The idea of the proof is to perform a suitable symmetrization (up to
lower order terms) of a linearized system and then to implement a
energy method on an approximate system. The method is of “hyper-
bolic” spirit.

• This is why we need the non cavitation condition (the hyperbolicity
condition for the Saint-Venant system). Note that no such condition
is needed when one solves thelocal Cauchy problem by dispersive
methods.

Setting V = (ζ ,v)T , U = (η ,u)T = εV, we rewrite (7.5) as




(1−bε∆)∂tη +∇ ·u+∇ · (ηu)+aε∇ ·∆u = 0,

(1−dε∆)∂tu+∇η +
1
2

∇(|u|2)+ cε∇∆η = 0.
(11.7)

with the initial data
(η ,u)T |t=0 = (εζ0,εv0)

T (11.8)

Let g(D) = (1− bε∆)(1− dε∆)−1. Then (11.21) is equivalent after
applying g(D) to the second equation to the condensed system:

(1−bε∆)∂tU+M(U,D)U = 0, (11.9)

where

M(U,D) =




u ·∇ (1+η +aε∆)∂x1 (1+η +aε∆)∂x2
g(D)(1+ cε∆)∂x1 g(D)(u1∂x1) g(D)(u2∂x1)
g(D)(1+ cε∆)∂x2 g(D)(u1∂x2) g(D)(u2∂x2)


 .

(11.10)
In order to solve the system (7.5)-(11.8), we consider the following

linear system in U

(1−bε∆)∂tU+M(U,D)U = F, (11.11)
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together with the initial data

U|t=0 = U0, (11.12)

The key point to solve the linear system (11.24)-(11.12) is to search a
“symmetrizer” SU(D) of M(U,D) such that the principal part of iSU(ξ )M(U,ξ )

is self-adjoint and ((SU(ξ )U,U))1/2 defines a norm under a smallness as-
sumption on U.

It is not difficult to find that:

(i) if b = d, g(D) = 1, SU(D) is defined by



1+ cε∆ u1 u2
u1 1+η +aε∆ 0
u2 0 1+η +aε∆


 ; (11.13)

(ii) if b 6= d, SU(D) is defined by



(1+ cε∆)2g(D) g(D)(u1(1+ cε∆)) g(D)(u2(1+ cε∆))
g(D)(u1(1+ cε∆)) (1+η +aε∆)(1+ cε∆) 0
g(D)(u2(1+ cε∆)) 0 (1+η +aε∆)(1+ cε∆)




+




0 0 0
0 u1u1 u1u2
0 u1u2 u2u2


(g(D)−1).

(11.14)
Note that SU(D) is not self-adjoint since at least its diagonal part is not.
Then we define the energy functional associated with (11.24) as

Es(U) =
(
(1−bε∆)ΛsU,SU(D)ΛsU

)
2. (11.15)

One can show that Es(U) defined in (11.25) is trully a energy functional
equivalent to (the square of) some X s

εk(R
2) norm provided a smallness con-

dition is imposed on U, which is satisfied (for ε small enough) if

1+η ≥ H > 0, |U|∞ ≤ κ(H,a,b,c,d), |U|Hs ≤ 1, for t ∈ [0,T ′].
(11.16)

For the nonlinear system, if ε is small enough, this smallness condition
holds for its solution (ζ ,v)T , i.e., (η ,u)T ≡ ε(ζ ,v)T satisfies (14.20).

One has then (painful) task to derive a priori estimates on the linearized
system (which use in particular the commutator estimates of D. Lannes
[157], in the various cases.
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• Construction of the nonlinear solution by an iterative scheme :

We construct the approximate solutions {Vn}n≥0 = {(ηn,vn)T}n≥0 with
Un+1 = εVn solution to the linear system

(1−bε∆)∂tUn+1 +M(Un,D)Un+1 = 0, Un+1|t=0 = εV0 ≡U0, (11.17)

and with U0 = U0. Given Un satisfying the above assumption, the linear
system (11.36) is unique solvable.
Remark 11.1. • Our proof for the (abcd) systems does not seem to

work for the “KdV-KdV Boussinesq system” b = d = 0, a = c = 1/6
but it does when b = d = 0, a < 0,c < 0 (that may occurs for gravity-
capillary waves).

• The proofs using dispersion (that is high frequencies) do not take into
account the algebra (structure) of the nonlinear terms. They allows
initial data in relatively large Sobolev spaces but seem to give only
existence times of order O(1/

√
ε), see [72, 161].

• The existence proofs on existence times of order 1/ε are of “hyper-
bolic” nature.They do not take into account the dispersive effects
(treated as perturbations).

• Is it possible to go till O(1/ε2), or to get global existence. This is
plausible in one D (the Boussinesq systems should evolves into an
uncoupled system of KdV equations [220] but not so clear in 2D...
One should there take advantage of dispersion dispersion. A possible
strategy would be to use of a normal form technique (à la Germain-
Masmoudi-Shatah) [88, 89, 90, 91].

11.1.2 Long time existence for a class of Full dispersion
systems

We recall that the Full dispersion systems for surface water waves write




∂tζ −
1√µν

Hµ v+
ε
ν
(
Hµ(ζ ∇Hµ v)+∇ · (ζ v)

)
= 0,

∂tv+∇ζ +
ε
ν
(1

2
∇(|v|2)−√µν∇ζHµ ∇ζ

)
= 0,

(11.18)
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where v = v(t,x) ( x ∈ Rd ,d = 1,2) is an O(ε2) approximation of the hor-
izontal velocity at the surface and ζ = ζ (t,x) is the deviation of the free
surface.

We recall that ε is here the steepness parameter defined as the ratio of a
typical amplitude over a typical horizontal wave length.

Following Lannes ([155]), ν is a smooth function of µ such that ν ∼ 1
when µ¿ 1 (shallow water) and ν ∼ 1√µ when µ = O(1) or µÀ 1 (deeper

water), for instance ν =
tanh(

√µ)√µ . Hµ is a Fourier multiplier defined as

∀v ∈S (Rd), Ĥµ v(ξ ) =− tanh(
√µ|ξ |)
|ξ | (iξ ) · v̂(ξ ). (11.19)

Without loss of generality, we may assume that

√
µν = 1, ε = ε

√
µ ≤ εmax ≤ 1, µ ≥ µmin > 0. (11.20)

This model has been proven by D. Lannes ([155]) to be consistent with
the full water wave system. To our knowledge, no (local or on large time)
well-posedness result for the Cauchy problem associated to (11.18) seems
to be available. Our goal is to derive an equivalent system, which is also
consistent with the water wave system, and for which we can prove the
large time well-posedness of the Cauchy problem. The new system, which
has the same accuracy as the original one, is obtained after a (nonlinear
and nonlocal) change of the two independent variables and turns out to
be symmetrizable yielding the large time existence on the hyperbolic time
scale 1/ε . This method is inspired by [32] where it was used in the (simpler)
case of Boussinesq systems having a skew-adjoint linear dispersive part
(see the beginning of this Chapter).

One can now write the FD system as




∂tζ −Hµ v+ ε
(
Hµ(ζ ∇Hµ v)+∇ · (ζ v)

)
= 0,

∂tv+∇ζ + ε
(1

2
∇(|v|2)−∇ζHµ ∇ζ

)
= 0,

(11.21)

where Hµ = tanh(
√µ|D|)H for d = 1 while Hµ = (Hµ,1,Hµ,2)

T with
Hµ, j = tanh(

√µ|D|)R j for d = 2. Here H = − ∂x
|∂x| is the Hilbert trans-

form and R = (R1,R2)
T = − ∇

|D| is the Riesz transform. In what follows,
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we shall use the notations

Ru =
2

∑
j=1

R ju j, u ·R f =
2

∑
j=1

u jR j f . (11.22)

The same notations are valid for Hµ .
Note that the dispersive part (order zero part) is the linearized water

waves system at zero velocity and flat surface.
We consider first the one-dimensional case. We consider the nonlinear

changes of variables

ṽ = v+
ε
2

vHµ ∂xζ , ζ̃ = ζ − ε
4
|v|2. (11.23)

Deleting the O(ε2) terms, we obtain the following system (omitting the
tildes)




∂tζ −Hµ v+
ε
2
Hµ(vHµ ∂xζ )+

ε
2

v∂xζ + ε
(
Hµ(ζHµ ∂xv)+ζ ∂xv

)
= 0,

∂tv+∂xζ − ε
2

∂xζHµ ∂xζ +
3ε
2

v∂xv− ε
2

vH 2
µ ∂xv = 0.

(11.24)
In the two-dimensional case, we consider now the nonlinear changes of

variables
ṽ = v+

ε
2

vHµ ∇ζ , ζ̃ = ζ − ε
4
|v|2, (11.25)

Discarding the O(ε2) terms, we finally get (omitting the tildes)





∂tζ −Hµ v+
ε
2
Hµ(vHµ ∇ζ )+

ε
2

v ·∇ζ + ε
(
Hµ(ζ ∇Hµ v)+ζ ∇ · v

)
= 0,

∂tv+∇ζ − ε
2

∇ζHµ ∇ζ − ε
2

v(Hµ ∇Hµ +div)v

+ ε
(

2v1∂1v1 + v2∂2v1
2v2∂2v2 + v1∂1v2

)
+

ε
2

(
v2∂1v2 + v1∂2v2
v1∂2v1 + v2∂1v1

)
= 0.

(11.26)
In both cases the new systems are consistent with the original ones (as-

suming that curl v = O(ε) in 2D, a condition which is satisfied when deriv-
ing the FD system). It turns out that the new systems are symmetrizable.

We need first to define some functional spaces
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Definition 11.4. For any integer N ≥ 0, µ ∈ (µmin,∞) with µmin > 0,
the Banach space XN

µ (Rd) (d = 1,2) is defined as HN+1/2(Rd)×HN(Rd)
equipped with the norm

E
N(V) = |V|2XN

µ
=

1√µ
|ζ |22 +

∣∣|D|1/2ζ
∣∣2
HN + |v|2HN , (11.27)

where V = (ζ ,v)T with v = v for d = 1 and v = (v1,v2)
T for d = 2.

Remark 11.2. When µ = ∞, the Banach space X N
µ (Rd) becomes

XN(Rd) = {V = (ζ ,v)T | |D|1/2ζ ∈ HN(Rd), v ∈ HN(Rd)}

equipped with the norm

E
N(V) = |V|2XN =

∣∣|D|1/2ζ
∣∣2
HN + |V|2HN .

In the one-dimensional case we have the following theorem.

Theorem 11.5. Given any V0 = (ζ0,v0)
T ∈ XN

µ (R) with N ≥ 2, there exist
T independent of ε and a unique solution V = (ζ ,v)T ∈C([0,T/ε];XN

µ (R))
to (11.24)-(11.12). Moreover, one has the energy estimate

max
0≤t≤T/ε

E
N(V)≤C0E

N(V0). (11.28)

In the two-dimensional case we have the following theorem.

Theorem 11.6. Given any V0 = (ζ0,v0)
T ∈ XN

µ (R2) with N ≥ 3, there exist
T independent of ε and a unique solution V =(ζ ,v)T ∈C([0,T/ε];XN

µ (R2))
to (11.26). Moreover, one has the energy estimate

max
0≤t≤T/ε

E
N(V)≤C0E

N(V0). (11.29)

As in the case of the Boussinesq systems, the proof consists, in the
spirit of the procedure used in hyperbolic quasilinear systems, to construct
the suitable symmetrizers, and then to derive the corresponding energy esti-
mates. In the final step one constructs approximate solutions and one passes
to the limit thanks to the energy estimates.

Technically one has to derive some commutator estimates. For instance,
in the 1D case :
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Lemma 11.7. Let s≥ 0, t0 > 1/2. Then for any r1,r2 ≥ 0, there hold

(i) |[H ,a(x)] f (x)|Ḣs . |Λr1 a|Ḣs+r2 |Λt0−r1 f |Ḣ−r2 ;

(ii) |[H ,a(x)]∂x f (x)|Ḣs . |Λr1 a|Ḣs+r2+1 |Λt0−r1 f |Ḣ−r2 ,

Lemma 11.8. Let t0 > 1/2. Then for any r ≥ 0, there hold

(i) |(Hµ −H ) f (x)|Ḣs . 1√µr | f |Ḣs−r , for s ∈ R;

(ii) |(1+H 2
µ ) f (x)|Ḣs . 1√µr | f |Ḣs−r , for s ∈ R;

(iii) |[Hµ ,a(x)] f (x)|Ḣs .
(
|a|Ḣs+r + 1√µr |a|Ḣs + 1√µs |a|Ḣr + 1√µs+r |a|2

)
|Λt0 f |Ḣ−r ,

for s≥ 0.

Introduce U = (η ,u)T = (εζ ,εv)T and U (α) = ∂ α
x U .

Write the modified FD system as




∂tη−Hµ u+
1
2
Hµ(uHµ ∂xη)+

1
2

u∂xη = gµ(η ,u),

∂tu+∂xη− 1
2

∂xηHµ ∂xη +
3
2

u∂xu− 1
2

uH
2

µ ∂xu = 0,

(11.30)

where

gµ(η ,u) =−Hµ(ηHµ ∂xu)−η∂xu =−[Hµ ,η ]Hµ ∂xu−η(H 2
µ +1)∂xu.

(i) for α = 0, U (0) satisfies

∂tU (0) +A U (0) = G(0), (11.31)

where

A =

(
0 −Hµ
∂x 0

)
,

and G(0) = (G(0)
1 ,G(0)

2 )T with

G(0)
1 = gµ(η ,u)− 1

2
Hµ(uHµ ∂xη)− 1

2
u∂xη ,

G(0)
2 =

1
2

∂xηHµ ∂xη− 3
2

u∂xu+
1
2

uH
2

µ ∂xu.
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Note that Hµ =− tanh(
√µ|∂x|) ∂x

|∂x| . Then the symmetrizer of A is defined
by

S =

(
|∂x|

tanh(
√µ|∂x|) 0
0 1

)
. (11.32)

(ii) for 1≤ α ≤ N, applying ∂ α
x to (11.30), we obtain that U (α) satisfies

∂tU (α) +
(
A +B[U ]

)
U (α) = G(α), (11.33)

where A is the same as above and B[U ] = (bi j)i, j=1,2 is defined by
( 1

2Hµ(uHµ ∂x)+ 1
2 u∂x

1
2Hµ(Hµ ∂xη ·)− 1

2 ∂xηH 2
µ

− 1
2 ∂xηHµ ∂x− 1

2Hµ ∂xη∂x
3
2 u∂x− 1

2 uH 2
µ ∂x

)
,

and G(α) = (G(α)
1 ,G(α)

2 )T with

G(α)
1 = ∂ α

x gµ(η ,u)− 1
2

α−1

∑
β=1

Cβ
α

(
Hµ(u(β )

Hµ ∂xη(α−β ))+u(β )∂xη(α−β )
)

− 1
2

∂xη(H 2
µ +1)u(α),

G(α)
2 =

1
2

α−1

∑
β=1

Cβ
α ∂xη(β )

Hµ ∂xη(α−β )

+
α

∑
β=1

Cβ
α

(
−3

2
u(β )∂xu(α−β ) +

1
2

u(β )
H

2
µ ∂xu(α−β )

)
.

The symmetrizer of A +B[U ] is also defined by S in (11.32).
Energy functionals associated to the quasilinear system (11.31)-(11.33):

E(α)(U) = (U (α),SU (α))2 = | |∂x|1/2

tanh(
√µ|∂x|)1/2 η(α)|22 + |u(α)|22,

EN(U) =
N

∑
α=0

E(α)(U) = | |∂x|1/2

tanh(
√µ|∂x|)1/2 η |2HN + |u|2HN .

(11.34)

EN(U)∼ E
N(U) =

1√µ
|η |22 +

∣∣|∂x|1/2η
∣∣2
HN + |u|2HN . (11.35)

• The end of the proof consists in technical energy estimates.
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11.1.3 Large time existence results for some internal wave
models

We focus here on the Cauchy problem for some internal waves models in
the Intermediate long wave and Benjamin-Ono regimes, following closely
[245] (where the counterpart of the system below is derived in the case of
an upper free surface). We consider the ILW system derived in Chapter 5.2

{
(1+g(D))∂tζ − 1

γ ∇ · (εζ v)+ 1
γ (1+ β−1

β g(D))∇ ·v = 0,

∂tv+(1−g)∇ζ − ε
2γ ∇(|v|2) = 0,

(11.36)

with the initial data

V|t=0 = (ζ ,v)T |t=0 = V0, (11.37)

where

g(D) =
β
γ
√

µ|D|coth(
√

µ2|D|). (11.38)

From now on we will assume that

β > 1 and γ ∈ (0,1), (11.39)

ensuring that (11.36) is linearly well-posed.
We first prove the local well-posedness of (11.36) with a small existence

time O(
√µ) by using in a essential way the dispersion of the system.

Theorem 11.9. Let ε ∈ (0,1) and µ ∈ (0,1), µ2 > 0. For any V0 ∈
H2+[ d

2 ](Rd), there exists T > 0 such that (11.36)-(11.37) has a unique solu-
tion V =: (ζ ,v)T ∈C1([0,

√µT ];H1+[ d
2 ](Rd))∩C([0,

√µT ];H2+[ d
2 ](Rd)).

The correspondence V0→V from H2+[ d
2 ](Rd) to C([0,

√µT ];H2+[ d
2 ](Rd))

is continuous. Here T is only depending on |V0|
H2+[ d

2 ]
and γ ,β , indepen-

dent of µ and ε .

Remark 11.3. The same result holds in spaces H s(Rd) for any s≥ 2+[ d
2 ].

Proof. For the sake of simplicity we restrict to the case d = 1 and will only
prove the suitable a priori estimates and the uniqueness.
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Step 1. Setting η = εζ , u = εv, using the formula

(1+g(D))−1(1+
β −1

β
g(D)) =

β −1
β

+
1
β

(1+g(D))−1, (11.40)

(11.36) is rewritten in terms of (η ,u) as
{

∂tη− 1
γ (1+g(D))−1∂x(ηu)+ β−1

γβ ∂xu+ 1
γβ (1+g(D))−1∂xu = 0,

∂tu+(1− γ)∂xη− 1
γ u∂xu = 0.

(11.41)

Step 1.1. A priori estimates. Multiplying the first equation of (11.41) by
γβ

β−1 η , multiplying the second one by 1
1−γ u, integrating over R, integrating

by parts, one gets

1
2

d
dt

(
γβ

β −1
|η |22 +

1
1− γ

|u|22) =
β

β −1

∫

R
(1+g(D))−1∂x(ηu)ηdx

− 1
β −1

∫

R
(1+g(D))−1∂xuηdx,

(11.42)
which with the fact that |ξ |

1+g(ξ )
≤ c(1+ 1√µ ) implies

1
2

d
dt

(
γβ

β −1
|η |22 +

1
1− γ

|u|22)≤ c(1+
1√µ

)(|u|H1 |η |22 + |u|2|η |2). (11.43)

Multiplying the first equation of (11.41) by − γβ
β−1 ∂ 2

x η , multiplying the

second one by − 1
1−γ ∂ 2

x u, integrating over R, integrating by parts, one ob-
tains
1
2

d
dt

(
γβ

β −1
|∂xη |22 +

1
1− γ

|∂xu|22) =
β

β −1

∫

R
(1+g(D))−1∂x∂x(ηu)∂xηdx

− 1
β −1

∫

R
(1+g(D))−1∂x∂xu∂xηdx− 1

(1− γ)γ

∫

R
u∂xu∂ 2

x udx,

(11.44)
which with the fact that |ξ |

1+g(ξ )
≤ c(1+ 1√µ ) gives

1
2

d
dt

(
γβ

β −1
|∂xη |22 +

1
1− γ

|∂xu|22)

≤ c(1+
1√µ

)(|u|H1 |η |2H1 + |u|H1 |η |H1 + |u|2H1 |u|H2).

(11.45)
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Multiplying the first equation of (11.41) by γβ
β−1 ∂ 4

x η , multiplying the

second one by 1
1−γ ∂ 4

x u, integrating over R, integrating by parts, one has

1
2

d
dt

(
γβ

β −1
|∂ 2

x η |22 +
1

1− γ
|∂ 2

x u|22) =
β

β −1

∫

R
(1+g(D))−1∂x∂ 2

x (ηu)∂ 2
x ηdx

− 1
β −1

∫

R
(1+g(D))−1∂x∂ 2

x u∂ 2
x ηdx+

1
(1− γ)γ

∫

R
∂ 2

x (u∂xu)∂ 2
x udx.

(11.46)
Integrating by parts, we get that
∫

R
∂ 2

x (u∂xu)∂ 2
x udx = 3

∫

R
(∂ 2

x u)2∂xudx+
∫

R
u∂x∂ 2

x u∂ 2
x udx =

5
2

∫

R
(∂ 2

x u)2∂xudx,

(11.47)
from which, we deduce from (11.46) that

1
2

d
dt

(
γβ

β −1
|∂ 2

x η |22 +
1

1− γ
|∂ 2

x u|22)≤ c(1+
1√µ

)(|u|H2 |η |2H2 + |u|H2 |η |H2 + |u|3H2)

(11.48)
Combining (11.43), (11.45) and (11.48), one obtains

1
2

d
dt

(
γβ

β −1
|η |2H2 +

1
1− γ

|u|2H2)≤ c(1+
1√µ

)(|u|H2 |η |2H2 + |u|H2 |η |H2 + |u|3H2),

(11.49)
which implies by denoting Y (t) =: γβ

β−1 |ζ |2H2 + 1
1−γ |v|2H2 that

Y (t)′≤ c(1+
1√µ

)(Y (t)+εY (t)3/2)≤ c(1+
1√µ

)Y (t)(Y (t)+1), (11.50)

that is
d
dt

ln(
Y (t)

Y (t)+1
)≤ c(1+

1√µ
). (11.51)

Then
Y (t)≤ 1

(1+ 1
Y (0) )e

−c(1+ 1√µ )t −1
, (11.52)

if (1 + 1
Y (0) )e

−c(1+ 1√µ )t
> 1. Taking T = 1

4c ln(1 + 1
Y (0) ), by (11.52), there

holds

Y (t)≤
(
(1+

1
Y (0)

)1/2 +1
)
Y (0), ∀t ∈ (0,

√
µT ). (11.53)
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The estimate on (∂tζ ,∂tv) is easy to be deduced from the equations (11.41)
and (11.53).

Step 1.2. Uniqueness. Suppose that (ζ1,v1)
T and (ζ2,v2)

T are two
solutions to (11.36)-(11.37). Denoting ζ =: ζ1−ζ2, v =: v1− v2 and η =:
εζ , u =: εv, ηi =: εζi, ui =: εvi (i = 1,2), then (η ,u)T satisfies




∂tη−
1
γ
(1+g(D))−1∂x(ηu1 +η2u)+

β −1
γβ

∂xu+
1

γβ
(1+g(D))−1∂xu = 0,

∂tu+(1− γ)∂xη− 1
γ
(u∂xu1 +u2∂xu) = 0.

(11.54)
Multiplying the first equation of (11.54) by γβ

β−1 (η−∂ 2
x η), multiplying

the second one by 1
1−γ (u− ∂ 2

x u), integrating over R, integrating by parts,
after a similar argument as proving (11.43) and (11.45), we get

1
2

d
dt

(
γβ

β −1
|η |2H1 +

1
1− γ

|u|2H1

)

≤ c(|u1|H2 + |u2|H2)(|η |2H1 + |u|2H1)+ c(|η2|H1 |u|H1 |η |H1 + |u|H1 |η |H1).
(11.55)

Since (ζ1,v1)
T , (ζ2,v2)

T are bounded in C([0,
√µT ];H2(R)) and satisfy-

ing inequality (11.53), we deduce from (11.55) that

d
dt

(
γβ

β −1
|η |2H1 +

1
1− γ

|u|2H1

)
≤CT (|η |2H1 + |u|2H1), (11.56)

where CT is a constant depending on γ ,β , µ,T, |V0|H2 . Since (ζ ,v)T |t=0 =
0, we deduce from (11.56) that (ζ1,v1)

T =(ζ2,v2)
T . This proves the unique-

ness of the solution to (11.36)-(11.37).

Still following [245] we now prove a large time existence of the Cauchy
problem (11.36)-(11.37) that is needed for the fumll justification of the
system More precisely we shall prove the solvability of (11.36)-(11.37)
in Sobolev space with higher regularity with the existence time at order
O( 1

ε ) = O( 1√µ ) when µ ∼ ε2 ¿ 1. To this purpose, we introduce the

Sobolev space X s
µ(Rd) as being Hs+1(Rd) equipped with the norm |u|2X s

µ
=

|u|2Hs + µ|u|2Hs+1 .
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Theorem 11.10. Let t0 > d
2 , s≥ t0 +2 and µ ∈ (0,1), µ2 > 0. Assume that

V0 = (ζ0,v0)
T ∈ X s

µ(Rd) satisfies that

1− εζ0 ≥ H > 0, (11.57)

with v0 = v0 for d = 1 and v0 = (v0,1,v0,2)
T for d = 2. Then there ex-

ists a constant c̃0 such that for any ε ≤ ζ0 = 1−H
c̃0|V0|Xs

µ
, there exists T > 0

independent of µ and ζ , such that (11.36)-(11.37) has a unique solution
V ∈C1([0,T/ε];X s−1

µ (Rd))∩C([0,T/ε];X s
µ(Rd)). Moreover,

max
t∈[0,T/ε]

(|V|X s
µ + |∂tV|X s−1

µ
)≤ c̃|V0|X s

µ . (11.58)

Here and in what follows, without confusion, we denote c̃ = C(µ−1
2 ,H−1) a

nondecreasing constant depending on µ−1
2 and H−1. Otherwise, we denote

c̃i (i=0,1,2,...) the distinguished constants with the same properties as c̃.

Proof. The proof of Theorem 11.10 follows the line of that of Theorem
11.5 and we refer to [245] for details.
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Chapter 12

Focusing versus defocusing

Dispersive equations are sometimes classified into two categories, the fo-
cusing ones and the defocusing ones. Roughly speaking the long time
dynamics of defocusing equations is expected to be dominated by disper-
sion and scattering, being thus in some sense “trivial”. On the other hand,
the long time dynamics of focusing equations is expected to be not triv-
ial, due to the existence of special localized solutions (“solitons”, “solitary
waves”,..) that are supposed to play a major role in the dynamics as for
instance in the case of the KdV equation.

For the cubic nonlinear Schrödinger equation

iut +∆u±|u|2u = 0 ∈ R2×R, (12.1)

the focusing case corresponds to the + sign, the defocusing case to the −
sign. Besides the L2 norm and the momentum (that we will note use here),
(12.1) preserves the energy (Hamiltonian)

H(u) =
1
2

∫

R2
|∇u|2dx∓ 1

4

∫

R2
|u|4dx. (12.2)

As it is well known (see for instance [223]), (12.1) possesses solitary
waves solutions u(x, t) = eiωtφ(x), φ ∈H1(R2), ω > 0 in the focusing case
and no such solutions in the defocusing one.

Solitary waves in the focusing case satisfy the nonlinear elliptic equa-
tion

−∆u+ωu = |u|2u. (12.3)

182
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can be obtained by minimizing in H1(R2) the action

1
2

∫ 2

R
[|∇u|2− 1

3
|u|4]dx+

ω
2

∫ 2

R
|u|2dx.

It is well-known ([223]) that no such solutions exist for the defocusing
NLS equation. In the next sections we will consider different aspects of
a defocusing or defocusing dynamics, emphasizing the Davey-Stewartson
and KP equations.

12.1 Non existence of solitary waves solutions
for the nonelliptic nonlinear Schrödinger
equation

We will consider first the nonelliptic nonlinear Schrödinger equation we
had seen in Chapter 4 to be a model for very deep water waves in the mod-
ulation regime.

We will consider more generally equations of type

iut +Lu+ f (|u|2)u = 0, in Rn×R, n≥ 2 (12.4)

where L is the second order differential operator given by

Lu =
n

∑
j,k=1

a jk
∂ 2u

∂x j∂k
.

We assume that f is a real valued continuous function such that

| f (s)| ≤ c(1+ |s|p), p≤ 2
n−2

, (1≤ p < ∞ if n = 2).

We are looking for travelling wave solutions of (12.4), that is solutions of
the form(2.1), that is, solutions of the form

u(x, t) = eiωtφ(x+ ct), (12.5)

where ω ∈ R,c ∈ Rn,φ ∈ H1(Rn)∩H2
loc(|Rn).

Theorem 12.1. For any ω ∈ R,c ∈ Rn, (12.4) has no nonzero solution
of type (12.5) if the nonsingular matrix (a jk) is not positive-definite (resp.
negative definite).



“master_livre_New”
2013/6/13
page 184

i

i

i

i

i

i

i

i

184 [CAP. 12: FOCUSING VERSUS DEFOCUSING

Proof. As usual in this kind of problem, we will derive and use Poho-
jaev type identities. One can assume without loss of regularity that Lu =

∑n
i=1 εi

∂ 2u
∂x2

j
,εi =±1, where εk 6= εl for some (k, l). φ should therefore satisfy

the equation

−ωφ + i
n

∑
j=1

c j +
∂φ
∂x j

+
n

∑
j=1

∂ 2φ
∂x2

j
+ f (|φ |2)φ = 0.

By setting φ(x) = e−i c
2 ·xψ(x), we are reduced to the case c = 0, (with a

different ω) and we consider therefore

−ωφ +
n

∑
j=1

ε j
∂ 2φ
∂x2

j
+ f (|φ |2)φ = 0. (12.6)

Since φ ∈ H1(Rn)∩H2
loc(R

n), the following formal computations can
be justified by a standard truncation procedure, namely we replace xk in the
following argument by χ j(x)xk = χ0

(
|x|
j

)
xk, χ0 ∈C∞

0 (R), χ0 ≥ 0, χ0(t) =

1, 0≤ t ≤ 1, χ0(t) = 0, t ≥ 2 and will let j→+∞.

Let k ∈ {1, · · ·,n} be fixed; we multiply (12.6) by xk
∂ φ̄
∂xk

and integrate
the real part of the resulting equation. We obtain after several integrations
by parts

ω
∫
|φ |2dx− εk

∫ ∣∣∣∣
∂φ
∂xk

∣∣∣∣
2

dx+ ∑
j 6=k

ε j

∫ ∣∣∣∣
∂φ
∂x j

∣∣∣∣
2

dx−
∫

F(|φ |2)dx = 0,

(12.7)
where F(x) =

∫ s
0 f (t)dt.

Let l ∈ {1 · ··,n} such that εk 6= εl . One obtains similarly

ω
∫
|φ |2dx− εl

∫ ∣∣∣∣
∂φ
∂xl

∣∣∣∣
2

dx+ ∑
j 6=l

ε j

∫ ∣∣∣∣
∂φ
∂x j

∣∣∣∣
2

dx−
∫

F(|φ |2)dx = 0.

(12.8)
One deduces from (12.7) and (12.8) that

−εl

∫ ∣∣∣∣
∂φ
∂xl

∣∣∣∣
2

dx+ εk

∫ ∣∣∣∣
∂φ
∂xk

∣∣∣∣
2

dx = 0,

and therefore
∂φ
∂xl
≡ ∂φ

∂xk
≡ 0.
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Finally ∇φ ≡ 0 and φ ≡ 0.

Remark 12.1. Of course Theorem 12.1 does not exclude the existence of
non trivial non localized traveling waves.

Let us consider for instance the “non elliptic” NLS :

i
∂u
∂ t

+
∂ 2u
∂x2 −

∂ 2u
∂y2 = 0. (12.9)

Let (see [50]) f ∈H1(R2) be the unique radial positive solution ( f (x,y)=
R((x2 + y2)1/2)) of

− f +∆ f + f 3 = 0.

It is well-known that f ∈C∞(R2), and therefore that R(r) = T (r2). One
easily checks that φ(x,y) = T (x2− y2) is a solution to

−φ +φxx−φyy +φ 3 = 0,

and thus that eitφ(x,y) is a nontrivial traveling wave of (12.9).

12.2 Non existence of solitary waves for the DSII
Davey-Stewartson systems

We consider here the Davey-Stewartson system that appears in deep water
which we write for convenience as

{
iut +uxx−uyy = α|u|2u+βuφx,

∆φ = ∂
∂x |u|2.

(12.10)

Remark 12.2. We recall that the Davey-Stewartson system (12.10) is inte-
grable by the Inverse Scattering method (see [17, 224, 225, 226, 194] for
rigorous results) when

α +
β
2

= 0.

It is then known as the Davey-Stewartson II (DS II) system. The case
β < 0 corresponds to the defocusing DS II, β > 0 to the focusing DS II. We
will keep this terminology in the non integrable case.
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We consider localized traveling wave solutions of (12.10), namely so-
lutions of the type

(eiωt+ψ(x−ct)U(x− ct),φ(x− ct)), (12.11)

where x = (x,y) ∈ R2,c = (c1,c2) ∈ R2, U ∈ H1(R2)∩H2
loc(R

2),∇φ ∈
L2(R2) and ψ is a linear function and ω =

c2
1
4 −

c2
2
4 .

The following result is proven in [93].

Theorem 12.2. The Davey-Stewartson system (12.10) can possess a non
zero traveling wave solution only if

(i) β < 0, α ∈ (0,−β ).

Moreover, (12.10) possesses a nontrivial radial traveling wave solution
if and only if

(ii) β < 0, α + β
2 = 0.

Remark 12.3. 1. The case (ii) corresponds to the integrable focusing DS II
system (which can always be rescaled to α = 1,β = −2). Arkadiev et al.
[15] have exhibited a family of explicit traveling waves (the lump solitons)
having the profile (c = 0):

ulump(x,y, t) =
2ν̄exp (2i Im (λ z)+4i Re (λ 2)t)

|z+4iλ t + µ|2 + |ν |2 ,

where z = x+ iy and λ ,ν , µ are arbitrary complex constants. Note that the
traveling wave profile |u(x,y,0)| is radial in appropriate variables and that
our hypothesis concerning ψ and ω are satisfied by ulump.

Ozawa [192] has independently exhibited a special case (λ=µ=0,ν=1)
and used it to construct solutions to the corresponding Cauchy problem
which blow up in the L2 norm using a pseudo-conformal invariance derived
in [95].

2. The fact that no traveling waves exist when β > 0 justifies the ter-
minology defocusing in this case and the long time dynamics should be
governed by scattering. Actually in the defocusing integrable DSII, Sung
[226] has proven, as we will see in more details in the next section, that the
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Cauchy problem is globally well-posed for arbitrary large initial data in an
appropriate functional space and that their sup norm in space decays as C

t ,
that is as the solution of the linear problem. Such a global well-posedness
result is unknown for the defocusing Änot integrable DS II system, and also
for the non elliptic Schrödinger equation (12.4).

3. In the focusing case β < 0, (i) and (ii) express that non trivial trav-
eling waves can exist only “in the viciniity” of the integral case, and, for
radiial ones, only in the integrable case. The computations in [25] suggest
actually that no traveling waves exist in the focusing non integrable case,
β < 0,α + β

2 6= 0.

Proof. We first prove that no non zero traveling wave exists when (i) is
violated. Inserting (12.11) into (12.10), we obtain




−(ω +ψ2

x −ψ2
y − cψx−dψy)U +Uxx−Uyy = αU3 +βUφx,

∆φ = (U2)x,
(ψxx−ψyy)U− (c−2ψx)Ux− (d +2ψy)Uy = 0.

(12.12)
Since ψ is linear, the last equation reduces to

(c−2ψx)Ux +(d +2ψx)Uy = 0,

that is U is constant on the characteristic lines

(d +2ψy)x− (c−2ψx)y = constant.

This can be satisfied by a H1 function if and only if

ψx = c/2, ψy =−d/2,

reducing the first equation in (12.12) to
{

Uxx−Uyy = αU3 +βUφx,
∆φ = (U2)x.

(12.13)

As in the proof of Theorem 12.1, the computations below can be justi-
fied by a truncation argument.

We multiply the first equation in (12.13) by xUx. After several integra-
tions by parts, we get

∫
(U2

x +U2
y )dxdy =

∫ [α
2
−βx(U2)xφx

]
dxdy,
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that is, by using the second equation in (12.13)

∫ [
U2

x +U2
y −

α
2

U4− β
2

(φ 2
x −φ 2

y )

]
dxdy = 0. (12.14)

In a similar way, the first equation in (12.13) by xUy and integrating by
parts gives

∫ [
U2

x +U2
y +

α
2

U4 +
β
2

(φ 2
x +3φ 2

y )

]
dxdy = 0. (12.15)

On the other hand, multiplying the first equation in (12.13) by U and
integrating using the second one yields

∫
[U2

x −U2
y −αU4−β |∇φ |2]dxdy = 0. (12.16)

Adding (12.14) and (12.15) gives
∫ [
|∇U |2 +βφ 2

y
]

dxdy = 0. (12.17)

By adding (12.14) and (12.16) one obtains

∫ [
2U2

y −
3α
2

U4− 3β
2

φ 2
x −

β
2

φ 2
y

]
dxdy = 0. (12.18)

Identities (12.17) and (12.18) imply that

β < 0, and α > 0.

Substracting (12.14) from (12.15), we then obtain
∫ [

αU4 +β (φ 2
x +φ 2

y )
]

dxdy = 0.

We now set r = |̂u|2. By Plancherel theorem and the second equation in
(12.13) we obtain

∫
[αU4 +β (φ 2

x +φ 2
y )]dxdy =

∫ (
α +
|ξ1|2
|ξ |2 β

)
|r|2dξ1dξ2 = 0,
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where ξ = (ξ1,ξ2) is the dual variable of (x,y) and hence

∫
[αU4 +β (φ 2

x +φ 2
y )]dxdy =

∫ (
α +β − ξ 2

2
|ξ |2 β

)
|r|2dξ1dξ2 = 0.

(12.19)
Since β < 0, it follows that α +β < 0, achieving to prove (i).
Let us now assume that U is radial. We then rewrite (12.19) as

∫ [
α +

β
2
− β

2

(
ξ 2

2 −ξ 2
1

|ξ |2
)]
|r|2dξ1dξ2 = 0. (12.20)

Since U is radial, the integral
∫ ξ 2

2 −ξ 2
1

|ξ |2 |r|2dξ1dξ2

vanishes and (12.20) reduces to

α +
β
2

= 0

proving (ii).

12.3 Remarks on the Cauchy problem for the
Davey-Stewartson systems

We will consider here some aspects of the Cauchy problem for the DS-II
system (12.10). Inverting the equation for φ , (12.10) writes as a single NLS
equation with a nonlocal cubic term:

iut +uxx−uyy = α|u|2u+βuL(|u|2), (12.21)

where L is defined in Fourier variables by

L̂ f (ξ ) =−ξ1ξ2

|ξ |2 , (product of two Riesz transforms).

Noticing that the Strichartz estimates for the group ei(∂ 2
x −∂ 2

y ) are the
same as the usual Schrödinger group e±i∆ ones, this allows (see [92]) to
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obtain the same local Cauchy theory as for the cubic (focusing or defocus-
ing) standard NLS equation, namely local well-posedness for initial data in
L2(R2) or H1(R2) (global for small L2 initial data).

No further results using PDE methods (global well posedness, finite
time blow-up, dispersion,...) is known. However very nice rigorous results
can be obtained for the integrable DS-II system ( α + β

2 = 0). We refer to
[17, 194, 224, 225, 225, 226, 227] and the references therein. In particular
L.Y. Sung [224, 225, 226, 227] has obtained very nice global with decay
results. To state his main result, we will follow his notations and write the
integrable DS-II equation on the form

qt = 2iqx1x2 +16i[L(±|q|2)|q|, q(·,0) = q0, (12.22)

where L is defined as above and the + sign corresponds to the focusing
case, the − sign to the defocusing case. The articles [224, 225, 226] are
devoted to present a rigorous theory of the Inverse Scattering method for
the DS-II equation. In [227] L.Y Sung proves the following

Theorem 12.3. Let q0 ∈S (R2). Then (12.22) possesses a unique global
solution u such that the mapping t 7→ q(·, t) belongs to C∞(R,S (R2)) in
the two cases:

(i) Defocusing.

(ii) Focusing and |q̂0|1|q̂0|∞ < π3

2

(√
5−1
2

)2
.

Moreover, there exists cq0 > 0 such that

|q(x, t)| ≤ cq0

|t| , (x, t) ∈ R2×R∗.

We will not comment on the proof of theorem 12.3 whose techniques
are outside the scope of this book. We recall that such a result is unknown
for the general non integrable DS-II systems, and also for the nonelliptic
cubic NLS.

Remark 12.4. 1. Sung obtains in fact the global well-posedness (with-
out the decay rate) in the defocusing case under the assumption that q̂0 ∈
L1(R2)∩L∞(R2) and q0 ∈ Lp(R2) for some p ∈ [1,2), see [226].



“master_livre_New”
2013/6/13
page 191

i

i

i

i

i

i

i

i

[SEC. 12.4: SOLITARY WAVES FOR KP TYPE EQUATIONS 191

2. Recently, Perry [194] has precised the asymptotics in the defocusing
case for initial data in H1,1(R2) = { f ∈ L2(R2) such that ∇ f ,(1 + | · |) f ∈
L2(R2)}, proving that the solution obeys the asymptotic behavior in the
L∞(R2) norm :

q(x, t) = u(·, t)+o(t−1),

where u is the solution of the linear problem.

On the other hand we recall that Ozawa [192] has constructed a solu-
tion of the Cauchy problem in the focusing integrable case whose L2 norm
blows up in finite time (the solution converges to a Dirac measure having as
mass the L2 norm of the initial data). The solution persists after the blow-up
time and disperses as t→ ∞.

This blow-up is carefully studied numerically in [144]. On the other
hand, the numerical simulations of [25] suggest that this blow-up does not
persist in the non integrable case.

12.4 Solitary waves for KP type equations

12.4.1 Non existence of traveling waves for the KP II type
equations

We will illustrate here the defocusing nature of the KP II equation by prov-
ing, following [40] that it does not possess any non trivial localized solitary
waves. We recall that the KP II equation writes

∂tu+u∂xu+∂ 3
x u+∂−1∂ 2

y u = 0. (12.23)

We first recall the natural energy space associated to the KP equations.
We set

Y = {u ∈ L2(R2);∂xu ∈ L2(R2),∂−1
x ∂yu ∈ L2(R2)},

equipped with its natural norm. A solitary wave for (12.23) is a solution
of the form u(x− ct,y) with u ∈ Y and c > 0 and it should thus satisfy the
equation

−cux +uux +uxxx +∂−1
x uyy = 0, or (12.24)

−cuxx +

(
u2

2

)

xx
+uxxxx +uyy = 0. (12.25)
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Observe that by the change of scale ũ(x,y) = c−1u
(

x
c1/2 , y

c

)
, one can

assume (that we will do from now on) that c = 1.

Theorem 12.4. Equation (12.23) does not admit a nontrivial solitary wave
u such that u ∈ Y ∩H1(R2)∩L∞

loc(R
2) with ∂ 2

x u ∈ L2
loc(R

2) and ∂−1
x ∂ 2

y u ∈
L2

loc(R
2).

Proof. The extra regularity assumptions in the Theorem are needed to jus-
tify the following truncation argument (see also the previous Sections). Let
χ0 ∈C∞

0 (R), with 0 ≤ χ0 ≤ 1, χ0(t) = 1 if 0 ≤ |t| ≤ 1, χ0(t) = 0, |t| ≥ 2.

We set χ j = χ
(
|·|
j2

)
, j = 1,2, · · ·.

We multiply (12.24) by xχ ju and integrate over R2 to get (the third
integral has to be interpreted as a H1−H−1 duality):

−
∫

xχ j∂x

(
u2

2

)
dxdy+

1
3

∫
xχ j∂x(u3)dxdy+

∫
xχ ju∂ 3

x u

+
∫

xχ j(∂−1
x ∂yu)udxdy = 0.

(12.26)

After several integrations by parts, we obtain

1
2

∫
χ ju2dxdy− 1

3

∫
χ ju3dxdy+

3
2

χ ju2
xdxdy

+
1
2

∫
χ j(∂−1

x uu− y)2 +
1
j2

∫
xχ ′j

(
r2

j2

)
u2dxdy

− 2
3 j

∫
x2χ ′0

(
r2

j2

)
u2dxdy− 3

j2

∫
χ ′0

(
r2

j2

)
u2dxdy

− 6
j4

∫
χ ′′0

(
r2

j2

)
u2dxdy− 6

j2

∫
xχ

′′
0

(
r2

j4

)
u2dxdy

− 4
j6

∫
x3χ

′′′
0

(
r2

j2

)
u2dxdy+

3
j2

∫
xχ ′0

(
r2

j2

)
u2

xdxdy

− 2
j2

∫
xyχ ′0

(
r2

j2

)
u(∂−1

x uy)dxdy+
1
j2

∫
xχ ′0

(
r2

j2

)
(∂−1

x uy)
2dxdy = 0,

(12.27)

wherer2 = x2 + y2. By Lebesgue dominated convergence theorem we de-
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duce that
∫ [
−1

2
u2 +

u3

3
− 3

2
u2

x−
1
2
(∂−1

x uy)
2
]

dxdy = 0. (12.28)

From now on we will proceed formally, he rigorous proof resulting from
the same truncation argument as above. We multiply (12.24) by y(∂−1

x uy)
and integrate (the last two integrals being understood as a H1−H−1 dual-
ity). After several integrations by parts we obtain finally

∫ [1
2

u2− 1
6

u3 +
1
2

u2
x +

1
2
(∂−1

x uy)
2
]

dxdy = 0. (12.29)

To get the third identity, we remark first that if u ∈ Y ∩L4(R2) satisfies
(12.24) in D′(R2), and if Y ′ is the dual of Y, then u satisfies

−u+uxx +
u2

2
+∂−1

x uyy = 0 in Y ′

where ∂−1
x uyy ∈ Y ′ is defined by 〈∂−1

x uyy,ψ〉Y,Y ′ = (∂−1
x uy,∂−1

x ψy) for any
ψ ∈ Y . Taking then the Y −Y ′ duality of the last equation with u ∈ Y, we
obtain ∫ [

−u2 +
u3

3
−u2

x +(∂−1
x uy)

2
]

dxdy = 0. (12.30)

Substracting (12.28) from (12.29) we get
∫ [

u2− 1
2

u3 +2u2
x +(∂−1

x uy)
2
]

dxdy = 0. (12.31)

Adding (12.30) and (12.31) we get
∫

[u2
x +(∂−1

x uy)
2]dxdy = 0

which achieves the proof.

Remark 12.5. 1. A similar proof demonstrates that no non trivial soli-
tary waves exist for the generalized KP-II equation, that is uux replaced by
upux,∀p ∈ N.
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2. Theorem 12.4 was reinforced by de Bouard and Martel [39] who
proved that the KP-II equation does not possesses L2− compact solutions,
that is L2 solutions u satisfying:

• there exist x(t),y(t) : R→ R such that ∀ε > 0, there exists R(ε > 0
such that, ∀t ∈ R,

∫

|x|+|y|≥R(ε
u2(x+ x(t),y+ y(t), t)dxdy≤ ε .

Obviously, any solitary wave solution φ(x− ct,y) with φ ∈ L2(R2) is
L2− compact. The result in [39] can be viewed as a first step for proving
the expected conjecture that all bounded solutions of KP-II tend to zero in
the sup-norm as t→ ∞.

12.4.2 Solitary waves for the KP-I equation
On the other hand, the focusing nature of the KP-I equation is revealed by
the existence of non trivial localized solitary waves.

First, as a consequence of to its integrability properties, the KP I equa-
tion possesses a localized, finite energy, explicit solitary wave, the lump
[169] :

φc(x− ct,y) =
8c(1− c

3 (x− ct)2 + c2

3 y2)

[1+ c
3 (x− ct)2 + c2

3 y2]2
. (12.32)

Another interesting explicit solitary wave of the KP I equation which is
localized in x and periodic in y has been found by Zaitsev [246]. It reads

Zc(x,y) = 12α2 1−β cosh(αx)cos(δy)
[cosh(αx)−β cos(δy)]2

, (12.33)

where
(α ,β ) ∈ (0,∞)× (−1,+1),

and the propagation speed is given by

c = α2 4−β 2

1−β 2 .

Let us observe that the transform α → iα , δ → iδ , c→ ic produces
solutions of the KP I equation which are periodic in x and localized in y.
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Second, the existence of ground states solutions has been established in
[40] for the generalized KP I equations

ut +uxxx−∂−1
x uyy +upux = 0, (12.34)

when p < 4, p = m
n ,m,n ∈ N, relatively prime, m odd.

In order to define this notion, we set

EKP(ψ) =
1
2

∫

R2
(∂xψ)2 +

1
2

∫

R2
(∂−1

x ∂yψ)2− 1
2(p+2)

∫

R2
ψ p+2,

and we define the action

S(N) = EKP(N)+
c
2

∫

R2
N2.

We term ground state, a solitary wave N which minimizes the action S
among all finite energy non-constant solitary waves of speed c (see [40] for
more details).

It was proven in [40] that ground states exist if and only if c > 0 and
1≤ p < 4. Moreover, when 1≤ p < 4

3 , the ground states are minimizers of
the Hamiltonian EKP with prescribed mass (L2 norm) and are thus orbitally
stable;

An important related remark is that the anisotropic Sobolev embedding
(see [24])

∫

R2
|u|p+2dxdy≤C||u||

4−p
2

L2 ||ux||pL2 ||∂−1
x uy||

p
2
L2 ,

which is valid for 0 ≤ p ≤ 4, implies that the energy norm ||u||Y is con-
trolled in term of the L2 norm and of the Hamiltonian

∫

R2

(
1
2

u2
x +

1
2
(∂−1

x uy)
2− |u|p+2

(p+1)(p+2)

)
dxdy,

if and only if p < 4
3 .

Remark 12.6. When p = 1 (the classical KP I equation), it is unknown (but
conjectured) if the lump solution is a ground state. Observe however that
ground states have the same space asymptotic as the lump ([100]).

More generally, the question of the (possible) multiplicity of solitary
waves is largely open. One even does not know whether or not the ground



“master_livre_New”
2013/6/13
page 196

i

i

i

i

i

i

i

i

196 [CAP. 12: FOCUSING VERSUS DEFOCUSING

states are unique (up to the obvious symmetries). Such a result is estab-
lished for the focusing nonlinear Schrödinger equations but the proof uses
in a crucial way that the ground states are radial in this case, allowing to
use ODE’s arguments.

12.5 Transverse stability of the KdV solitary wave

The KP I and KP II equations were introduced to study the transverse sta-
bility of the KdV 1-soliton (line-soliton). They behave quite differently in
this aspect. Roughly speaking, the line-soliton is stable for the defocusing
KP-II equation and unstable for the focusing KP-I equation. In the later
case, a breaking of symmetry seems to occur.

Zakharov [249] has proven, by exhibiting an explicit perturbation using
the integrability, that the KdV 1-soliton is nonlinearly unstable for the KP
I flow. Rousset and Tzvetkov [199] have given an alternative proof of this
result, which does not use the integrability, and which can thus be imple-
mented on other problems (eg for nonlinear Schrödinger equations).

The nature of this instability is not known (rigorously) but the numer-
ical simulations in [145] suggest a breaking of symmetry, the line-soliton
evolving into two-dimensional localized structures.

On the other hand, Mizomachi and Tzvetkov [181] have recently proved
the L2(R×T) orbital stability of the KdV 1-soliton for the KP II flow. The
perturbation is thus localized in x and periodic in y. The precise result is as
follows:

Theorem 12.5. Let φc the KdV solitary wave of velocity c. For every ε > 0,
there exists a δ > 0 such that if the initial data of the KP-II Cauchy problem
satisfies
||u0−φc]||L2(Rx×Ty)

< δ , the corresponding solution u satisfies

inf
γ∈R
||u(x,y, t)−φc(x+ γ)||L2(Rx×Ty)

< ε, t ∈ R.

Moreover, there exists a constant c̃ satisfying c̃− c = O(δ ) and a mod-
ulation parameter x(t) satisfying

lim
t→∞
||u(x,y, t)−φc̃(x− x(t))||L2((x≥ct)×Ty)

= 0.
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The proof involves in particular the global well-posedness of the Cauchy
problem for the KP-II equation on a background of a non-localized solution
(eg the KdV soliton) established in [189] and the Miura transform used in
[135] to established the global well-posedness for a modified KP II equa-
tion.

Such a result is not known (but expected) for a perturbation which is
localized in x and y.

One can similarly consider the transverse stability of the periodic KdV
solitary wave. To our knowledge no nonlinear results are known. On the
other hand spectral stability issues have been considered.

Johnson and Zumbrun [121] have derived a (spectral) instability crite-
rion for x- periodic line solitary waves of a class of generalized KP equa-
tions with respect to perturbations which are periodic in the direction of
propagation x and have long wavelengths in the transverse direction.

Haragus [105] has considered the spectral stability of small amplitude
x-periodic line solitons of the Classical KP equations. In the KP I case,
those solitary waves are spectrally transversally unstable with respect to
perturbations which are either periodic in the direction x of propagation,
with the same period as the one-dimensional solitary wave, or non-periodic
(localized or bounded). In the KP II case, the periodic line solitons are
spectrally stable with respect to transverse perturbations which are periodic
in the direction of propagation and have long wavelengths in the transverse
direction.

It is likely that the spectral instability results in those papers could be
obtained by using the simple method in [200]. Also the methods developed
in [199] to prove nonlinear instability of the localized line-soliton might be
useful to treat the periodic case.
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Chapter 13

Some models in the
modulation regime

We present here results on the Cauchy problem for some systems arising in
the modulation regime. The local well-posedness is obtained thanks to the
smoothing properties due to the dispersive part.

13.1 The Cauchy problem for the Benney-Roskes
system

The Benney-Roskes system has been introduced in Chapter 4, section 4.3.
A similar system was derived by Zakharov and Rubenchik [252] as a “uni-
versal“ model to describe the interaction of spectrally narrow high fre-
quency wave packets with low-frequency acoustic type oscillations.

We present here, following [196] a proof of the local well-posedness of
those systems. The case of the full dispersion Benney-Roskes systems is
studied in [191].

Since we are not looking for existence on long time scales (and thus
will not introduce any small parameter), we will write the Benney-Roskes,
Zakharov-Kuznetsov in dimension n = 2,3 (of course n = 2 for the Benney-
Roskes system itself) in the nondimensional form displayed by [193], which
uses a reference frame moving at the group velocity of the carrying wave,

198
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namely




i∂tψ =−ε∂ 2
z ψ−σ1∆⊥ψ +(σ2|ψ|2 +W (ρ +D∂zφ))ψ ,

∂tρ +σ3∂zφ = ∆φ −D∂z|ψ|2,

∂tφ +σ3∂zφ =− 1
M

ρ−|ψ|2.

(13.1)

Here ∆⊥ = ∂ 2
x + ∂ 2

y or ∂ 2
x , ∆ = ∆⊥+ ∂ 2

z , σ1,σ2,σ3 =±1, W > 0 mea-
sures the coupling with acoustic type waves, M ∈ (0,1) is a Mach number,
D ∈ R and ε ∈ R is a nondimensional dispersion coefficient.

One first wants to decouple the two last equations in (13.1). We first
apply the operator ∂t +σ3∂z to them to obtain





(∂t +σ3∂z)
2ρ =−(∂t +σ3)∆φ −D(∂t +σ3∂z)∂z|ψ|2,

(∂t +σ3∂z)
2φ =− 1

M
(∂t +σ3∂z)ρ− (∂t +σ3∂z)|ψ|2,

∆(∂t +σ3∂z)φ =− 1
M

∆φ −∆|ψ |2.

(13.2)

Therefore



(∂t +σ3∂z)
2ρ =− 1

M
∆ρ +∆|ψ |2−D(∂t +σ3∂z)∂z|ψ|2,

(∂t +σ3∂z)
2φ =

1
M

∆φ +
D
M

∂z|ψ|2− (∂t +σ3∂z)|ψ|2.
(13.3)

Introducing the following notations




ρ̃(x,y,z, t) = τ3,σ3tρ(x,y,z, t) = ρ(x,y,z+σ3t, t),
φ̃(x,y,z, t) = τ3,σ3tφ(x,y,z, t) = φ(x,y,z+σ3t, t),

¤M = ∂ 2
t −

1
M

∆,

F1(ψ) = ∆|ψ|2−D(∂t +σ3∂z)∂z|ψ|2,

F2(ψ) =
D
M

∂z|ψ|2− (∂t +σ3)|ψ|2,

(13.4)

we rewrite (13.3) as




¤Mρ̃ = F1(ψ),
¤M φ̃ = F2(ψ),
ρ̃(x),0) = ρ0(x),

∂t ρ̃(x,0) = (∂t +σ3∂z)ρ(x,0) =−(∆φ +D∂z|ψ|2)(x,0),
φ̃(x,0) = φ0(x),

∂t φ̃(x,0) = (∂t +σ3∂z)φ(x,0) =−
(

1
M

ρ + |ψ|2
)

(x,0).

(13.5)
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where x = (x,y,z) if n = 3 and x = (x,z) if n = 2.
Next, defining

L = σ1 + ε∂ 2
z not necessarily elliptic)

the IVP associated to the system in (13.1) can be expressed as




i∂tψ +L ψ = {σ2|ψ|2 +W (τ3,−σ3 ρ̃ +Dτ3,−σ3∂zφ̃)}ψ ,
¤Mρ̃ = F1(ψ),
¤M φ̃ = F2(ψ),
ψ(x,0) = ψ0(x),

ρ̃(x),0) = ρ0(x), ∂t ρ̃(x),0) = ρ1(x) =−(∆φ0 +D∂z|ψ0|2)(x),

φ̃(x,0) = φ0(x), ∂t φ̃(x,0) = φ̃1(x) =−
(

1
M

ρ0 + |ψ0|2
)

(x).

(13.6)
Since the nonlinear terms F1,F2 depend only on ψ, we can express

(ρ̃, φ̃) i terms of (ρ0,ρ1,φ0,φ1)(x) and ψ(x, t),




ρ̃(t) = U ′(t)ρ0 +U(t)ρ1 +
∫ t

0
U(t− t ′F1(ψ)(t ′)dt ′,

φ̃(t) = U ′(t)φ0 +U(t)φ1 +
∫ t

0
U(t− t ′)F2(t ′)dt ′,

(13.7)

where U(t) is the propagator of ¤M, that is
{

U(t) f = M1/2(−∆)1/2 sin(M−1/2(−∆)1/2t) f ,

U ′t() f = cos(M−1/2(−∆)1/2t) f .
(13.8)

We have the classical estimates
{
|U(t) f |2 ≤ |t| | f |2, |∇xU(t) f |2 ≤M1/2| f |2,
|U ′(t) f |2 ≤ | f |2.

(13.9)

Inserting (13.7) into the first equation of (13.6), we get a single, self-
contained differential-integral equation for ψ. However, both F1(ψ) and
F2(ψ) involve derivatives in the t- variable of ψ. It is thus convenient to
remove them by using the following formula which results from integration
by parts).

∫ t

0
U(t− t ′)∂tG(t ′)dt ′ =−U(t)G(0)+

∫ t

O
U ′(t− t ′)G(t ′)dt ′.
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More precisely, in (13.7) we shall use
∫ t

0
U(t− t ′)F1(ψ)(t ′)dt ′ =−U(t)G(0)+

∫ t

0
U(t− t ′)(∆−Dσ3∂ 2

z )|ψ|2dt ′

+DU(t)∂z|ψ0|2−
∫ t

0
U ′(t− t ′)D∂z|ψ|2(t ′)dt ′,

(13.10)

and
∫ t

0
U(t− t ′)F2(ψ)(t ′)dt ′ =

∫ t

0
U(t− t ′)

((
D
M
−σ3

)
∂z|ψ|2(t ′)

)
dt ′

+U(t)|ψ0|2−
∫ t

0
U ′(t− t ′)|ψ |2(t ′)dt ′.

(13.11)

Collecting the informations above we see that the IVP associated to the
system in (13.1) is formally equivalent to the following IVP for a scalar
equation in ψ {

∂tψ = iL ψ− iH(ρ0,φ0,ψ)
ψ(·,0) = ψ0.

(13.12)

and to its integral version

ψ(t) = eitL ψ0− i
∫ t

0
ei(t−t ′)L H(ρ0,φ0,ψ)(t ′)dt ′, (13.13)

where the nonlinear term H(·) is given by the lengthy expression

H(ρ0,φ0,ψ)(t ′) = σ2|ψ|2ψ(t ′)

+Wψ(t ′)τ3,−σ3t ′{U(t ′)ρ0 +U(t ′)(ρ1 +2D∂z|ψ0|2)}
+WDψ(t ′)τ3,−σ3t ′{∂zU(t ′)φ0 +∂zU(t ′)φ1}

+Wψ(t ′)τ3,−σ3t ′

{∫ t ′

0
U(t ′− t ′′)(∆−Dσ3∂z2)ψ|2(t ′′)dt ′′

}

−2Wψ(t ′)τ3,−σ3t ′

{∫ t ′

0
U ′(t ′− t””)D∂z|ψ|2(t ′′)dt””

}

WDψ(t ′)τ3,−σ3t ′

{∫ t ′

0
U(t ′− t ′′)

(
D
M
−σ3

)
∂ 2

z |ψ|2(t ′′)dt ′′
}

= H1 +H2 +H3 +H4 +H5 +H6,

(13.14)
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with H j = H j(ψ), j = 1, ...,6.
Thus equation (13.12) and its integral version (13.13) can be seen as

a nonlinear Schrödinger equation where the dispersion is given by a non
degenerate constant coefficients second order operator L which is not nec-
essary elliptic, and with a nonlinear term H involving nonlocal terms and
derivatives of the unknown ψ. The order of derivatives appearing in H is,
roughly, one, since ¤−1∂ 2

z is basically an operator of order one.
In the case where H depends only on ψ and ∇ψ, the corresponding

local well-posedness theory is due to Chihara [52] in the elliptic case L =
∆ and to Kenig-Ponce-Vega [142] for general L .

Due to the specific nature of (13.12) (and (13.13)) we shall combine
the structure of the nonlinearity H with estimates involving the smoothing
effect, in its homogeneous and inhomegeneous versions, associated to the
unitary group {eitL }∞

−∞ as well as special properties of solutions to the
wave equation to obtain the desired local existence theory.

We will first state the estimates for the group {eitL }∞
−∞ that we will use

in the proof of the main theorem. We introduce the following notations.

{Qµ}µ∈Zn is a family of unit cubes paralel to the coordinates axis with
disjoint interiors covering Rn. We introduce the norms

|| · ||l1
µ L2

T L2
x
≡ sup

µ∈Zn
|| · ||L2(Qµ×[0,T ]) ≡ || · ||l∞

µ (L2(Qµ×[0,T ])),

and
|| · ||l1

µ L2
T L2

x
≡ ∑

µ∈Zn
|| · ||L2(Qµ×[0,T ]) ≡ || · ||l1

µ (L2(Qµ×[0,T ])).

In general

||F ||lr
µ Lp

T Lq
x
=


 ∑

µ∈Zn

(∫ T

0

(∫

Qµ
|F(x, t)|qdx

)p/q

dt

)r/p



1/p

.

We now state the needed smoothing estimates.

Proposition 13.1.
||I1/2

x eitL f ||l∞
µ L2

T L2
x
≤ c| f |2 (13.15)

sup
0≤t≤T

|I1/2
x

∫ t

0
ei(t−t ′)L G(t ′)dt ′|2 ≤ c||G||l1

µ L2
T L2

x
, (13.16)
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and
||∇x

∫ t

0
ei(t−t ′)L G(t ′)dt ′||l∞

µ L2
T L2

x
≤ c||G||l1µL2

T L2
x
, (13.17)

where I1/2
x f = F−1(|ξ |1/2 f̂ ) and c is a constant independent of T.

Proof. The estimate sm1 was proved in [60, 216, 238]. The estimate (13.16)
follows from the dual version of (13.15) and the group properties of {eitL }∞

−∞.
Finally, (13.17) was proved in [?].

We will also use the following version of the Sobolev inequality whose
proof can be found in [196].

Let f : Rn× [0,T ]→ R be a smooth function such that for each t ∈
[0,T ], f (·, t) ∈S (Rn). Let J = (1−∆)1/2.

Lemma 13.2. . Let p1 ∈ [1,∞) and p2 ∈ [p1,∞]. Let s≥ n
p1
− n

p2
and s > n

p1
if p2 = ∞. Then for any r,q ∈ [1,∞]

|| f ||lr
µ Lq

T L
p2
x
≤ c||Js f ||lr

µ Lq
T L

p1
x

. (13.18)

We remark that for f : Rn→ R, (13.18) tells us that

|| f ||lr
µ L

p2
x
≤ c||Js f ||lr

µ L
p1
x

(13.19)

If s is a positive integer, this results from the Calderón extension theo-
rem [47].

We will use in the proof of our main theorem the following inequalities
on the wave propagator.

Lemma 13.3. With U(t) defined as above, we have in the 3-dimensional
case

|U(t ′) f ||l2µL∞
T L2

x
≤ c(1+T M1/2)3| f |2, (13.20)

||U(t)∇x f ||l2
µ L∞

T L2
x
≤ cM1/2(1+T M1/2)3| f |2 (13.21)

||∇x

∫ t

0
U(t− t ′)h(t ′)dt ′||l2

µ L∞
T L2

x
≤ cM1/2(1+T M1/2)3||h||l2

µ L1
T L2

x
, (13.22)

and

||
∫ t

0
U ′(t− t ′)h(t ′)dt ′||l2

µ L∞
T L2

x
≤ c(I +T M1/2)3||h||l2

µ L1
T L2

x
. (13.23)
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Proof. To prove (13.3), we observe that w(x, t) = U ′(t) f (x) solves the IVP





¤Mw = ∂ 2
t w− 1

M
∆w = 0, x ∈ R3, t ∈ R,

w(x,0) = f (x),
∂tw(x,0) = 0.

(13.24)

The finite propagation speed of the solution implies that the values of
w on Qµ × [0,T ] depend on the values of f on (1 + M1/2)Qµ , where λQµ
denotes the cube with the same center asQµ and side λ . By a cutting off
argument and (13.9) one has that

sup
[0,T ]

||w(·, t)||L2(Qµ ) ≤ c|| f ||L2((1+M1/2T )Qµ
. (13.25)

Hence, adding in µ and counting the cubes one obtains the desired re-
sult

||U ′(t) f ||l2
µ L∞

T L2
x
≤ c(1+M1/2T )3| f |2. (13.26)

The proofs of (13.20)-(13.21) are similar and they will be omitted.
To prove (13.22) we observe that v(x, t) =

∫ t
0 U(t− t ′)h(t ′)dt ′ solves the

IVP




¤Mv = ∂ 2
t v− 1

M
∆w = h(x, t), x ∈ R3, t ∈ R,

v(x,0) = 0,
∂tv(x,0) = 0.

(13.27)

The values of v on Qµ× [0,T ] depend on those of h on (1+M1/2T )Qµ×
[0,T ]. By combining a cutting off argument and the standard energy esti-
mate it follows that

sup
[0,T ]

||∇xv(·, t)||L2(Qµ ) ≤M1/2
∫ T

0
||h(t)||L2((1+M1/2T )Qµ )dt. (13.28)

By adding in µ we get (13.22). A similar argument proves (13.23).

We now state our main result on the local well-posedness of Benney-
Roskes type systems.



“master_livre_New”
2013/6/13
page 205

i

i

i

i

i

i

i

i

[SEC. 13.1: THE CAUCHY PROBLEM FOR THE BENNEY-ROSKES SYSTEM 205

Theorem 13.4. Let s > n/2, n = 2,3. Then given (ψ − 0,ρ1,φ0) ∈ Hs×
Hs−1/2×Hs+1/2(Rn), there exist T = T (||ψ0||Hs ; ||ρ0||Hs−1/2 ; ||φ ||Hs−1/2) >
0 and a unique solution ψ(·) of the integral equation (13.13) such that

ψ ∈C([0,T ];Hs(Rn)) (13.29)

with

||Js+1/2ψ||l∞
µ L2

T L2
x

< ∞. (13.30)

Moreover, the map (ψ0,ρ0,φ0) 7→ψ(t) from Hs×Hs−1/2×Hs+1/2 into
the class (13.29)-(13.30) is locally lipschitz.

Finally, from (13.29)-(13.30) one has

(ρ ,φ) ∈C([0,T ];Hs−1/2(Rn)×Hs+1/2(Rn)). (13.31)

Proof. To simplify the exposition we shall restrict to the case n = 3 and
s = 2+1/2. The proof for general values of s follows by combining the ar-
gument below with the calculus of inequalities involving fractional deriva-
tives deduced in [139].

For (ψ0,ρ0,φ0) ∈ H5/2 ×H2 ×H3(R3) fixed we define the operator
Φ(ω) as

Φ(ω)(t) = eitL ψ0− i
∫ t

0
ei(t−t ′)L H(ρ0,φ0,ω)(t ′)dt ′, (13.32)

with ω in the function space Xa
T , meaning that

ω ∈C([0,T ];Hs(R3)), |||ω|||T = sup
0≤t≤T

||ω()||H5/2 + ∑
|α|=3
||∂ α

x ω||l∞
µ L2

T L2
x
≤ a.

(13.33)
We remark that when s′+1/2 ∈ Z+,

sup
0≤t≤T

|| · ||Hs′ + ||Js′+1/2 · ||l∞
µ L2

T L2
x
∼ sup

0≤t≤T
|| · ||Hs′ + ∑

|α|=s′+1/2
||∂ α

x · ||l∞
µ L2

T L2
x
.

(13.34)
This is consequence of the results in [139].
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From Proposition 13.1 one has

|||Φ(ω)|||T = sup
0≤t≤T

||Φ(ω)(t)||H5/2 + ∑
|α|=3
||∂ α

x Φ(ω)||l∞
µ L2

T L2
x

≤ c||ψ0||H5/2 +
∫ T

0
||H1(ω(t))||H5/2 dt +

6

∑
j=2

∫ T

0
|H j(ω)(t))|2dt

+
6

∑
j=2

∑
|α|=2
||∂ α

x H j(ω(t))||l1
µ L2

T L2
x
.

(13.35)

Since Hs(Rn),s > n/2, is a muliplicative algebra we get

∫ T

0
||H1(ω(t))||H5/2 dt =

∫ T

0
|| |ω|2ω||H5/2(t)dt ≤ T sup

0≤t≤T
||ω!t)||3H5/2 .

(13.36)
Next, we estimate H2(ω) in the L∞

T L2
x norm. Thus

∫ T

0
|Wω(t)τ3,−σ3t{U ′(t)ρ0 +U(t)(ρ1 +2D∂z|ψ0|2)}|2dt

≤WT sup
0≤t≤T

[||ω(t)||L∞
x |τ3,−σ3t{U ′(t)ρ0 +U(t)(ρ1 +2D∂z|ψ0|2i{|2]

≤WT sup
0≤t≤T

[||ω(t)||L∞
x |U ′(t)ρ0 +U(t)(ρ1 +2|D|∂z|ψ0|2)|2]

= WT sup
0≤t≤T

[||ω(t)||L∞
x (|ρ0|2 +T |ρ1|2 +2|D|M1/2| |ψ0|2 |2)]

≤ cWT (|ρ0|2 +T |ρ1|2 +2|D|M1/2||ψ0||2H3/2+) sup
0≤t≤T

||ω(t)||H3/2+ .

(13.37)

To estimate H2(ω) in ∑|α|=2 ||∂ α
x · ||l1

µ L2
T L2

x
, we notice that an interpola-

tion argument of Gagliardo-Nirenberg type allows to bound ||∇xω||l2µL2T L6
x

and ||∆ω||l6
µ L2

T L3
x

in terms of ∑|β |=3 ||∂ β
x ω||l∞L2

T L2
x
(≤ |||ω |||T ) and ||ω||l2

µ L2
T L∞

x
(≤

cT 1/2|||ω|||T ). Then, up to a multiplicative constant involving a power of
T, all these terms can be bounded by |||ω|||T .

Now, we combine (13.17), Hölder inequality, Lemma 13.3 (inequalities
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(13.20)-(13.21)) and the interpolation argument commented above to get

∑
|α|=2
||∂ α

x H2(ω)||l1µL2
T L2

x

= cW ∑
|α|=2
||∂ α

x (ωτ·,·{U ′(t)ρ0 +U(t)(ρ1 +2D)∂z|ψ0|2)}||l1
µ L2

T L2
x

≤ cW ∑
|γ|+|β |=2

||∂ γ
x ωτ ·, ·∂ β

x (U ′(t)ρ0 +U(t)(ρ1 +2|D|∂z|ψ0|2)}||l1
µ L2

T L2
x

≤ cW ∑ |γ|= 2||∂ γ
x ω||l2

µ L2
T L2

x
||τ·,·{U ′(t)ρ0 +U(t)(ρ1 +2D∂z|ψ0|2)}||l2

µ L∞
T L6

x

+ cW ∑
|γ|=1
||∂ γ

x ω||l2
µ L2

T L6
x
×

∑
|β |=2
||τ3,−σ3t∂ β

x {U ′(t)ρ0 +U(t)(ρ1 +2|D|∂z|ψ0|2)}||l2
µ L∞

T L2
x

≤ cWT 1/2 sup
0≤t≤T

||ω(t)||H5/2×

(1+ |σ3|T ) ∑
|β |≤2
||∂ β

x {U ′(t)ρ0 +U(t)(ρ1 +2|D|∂z|ψ0|2)}||l2
µ L∞

T L2
x

≤ cWT 1/2 sup
0≤t≤T

||ω(t)||H5/2(1+ |σ3|T )×

(1+M1/2)(1+T M1/2)2{||ρ0||H2 + ||ρ1||H1 +2|D|||ψ0||2H2 .

(13.38)

The bound for H3(ω) is similar to that deduced above for H2(ω). We
turn thus to the estimate of H4(ω). First from (13.9) we have

∫ T

0
|H4(ω(t))|2dt

=
∫ T

0

∣∣∣∣Wω(t)τ3,−σ3

(∫ t

0
U(t− t ′)(∆−Dσ3∂ 2

z )|ω|2(t ′)dt ′
)∣∣∣∣

2
dt

≤ cWT sup
0≤t≤T

|ω(t)|∞
∫ T

0
|U(t− t ′)(∆−Dσ3∂ 2

z )|ω |2|2dt ′

≤ cWT sup
0≤t≤T

||ω(t)||H3/2+×

(1+ |D|T ) sup
0≤t≤T

|(−∆)−1/2(∆−Dσ −3∂ 2
z )|ω|2(t)|2

≤ cW (1+ |D|)T 2(1+ |σ3|)M1/2 sup
0≤t≤T

||ω(t)||3H3/2+ .

(13.39)
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For the other piece of H4(ω) we write

∑
|α|=2
||∂ α

x H4(ω)||l1
µ L2

T L2
x

= cW ∑
|α|=2
||∂ α

x (ω(t)τ·,·
(∫ t

0
U(t− t ′)(∆−Dσ3∂ 2

z )|ω|2(t ′)dt ′)
)
||l1µL2

T L2
x

≤ cW ∑
|γ=2
||∂ γ

x ω||l2µL2
T L2

x
×

||τ3,−σ3t

(∫ t

0
U(t− t ′)(∆−Dσ3∂ 2

z )|ω |2(t ′)dt ′
)
||l2

µ L∞
T L∞

x

+ cW ∑
|γ|=1
||∂ γ

x ω||l2
µ L2

T L4
x
×

∑
|β |=1
||τ3,−σ3t

(∫ t

0
U(t− t ′)∂ β

x (∆−Dσ3∂ 2
z )|ω |2(t ′)dt ′

)
||l2

µ L∞
T L4

x

+ cW ||ω||l2
µ L2

T L∞
x
×

∑
|β |=2
||τ3,−3σ3t

(∫ t

0
U(t− t ′)∂ β

x (∆−Dσ3∂ 2
z )|ω|2(t ′)dt ′

)
||l2

µ L∞
x L2

x
.

(13.40)

Combining (13.18) (13.22), Hölder inequality and the interpolation ar-
gument used in (13.38) we can bound the last term in (13.40) by

cWT 1/2 sup
0≤t≤T

||ω(t)||H2(1+ |σ3|T )×

M1/2(1+T M1/2)3 ∑
1≤|β |≤3

||∂ β
x |ω|2||l2+µL1

T L2
x

≤ cWT (1+T )(1+ |σ3|T ))M1/2)3|||ω|||T .

(13.41)

The estimates for H5(ω) and H6(ω) are similar to those deduced above
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for H4(ω). Thus, collecting the previous estimates it follows that

|||Φ(ω)|||T ≡ sup
0≤t≤T

||Φ(ω)(t)||H5/2 + ∑
|α|=3
||∂ α

x Φ(ω)||l∞
µ L2

T L2
x

≤ c||ψ0||H5/2 + cT |σ2| |||ω|||3T
+ c(|W |+ |D|)T 1/2(1+M1/2)(1+ |σ3|T )(1+T M1/2)3×
{||ρ0||H2 + ||ρ1||H1 + ||φ0||H3 + ||φ1||H2 + ||ψ0||2H2}|||ω |||T
+ c(1+ |W |+ |D|)T (1+T )(1+ |σ3|)(1+M1/2)(1+T M1/2)3|||ω|||T .

(13.42)

The above inequality guarantees that for fixed values of the parameters
ε ,σ1,σ2,σ3,W,D and M, and for a given data (Ψ0,ρ0,φ0) ∈ H5/2×H2×
H3(R3)), the operator Φ(ω) = Φ(ψ0,ρ0,φ0) defined as the left-hand side of
(13.12), with ω instead of ψ , define a contraction map in X a

T with a =
2c||ψ0||H5/2 , T small enough depending on the value of the parameters and
on ||ψ0||H5/2 , ||rho0||H2 , and ||φ0||H3 . Therefore the map has a unique fixed
point ψ ∈ Xa

T that is Φ(ψ) = ψ, which solves the integral equation (13.13).
Moreover the contraction principle tells us that the map (ψ0,ρ0,φ0) 7→ψ(t)
from H5/2×H2×H3 into Xa

T is locally Lipschitz.
Finally we observe that the condition

(ψ0,ρ0,φ0) ∈ H5/2×H2×H3, (Hs×Hs−1/2×Hs+1/2, s > n/2)

implies that

∂t ρ̃(x,0) = ρ1(x,0) =−∆φ0 +D∂z|ψ0|2 ∈ H1, (Hs−1/2)

and

∂t φ̃(x,0) = φ1(x,0) =−(
1
M

ρ0 + |ψ0|2) ∈ H2, (Hs+1/2).

Since the arguments above show that

(F−1,F−2) ∈ L1([0,T ];H1×H2), (Hs−3/2×Hs−1/2)

we have that

(ρ ,φ) ∈C([0,T ];H2×H3), (Hs−1/2×Hs+1/2).
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No global well-posedness, nor finite time blow-up are known for Benney-
Roskes type systems. However, it turns out that [193] has a Hamiltonian
structure, as noticed in [251] where it is derived from a general Hamiltonian
description of the interaction of short and long waves. Working directly on
the system [193] one obtains the following conservation laws.

Proposition 13.5. Let (ψ,ρ,φ) be a solution of (13.1) obtained in Theo-
rem 13.4, defined in the time interval [0,T ]. Then

1
2

d
dt

∫

Rn
|ψ(x, t)|2dx = 0, 0≤ t ≤ T, (13.43)

and

1
2

d
dt

∫

Rn
{ε |∂zψ|2 +σ −1|∇⊥ψ|2 +

W
2M

ρ2 +
W
2
|∇φ |2 +σ3Wρ∂zφ

+
σ2

2
|ψ|4 +Wρ|ψ|2 +DW |ψ|2∂zφ}dx = 0, 0≤ t ≤ T.

(13.44)

Proof. To obtain (13.43) we multiply the first equation in (13.1) by ψ̄, in-
tegrate the result and take its imaginary part (if s < 2 the integrals have to
be understood as a Hs−H−s duality).

To obtain (13.44) we proceed formally. A rigorous proof can be ob-
tained by smoothing the initial data and passing to the appropriate limit.

We multiply the first equation in (13.1) by ∂tψ̄, integrate the result and
take its real part to get

1
2

d
dt

tRn [ε|∂zψ|2 +σ1|∇⊥ψ|2 +
σ2

2
|ψ|4]dx+Re W

∫

Rn
ρψ∂tψ̄dx

+Re W
∫

Rn
ρψ∂tψ̄dx+Re WD

∫

Rn
∂zφψ∂tψ̄dx = 0.

(13.45)
Therefore

1
2

d
dt

∫

Rn
[ε|∂zψ|2 +σ1|∇⊥ψ|2 +

σ2

2
|ψ|4 +Wρ|ψ|2 +DW∂zφ |ψ |2]dx

−W
2

∫

Rn
∂tρ|ψ|2dx+

DW
2

∫

Rn
∂tφ∂z|ψ|2dx = 0.

(13.46)
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Using the third equation in (13.1) leads to

−W
2

∫

Rn
∂tρ|ψ|2dx =

W
2

∫

Rn
∂tφ∂tρdx+

σ3W
2

∫

Rn
∂zρ∂tφdx

+
W
4

d
dt

∫

Rn
|∇φ |2dx.

(13.47)

Similarly, the second equation in [193] leads to

DW
2

∫

Rn
∂tφ∂z|ψ|2dx =−W

2

∫

Rn
∂tφ∂tφdx− σ3W

2

∫

Rn
∂zρ∂tφdx

+
W
4

∫

Rn
|∇φ |2dx.

(13.48)
Combining (13.45)-(13.48) we obtain (13.44).

Proposition 13.5 implies the existence of global weak solutions of (13.1)
for some range of the parameters. Namely

Theorem 13.6. Assume that

ε > 0, σ1 = σ2 = 1,

and that the quadratic form

Q(x,y,z) =
W
2M

x2 +
W
2

y2 +
1
2

z2 +σ3Wxy+DWyz+Wxz

is positive definite.
Then for any (ψ0,φ0,ρ0) ∈ H1(Rn)×H1(Rn)×L2(Rn), there exists a

global weak solution (ψ ,φ ,ρ) of (13.1) such that

ψ,φ ∈ L∞((0,+∞); H1(Rn)), ρ ∈ L∞((0,+∞; L2(Rn)),

∂tψ,∂tρ ∈ L∞((0,+∞; H−1(Rn)), ∂tφ ∈ L∞((0,+∞; L2(Rn)).
(13.49)

Proof. We use a compactness method. We approximate (ψ0,φ0,ρ0) by
smooth functions (ψ0,ε ,φ0,ε ,ρ0,ε) and obtain local approximate solutions
(ψε ,φε ,ρε)(x, t) on some interval [0,Tε ], thanks to Theorem 13.4. The as-
sumptions in Theorem 13.6 and Proposition 13.5 imply that (ψε,φε ,ρ(ε) is
bounded independently of ε in the space

L∞((0,+∞; H1)×L∞((0,+∞; H1)×L∞((0,+∞; L2).
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One deduces that (∂tψε ,∂tφε ,∂tρε) is bounded in L∞((0,+∞; H−1)×
L∞((0,+∞; L2)×L∞((0,+∞; H−1).

Hence, up to a subsequence one can assume that

ψε ⇀ ψ in L∞((0,+∞; H1(Rn)) weak∗

φε ⇀ φ in L∞((0,+∞; H1(Rn)) weak∗

ρε ⇀ ρ in L∞((0,+∞; L2(Rn)) weak∗.

(13.50)

By Aubin-Lions lemma one can furthermore assume (up to a subse-
quence) that

ψε → ψ in Lp
loc(|0,+∞); Lq

loc(R
n)), and a.e. in [0,+∞)×Rn,

for any p, 2≤ p < ∞ and q, 2≤ q < 6 if n = 3 (resp. q, with 2≤ q < ∞
if n = 2). Similarly for φε ,ρε .

These convergences allow to pass to the limit in the distribution sense
in (13.1) written for (ψε,φε ,ρ(ε), proving that (ψ,ρ,φ) satisfies (13.1) in
D(R+ × Rn), and actually in L∞((0,+∞; H−1) × L∞((0,+∞; H−1) ×
L∞((0,+∞; L2)).

The initial makes sense since by Strauss lemma,

(ψ ,φ ,ρ) ∈Cw([0,∞); H1)×Cw([0,∞); H1)×Cw([0,∞); L2).

13.2 The Cauchy problem for the Dysthe equa-
tion

Dysthe type equations [77, 109, 78] arise when one proceeds to the next
order in the expansion leading to NLS type equations in the modulation
regime. We are not aware of a rigorous derivation but the method sketched
in Chapter 4 would lead to one.

Recall that the nonlinear Schrödinger equation is derived in the modu-
lational regime when the wave steepness is small, ka¿ 1, and the bandwith
is narrow, |∆k/k¿ 1, 1 both of the same order of magnitude O(ε), the non-
linear and dispersive terms being of order O(ε3). Recall that the deep water

1We have denoted by k the wave number of the carrying wave and k = |k|.
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case corresponds to (kh)−1 = O(ε), the infinite depth to (kh)−1 = 0. The
Dysthe type systems are obtained when the expansion is carried out one
step further O(ε4).

To start with we consider the one-dimensional case. One gets (see for
instance [168]) the following system coupling the complex envelope A of
the wave and the potential φ of the induced mean current

∂A
∂ t

+
ω
2k

∂A
∂x

+ i
ω

8k2
∂ 2A
∂x2 +

i
2

ωk2|A|2A

− 1
16

ω
k3

∂ 3A
∂x3 −

ωk
4

A2 ∂ Ā
∂x

+
3
2

ωk|A|2 ∂A
∂x

+ ikA
∂φ
∂x |z=0

= 0,

∂ 2φ
∂x2 +

∂ 2φ
∂ z2 = 0 (−h < z < 0),

∂φ
∂ z

=
ω
2

∂ |A|2
∂x

(z = 0),

∂φ
∂ z

= 0 (z =−h).

(13.51)

The equation for φ is easily solved by taking the Fourier transform in x
and we find that

∂φ
∂x |z=0

= L (|A|2)

where the nonlocal operator L is defined in Fourier variables by

L̂ f (ξ ) =−ω
2

ξ coth(hξ ) f̂ (ξ ).

Note that for h = +∞, L is given by

L̂ f (ξ ) = −ω
2 |ξ | f̂ (ξ , that is L = ω

2 H ∂x where H is the Hilbert
transform.

We thus can write (13.51) as a single equation:

∂A
∂ t

+
ω
2k

∂A
∂x

+ i
ω

8k2
∂ 2A
∂x2 +

i
2

ωk2|A|2A− 1
16

ω
k3

∂ 3A
∂x3 −

ωk
4

A2 ∂ Ā
∂x

+
3
2

ωk|A|2 ∂A
∂x

+ ikAL (|A|2) = 0.

(13.52)
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This equation is reminiscent of the cubic KdV equation

ut +u2ux +uxxx = 0 (13.53)

In fact by eliminating the transport term in (13.52) by the change of
variable X = x− ω

2k t (we will keep the notation x for the spatial variable),
then writing, with α =− 1

16
ω
k3 and β = ω

8k2

(
ξ +

β
3α

)3

= ξ 3 +
β
α

ξ 2 +
β 2ξ
3α2 +

β 3

27α3 ,

an easy computation shows that the fundamental solution of the lineariza-
tion of (13.52) can be expressed as

A(x, t) =
1

(tα)1/3 exp
(

2itβ 3

27α2

)
exp
(−iβx

2α2

)∫ ∞

−∞
eiξ 3

eiξ (αt)−1/3(x− tβ2
3α )dξ ,

that is

A(x, t) =
1

(tα)1/3 exp
(

2itβ 3

27α2

)
exp
(−iβx

2α2

)
Ai
(

1
t1/3α1/3 (x− β 2

3α
t)
)

,

where we have used here as definition of the Airy function

Ai(z) =

∫ ∞

−∞
ei(ξ 3+izξ )dξ .

If follows that the dispersive estimates for A are essentially the same as
those of the linearized KdV equation and one obtains for (13.52) the same
results as for the cubic KdV equation (13.53), that is (see [139], that is local
well-posedness of the Cauchy problem in H s(R), s≥ 1

4 .
In the two-dimensional case, the mean flow potential is solution of the

system (we follow the notations of [221]).

∂ 2φ
∂x2 +

∂ 2φ
∂y2 +

∂ 2φ
∂ z2 = 0 (−h < z < 0),

∂φ
∂ z

=
ω
2

∂ |A|2
∂x

(z = 0),

∂φ
∂ z

= 0 (z =−h).

(13.54)
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In the infinite depth case one obtains at the fourth order in ε the follow-
ing higher order nonlinear Schrödinger equation for the slow variation of
the wave envelope (where surface tension can be included) (see [109]) 2

2i
(

∂A
∂ t

+ cg
∂A
∂x

)
+ p

∂ 2A
∂x2 +q

∂ 2A
∂y2 − γ |A|2A =−is

∂ 3A
∂x∂y2 − ir

∂ 3A
∂x3

− iuA2 ∂ Ā
∂x

+ iv|A|2 ∂A
∂x

+AR1
∂
∂x
|A|2

(13.55)
where R1 is the Riesz transform defined by R̂1ψ(ξ ) = i ξ1

|ξ | ψ̂(ξ ).

The linear part is a third order dispersive equation of type

ut + iP(D)u = 0, (13.56)

where p is a real polynomial of degree three in two variables.
A classification for all possible pointwise decay estimates leading to

Strichartz estimates for the corresponding fundamental solution

G(x, t) =

∫ 2

R
eit p(ξ )+ix·ξ dξ

are given in [18].
We describe briefly below, following [148], how to obtain the local

well-posedness of the Cauchy problem for a class of equations compris-
ing (13.55). We consider thus the Cauchy problem

{
iut +P(D)u = f (u,∂ν u) in R2×R,

u((x,0) = u0(x) for x ∈ R.
(13.57)

We make the following hypothesis on P, f . P is a differential operator
with a real symbol of degree three p(ξ ) and there exist c1,c2 > 0 such that

|∇p(ξ )| ≥ c1|ξ |2− c2, ∀ξ ∈ R2. (13.58)

Remark 13.1. It is straightforward to check that (13.58) is satisfied for the
Dysthe type systems above.

2In the deep water case one obtains by solving (13.54) a system similar to (13.55) where
R1 is a replaced by a zeroth order nonlocal operator with a inhomogeneous symbol (see the
one-dimensional case above). It has essentially the same mathematical properties and one
obtains the same local well-posedness result as in the infinite depth case .
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Concerning the nonlinear part, ν is a unit vector in R2, to which we
associates the Riesz transform Rν defined by

R̂ν f (ξ ) = i
ξ ·ν
|ξ | f̂ (ξ ).

For real or complex constants a j, j = 0,1,2,3, we define

f (u,∂ν) = a0|u|2u+a1u2∂ν ū+a2|u|2∂ν u+a3u∂νRν |u|2. (13.59)

Note that when
a0,a3 ∈ R, a1,a2 ∈ iR, (13.60)

the L2 norm is formally conserved by (13.57). This condition is satisfied in
the case of Dysthe type systems.

As previously mentioned we will rely on smoothing properties of the
linear equation {

iut +P(D)u = g in R2×R,

u((x,0) = u0(x) for x ∈ R.
(13.61)

We now introduce related functional spaces. For x ∈ R2 we set

Q̃x = {y ∈ R2,max
j
|x j− y j| ≤

1
2
}

and for T > 0,

Qx,T = Q̃x× [0,T ].

The local smoothing estimate is as follows. 3

Proposition 13.7. Suppose that p satisfies (13.58). Let T > 0. We have

sup
x
||(1−∆)

1
4 u||L2(Qx,T

)+ sup
0≤t≤T

||u(t)||L2

≤ c

(
||u0||L2 + ∑

k∈Z2

||(1−∆)−
1
4 f ||L2(Qk,T )

)
.

(13.62)

3This result generalizes easily to polynomials of degree κ ≥ 3, see [148]
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Proof. We refer to [148] for the proof that consists in reducing to a one
dimensional estimate. A key observation is the elementary lemma

Lemma 13.8. Let p(σ) be a real polynomial of degree κ. Then for all real
ε 6= 0 ∣∣∣∣

1
2iπ

∫

R

eisσ p′(σ)

p(σ)− iε
dσ
∣∣∣∣≤ κ.

The following spaces are natural ones in view of the smoothing prop-
erty.

Definition 13.9. We fix a smooth compactly supported function φ which is
identically zero on Q̄0.

The spaces Xt0 ⊂ C([0, t0];H3/2(R2)) and Y0 are defined through their
norms

||u||Xt0
= sup

0≤t≤t0
||u||H3/2(R2) + sup

x∈R2
||(1−∆)

5/4
x u||L2(Qx,t0)

+ t−1/2
0

(
∑

k∈Z2

sup
0≤t≤t0

(||φ(·− k)u(t)||2H1/2(R2)
−||φ(·− k)u(0)||2H1/2(R2)

)

)1/2

(13.63)

and

|| f ||Yt0
= inf

f1+ f2= f
{ ∑

k∈Z2

||(1−∆)−1/4 f1||L2(Qk,t0 ) +
∫ t0

0
|| f2(τ)||H3/2(R2)dτ}.

Before stating the main result we prove a consequence of the local
smoothing estimates.

Lemma 13.10. Suppose that |∇p(ξ )| ∼ |ξ |2 for large ξ . Let u0 ∈H3/2(R2)
and u the solution of

iut −P(D)u = f in R2× (0, t0), u(·,0) = u0. (13.64)

Then
||u||Xt0

. ||u0||H3/2(R2) + || f ||Yt0
.
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Proof. Proposition 13.7 implies that

sup
0≤t≤t0

||u||H1 + sup
x∈R2
||D2

xu||L2(Qx,t0 )

. |Dxu0|2 + inf
f1+ f2= f

(
∑

k∈Z2

|| f1||L2(Qk,t0 ) +
∫ t0

0
| f2(t)|2dt

)
.

We apply (1−∆)1/4 to (13.64) and obtain

sup
0≤t≤t0

||u||H3/2 + sup
x∈R2
||(1−∆)5/4u||L2(Qx,t0 ) . ||u0||H3/2(R2) + || f ||Yt0

.

(13.65)
We will use an elementary estimate (which actually is also used in the

proof of the local smoothing). See [148] for the proof.

Lemma 13.11. Let
i∂tv−P(D)v = f

where p is a real polynomial of degree κ in n variables. Let φ ∈Cκ
0 (Rn) be

supported in BR(x). Then

∣∣|φv(t)|22−|φv(0)|22
∣∣≤ 4t

∫ t

0
|φ f (s)|22ds+ c

∫ t

0
||v(s)||

H
κ−1

2 (BR(x))
ds

We now combine (13.65) with Lemma 13.11 where we choose φ ∈
C∞

0 (R2), identically 1 in [−1,1|]2 and supported in [−2,2]2 to obtain

∑
k∈Z2

∣∣|φ(x− k)u(t)|22−|φ(x− k)u(0)|22
∣∣.

∫ t

0
| f (s)|22ds+

∫ t

0
||u||2H1(Rn)ds.

We apply this estimate to (1−∆)1/4u. The commutators [(1−∆)1/4,φ ]
are of order −1/2. Their kernels decay fast and the corresponding terms
can be easily controlled. Hence

t−1
0 ∑

k∈Z2

∣∣∣||φ(x− k)u(t)||2H1/2(R2)
−||φ(x− k)u(0)||2H1/2(R2)

∣∣∣

.

∫ t

0
|| f (s)||2H1/2(R2)

ds+ sup
0≤t≤t0

||u(t)||2H1/2(R2)
.

(13.66)

The main result of this Section is the
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Theorem 13.12. Suppose that p satisfies (13.58) and that f is of the form
(13.59). Given c > 1 there exists t0 ∼ c−2 such that for u0 ∈H3/2(R2) with
||u0||H3/2 ≤ c there exists a unique solution u∈Xt0 to (13.57). Moreover, the

map u0 7→ u is analytic from H
3
2 (R2) into Xt0 . When (13.60) is satisfied (and

thus in the case of Dysthe systems), one has furthermore |u(·, t)|2 = |u0|2.

Proof. We will merely sketch it, refering to [148] for details. Assuming f
as in (13.59) wwe can write it on the form

f (u) = F [u,u,u]

with

F [u,v,w] =
1
6
( f (u+ v+w)+ f (u)+ f (v)

+ f (w)− f (u+ v)− f (u+w)− f (v+w)),

where F is symmetric and linear independently in each argument. A typical
term is

F [u,v,w] = u∂νRν(vw)+ vRν(wu)+w∂νRν(uv). (13.67)

Let w0 ∈ H4(R) to be precised below and let w be the solution to

iwt −P(D)w = 0, u(x,0) = w0.

Instead of u we search by a fixed point argument the solution to

ivt −P(D)v = f (v+w), v(·,0) = u0−w0

Thanks to the unitarity of the group eitP(D) in L2 based Sobolev spaces
and to Sobolev embedding,

|D2
xw|L∞(R×R2) . ||w0||H4(R2).

Let c0 = ||u0||H3/2 . We choose ε small and w0 ∈ H4(R2) with ||u0−
w0||H1/2 ≤ ε , ||u0−w0||H3/2 . 2c0 and ||w0||H4(R2) . c5/2

0 ε−3/2. The result
will follow from Lemma 13.10 and from the following estimate on the non-
linear term. We assume that f is of the form (13.59), that F is related to f
as above and that t0 ≤ 1.
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Lemma 13.13.

||F [u,v,w]||Yt0
.
(
|u(0)||H1/2 + t1/2

0 ||u||Xt0

)(
||v(0)||H1/2 + t1/2

0 ||v||Xt0

)

(
|v(0)||H1/2 + t1/2

0 ||v||Xt0

)(
||w(0)||H1/2 + t1/2

0 ||w||Xt0

)

(
|w(0)||H1/2 + t1/2

0 ||w||Xt0

)(
||u(0)||H1/2 + t1/2

0 ||u||Xt0

)
.

(13.68)

Proof. It suffices to prove that

|| f (u)||Yt0
≤ c||u(0)||2H1/2 + t0||u||2Xt0

. (13.69)

More precisely, by the Sobolev embedding

|h(s)||H1/2(Q̃x)
. ||h(s)||W 1,4/3(Q̃x)

,

we have to prove that

∑
k∈Z2

|| |g|+ |∇g| ||L4/3(Qk)
≤ c
(
||u(0)||H1/2 + t1/2

0 ||u||2Xt0

)2
||u||Xt0

where g is one of the following terms

u3,u2∂ν u,u∂νRν |u|2.

The treatment of u∂νRν |u|2 is typical and contains all the difficulties.
For clarity we consider first the local term ∇(u2Du). By Hölder inequality

||∇(u2(s)Du(s)||L4/3(Q̃x)
. ||u(s)||L8(Q̃x)

||D2u(s)||L2(Q̃x

+ ||u(s)||L8(Q̃x)
||∇u||2L16/5(Q̃x)

and by interpolation,

||∇u||2L16/5(Q̃x). ||u||L8(Q̃x)
+ ||D2u||L2(Q̃x)

.

Hence
∫ t0

0
||∇(u2(s)Du(s))||2L4/3(Q̃x)

ds

.

∫ t0

0
||u(s)||4L8(Q̃x)

(
||u(s)||2L2(Q̃x)

+ ||D2u(s)||2L2(Q̃x)

)
ds

≤ c1

∫ t0

0
||u(s)||4H1/2(Q̃x)

||u(s)||2H1/2(Q̃x)
ds

≤ c2 sup
0≤t≤t0

||(1−∆)1/4u(t)||L2(Q̃x)
||(1−∆)5/4u||L2(Qx,t0 ).

(13.70)
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and by the definition of the spaces Xt0 ,

∑
k∈Z2

{∫ t

0
||u2(s)Du(s)||2H1/2(Q̃x)

ds
}

≤
(
||(1−∆)1/4u(0)||L2 + t1/2

0 ||u||Xt0

)2
||u||Xt0

.

We now turn to the more difficult term

∑
k∈Z2

||∇(u∂νRν |u|2)||L2([0,t0];L4/3(Qk))
.

There are two terms to control

∑
k∈Z2

||(∇u)∂νRν |u|2||L2([0,t0];L4/3(Qk))
(13.71)

and
∑

k∈Z2

||u∇∂νRν |u|2||L2([0,t0];L4/3(Qk))
. (13.72)

By Hölder inequality for fixed t

||(∇u)∂νRν |u|2||L4/3(Qk)
. ||∇u||L16/5(Qk)

||∂νRν |u|2||L16/7(Qk)
.

The kernel K(x,y) of ∂νRν decays fast for |x− y| → ∞, as

|K(x,y)| ≤ c||x− y|−3

and we estimate

||∂νRν |u|2||L16/7(Qk)
. ∑̄

k

(1+ |k− k̄|)−3 sup
k
||u||2L2(Qk)

+ ∑
|k−k̄|≤2

||∂ν |u|2||L16/7(Qk̄)
.

Proceeding as above, one can similarly bound the term

∑
k
||∇(u∂νRν |u|2)||L2([0,t0],L4/3(Qk))

and this complete the proof of Lemma 13.13.
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We can now complete the proof of Theorem 13.12 using Lemmas 13.13
and 13.64.

Firstly we obtain

||w||Xt0
≤ c(n)||w0||H3/2 ≤ c(n)c0.

Let J : Xt0 → Xt0 , J(ṽ) = v be defined as the solution to

vt +P(D)v = f (w+ ṽ), v(0) = u0−w0.

Then by Lemmas 13.13 and 13.64

||v||Xt0
. c0 +

(
||w0||H1/2 + ||u0−w0||H1/2 + t1/2

0 (||w0||H3/2 + ||ṽ||Xt0
)
)2

× (||w0||H3/2 + ||ṽ||Xt0
. c0 + t0(c0 + ||ṽ||Xt0

)3.
(13.73)

We shall see that this map is a contraction, after posibly decreasing t0.
The lower bound on the life span follows from (13.73).

Let for j = 1,2

v j
t +P(D)v j = f (w+ ṽ j), v j(0) = u0−w0.

We expand the trilinear term

f (w+ ṽ2)− f (w+ ṽ1) = 3F [w,w, ṽ2− ṽ1]+3F [w, ṽ2 + ṽ1, ṽ2− ṽ1]

+F [ṽ2 + ṽ1, ṽ2 + ṽ1, ṽ2− ṽ1].

It is straightforward to estimate

||F [w(t),w(t), ṽ2− ṽ1]||L1(H3/2 . t1/2
0 ||w0||2H4 ||ṽ2− ṽ1||Xt0

and hence
||v2− v1||Xt0

≤ γ ||ṽ2− ṽ1||Xt0

where γ can be chosen such that

γ ∼ t1/2
0 ||w0||2H4 +(||w0||H1/2 + t1/2

0 ||w||Xt0
+ µ)µ . t1/2

0 c5
0ε−3 +(c0 + µ)µ

with
µ = ε + t1/2

0 (||ṽ2||Xt0
+ ||ṽ1||Xt0

).



“master_livre_New”
2013/6/13
page 223

i

i

i

i

i

i

i

i

[SEC. 13.2: THE CAUCHY PROBLEM FOR THE DYSTHE EQUATION 223

Suppose that ||ṽ j||Xt0
≤ R with R > c0. Then

||v2− v1||Xt0
≤ 1

2
||ṽ2− ṽ1||Xt0

provided εR¿ 1, t1/2
0 R2¿ 1, t1/2

O (c0 +1)¿ 1 and t0¿ c−10
0 ε6.

Given R we can satisfy all these inequalities. Let R0 = ||J(0)||Xt0
, R≥

2R0 and ε , t0 as above. Then

||J(ṽ)||Xt0
≤ R0 +

1
2

R≤ R

if ||ṽ||Xt0
≤ ||ṽ(0)||H1/2(R2) ≤ ε.

Now J maps this ball into itself and it is a contraction. The same argu-
ment gives uniqueness of solutions in that class. Finally we may reinterpret
the considerations above as an application of the implicit function theo-
rem with analytic nonlinearities, which implies analytic dependence on the
initial data.

Remark 13.2. By similar arguments one could establish the local well-
posedness of (13.57) for n = 3 in the cubic case for initial data in H2(R2)
provided ε1 and ε2 are nonzero.

Remark 13.3. The result above was obtained by using only the local smooth-
ing esffect or the associated linear propagator. It is likely that it could be
improved by using other dispersive estimates (Strichartz, maximal func-
tion,...).
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Chapter 14

Some internal waves system

14.1 The Shallow-Water/Shallow-Water system

We will consider in this Chapter some internal wave systems, mainly the
shallow-water/shallow-water system. We will also make some comments
of possible extensions of the systems introduced in Chapter 5 : surface
tension effects; upper free surface; higher order systems.

The system that arises in the shallow-water/shallow-water regime for
internal waves with a rigid lid (see Chapter 5) is studied here in some de-
tails. it can be seen as the counterpart of the Saint-Venant system for surface
waves. It is thus of “hyperbolic” nature and does not possess a dispersive
term. As for the Green-Naghdi system for surface waves, the dispersive
effects appear when performing the expansion of the Dirichlet-Neumann
operator to the next order (see below).

We will see that the rigid lid assumption introduces in the two-dimen-
sional case a non locality which is not present in the case of a upper free
surface.

We will study here the well-posedness of the Cauchy problem asso-
ciated to (5.21) following [104]. The method of proof is essentially an
hyperbolic one with some technical difficulties due to the nonlocal terms.

224
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Since in the regime under study both ε and ε2 are O(1) quantities, we
will take for simplicity ε = 1 (and thus ε2 = δ ).

Introducing the operator

R[ζ ]u =
1

γ +δ
Q[

γ−1
γ +δ

δζ ](h2u),

one can rewrite (5.21) under the form




∂tζ +∇ ·
(
h1R[ζ ]v

)
= 0,

∂tv+(1− γ)∇ζ +
1
2

∇
(∣∣v− γR[ζ ]v

∣∣2− γ
∣∣R[ζ ]v

∣∣2
)

= 0.
(14.1)

Note also that when d = 1, one has Π = 1 and

R[ζ ]u =
h2

δh1 + γh2
u,

so that (14.1) writes then




∂tζ +∂x
( h1h2

δh1 + γh2
v
)

= 0,

∂tv+(1− γ)∂xζ +
1
2

∂x
( (δh1)

2− γh2
2

(δh1 + γh2)2 v2)= 0,

(14.2)

Let the function f (ζ ) be given by

f (ζ ) =
h1h2

δh1 + γh2
. (14.3)

One easily checks that (14.2) can thus be recast under the conservative
form 




∂tζ +∂x
(

f (ζ )v
)

= 0,

∂tv+(1− γ)∂xζ +
1
2

∂x
(

f ′(ζ )v2)= 0.
(14.4)

Remark 14.1. One derive from (14.4) the Rankine-Hugoniot condition for
a piecewise C1 solution





(ζ+−ζ−)nt +[ f (ζ+)v+− f (ζ−)v−]nx = 0,

(v+−v−)nt +(1− γ)(ζ+−ζ−)nx

+ 1
2 [
(

f ′(ζ+)v2
+

)
−
(

f ′(ζ−)v2
−
)
]nx = 0,

(14.5)
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along the surfaces of discontinuity. A mathematical study of weak solu-
tion to (14.2) has not been performed yet, but Bouchut and Zeitlin recently
managed to handle numerically shock waves for a similar type of system
[43].

14.1.1 The one dimensional case
It is a tedious but simple computation to check that the SW/SW equations
(14.2) can be put under the “quasilinear” form :

∂tU +A(U)∂xU = 0, U = (ζ ,v)T , (14.6)

with

A(U) =

(
a(U) b(ζ )
c(U) a(U)

)

and

a(U) = f ′(ζ )v, b(ζ ) = f (ζ ), c(U) = (1− γ)+
1
2

f ′′(ζ )v2, (14.7)

and where the function f (ζ ) was defined in (14.3). Actually both formula-
tions are equivalent.

A simple computation shows that (14.6) is strictly hyperbolic provided
that





inf
R

(1−ζ ) > 0,

inf
R

(1+δζ ) > 0,

inf
R

[
1− γ(1+δ

(1+δ )2

(δ + γ−δ (1− γ)ζ )3 v2)
]

> 0.

(14.8)

The two first conditions (no cavitation) are the exact counterparts of
the hyperbolicity condition for the classical Saint-Venant system. The third
condition can be seen as a “trace” of the possible Kelvin-Helmholtz insta-
bilities in the two-layer system.

The following theorem follows directly from standard results on hyper-
bolic systems but we will give the plan of the proof as a guideline for the
much more difficult two-dimensional case.

Theorem 14.1. Let δ > 0 and γ ∈ [0,1). Let also t0 > 1/2, s≥ t0 +1 and
U0 = (ζ 0,v0)T ∈ Hs(R)2 be such that (14.8) is satisfied. Then
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• There exists Tmax > 0 and a unique maximal solution U = (ζ ,v)T ∈
C([0,Tmax);Hs(R)2) to (14.2) satisfying (14.8) on [0,Tmax) and with
initial condition U0;

• This solution satisfies the conservation of energy on [0,Tmax) :

1
2

d
dt

∫

R
[(1− γ)ζ 2 + v2 f (ζ )]dx = 0,

with f (ζ ) as in (14.3).

• If Tmax < ∞ then limt→Tmax |U(t)|W 1,∞ = ∞ or one of the three condi-
tions of (14.8) ceases to be true as t→ Tmax.

Proof. As previously mention we only indicate the steps (see [104] for
more details).

Step 1. Construction of a regularized system of equations by truncating the
high frequencies. Let χ be a smooth, even, compactly supported function
defined over R and with values in [0,∞), and equal to 1 in a neighborhood
of the origin. For all ι > 0, we define the operator χι as

χι = χ(ιD);

the operator χι is thus a smoothing operator mapping continuously H s into
Hr for all s,r ∈ R. The regularization of (14.2) is then defined as

∂tU ι + χι
(
A(U ι)χι(∂xU ι)

)
= 0. (14.9)

Since U0 satisfies (14.8), the mapping U 7→ χι(A(U)χι(∂xU)) is locally
Lipschitz in a neighborhood of U0 in Hs, for all s ≥ t0 > 1/2. Exis-
tence/uniqueness of a maximal solution U ι ∈C([0,T ι);Hs) (with T ι > 0)
to (14.9) with initial condition U0 and satisfying (14.8) is thus a direct con-
sequence of the Cauchy-Lipschitz theorem for ODEs in Banach spaces.

Step 2. Choice of a symmetrizer. A natural choice is :

S(U) =

(
b(ζ )−1 0

0 c(U)−1

)
.
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Step 3. Energy estimates. There are obtained by multiplying the equa-
tion for Ũ = ΛsU ι (where Λs = (I−∆)

s
2 by S(U ι) and using then various

commutator estimates.

Step 4. Convergence of U ι to a solution U by standard methods (see eg
[231], Chapter 16). The blow-up condition is also standard.

Step 5. The conservation of energy results from the Hamiltonian structure
of (14.4). Actually, setting

H(ζ ,v) =
1
2

∫

R
[(1− γ)ζ 2 + v2 f (ζ )]dx,

one can write (14.4) in Hamiltonian form (this corresponds to (5.24) in
[62])

∂tU +J∇H(U) = 0, (14.10)

where J is the skew-adjoint operator J = ∂x

(
0 1
1 0

)
.

We refer to [104] for more precise blow-up conditions. In particular,
one can prove the following result (which has been observed in the numer-
ical simulations in [104] :

Corollary 14.2. Under the assumptions of Theorem 14.1, if the maximal
existence time Tmax is finite and if γ > 0 then:

• U = (ζ ,v) remains uniformly bounded on [0,Tmax)×R

• lim
t→Tmax

|∂xU(t, ·)|∞ = ∞

It is possible that the height of one of the fluids vanishes as t → Tmax. In
that case, additional information can be given on the blow up of ∂xU(t, ·):
• If lim

t→Tmax
inf
R

(1−ζ (t, ·)) = 0 then lim
t→Tmax

sup
R

∂xv(t, ·) = ∞.

• If lim
t→Tmax

inf
R

(1+δζ (t·)) = 0 then lim
t→Tmax

inf
R

∂xv(t, ·) =−∞.

Remark 14.2. It is of course possible to have a shock on the velocity with-
out vanishing of the fluid depth for the upper or lower fluid. This scenario
can also be observed on our numerical computations.
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Remark 14.3. We also refer to [104] for the proof that, under the assump-
tions of Theorem 14.1, one has always Tmax < ∞ if U0 6= (0,0) is suitably
compactly supported. This results from the fact that the domain where the
system is genuinely nonlinear is a “big” subset of the domain of strict hy-
perbolicity.

14.1.2 The two-dimensional case
We first summarize in the following lemma various useful properties of the
operator R[ζ ] (see [104] for a proof).

Lemma 14.3. Let γ ∈ [0,1), δ > 0 and t0 > 1. Assume also that ζ ∈
Hs(R2), with s≥ t0 +1, and satisfies

inf
R

(1−|ζ |∞) > 0 and inf
R

(1−δ |ζ |∞) > 0.

Then, for all v ∈ L2(R2)2, one has

∇ ·R[ζ ]v = δ
S[ζ ]v

δh1 + γh2
·∇ζ +

h2

δh1 + γh2
∇ ·v

and, for j = 1,2,

∂ j
(
R[ζ ]v

)
= δR[ζ ]

(S[ζ ]v
h2

∂ jζ
)
+R[ζ ]∂ jv.

Moreover, for all v ∈ L2(R2)2,

|R[ζ ](
v
h2

)− 1
δh1 + γh2

Πv|2

≤C
( 1

γ +δ −δ (1− γ)|ζ |∞
,δ (1− γ)|ζ |Ht0+1

)
|Πv|H−1 .

Remark 14.4. The first part of the Lemma shows how the divergence and
differentiation operators act on R[ζ ].

The second part proves that R[ζ ] is a local operator on gradient vec-
tor fields up to a more regular term. We recall that in one dimension,
R[ζ ]( v

h2
) = 1

δh1+γh2
v.
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It is more tricky when d = 1 to put (14.1) under a quasilinear form
because of the presence of the nonlocal term R[ζ ]v. Nevertheless one can
write (14.1) on the form :

∂tU +A j[U ]∂ jU = 0, U = (ζ ,v)T , (14.11)

where

A j[U ] =

(
a j(U) b j(U)T

c j[U ] D j[U ]

)
, ( j = 1,2),

and

a j(U) = (v− γR[ζ ]v) j− γ(S[ζ ]v) j
h2

δh1 + γh2
, (14.12)

b j(U) =
h1h2

δh1 + γh2
e j, (14.13)

c j[U ]• = e j− γ
[
e j +δ (S[ζ ]v) jR[ζ ]

(S[ζ ]v
h2
•
)]

, (14.14)

D j[U ]• = (v− γR[ζ ]v) jId2×2− γ(S[ζ ]v) jR[ζ ]•, (14.15)

where
S[ζ ]v = v+(1− γ)R[ζ ]v (14.16)

One can prove, using in particular Lemma 14.3 :

Proposition 14.4 (The case d = 2). Let T > 0, t0 > 1 and s ≥ t0 + 1. Let
also U = (ζ ,v) ∈C([0,T ];Hs(R2)3) be such that for all t ∈ [0,T ],

(1−|ζ (t, ·)|∞) > 0 and (1−δ |ζ (t, ·)|∞) > 0 and curl v(t, ·) = 0.

Then U solves (14.1) if and only U solves (14.11).

Remark 14.5. The system (14.11) is not stricto sensu a quasilinear system
since c j[U ] (resp. D j[U ]) is not an R2-vector-valued (resp. 2× 2-matrix-
valued) function but a linear operator defined over the space of R2-vector-
valued (resp. 2×2-matrix-valued) functions. However, these operators are
of order zero and, as shown below, (14.11) can be handled roughly as a
quasilinear system.

One next proves that a solution of (14.11) which is initially curl-free
remains curl-free on its existence time.
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We now turn to the local well-posedness of the two-dimensional SW/SW
system (14.1).

The following conditions generalize the hyperbolicity conditions of the
one-dimensional system.





1−|ζ |∞ > 0,

1−δ |ζ |∞ > 0,

1− γ− γδ
|S[ζ ]v|2∞

γ +δ −δ (1− γ)|ζ |∞
> 0,

(14.17)

with S[ζ ]v as in (14.16).
The main result is the

Theorem 14.5. Let δ > 0 and γ ∈ [0,1). Let also t0 > 1, s ≥ t0 + 1 and
U0 = (ζ 0,v0)T ∈Hs(R2)3 be such that (14.17) is satisfied and curl v0 = 0.
Then there exists Tmax > 0 and a unique maximal solution U = (ζ ,v)T ∈
C([0,Tmax);Hs(R2)3) to (14.1) with initial condition U0. Moreover, if Tmax <
∞ then at least one of the following conditions holds:

(i) lim
t→Tmax

|U(t)|Ht0+1 = ∞

(ii) One of the three conditions of (14.17) is enforced as t→ Tmax.

Proof. As in the one-dimensional case we will only indicate the main steps,
emphasizing the specific difficulties of the 2d case (see [104] for details).

Step 1. Regularized equations. This step is very similar to the 1d case after
checking the smoothness of the coefficients of the matrices A j[U ].

Step 2. Choice of a symmetrizer. Let us look for S[U ] under the form

S[U ] =

(
s1(U) 0

0 S2[U ]

)
, (14.18)

with s1(·) : Hs(R2)3 7→Hs(R2) and S2[U ] a linear operator mapping L2(R2)2

into itself. Defining C[U ] as

∀ṽ = (ṽ1, ṽ2)
T ∈ L2(R2)2, C[U ]ṽ = c1[U ]ṽ1 + c2[U ]ṽ2,

a straightforward generalization of the one dimensional case consists in
taking s1(U) = b(U)−1 and S2[U ] = C[U ]−1; unfortunately, such a choice
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is not correct because the operator C[U ] is not self-adjoint. It turns out
however that C[U ] is self-adjoint (up to a smoothing term) on the restriction
of L2(R2)2 to gradient vector fields, as shown in the following lemma. We
first need to define the operator C1[U ] as

C1[U ] = (1− γ)Id+
1
2

δγ
(

c1[U ]+ c1[U ]∗ 0
0 c1[U ]+ c1[U ]∗

)
, (14.19)

with c1[U ] : L2(R2)→ L2(R2) given by

c1[U ] =
1

δh1 + γh2
(2S1S2Π(e2·)1 +S2

1Π(e1·)1 +S2
2Π(e2·)2), (14.20)

and where S j = (S[ζ ]v) j.

One can now state :

Lemma 14.6. Let t0 > 1 and U = (ζ ,v) ∈Ht0+1(R2)3 be such that (14.17)
is satisfied. Define also C1[U ] as in (14.19) and let C2[U ] = C[U ]−C1[U ].
For all ζ̃ ∈ L2(R2), one has

|C2[U ]∇ζ̃ |2 ≤ c(U)|ζ̃ |2.

We now choose the coefficients s1[U ] and S2[U ] of the symmetrizer
S[U ] given by (14.18) as follows

s1(U) = b(U)−1, (14.21)
S2[U ] = C1[U ]−1. (14.22)

One then checks that C1[U ] is invertible in L (L2(R2)2;L2(R2)).
The operator S[U ] would therefore be a symmetrizer in the sense given

in Step 2 of the proof of Theorem 14.1 if S[U ]A j[U ] ( j = 1,2) were sym-
metric, which is unfortunately not the case. However, one can prove that
ΠS[U ]A j[U ]Π, where Π denotes as before the projection onto gradient vec-
tor fields, is symmetric at leading order.

Step 3. Energy estimates. The idea is the same that in the 1d case but much
more delicate. One uses various properties of the coefficients of the matri-
ces A j[U ] and commutator estimates (see for instance [157], Theorem 6).
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Step 4. Convergence of the approximate solution. We first obtained the
convergence to the unique solution of (14.11) which turns out to be also the
unique solution of (14.1) since we assumed that curl v0 = 0.

Step 5. Blow-up condition. It results from a standard continuation argu-
ment.

Remark 14.6. We do not know whether or not (14.1) possesses a conserved
energy or a Hamiltonian structure. The existence of two-dimensional
blowing-up solutions, though highly expected, is also unknown.

14.2 Extensions : free upper surface; surface
tension effects

A natural extension, (very relevant in applications to ocean dynamics prob-
lems) of the previous results is to consider a free upper surface instead of a
rigid lid and/or a non flat bottom (nontrivial bathymetry).

14.2.1 The case of an upper free surface
A formal derivation of asymptotic models in this situation has been car-
ried out formally in [56] in the weakly nonlinear regime and in [16] in the
strongly nonlinear regime (see also [174]). The weakly nonlinear regime
was also considered in [62] by expanding the Hamiltonian of the full sys-
tem.

The rigorous approach of [32] has been generalized to the case of an
upper free surface by V. Duchêne ([73]) who also incorporates a non trivial
bathymetry. This second aspect will be kept aside till the next subsection
in order to focus here on the effect of an upper free surface.

Let us denote by Γ1 and Γ2 the upper and inner free surfaces respec-
tively and φ1 and φ2 the velocity potentials of the upper and lower layers.
The full system consists now in four equations for the elevations ζ1 and ζ2
of the upper free surface and of the inner free surface respectively and for
the traces ψ1 of φ1 on Γ1 and ψ2 of φ2 on Γ2. It involves two Dirichlet-
Neumann operators G1[ζ1,ζ2] and G2[ζ2] and a nonlocal interface opera-
tor H[ζ1,ζ2]. As in the rigid lid case the full system suffers from Kelvin-
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Helmholtz instabilities in presence of discontinuous tangential velocities at
the inner interface.

Performing the suitable expansions of the nonlocal operators, V. Duchêne
obtains asymptotic models in the Boussinesq/Boussinesq and SW/SW regi-
mes, but his approach applies as well to the other regimes. Let us consider
for instance the SW/SW regime. We denote here by ε1 (resp. ε2) the ratio
of the typical amplitude of the upper (resp inner) free surface over the depth
of the upper layer at the rest position. Setting v1 = ∇ψ1, v2 = ∇ψ2 one gets
the following system (compare with (5.21)):





α∂tζ1 +∇.(h1v1)+∇.(h2v2) = 0,

∂tζ2 +∇.(h2v2) = 0
∂tv1 +α∇ζ1 + ε2

2 ∇(|v1|2) = 0
∂tv2 +(1− γ)∇ζ2 + γα∇ζ1 + ε2

2 ∇(|v2|2) = 0,

(14.23)

where α = ε1
ε2

, h1 = 1+ ε1ζ1− ε2ζ2, h2 = 1
δ + ε2ζ2.

Remark 14.7. This system was derived in the one-dimensional case in [62]
from the Hamiltonian formulation and in [57] (using the layer-mean for-
mulation). In [73] V. Duchêne considers also the case of a non flat bottom.

Contrary to (5.21), the system (14.23) above is local. Actually it can be
written as a symmetrizable hyperbolic system

∂tU +A1(U)∂xU +A2(U)∂yU = 0 (14.24)

where v1 = (u1,u2)
T , v2 = (v1,v2)

T and

U = (h1,h2,ε2u1,ε2u2,ε2v1,ε2v2),

A1(U) =




ε2u1 0 h1 0 0 0
0 ε2v1 0 0 h2 0
1 1 ε2u1 ε2u2 0 0
0 0 0 0 0 0
γ 1 0 0 ε2v1 ε2v2
0 0 0 0 0 0




,
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A2(U) =




ε2u2 0 0 h1 0 0
0 ε2v2 0 0 0 h2
0 0 0 0 0 0
1 1 ε2u1 ε2u2 0 0
0 0 0 0 0 0
γ 1 0 0 ε2v1 ε2v2




.

One can then prove the

Theorem 14.7. ([73]) Let U0 ∈ Hs(R2))6, s > 2, such that U0 satisfies on
R2, for some h > 0,

h1 ≥ h, h2 ≥ h, ε2
2 |u2

1 +u2
2| ≤ (1− γ)h1, ε2

2 |v2
1 + v2

2| ≤ h2.

Then there exists T > 0 and a unique solution U ∈C([0,T );H s(R2))6

of (14.24) with initial data U0.

Remark 14.8. It is furthermore proven in [73] that the solutions of (14.23)
approximate those of the full system, provided the later ones exist.

It thus appears that the nonlocal character of the SW/SW system (14.1)
derived in the previous section is a rigid lid effect. As noticed in [73] one
can actually derived it from (14.23). In fact, using the notations of the
present subsection, the rigid lid assumption means that ε1 = 0, while ε2
remains > 0, so that α = 0 and (14.23) writes now :





∇.(h1v1)+∇.(h2v2) = 0,

∂tζ2 +∇.(h2v2) = 0
∂tv1 +α∇ζ1 + ε2

2 ∇(|v1|2) = 0
∂tv2 +(1− γ)∇ζ2 + γα∇ζ1 + ε2

2 ∇(|v2|2),

(14.25)

Let v = v2− γv1. We deduces from the first equation in (14.25) that

∇.(h2v) =−∇.((h1 + γh2)v1) =−γ +δ
δ

∇.((1+
γ−1
γ +δ

δε2)v1).

Being given ζ ∈ L∞(R2)2, we define the nonlocal operator Q[ζ ] (see
2.2.2) as the mapping

Q[ζ ] : L2(R2)2 → L2(R2)2

W 7→ V,
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where V is the unique gradient solution in L2(R2)2 of the equation

∇.((1+ζ )V ) = ∇.W.

We have thus

v1 = Q[
γ +1
γ +δ

δε2ζ2](−
δ

γ +δ
h2v).

Plugging this expression into (14.25) we obtain




∂tζ2 + δ
γ+δ ∇ ·

(
h1Q[ γ−1

γ+δ εδζ ](h2v)
)

= 0,

∂tv+(1− γ)∇ζ2

+ ε2
2 ∇
(∣∣v− γδ

γ+δ Q[ γ−1
γ+δ ε2δζ2](h2v)

∣∣2− γ2

(γ+δ )2

∣∣Q[ γ−1
γ+δ ε2δζ2](h2v)

∣∣2
)

= 0,

(14.26)
which is (5.21).

14.2.2 Effect of surface tension and of a nontrivial
bathymetry

The main effect of surface tension in the two-layer system is to prevent
the formation of Kelvin-Helmholtz instabilities. For instance, in the re-
lated problem of horizontal shear flows (see [49] and the Introduction), if
we denote by T the surface tension coefficient, the flat interface for hori-
zontal shear flows with constant horizontal velocities U1 and U2 does not
develop instabilities for perturbations in the direction of streaming having
wave numbers k such that (compare to (5.16)):

ρ1ρ2

(ρ1 +ρ2)2 (U1−U2)
2 < gk{α2−α1

k
+

kT
g(ρ1 +ρ2

}. (14.27)

In particular, no Kelvin-Helmholtz instabilities are present provided the
surface tension is large enough to insure that

(U1−U2)
2 <

2
α1α2

√
T g(α2−α1)

ρ1 +ρ2
. (14.28)

Coming back to the two-layer system (5.14), we have seen previously
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that the surface tension adds a term − σ
ρ2

∇K(ζ̃ ) to the LHS of the second

equation of (5.14), where K(ζ̃ ) = ( ∇ζ̃√
1+|∇ζ̃ |2

).

In fact, in oceanographic applications, the surface tension effects are
very weak and can be ignored when deriving the aforementionned asymp-
totic models (they appear as a lower order effect). In situations where they
are small but of the order of the “small” parameters involved in the asymp-
totic expansions (the ε ′s or the µ ′s) one has to add a cubic “capillary” term
to the equation for v (see [66] where the various regimes are systematically
investigated). For instance, in the SW/SW regime, (5.21) has to be replaced
by





∂tζ + 1
γ+δ ∇ ·

(
h1Q[ γ−1

γ+δ εδζ ](h2v)
)

= 0,

∂tv+(1− γ)∇ζ
+ ε

2 ∇
(∣∣v− γ

γ+δ Q[ γ−1
γ+δ εδζ ](h2v)

∣∣2− γ
(γ+δ )2

∣∣Q[ γ−1
γ+δ εδζ ](h2v)

∣∣2
)

−ε√µν∆∇ζ = 0,
(14.29)

where ν = σ
ρ2λ 2 .

Taking into account a varying bottom is more relevant for the oceano-
graphic applications. For surface waves, F. Chazel [51] has incorporated
those effects in the context of weakly nonlinear longwave systems of the
Boussinesq type.

For internal waves, this issue has been settled by Cung The Anh [66]
and V. Duchêne [73], who, as we said previously considers the case of a
free upper surface. We refer to those papers for details.

14.2.3 Higher order systems

A natural question is to go one step further in the asymptotic expansion of
the nonlocal operators Gµ [εζ ] and Hµ,δ [εζ ] in order to derive higher or-
der asymptotic systems. This has already been carried out in the Boussi-
nesq/Boussinesq and SW/SW regimes in the two-dimensional case and
with a free upper surface by V. Duchêne [73] who proved that these sys-
tems are consistent with the full two-layer system.
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In the SW/SW case (for the sake of simplicity we restrict to the flat bot-
tom case) one obtains a internal waves generalization of the Green-Naghdi
system which writes (compare with (14.23))




α∂tζ1 +∇.(h1v1)+∇.(h2v2) = µ(∇.T1 +∇.T2− 1
2 ∇.(h2

1∇A2)
−∇.(h1ε1∇ζ1A2)),

∂tζ2 +∇.(h2v2) = µ∇.T2,

∂tv1 +α∇ζ1 + ε2
2 ∇(|v1|2) = µε2∇N1,

∂tv2 +(1− γ)∇ζ2 + γα∇ζ1 + ε2
2 ∇(|v2|2) = µ(γ∂tH + γε2∇(v1.∇H )

+ε2∇N2 + γε2∇N1),
(14.30)

where




h1 = 1− ε2ζ2, h2 = 1
δ + ε2ζ2,

A1 = ∇.(h1v1), A2 = ∇.(h2v2),

T [h,b]v =− 1
3 ∇(h3∇.v)+ 1

2 (∇(h2∇b.v)−h2∇b∇.v)+h∇b ∇b.v,

T1 = T [h1,ε2ζ2]v1, T2 =− 1
3 ∇(h3

2∇.v2),

H = h1(∇.(h1v1)+∇.(h1v2)− 1
2 h1∇.v1− ε1∇ζ1.v1),

N1 = 1
2 [ε1∇ζ1.v1−∇.(h1v1)−∇.(h1v2]

2,

N2 = 1
2 [(ε2∇ζ1.v2−∇.(h1v2))

2− γ(ε2∇ζ2.v1−∇.(h1∇v2))
2].

(14.31)
Note that this system is linearly ill-posed so that one should derived

models with parameters to get linearly well-posed systems.

Previously, Choi and Camassa [57] derived formally a similar system
(using the depth mean velocities) in one-dimension and with a rigid top.
This system has been also derived in one dimension in [62] by expansion
of the Hamiltonian.

Finally, Barros, Gavrilyuk and Teshukov [16] has considered the two-
dimensional case with a free surface and obtained formally a version of the
generalized Green-Naghdi system by expanding the Lagrangian of the full
system with respect to the dispersion parameter.

We are not aware of any mathematical results on this type of systems,
suitably modified to get linear well-posedness (see [13] for the rigorous
complete justification of the classical Green-Naghdi system [101] for sur-
face waves).
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The asymptotic expansion in 2.2.2 could be of course carried out one
order further to get the equivalent of (14.30) in case of a rigid lid.

Alternatively, following [73], one can try to obtain this system from
(14.30). As in Subsection 5.1 this amounts to setting ε1 = 0 and thus α = 0
in (14.30). One gets




∇.(h1v1)+∇.(h2v2) = µ(∇.T1 +∇.T2− 1
2 ∇.(h2

1∇A2)),

∂tζ2 +∇.(h2v2) = µ∇.T2,

∂tv1 + ε2
2 ∇(|v1|2) = µε2∇N1,

∂tv2 +(1− γ)∇ζ2 + γα∇ζ1 + ε2
2 ∇(|v2|2) = µ(γ∂tH + γε2∇(v1.∇H )

+ε2∇N2 + γε2∇N1),
(14.32)

where now




A1 = ∇.(h1v1), A2 = ∇.(h2v2),

T [h,b]v =− 1
3 ∇(h3∇.v)+ 1

2 (∇(h2∇b.v)−h2∇b∇.v)+h∇b ∇b.v,

T1 = T [h1,ε2ζ2]v1, T2 =− 1
3 ∇(h3

2∇.v2),

H = h1(∇.(h1v1)+∇.(h1v2)− 1
2 h1∇.v1),

N1 = 1
2 [−∇.(h1v1)−∇.(h1v2]

2,

N2 = 1
2 [(ε2∇ζ1.v2−∇.(h1v2))

2− γ(ε2∇ζ2.v1−∇.(h1∇v2))
2].

(14.33)
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