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1

Introduction

This book was written for a course in the 27th Brazilian Mathematics
Colloquium. This course covered basic notions in viscosity solutions
and its applications to deterministic and stochastic optimal control.
This books is partially based on a course on Calculus of Variations
and Partial Differential Equations that I have taught over the years
at the Mathematics Department of Instituto Superior Técnico. I
would like to thank my students: Tiago Alcaria, Patŕıcia Engrácia,
Śılvia Guerra, Igor Kravchenko, Anabela Pelicano, Ana Rita Pires,
Verónica Qúıtalo, Lucian Radu, Joana Santos, Ana Santos, and Vi-
tor Saraiva, which took my courses and suggested me several correc-
tions and improvements. Also my post-doc Andrey Byriuk and my
colleagues Pedro Girão and Cláudia Nunes Philipart have suggested
numerous improvements on the original text. I would like to thank
Artur Lopes that challenged me to present the proposal of this course
at IMPA.
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8 1. INTRODUCTION

The structure of this text is the following: we start with a survey
of classical mechanics and classical calculus of variations. Then we
present the basic tools in classical optimal control. We continue with
a discussion of viscosity solutions both for the terminal value problem,
discounted cost infinite horizon and stationary problems. We follow
with a brief discussion of stochastic optimal control problems and
applications to mathematical finance. Zero sum differential games are
also discussed as another applications of viscosity solutions. We then
present some applications of viscosity solutions to the Aubry Mather
theory. We end the book with a presentation of two important results:
the characterization of monotone semigroups and the convergence of
numerical algorithms.

Many of the results in this book are not done in the largest pos-
sible generality. For additional material, the reader should consult
the bibliographical references. In each chapter we have a section on
bibliographical notes that lists the main references on the material of
that chapter.
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2

Classical calculus of

variations

This chapter is dedicated to the study of classical mechanics and cal-
culus of variations. We start by discussing the minimum action prin-
ciple, Euler-Lagrange equations and some applications to Classical
Mechanics. In section 2.2 we establish further necessary conditions
for minimizers. The following section is dedicated to the Hamiltonian
formalism. Then, in section 2.4 we consider sufficient conditions. We
follow with section Noether’s theorem and symmetries. We end the
chapter with some bibliographical notes.

9
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10 2. CLASSICAL CALCULUS OF VARIATIONS

2.1 Euler-Lagrange Equations

In classical mechanics, the trajectories x(·) : [0, T ] → Rn of a me-
chanical system are determined by a variational principle, the min-
imal action principle, of an integral functional. In this section we
discuss this approach and discuss several examples.

Consider a mechanical system on Rn with kinetic energy K(x, v)
and potential energy U(x, v). We define the Lagrangian, L(x, v) :
Rn × Rn → R. to be difference between the kinetic energy K and
potential energy U of the system, that is, L = K−U . The variational
formulation of classical mechanics asserts that trajectories of this
mechanical system minimize (or are at least critical points) of the
action functional

S[x] =
∫ T

0

L(x(t), ẋ(t))dt,

under fixed boundary conditions. More precisely, a C1 trajectory
x(·) : [0, T ]→ Rn is a minimizer of the action functional under fixed
boundary conditions if for any other C1 trajectory y(·) : [0, T ]→ Rn

such that x(0) = y(0) and x(T ) = y(T ) we have

S[x] ≤ S[y].

In particular, this implies that for any C1 function ϕ : [0, T ] → Rn

with compact support in (0, T ), and any ε ∈ R we have

i(ε) = S[x + εϕ] ≥ S[x] = i(0).

Thus i(ε) has a minimum at ε = 0, and so, if i(·) is differentiable,
i′(0) = 0. A trajectory x is a critical point of S, if for all C1 function
ϕ : [0, T ]→ Rn with compact support in (0, T ) we have

i′(0) =
d

dε
S[x + εϕ]

∣∣∣∣
ε=0

= 0.
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2.1. EULER-LAGRANGE EQUATIONS 11

The critical points of the action which are of class C2 are solu-
tions to an ordinary differential equation, the Euler-Lagrange equa-
tion, that we derive in what follows. For minimizers of the action
functional, further necessary conditions can be derived as will be dis-
cussed in section 2.2.

Theorem 1 (Euler-Lagrange equation). Let L(x, v) : Rn × Rn → R
be a C2 function. Suppose that x(·) : [0, T ] → Rn is a C2 critical
point of the action S[x] under fixed boundary conditions x(0) and
x(T ). Then

d

dt
DvL(x, ẋ)−DxL(x, ẋ) = 0. (2.1)

Proof. Let x be as in the statement. Then for any ϕ : [0, T ] → Rn

with compact support on (0, T ), the function

i(ε) = S[x + εϕ]

has a minimum at ε = 0. Thus

i′(0) = 0,

that is, ∫ T

0

DxL(x, ẋ)ϕ+DvL(x, ẋ)ϕ̇ = 0.

Integrating by parts, we conclude that∫ T

0

[
d

dt
DvL(x, ẋ)−DxL(x, ẋ)

]
ϕ = 0,

for all ϕ : [0, T ] → Rn with compact support in (0, T ). This implies
(2.1) and ends the proof of the theorem.

Example 1. In classical mechanics, the kinetic energy T of a particle
with mass m following the trajectory x(t) is:

K = m
|ẋ|2

2
.
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12 2. CLASSICAL CALCULUS OF VARIATIONS

The potential energy U(x) depends only on the position x and we
assume that it is a smooth function. The corresponding Lagrangian
is then

L = K − U.

So the Euler-Lagrange equation is

mẍ = −U ′(x),

which is the Newton’s law. J

Exercise 1. Let P ∈ Rn, and consider the Lagrangian L(x, v) :
Rn × Rn → R defined by L(x, v) = g(x)|v|2 + P · v − U(x), where g
and U are C2 functions. Determine the Euler-Lagrange equation and
show that it does not depend on P .

To understand the behavior of the Euler-Lagrange equation it is
sometimes useful to change coordinates. The following proposition
shows how this is achieved:

Proposition 2. Let x(·) be a critical point of the action∫ T

0

L(x, ẋ)dt.

Let g : Rn → Rn be a C2 diffeomorphism and L̂ given by

L̂(y, w) = L(g(y), Dg(y)w).

Then y = g−1 ◦ x is a critical point of∫ T

0

L̂(y, ẏ)dt.

Proof. This is a simple computation and is left as an exercise to the
reader.
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2.1. EULER-LAGRANGE EQUATIONS 13

Before proceeding, we discuss some applications to classical me-
chanics. As mentioned before, the trajectories of a mechanical system
with kinetic energy K and potential energy U are critical points of
the action corresponding to the Lagrangian L = K − U . In the fol-
lowing examples we use this variational principle to study the motion
of a particle in a central field and the planar two body problem.

Example 2 (Central field motion). Consider the Lagrangian of a
particle in the plane subjected to a radial potential field.

L(x,y, ẋ, ẏ) =
ẋ2 + ẏ2

2
− U(

√
x2 + y2).

Using polar coordinates, (r, θ). That is (x, y) = (r cos θ, r sin θ) =
g(r, θ), We can change coordinates (see proposition 2) and obtain

L̂(r, θ, ṙ, θ̇) =
r2θ̇2 + ṙ2

2
− U(r).

In these new coordinates the Euler-Lagrange equations can be written
as

d

dt
r2θ̇ = 0

d

dt
ṙ = −U ′(r) + rθ̇2.

The first equation implies that r2θ̇ ≡ η is conserved. Therefore rθ̇2 =
η2

r3 . Multiplying the second equation by ṙ we get

d

dt

[
ṙ2

2
+ U(r) +

η2

2r2

]
= 0.

Consequently

Eη =
ṙ2

2
+ U(r) +

η2

2r2

is a conserved quantity. Thus, one can solve for ṙ as a function of r
(given the values of the conserved quantities Eη and η) and so obtain
a first-order differential equation for the trajectories. J

Example 3 (Planar two-body problem). Consider now the problem
of two point bodies in the plane, describing trajectories (x1,y1) and
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14 2. CLASSICAL CALCULUS OF VARIATIONS

(x2,y2), whose interaction potential energy U depends only on its
distance

√
(x1 − x2)2 + (y1 − y2)2. We will show how to reduce this

problem to the one of a single body under a radial field.

The Lagrangian of this system is

L = m1
ẋ2

1 + ẏ2
1

2
+m2

ẋ2
2 + ẏ2

2

2
− U(

√
(x1 − x2)2 + (y1 − y2)2).

We will choose new coordinates (X,Y, x, y), where (X,Y ) is the
center of mass

X =
m1x1 +m2x2

m1 +m2
Y =

m1y1 +m2y2

m1 +m2

and (x, y) the relative position of the two bodies

x = x1 − x2 y = y1 − y2.

In these new coordinates we can write the Lagrangian, using propo-
sition 2,

L̂ = L̂1(Ẋ, Ẏ) + L̂2(x,y, ẋ, ẏ).

Therefore, the equations for the variables X and Y decouple from
the ones for x,y. Elementary computations show that

d2

dt2
X =

d2

dt2
Y = 0.

Thus X(t) = X0 + VXt and Y(t) = Y0 + VY t, for suitable constants
VX and VY .

Since

L2 =
m1m2

m1 +m2

ẋ2 + ẏ2

2
− U(

√
x2 + y2),

the problem now is reduced to the previous example. J
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2.1. EULER-LAGRANGE EQUATIONS 15

Exercise 2 (Two body problem). Consider a system of two point
bodies in R3 with masses m1 and m2. Assume further that the in-
teraction depends only on the distance between the bodies. Show that
by choosing appropriate coordinates, the motion can be reduced to the
one of a single point particle with mass M = m1m2

m1+m2
under a radial

potential. Show that the orbit of a particle under a radial field lies in
a fixed plane for all times, by proving that r× ṙ is conserved.

Exercise 3. Let x(·) : [0, T ] → Rn be a solution to the Euler-
Lagrange equation associated to a C2 Lagrangian L : Rn × Rn → R.
Show that

E(t) = L(x, ẋ)− ẋDvL(x, ẋ)

is constant in time. For mechanical systems this is simply the conser-
vation of energy. Occasionally, the identity d

dtE(t) = 0 is also called
the Beltrami identity.

Exercise 4. Consider a system of n point bodies of mass mi, and
positions ri ∈ R3, 1 ≤ i ≤ n. Suppose the kinetic energy is T =∑
i
mi
2 |ṙ|

2 and the potential energy is U = −
∑
i,j 6=i

mimj
2|ri−rj | . Let

I =
∑
imi|ri|2. Show that

d2

dt2
I = 4T + 2U,

which is strictly positive if the energy T +U is positive. What impli-
cations does this identity have for the stability of planetary systems?

Exercise 5 (Jacobi metric). Let L(x, v) : Rn × Rn → R be a C2

Lagrangian. Let x(·) : [0, T ]→ Rn be a solution to the corresponding
Euler-Lagrange

d

dt
DvL−DxL = 0, (2.2)

for the Lagrangian

L(x, v) =
|v|2

2
− V (x).
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16 2. CLASSICAL CALCULUS OF VARIATIONS

Let E(t) = |ẋ(t)|2
2 + V (x(t)).

1. Show that Ė = 0.

2. Let E0 = E(0). Show that x is a solution to the Euler-Lagrange
equation

d

dt
DvLJ −DxLJ = 0 (2.3)

associated to LJ =
√
E0 − V (x)|ẋ|.

3. Show that any reparametrization of x is also a solution to (2.3)
and observe that the functional∫ T

0

√
E0 − V (x)|ẋ|

represents the distance between x(0) and x(T ) using the Jacobi
metric g =

√
E0 − V (x).

4. Show that the solutions to the Euler-Lagrange (2.3) when rep-
arametrized in suitable way satisfy (2.2)

Exercise 6 (Braquistochrone problem). Let (x1, y1) be a point in a
(vertical) plane. Show that the curve y = u(x) that connects (0, 0) to
(x1, y1) in such a way that a particle moving under the influence of the
gravity g reaches (x1, y1) in the minimum amount of time minimizes

∫ x1

0

√
1 + u̇2

−2gu
dx.

Hint: use the fact that the sum of kinetic and potential energy is
constant.

Determine the Euler-Lagrange equation and study its solutions,
using exercise 3.
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2.2. FURTHER NECESSARY CONDITIONS 17

Exercise 7. Consider a second-order variational problem:

min
x

∫ T

0

L(x, ẋ, ẍ)

where the minimum is taken over all trajectories x(·) : [0, T ] → Rn

with fixed boundary data x(0),x(T ), ẋ(0), ẋ(T ). Determine the Euler-
Lagrange equation.

2.2 Further necessary conditions

A classical strategy in the study of variational problems consists in es-
tablishing necessary conditions for minimizers. If there exists a min-
imizer and if the necessary conditions have a unique solution, then
this solution has to be the unique minimizer and thus the problem is
solved. In addition to Euler-Lagrange equations, several additional
necessary can be derived. In this section we discuss boundary condi-
tions which arise, for instance when the end-points are not fixed, and
second-order conditions.

2.2.1 Boundary conditions

In the case in which no boundary conditions are imposed a-priori,
it is possible to prove that the minimizers satisfy certain boundary
conditions automatically. These boundary conditions called natural
boundary conditions.

Example 4. Consider the problem of minimizing the integral∫ T

0

L(x, ẋ)dt, (2.4)
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18 2. CLASSICAL CALCULUS OF VARIATIONS

over all C2 curves x(·) : [0, T ]→ Rn. Note that the boundary values
for the trajectory x(·) at t = 0, T are not prescribed a-priori.

Let x be a minimizer of (2.4) (with free endpoints). Then for all
ϕ : [0, T ]→ Rn, not necessarily compactly supported,∫ T

0

DxL(x, ẋ)ϕ+DvL(x, ẋ)ϕ̇dt = 0.

Integrating by parts and using the fact that x is a solution to the
Euler-Lagrange equation, we conclude that

DvL(x(0), ẋ(0)) = DvL(x(T ), ẋ(T )) = 0.

J

Exercise 8. Consider the problem of minimizing the integral∫ T

0

L(x, ẋ)dt,

over all C2 curves x(·) : [0, T ]→ Rn such that x(0) = x(T ). Deduce
that

DvL(x(0), ẋ(0)) = DvL(x(T ), ẋ(T )).

Exercise 9. Consider the problem of minimizing∫ T

0

L(x, ẋ)dt+ ψ(x(T )),

with x(0) fixed and x(T ) free. Derive a boundary condition at t = T

for the minimizers.

Exercise 10 (Free boundary).

Consider the problem of minimizing∫ T

0

L(x, ẋ),
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2.2. FURTHER NECESSARY CONDITIONS 19

over all terminal times T and all C2 curves x : [0, T ] → Rn. Show
that x is a solution to the Euler-Lagrange equation and that

L(x(T ), ẋ(T )) = 0,

DxL(x(T ), ẋ(T ))ẋ(T ) +DvL(x(T ), ẋ(T ))ẍ(T ) ≥ 0,

DvL(x(T ), ẋ(T )) = 0.

Let q ∈ R and L : R2 → R given by

L(x, v) =
(v − q)2

2
+
x2

2
− 1

If possible, determine T and x(·) that are (local) minimizers of∫ T

0

L(x, ẋ)ds,

with x(0) = 0.

2.2.2 Second-order conditions

If f : R → R is a C2 function which has a minimum at a point x0

then f ′(x0) = 0 and f ′′(x0) ≥ 0. For the minimal action problem, the
analog of the vanishing of the first derivative is the Euler-Lagrange
equation. We will now consider the analog to the second derivative
being non-negative.

The next theorem concerns second-order conditions for minimiz-
ers:

Theorem 3 (Jacobi’s test). Let L(x, v) : Rn × Rn → R be a C2

Lagrangian. Suppose x(·) : [0, T ] → Rn is a C1 minimizer of the
action under fixed boundary conditions. Then, for each η : (0, T ) →
Rn, with compact support in (0, T ), we have∫ T

0

1
2
ηTD2

xxL(x, ẋ)η+ηTD2
xvL(x, ẋ)η̇+

1
2
η̇TD2

vvL(x, ẋ)η̇ ≥ 0. (2.5)
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Proof. If x is a minimizer, the function ε 7→ I[x+ εη] has a minimum
at ε = 0. By computing d2

dε2 I[x + εη] at ε = 0 we obtain (2.5).

A corollary of the previous theorem is Lagrange’s test that we
state next:

Corollary 4 (Lagrange’s test). Let L(x, v) : Rn × Rn → R be a C2

Lagrangian. Suppose x(·) : [0, T ] → Rn is a C1 minimizer of the
action under fixed boundary conditions. Then

D2
vvL(x, ẋ) ≥ 0.

Proof. Use Theorem 3 with η = εξ(t) sin t
ε , for ξ : (0, T )→ Rn, with

compact support in (0, T ), and let ε→ 0.

Exercise 11. Let L : R2n → R be a continuous Lagrangian and
let x(·) be a continuous piecewise C1 trajectory. Show that for each
δ > 0 there exists a trajectory yδ(·) of class C1 such that∣∣∣∣∣

∫ T

0

L(x, ẋ)−
∫ T

0

L(yδ, ẏδ)

∣∣∣∣∣ < δ.

As a corollary, show that the value of the infimum of the action over
piecewise C1 trajectories is the same as the infimum over trajectories
globally C1. Note, however, that the minimizer may not be C1.

Exercise 12 (Weierstrass test). Let x(·) be a C1 minimum of the
action corresponding to a Lagrangian L. Let v, w ∈ Rn and 0 ≤ λ ≤ 1
be such that λv + (1− λ)w = 0. Show that

λL(x, ẋ + v) + (1− λ)L(x, ẋ + w) ≥ L(x, ẋ).
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Hint: To prove the inequality at a point t0, choose η such that

η̇(t) =


v if t0 ≤ t ≤ t+ λε

w if t+ λε < t ≤ t0 + ε

0 otherwise

and consider I[x + η], as ε→ 0.

2.3 Hamiltonian dynamics

In this section we introduce the Hamiltonian formalism of Classical
Mechanics. We start by discussing the main properties of the Legen-
dre transform. Then we derive Hamilton’s equations. Afterward we
discuss briefly the classical theory of canonical transformations. The
section ends with a discussion of additional variational principles.

2.3.1 Legendre transform

Before we proceed, we need to discuss the Legendre transform of con-
vex functions. The Legendre transform is used to define the Hamil-
tonian of a mechanical system and it plays an essential role in many
problems in calculus of variations. Additionally, it illustrates many
of the tools associated with convexity.

Let L(v) : Rn → R be a convex function, satisfying the following
superlinear growth condition:

lim
|v|→∞

L(v)
|v|

= +∞.
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The Legendre transform L∗ of L is

L∗(p) = sup
v

[−v · p− L(v)] .

This is the usual definition of Legendre transform in optimal control,
see [FS06] or [BCD97]. However, it differs by a sign from the Legendre
transform usually used in classical mechanics:

L](p) = sup
v

[v · p− L(v)] ,

as it is defined, for instance, in [AKN97] or [Eva98b]. They are related
by the elementary identity

L∗(p) = L](−p).

We will frequently denote L∗(p) by H(p). The Legendre transform
of H is denoted by H∗ and is

H∗(v) = sup
v
−p · v −H(p).

In classical mechanics, the Lagrangian L can depend also on a
position coordinate x ∈ Rn, L(x, v), but for purposes of the Legen-
dre transform x is taken as a parameter. In this case we write also
H(p, x) = L∗(p, x).

Proposition 5. Let L(x, v) be a C2 function, which for each x fixed
is strictly convex and superlinear in v. Let H = L∗. Then

1. H(p, x) is convex in p;

2. H∗ = L;

3. for each x

lim
|p|→∞

H(p, x)
|p|

=∞;
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4. let v∗ be defined by p = −DvL(x, v∗), then

H(p, x) = −v∗ · p− L(x, v∗);

5. in a similar way, let p∗ be given by v = −DpH(p∗, x), then

L(x, v) = −v · p∗ −H(p∗, x);

6. if p = −DvL(x, v) or v = −DpH(p, x), then

DxL(x, v) = −DxH(p, x).

Proof. The first statement follows from the fact that the supremum
of convex functions is a convex function. To prove the second point,
observe that

H∗(x,w) = sup
p

[−w · p−H(p, x)]

= sup
p

inf
v

[(v − w) · p+ L(x, v)] .

For v = w we conclude that

H∗(x,w) ≤ L(x,w).

The opposite inequality is obtained by observing that, since L is
convex in v, for each w ∈ Rn there exists s ∈ Rn such that

L(x, v) ≥ L(x,w) + s · (v − w)

and, therefore,

H∗(x,w) ≥ sup
p

inf
v

[(p+ s) · (v − w) + L(x,w)] ≥ L(x,w),

by letting p = −s.
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To prove the third point observe that

H(p, x)
|p|

≥ λ−
L(x,−λ p

|p| )

|p|
,

by choosing v = −λ p
|p| . Thus, we conclude

lim inf
|p|→∞

H(p, x)
|p|

≥ λ.

Since λ is arbitrary, we have

lim inf
|p|→∞

H(p, x)
|p|

=∞.

To establish the fourth point, note that for fixed p the function

v 7→ v · p+ L(x, v)

is differentiable and strictly convex. Consequently, its minimum,
which exists by coercivity and is unique by the strict convexity, is
achieved for

−p−DvL(x, v) = 0.

Note also that v as function of p is a differentiable function by the
inverse function theorem.

The proof of the fifth point is similar.

Finally, to prove the last item, observe that for

p(x, v) = −DvL(x, v),

we have
H(p(x, v), x) = −v · p(x, v)− L(x, v).

Differentiating this last equation with respect to x and using

v = −DpH(p(x, v), x),
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we obtain
DxH = −DxL.

Exercise 13. Compute the Legendre transform of the following func-
tions:

1.
L(x, v) =

1
2
aij(x)vivj + hi(x)vi − U(x),

where aij is a positive definite matrix and h(x) an arbitrary
vector field.

2.
L(x, v) =

√
aij(x)vivj ,

where aij is a positive definite matrix.

3.
L(x, v) =

1
2
|v|λ − U(x),

with λ > 1.

2.3.2 Hamiltonian formalism

To motivate the Hamiltonian formalism, we consider the following
alternative problem. Rather than looking for curves x(·) : [0, T ] →
Rn, which minimize the action∫ T

0

L(x, ẋ)dt

we can consider extended curves (x(·),v(·)) : [0, T ] → R2n which
minimize the action ∫ T

0

L(x,v)dt (2.6)
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and that satisfy the additional constraint ẋ = v. Obviously, this
problem is equivalent to the original one, however it motivates the
introduction of a Lagrange multiplier p in order to enforce the con-
straint. Therefore, we will look for critical points of∫ T

0

L(x,v) + p · (v − ẋ)dt. (2.7)

Proposition 6. Let (x,v) be a critical point of (2.6) under fixed
boundary conditions and under the constraint ẋ = v (the choice of p
is irrelevant since the corresponding term always vanishes). Let

p = −DvL(x,v).

Then the curve (x,v,p) is a critical point of (2.7) under fixed bound-
ary conditions. Additionally, any critical point (x,v,p) of (2.7) sat-
isfies 

ẋ = v

p = −DvL(x,v)

ṗ = DxL(x,v),

and so x is a critical point of (2.6). Furthermore, the Euler-Lagrange
equation can be rewritten as

ṗ = DxH(p,x) ẋ = −DpH(p,x).

Proof. Let φ, ψ and η be C2([0, T ],Rn) with compact support in
(0, T ). Then, at ε = 0

d

dε

∫ T

0

L(x + εφ,v + εψ) + (p + εη) · (v − ẋ) + ε(p + εη) · (ψ − φ̇)

=
∫ T

0

DxL(x, ẋ)φ+DvLψ + p · (ψ − φ̇) + η · (v − ẋ)

=
∫ T

0

[DxL(x, ẋ) + ṗ]φ = 0.
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If p = −DvL(x, v), then v maximizes

−p · v − L(x, v).

Let
H(p, x) = max

v
[−p · v − L(x, v)] .

By proposition 5 we have

DxH(p, x) = −DxL(x, v)

whenever
p = −DvL(x, v)

. Additionally, we also have

v = −DpH(p, x).

Therefore, the Euler-Lagrange equation can be rewritten as

ṗ = DxH(p,x) ẋ = −DpH(p,x).

These are the Hamilton equations.

Exercise 14. Suppose H(p, x) : Rn × Rn → R is a C1 function.
Show that the energy, which coincides with H, is conserved by the
Hamiltonian flow since

d

dt
H(p,x) = 0.

2.3.3 Canonical transformations

Before discussing canonical transformations we will need to recall
some basic facts about differential forms in Rn. Firstly, recall that
given a C1 function f : Rn → R its differential, denoted by df is
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a mapping df : Rn × Rn → R that for any point x ∈ Rn and each
direction v ∈ Rn it associates the derivative of f in the direction v:

df(x)(v) =
d

dt
f(x+ vt)

∣∣∣∣
t=0

.

Note that for each x ∈ Rn this mapping is linear in v. For example,
for each coordinate i ∈ {1, . . . , n} we can consider the projection
x 7→ xi, whose differential is dxi.

A (first order) differential form is any mapping

Λ : Rn × Rn → R,

linear on the second coordinate. Clearly we can write

Λ =
∑
i

fi(x)dxi,

where fi(x) = Λ(x)(ei).

A important example is the differential df of a C1 function f

which is a differential form that can be written as

df =
∑
i

∂f

∂xi
dxi.

The integral of a differential Λ form along a path γ : [0, T ]→ Rn

is simply ∫ T

0

Λ(γ(t))(γ̇(t))dt =
∑
i

∫ T

0

fi(γ(t))γ̇i(t)dt.

Exercise 15 (Poincaré-Cartan invariant). Let, for each fixed t ∈ R,

γ = (x(s, t),p(s, t)),
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be a closed curve in R2n for s ∈ [0, 1]. Suppose that

d

dt
x = −DpH(p,x)

d

dt
p = DxH(p,x).

Show that ∮
pdx ≡

∫ 1

0

p · ∂x
∂s
ds

is independent of t.

Exercise 16. Show that the critical points of∫ T

0

pdx +H(p,x)dt

under fixed boundary conditions satisfy the Hamilton equations.

Let (x,p) be a solution of the Hamilton equation. By exercise
16, (x,p) is a critical point of∫

pdx +Hdt.

Let S(x) : Rn → R be a C1 function. Then (x,p) is also a critical
point of ∫

pdx +Hdt− dS

because the last integral differs from the previous only be the addition
of the differential of a function S. Consider now a change of coordi-
nates P (x, p), X(x, p). In general the functional

∫
pdx + Hdt − dS

when rewritten in terms of the new coordinates (P,X) does not have
the form

∫
PdX+H̄(P,X)dt, and, therefore, the Hamilton equations

in these new coordinates may not have the standard form. A change
of coordinates (x, p) 7→ (X(x, p), P (x, p)) is called canonical if there
exist functions S and H(P,X) such that

pdx+Hdt− dS = PdX + H̄dt. (2.8)
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Consider now a trajectory (x,p) of Hamilton’s equations. Sup-
pose the coordinate change (x, p) 7→ (X(x, p), P (x, p)) is canonical.
Then the trajectory written in the new coordinates (X,P) is a critical
point of the function ∫

PdX + H̄dt.

Therefore (X,P) satisfies Hamilton’s equations in the new coordi-
nates, which are

Ṗ = DXH̄(P,X) Ẋ = −DP H̄(P,X). (2.9)

Note that we are looking at time-independent changes of coordinates.
Thus in order to have (2.8) we must have

H(p, x) = H(P (p, x), X(p, x)),

and so

pdx− PdX = dS.

Suppose now we can write the function S as a function of x and X,
that is S ≡ S(x,X). Then

p = DxS P = −DXS. (2.10)

Consider now the inverse procedure. Given S(x,X), suppose that
(2.10) defines a change of coordinates (for this to happen locally it
is sufficient, by the implicit function theorem that detD2

xXS 6= 0).
Then, in these new coordinates we have (2.9). Since S determines
(at least formally) the change of coordinates, we call it a generating
function. J

Example 5. Consider the generating function S(x,X) = xX. Then
the corresponding canonical transformation is p = X, P = −x, that
is (x, p) 7→ (X,P ) = (p,−x) and H(P,X) = H(−P,X). J
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Suppose now that S, written as a function of (x, P ), is:

S(x, P ) = −PX + S1(x, P ).

Then (2.8) can be written as:

pdx+ PdX +XdP −DxS1dx−DPS1dP = PdX,

that is,
p = DxS1 X = DPS1.

Example 6. Let S1(x, P ) = xP . Then p = P and X = x, therefore
S1 generates the identity transformation. J

Exercise 17. Assume now that S can be written as a function of X
and p and that we have

S(X, p) = px+ S2(X, p).

Determine the corresponding canonical transformation in terms of
S2.

Exercise 18. Suppose that S can be written as a function of p and
P with the following form:

S(p, P ) = px− PX + S3(p, P ).

Determine corresponding canonical transformation in terms of S3.

Example 7. Consider the Hamiltonian

H ≡ H(px, py, x− y).

Choosing
S1 = P1(x+ y) + P2(x− y)

we obtain
px = P1 + P2 py = P1 − P2,
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X1 = x1 + x2 X2 = x− y,

and

H(P1, P2, X1, X2) ≡ H(P1, P2, X2) = H

(
P1 + P2

2
,
P1 − P2

2
, X2

)
,

which does not depend on X1 and, therefore, P1, the total linear
momentum is conserved. J

Example 8. Let S1(x, P ) be a C2 solution of the Hamilton-Jacobi
equation

H(DxS1(x, P ), x) = H(P ).

Suppose that

X = DPS1(x, P ) p = DxS1(x, P )

defines implicitly a change of coordinates (x, p) 7→ (X,P ). Assume
that detD2

xPS1 6= 0. Then, if (x(t),p(t)) satisfy

ẋ = −DpH(p,x) ṗ = DxH(p,x),

in the new coordinates we have

Ẋ = −DPH(P) Ṗ = 0.

J

Example 9. Consider now a Hamiltonian H(p, x) with one degree
of freedom, that is x ∈ R. We would like to construct a canonical
change of coordinates such that the new Hamiltonian depends only
on P . We will first construct the corresponding generating function.
For that, suppose that there exists a generating function S1(x, P ).
Then

dS1 = XdP + pdx.
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Fix a value P . We will try to choose S−1 so that the new Hamiltonian
H depends only on P , that is H(p(P,X), x(P,X)) = H(P ). For each
curve γ = (x(·),p(·)) such that P is constant, we have

dS1 = pdx.

Therefore,

S1(x(T ), P )− S1(x(0), P ) =
∫ T

0

p(t) · ẋ(t)dt.

In principle, from the equation H(p, x) = H(P ) we can solve for p as
a function of x and of the value H(P ). In this case, the generating
function is automatically determined as a function of H and of x. J

Example 10. Consider the Hamiltonian system with one degree of
freedom:

H(p, x) =
p2

2
+ V (x),

with V (x) 2π-periodic. For each value of H(P ) we have (assuming
for definiteness p > 0)

S1(x, P ) =
∫ x

0

√
2(H(P )− V (y))dy.

Therefore,

X =
∫ x

0

∂

∂H

√
2(H(P )− V (y))DPH(P )dy.

In principle, the function H(P ) can be more or less arbitrary. To
impose uniqueness it is convenient to require periodicity in the change
of variables

X(0, P ) = X(2π, P ),

which implies

DPH(P ) =
[
∂

∂H

∫ 2π

0

√
2
[
H(P )− V (y)

]
dy

]−1

.

J
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Exercise 19. Show that the polar coordinates change of variables
(x, p) = (r cos θ, r sin θ) is not canonical. Determine a function g(r)
such that (x, p) = (g(r) cos θ, g(r) sin θ) is a canonical transformation
(for r > 0).

2.3.4 Other variational principles

In the case of Hamiltonian systems, as the next exercise shows, there
exists an additional variational principle:

Exercise 20. Show that the critical points (x,p) of the functional∫ T

0

pẋ− xṗ
2

+H(p,x)

are solutions to the Hamilton equation

Unfortunately the functional of the previous exercise is not coer-
cive in W 1,2 and may not have any minimizer. The Clarke duality
principle (following exercise) is another variational principle for con-
vex Hamiltonians which is coercive.

Exercise 21 (Clarke duality). Let H(p, x) : R2n → R be a C∞ func-
tion, strictly convex and coercive, both in x and p. Let H∗(v̇x, v̇p) :
R2n → R be the total Legendre transform

H∗(wx, wp) = sup
x,p
−wx · x− wp · p−H(p, x).

Let (vx,vp) be a critical point of∫ T

0

1
2

[vx · v̇p − v̇p · v̇x] +H∗(v̇x, v̇p).

Show that

x = −Dv̇xH
∗(v̇x, v̇p) p = −Dv̇pH

∗(v̇x, v̇p)



i
i

“IMPA2009” — 2009/5/15 — 18:05 — page 35 — #35 i
i

i
i

i
i

2.3. HAMILTONIAN DYNAMICS 35

is a solution of Hamilton’s equations.

Exercise 22. Apply the previous exercise to the Hamiltonian

H(p, x) =
p2 + x2

2
.

Example 11 (Maupertuis principle). Consider a system with La-
grangian L and energy given by

E(x, ẋ) = DvL(x, ẋ)ẋ− L(x, ẋ).

Since the energy is conserved by the solutions of the Euler-Lagrange
equation, the critical points of the action are also critical points of
the functional ∫ T

0

L+ E =
∫ T

0

DvL(x, ẋ)ẋ,

under the constraint that energy is conserved.

Obviously, in general it is hard to construct energy-preserving
variations. We are going to illustrate, in an example, how to avoid
this problem. Let L be the Lagrangian

L(x, v) =
1
2
gijvivj − U(x).

Then,

E =
1
2
gijvivj + U(x)

and
DvLv = gijvivj .

Thus we can write

DvLv = 2 (E − U(x)) .

Therefore the functional can be rewritten as

M(x, E) =
∫ T

0

√
2 (E − U(x))

√
gijẋiẋjdt (2.11)
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The last term represents the arc length along the curve that connects
x(0) to x(T ). This integral is independent of the parametrization and
therefore we can look at its critical points (without any constraint)
which obviously depend on the parameter E. Then, once determined,
in principle we can choose a parametrization of the curve that pre-
serves the energy. The next exercise shows that such critical points
are solutions to the Euler-Lagrange equation:

Exercise 23. Let x be a critical point of M(x, E0) parametrized in
such a way that

E(x, ẋ) = E0.

Show that x is a solution of the Euler-Lagrange equation.

J

2.4 Sufficient conditions

This section addresses a very classical topic in the calculus of varia-
tions, namely the study of conditions that ensure that a solution to
the Euler-Lagrange equation is indeed a minimizer.

2.4.1 Existence of minimizers

In general, it is not possible to guarantee that a solution to the Euler-
Lagrange is a minimizer of the action. However, for short time, the
next theorem settles this issue.

Theorem 7 (Existence of minimizers). Let L(x, v) be strictly convex
in v satisfying

|D2
xxL| ≤ C, |D2

xvL| ≤ C.
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Let x(·) be a solution to the Euler-Lagrange equation. Then, for T
sufficiently small, x(·) is a minimizer of the action over all C1 func-
tions y(·) with the same boundary conditions y(0) = x(0), y(T ) =
x(T ).

Proof. Observe that if f is a C2 function then

f(1) = f(0) + f ′(0) +
∫ 1

0

∫ s

0

f ′′(r)drds.

Applying this identity to

f(r) = L((1− r)x + ry, (1− r)ẋ + rẏ),

we obtain∫ T

0

L(y, ẏ)dt

=
∫ T

0

[L(x, ẋ) +DxL(x, ẋ)(y − x) +DvL(x, ẋ)(ẏ − ẋ)

+
∫ 1

0

∫ s

0

[
(y − x)TD2

xxL((1− r)x + ry, (1− r)ẋ + rẏ)(y − x)

+ 2(y − x)TD2
xvL((1− r)x + ry, (1− r)ẋ + rẏ)(ẏ − ẋ)

+(ẏ − ẋ)TD2
vvL((1− r)x + ry, (1− r)ẋ + rẏ)(ẏ − ẋ)

]
drds

]
dt.

Since x(·) satisfies the Euler-Lagrange equation and, by strict con-
vexity, D2

vvL ≥ γ, we have∫ T

0

L(y, ẏ)dt ≥
∫ T

0

[L(x, ẋ)

+
∫ 1

0

∫ s

0

(
(y − x)TD2

xxL((1− r)x + ry, (1− r)ẋ + rẏ)(y − x)

+2(y − x)TD2
xvL((1− r)x + ry, (1− r)ẋ + rẏ)(ẏ − ẋ)

)
drds

+γ|ẏ − ẋ|2
]
dt.
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The one-dimensional Poincaré inequality implies∫ T

0

|y − x|2dt ≤ T 2

2

∫ T

0

|ẏ − ẋ|2dt,

that is,∫ T

0

∫ 1

0

∫ s

0

(y − x)T ·

·D2
xxL((1− r)x + ry, (1− r)ẋ + rẏ)(y − x)drdsdt

≥ −CT 2

∫ T

0

|ẏ − ẋ|2,

and, for any ε,∫ T

0

∫ 1

0

∫ s

0

(y − x)T ·

·D2
vxL((1− r)x + ry, (1− r)ẋ + rẏ)(ẏ − ẋ)drdsdt

≥ −ε
∫ T

0

|ẏ − ẋ|2 − C

ε

∫ T

0

|y − x|2

≥ −
(
ε+

CT 2

ε

)∫ T

0

|ẏ − ẋ|2.

Thus, choosing T sufficiently small and taking, ε = T we obtain∫ T

0

L(y, ẏ)dt ≥
∫ T

0

L(x, ẋ) + θ

∫ T

0

|ẏ − ẋ|2,

for some θ > 0.

Exercise 24. Prove the one-dimensional Poincaré inequality∫ T

0

φ2 ≤ T 2

2

∫ T

0

|φ̇|2

for all C1 function φ satisfying φ(0) = φ(T ) = 0.
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Exercise 25. Suppose that the Lagrangian L instead of satisfying

|D2
xxL| ≤ C, |D2

xvL| ≤ C,

as in theorem 7, satisfies

|D2
xxL| ≤ C(1 + |v|2), |D2

xvL| ≤ C(1 + |v|).

Assume further that the curves y are constrained to have bounded
derivatives in L2. Can you adapt theorem 7 to include this case?

2.4.2 Existence and regularity of minimizers

In this section we assume that the Lagrangian L(x, v) is C∞, strictly
convex in v, satisfies

−C + θ|v|2 ≤ L(x, v) ≤ C(1 + |v|2), (2.12)

for θ > 0, and that, for each fixed compact K and x ∈ K we have

|DxL(x, v)| ≤ CK(1 + |v|2), and |DvL(x, v)| ≤ CK(1 + |v|).

Theorem 8. Suppose L satisfies the previous assumptions. Then,
for each T > 0 and x0, x1 in Rn, there exists a minimizer of x ∈
W 1,2[0, T ] of ∫ T

0

L(x, ẋ)ds (2.13)

satisfying x(0) = x0, x(T ) = x1.

Proof. Let xn be a minimizing sequence. Then, using (2.12) we con-
clude that ‖ẋn‖L2 is uniformly bounded. Then, by Poincaré inequal-
ity, we conclude that

sup
n
‖xn‖W 1,2 <∞.
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By Morrey’s theorem, the sequence xn is equicontinuous and bounded
(since xn(0) is fixed), thus there exists, by Ascoli-Arzela theorem, a
subsequence which converges uniformly. We can extract a further
subsequence that converges weakly in W 1,2 to a function x. We
would like to prove that x is a minimum. To do that it is enough
to prove that the functional is weakly lower semicontinuous, that is,
that

lim inf
n→∞

∫ T

0

L(xn, ẋn) ≥
∫ T

0

L(x, ẋ).

By convexity,∫ T

0

L(xn, ẋn)

≥
∫ T

0

L(xn, ẋn)− L(x, ẋn) + L(x, ẋ) +DvL(x, ẋ)(ẋn − ẋ)

Because ẋn ⇀ ẋ we have∫ T

0

DvL(x, ẋ)(ẋn − ẋ)→ 0,

since DvL(x, ẋ) ∈ L2. From the uniform convergence of xn to x we
conclude that ∫ T

0

L(xn, ẋn)− L(x, ẋn)→ 0,

since

|L(xn, ẋn)− L(x, ẋn)| ≤ CK |xn − x|(1 + |ẋn|2).

Theorem 9. Let x be a minimizer of (2.13). Then x is a weak
solution to the Euler-Lagrange equation, that is, for all ϕ ∈ C∞c (0, T ),∫ T

0

DxL(x, ẋ)ϕ+DvL(x, ẋ)ϕ̇ = 0. (2.14)
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Proof. To obtain this result, it is enough to prove that at ε = 0,

d

dε

∫ T

0

L(x + εϕ, ẋ + εϕ̇)

∣∣∣∣∣
ε=0

=
∫ T

0

d

dε
L(x + εϕ, ẋ + εϕ̇)

∣∣∣∣∣
ε=0

,

that is, justify the exchange of the derivative with the integral.

By Morrey’s theorem, since x ∈W 1,2(0, T ), we have ‖x‖L∞ ≤ C.
So x ∈ K for a suitable compact set K. Let |ε| < 1. Observe that
there exists a compact K̃ ⊃ K such that x + εϕ ∈ K̃ for all t. For
almost every t ∈ [0, T ], the function

ε 7→ L(x + εϕ, ẋ + εϕ̇)

is a C1 function of ε. Furthermore

|L(x + εϕ, ẋ + εϕ̇)| ≤ CK̃(1 + |ẋ + εϕ̇|2) ≤ CK̃(1 + |ẋ|2 + |ϕ̇|2),

and, ∣∣∣∣ ddεL(x + εϕ, ẋ + εϕ̇)
∣∣∣∣ ≤ CK̃(1 + |ẋ|2 + |ϕ̇|2)(|ϕ|+ |ϕ̇|).

This estimate allows us to exchange the derivative with the integral.

Exercise 26. Show that the identity (2.14) also holds for ϕ ∈W 1,2
0 .

Theorem 10. If L satisfies (2.12) and is strictly convex, then the
weak solutions to the Euler-Lagrange equation are C2 and, therefore,
classical solutions.

Proof. Let x ∈ W 1,2(0, T ) be a weak solution to the Euler-Lagrange
equation. Define

p(t) = p0 +
∫ T

t

DxL(x, ẋ)ds,
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with p0 ∈ Rn to be chosen later. For each ϕ ∈ C∞c (0, T ) taking values
in Rn we have ∫ T

0

d

dt
(p · ϕ)dt = p · ϕ

∣∣T
0

= 0.

Thus, ∫ T

0

−DxL(x, ẋ)ϕ+ pϕ̇dt = 0.

Using the Euler-Lagrange equation in the weak form we conclude
that ∫ T

0

(p +DvL(x, ẋ))ϕ̇dt = 0,

which implies that p +DvL is constant, that is,

p = −DvL(x, ẋ),

choosing p0 conveniently. Since p is continuous, by the previous
identity, ẋ = −DpH(p,x). Therefore, ẋ is continuous. Moreover, if
H(p, x) is the Hamiltonian associated to L, we have

ṗ = DxH(p,x),

which shows that p is C1. But, since

ẋ = −DpH(p,x),

we have that ẋ is C1 and, therefore, x is C2.

2.5 Symmetries and Noether theorem

Noether’s theorem concerns variational problems which admit sym-
metries. By this theorem, associated to each symmetry there is a
quantity that is conserved by the solutions of the Euler-Lagrange
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equation. In classical mechanics, for instance, translation symme-
try yields conservation of linear momentum, to rotation symmetry
corresponds conservation of angular momentum and time-invariance
implies energy conservation.

2.5.1 Routh’s method

We start the discussion of symmetries by considering a classical tech-
nique to simplify the Euler-Lagrange equations. Consider a La-
grangian of the form L(x, ẋ, ẏ), that is, independent of the coor-
dinate y. Note that this corresponds to translation invariance in the
coordinate y. The Euler-Lagrange equation shows that

py = −DẏL(x, ẋ, ẏ)

is constant. We will explore this fact to simplify the Euler-Lagrange
equations. We assume further that w 7→ L(x, ẋ, w) is strictly convex
and superlinear. Then we define the partial Legendre transform with
respect to ẏ, Routh’s function, as

R(x, ẋ,py) = sup
w
−py · w − L(x, ẋ, w).

By convexity, the supremum is achieved at a unique point w(x, ẋ,py).

We have that

py = −DwL ẏ = −DpyR.

Note that, by the Euler-Lagrange equation

ṗy = 0
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and,

d

dt

∂R

∂ẋ
− ∂R

∂x
=− d

dt

∂L

∂ẋ
+
∂L

∂x
− d

dt

[
∂L

∂w

∂w

∂ẋ
+ py

∂w

∂ẋ

]
+
∂L

∂w

∂w

∂x
+ py

∂w

∂x

=
d

dt

∂L

∂ẋ
− ∂L

∂x
= 0.

Therefore, since py is constant, we can solve these equations in the
following way: for each fixed py consider the equation

d

dt

∂R

∂ẋ
− ∂R

∂x
= 0.

Once this equation is solved, determine ẏ through

ẏ = −DpyR(x, ẋ,py).

Exercise 27. Apply Routh’s method to the Lagrangian

L =
ẋ2

2
+

ẏ2

2
− U(x).

Exercise 28. Apply Routh’s method to the symmetric to in an ex-
ternal field which has as Lagrangian

L =
I1
2

(θ̇2 + ϕ̇2 sin2 θ) +
I3
2

(ψ̇ + ϕ̇ cos θ)2 − U(ϕ, θ).

Exercise 29. Apply Routh’s method to the spherical pendulum whose
Lagrangian is:

L =
θ̇2 sin2 ϕ+ ϕ̇2

2
− U(ϕ).

2.5.2 Noether theorem

As a motivation for the definition of invariance of a Lagrangian with
respect to a transformation group, observe that if φ : Rn → Rn is a
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diffeomorphism and γ : [0, T ] → Rn is an arbitrary curve, then φ(γ)
is another curve in Rn whose velocity is Dxφ(γ)γ̇. We say that a
Lagrangian L(x, v) is invariant under a transformation group φτ (x)
if for each τ ∈ R

L(x, v) = L(φτ (x), Dxφτ (x)v).

Theorem 11. Let L be a Lagrangian invariant under a transforma-
tion group φτ (x). Let x be a solution of the Euler-Lagrange equation.
then

DvL(xτ (T ), ẋτ (T ))
d

dτ
φτ (x(T ))

∣∣∣∣
τ=0

is independent of T .

Proof. Let x be a solution of the Euler-Lagrange equation and

xτ (t) = φτ (x(t)).

Then
ẋτ = Dxφτ (x(t))ẋ(t).

Consequently, ∫ T

0

L(xτ , ẋτ ) (2.15)

is constant in τ . Differentiation (2.15) with respect to τ we obtain∫ T

0

DxL(xτ , ẋτ )
dxτ
dτ

+DvL(xτ , ẋτ )
dẋτ
dτ

= 0.

Integrating by parts, using the Euler-Lagrange equation, and taking
τ = 0 we obtain

DvL(xτ (0), ẋτ (0))
d

dτ
φτ (x(0))

∣∣∣∣
τ=0

= DvL(xτ (T ), ẋτ (T ))
d

dτ
φτ (x(T ))

∣∣∣∣
τ=0

.
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Exercise 30. Let ω ∈ Rn and L(x, v) be a Lagrangian satisfying,
for all τ , L(x+ ωτ, v) = L(x, v). Show that DvL · ω is a constant of
motion.

Exercise 31. Let L(x, y, vx, vy) = v2x+v2y
2 − x2+y2

2 . Show that L is
invariant by rotations and, using Noether’s theorem, that the angular
momentum xvy − yvx is a constant of motion.

Theorem 12. Suppose L is a Lagrangian which does not depend on
t. Then the energy is conserved.

Proof. Observe that∫ T+h

h

L(x(t− h), ẋ(t− h))dt

is independent on h. Differentiate with respect to h, integrate by
parts using the Euler-Lagrange equation.

Example 12. Consider the Lagrangian

L =
ẋ2 + ẏ2

2y2
,

corresponding to the geodesic flow in the Lobatchewski plane. Iden-
tifying the upper semi-plane with {z ∈ C : =(z) > 0} and the points
(x, y) with z = x+ iy, the mapping

z 7→ az + b

cz + d

defines an action of the group SL(2,R), the group of matrices with
unit determinant, in the Lobatchewski plane, which leaves the La-
grangian invariant. Use matrices of the form

A1(τ) =

[
1 τ

0 1

]
, A2(τ) =

[
eτ 0
0 e−τ

]
e A3(τ) =

[
1 0
τ 1

]
,
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we obtain the conservation laws

ẋ
y2
,

xẋ + yẏ
y2

and
ẋ(x2 − y2) + 2ẏxy

y2
.

J

Exercise 32. Obtain the general law F (x,y) = 0 of motion of a
geodesic in the Lobatchewski plane.

2.5.3 Monotonicity formulas

A sub-symmetry (resp. super-symmetry) of L is a one-parameter
mapping φτ (x) such that

d

dτ
L(φτ (x), Dxφτ (x)v)

∣∣∣∣
τ=0

≤ 0 (resp. ≥ 0).

A simple variation of the proof of Noether’s theorem yields:

Theorem 13. Let φτ be a sub-symmetry of L. Then

d

dt

[
DvL(x, ẋ)

d

dτ
φτ (x)

∣∣∣∣
τ=0

]
≤ 0,

with the opposite inequality for super-symmetries.

Proof. It suffices to observe that

0 ≥ d

dτ

∫ T

0

L(φτ (x), Dxφτ (x)ẋ)dt

∣∣∣∣∣
τ=0

=
∫ T

0

DxL(x, ẋ)
d

dτ
φτ (x)

∣∣∣∣
τ=0

+DvL(x, ẋ)
d

dt

d

dτ
φτ (x)

∣∣∣∣
τ=0

= DvL(x, ẋ)
d

dτ
φτ (x)

∣∣∣∣
τ=0

∣∣∣∣T
0

,

which then implies the result.
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An application of this theorem is the following corollary:

Corollary 14. Let L(x, v)Rn × Rn → R be Lagrangian admitting a
strict sub-symmetry. Then the corresponding Euler-Lagrange equa-
tions cannot have periodic orbits.

Next we present some additional examples and applications. Sup-
pose, for some y ∈ Rn and h ≥ 0, L(x+ hy, v) ≤ L(x, v), then

d

dt
DvL(x, ẋ)y ≤ 0.

Another simple example is the case in which L(λx, λv) is increasing
in λ. Then

d

dt
DvL(x, ẋ)x ≥ 0.

Consider the mapping φτ (x) = x+ τF (x), and assume that

d

dτ
L(x+ τF (x), v + τDxFv) ≤ 0,

at τ = 0. Then
d

dt
DvL(x, ẋ)F (x) ≤ 0.

Consider the case L = |v|2
2 , and F = ∇U , for some concave function

U . Then
d

dτ

|(I + τD2U)v|2

2

∣∣∣∣
τ=0

= vTD2Uv ≤ 0.

Thus
d

dt
∇U · v ≤ 0,

that is
d2

dt2
U(x) ≤ 0,

that is U(x(t)) is a concave function.
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Consider now a system of non-interacting n-particles, and set

U =
∑
i 6=j

|xi − xj |.

Clearly U is a convex function. By the previous results we have

d2

dt2
|xi − xj | ≥ 0.

Exercise 33. Consider a Lagrangian of the form

e−αtL(x, v)

This Lagrangian is sub-invariant in time. Prove that

d

dt
e−αtE(t) ≥ 0,

where
E = DvL(x, ẋ)ẋ− L(x, ẋ).

In particular, show that this estimate yields exponential blow up of
the energy. Also observe that the exponential blow up of the kinetic
energy can also be bounded using simple estimates by E(t) ≤ Ceβt.

2.6 Bibliographical notes

There is a very large literature on the topics of this chapter. The
main references we have used were [Arn95] and [AKN97]. Two clas-
sical physics books on this subject are [Gol80] and [LL76]. On the
more geometrical perspective, the reader may want to look at [dC92]
(see also [dC79]) and [Oli02]. Some aspects of classical calculus of
variations can be found in [Dac09] and the classical book [Bol61]. In
what concerns symmetries, additional material can be consulted in
[Olv93]. A very good reference in Portuguese is [Lop06].
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Classical optimal

control

In this chapter we begin the study of deterministic optimal control
problems, and its connection with Hamilton-Jacobi equations. We
start the discussion in the next section with the set up of the prob-
lem. Then we present some elementary properties and examples. The
dynamic programming principle and Pontryangin maximum princi-
ples are discussed in sections 3.3 and 3.4, respectively.imum principles
are discussed in sections 3.3 and 3.4, respectively. The Pontryagin
maximum principle is the analog of the Euler-Lagrange equation for
optimal control problems. Then, in section 3.5 we will show that if
the value function V is differentiable, it satisfies the Hamilton-Jacobi
partial differential equation

−Vt +H(DxV, x) = 0,

51
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in which H(p, x), the Hamiltonian, is the (generalized) Legendre
transform of the Lagrangian L

H(p, x) = sup
v∈U
−p · f(x, v)− L(x, v). (3.1)

We end this chapter with a verification theorem, section 3.6 that
establishes that a sufficiently smooth solution to the Hamilton-Jacobi
equation is the value function.

3.1 Optimal Control

A typical problem in optimal control, whose study we begin now is
the terminal value optimal control problem. For that let the control
space be a closed convex subset U of Rm. A control on an interval
I ⊂ R is a measurable function u : I → U . Let f : Rn × U → Rn

be a continuous function, Lipschitz in x. For each control u we can
consider the controlled dynamics

ẋ = f(x,u). (3.2)

It is well known from ODE theory that, at least locally in time,
equation (3.2) admits a unique solution x of the initial value problem
x(t) = x, for any (bounded) control u.

We are given a running cost L : Rn ×U → R and a terminal cost
ψ : Rn → R. Given a terminal time T , the terminal value optimal
control problem consists in determining the optimal trajectories x(·)
which minimize

J [u;x, t] =
∫ T

t

L(x,u)ds+ ψ(x(t1)),

among all bounded controls u(·) : [t, t1] → Rn and all solutions x of
(3.2) satisfying the initial condition x(t) = x.
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The value function V is

V (x, t) = inf J [u;x, t] (3.3)

in which the infimum is taken over all controls on [t, T ].

An important example is the ”calculus of variations setting”,
where, f(x, u) = u, and the optimal trajectories x(·), as we have
shown, are solutions to the Euler-Lagrange equation

d

dt

∂L

∂v
(x, ẋ)− ∂L

∂x
(x, ẋ) = 0.

Furthermore, p = −DvL(x, ẋ) is a solution of Hamilton’s equations:

ẋ = −DpH(p,x), ṗ = DxH(p,x).

In the next chapter we will consider this problem under the light of
optimal control and generalize the previous results.

Before considering the ”calculus of variations setting” we study a
simpler but important situation, the bounded control case. In this
the control space U is a compact convex set.

Furthermore, we suppose that L(x, u) is a bounded continuous
function, convex in u. We suppose that the function f(x, u) satisfies
the following Lipschitz condition

|f(x, u)− f(y, u)| ≤ C|x− y|.

To establish existence of optimal solutions we simplify even further
by assuming that f(x, u) has the form

f(x, u) = A(x)u+B(x), (3.4)

where A and B are Lipschitz continuous functions.
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3.2 Elementary properties

In this section we establish some elementary properties of the termi-
nal value problem.

Proposition 15. The value function V satisfies the following in-
equalities

−‖ψ‖∞ ≤ V ≤ c1|T − t|+ ‖ψ‖∞.

Proof. The first inequality follows from L ≥ 0. To obtain the second
inequality it is enough to observe that

V ≤ J(x, t; 0) ≤ c1|T − t|+ ‖ψ‖∞.

Example 13 (Lax-Hopf formula). Suppose that L(x, v) ≡ L(v), L
convex in v and coercive. Assume further that f(x, v) = v. By
Jensen’s inequality

1
T − t

∫ T

t

L(ẋ(s)) ≥ L

(
1

T − t

∫ T

t

ẋ(s)

)
= L

(
y − x
T − t

)
,

where y = x(T ). Therefore, to solve the terminal value optimal
control problem, it is enough to consider constant controls of the
form u(s) = y−x

T−t . Thus

V (x, t) = inf
y∈Rn

[
(T − t)L

(
y − x
T − t

)
+ ψ(y)

]
,

and, consequently, the infimum is a minimum. Thus Lax-Hopf for-
mula gives an explicit solution to the optimal control problem. J

Exercise 34. Let Q and A be n×n constant, positive definite, matri-
ces. Let L(v) = 1

2v
TQv and ψ(y) = 1

2y
TAy. Use Lax-Hopf formula

to determine V (x, t).
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Proposition 16. Let ψ1(x) and ψ2(x) be continuous functions such
that

ψ1 ≤ ψ2.

Let V1(x, t) and V2(x, t) be the corresponding value functions. Then

V1(x, t) ≤ V2(x, t).

Proof. Fix ε > 0. Then there exists an almost optimal control uε and
corresponding trajectory xε such that

V2(x, t) >
∫ t1

t

L(xε(s),uε(s), s)ds+ ψ2(xε(t1))− ε.

Clearly

V1(x, t) ≤
∫ t1

t

L(xε(s),uε(s), s)ds+ ψ1(xε(t1)),

and therefore

V1(x, t)− V2(x, t) ≤ ψ1(xε(t1))− ψ2(xε(t1)) + ε ≤ ε.

Since ε is arbitrary, this ends the proof.

An important corollary is the continuity of the value function on
the terminal value, with respect to the L∞ norm.

Corollary 17. Let ψ1(x) and ψ2(x) be continuous functions and
V1(x, t) and V2(x, t) the corresponding value functions. Then

sup
x
|V1(x, t)− V2(x, t)| ≤ sup

x
|ψ1(x)− ψ2(x)|.

Proof. Note that

ψ1 ≤ ψ̃2 ≡ ψ2 + sup
y
|ψ1(y)− ψ2(y)|.
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56 3. CLASSICAL OPTIMAL CONTROL

Let Ṽ2 be the value function corresponding to ψ̃2. Clearly,

Ṽ2 = V2 + sup
y
|ψ1(y)− ψ2(y)|.

By the previous proposition,

V1 − Ṽ2 ≤ 0,

which implies
V1 − V2 ≤ sup

y
|ψ1(y)− ψ2(y)|.

By reverting the roles of V1 and V2 we obtain the other inequality.

3.3 Dynamic programming principle

The dynamic programming principle, that we prove in the next the-
orem, is simply a semigroup property that the evolution of the value
function satisfies.

Theorem 18 (Dynamic programming principle). Suppose that t ≤
t′ ≤ T . Then

V (x, t) = inf
u

[∫ t′

t

L(x(s),u(s), s)ds+ V (y, t′)

]
, (3.5)

where x(t) = x and ẋ = f(x,u).

Proof. Denote by Ṽ (x, t) the right hand side of (3.5). For fixed ε > 0,
let uε be an almost optimal control for V (x, t). Let xε(s) be the
corresponding trajectory trajectory, i.e., assume that

J(x, t; uε) ≤ V (x, t) + ε.
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We claim that Ṽ (x, t) ≤ V (x, t) + ε. To check this, let x(·) = xε(·)
and y = xε(t′). Then

Ṽ (x, t) ≤
∫ t′

t

L(xε(s),uε(s), s)ds+ V (y, t′).

Additionally,
V (y, t′) ≤ J(y, t′; uε).

Therefore
Ṽ (x, t) ≤ J(x, t; uε) ≤ V (x, t) + ε,

and, since ε is arbitrary, Ṽ (x, t) ≤ V (x, t).

To prove the opposite inequality, we will proceed by contradiction.
Therefore, if Ṽ (x, t) < V (x, t), we could choose ε > 0 and a control
u] such that∫ t′

t

L(x](s),u](s), s)ds+ V (y, t′) < V (x, t)− ε,

where ẋ] = f(x],u]), x](t) = x, and y = x](t′). Choose u[ such that

J(y, t′; u[) ≤ V (y, t′) +
ε

2

Define u? as u?(s) = u](s) for s < t′

u?(s) = u[(s) for t′ < s.

So, we would have

V (x, t)− ε >
∫ t′

t

L(x](s),u](s), s)ds+ V (y, t′) ≥

≥
∫ t′

t

L(x](s),u](s), s)ds+ J(y, t′; u[)− ε

2
=

= J(x, t; u?)− ε

2
≥ V (x, t)− ε

2
,

which is a contradiction.
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3.4 Pontryagin maximum principle

In this section we assume the control space U is bounded and, without
any proof, that there exists an optimal control u∗ and corresponding
optimal trajectory x∗. We assume also that the terminal data ψ

is differentiable. A detailed discussion on existence issues will be
postponed until next chapter.

Let r ∈ [t, t1) be a point where u∗ is strongly approximately
continuous, i.e.,

ϕ(u∗(r)) = lim
δ→0

1
δ

∫ r+δ

r

ϕ(u∗(s))ds,

for all continuous functions ϕ. Note that almost any r is a point of
approximate continuity, see [EG92]. Denote by Ξ0 the fundamental
solution of

ξ̇0 = Dxf(x∗,u∗)ξ0, (3.6)

with Ξ0(r) = I.

Let p∗ be given by

p∗(r) = Dxψ(xR(t1))Ξ0(t1) +
∫ t1

r

DxL(x∗(s),u∗(s), s)Ξ0(s)ds.

(3.7)

Lemma 19 (Pontryagin maximum principle). Suppose that ψ is dif-
ferentiable. Let u∗ be an optimal control and x∗ the corresponding
optimal trajectory. Then, for almost all r ∈ [t, t1),

f(x∗(r),u∗(r)) · p∗(r) + L(x∗(r),u∗(r), r) (3.8)

= min
v∈U

[f(x∗, v) · p∗(r) + L(x∗(r), v, r)] .
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Proof. Let v ∈ U . For almost all r ∈ [t0, t1) u∗ is strongly approxi-
mately continuous (see [EG92]). Let r be one of these points. Define

uδ(s) =

v if r < s < r + δ

u∗(s) otherwise.

Let

xδ(s) =


x∗(s) if t < s < r

x∗(r) +
∫ s
r
f(x∗δ , v) if r < s < r + δ

x∗(s) + δξδ if r + δ < s < t1,

where

ξδ(r + δ) =
1
δ

∫ r+δ

r

[f(x∗δ(s), v)− f(x∗(s),u∗(s))] ds,

and yδ ≡ bx∗(s) + δξδ solves, for r + δ < s < t1,

ẏδ = f(yδ,u∗).

Observe that

ξ0(r) = lim
δ→0

ξδ(r + δ) = f(x∗(r), v)− f(x∗(r),u∗(r)).

Furthermore, as δ → 0, ξδ converges to a solution ξ0 of (3.6). Thus
ξ0(s) = Ξ0(s) (f(x∗(r), v)− f(x∗(r),u∗(r))).

Clearly

J(t, x; u∗) ≤
∫ t1

t

L(xδ(s),uδ(s), s)ds+ ψ(x∗(t1) + δξδ).

This last inequality implies

1
δ

∫ r+δ

r

[L(xδ(s), v, s)− L(x∗(s),u∗(s), s)] ds+

+
1
δ

∫ t1

r+δ

[L(x∗(s) + δξδ,u∗(s), s)− L(x∗(s),u∗(s), s)] ds+

+
1
δ

[ψ(x∗(t1) + δξδ)− ψ(x∗(t1))] ≥ 0.
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60 3. CLASSICAL OPTIMAL CONTROL

When δ → 0, the first term converges to

L(x∗(r), v, r)− L(x∗(r),u∗(r), r),

since u∗ is strongly approximately continuous. The second term con-
verges to ∫ t1

r

DxL(x∗(s),u∗(s), s)ξ0(s)ds,

whereas the third one has the following limit:

Dxψ(xR(t1)) · ξ0(t1)).

This implies that for almost all r r,

L(x∗(r), v, r)− L(x∗(r),u∗(r), r)

+ p∗(r) · (f(x∗(r), v)− f(x∗(r),u∗(r))) ≥ 0.

Consequently

f(x∗(r),u∗(r)) · p∗(r) + L(x∗(r),u∗(r), r)

= min
v∈U

[f(x∗(r), v) · p∗(r) + L(xR(r), v, r)] ,

as required.

3.5 The Hamilton-Jacobi equation

We now show that if the value function is differentiable then it is a
solution to the Hamilton-Jacobi equation.

Proposition 20. Suppose the value function is C1. Let r ∈ [t, t1) be
a point where u∗ is strongly approximately continuous. Then

p∗(r) = DxV (x, r).
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Proof. Let u∗ be an optimal control for the initial condition (x, r).
For y ∈ Rn and δ > 0 consider the solution

ẋδ = f(xδ,u∗),

with initial condition xδ(t) = x+ δy. Then

∂xδ(s)
∂δ

∣∣∣∣
δ=0

= Ξ0(s)y.

Since for all δ

V (x+ δy, r) ≤
∫ t1

r

L(xδ,u∗)ds+ ψ(xδ(t1)),

by differentiating with respect to δ we obtain

DxV (x, r)y =
∫ t1

r

DxL(x,u∗)Ξ0(s)yds+Dxψ(x(t1))Ξ0(t1)y,

which implies the result.

Theorem 21. Suppose the value function V is C1. Then it solves

−Vt +H(DxV, x) = 0. (3.9)

Proof. Consider an optimal trajectory x∗

V (x∗(t), t) =
∫ t1

t

L(x∗(s),u∗(s))ds.

Then, by differentiating with respect to t we have

Vt(x∗(t), t) +DxV (x∗(t), t)f(x∗(t),u∗(t)) + L(x∗(t),u∗(t)) = 0.

Which by Pontryagin maximum principle is equivalent to the Ham-
ilton-Jacobi equation (3.9).
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Exercise 35. Let M(t), N(t) be n × n matrices with time-differen-
tiable coefficients. Suppose that is N invertible. Let D be a n × n
constant matrix. Consider the Lagrangian

L(x, v) =
1
2
xTM(t)x+

1
2
vTN(t)v

and the terminal condition ψ = 1
2x

TDx. Show that there exists a
solution to the Hamilton-Jacobi with terminal condition ψ at t = T

of the form

V =
1
2
xTP (t)x,

where P (t) satisfies the Ricatti equation

Ṗ = PTN−1P −M

and P (T ) = D.

3.6 Verification theorem

In the last section of this chapter we will show that any sufficiently
smooth solution to the Hamilton-Jacobi equation is the value function
and it can be used to compute an optimal control.

Theorem 22. Let L(x, v) be a C1 Lagrangian, strictly convex in
v, and let f(x, u) be a linear control law as in (3.4), and H the
generalized Legendre transform (3.1) of L. Let Φ(x, t) be a classical
solution to the Hamilton-Jacobi equation

−Φt +H(DxΦ, x) = 0 (3.10)

on the time interval [0, T ], with terminal data Φ(x, T ) = ψ(x). Then,
for all 0 ≤ t ≤ T ,

Φ(x, t) = V (x, t),

where V is the value function.
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Proof. Let u be a control on (t, T ) and x be the corresponding solu-
tion to

ẋ = f(x,u),

with x(t) = x. Then, using Φ(x(T ), T ) = ψ(x(T )) we have

ψ(x(T ))− Φ(x(t), t) =
∫ T

t

d

ds
Φ(x(s), s)ds

=
∫ T

t

DxΦ(x(s), s) · f(x,u) + Φs(x(s), s)ds.

Adding
∫ T
t
L(x(s),u(s))ds+Φ(x(t), t) to the above equality and tak-

ing the infimum over all controls u, we obtain

inf

(∫ T

t

L(x(s),u(s))ds+ ϕ
(
x(T )

))
= Φ(x(t), t)

+ inf

(∫ T

t

Φs(x(s), s) + L(x(s),u(s)) +DxΦ(x(s), s) · f(x,u)ds

)
.

Now recall that for any v,

−H(p, x) ≤ L(x, v) + p · f(x, v),

therefore

inf

(∫ T

t

L(x(s), ẋ(s))ds+ ϕ
(
x(T )

))

≥ Φ(x(t), t) + inf

(∫ T

t

(
Φs(x(s), s) +H(DxΦ(x(s), s),x(s))

)
ds

)
= Φ(x(t), t).

Let r(x, t) be uniquely defined (uniqueness follows from convexity)
as

r(x, t) ∈ argminv∈U L(x, v) +DxΦ(x, t) · f(x, v). (3.11)
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64 3. CLASSICAL OPTIMAL CONTROL

A simple argument shows that r is a continuous function.

Now consider the trajectory x obtained by solving the following
differential equation

ẋ(s) = f(x, r(x(s), s)),

with initial condition x(t) = x. Note that since the right-hand side is
continuous there is a solution, although it may not be unique. Then

inf

(∫ T

t

L(x(s), ẋ(s))ds+ ϕ
(
x(T )

))

≤ Φ(x(t), t) +
∫ T

t

(
Φs
(
x(s), s

)
−H

(
DxΦ(x(s), s),x(s)

))
ds

= Φ(x(t), t),

which ends the proof.

We should observe from the proof that (3.11) gives an optimal
feedback law for the optimal control, provided we can find a solution
to the Hamilton-Jacobi equation.

3.7 Bibliographical notes

The main references we have used on optimal control are [BCD97],
[FS06], [Lio82], [Bar94], and [Eva98b].
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Viscosity solutions

In this chapter we build upon the theory developed previously to
study the terminal value problem and address a few questions that
were not answered previously. The first one is the existence of opti-
mal controls, both for bounded and unbounded control spaces. This
is addressed, for the bounded control setting in section 4.1. In sec-
tion 4.2 we give some technical results concerning subdifferentials and
semiconcavity. Then, in section 4.3 we consider the issue of existence
of controls and regularity of the value function in the calculus of
variations setting. It is well known that first order partial differential
equations such as the Hamilton-Jacobi equation may not admit clas-
sical solutions. Using the method of characteristics, the next exercise
gives an example of non-existence of smooth solutions:

Exercise 36. Solve, using the method of characteristics, the equationut + u2
x = 0 x ∈ R, t > 0

u(x, 0) = ±x2.

65
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66 4. VISCOSITY SOLUTIONS

It is therefore necessary to consider weak solutions to the Hamil-
ton-Jacobi equation: viscosity solutions. In section §4.4 we develop
the theory of viscosity solutions for Hamilton-Jacobi equations, and
show that the value function is the unique viscosity solution of the
Hamilton-Jacobi equation.

4.1 Optimal controls - bounded control

space

We now give a proof of the existence of optimal controls for bounded
control space. The unbounded case will be addressed in §4.3.

Lemma 23. Letf is as in (3.4) a linear control law. Then J is
weakly lower semicontinuous, with respect to weak-* convergence in
L∞.

Proof. Let un be a sequence of controls such that un
∗
⇀u in L∞[t, t1].

Then, by using Ascoli-Arzela theorem, we can extract a subsequence
of xn(·) converging uniformly to x(·). Furthermore, because the con-
trol law (3.4) is linear we have

ẋ = f(x,u).

We have

J(x, t; un) =
∫ t1

t

[L(xn(s),un(s), s)− L(x(s),un(s), s)] ds+

+
∫ t1

t

L(x(s),un(s), s)ds+ ψ(xn(t1)).

The first term,
∫ t1
t

[L(xn(s),un(s), s)− L(x(s),un(s), s)] ds, conver-
ges to zero. Similarly, ψ(xn(t1)) → ψ(x(t1)). Finally, the convexity
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of L implies

L(x(s),un(s), s) ≥ L(x(s),u(s), s)+DvL(x(s),u(s), s)(un(s)−u(s)).

Since un ⇀ u,∫ t1

t

DvL(x(s),u(s), s)(un(s)− u(s))ds→ 0.

Hence
lim inf J(x, t; un) ≥ J(x, t; u),

that is, J is weakly lower semicontinuous.

Using the previous result we can now state and prove our first
existence result.

Lemma 24. Suppose the control set U is bounded, closed and convex.
There exists a minimizer u∗ of J .

Proof. Let un be a minimizing sequence, that is, such that

J(x, t; un)→ inf
u∈UR

J(x, t; u).

Because this sequence is bounded in L∞, by Banach-Alaoglu theorem
we can extract a sequence un

∗
⇀u∗. Clearly, we have u∗ ∈ U , by

closeness and convexity. We claim now that

J(x, t; u∗) = inf
u
J(x, t; u).

This just follows from the weak lower semicontinuity:

inf
u
J(x, t; u) ≤ J(x, t; u∗) ≤ lim inf J(x, t; un) = inf

u
J(x, t; u),

which ends the proof.
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Example 14 (Bang-Bang principle). Consider the case of a bounded
closed convex control space U and suppose the Lagrangian L is con-
stant. Suppose f(x, u) = Au + B, for suitable constant matrices A
and B, and that the terminal value ψ is convex.

In this setting we first observe that the set of all optimal controls
is convex. As such it admits an extreme point u∗. We claim that u∗

takes values on ∂U .

To see this, choose a time r and suppose that for some ε there is
a set of positive measure in [r, r + ε] for which u∗ is in the interior
of U . Then there exists an L∞ function ν supported on this set such
that

∫ r+ε
r

dν = 0, and such that u∗ ± ν is an admissible control. By
our assumptions it is also an optimal control. It is clear then that u∗

is not an extreme point which is a contradiction. J

4.2 Sub and superdifferentials

Before proceeding with the general case of unbounded control spaces
we will need to discuss some technical results concerning sub-differ-
entials and semiconcavity.

Let ψ : Rn → R be a continuous function. The superdifferential
D+
x ψ(x) of ψ at x is the set of vectors p ∈ Rn such that

lim sup
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

≤ 0.

Consequently, p ∈ D+
x ψ(x) if and only if

ψ(x+ v) ≤ ψ(x) + p · v + o(|v|),
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as |v| → 0. Similarly, the subdifferential, D−x ψ(x), of ψ at x is the set
of vectors p such that

lim inf
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

≥ 0.

Exercise 37. Show that if u : Rn → R has a maximum (resp. mini-
mum) at x0 then 0 ∈ D+u(x0) (resp. D−u(x0)).

We can regard these sets as one-sided derivatives. In fact, ψ is
differentiable then

D−x ψ(x) = D+
x ψ(x) = {Dxψ(x)}.

More precisely,

Proposition 25. If both D−x ψ(x) and D+
x ψ(x) are non-empty then

D−x ψ(x) = D+
x ψ(x) = {p},

furthermore ψ is differentiable at x with Dxψ = p. Conversely, if ψ
is differentiable at x then

D−x ψ(x) = D+
x ψ(x) = {Dxψ(x)}.

Proof. Suppose that D−x ψ(x) and D+
x ψ(x) are both non-empty. Then

we claim that these two sets agree and have a single point p. To see
this, take p− ∈ D−x ψ(x) and p+ ∈ D+

x ψ(x). Then

lim inf
|v|→0

ψ(x+ v)− ψ(x)− p− · v
|v|

≥ 0

lim sup
|v|→0

ψ(x+ v)− ψ(x)− p+ · v
|v|

≤ 0.

By subtracting these two identities

lim inf
|v|→0

(p+ − p−) · v
|v|

≥ 0.
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In particular, by choosing v = −ε p
+−p−
|p−−p+| , we obtain

−|p− − p+| ≥ 0,

which implies p− = p+ ≡ p. Consequently

lim
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

= 0,

and so Dxψ = p.

To prove the converse it suffices to observe that if ψ is differen-
tiable then

ψ(x+ v) = ψ(x) +Dxψ(x) · v + o(|v|).

Exercise 38. Let ψ be a continuous function. Show that if x0 is a
local maximum of ψ then 0 ∈ D+ψ(x0).

Proposition 26. Let
ψ : Rn → R

be a continuous function. Then, if

p ∈ D+
x ψ(x0) (resp. p ∈ D−x ψ(x0)),

there exists a C1 function φ such that

ψ(x)− φ(x)

has a local strict maximum (resp. minimum) at x0 and such that

p = Dxφ(x0).

On the other hand, if φ is a C1 function such that

ψ(x)− φ(x)

has a local maximum (resp. minimum) at x0 then

Dxφ(x0) ∈ D+
x ψ(x0) (resp. D−x ψ(x0)).
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Proof. By subtracting p · (x − x0) + ψ(x0) to ψ, we can assume,
without loss of generality, that ψ(x0) = 0 and p = 0. By changing
coordinates, if necessary, we can also assume that x0 = 0. Because
0 ∈ D+

x ψ(0) we have

lim sup
|x|→0

ψ(x)
|x|
≤ 0.

Therefore there exists a continuous function ρ(x), with ρ(0) = 0, such
that

ψ(x) ≤ |x|ρ(x).

More precisely we can choose

ρ(x) = max{ ψ
|x|
, 0}.

Let η(r) = max|x|≤r{ρ(x)}. Then η is continuous, non decreasing
and η(0) = 0. Let

φ(x) =
∫ 2|x|

|x|
η(r)dr + |x|2.

The function φ is C1 and satisfies φ(0) = Dxφ(0) = 0. Additionally,
if x 6= 0,

ψ(x)− φ(x) ≤ |x|ρ(x)−
∫ 2|x|

|x|
η(r)dr − |x|2 < 0.

Thus ψ − φ has a strict local maximum at 0.

To prove the second part of the proposition, suppose that the
difference ψ(x)−φ(x) has a strict local maximum at 0. Without loss
of generality, we can assume ψ(0) − φ(0) = 0 and φ(0) = 0. Then
ψ(x)− φ(x) ≤ 0 or, equivalently,

ψ(x) ≤ p · x+ (φ(x)− p · x).



i
i

“IMPA2009” — 2009/5/15 — 18:05 — page 72 — #72 i
i

i
i

i
i

72 4. VISCOSITY SOLUTIONS

Thus, by setting p = Dxφ(0), and using the fact that

lim
|x|→0

φ(x)− p · x
|x|

= 0,

we conclude that Dxφ(0) ∈ D+
x ψ(0). The case of a minimum is

similar.

A continuous function f is semiconcave if there exists C such that

f(x+ y) + f(x− y)− 2f (x) ≤ C|y|2.

Similarly, a function f is semiconvex if there exists a constant such
that

f(x+ y) + f(x− y)− 2f (x) ≥ −C|y|2.

Proposition 27. The following statements are equivalent:

1. f is semiconcave;

2. f̃(x) = f(x)− C
2 |x|

2 is concave;

3. for all λ, 0 ≤ λ ≤ 1, and any y, z such that λy + (1 − λ)z = 0
we have

λf(x+ y) + (1− λ)f(x+ z)− f(x) ≤ C

2
(λ|y|2 + (1− λ)|z|2).

Additionally, if f is semiconcave, then

a. D+
x f(x) 6= ∅;

b. if D−x f(x) 6= ∅ then f is differentiable at x;

c. there exists C such that, for each pi ∈ D+
x f(xi) (i = 0, 1),

(x0 − x1) · (p0 − p1) ≤ C|x0 − x1|2.
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Remark. Of course analogous results hold for semiconvex functions.

Proof. Clearly 2 =⇒ 3 =⇒ 1. Therefore, to prove the equivalence,
it is enough to show that 1 =⇒ 2. Subtracting C|x|2 to f , we
may assume C = 0. Also, by changing coordinates if necessary, it
suffices to prove that for all x, y such that λx+(1−λ)y = 0, for some
λ ∈ [0, 1], we have:

λf(x) + (1− λ)f(y)− f(0) ≤ 0. (4.1)

We claim now that the previous equation holds for each λ = k
2j ,

with 0 ≤ k ≤ 2j . Clearly (4.1) holds for j = 1. We will proceed
by induction on j. Suppose that (4.1) if valid for λ = k

2j . We will
show that it also holds for λ = k

2j+1 . If k is even, we can reduce
the fraction and, therefore, we assume that k is odd, λ = k

2j+1 and
λx+ (1− λ)y = 0. Note that

0 =
1
2

[
k − 1
2j+1

x+
(

1− k − 1
2j+1

)
y

]
+

1
2

[
k + 1
2j+1

x+
(

1− k + 1
2j+1

y

)]
.

consequently,

f(0) ≥1
2
f

(
k − 1
2j+1

x+
(

1− k − 1
2j+1

)
y

)
+

+
1
2
f

(
k + 1
2j+1

x+
(

1− k + 1
2j+1

)
y

)
but, since k − 1 and k + 1 are even, k̃0 = k−1

2 and k̃1 = k+1
2 are

integers. Therefore

f(0) ≥ 1
2
f

(
k̃0

2j
x+

(
1− k̃0

2j

)
y

)
+

1
2
f

(
k̃1

2j
x+

(
1− k̃1

2j

)
y

)
But this implies

f(0) ≥ k̃0 + k̃1

2j+1
f(x) +

(
1− k̃0 + k̃1

2j+1

)
f(y).
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From k̃0 + k̃1 = k we obtain

f(0) ≥ k

2j+1
f(x) +

(
1− k

2j+1

)
f(y).

Since the function f is continuous and the rationals of the form k
2j

are dense in R, we conclude that

f(0) ≥ λf(x) + (1− λ)f(y),

for each real λ, with 0 ≤ λ ≤ 1.

To prove the second part of the proposition, observe that by
proposition 25, a =⇒ b. To check a, i.e., that D+

x f(x) 6= ∅, it
is enough to observe that if f is concave then D+

x f(x) 6= ∅. By sub-
tracting C|x|2 to f , we can reduce the problem to concave functions.
Finally, if pi ∈ D+

x f(xi) (i = 0, 1) then

f(x0)− C

2
|x0|2 ≤ f(x1)− C

2
|x1|2 + (p1 − Cx1) · (x0 − x1),

and

f(x1)− C

2
|x1|2 ≤ f(x0)− C

2
|x0|2 + (p0 − Cx0) · (x1 − x0).

Therefore,

0 ≤ (p1 − p0) · (x0 − x1) + C|x0 − x1|2,

and so (p0 − p1) · (x0 − x1) ≤ C|x0 − x1|2.

Exercise 39. Let f : Rn → R be a continuous function. Show that
if x0 is a local maximum then 0 ∈ D+f(x0).

4.3 Calculus of variations setting

We now consider the calculus of variations setting and prove the
existence of optimal controls. The main technical issue is the fact that
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the control space U = Rn is unbounded and therefore compactness
arguments do not work directly. We will consider the calculus of
variations setting, that is f(x, u) = u and we will work under the
following assumptions:

L(x, v) : R2n → R,

x ∈ Rn, v ∈ Rn, is a C∞ function, strictly convex em v, i.e., D2
vvL is

positive definite, and satisfying the coercivity condition

lim
|v|→∞

L(x, v, t)
|v|

=∞,

for each (x, t); without loss of generality, we may also assume that
L(x, v, t) ≥ 0, by adding a constant if necessary. We will also assume
that

L(x, 0, t) ≤ c1, |DxL| ≤ c2L+ c3,

for suitable constants c1, c2 and c3; finally we assume that there exists
a function C(R) such that

|D2
xxL| ≤ C(R), |DvL| ≤ C(R)

whenever |v| ≤ R. The terminal cost, ψ, is assumed to be a bounded
Lipschitz function.

Example 15. Although the conditions on L are quite technical, they
are fulfilled by a wide class of Lagrangians, for instance

L(x, v) =
1
2
vTA(x)v − V (x),

where A and V are C∞,bounded with bounded derivatives, and A(x)
is positive definite. J

Fortunately, the coercivity of the Lagrangian is enough to estab-
lish the existence of a-priori bounds on optimal controls.
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Theorem 28. Let x ∈ Rn and t0 ≤ t ≤ t1. Suppose that the La-
grangian L(x, v) satisfies:

A. L is C∞, strictly convex in v (i.e., D2
vvL is positive definite),

and satisfying the coercivity condition

lim
|v|→∞

L(x, v)
|v|

=∞,

uniformly in (x, t);

B. L is bounded by bellow (without loss of generality we assume
L(x, v) ≥ 0);

C. L satisfies the inequalities

L(x, 0) ≤ c1, |DxL| ≤ c2L+ c3

for suitable c1, c2, and c3;

D. there exist functions C0(R), C1(R) : R+ → R+ such that

|DvL| ≤ C0(R), |D2
xxL| ≤ C1(R)

whenever |v| ≤ R.

Then, if ψ is a bounded Lipschitz function,

1. There exists u∗ ∈ L∞[t, t1] such that its corresponding trajec-
tory x∗, given by

ẋ∗(s) = u(s) x∗(t) = x,

is optimal, that is it satisfies

V (x, t) =
∫ t1

t

L(x∗(s), ẋ∗(s))ds+ ψ(x∗(t1)).
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2. There exists C, depending only on L, ψ and t1− t but not on x

or t such that |u(s)| < C for t ≤ s ≤ t1. The optimal trajectory
x∗(·) is a C2[t, t1] solution of the Euler-Lagrange equation

d

dt
DvL−DxL = 0 (4.2)

with initial condition x∗(t) = x.

3. The adjoint variable p, defined by

p(t) = −DvL(x∗, ẋ∗), (4.3)

satisfies the differential equationṗ(s) = DxH(p(s),x∗(s))

ẋ∗(s) = −DpH(p(s),x∗(s))

with terminal condition

p(t1) ∈ D−x ψ(x∗(t1)).

Additionally,

(p(s), H(p(s),x∗(s))) ∈ D−V (x∗(s), s)

for t < s ≤ t1.

4. The value function V is Lipschitz, and so almost everywhere
differentiable.

5. If D2
vvL is uniformly bounded, then for each t < t1, V (x, t) is

semiconcave in x.

6. For t ≤ s < t1

(p(s), H(p(s),x∗(s))) ∈ D+V (x∗(s), s)

and, therefore, DV (x∗(s), s) exists for t < s < t1.
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Proof. We will divide the proof into several auxiliary lemmas.

For R > 0, define UR = {u ∈ U : ‖u‖∞ ≤ R}. From lemma 24
there exists a minimizer uR of J in UR. Then we will show that the
minimizer uR satisfies uniform estimates in R. Finally, we will let
R→∞.

Let pR be the adjoint variable given by the Pontryagin maxi-
mum principle. We now will try to estimate the optimal control uR
uniformly in R, in order to send R→∞.

Lemma 29. Suppose ψ is differentiable. Then there exists a constant
C, independent on R, such that

|pR| ≤ C.

Proof. Since ψ is Lipschitz and differentiable we have

|Dxψ| ≤ ‖Dxψ‖∞ <∞.

Therefore

|pR(s)| ≤
∫ t1

s

|DxL(xR(r),uR(r)|dr + ‖Dxψ‖∞.

Let VR be the value function for the terminal value problem with the
additional constraint of bounded control: |v| ≤ R. From |DxL| ≤
c2L+ c3, it follows

|pR(s)| ≤ C(VR(t, x) + 1),

for an appropriate constant C. Proposition 15, shows that there
exists a constant C, which does not depend on R, such that VR ≤ C.
Therefore

|pR| ≤ C.
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As we will see, the uniform estimates for pR yield uniform esti-
mates for uR.

Lemma 30. Let ψ be differentiable. Then there exists R1 > 0 such
that, for all R,

‖uR‖∞ ≤ R1.

Proof. Suppose |p| ≤ C. Then, for each c1, the coercivity condition
on L implies that there exists R1 such that, if

v · p+ L(x, v) ≤ c1

then |v| ≤ R1. But then,

uR(s) · pR(s) + L(xR(s),uR(s)) ≤ L(xR(s), 0) ≤ c1,

that is, ‖uR‖∞ ≤ R1.

Since uR is bounded independently of R, we have

V = J(x, t; uR0),

for R0 > R1. Let u∗ = uR0 and p = pR0 .

Lemma 31 (Pontryagin maximum principle - II). If ψ is differen-
tiable, optimal control u∗ satisfies

u∗ · p + L(x∗,u∗) = min
v

[v · p + L(x∗, v)] = −H(p,x∗),

for almost all s and, therefore,

p = −DvL(x∗,u∗) and u∗ = −DpH(p,x∗),

where H = L∗. Additionally, p satisfies the terminal condition

p(t1) = Dxψ(x∗(t1)).
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Proof. Clearly it is enough to choose R sufficiently large.

Lemma 32. Let ψ be differentiable. The minimizing trajectory x(·)
is C2 and satisfies the Euler-Lagrange equation (4.2). Furthermore,

ṗ = DxH(p,x∗) ẋ = −DpH(p,x∗).

Proof. By its definition p is continuous. We know that

ẋ∗(s) = −DpH(p(s),x∗(s)),

almost everywhere. Since the right hand side of the previous identity
is continuous, the identity holds everywhere and, therefore, we con-
clude that x∗ is C1. Because p is given by the integral of a continuous
function (3.7),

p(r) = Dxψ(x∗(t1)) +
∫ t1

r

DxL(x∗(s),u∗(s))ds,

we conclude that p is C1. Additionally,

ẋ∗ = −DpH(p,x∗)

and, therefore, ẋ∗ is C1, which implies that x is C2. We have also

p = −DvL(x∗, ẋ∗) ṗ = −DxL(x∗, ẋ∗),

from which it follows

d

dt
DvL(x∗, ẋ∗)−DxL(x∗, ẋ∗) = 0. (4.4)

Thus, since DxL(x∗, ẋ∗) = −DxH(p,x∗), we conclude that

ṗ = DxH(p,x∗) ẋ∗ = −DpH(p,x∗),

as required.
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In the case in which ψ is only Lipschitz and not C1, we can con-
sider a sequence of C1 functions, ψn → ψ uniformly, such that

‖Dxψn‖∞ ≤ ‖Dψ‖L∞ .

for each ψn. Let

Jn(x, t; u) =
∫ t1

t

L(xn(s),un(s))ds+ ψn(xn(t1)),

and x∗n, u∗n are, respectively, the corresponding optimal trajectory
and optimal control. Similarly, let pn be the corresponding adjoint
variable. Passing to a subsequence, if necessary, the boundary val-
ues xn(t1) and pn(t1) converge, respectively, for some x0 and p0.
The optimal trajectories x∗n and corresponding optimal controls u∗n
converge uniformly, by using Ascoli-Arzela theorem, to optimal tra-
jectories and controls of the limit problem. Let

p(s) = lim
n→∞

pn(s).

Then, for almost every s,

u∗ · p(s) + L(x∗(s),u∗(s)) = inf
v

[v · p(s) + L(x∗(s), v)] ,

which implies
p(s) = −DvL(x∗(s), ẋ∗(s)),

for almost all s. But, in the previous equation both terms are con-
tinuous functions thus the identity holds for all s.

Lemma 33. For t < s ≤ t1 we have

(p(s), H(p(s),x∗(s))) ∈ D−V (x∗(s), s).

Proof. Let x∗ be an optimal trajectory and u∗ the corresponding
optimal control. For r ≤ t1 and y ∈ Rn, define xr = x∗(r) and
consider the sub-optimal control

u](s) = u∗(s) +
y − xr
r − t

,
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whose trajectory we denote by x], x](t) = x. Note that x](r) = y.

We have

V (x, t) =
∫ s

t

L(x∗(τ),u∗(τ))dτ + V (x∗(s), s)

and, by the sub-optimality of x],

V (x∗(t), t) ≤
∫ r

t

L(x](τ),u](τ))dτ + V (y, r).

This implies
V (x∗(s), s)− V (y, r) ≤ φ(y, r),

with

φ(y, r) =
∫ r

t

L(x](τ),u](τ))dτ −
∫ s

t

L(x∗(τ),u∗(τ))dτ.

Since φ is differentiable at y and r,

(−Dyφ(x∗(s), s),−Drφ(x∗(s), s)) ∈ D−V (x∗(s), s).

Observe that
x](τ) = x∗(τ) +

y − xr
r − t

(τ − t),

and, therefore,

Dyφ(x∗(s), s) =
∫ s

t

[
DxL

τ − t
s− t

+DvL
1

s− t

]
dτ.

Integrating by parts and using (4.4), we obtain

Dyφ(x∗(s), s) = DvL(x∗(s), ẋ∗(s)) = −p(s).

Similarly,

Drφ(y, r) = L(y,u](r)) +
∫ s

t

[
−DxL

y − xr
(r − t)2

(τ − t)

+DxL
−u∗(r)
(r − t)

(τ − t)−DvL
y − xr
(r − t)2

+DvL
−u∗(r)
r − t

]
dτ.
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Integrating by parts and evaluating at y = x∗(s), r = s, we obtain

Drφ(x∗(s), s) = L(x∗(s), ẋ∗(s))− u∗(s)DvL(x∗(s), ẋ∗(s))

= −H(p(s),x∗(s)),

as we needed.

Lemma 34. The value function V is Lipschitz.

Proof. Let t < t1 be fixed and x, y arbitrary. We suppose first that
t1 − t < 1. Then

V (y, t)− V (x, t) ≤ J(y, t; u∗)− V (x, t),

where V (x, t) = J(x, t; u∗). Therefore, there exists a constant C,
depending only on the Lipschitz constant of ψ and of the supremum
of |DxL|, such that

V (y, t)− V (x, t) ≤ C|x− y|.

Suppose that t1 − t > 1. Letũ(s) = u∗ + (x− y) if t < s < t+ 1

ũ(s) = u∗(s) if t+ 1 ≤ s ≤ t1.

Then

V (y, t)− V (x, t) ≤ J(y, t; ũ)− V (x, t) ≤ C|x− y|,

where the constant C depends only on DxL and on DvL, and not
on the Lipschitz constant of ψ. Reverting the roles of x and y we
conclude

|V (y, t)− V (x, t)| ≤ C|x− y|.

Without loss of generality we can suppose that t < t̂. Note that

|V (x, t)− V (x∗(t̂), t̂)| ≤ C|t− t̂|.
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To prove that V is Lipschitz in t it is enough to check that

|V (x∗(t̂), t̂)− V (x, t̂)| ≤ C|t− t̂|. (4.5)

But since ẋ∗ is uniformly bounded

|x∗(t̂)− x| ≤ C|t− t̂|

thus, the previous Lipschitz estimate implies (4.5).

Lemma 35. V is differentiable almost everywhere.

Proof. Since V is Lipschitz, the almost everywhere differentiability
follows from Rademacher theorem.

In general, the value function is Lipschitz and not C1 or C2.
However we can prove an one-side estimate for second derivatives,
i.e. that V is semiconcave.

Lemma 36. Suppose that |D2
xvL|, |D2

vvL| ≤ C(R) whenever |v| ≤ R.
Then, for each t < t1, V (x, t) is semiconcave in x.

Proof. Fix t and x. Choose y ∈ Rn arbitrary. We claim that

V (x+ y, t) + V (x− y, t) ≤ 2V (x, t) + C|y|2,

for some constant C. Clearly,

V (x+ y, t) + V (x− y, t)− 2V (x, t)

≤
∫ t1

t

[L(x∗ + y, ẋ∗ + ẏ) + L(x∗ − y, ẋ∗ − ẏ)− 2L(x∗, ẋ∗)] ds,

where
y(s) = y

t1 − s
t1 − t

.
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Since |D2
xxL| ≤ C1(R),

L(x∗ + y, ẋ∗ + ẏ) ≤ L(x∗, ẋ∗ + ẏ) +DxL(x∗, ẋ∗ + ẏ)y + C|y|2

and, in a similar way for the other term. We also have

L(x∗, ẋ∗ + ẏ) + L(x∗, ẋ∗ − ẏ) ≤ 2L(x∗, ẋ∗) + C|ẏ|2 + C|y||ẏ|.

Thus

L(x∗ + y, ẋ∗ + ẏ) + L(x∗ − y, ẋ∗ − ẏ) ≤ 2L(x∗, ẋ∗) +C|y|2 +C|ẏ|2.

This inequality implies the lemma.

Lemma 37. We have

(p(s), H(p(s),x∗(s))) ∈ D+V (x∗(s), s)

for t ≤ s < t1. Therefore DV (x∗(s), s) exists for t < s < t1.

Proof. Let u∗ be an optimal control at (x, s) and let p be the corre-
sponding adjoint variable. Define W by

W (y, r) = J

(
y, r; u∗ +

x∗(r)− y
t1 − r

)
− V (x, s).

Hence, for each y ∈ Rn and t ≤ r < t1,

V (y, r)− V (x, s) ≤W (y, r),

with equality at (y, r) = (x, s). Since W is C1, it is enough to check
that

DyW (x∗(s), s) = p(s),

and
DrW (x∗(s), s) = H(p(s),x∗(s)).
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The first identity follows from

DyW (s,x∗(s)) =
∫ t1

s

DxLϕ+DvL
dϕ

dτ
dτ,

where ϕ(τ) = t1−τ
t1−s . Using the Euler-Lagrange equation

d

dt
DvL−DxL = 0

and integration by parts we obtain

DyW (s,x∗(s)) = −DvL(x∗(s), ẋ∗(s)) = p(s).

On the other hand,

DrW (s,x∗(s)) = −L(x∗(s), ẋ∗(s)) +
∫ t1

s

DxLφ+DvL
dφ

dτ
dτ,

where
φ(τ) =

τ − t1
t1 − s

ẋ∗(s).

Using again the Euler-Lagrange equation and integration by parts,
we obtain

DrW (s,x∗(s)) = −L(x∗(s), ẋ∗(s), s) +DvL(x∗(s), ẋ∗(s))ẋ∗(s),

or equivalently

DrW (s,x∗(s)) = H(p(s),x∗(s)).

The last part of the lemma follows from proposition 25.

This ends the proof of the theorem.

In what follows we prove that the value function is differentiable
at points of uniqueness of optimal trajectory.
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A point (x, t) is regular if there exists a unique optimal trajectory
x∗(s) such that x∗(t) = x and

V (x, t) =
∫ t1

t

L(x∗(s), ẋ∗(s))ds+ ψ(x∗(t1)).

Theorem 38. V is differentiable with respect to x at (x, t) if and
only if (x, t) is a regular point.

Proof. The next lemma shows that differentiability at a point x im-
plies that x is a regular point:

Lemma 39. If V is differentiable with respect to x at a point (x, t),
then there exists a unique optimal trajectory

Proof. Since V is differentiable with respect to x at (x, t), then any
optimal trajectory satisfies

ẋ∗(t) = −DpH(p(t),x∗(t)),

since p(t) = DxV (x). Therefore, once DxV (x∗(t), t) is given, the
velocity ẋ∗(t) is uniquely determined. The solution of the Euler-
Lagrange equation (4.2) is determined by the initial condition and
velocity: x∗(t) and ẋ∗(t). Thus, the optimal trajectory is unique.

To prove the other implication we need an auxiliary lemma:

Lemma 40. Let p such that

‖DxV (·, t)− p‖L∞(B(x,2ε)) → 0

when ε → 0. Then V is differentiable with respect to x at (x, t) and
DxV (x, t) = p.
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Proof. Since V is Lipschitz, it is differentiable almost everywhere. By
Fubinni theorem, for almost every point with respect to the Lebesgue
measure induced in Sn−1, V is differentiable y = x+λk, with respect
to the Lebesgue measure in R. For these directions

V (y, t)− V (x, t)− p · (y − x)
|x− y|

=
∫ 1

0

(DxV (x+ s(y − x), t)− p) · (y − x)
|x− y|

ds.

Suppose 0 < |x− y| < ε. Then∣∣∣∣V (x, t)− V (y, t)− p · (x− y)
|x− y|

∣∣∣∣ ≤ ‖DxV (·, t)− p‖L∞(B(x,ε)).

In principle, the last identity only holds almost everywhere. However,
for y 6= x, the left-hand side is continuous in y. consequently, the
inequality holds for all y 6= x. Therefore, when y → x,∣∣∣∣V (x, t)− V (y, t)− p · (x− y)

|x− y|

∣∣∣∣→ 0,

which implies DxV (x, t) = p.

Suppose that V is not differentiable at (x, t). We claim that (x, t)
is not regular. By contradiction, suppose that (x, t) is regular. Then
if V fails to be differentiable, the previous lemma implies that for
each p,

‖DxV (·, t)− p‖L∞(B(x,ε)) 9 0.

Thus, we could choose two sequences x1
n and x2

n such that xin → x

but whose corresponding optimal trajectories xin satisfy

lim ẋ1
n(t) 6= lim ẋ2

n(t).

However, this shows that (x, t) is not regular. Indeed if (x, t) were
regular, and xn were any sequence converging to x, and x∗n(·) the
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corresponding optimal trajectory then

ẋ∗n(t)→ ẋ∗(t).

If this were not true, by Ascoli-Arzela theorem, we could extract a
convergent subsequence ẋnk(·)→ ẏ(·), and for which

ẋ∗nk(t)→ v 6= ẋ∗(t).

Let y(·) be the solution to the Euler-Lagrange equation with initial
condition y(t) = x(t) and ẏ(t) = v. Note that x∗n(·) → y(·) and
ẋ∗n(·)→ ẏ(·), uniformly in compact sets, and, therefore,

V (x, t) = lim
n→∞

V (xn, t) = lim
n→∞

J(xn, t; ẋn)

= J(x, t; ẏ) > J(x, t; ẋ∗) = V (x, t),

since the trajectory y cannot be optimal, by regularity, which is a
contradiction.

Remark. This theorem implies that all points of the form (x∗(s), s),
in which x∗ is and optimal trajectory are regular for t < s < t1.

Exercise 40. Show that in the optimal control ”bounded control
space” setting, the value function is Lipschitz continuous if the ter-
minal cost is Lipschitz continuous.

Exercise 41. In the optimal control ”bounded control space” setting,
show that if ψ is Lipschitz, for any (x, t) there exists p such that

(p(s), H(p(s),x∗(s))) ∈ D−V (x∗(s), s)

for t < s ≤ t1 and

(p(s), H(p(s),x∗(s))) ∈ D+V (x∗(s), s)

for t ≤ s < t1.
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4.4 Viscosity solutions

As we have mentioned before, in general the value function is not
differentiable enough to be a classical solution to the Hamilton-Jacobi
equation. Nevertheless, as we discuss now it is a solution to the
Hamilton-Jacobi equation in an appropriate weak sense.

In this section we discuss the viscosity solutions in the calculus
of variations setting. With small modifications our results hold for
the bounded control setting, and therefore we have added exercises
in which guide the reader into filling the gaps.

Theorem 41. Consider the calculus of variations setting for the op-
timal control problem. Suppose that the value function V is differen-
tiable at (x, t). Then, at this point, V satisfies the Hamilton-Jacobi
equation

−Vt +H(DxV, x, t) = 0. (4.6)

Proof. If V is differentiable at (x, t) then the result follows by using
statement 6 in theorem 28.

Exercise 42. Show that (4.6) also holds in the ”bounded control
case” setting. Hint: use exercises 40 and 41.

Corollary 42. Consider the calculus of variations setting for the
optimal control problem. Then the value function V satisfies the
Hamilton-Jacobi equation almost everywhere.

Proof. Since the value function V is differentiable almost everywhere,
by theorem 28, theorem 41 implies this result.

Exercise 43. Show that the previous corollary also holds in the
”bounded control case” setting.
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However, it is not true that a Lipschitz function satisfying the
Hamilton-Jacobi equation almost everywhere is the value function of
the terminal value problem, as shown in the next example.

Example 16. Consider the Hamilton-Jacobi equation

−Vt + |DxV |2 = 0

with terminal data V (x, 1) = 0. The value function is V ≡ 0, which is
a (smooth) solution of the Hamilton-Jacobi equation However, there
are other solutions, for instance,

V (x, t) =

0 if |x| ≥ 1− t

|x| − 1 + t if |x| < 1− t

which satisfy the same terminal condition t = 1 and is solution almost
everywhere. J

A bounded uniformly continuous function V is a viscosity subso-
lution (resp. supersolution) of the Hamilton-Jacobi equation (4.6) if
for any C1 function φ and any interior point (x, t) ∈ argmax V − φ
(resp. argmin) then

−Dtφ+H(Dxφ, x, t) ≤ 0

(resp. ≥ 0) at (x, t). A bounded uniformly continuous function V

is a viscosity solution of the Hamilton-Jacobi equation if it is both a
sub and supersolution.

The value function is a viscosity solution of (4.6), although it
may not be a classical solution. The motivation behind the defini-
tion of viscosity solution is the following: if V is differentiable and
(x, t) ∈ argmaxV −φ (or argmin) then DxV = Dxφ and DtV = Dtφ,
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therefore we should have both inequalities. The specific choice of in-
equalities is related with the following parabolic approximation of the
Hamilton-Jacobi equation

−Dtu
ε +H(Dxu

ε, x, t) = ε∆uε. (4.7)

This equation arises naturally in optimal stochastic control (see chap-
ter 6). The limit ε→ 0 corresponds to the case in which the diffusion
coefficient vanishes.

Proposition 43. Let uε be a family of solutions of (4.7) such that,
as ε → 0, the sequence uε → u uniformly. Then u is a viscosity
solution of (4.6).

Proof. Suppose that φ(x, t) is a C2 function such that u − φ has a
strict local maximum at (x, t). We must show that

−Dtφ+H(Dxφ, x, t) ≤ 0.

By hypothesis, uε → u uniformly. Therefore we can find sequences
(xε, tε) → (x, t) such that uε − φ has a local maximum at (xε, tε).
Therefore,

Duε(xε, tε) = Dφ(xε, tε)

and
∆uε(xε, tε) ≤ ∆φ(xε, tε).

Consequently,

−Dtφ(xε, tε) +H(Dxφ(xε, tε), xε, tε) ≤ ε∆φ(xε, tε).

It is therefore enough to take ε→ 0 to end the proof.

An useful characterization of viscosity solutions is given in the
next proposition:
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Proposition 44. Let V be a bounded uniformly continuous function.
Then V is a viscosity subsolution of (4.6) if and only if for each
(p, q) ∈ D+V (x, t),

−q +H(p, x, t) ≤ 0.

Similarly, V is a viscosity supersolution if and only if for each (p, q) ∈
D−V (x, t),

−q +H(p, x, t) ≥ 0.

Proof. This result is an immediate corollary of proposition 26.

Example 17. In example 16 we have found two different almost
everywhere solutions to

−Vt + |DxV |2 = 0

satisfying V (x, T ) = 0.

It is easy to check that the value function V = 0 is viscosity solu-
tion (it is smooth, satisfies the equation and the terminal condition)
and it agrees with the value function of the corresponding optimal
control problem. The other solution, which is an almost everywhere
solution is not a viscosity solution (check!).

Now we will show that the definition of viscosity solution is con-
sistent with classical solutions.

Proposition 45. Let V be a C1 viscosity solution of (4.6). Then V

is a classical solution.

Proof. If V is differentiable then

D+V = D−V = {(DxV,DtV )}.
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Since V is a viscosity solution, we obtain immediately

−DtV +H(DxV, x, t) ≤ 0, and −DtV +H(DxV, x, t) ≥ 0,

therefore −DtV +H(DxV, x, t) = 0.

Theorem 46. Let V be the value function of the terminal value
problem. Then V is a viscosity solution to

−Vt +H(DxV, x) = 0.

Proof. Let ϕ : Rd × R → R, ϕ(x, t), be a C∞ function, and let
(x0, t0) ∈ argmax(V − ϕ). We must show that

−ϕt(x0, t0) +H(Dxϕ(x0, t0), x0) ≤ 0,

or equivalently, that for all v ∈ Rd we have

−ϕt(x0, t0)− v ·Dxϕ(x0, t0)− L(x0, v) ≤ 0.

Fix v ∈ Rd. Let x = x0 + v(t− t0). Then, for any h > 0∫ t0+h

t0

ϕt + vDxϕ(x(s), s)ds = ϕ(x(t0 + h), t0 + h)− ϕ(x0, t0)

≥ V (x(t0 + h), t0 + h)− V (x0, t0) ≥ −
∫ t0+h

t0

L(x, ẋ)dt.

Dividing by h and letting h→ 0 we obtain the result.

Now let (x0, t0) ∈ argmin(V − ϕ). We must show that

−ϕt(x0, t0) +H(Dxϕ(x0, t0), x0) ≥ 0,

that is, there exists v ∈ Rd such that

−ϕt(x0, t0)− v ·Dxϕ(x0, t0)− L(x0, v) ≥ 0.
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By contradiction assume that there exists θ > 0 such that

−ϕt(x0, t0)− v ·Dxϕ(x0, t0)− L(x0, v) < −θ,

for all v. Because the mapping v 7→ L is superlinear and ϕ is C1,
there exists a R > 0 and r1 > 0 such that for all (x, t) ∈ Br1(x0, t0)
and all v ∈ BcR(0) = Rd \BR(0) we have

−ϕt(x, t)− v ·Dxϕ(x, t)− L(x, v) < −θ
2
.

By continuity, for some 0 < r < r1 and all (x, t) ∈ Br(x0, t0) we have

−ϕt(x, t)− v ·Dxϕ(x, t)− L(x, v) < −θ
2
,

for all v ∈ BR(0).

Therefore, for any trajectory x with x(0) = x0 and any T ≥ 0
such that the trajectory x stays near x0 on [t0, t0 +T ], i.e., (x(t), t) ∈
Br(x0, t0) for t ∈ [t0, t0 + T ] we have

V (x(t0 + T ), t0 + T )− V (x0, t0) ≥ ϕ(x(t0 + T ), t0 + T )− ϕ(x0, t0)

=
∫ t0+T

t0

ϕt(x(t), t) + ẋ(t) ·Dxϕ(x(t))
)
dt

≥ θ

2

∫ t0+T

t0

dt−
∫ t0+T

t0

L(x, ẋ)dt.

This yields

V (x0, t0) ≤ −θ
2
T +

∫ t0+T

t0

L(x, ẋ)dt+ V (x(t0 + T ), t0 + T )

Choose ε < θT
4 . Let xε be such that:

V (x0, t0) ≥
∫ t0+T

t0

L(xε, ẋε)dt+ V (xε(t0 + T ), t0 + T )− ε

This then yields a contradiction.
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Exercise 44. Show that the function V (x, t) given by the Lax-Hopf
formula is Lipschitz in x for each t < t1, regardless of the smoothness
of the terminal data (note, however that the constant depends on t).

Exercise 45. Use the Lax-Hopf formula to determine the viscosity
solution of

−ut + u2
x = 0,

para t < 0 and u(x, 0) = ±x2 − 2x.

Exercise 46. Use the Lax-Hopf formula to determine the viscosity
solution of

−ut + u2
x = 0,

for t < 0 and

u(x, 0) =


0 if x < 0

x2 if 0 ≤ x ≤ 1

2x− 1 if x > 1.

4.5 Uniqueness of viscosity solutions

To establish uniqueness of viscosity solutions we need the following
technical lemma:

Lemma 47. Let V be a viscosity solution of

−Vt +H(DxV, x) = 0

in [0, T ]× Rn and φ a C1 function. If V − φ has a maximum (resp.
minimum) at (x0, t0) ∈ Rd × [0, T ) then

−φt(x0, t0) +H(Dxφ(x0, t0), x0) ≤ 0 (resp. ≥ 0) at (x0, t0).
(4.8)
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Remark: The important point is that the inequality is valid even
for some non-interior points (t0 = 0).

Proof. Only the case t0 = 0 requires proof since in the other case the
maximum is interior and then the viscosity property (the definition
of viscosity solution) yields the inequality. So suppose (x0, 0) is a
strict maximum point. Consider

φ̃ = φ+
ε

t
.

Then V − φ̃ has an interior local maximum at (xε, tε) with tε > 0.
Furthermore, (xε, tε) → (x0, 0), as ε → 0. At the point (xε, tε) we
have

−φt(xε, tε) +
ε

t2ε
+H(Dxφ(xε, tε), xε) ≤ 0,

that is, since ε
t2ε
≥ 0,

−φt(x0, 0) +H(Dxφ(x0, 0), x0) ≤ 0.

Analogously we obtain the opposite inequality for the case of local
minimum, using φ̃ = φ− ε

t .

Finally we establish uniqueness of viscosity solutions:

Theorem 48 (Uniqueness). Suppose H satisfies

|H(p, x)−H(q, x)| ≤ C(|p|+ |q|)|p− q|

|H(p, x)−H(p, y)| ≤ C|x− y|(C +H(p, x))

Then the value function is the unique viscosity solution to the Ham-
ilton-Jacobi equation

−Vt +H(DxV, x) = 0

that satisfies the terminal condition V (x, T ) = ψ(x).
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Proof. Let V and Ṽ be two viscosity solutions with

sup
0≤t≤T

V − Ṽ = σ > 0.

For 0 < ε, λ < 1 we define

ψ(x, y, t, s) =V (x, t)− Ṽ (y, s)− λ(2T − t− s)

− 1
ε2

(|x− y|2 + |t− s|2)− ε(|x|2 + |y|2).

When ε, λ are sufficiently small we have

maxψ(x, y, t, s) = ψ(xε,λ, yε,λ, tε,λ, sε,λ) >
σ

2
.

Since ψ(xε,λ, yε,λ, tε,λ, sε,λ) ≥ ψ(0, 0,−T,−T ), and both V and Ṽ are
bounded, we have

|xε,λ − yε,λ|2 + |tε,λ − sε,λ|2 ≤ Cε2

and
ε(|xε,λ|2 + |yε,λ|2) ≤ C.

From these estimates and from the fact that V and Ṽ are continuous,
it then follows that

|xε,λ − yε,λ|2 + |tε,λ − sε,λ|2

ε2
= o(1),

as ε→ 0.

Denote by ω and ω̃ the modulus of continuity of V and Ṽ . Then

σ

2
≤ V (xε,λ, tε,λ)− Ṽ (yε,λ, sε,λ)

= V (xε,λ, tε,λ)− V (xε,λ, T ) + V (xε,λ, T )− Ṽ (xε,λ, T )+

+ Ṽ (xε,λ, T )− Ṽ (xε,λ, sε,λ) + Ṽ (xε,λ, sε,λ)− Ṽ (yε,λ, sε,λ) ≤

≤ ω(T − tε,λ) + ω̃(T − sε,λ) + ω̃(o(ε)).
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Therefore, if ε is sufficiently small T − tε,λ > µ > 0, uniformly in ε.

Let φ be given by

φ(x, t) = Ṽ (yε,λ, sε,λ) + λ(2T − t− sε,λ)+

+
1
ε2

(|x− yε,λ|2 + |t− sε,λ|2) + ε(|x|2 + |yε,λ|2).

Then, the difference
V (x, t)− φ(x, t)

achieves a maximum at (xε,λ, tε,λ).

Similarly, for φ̃ given by

φ̃(y, s) = V (xε,λ, tε,λ)− λ(2T − tε,λ − s)−

− 1
ε2

(|xε,λ − y|2 + |tε,λ − s|2)− ε(|xε,λ|2 + |y|2),

the difference
Ṽ (y, s)− φ̃(y, s)

has a minimum at (yε,λ, sε,λ).

Therefore

−φt(xε,λ, tε,λ) +H(Dxφ(xε,λ, tε,λ), xε,λ) ≤ 0,

and
−φ̃s(yε,λ, sε,λ) +H(Dyφ̃(yε,λ, sε,λ), yε,λ) ≥ 0.

Simplifying, we have

λ− 2
tε,λ − sε,λ

ε2
+H(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ) ≤ 0, (4.9)

and

−λ− 2
tε,λ − sε,λ

ε2
+H(2

xε,λ − yε,λ
ε2

− 2εyε,λ, yε,λ) ≥ 0. (4.10)
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From (4.9) we gather that

H(2
xε,λ − yε,λ

ε2
+ 2εxε,λ, xε,λ) ≤ −λ+

o(1)
ε
. (4.11)

By subtracting (4.9) to (4.10) we have

2λ ≤ H(2
xε,λ − yε,λ

ε2
− 2εyε,λ, yε,λ)−H(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ)

≤ H(2
xε,λ − yε,λ

ε2
− 2εyε,λ, yε,λ)−H(2

xε,λ − yε,λ
ε2

− 2εyε,λ, xε,λ)

+H(2
xε,λ − yε,λ

ε2
− 2εyε,λ, xε,λ)−H(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ)

≤
(
C + CH(2

xε,λ − yε,λ
ε2

+ 2εxε,λ, xε,λ)
)
|xε,λ − yε,λ|

+ Cε

(∣∣∣∣2xε,λ − yε,λε2
+ 2εxε,λ

∣∣∣∣+
∣∣∣∣2xε,λ − yε,λε2

− 2εyε,λ

∣∣∣∣) |xε,λ − yε,λ|
≤
(
o(1)
ε

+ C

)
(|xε,λ − yε,λ|+ |tε,λ − sε,λ|)→ 0,

when ε→ 0, which is a contradiction.

4.6 Bibliographical notes

The main references for this section are [FS06], [Lio82], [BCD97],
[Bar94]. Introductory material can be found in [Eva98b]. A very
nice introduction to viscosity solutions written in Portuguese is the
book [LLF].
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Stationary deterministic

control

In this chapter we consider stationary control problems. These in-
clude the discounted cost infinite horizon as well as stationary control
problems. The discounted cost infinite horizon problem, corresponds
to the Hamilton-Jacobi equation is

αu+H(Du, x) = 0,

where in stationary optimal control problem we have the Hamilton-
Jacobi equation

H(Dxu, x) = H.

Because two of the main applications we will be considering are ho-
mogenization problems and Aubry-Mather theory, we will consider
only periodic problems and we will not discuss boundary conditions.
Supplementary material can be found in [Bar94], for instance. To

101
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102 5. STATIONARY DETERMINISTIC CONTROL

simplify, we will only consider the calculus of variations setting, how-
ever similar results hold for the bounded control setting.

5.1 Discounted cost infinite horizon

We will work in the calculus of variations setting, with a convex and
superlinear Lagrangian L(x, v). Let α > 0 be the discount rate. We
define the discounted cost function Jα, with discount rate α, as

Jα(x;u) =
∫ ∞

0

L(x(s), ẋ(s))e−αsds.

In this case, the optimal trajectories x(·) satisfy the differential equa-
tion

ẋ = u,

with the initial condition x(0) = x.

As before, the value function, uα, is given by

uα(x) = inf Jα(x; u),

where infimum is taken over all controls u ∈ L∞loc.

The dynamic programming principle in this case is

Proposition 49. For each t > 0

uα(x) = inf
x(0)=x

[∫ t

0

L(x(s), ẋ(s))e−αsds+ e−αtuα(x(t))
]
.
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Proof. Observe that

uα(x) = inf
x(0)=x

[∫ t

0

L(x(s), ẋ(s))e−αsds

+e−αt
∫ ∞
t

L(x(s), ẋ(s))e−α(s−t)ds

]
≥ inf

x(0)=x

[∫ t

0

L(x(s), ẋ(s))e−αsds+ e−αtuα(x(t))
]
.

The other inequality is left as an exercise:

Exercise 47. Show that

uα(x) ≤ inf
x(0)=x

[∫ t

0

L(x(s), ẋ(s))e−αsds+ e−αtuα(x(t))
]
.

Because of the dynamic programming principle, it is clear that

V (x, t) = e−αtuα(x)

is a viscosity solution of

−Vt + e−αtH(eαtDxV, x) = 0.

This then implies

Corollary 50. uα is a viscosity solution of

αuα +H(Dxuα, x) = 0.

Furthermore

Corollary 51. If uα is differentiable then it is a solution of

H(Dxuα, x) + αuα = 0. (5.1)
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Exercise 48. Show that the optimal trajectories for the discounted
cost infinite horizon are solutions to the (negatively damped) Euler-
Lagrange equation

d

dt

∂L

∂ẋ
− α∂L

∂ẋ
− ∂L

∂x
= 0. (5.2)

Note that if x(t) satisfies (5.2), the energyH may not be conserved

Example 18. Let L(x, v) = v2

2 + cosx. Then (5.2) reads

ẍ− αẋ + sin x = 0.

When α = 0 the energy

H =
ẋ2

2
− cos x

is constant in time, but for α > 0 we have

dH

dt
= αẋ2.

Therefore, the energy increases in time unless ẋ = 0. J

Proposition 52. Suppose that x(t) satisfies (5.2). Then

dH

dt
= αDvL(x(t), ẋ(t)) · ẋ(t).

Proof. Let
p(t) = −DvL(x(t), ẋ(t)).

Then we have

dH

dt
= DpH · ṗ +DxH · ẋ

= ẋ · (αDvL+DxL)−DxL · ẋ = αDvL · ẋ.
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We assume now that H is Zn periodic in x. We prove some
estimates that will be necessary in the next section to show that as
α→ 0, the solution uα converges (up to constants) to a solution of

H(Dxu, x) = H. (5.3)

for some H.

Theorem 53. Let uα be a viscosity solution to

αuα +H(Duα, x) = 0.

Then αuα is uniformly bounded and uα is Lipschitz, uniformly in α.

Proof. First let xM be the point where uα(x) has a global maximum,
and xm a point of global minimum. Then, by the viscosity property,
i.e., the definition of the viscosity solution, we have

αuα(xM ) +H(0, xM ) ≤ 0, αuα(xm) +H(0, xm) ≥ 0,

which yields that αuα is uniformly bounded.

Now we establish the Lipschitz bound. Observe that if uα is
Lipschitz, then there exists M > 0 such that

uα(x)− uα(y) ≤M |x− y|,

for all x, y. By contradiction, assume that for every M > 0 there
exists x and y such that

uα(x)− uα(y) > M |x− y|.

Let ϕ(x) = uα(y) +M |x− y|. Then uα(x)−ϕ(x) has a maximum at
some point x 6= y. Therefore

αuα(x) +H
(
M x−y
|x−y| , x

)
≤ 0,

which by the coercivity of H yields a contradiction if M is sufficiently
large.
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Example 19. We can also use directly calculus of variations methods
to show that the exists C, independent of α, such that

uα ≤
C

α
.

Indeed, since L(x, 0) is bounded

uα(x) ≤ Jα(x, 0) ≤
∫ ∞

0

L(x, 0)e−αsds ≤ C

α
.

J

5.2 Periodic problems

We now address stationary problems in the periodic setting. These
are extremely important in homogenization problems, discussed in
section 5.6 as well in Aubry-Mather theory, the subject of chapter 8.

Theorem 54. (Stability of viscosity solutions) Assume that for α > 0
function uα is a viscosity solution for Hα(u,Du, x) = 0. Let Hα →
H uniformly on compact sets, and uα → u uniformly. Then u is a
viscosity solution for H(u,Du, x) = 0.

Proof. Suppose u − ϕ has a strict local maximum (resp. minimum)
at a point x0. Then there exists xα → x such that uα−ϕ has a local
maximum (resp. minimum) at xα. Then

Hα(uα(xα), Dϕ(xα), xα) ≤ 0 (resp. ≥ 0).

Letting α→ 0 finishes the proof.

As demonstrated in context of homogenization of Hamilton-Jacobi
equations, in the classic but unpublished paper by Lions, Papanico-
laou and Varadhan [LPV88], it is possible to construct, using the
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previous result, viscosity solutions to the stationary Hamilton-Jacobi
equation

H(Du, x) = H. (5.4)

Theorem 55 (Lions, Papanicolao, Varadhan). There exists a num-
ber H and a function u(x), Zd periodic in x, that solves (5.4) in the
viscosity sense.

Proof. Since uα −minuα is periodic, equicontinuous, and uniformly
bounded, it converges, up to subsequences, to a function u. Moreover
uα ≤ C

α , thus αuα converges uniformly, up to subsequences, to a
constant, which we denote by −H. Then, the stability theorem for
viscosity solutions, theorem 54, implies that u is a viscosity solution
of

H(Du, x) = H.

Exercise 49. Let u : R → R be continuous and piecewise differen-
tiable (with left and right limits for the derivative at any point). Show
that u is a viscosity solution of

H(Dxu, x) = H

if

1. u satisfies the equation almost everywhere;

2. whenever Dxu is discontinuous then Dxu(x−) > Dxu(x+).
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5.3 Some examples

In this section we discuss some examples and explicit solutions in the
periodic setting. We start with two linear problems and then follow
with a non-linear example.

Example 20. Consider a linear (nonresonant) Hamiltonians

H(p, x) = ω · p+ V (x, y). (5.5)

Suppose u is a smooth viscosity solution of (5.4) for this Hamiltonian.
The divergence theorem yields∫

Tn
ω ·Dxu = 0.

Therefore
H(0) =

∫
Tn
V, (5.6)

and H(P ) = H(0) + ω · P .

For the example

(1,
√

2) ·Du+ cos(2πx)

we obtained DP H̄ = (1,
√

2) and H̄(0, 0) = 0.

The Hamilton-Jacobi equation

(1, 1) ·Du+ cos(2πx),

is non-resonant because of the specific potential that we used, al-
though the vector (1, 1) is rationally dependent. J

Example 21. Linear resonant linear Hamiltonians (5.5) may fail to
have a viscosity solutions. An example is

(0, 1) ·Du+ sin(2πx) = H.
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The formula (5.6) yields H(0) = 0 if there were a solution of (5.4).
However, we have

inf
φ

sup
x
H(Dxφ, x) = 1.

Let φ be an arbitrary periodic function. Set x0 = 1
4 , so that

sin(2πx0) = 1.

Then φ(x0, y) is a periodic function of y and so Dyφ(x0, y) = 0 at
some y = y0. Thus

sup
x
H(Dxφ, x) ≥ H(Dxφ(x0, y0), x0, y0) = 1.

Example 22 (One dimensional pendulum). The Hamiltonian cor-
responding to a one-dimensional pendulum with unit mass and unit
length is

H(p, x) =
p2

2
− cos 2πx.

In this case, it is not difficult to determine explicitly the solution to
the Hamilton-Jacobi equation

H(P +Dxu, x) = H(P ),

where P is a real parameter. In fact, for P ∈ R and almost every
x ∈ R, the solution u(P, x) satisfies

(P +Dxu)2

2
= H(P ) + cos 2πx.

consequently, H(P ) ≥ 1 and, therefore,

Dxu = −P ±
√

2(H(P ) + cos 2πx), q.t.p. x ∈ R.

Thus

u =
∫ x

0

−P + s(y)
√

2(H(P ) + cos 2πy)dy + u(0),
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where |s(y)| = 1. Since H is convex em p and u is a viscosity solution,
the only possible discontinuities on the derivative of u are the ones
that satisfy Dxu(x−) − Dxu(x+) > 0, see exercise 49. Therefore s
can change sign from 1 to −1 at any point, however the jumps from
−1 to 1 can only happen when√

2(H(P ) + cos 2πx) = 0.

Since we are looking for 1-periodic solutions, there are only two cases
to consider. The first, in which H(P ) > 1 and the solution is C1

since
√

2(H(P ) + cos 2πy) never vanishes. In this case H(P ) can be
determined as from P through the equation

P = ±
∫ 1

0

√
2(H(P ) + cos 2πy)dy.

It is easy to check that this equation has a unique solution H(P )
whenever

|P | >
∫ 1

0

√
2(1 + cos 2πy)dy,

that is,

|P | > 4
π
.

The second case occurs whenever the last inequality does not hold,
that is H(P ) = 1 and thus s(x) can have discontinuities. In fact,
s(x) jumps from −1 to 1 whenever x = 1

2 + k, with k ∈ Z, and there
exists a point x0 defined by the equation∫ 1

0

s(y)
√

2(1 + cos 2πy)dy = P,

such that s(x) jumps from 1 to −1 at x0 + k, k ∈ Z. J

Exercise 50. Let φ : Tn → R be a C1 function not identically con-
stant. Show that there exist two distinct viscosity solutions of

Dxu · (Dxu−Dxφ) = 0,

whose difference is not constant.
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5.4 Regularity

In this section we establish a-priori Lipschitz and semiconcavity es-
timates for stationary Hamilton-Jacobi equation. We start by the
Lipschitz estimates:

Theorem 56. Let H(p, x) : R2n → R be a continuous function sat-
isfying

lim
|p|→∞

H(p, x) = +∞.

Let u : Td → R be a viscosity solution to

H(Du, x) = C.

Then u is Lipschitz, and the Lipschitz constant does not depend on
u.

Proof. First observe that from the fact that u = u− 0 achieves max-
imum and minimum in Td we have

min
x∈Td

H(0, x) ≤ C ≤ max
x∈Td

H(0, x).

Then, it is enough to argue as in the proof of Theorem 53.

Recall that a function u is semiconcave if there exists a constant
C such that

u(x+ y)− 2u(x) + u(x− y) ≤ C|y|2.

We assume that L(x, v) satisfies the following estimate

L(x+ θy, v + ηy)− 2L(x, v) + L(x− θy, v − ηy) (5.7)

≤ (C + CL(x, v))(θ2 + η2)|y|2.
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Proposition 57. Consider the solution V be a solution to the value
problem with any (bounded uniformly continuous) terminal data ψ at
time T . Then V is semiconcave in x for each fixed time t < T .

Proof. We will do the proof for t = 0. Fix ε > 0. Let x be a trajectory
such that

V (x, 0) ≥
∫ T

0

L(x, ẋ)ds+ ψ(x(T ))− ε.

Then we have ∫ T

0

L(x, ẋ)ds ≤ C,

for some constant uniformly bounded as ε→ 0.

Clearly

V (x± y, 0) ≤
∫ T

0

L(x± yT − s
T

, ẋ∓ y

T
)ds+ ψ(x(T )).

Therefore

V (x+ y, 0)− 2V (x, 0) + V (x− y, 0)

≤ ε+
∫ T

0

[
L(x + y

T − s
T

, ẋ− y

T
)− 2L(x, ẋ)

+ L(x− yT − s
T

, ẋ +
y

T
)
]
ds

≤ C(1 +
∫ T

0

L(x, ẋ)ds)|y|2 ≤ C|y|2.

Proposition 58. Let u be a viscosity solution of H(Dxu, x) = 0.
Then u is semiconcave.

Proof. Consider the Hamilton-Jacobi equation.

−Vt +H(DxV, x) = 0 (5.8)
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with V (x, T ) = u(x). Then V (x, t) = u(x) is a viscosity solution
to (5.8). By the uniqueness result for viscosity solutions we have
that V = u is the value function for the terminal value problem
with terminal cost ψ = u. But then the previous proposition implies
semiconcavity.

Corollary 59. Let u : T1 → R be a viscosity solution of (5.4). Then
Du satisfies the following jump condition: Dxu(x−)−Dxu(x+) > 0.

Proof. Since f(x) = u − C|x|2 is concave, the derivative of f is de-
creasing. This implies that f ′ cannot have jump discontinuities up-
wards.

5.5 The effective Hamiltonian

Theorem 60. Let H be convex in p. Let u be a viscosity sub-solution
of H(Du, x) = C and let uε = u ∗ ηε be a standard smoothing. Then:

H(Duε(x), x) 6 C +O(ε), (5.9)

where O(ε) = sup
∣∣∂H
∂x

∣∣ ∫
Rd |y|ηε(y)dy.

Proof. Since the viscosity solutions of H(Du, x) = C are uniformly
Lipschitz, we may assume for the purpose of this proof that ∂H

∂x is
bounded.

For any x ∈ Td and any p, y ∈ Rd we have |H(p, x−y)−H(p, x)| 6
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|y| sup |DxH|.

C >
∫
ηε(y)H(Du(x− y), x− y)dy

>
∫
ηε(y)H(Du(x− y), x)dy −O(ε).

Now, Jensen’s inequality yields∫
ηε(y)H(Du(x− y), x)dy

≥ H
(∫
ηε(y)Du(x− y)dy, x

)
= H(Duε(x), x),

which completes the proof.

For the unbounded case, x ∈ Rd, the problem H(Du, x) = C

(might) have a viscosity solution (or even a regular solution) for in-
finitely many C’s. Indeed, Let H(p) = |p|2, then for any P ∈ Rd the
function u(x) = P · x solves H(Du) = |P |2, i.e., C = |P |2. However
for the case x ∈ Td the above number C is unique. We will give an
elementary proof of the uniqueness of the number H.

Theorem 61. Let H be convex in p, Zd-periodic in x and ∂H
∂x is

bounded. Let C be a real number, such that H(Du, x) = C has a
viscosity solution u. Then

C = inf
ϕ:smooth

sup
x∈Td

H(Dϕ(x), x).

Proof. Let u be a viscosity solution. Inequality (5.9) implies

inf
ϕ:smooth

sup
x∈Td

H(Dϕ(x), x) 6 C.

To show the opposite inequality we take any smooth function ϕ(x).
Due to periodicity, the set of points where u − ϕ achieves a local
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minimum is non empty. For example, one could consider a point of
global minimum. Let xϕ be a local minimum point for u − ϕ. The
definition of viscosity solution implies H(Dϕ(xϕ), xϕ) > C. Thus,
for any smooth function ϕ(x), we have

sup
x
H(Dϕ(x), x) > C.

Taking infimum over ϕ completes the proof.

5.6 Homogenization

Homogenization theory for Partial Differential Equations studies so-
lutions with high frequency oscillations. Such rapid oscillations may
represent small-scale or microscopic structure of a material. The
main goal of this theory is to understand the limits as oscillations
become more and more rapid. In this section we are interested in
understanding he limit as ε → 0 of the viscosity solutions of the
Hamilton-Jacobi-Belmann

−V εt +H
(
DxV

ε,
x

ε

)
= 0, (5.10)

with terminal condition V ε(x, T ) = gε(x).

We assume that H(p, y) is smooth, strictly convex in p, bounded
from below and [0, 1]n-periodic in y. Furthermore, we suppose that
gε → g uniformly. To understand what should be the limit prob-
lem we start with some formal calculations. Many of the results
in this chapter were proved by the first time in the ”classical-yet-
unpublished” paper [LPV88]. For more details about homogeniza-
tion of Hamilton-Jacobi equations the reader should consult [Con95],
[Con97], [Con96] or the book [BD98].
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5.6.1 Formal calculations

Suppose V ε → V0 uniformly as ε→ 0. Assume V ε has the expansion
V ε(x, t) = V0(x, t) + εV1(xε , t) + O(ε2), where V1 is the first-order
correction term to V0. Then, by matching powers of ε, we find that

−∂V0

∂t
(εy, t) +H (DxV0 +DyV1, y) = O(ε),

where y = x
ε . Letting ε→ 0 we deduce that V1 should be a periodic

solution of the cell problem

H(P +Dyu, y) = H(P ), (5.11)

with P = DxV0 and H(P ) = ∂V0
∂t .

This formal calculations suggest that the viscosity solution V ε

converges to a viscosity solution V of

−Vt +H(DxV ) = 0.

5.6.2 Convergence

Motivated by the previous computations we study the convergence of
V ε to some function V using viscosity solutions methods. Consider
the cell problem (5.11). From theorem 61, we know that for each P

there exists a unique function H(P ) for which the equation

H(P +Dxu, x) = H(P ) (5.12)

has a periodic viscosity solution. The function H(P ) is called the
effective Hamiltonian.
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Theorem 62. The viscosity solution V ε of the terminal value prob-
lem (5.10) converges uniformly to the viscosity solution of

−Vt +H (DxV ) = 0 (5.13)

with terminal value V (x, T ) = g(x).

Proof. By choosing a suitable subsequence ε → 0 we may assume
V ε → V uniformly. Now we claim that V is a viscosity solution of
(5.13). First we need to prove that if φ is a C1 function such that
V − φ has a strict local maximum at (x̂, t̂) then

−φt(x̂, t̂) +H(Dxφ(x̂, t̂)) ≤ 0.

Assume this statement is false. Then there exists a maximum point
(x̂, t̂) of V − φ and θ > 0 such that

−φt(x̂, t̂) +H(Dxφ(x̂, t̂)) > θ. (5.14)

Let u(y) be a viscosity solution of

H(Dxφ(x̂, t̂) +Dyu(y), y) = H(Dxφ(x̂, t̂)). (5.15)

Define
φε(x, t) = φ(x, t) + εu(

x

ε
).

We claim that in the viscosity sense

−φεt(x, t) +H(Dxφ
ε(x, t)) ≥ θ

3
,

in some ball B((x̂, t̂), r) ⊂ Rn+1 with radius r > 0, chosen small
enough, depending only on the modulus of continuity of Dxφ and
H. Indeed, let ψ be a C1 function and suppose φε − ψ has a local
minimum at (x1, t1) ∈ B((x̂, t̂), r). Note that since φε is Lipschitz
this implies that |Dxψ(x1, t1)| and |Dtψ(x1, t1)| are bounded by a
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constant that depends only on the Lipschitz constant of φε. Observe
also that

u(
x

ε
)− η(

x

ε
,
t

ε
) ≥ u(

x1

ε
)− η(

x1

ε
,
t1
ε

),

where η(x, t) = 1
ε [ψ(εx, εt)− φ(εx, εt)], for (x, t) ∈ B((x̂, t̂), r). Thus

u− η has a local minimum at (x1
ε ,

t1
ε ). Since u is a viscosity solution

of (5.15) then

H

(
Dxφ(x̂, t̂) +Dyη

(
x1

ε
,
t1
ε

)
,
x1

ε

)
≥ H(Dxφ(x̂, t̂)).

By adding −Dtφ(x̂, t̂) to both sides and using (5.14) we conclude

−Dtφ(x̂, t̂) +H
(
Dxφ(x̂, t̂) +Dxψ(x1, t1)−Dxφ(x1, t1),

x1

ε

)
≥ θ

If r is chosen small enough (depending on the modulus of continuity
of Dxφ) then

−Dtφ(x1, t1) +H(Dxψ(x1, t1),
x1

ε
) ≥ θ

2

Since u does not depend on t,

−Dtη(
x1

ε
,
t1
ε

) = 0,

and so Dtψ(x1, t1) = Dtφ(x1, t1). Thus

−Dtψ(x1, t1) +H(Dxψ(x1, t1),
x1

ε
) ≥ θ

2
.

By having chosen r even small enough (depending on |DtH|) one has

−Dtψ(x1, t1) +H(Dxψ(x1, t1),
x1

ε
) ≥ θ

3
.

Hence φε is a viscosity supersolution of

−DtV +H(DxV,
x

ε
, t) = 0,
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in B((x̂, t̂), r); also V ε is a viscosity subsolution of the same equation.
Thus, by the comparison principle,

V ε(x̂, t̂)− φε(x̂, t̂) ≤ sup
∂B((x̂,t̂),r)

(V ε − φε)

which contradicts the assumption that V − φ has a local maximum
at (x̂, t̂).

The other part of the proof, when V − φ has a strict local mini-
mum, is similar.

5.7 Bibliographical notes

For stationary problems in deterministic control we suggest the ref-
erences [BCD97], [Lio82] and [Bar94]. Concerning homogenization
reader should consult [Con95], [Con97], [Con96] or the book [BD98],
in addition to the original paper [LPV88]. New important develop-
ments in the homogenization theory were achieve in a series of pa-
pers by Lions and Souganidis, among others, see for instance [Sou99],
[LS03]. Additional material, written in Portuguese, can be found in
[LLF].
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Stochastic optimal

control

The objective of this chapter is to present an introduction to stochas-
tic optimal control, the basic techniques and ideas, as well as some
applications.

6.1 The set-up of stochastic optimal con-

trol

In this section we discuss the set-up of stochastic optimal control for
the finite horizon terminal value problem.

Fix a time interval [t, T ]. Let (Ω,F , P ) be a probability space

121
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in which it is defined a d-dimensional Brownian motion Ws. Let Fs
be the filtration associated with Ws. For t ≤ s ≤ T denote Bs the
Borel σ-algebra on [t, s]. A mapping f : Ω × [t, T ] → Rm is called
progressively measurable if for any t ≤ s ≤ T the restriction of f to
Ω× [t, s] is Fs × Bs measurable.

As before, assume we are given a control space U , that is a convex
closed subset of Rm. In this chapter we assume further, for simplicity,
that the control space U is bounded.

A control on an interval I ⊂ R+
0 is a progressively measurable

process ut : I → U . Let f(x, u) : Rn × U → Rn and σ(x, u) :
Rn × U → Rn×d be continuous functions satisfying the following
Lipschitz condition:

|f(x, u)− f(y, u)|+ |σ(x, u)− σ(y, u)| ≤ K|x− y|,

for some suitable (uniform) constant K, and

|f(x, u)|, |σ(x, u)| ≤ C

This Lipschitz condition ensures that for each bounded progressively
measurable control u there exists a unique solution to the following
stochastic differential equation, the control law,

dx = f(x,u)dt+ σ(x,u)dWt. (6.1)

The boundedness of f and σ, though not essential, simplifies some
arguments.

In the case one needs to consider unbounded controls, a convenient
condition that ensures the existence of a unique solution to (6.1)

E

∫ T

0

|f(x,u)|+ |σ(x,u)|2dt
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is uniformly bounded for x ∈ Rn. This condition will not be necessary
here because we assume U to be bounded.

As before, consider a running cost L(x, u) : Rn × U → R and a
terminal cost ψ(x) : Rn → R at time T . For each control u on (t, T )
we define

J(x, t; u) = E

∫ T

t

L(x,u)dt+ ψ(x(T )),

where x solves (6.1) with x(t) = x. We assume further that L(x, u)
is uniformly bounded.

The finite horizon terminal value problem consists in determin-
ing the control u∗ which minimizes J(x, t,u). We define the value
function to be

V (x, t) = inf
u
J(x, t; u). (6.2)

Exercise 51 (Stochastic Lax-Hopf formula). Consider the following
controlled dynamics:

dx = udt+ σdWt,

where the control space is U = Rn, and, as before, we are considering
progressively measurable controls u. Let L(u) be convex and super-
linear in u. Let ψ be a terminal cost bounded below. Show that the
value function is

V (x, t) = inf
y∈Rn

(T − t)L
(
y − x
T − t

)
+ Eψ(y +WT−t),

where Ws a n-dimensional Brownian motion.

6.2 Verification theorem

Motivated by the verification results in the deterministic optimal con-
trol setting, we will now prove a similar verification theorem for the
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stochastic optimal control problem.

Given two n×m matrices A and B, respectively, define A : B ≡
trATB. We now define the second order Hamiltonian H(M,p, x) :
Rn×n × Rn × Rn → R to be:

H(M,p, x) = sup
u∈U
−1

2
σ(x, u)σT (x, u) : M − f(x, u) · p− L(x, u).

If we assume that the diffusion matrix σ(x) is independent of u then

H(M,p, x) = −1
2
σ(x)σT (x) : M +H(p, x),

where H is the generalized Legendre transform of L as in (3.1). As
before, in chapter 4, we also assume that the drift is linear on the
control, that is

f(x, u) = A(x)u+B(x), (6.3)

and that the Lagrangian L(x, u) is a strictly convex function of u. In
this case there exists a unique value µ(x, p) for which

H(M,p, x) = −1
2
σ(x)σT (x) : M − f(x, µ(x, p)) · p− L(x, µ(x, p)).

Theorem 63. Let L(x, u), f(x, u) and σ(x, u) be as defined previ-
ously. Suppose that L is strictly convex in u. Assume that the diffu-
sion matrix does not depend on u, and that the drift f(x, u) is linear
in u as in (6.3). Let H be the generalized Legendre transform (3.1)
of L. Let Φ(x, t) be any classical solution to the Hamilton-Jacobi
equation

−Φt −
1
2
σ(x)σT (x) : D2

xxΦ +H(DxΦ, x) = 0 (6.4)

on the time interval [0, T ], with terminal cost Φ(x, T ) = ψ(x). Then,
for all 0 ≤ t ≤ T ,

Φ(x, t) = V (x, t),

where V is the value function, defined as in (6.2). Furthermore u =
µ(x(t), DxV (x(t), t)) is an optimal feedback control.
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Remark. We should observe that this theorem in particular implies
the uniqueness of classical solutions to the Hamilton-Jacobi equation.

Proof. Let u be a progressively measurable control and x the corre-
sponding solution to (6.1) with initial condition x(t) = x. Then, by
Dynkin’s formula

EΦ(x(T ), T )− Φ(x(t), t)

= E

(∫ T

t

Φt(x(s), s) + f(x,u)DxΦ(x(s), s)

+
1
2
σ(x)σT (x) : D2

xxΦ(x(s), s)ds
)
.

Adding E
(∫ T

t
L(x(s),u(s))ds

)
+ Φ(x(t), t) to the above equality,

using the fact that Φ(x, T ) = ψ(x), and taking the infimum over all
admissible controls u, we obtain

inf E

(∫ T

t

L(x,u)ds+ ψ
(
x(T )

))

= Φ(x(t), t) + inf E

(∫ T

t

[
Φt(x, s) + L(x,u)

+DxΦ(x, s) · f(x,u) +
1
2
σ(x)σT (x) : D2

xxΦ(x, s)
]
ds

)
.

Now recall that for any v,

−H(p, x) ≤ L(x, v) + p · f(x, v).



i
i

“IMPA2009” — 2009/5/15 — 18:05 — page 126 — #126 i
i

i
i

i
i

126 6. STOCHASTIC OPTIMAL CONTROL

Therefore

inf E

(∫ T

t

L(x,u)ds+ ψ
(
x(T )

))
≥ Φ(x(t), t)

+ inf E
(∫ T

t

(
Φt(x, s) +

1
2
σ(x)σT (x) : D2Φ(x, s)

−H(DxΦ(x, s),x)
)
ds
)

= Φ(x(t), t).

Let r(x, t) be uniquely defined as

r(x, t) ∈ argminv∈U L(x, v) +DxΦ(x, t) · f(x, v). (6.5)

Define the progressively measurable control u = r(x, s). Consider
the trajectory x given by solving the stochastic differential equation

dx = f(x,u)ds+ σ(x)dWs,

with initial condition x(t) = x. Then

inf E
(∫ T

t

L(x,u)ds+ ψ
(
x(T )

))
≤ Φ(x(t), t) + E

(∫ T

t

[
Φs(x, s) + L(x,u)

+DxΦ(x, s) · f(x,u) +
1
2
σ(x)σT (x) : D2

xxΦ(x, s)
]
ds

)
= Φ(x(t), t)

+ inf E
(∫ T

t

(
Φs(x, s) +

1
2
σ(x)σT (x) : D2

xxΦ(x, s)

−H(DxΦ(x, s),x)
)
ds
)

= Φ(x(t), t).

which ends the proof.
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We should observe from the proof that (6.5) gives an optimal
feedback law for the optimal control, provided we can find a solution
to the Hamilton-Jacobi equation.

6.3 Continuity

We now prove that the value function is Lipschitz continuous. We
start by proving some estimates concerning diffusions:

Lemma 64. Let f(x, t) : Rn × [0, T ]→ Rn and σ(x, t)Rn × [0, T ]→
Rn×d be (globally) Lipschitz in x. Let xi, i = 1, 2, be solutions to the
stochastic differential equation

dxi = f(xi, t)dt+ σ(xi, t)dWt.

Then

E[|x1(t)− x2(t)|2] ≤ C|x1(0)− x2(0)|2,

for all 0 ≤ t ≤ T .

Proof. It suffices to compute

d

dt
E|x1 − x2|2 =2E[(x1 − x2)(f(x1, t)− f(x2, t))]

+ E[tr(σ(x1, t)− σ(x− 2, t))(σ(x1, t)− σ(x2, t))T ]

≤CE[|x1 − x2|2],

and apply Gronwal’s inequality.

Theorem 65. Assume that

|L(x, u)− L(y, u)| ≤ C|x− y|,
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and

|ψ(x)− ψ(y)| ≤ C|x− y|.

Then the value function is Lipschitz continuous both in x.

Proof. Let x and y be arbitrary points, and t < T . Fix ε > 0. Let uε

be an almost optimal control for the point x, that is:

V (x, t) + ε ≥ E

(∫ T

t

L(xε,uε)ds+ ψ(xε(T ))

)
.

Let yε be a solution to

dyε = f(yε,uε)dt+ σ(yε,uε)dWt

with yε(t) = y. Then

V (y, t)− V (x, t) ≤ε+ E

∫ T

t

(L(yε,uε)− L(xε,uε))ds

+ ψ(yε(T ))− ψ(xε(T ))

≤ E
∫ T

t

C|yε(s)− xε(s)|+ C|yε(T )− xε(T )|

≤ C|x− y|,

using Cauchy-Schwartz inequality and lemma 64.

6.4 Stochastic dynamic programming

As in deterministic control, the value function of a stochastic optimal
control terminal value problem satisfies a semigroup property called
the stochastic dynamic programming principle.
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Theorem 66 (Dynamic programming principle). Suppose that t ≤
t′ ≤ T . Then

V (x, t) = inf
u
E

[∫ t′

t

L(x(s),u(s))ds+ V (x(t′), t′)

]
, (6.6)

where x(t) = x and dx = f(x,u)dt+ σ(x,u)dWt.

Remark. We will only sketch the proof of this theorem, a detailed
proof can be found in [FS06]. We should also observe that the Dy-
namic programming principle also holds if instead of a fixed time t′

one chooses a stopping time τ .

Proof. Denote by Ṽ (x, t) the right hand side of (6.6). For fixed ε > 0,
let uε be an almost optimal control for V (x, t). Let xε(s) be the
corresponding trajectory trajectory, i.e., assume that

J(x, t; uε) ≤ V (x, t) + ε.

We claim that Ṽ (x, t) ≤ V (x, t) + ε. To check this, let y = xε(t′).
Then

Ṽ (x, t) ≤
∫ t′

t

L(xε(s),uε(s))ds+ V (y, t′).

Additionally,
V (y, t′) ≤ J(y, t′; uε).

Therefore
Ṽ (x, t) ≤ J(x, t; uε) ≤ V (x, t) + ε,

and, since ε is arbitrary, Ṽ (x, t) ≤ V (x, t).

To prove the opposite inequality, we will proceed by contradiction.
Therefore, if Ṽ (x, t) < V (x, t), we could choose ε > 0 and a control
u] such that

E

∫ t′

t

L(x](s),u](s))ds+ V (x](t′), t′) < V (x, t)− ε,
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where ẋ] = f(x],u]), x](t) = x. Choose u[ such that

J(x](t′), t′; u[) ≤ V (x](t′), t′) +
ε

2

Define u? as u?(s) = u](s) for s < t′

u?(s) = u[(s) for t′ < s.

So, we would have

V (x, t)− ε > E

∫ t′

t

L(x](s),u](s))ds+ V (x](t′), t′) ≥

≥ E
∫ t′

t

L(x](s),u](s))ds+ J(x](t′), t′; u[)− ε

2
=

= J(x, t; u?)− ε

2
≥ V (x, t)− ε

2
,

which is a contradiction.

6.5 The Hamilton-Jacobi equation

In this section we will establish that if the value function is smooth
then it satisfies the Hamilton-Jacobi equation.

Theorem 67. Let V be the value function to the terminal value prob-
lem. Suppose V is C2. Then it solves the Hamilton-Jacobi equation

−Vt +H(D2
xxV,DxV, x) = 0.

Proof. Fix any constant control u∗. Then, by the dynamic program-
ming principle

V (x, t) ≤ E
∫ t+h

t

L(x(s), u∗) + V (x(t+ h), t+ h).
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By using Itô’s formula and dividing by h, as h→ 0 we obtain

0 ≤ Vt + L(x, u∗) + f(x, u∗) ·DxV +
1
2
σσTD2

xxV

≤ Vt −H(D2
xxV,DxV, x),

that is
−Vt +H(D2

xxV,DxV, x) ≤ 0.

Suppose now that in fact the previous inequality were strict at a point
(x0, t0), that is

−Vt(x0, t0) +H(D2
xxV (x0, t0), DxV (x0, t0), x0) = −δ < 0.

Then in a neighborhood N of (x0, t0) we have

−Vt(x, t) +H(D2
xxV (x, t), DxV (x, t), x) < −δ

2
.

Let u∗ be an optimal control, and let τ be the exit time of N of the
corresponding trajectory. Then, by Dynkin’s formula,

E(V (x(τ), τ))− V (x0, t0) = E

∫ τ

t0

Vt + f ·DxV +
1
2
σσT : D2

xxV dt,

and, by the stochastic dynamic programming principle applied to the
stopping time τ ,

V (x0, t0) = E

(∫ τ

t0

L(x,u∗)dt+ V (x(τ), τ)
)
.

Thus

0 = E

∫ τ

t0

L(x,u∗) + Vt + f ·DxV +
1
2
σσT : D2

xxV dt

≥ E
∫ τ

t0

Vt −H(D2
xxV (x, t), DxV (x, t),x) ≥ δ

2
E

∫ τ

t0

dt,

which is a contradiction.
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6.6 Viscosity Solutions

As before, we recall that a bounded uniformly continuous function
V (x, t) is a viscosity solution to the Euler-Lagrange equation

−Vt +H(D2V,DV, x) = 0

if for any smooth function ψ(x, t) and any point (x0, t0) ∈ argmaxV −
ψ we have

−ψt(x0, t0) +H(D2ψ(x0, t0), Dψ(x0, t0), x0) ≤ 0,

with the opposite inequality for points in the argmin.

Theorem 68. The value function is a viscosity solution to

−Vt +H(D2V,DV, x) = 0.

Proof. Let ϕ(x, t) be a smooth function and let (x0, t0) ∈ argminV −
ϕ. Without loss of generality we may assume V (x0, t0) = ϕ(x0, t0),
and so V (x, t) ≥ ϕ(x, t) for all (x, t).

Then, by the dynamic programming principle

ϕ(x0, t0) = V (x0, t0) = E

∫ t0+h

t0

L(x,u)dt+ V (x(t0 + h), t0 + h)

≥ E
∫ t0+h

t0

L(x,u)dt+ ϕ(x(t0 + h), t0 + h).

Using Dynkin’s formula we then conclude that

0 ≥ E
∫ t0+h

t0

L(x,u) + ϕt + fDxϕ+
1
2
σσT : D2

xxϕdt

≥ E
∫ t0+h

t0

ϕt −H(D2ϕ,Dϕ, x).
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by sending h→ 0 we conclude that

−ϕt(x0, t0) +H(D2
xxϕ(x0, t0), Dxϕ(x0, t0), x0) ≥ 0.

To obtain the second inequality, suppose (x0, t0) ∈ argmaxV −ϕ.
As before, without loss of generality we may assume V (x0, t0) =
ϕ(x0, t0), and so V (x, t) ≤ ϕ(x, t) for all (x, t).

Then, by the dynamic programming principle

ϕ(x0, t0) = V (x0, t0) ≤ E
∫ t0+h

t0

L(x,u∗)dt+ V (x(t0 + h), t0 + h)

≤ E
∫ t0+h

t0

L(x,u∗)dt+ ϕ(x(t0 + h), t0 + h),

where u∗ is a constant control. This then implies, by sending h→ 0,

0 ≤ L(x0,u∗) + ϕt + fDxϕ+
1
2
σσT : D2

xxϕdt,

and so

−ϕt(x0, t0) +H(D2
xxϕ(x0, t0), Dxϕ(x0, t0), x0) ≤ 0.

6.7 Applications to Financial Mathemat-

ics

In this last section we present an application of stochastic optimal
control, namely Merton’s optimal investment problem. To model an
investment problem we consider two types of assets: a bond, with a
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constant continuously compounded interest rate r, whose price evo-
lution satisfies

dp = rpdt,

and a stock whose time evolution is modeled through a geometric
Brownian motion with drift

dS = S(µdt+ σdWt),

where µ and σ are constant parameters.

At any moment a large investor is allowed to have a fraction π

of his wealth invested in stocks and a corresponding fraction 1 − π
in bonds. We should note that because short selling of both stocks
and bonds is allowed in fact we have −∞ < π < +∞ rather than
0 ≤ π ≤ 1.

The wealth process for this investor is simply

dx = x [(r + (µ− r)π)dt+ σπdWt] .

Let U be a concave function, which for definiteness we take U(x) =
xγ , for 0 < γ < 1. The objective of the investor is to allocate its
portfolio so that to maximize

V (x, t) = sup
π
EU(x(T )),

for some fixed terminal time T , where the supremum is taken over
progressively measurable processes π satisfying E

∫ T
t
|π|2 < ∞, and

x(t) = x.

From the results discussed before in this chapter, the function V

is a viscosity solution to the following Hamilton-Jacobi equation

Vt +H(D2
xxV,DxV, x) = 0,
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where

H(M,p, x) = sup
π∈R

[
x(r + (µ− r)π)p+

1
2
σ2π2x2M

]
.

Note that because we are dealing with a maximization a few signs
had to be exchanged.

By the homogeneity of the problem, it is easy to check that

V (x, t) = xγV (1, t) ≡ xγh(t).

Then a simple computation yields that h solves

0 = h′ + γh sup
π

[
γ(r + (µ− r)π) +

1
2
σ2π2γ(γ − 1)

]
.

This yields h(t) = ea(T−t) for some constant a and we also conclude
that

π =
µ− r

(1− γ)σ2

is the optimal control, which is constant in time.

6.8 Bibliographical notes

Two main references on stochastic optimal control are the books
[FR75] and [FS06]. Additional material can also be found in the
nice lecture notes [Tou].
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Differential Games

This chapter is a brief introduction to deterministic differential games
and its connection with viscosity solutions of Hamilton-Jacobi equa-
tions.

7.1 Dynamic programming principle

Consider a problem where two players have conflicting objectives.
Each of them partially controls a dynamical system, and one of the
players wants to maximize a pay-off functional, whereas the other
one wishes to minimize the same pay-off functional. To set-up this
problem, let U+ and U− be two convex closed subsets of, respec-
tively, Rm+ and Rm− . The + sign stands for the controls or variables
available for the maximizing player, whereas the − sign corresponds
to the minimizing player.

137
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Consider a differential equation

ẋ = f(x,u+,u−), (7.1)

where u± are controls for the two players taking values on U±. To
simplify, we suppose that U± are compact sets, that f is globally
bounded and satisfies the Lipschitz estimate

|f(x, u+, u−)− f(y, u+, u−)| ≤ C|x− y|.

Let T be a terminal time. To each pair of controls (u+,u−) on (t, T ),
consider the corresponding solution to (7.1) with initial condition
x(t) = x. We are given a running cost L(x,u+,u−) and a terminal
cost ψ(x). Associated to the controls and these costs we define the
cost

J [x, t; u+,u−] =
∫ T

t

L(x,u+,u−)ds+ ψ(x(T )),

where x solves (7.1) with the initial condition x(t) = x. The objective
of the + player is to maximize this cost, whereas the − player wishes
to minimize this cost. Of course the players are not allowed to foresee
the future and we must therefore discuss the appropriate strategies.

Denote by U±([t, T ]) the set of all mappings from [t, T ] into U±.
A non-anticipating strategy µ± is a mapping

µ± : U∓([t, T ])→ U±([t, T ])

such that for any u∓, ũ∓ ∈ U∓([t, T ]) and any t < s < T such that,
for all t ≤ τ ≤ s,

u∓(τ) = ũ∓(τ)

we have
µ±(u∓)(τ) = µ±(ũ∓)(τ),

for all t ≤ τ ≤ s. Denote by Λ± the set of all non-anticipating
strategies.
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The upper V + value functions are defined to be

V +(x, t) = sup
µ+∈Λ+([t,T ])

inf
u−∈U−([t,T ])

J(x, t;µ+(u−),u−),

whereas the lower value function is

V −(x, t) = inf
µ−∈Λ−([t,T ])

sup
u+∈U+([t,T ])

J(x, t; u+, µ−(u+)).

Theorem 69 (Dynamic programming principle). For any t′ < T we
have

V +(x, t)

= sup
µ+∈Λ±([t,t′])

inf
u−∈U−([t,t′])

∫ t′

t

L(x, µ+(u−),u−)ds+ V +(x(t′), t′).

Note that a similar result holds for the lower value, with a identical
proof.

Proof. Define

Ṽ (x, t)

= sup
µ+∈Λ+([t,t′])

inf
u−∈U−([t,t′])

∫ t′

t

L(x, µ+(u−),u−)ds+ V +(x(t′), t′).

Fix ε > 0 and choose µ+
ε ∈ Λ±([t, t′]) so that

Ṽ (x, t) ≤ inf
u−∈U−([t,t′])

∫ t′

t

L(x, µ+
ε (u−),u−)ds+ V +(x(t′), t′) + ε.

Choose now µ̃+
ε ∈ Λ+([t′, T ]) so that

V (x(t′), t′) ≤ inf
u−∈U−([t′,T ])

∫ t′

t

L(x, µ̃+
ε (u−),u−)ds+ ψ(x(T )) + ε.



i
i

“IMPA2009” — 2009/5/15 — 18:05 — page 140 — #140 i
i

i
i

i
i

140 7. DIFFERENTIAL GAMES

By considering the concatenation of the non-anticipating strategies
µ+
ε and µ̃+

ε we obtain a non-anticipating strategy µ̄+
ε such that

Ṽ (x, t) ≤ inf
u−∈U−([t,T ])

∫ T

t

L(x, µ̄+
ε (u−),u−)ds+ ψ(x(T )) + 2ε

≤ V +(x, t) + 2ε.

Sending ε→ 0 we obtain Ṽ ≤ V +.

To obtain the opposite inequality, fix again ε > 0 and choose a
non-anticipating strategy µ̄+

ε so that

V +(x, t) ≤ inf
u−∈U−([t,T ])

∫ T

t

L(x, µ̄+
ε (u−),u−)ds+ ψ(x(T )) + ε.

Note that

inf
u−∈U−([t′,T ])

∫ T

t′
L(x, µ̄+

ε (u−),u−)ds+ ψ(x(T )) ≤ V +(x(t′), t′).

Therefore

V +(x, t) ≤ inf
u−∈U−([t,T ])

∫ t′

t

L(x, µ̄+
ε (u−),u−)ds+ V +(x(t′), t′) + ε

≤ Ṽ (x, t) + ε.

7.2 Viscosity solutions

We define the upper and lower Hamiltonians to be, respectively

H+(p, x) = sup
u+∈U+

inf
u−∈U−

−p · f(u+, u−, x)− L(x, u+, u−),
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and

H−(p, x) = inf
u−∈U−

sup
u+∈U+

−p · f(u+, u−, x)− L(x, u+, u−).

In general H− ≥ H+ and the inequality may not be strict.

Before stating and proving the main result of this section, we will
prove two auxiliary results.

Lemma 70. Suppose ϕ satisfies

−ϕt +H+(Dxϕ, x) ≤ −θ,

at a point (x, t) and for some θ > 0. Then, for all h sufficiently small
there exists µ+ ∈ Λ+([t, t+h]) such that for all u− ∈ U−([t, t+h] we
have ∫ t+h

t

[
L(x, µ+(u−),u−) + f(x, µ+(u−),u−)Dxϕ(x(s), s)

+ϕt(x(s), s)] ds ≥ hθ
2
.

Proof. For the proof of this lemma, consult [BCD97].

Lemma 71. Suppose ϕ satisfies

−ϕt +H+(Dxϕ, x) ≥ θ,

at a point (x, t) and for some θ > 0. Then, for all h sufficiently small
and any µ+ ∈ Λ+([t, t+ h]) there exists u− ∈ U−([t, t+ h] such that∫ t+h

t

[
L(x, µ+(u−),u−) + f(x, µ+(u−),u−)Dxϕ(x(s), s)

+ϕt(x(s), s)] ds ≤ −hθ
2
.

Proof. For the proof of this lemma, consult [BCD97].
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We should observe that analogous results for H− to lemmas 70
and refaxl2 can be established in exactly the same way.

Theorem 72. The upper and lower values are viscosity solutions to
the Isaacs-Bellman-Hamilton-Jacobi equation

−V ±t +H(DxV
±, x) = 0,

with the terminal value V (x, T ) = ψ(x).

Proof. We will do the proof for the upper value V + as the case of the
lower value is similar. Suppose V + − ϕ has a strict local maximum
at (x0, t0) but, by contradiction, there exists θ > 0 such that

−ϕ+
t +H+(Dxϕ

+, x) ≥ θ.

Using the dynamic programming principle and the local maximum
property, we have

sup
µ+∈Λ±([t0,t0+h])

inf
u−∈U−([t0,t0+h])∫ t0+h

t0

L(x, µ+(u−),u−)ds+ ϕ(x(t0 + h), t0 + h)− ϕ(x0, t0) ≥ 0

This then contradicts lemma 71.

Now suppose V + − ϕ has a strict local minimum at (x0, t0) but,
by contradiction, there exists θ > 0 such that

−ϕ+
t +H+(Dxϕ

+, x) ≤ −θ.

Using the dynamic programming principle and the local maximum
property, we have

sup
µ+∈Λ±([t0,t0+h])

inf
u−∈U−([t0,t0+h])∫ t0+h

t0

L(x, µ+(u−),u−)ds+ ϕ(x(t0 + h), t0 + h)− ϕ(x0, t0) ≤ 0

This then contradicts lemma 70.
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7.3 Bibliographical notes

The main reference for this chapter is the book [BCD97]. The reader
may also want to consult [FS06] (the second edition of the book) for
additional material.
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8

Aubry Mather theory

This chapter is dedicated to the study of duality theory, relaxation of
optimal control problems and applications to viscosity solutions and
Aubry-Mather theory.

8.1 Model problems

In this section we discuss certain minimization problems which in-
volve linear objective functions under linear constraints, that is, in-
finite dimensional linear programming problems. Surprisingly, there
are deep relations between these problems and certain nonlinear par-
tial differential equations.

145
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146 8. AUBRY MATHER THEORY

8.1.1 Mather problem

Let Td be the d-dimensional standard torus identified whenever con-
venient with Rd/Zd. Consider a Lagrangian L(x, v), L : Td×Rd → R,
smooth in both variables, strictly convex and superlinear in the ve-
locity v. As discussed in chapter 2, the minimal action principle of
classical mechanics asserts that the trajectories x(t) of mechanical
systems are critical points or minimizers of the action∫ T

0

L(x, ẋ)ds. (8.1)

These critical points are then solutions to the Euler-Lagrange equa-
tions

d

dt
DvL(x, ẋ)−DxL(x, ẋ) = 0. (8.2)

A very important technique in calculus of variations is the relax-
ation method, which consists in enlarging the class of solutions so
that existence of solutions is almost trivial. Of course there is then
the problem of establishing that a relaxed solution somehow corre-
sponds to a solution to the original problem. Mather’s problem is a
relaxed version of the minimal action principle of classical mechanics
and consists in minimizing the action∫

Td×Rd
L(x, v)dµ(x, v) (8.3)

among a suitable class of probability measures µ(x, v). Originally, in
[Mat91], this minimization was performed over all measures invariant
under the Euler-Lagrange equations (8.2). However, as realized by
[Mn96], it is more convenient to consider a larger class of measures,
the holonomic measures. It turns out that both problems are equiva-
lent as any holonomic minimizing measure is automatically invariant
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under the Euler-Lagrange equations. In what follows, we will define
this class of measures and provide the motivation for it.

Let x(t) be a trajectory on Td. Define a measure µTx on Td × Rd

by its action on test functions ψ ∈ Cc(Td ×Rd), ψ(x, v), (continuous
with compact support) as follows:∫

ψdµTx =
1
T

∫ T

0

ψ
(
x(t), ẋ(t)

)
dt.

If x(t) is globally Lipschitz, the family {µTx }T>0 has support con-
tained in a fixed compact set, and therefore it is weakly-∗ compact.
Consequently one can extract a limit measure µx which encodes some
of the asymptotic properties of the trajectory x:∫

ψdµx = lim
T→∞

∫
ψdµTx ,

where the limit is taken through an appropriate subsequence.

Let γ(v) be a continuous function, γ : Rd → R, such that

inf
γ(v)

1 + |v|
> 0,

and lim
|v|→∞

γ(v)
1+|v| =∞. A measure µ in Td × Rd is admissible if∫

Td×Rd
γ(v)dµ <∞.

An admissible measure µ on Td × Rd is called holonomic if for all
ϕ ∈ C1(Td) we have ∫

Td×Rd
v ·Dϕdµ = 0. (8.4)

Let ϕ ∈ C1(Td). For ψ(x, v) = v ·Dϕ(x) we have

〈ψ, µx〉 = lim
T→∞

1
T

∫ T

0

ẋ ·Dϕ(x)dt = lim
T→∞

ϕ
(
x(T )

)
− ϕ

(
x(0)

)
T

= 0,
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therefore µx is holonomic.

Mather’s problem consists in minimizing (8.3) over all probability
measures that satisfy (8.4). As pointed out before, however, this
problem was introduced by Mañe in [Mn96] in his study of Mather’s
original problem [Mat91].

8.1.2 Stochastic Mather problem

In the framework of stochastic optimal control one is led to replace
deterministic trajectories by stochastic processes. Suppose that x(t)
is a stochastic process satisfying the stochastic differential equation

dx = νdt+ σdW,

in which ν is a bounded, progressively measurable process, σ > 0 and
W a n−dimensional Brownian motion. One would like to minimize
the average action

1
T
E

∫ T

0

L(x, ν)dt.

As before, one can associate to these stochastic processes, probability
measures µ in Tn × Rn defined as∫

Tn×Rn
φ(x, v)dµ = lim

T→∞

1
T

∫ T

0

φ(x(t), ν(t))dt,

in which the limit is taken through an appropriate subsequence.

The analog for stochastic processes to the fundamental theorem of
calculus is Dynkin’s formula. This formula applied to ϕ(x(t)), states
that

E [ϕ(x(T ))− ϕ(x)] = E

∫ T

0

νDxϕ(x(t)) +
σ2

2
∆ϕ(x(t))dt.
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This identity implies∫
Tn×Rn

vDxϕ(x) +
σ2

2
∆ϕ(x)dµ = 0,

for all ϕ(x) : Tn → R, C2.

The stochastic Mather problem [Gom02] consists in minimizing∫
Tn×Rn

L(x, v)dµ,

over all probability measures µ on Tn×Rn that satisfy the stochastic
holonomy constraint∫

Tn×Rn
vDxϕ(x) +

σ2

2
∆ϕ(x)dµ = 0,

for all ϕ(x) : Tn → R of class C2.

8.1.3 Discrete Mather problem

Also interesting is the discrete case, in which the trajectories are
replaced by sequences (xn, vn) that satisfy xn+1 = xn + vn. In this
case, if the sequence vn is globally bounded, for instance, we can
construct a measure µ in Tn × Rn through∫

Tn×Rn
φ(x, v)dµ = lim

N→∞

1
N

N∑
n=1

φ(xn, vn),

in which the limit is take through an appropriate subsequence.

For any continuous functions ϕ : Tn → R we have

N∑
n=1

ϕ(xn + vn)− ϕ(xn) = ϕ(xN+1)− ϕ(x1).
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Thus ∫
Tn×Rn

[ϕ(x+ v)− ϕ(x)] dµ = 0.

Therefore, we define Mather’s discrete problem, which consists in
minimizing ∫

Tn×Rn
L(x, v)dµ,

over all probability measures µ in Tn × Rn that satisfy the discrete
holonomy constraint:∫

Tn×Rn
[ϕ(x+ v)− ϕ(x)] dµ = 0,

for all continuous function ϕ : Tn → R.

8.1.4 Generalized Mather problem

Let U ⊂ Rm be a non-empty closed convex set. Assume that, for
some k ≥ 0 (usually k = 0, 1, 2) there exists a linear operator Av :
Ck(Tn) → C(Tn × U), which satisfies the following two conditions:
the first one is that for each fixed ϕ ∈ Ck(Tn) we have

|Avϕ| ≤ Cϕ(1 + |v|),

uniformly in Tn × U , which of course, if U is bounded means simply
that |Avϕ| is bounded; the second condition is that for ϕ ∈ Ck(Tn)
the mapping (x, v) 7→ Avϕ is continuous in Tn × U .

We assume that there exists another operator B defined in Ck(Tn)
which satisfies the following compatibility conditions with Av:

Avκ = Bκ, (8.5)
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for any κ ∈ R, and that, for any given probability measure ν on Tn,
there exists a probability measure µν in Tn × U such that∫

Tn×U
Avϕdµν =

∫
Tn
Bϕdν, (8.6)

for all ϕ ∈ Ck(Tn).

The Lagrangian L(x, v) : Tn × U → R is continuous and convex
in v, bounded below, and, either U is bounded, and no further hy-
pothesis are required, or if U is unbounded we assume the superlinear
growth condition in v, that is, uniformly in x

lim
|v|→∞

L(x, v)
|v|

=∞.

The generalized Mather problem consists in minimizing∫
Tn×U

L(x, v)dµ, (8.7)

over all probability measures µ in Tn × U that satisfy the constraint∫
Tn×U

Avϕdµ =
∫

Tn
Bϕdν, (8.8)

for all functions ϕ : Tn → R with appropriate regularity.

8.2 Some informal computations

In Mather’s problem, both in the deterministic and in stochastic
cases, the constraint∫

Tn×Rn
vDxϕ(x) +

σ2

2
∆ϕ(x)dµ = 0,
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(σ ≥ 0) is linear in v. Additionally, the Lagrangian is strictly convex
in v. This implies that minimizing measure has support in a graph
(x, v̄(x)). In fact, if the minimizing measure µ(x, v) were not support
in a graph, we could replace it by another measure µ̃ given by∫

Tn×Rn
φ(x, v)dµ̃(x, y) =

∫
Tn
φ(x, v̄(x))dθ(x),

where
v̄(x) =

∫
Rn
vµ(x, v)dv,

and ∫
Tn
ψ(x)dθ(x) =

∫
Tn×Rn

ψ(x)µ(x, v)dv,

for all ψ ∈ C(Tn). Thus∫
Tn×Rn

vDxϕ(x) +
σ2

2
∆ϕ(x)dµ̃ = 0.

Additionally, the convexity of L in v implies∫
Ldµ̃ ≤

∫
Ldµ.

If L is strictly convex, the inequality is strict unless v = v̄(x), µ
almost everywhere.

In conclusion:

Theorem 73. Let L(x, v) be strictly convex in v and µ a minimizing
measure for Mather’s problem (deterministic or stochastic). Then µ

it is supported in a graph

(x, v) = (x, v̄(x)).

Additionally the projection θ of µ in the coordinate x satisfies

−∇ · (v̄(x)θ(x)) +
σ2

2
∆θ = 0,

and the distribution sense.
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In order to simplify the presentation we are going to assume that
L = |v|2

2 − U(x). Using formally Lagrange multipliers, we conclude
that Mather’s problem is equivalent to the problem without con-
straints

min
θ,v(x)

∫
Tn

(
|v|2

2
− U(x) + vDxϕ+

σ2

2
∆ϕ+H

)
θdx.

The function ϕ corresponds to the Lagrange multiplier for the holon-
omy condition and H to the constraint

∫
Tn θ = 1.

To obtain the Euler-Lagrange equation, we make the following
variations

v → v + εw, θ → θ + εη.

This implies

v = −Dxϕ(x),

and
|v|2

2
− U(x) + vDxϕ+

σ2

2
∆ϕ+H = 0.

Therefore

−σ
2

2
∆ϕ+H(Dxϕ, x) = H, (8.9)

with

H(p, x) =
|p|2

2
+ U(x).

As an application, we are going to prove an estimate for the second
derivatives of the solution of the Hamilton-Jacobi equation. In order
to keep the presentation as elementary as possible we assume that
the dimension is 1. We further assume that the solution to equation
(8.9) is twice differentiable in x:

−σ
2

2
∆(ϕxx) +DxϕDx(ϕxx) + |Dxϕx|2 + Uxx = 0.
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Since v = −Dxϕ we have∫
−σ

2

2
∆(ϕxx) +DxϕDx(ϕxx)dµ = 0,

and therefore ∫
|D2ϕ|2dµ ≤ C.

Mather’s problem is an infinite dimensional linear programming
problem, and we can use duality, as we will discuss in section 8.3,
to gain a better understanding of the problem. For the stochastic
Mather problem, the dual is given by

inf
φ

sup
x
−σ

2

2
∆φ+H(Dxφ, x).

The duality theory implies that the value of this infimum is

−
∫
Ldµ.

On the other hand, this value is also the unique number H for which

−σ
2

2
∆u+H(Dxu, x) = H

has a periodic solution u. If we assume the existence of a smooth solu-
tion to the Hamilton-Jacobi equation we can check this fact directly.
To do so, let u be a solution of (8.9) then

inf
φ

sup
x
−σ

2

2
∆φ+H(Dxφ, x) ≤ sup

x
−σ

2

2
∆u+H(Dxu, x) = H.

Additionally, for each periodic function φ, u−φ has a minimum at a
point x0. At this point, Dxu = Dxφ, and ∆u ≥ ∆φ. Therefore

sup
x
−σ

2

2
∆φ+H(Dxφ, x) ≥ −σ

2

2
∆φ(x0) +H(Dxφ, x0)

≥ −σ
2

2
∆u(x0) +H(Dxu, x0) = H.
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8.3 Duality

In this section we make rigorous some of the previous discussion by
considering duality theory. The main tool is the Legendre-Fenchel-
Rockefellar theorem, whose proof will be presented in what follows,
our proof is based in the one presented in [Vil03].

Let E be a locally convex topological vector space with dual E′.
The duality pairing between E and E′ is denoted by (·, ·). Let h : E →
(−∞,+∞] be a convex function. The Legendre-Fenchel transform
h∗ : E′ → [−∞,+∞] of h is defined by

h∗(y) = sup
x∈E

(
−(x, y)− h(x)

)
,

for y ∈ E′. In a similar way, if g : E → [−∞,+∞) is concave we
define

g∗(y) = inf
x∈E

(
−(x, y)− g(x)

)
.

Theorem 74 (Fenchel-Legendre-Rockafellar). Let E be a locally con-
vex topological vector space over R with dual E′. Let h : E →
(−∞,+∞] be a convex function and g : E → [−∞,+∞) a concave
function. Then, if there exists a point x0 where both g and h are
finite and at least one of them is continuous,

min
y∈E′

[h∗(y)− g∗(y)] = sup
x∈E

[g(x)− h(x)] . (8.10)

Remark. It is part of the theorem that the infimum in the left-hand
side above is a minimum.

Proof. First we show the “≥” inequality in (8.10). Recall that

inf
y∈E′

[h∗(y)− g∗(y)] = inf
y∈E′

sup
x1,x2∈E

[g(x1)− h(x2) + (y, x1 − x2)] .
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By choosing x1 = x2 = x we conclude that

inf
y∈E′

[h∗(y)− g∗(y)] ≥ sup
x∈E

[g(x)− h(x)] .

The opposite inequality is more involved and requires the use of Hahn-
Banach’s theorem. Let

λ = sup
x∈E

[g(x)− h(x)] .

If λ = +∞ there is nothing to prove, thus we may assume λ < +∞.
We just need to show that there exists y ∈ E′ such that for all x1

and x2 we have

g(x1)− h(x2) + (y, x1 − x2) ≤ λ, (8.11)

since then, by taking the supremum over x1 and x2 yields

h∗(y)− g∗(y) ≤ λ.

From λ ≥ g(x)−h(x) it follows g(x) ≤ λ+h(x). Hence the following
convex subsets of E × R:

C1 =
{

(x1, t1) ∈ E × R : t1 < g(x1)
}

and
C2 =

{
(x2, t2) ∈ E × R : λ+ h(x2) < t2

}
.

are disjoint. Let x0 as in the statement of the theorem. We will
assume that g is continuous at x0 (for the case in which h is the
continuous function the argument is similar). Since (x0, g(x0)− 1) ∈
C1 and g is continuous at x0, C1 has non-empty interior. Therefore,
see [KF75, Chpt 4, sect 14.5], the sets C1 and C2 can be separated
by a nonzero linear function, i.e., there exists a nonzero vector z =
(w,α) ∈ E′ × R such that

inf
c1∈C1

(z, c1) ≤ sup
c2∈C2

(z, c2),
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that is, for any x1 such that g(x1) > −∞ and for any x2 s.t. h(x2) <
+∞ we have

(w, x1) + αt1 ≤ (w, x2) + αt2,

whenever t1 < g(x1) and λ+ h(x2) < t2.

Note that α can not be zero. Otherwise by using x2 = x0 and
taking x1 in a neighborhood of x0 where g is finite we deduce that
w is also zero. Therefore α > 0, otherwise, by taking t1 → −∞ we
would obtain a contradiction. Dividing w by α and letting y = w

α ,
we would obtain

(y, x1) + g(x1) ≤ (y, x2) + h(x2) + λ.

This is equivalent to (8.11) and thus we completed the proof.

Remark. The condition of continuity at x0 can be relaxed to
the condition of “Gâteaux continuity” or directional continuity, that
is the function t 7→ f(x0 + tx) is continuous at t = 0 for any x ∈ E.
Here f stands for either h or g.

8.4 Generalized Mather problem

The generalized Mather problem is an infinite dimensional linear pro-
gramming problem. We will use Fenchel-Legendre-Rockafellar’s the-
orem to compute the dual problem.

Let Ω = Tn × U . If U is bounded, set γ = 1, otherwise, let γ be
a function γ(v) : Ω→ [1,+∞) satisfying

lim
|v|→+∞

L(x, v)
γ(v)

= +∞, lim
|v|→+∞

|v|
γ(v)

= 0.
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Let M be the set of Radon measures in Ω with weight γ, that is,

M =
{
µ signed measure in Ω with

∫
Ω

γd|µ| <∞
}
.

The set M is the dual of the set Cγ,0(Ω) of continuous functions φ
that satisfy

‖φ‖γ = sup
Ω

∣∣∣∣φγ
∣∣∣∣ <∞, (8.12)

if U is bounded, and, if U is unbounded, satisfy both (8.12) and

lim
|v|→∞

φ(x, v)
γ(v)

= 0.

Let

M1 =
{
µ ∈M :

∫
Ω

dµ = 1, µ ≥ 0
}
,

and

M2 = cl
{
µ ∈M :

∫
Ω

Avϕdµ =
∫

Ω

Bϕdν, ∀ϕ(x) ∈ Ck(Tn)
}
,

in which k is the degree of differentiability needed on ϕ so that Avϕ
is well defined, and the closure cl is taken in the weak topology.

For φ ∈ Cγ,0(Ω) let

h(φ) = sup
(x,v)∈Ω

(−φ(x, v)− L(x, v)).

Since h is the supremum of convex functions, it is also a convex
function, and, as was shown in [Gom02], it is also continuous with
respect to uniform convergence in Cγ,0(Ω). Consider the set

C = cl
{
φ : φ = Avϕ,ϕ ∈ Ck(Tn)

}
,

where cl denotes the closure in Cγ,0. Since Av is a linear operator, C
is a convex set.
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Let ν be a fixed probability measure on Tn, and let µν as in (8.6).
Define

g(φ) =

−
∫
φdµν if φ ∈ C,

−∞ otherwise.

As C is a closed convex set, g is concave and upper semicontinuous.
Note that if φ = Avϕ, then

∫
φdµν =

∫
Bϕdν.

We claim that the dual of

sup
φ∈Cγ0 (Ω)

g(φ)− h(φ) (8.13)

is the generalized Mather problem .

We start by computing the Legendre transforms of h and g.

Proposition 75. We have

h∗(µ) =


∫
Ldµ if µ ∈M1

+∞ otherwise,

and

g∗(µ) =

0 if µ ∈M2

−∞ otherwise.

Proof. By its definition

h∗(µ) = sup
φ∈Cγ0 (Ω)

(
−
∫
φdµ− h(φ)

)
.

First we show that if µ is non-positive then h∗(µ) =∞.

Lemma 76. If µ 6≥ 0 then h∗(µ) = +∞.
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Proof. If µ 6≥ 0 we can choose a sequence of non-negative functions
φn ∈ Cγ0 (Ω) such that ∫

−φndµ→ +∞.

Therefore, since
sup−φn − L ≤ 0,

we have h∗(µ) = +∞.

Lemma 77. If µ ≥ 0 then

h∗(µ) ≥
∫
Ldµ+ sup

ψ∈Cγ0 (Ω)

(∫
ψdµ− supψ

)
.

Proof. Let Ln be a sequence of functions in Cγ0 (Ω) increasing point-
wisely to L. Any φ in Cγ0 (Ω) can be written as φ = −Ln − ψ, for
some ψ in Cγ0 (Ω). Therefore

sup
φ∈Cγ0 (Ω)

(
−
∫
φdµ− h(φ)

)
=

= sup
ψ∈Cγ0 (Ω)

(∫
Lndµ+

∫
ψdµ− sup(Ln + ψ − L)

)
.

Since
sup (Ln − L) ≤ 0,

we have
sup(Ln + ψ − L) ≤ supψ.

Therefore

sup
φ∈Cγ0 (Ω)

(
−
∫
φdµ− h(φ)

)
≥ sup
ψ∈Cγ0 (Ω)

(∫
Lndµ+

∫
ψdµ− supψ

)
.
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By the monotone convergence theorem∫
Lndµ→

∫
Ldµ.

Thus,

sup
φ∈Cγ0 (Ω)

(
−
∫
φdµ− h(φ)

)
≥
∫
Ldµ+ sup

ψ∈Cγ0 (Ω)

(∫
ψdµ− supψ

)
,

as required.

If
∫
Ldµ = +∞ then h∗(µ) = +∞. On the other hand, if

∫
dµ 6= 1

then

sup
ψ∈Cγ0 (Ω)

(∫
ψdµ− supψ

)
≥ sup
α∈R

α

(∫
dµ− 1

)
= +∞,

by choosing ψ = α, constant. Therefore h∗(µ) = +∞.

When
∫
dµ = 1, the previous lemma implies

h∗(µ) ≥
∫
Ldµ,

by choosing ψ = 0.

Additionally, for each φ∫
(−φ− L)dµ ≤ sup(−φ− L),

if
∫
dµ = 1. Therefore

sup
φ∈Cγ0 (Ω)

(
−
∫
φdµ− h(φ)

)
≤
∫
Ldµ.
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In this way,

h∗(µ) =


∫
Ldµ if µ ∈M1

+∞ otherwise.

Let µν be such that ∫
Avϕdµν =

∫
Bϕdν,

for all ϕ ∈ Ck(Tn). We can write any measure µ ∈ M2 as a sum of
µν + µ̂, with ∫

Avϕdµ̂ = 0,

for all ϕ ∈ Ck(Tn). By continuity, it follows∫
φdµ̂ = 0,

for all φ ∈ C. Furthermore, for any µ 6∈ M2, there exists φ̂ ∈ C such
that ∫

φ̂d(µ− µν) 6= 0.

Thus

g∗(µ) = inf
φ∈C
−
∫
φdµ+

∫
φdµν =

0 if µ ∈M2

−∞ otherwise.

Theorem 78.

sup
φ∈Cγ,0(Ω)

(g(φ)− h(φ)) = min
µ∈M

(h∗(µ)− g∗(µ)). (8.14)

Note 1: minµ∈M(h∗(µ)− g∗(µ)) = minµ∈M1∩M2

∫
Ldµ.

Note 2: It is part of the theorem that the right-hand side of (8.14) is
a minimum, and therefore there exists a generalized Mather measure.
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Proof. The set g > −∞ is non-empty, and, in this set, h is a con-
tinuous function as proved in [Gom02]. Then the result follows from
Fenchel-Legendre-Rockafellar’s Theorem, see, for instance [Vil03].

Let
H(ϕ, x) = sup

v
−L(x, v)−Avϕ.

As an example, suppose Avϕ = ∆ϕ+ vDxϕ. Then

H(ϕ, x) = −∆ϕ+H(Dxϕ, x).

The result in Theorem 78 can then be restated in the more convenient
identity:

min
µ

∫
Ldµ = − inf

ϕ
sup
x

[
H(ϕ, x) +

∫
Bϕdν

]
, (8.15)

where the minimum on the left-hand side is taken over all measures
µ that satisfy (8.8), and the infimum on the right-hand side is taken
over all ϕ ∈ Ck(Tn).

In the remaining of this section we consider Mather’s classical
problem Avϕ = vDxϕ and B = 0.

Theorem 79. Let Avϕ = vDxϕ. Let H? given by

H? = − sup
φ∈Cγ0 (Ω)

(h2(φ)− h1(φ)).

Then
H? = inf{λ : ∃ϕ ∈ C1(Tn) : H(Dxϕ, x) < λ}.

Proof. It is enough to observe that

H? = inf
ϕ∈C1(Tn)

sup
(x,v)∈Ω

−vDxϕ− L = inf
ϕ∈C1(Tn)

sup
x∈Tn

H(Dxϕ, x).
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We recall that from theorem 61 H? is the unique value for which

H(Dxu, x) = H?

admits a periodic viscosity solution.

8.4.1 Regularity

Now we present (with small adaptations) the regularity results for
viscosity solutions in the support of the Mather measures by [EG01].

Lemma 80. Let µ be a minimizing holonomic measure. Then∫
Td×Rd

DxL(x, v)dµ = 0.

Proof. Let h ∈ Rd, consider the measure µh on Td × Rd given by∫
Td×Rd

φ(x, v)dµh =
∫

Td×Rd
φ(x+ h, v)dµ,

for all continuous and compactly supported function φ : Td×Rd → R.
Clearly, for every h, µh is holonomic. Since µ is minimizing, it follows

d

dε

∫
L(x+ εh, v)dµ

∣∣∣∣
ε=0

= 0,

that is, ∫
Td×Rd

DxL(x, v)hdµ = 0.

Since h ∈ R is arbitrary, the statement of the Lemma follows.

It will be convenient to define the measure µ̃ on Td × Rd as the
push forward measure of the measure µ with respect to the one to
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one map (v, x) 7→ (p, x), where p = DvL(v, x). In other words we
define the measure µ̃ on Td × Rd to be∫

Td×Rd
φ(x, p)dµ̃ =

∫
Td×Rd

φ(x,DvL(x, v))dµ.

We also define projection µ̄ in Td of a measure µ in Td × Rd as∫
Td
ϕ(x)dµ̄(x) =

∫
Td×Rd

ϕ(x)dµ(x, v).

Note that, in similar way, µ̄ is also the projection of the measure µ̃.
Observe that for any smooth function ϕ(x) we have that µ̃ satisfies
the following version of the holonomy condition:∫

Td×Rd
DpH(p, x)Dxϕ(x)dµ̃ = 0,

because we can use identity v = −DpH(p, x) if p = −DvL(x, v).

Theorem 81. Let u be any viscosity solution of (5.4), and let µ
be any minimizing holonomic measure. Then µ̄-almost everywhere,
Dxu(x) exists and p = Dxu(x), µ̃-almost everywhere.

Proof. Let u be any viscosity solution of (5.4). Let ηε be a standard
mollifier, uε = ηε ∗ u. By strict uniform convexity there exists γ > 0
such that for any p, q ∈ Rd and any x ∈ Td we have

H(p, x) > H(q, x) +DpH(q, x)(p− q) +
γ

2
|p− q|2.

By Theorem 56, any viscosity solution of (5.4), and in particular u,
is Lipschitz.

Recall that, by Rademacher’s theorem [Eva98a], a locally Lips-
chitz function is differentiable Lebesgue almost everywhere. Using
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p = Dxu(y) and q = Dxu
ε(x), conclude that for every point x and

for Lebesgue almost every point y:

H(Dxu(y), x) ≥H(Dxu
ε(x), x)

+DpH(Dxu
ε(x), x)(Dxu(y)−Dxu

ε(x))

+
γ

2
|Dxu

ε(x)−Dxu(y)|2.

Multiplying the previous identity by ηε(x − y) and integrating over
Rd in y yields

H(Dxu
ε(x), x) +

γ

2

∫
Rd
ηε(x− y)|Dxu

ε(x)−Dxu(y)|2dy

≤
∫

Rd
ηε(x− y)H(Dxu(y), x)dy ≤ H +O(ε).

Let
βε(x) =

γ

2

∫
Rd
ηε(x− y)|Dxu

ε(x)−Dxu(y)|2dy.

Now observe that

γ

2

∫
Td×Rd

|Dxu
ε(x)− p|2dµ̃

≤
∫

Td×Rd
[H(Dxu

ε(x), x)−H(p, x)−DpH(p, x)(Dxu
ε(x)− p)] dµ̃

≤
∫

Td×Rd
H(Dxu

ε(x), x)dµ̃−H,

because ∫
Td×Rd

DpH(x, p)Dxu
ε(x) = 0,

and
pDpH(x, p)−H(x, p) = L(x,DpH(x, p)),

and
∫

Td×Rd L(x,DpH(x, p))dµ̃ = −H. Therefore,

γ

2

∫
Td×Rd

|Dxu
ε(x)− p|2dµ̃+

∫
Td
βε(x)dµ̄ ≤ O(ε).
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Thus, for µ̄-almost every point x, βε(x) → 0. Therefore, µ̄-almost
every point is a point of approximate continuity of Dxu (see [EG92],
p. 49). Since u is semiconcave (Proposition 58), it is differentiable at
points of approximate continuity. Furthermore

Dxu
ε → Dxu

pointwise, µ̄-almost everywhere, and so Dxu is µ̄ measurable. Also
we have

p = Du(x), µ̃− almost everywhere.

By looking at the proof the previous theorem we can also state
the following useful result:

Corollary 82. Let ηε be a standard mollifier, uε = ηε ∗ u. Then∫
Td
|Dxu

ε −Dxu|2dµ̄ ≤ Cε,

as ε→ 0.

As a Corollary we formulate an equivalent form of Theorem 81.

Corollary 83. Let u be any viscosity solution of (5.4), and let µ
be any minimizing holonomic measure. Then µ-almost everywhere,
Dxu(x) exists and

DvL(v, x) = Dxu(x) µ− almost everywhere. (8.16)

and

DxL(v, x) = −DxH(Dxu(x), x) µ− almost everywhere. (8.17)
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Proof. First we observe that the measure µ̃ is the push forward mea-
sure of the measure µ with respect to the one to one map (v, x) 7→
(p, x), where p = DvL(v, x). Therefore an µ̃ – almost everywhere
identity

F1(p, x) = F2(p, x) (p, x)-µ̃ almost everywhere

implies the µ – almost everywhere identity

F1(DvL(v, x), x) = F2(DvL(v, x), x) (v, x)-µ almost everywhere.

Thus (8.16) follows directly from Theorem 81.

Using (8.16) and the identity DxL(v, x) = −DxH(DvL(v, x), x),
we arrive at (8.17).

We observe that from the previous corollary it also follows∫
Td
DpH(Dx, x)Dxudµ̄ = 0.

Indeed,∫
Td
DpH(Dxu, x)Dxudµ̄

=
∫

Td
DpH(Dx, x)Dxu

εdµ̄+
∫

Td
DpH(Dxu, x) (Dxu−Dxu

ε) dµ̄.

We have ∫
Td
DpH(Dx, x)Dxu

εdµ̄ = 0.

To handle the second term, fix δ > 0. Then∣∣∣∣∫
Td
DpH(Dxu, x) (Dxu−Dxu

ε)
∣∣∣∣

≤ δ
∫

Td
|DpH(Dxu, x)|2dµ̄+

1
δ

∫
Td
|Dxu−Dxu

ε|2 dµ̄.

Note that since u is Lipschitz the term DpH(Dxu, x) is bounded, and
so is

∫
Td |DpH(Dxu, x)|2dµ̄. Send ε→ 0, and then let δ → 0.
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Theorem 84. Let u be any viscosity solution of (5.4), and let µ be
any minimizing holonomic measure. Then∫

Td
|Dxu(x+ h)−Dxu(x)|2dµ̄ ≤ C|h|2.

Proof. Applying Theorem 60 we have

H(Dxu
ε(x+ h), x+ h) ≤ H + Cε.

By Theorem 81 the derivative Dxu(x) exists µ̄ almost everywhere.
We recall a viscosity solution satisfies (5.4) in classical sense at all
points of differentiability. Thus H(Dxu(x), x) = H for µ̄ almost all
points x. Now observe that

Cε ≥ H(Dxu
ε(x+ h), x+ h)−H(Dxu(x), x)

= H(Dxu
ε(x+ h), x+ h)−H(Dxu

ε(x+ h), x)

+H(Dxu
ε(x+ h), x)−H(Dxu(x), x)

The term

H(Dxu
ε(x+ h), x+ h)−H(Dxu

ε(x+ h), x)

= DxH(Dxu
ε(x+ h), x)h+O(h2)

= DxH(Dxu(x), x)h+O(h2 + h|Dxu
ε(x+ h)−Dxu(x)|)

≥ DxH(Dxu(x), x)h+O(h2)− γ

4
|Dxu

ε(x+ h)−Dxu(x)|2.

Therefore, for µ̄ almost every x, we have

H(Dxu
ε(x+ h), x)−H(Dxu, x)

≤ Cε−DxH(Dxu(x), x)h+
γ

4
|Dxu

ε(x+ h)−Dxu(x)|2 + Ch2.

Since

H(Dxu
ε(x+ h), x)−H(Dxu, x)

≥ γ

2
|Dxu

ε(x+ h)−Dxu(x)|2

+DpH(Dxu, x)(Dxu
ε(x+ h)−Dxu(x))
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we have
γ

4

∫
|Dxu

ε(x+ h)−Dxu(x)|2dµ̄

≤ Cε+ C|h|2 −
∫
DxH(Dxu(x), x)hdµ̄.

By (8.17) and Lemma 80 it follows∫
DxH(Dxu(x), x)hdµ̄ = −

∫
DxL(v, x)hdµ = 0.

As ε → 0, through a suitable subsequence (since Dxu
ε(x + h) is

bounded in L2
µ̄), we may assume that Dxu

ε(x+ h) ⇀ ξ(x) in L2
µ̄, for

some function ξ ∈ L2
µ̄, and∫
|ξ −Dxu|2dµ̄ ≤ C|h|2.

Finally, we claim that ξ(x) = Dxu(x + h) for µ̄ almost all x. This
follows from Theorem 81 and the fact that for µ̄ almost all x we have
ξ(x) ∈ D−x u(x+ h), where D−x stands for the subdifferential. To see
this, observe that by Proposition 58 u is semiconcave, therefore uε

are uniformly semiconcave, that is

uε(y + h) ≤ uε(x+ h) +Dxu
ε(x+ h)(y − x) + C|y − x|2,

where C is independent of ε. Fixing y and integrating against a
non-negative function ϕ(x) ∈ L2

µ̄ yields∫
Td

(
uε(y + h)− uε(x+ h)−Dxu

ε(x+ h)(y − x)− C|y − x|2
)
·

· ϕ(x)dµ̄ ≤ 0

By passing to the limit we have that

u(y + h) ≤ u(x+ h) + ξ(x)(y − x) + C|y − x|2,

for all y and µ̄-almost all x, that is, ξ(x) ∈ D−x u(x+ h) for µ̄-almost
all x.
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Lemma 85. Let u be any viscosity solution of (5.4), and let µ be
any minimizing holonomic measure. Let ψ : Td×R→ R be a smooth
function. Then∫

Td
DpH(Dxu, x)Dx [ψ(x, u(x))] dµ̄ = 0

Proof. Clearly we have∫
Td
DpH(Dxu, x)Dx [ψ(x, uε(x))] dµ̄ = 0.

By the uniform convergence of uε to u, and L2
µ̄ convergence of Dxu

ε

to Dxu, see Corollary 82, we get the result.

Theorem 86. Let u be any viscosity solution of (5.4), and let µ be
any minimizing holonomic measure. Then, for µ̄ almost every x and
all h ∈ Rd,

|u(x+ h)− 2u(x) + u(x− h)| ≤ C|h|2.

Proof. Let h 6= 0 and define

ũ(x) = u(x+ h), û(x) = u(x− h).

Consider the mollified functions ũε, ûε, where we take

0 < ε ≤ η|h|2, (8.18)

for small η > 0. We have

H(Dũε, x+ h) ≤ H + Cε, H(Dûε, x− h) ≤ H + Cε.

For µ̄-almost every point x, Du(x) exists and therefore

H(Du(x), x) = H,
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so we have

H(Dũε, x)− 2H(Du, x) +H(Dûε, x)

≤ 2Cε+H(Dũε, x)−H(Dũε, x+ h)

+H(Dûε, x)−H(Dûε, x− h).

Hence
γ

2
(|Dũε −Du|2 + |Dûε −Du|2)

+DpH(Du, x) · (Dũε − 2Du+Dûε)

≤ C(ε+ |h|2) + (DxH(Dûε, x)−DxH(Dũε, x)) · h.

Using the inequality∣∣(DxH(p, x)−DxH(q, x)
)
·h
∣∣

≤
∥∥∥ ∂2H
∂p∂x

∥∥∥ |p− q| |h| ≤ γ
4 |p− q|

2 + 1
γ

∥∥∥ ∂2H
∂p∂x

∥∥∥2

|h|2 ,

where
∥∥∥ ∂2H
∂p∂x

∥∥∥ = sup
p,x

sup
|z|=1,|h|=1

∑
i,j

∣∣∣zjhi ∂2H
∂pj∂xi

(p, x)
∣∣∣, we arrive at

γ

4
(|Dũε −Du|2 + |Dûε −Du|2)

+DpH(Du, x) · (Dũε − 2Du+Dûε)

≤ C(ε+ |h|2).

Fix now a smooth, nondecreasing, function Φ : R→ R, and write
φ := Φ′ ≥ 0. Multiply the last inequality above by φ

(
ũε−2u+ûε

|h|2

)
,

and integrate with respect to µ̄:

γ

4

∫
Td

(|Dũε −Du|2 + |Dûε −Du|2)φ
(
ũε − 2u+ ûε

|h|2

)
dµ̄ (8.19)

+
∫

Td
DpH(Du, x) · (Dũε − 2Du+Dûε)φ(· · · ) dµ̄

≤ C(ε+ |h|2)
∫

Td
φ(· · · ) dµ̄.
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Now the second term on the left hand side of (8.19) equals

|h|2
∫

Rd

∫
Td
DpH(p, x) ·Dx

[
Φ
(
ũε − 2u+ ûε

|h|2

)]
dµ̄ (8.20)

and thus, by Lemma 85 it vanishes. So now dropping the above term
from (8.19) and rewriting, we deduce∫

Td
|Duε(x+ h)−Duε(x− h)|2φ

(
uε(x+h)−2u(x)+uε(x−h)

|h|2

)
dµ̄

(8.21)

≤ C(ε+ |h|2)
∫

Td
φ
(
uε(x+h)−2u(x)+uε(x−h)

|h|2

)
dµ̄.

We confront now a technical problem, as (8.21) entails a mixture
of first-order difference quotients for Duε and second-order difference
quotients for u, uε. We can however relate these expressions, since u
is semiconcave.

To see this, first of all define

Eε := {x ∈ supp(µ) | uε(x+h)−2u(x)+uε(x−h) ≤ −κ|h|2}, (8.22)

the large constant κ > 0 to be fixed below. The functions

ū(x) := u(x)− α

2
|x|2, ūε(x) := uε(x)− α

2
|x|2 (8.23)

are concave. Also a point x ∈ supp(µ̄) belongs to Eε if and only if

ūε(x+ h)− 2ū(x) + ūε(x− h) ≤ −(κ+ α)|h|2. (8.24)

Set

f ε(s) := ūε
(
x+ s

h

|h|

)
(−|h| ≤ s ≤ |h|). (8.25)
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Then f is concave, and

ūε(x+ h)− 2ūε(x) + ūε(x− h) = f ε(|h|)− 2f ε(0) + f ε(−|h|)

=
∫ |h|
−|h|

f ε
′′
(x)(|h| − |s|) ds

≥ |h|
∫ |h|
−|h|

f ε
′′
(s) ds (since f ε

′′
≤ 0)

= |h|
[
f ε
′
(|h|)− f ε

′
(−|h|)

]
= (Dūε(x+ h)−Dūε(x− h)) · h.

Consequently, if x ∈ Eε, this inequality and (8.24) together imply

2|ūε(x)− ū(x)|+ |Dūε(x+ h)−Dūε(x− h)||h| ≥ (κ+ α)|h|2.

Now |ūε(x) − ū(x)| ≤ Cε on Td, since u is Lipschitz continuous.
We may therefore take η in (8.18) small enough to deduce from the
foregoing that

|Dūε(x+ h)−Dūε(x− h)| ≥ (
κ

2
+ α)|h|. (8.26)

But then

|Duε(x+ h)−Duε(x− h)| ≥ (
κ

2
− α)|h|. (8.27)

Return now to (8.21). Taking κ > 2α and

φ(z) =

1 if z ≤ −κ

0 if z > −κ.

The inequality (8.21) was derived for smooth functions φ. However,
by replacing φ in (8.21) by a sequence φn of smooth functions increas-
ing pointwise to φ, and using the monotone convergence theorem, we
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conclude that (8.21) holds for this function φ. Then we discover from
(8.21) that

(
κ

2
− α)2|h|2µ̄(Eε) ≤ C(ε+ |h|2)µ̄(Eε).

We fix κ so large that

(
κ

2
− α)2 ≥ C + 1,

to deduce
(|h|2 − Cε)µ̄(Eε) ≤ 0.

Thus µ̄(Eε) = 0 if η in (8.18) is small enough, and this means

uε(x+ h)− 2u(x) + uε(x− h) ≥ −κ|h|2

for µ̄-almost every point x. Now let ε→ 0:

u(x+ h)− 2u(x) + u(x− h) ≥ −κ|h|2

µ̄-almost everywhere Since

u(x+ h)− 2u(x) + u(x− h) ≤ α|h|2

owing to the semiconcavity, we have

|u(x+ h)− 2u(x) + u(x− h)| ≤ C|h|2

for µ̄-almost every point x. As u is continuous, the same inequality
obtains for all x ∈ supp(µ̄).

Now we state and prove the main result of this section.

Theorem 87. Let u be any viscosity solution of (5.4), and let µ
be any minimizing holonomic measure. Then for µ̄-almost every x,
Dxu(x) exists and for Lebesgue almost every y

|Dxu(x)−Dxu(y)| ≤ C|x− y|. (8.28)
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Proof. First we show that

|u(y)− u(x)− (y − x) ·Dxu(x)| ≤ C|x− y|2. (8.29)

Fix y ∈ Rd and take any point x ∈ supp(µ̄) at which u is differen-
tiable.

According to Theorem 86 with h := y − x, we have

|u(y)− 2u(x) + u(2x− y)| ≤ C|x− y|2. (8.30)

By semiconcavity, we have

u(y)− u(x)−Du(x) · (y − x) ≤ C|x− y|2, (8.31)

and also

u(2x− y)− u(x)−Du(x) · (2x− y − x) ≤ C|x− y|2. (8.32)

Use (8.32) in (8.30):

u(y)− u(x)−Du(x) · (y − x) ≥ −C|x− y|2.

This and (8.31) establish (8.29).

Estimate (8.28) follows from (8.29), as follows. Take x, y as above.
Let z be a point to be selected later, with |x − z| ≤ 2|x − y|. The
semiconcavity of u implies that

u(z) ≤ u(y) +Du(y) · (z − y) + C|z − y|2. (8.33)

Also,

u(z) = u(x) +Du(x) · (z − x) +O(|x− z|2),

u(y) = u(x) +Du(x) · (y − x) +O(|x− y|2),
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according to (8.29). Insert these identities into (8.33) and simplify:

(Du(x)−Du(y)) · (z − y) ≤ C|x− y|2.

Now take
z := y + |x− y| Du(x)−Du(y)

|Du(x)−Du(y)|
to deduce (8.28).

Now take any point x ∈ supp(µ̄), and fix y. There exist points
xk ∈ supp(µ̄) (k = 1, . . . ) such that xk → x and u is differentiable at
xk. According to estimate (8.29)

|u(y)− u(xk)−Du(xk) · (y − xk)| ≤ C|xk − y|2 (k = 1, . . . ).

The constant C does not depend on k or y. Now let k →∞. Owing
to (8.28) we see that {Du(xk)} converges to some vector η, for which

|u(y)− u(x)− η · (y − x)| ≤ C|x− y|2.

Consequently u is differentiable at x and Du(x) = η.

It follows from Theorem 87 that function

v(x) = −DpH(Du(x), x) µ̄ almost everywhere.

is Lipschitz on a set of full measure µ̄. We can then extend v as
a Lipschitz function to the support of µ, which is contained in the
closure of this set of full measure. Note that any Lipschitz function
ϕ defined on a closed set K can be extended to a globally defined
Lipschitz function ϕ̂ in the following way: without loss of generality
assume that Lip(ϕ) = 1; define

ϕ̂(x) = inf
y∈K

ϕ(y) + 2d(x, y).

An easy exercise then shows that ϕ̂ = ϕ in K and that ϕ̂ is Lipschitz.
Therefore we may assume that v is globally defined and Lipschitz.
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8.4.2 Holonomy variations

In this section we study a class of variations that preserve the holon-
omy constraint. These variations will be used later to establish the
invariance under the Euler-Lagrange flow of minimizing holonomic
measures.

Let ξ : Td → Rd, ξ(x) be a C1 vector field on Td. Let Φ(t, x) be
the flow by ξ, i.e.,

Φ(0, x) = x, and ∂
∂tΦ(t, x) = ξ

(
Φ(t, x)

)
.

Consider the prolongation of ξ to Td × Rd, which is the vector field
on Td × Rd given by

ẋk(x, v) = ξk(x) , v̇k(x, v) = vi
∂ξk
∂xi

(x) . (8.34)

Lemma 88. The flow of (8.34) is given by

Xk(t, x, v) = Φk(t, x) , Vk(t, x, v) = vs
∂Φk
∂xs

(t, x). (8.35)

Proof. Since the X-part of the flow coincides with the Φ-flow, it only
remains to show that

V (0, x, v) = v , and ∂
∂tV (t, x, v) = v̇

(
X(t, x, v), V (t, x, v)

)
.

The first statement (V (0, x, v) = v) is clear since the map x 7→ Φ(0, x)
is the identity map. The second statement can be rewritten as

∂
∂tVk(t, x, v) = Vi(t, x, v)

∂ξk
∂xi

Φ(t,x)

.
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A simple computations yields

∂
∂tVk(t, x, v) = vs

∂
∂xs

(
∂
∂tΦk(t, x)

)
= vs

∂
∂xs

(
ξk
(
Φ(t, x)

))
= vs

∂ξk
∂xi

Φ(t,x)

∂Φi
∂xs

(t,x)

= Vi(t, x, v)
∂ξk
∂xi

Φ(t,x)

,

which is the desired identity.

For any real number t and any function ψ(x, v), define a new
function ψt as follows

ψt(x, v) = ψ
(
X(t, x, v), V (t, x, v)

)
. (8.36)

Thus the flow (8.35) generates the flow on space of functions ψ(x, v)
given by (8.36). Consider the set

C =
{
ψ ∈ Cγ0 (Td×Rd) : ψ(x, v) = v·Dxϕ(x), for some ϕ ∈ C1(Td)

}
.

(8.37)

Lemma 89. The set C, defined in (8.37), is invariant under the flow
given by (8.36).

Proof. Let g ∈ C1(Td) be such that ψ(x, v) = vi
∂
∂xi

g(x). Let gt
denote the flow by Φ of the function g, i.e., gt(x) = g

(
Φ(t, x)

)
. We

claim that for any real number t we have

ψt(x, v) = vi
∂

∂xi
gt(x),

where ψt is given by (8.36). Indeed,

ψt(x, v) = Vk(t, x, v)
∂g

∂xk
X(t,x,v)

= vs
∂g

∂xk
Φ(t,x)

∂Φk
∂xs

(t,x)

= vs
∂

∂xs

(
g
(
Φ(t, x)

))
= vs

∂

∂xs
gt(x),

and so the Lemma is proved.



i
i

“IMPA2009” — 2009/5/15 — 18:05 — page 180 — #180 i
i

i
i

i
i

180 8. AUBRY MATHER THEORY

The flow on functions (8.36) generates the flow on measures:
(t, µ) 7→ µt, where ∫

ψdµt =
∫
ψtdµ. (8.38)

Lemma 90. The flow (8.38) preserves the holonomy constraint.

Proof. Let µ be a holonomic measure. We have to prove that µt is
also a holonomic, i.e.,

∫
ψdµt = 0 for any ψ ∈ C. This is clear since

the flow (8.36) preserves the set C.

Theorem 91. Let µ be a minimizing measure for the action (8.3),
subject to the holonomy constraint. Then for any C1 vector field
ξ : Td → Rd we have∫

∂L

∂xs
ξs +

∂L

∂vs
vk

∂
∂xk

ξsdµ = 0. (8.39)

Proof. Let µt be the flow generated from µ by (8.38). Relation (8.39)
expresses the fact d

dt

(∫
L(x, v)dµt

)
t=0

= 0.

8.4.3 Invariance

In this section we present a new proof of the invariance under the
Euler-Lagrange flow of minimal holonomic measures.

In what follows ( )−1
js denotes the j, s entry of the inverse matrix.

We will only use this notation for symmetric matrices, thus, this
notation will not lead to any ambiguity. Before stating and proving
the main Theorem of this section, we will prove an auxiliary lemma.
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Lemma 92. Let µ be a minimal holonomic measure. Let vε(x) be
any smooth function. Let φ(x, v) be any smooth compactly supported
function. Then∫

vk
∂φ

∂xk

(
x, vε(x)

)
dµ (8.40)

+
∫

∂φ

∂vj

(
x, vε(x)

)
M

(
∂L

∂xs
(x, v)− vk

∂2L

∂xk∂vs

(
x, vε(x)

))
dµ

=
∫
vk

∂

∂xk

(
φ
(
x, vε(x)

))
dµ−

∫
vk

∂

∂xk

( ∂L
∂vs

(
x, vε(x)

)
Ẋε
s

)
dµ

+
∫
vk

( ∂L
∂vs

(
x, vε(x)

)
− ∂L

∂vs
(x, v)

) ∂

∂xk

(
Ẋε
s

)
dµ,

where Ẋε
s is a function of x only (does not depend on v), and is

defined as follows:

Ẋε
s(x) =

∂φ

∂vj

(
x, vε(x)

)(∂2L

∂2v

)−1

js

(
x, vε(x)

)
,

and

M =
(
∂2L

∂2v

)−1

js

(
x, vε(x)

)
.

Remark. We will only use this lemma for the case when vε is the
standard smoothing of the function v(x), that is, vε = ηε ∗ v, where
ηε is a standard mollifier.

Proof. This Lemma is based on Theorem 91. In this proof and bellow
vε stands for the function vε(x). We have:

vk
∂φ

∂xk

(
x, vε(x)

)
= vk

∂

∂xk

(
φ
(
x, vε(x)

))
− vk

∂φ

∂vj

(
x, vε(x)

) ∂vεj
∂xk

(x).
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Rewrite the last term:

vk
∂φ

∂vj
(x, vε(x))

∂vεj
∂xk

(x)

= vk
∂φ

∂vj
(x, vε)

(∂2L

∂2v

)−1

js
(x, vε)

∂2L

∂vs∂vq
(x, vε)

∂vεq
∂xk

(x)

= vkẊ
ε
s(x)

∂2L

∂vs∂vq
(x, vε)

∂vεq
∂xk

(x).

Plug these two lines into (8.40). And therefore we reduce (8.40) to∫
Ẋε
s(x)

(
∂L

∂xs
(x, v)−vk

( ∂2L

∂xk∂vs
(x, vε)+

∂2L

∂vs∂vq
(x, vε)

∂vεq
∂xk

))
dµ

= −
∫
vk

∂

∂xk

( ∂L
∂vs

(x, vε)Ẋε
s

)
dµ

+
∫
vk

( ∂L
∂vs

(x, vε)− ∂L

∂vs
(x, v)

) ∂

∂xk

(
Ẋε
s

)
dµ. (8.41)

Using the chain rule in the LHS and the Leibniz rule in the RHS we
further reduce (8.41) to∫

Ẋε
s

(
∂L

∂xs
(x, v)− vk

∂

∂xk

( ∂L
∂vs

(x, vε)
))

dµ

= −
∫
vkẊ

ε
s

∂

∂xk

( ∂L
∂vs

(x, vε)
)
dµ−

∫
vk
∂L

∂vs
(x, v)

∂

∂xk

(
Ẋε
s

)
dµ.

Noting the cancellation of the term
∫
vkẊ

ε
s
∂
∂xk

(
∂L
∂vs

(x, vε)
)
dµ, we see

that the last identity is equivalent to (8.39) with ξs(x) = Ẋε
s(x).

We will need the following result concerning invariant measures
under a flow:

Lemma 93. Let µ be a measure on a manifold M . Let χ be a smooth
vector field on M . The measure µ is invariant with respect to the flow
generated by the vector field χ if and only if for any smooth compactly
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supported function ξ : M → R we have∫
M

∇ξ · χdµ = 0.

Proof. Let Φt be the flow, generated by the vector field χ. Then if µ
is invariant under Φt, for any smooth compactly supported function
ξ(x) and any t > 0 we have∫

ξ
(
Φt(x)

)
− ξ(x)dµ = 0.

By differentiating with respect to t, and setting t = 0, we obtain the
“only if” part of the theorem.

To establish the converse, we have to prove that for any t the
measure µt is well-defined as

µt(S) = µ
(
(Φt)−1(S)

)
.

and coincides with µ.

By the Riesz representation theorem it is sufficient to check that
the identity ∫

ξdµ =
∫
ξdµt

holds for any continuous function ξ (vanishing at∞). Any continuous
function can be uniformly approximated by smooth functions. There-
fore it is sufficient to prove the above identity for smooth functions ξ
with compact support.

Assume, without loss of generality, that ξ(x) is a C2-smooth func-
tion. Fix t > 0. We have to prove that∫

ξ
(
Φt(x)

)
− ξ(x)dµ = 0.
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We have ∫
ξ
(
Φt(x)

)
− ξ(x)dµ

=
N−1∑
k=0

∫
ξ
(
Φt(k+1)/N (x)

)
− ξ
(
Φtk/N (x)

)
dµ

=
N−1∑
k=0

∫
ξk
(
Φt/N (x)

)
− ξk(x)dµ ,

where ξk(x) = ξ
(
Φtk/N (x)

)
N−1∑
k=0

∫
ξk
(
Φt/N (x)

)
− ξk(x)dµ

=
N−1∑
k=0

∫
∇ξk(x) ·

(
Φt/N (x)− x

)
+O( t

N2 )dµ

=
N−1∑
k=0

∫
∇ξk(x) ·

(
t
N χ(x) +O( t

N2 )
)

+O( t
N2 )dµ

= t
N

N−1∑
k=0

∫
∇ξk(x) · χ(x)dµ+O( tN ) = O( tN ).

Taking the limit N →∞ we complete the proof.

Theorem 94. Let µ be a minimizing holonomic measure. Then µ is
invariant under the Euler-Lagrange flow.

Proof. By Lemma 93 we have to prove that for any smooth compactly
supported function φ(x, v)∫

vk
∂φ

∂xk
+
∂φ

∂vj

(
∂2L

∂2v

)−1

js

[
∂L

∂xs
− vk

∂2L

∂xk∂vs

]
dµ = 0, (8.42)

where ( )−1
js stands for the j, s entry of the inverse matrix.
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The idea of the proof is first to rewrite (8.42) in an equivalent form
and then apply an approximation argument. Since µ is supported by
the graph v = v(x) we will change the x, v arguments with x,v(x) for
the following four types of functions ∂φ

∂xk
, ∂φ
∂vj

,
(
∂2L
∂2v

)−1

js
, and ∂2L

∂xk∂vs
,

occurring in (8.42):∫
vk

∂φ

∂xk

(
x,v(x)

)
dµ (8.43)

+
∫

∂φ

∂vj

(
x,v(x)

)
M

(
∂L

∂xs
(x, v)− vk

∂2L

∂xk∂vs

(
x,v(x)

))
dµ = 0,

where

M =
(
∂2L

∂2v

)−1

js

.

To complete the proof of the theorem, we use Lemma 92. The
first and second integrals in the RHS of (8.40) are zero due to the
holonomy constraint. The third integral in the RHS of (8.40) tends to
zero as ε→ 0, because |vε(x)−v(x)| < cε and therefore |vε(x)−v| < cε

µ-a.e., and because Ẋε
s is uniformly Lipschitz and hence ∂xkẊ

ε
s is

uniformly bounded. Therefore the LHS of (8.40) tends to zero as
ε→ 0.

But the LHS of (8.40) also tends to the LHS of (8.43) as ε → 0.
Indeed, since v(x) is a Lipschitz vector field we have

vε(x)→ v(x) (uniformly)

and
∂vε(x)
∂x

is uniformly bounded.

Moreover for any smooth function Ψ(x, v) we have

Ψ
(
x, vε(x)

)
→ Ψ

(
x,v(x)

)
(uniformly)
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and
∂

∂x

(
Ψ
(
x, vε(x)

))
is uniformly bounded.

Also note that for µ almost all (x, v) we have v = v(x). Therefore
the Theorem is proved.

8.5 Generalized Viscosity solutions

At this point we must consider a suitable class of weak solutions to
the equation

H(u, x) = λ, (8.44)

the viscosity solutions. The motivation to use viscosity solutions is
the following: as we mentioned before, in the case that U = Rn and
Avϕ = vDxϕ, the operator H is simply the Hamilton-Jacobi operator
H(Dxu, x). For first and second-order Hamilton-Jacobi equations,
viscosity solution is the right notion of solution to (8.44), and it is
therefore natural to extend it to our setting. To this end, we say that
a function u is a viscosity solution of (8.44) if the following property
holds: for any ϕ ∈ Ck(Tn) and any maximizer x0 of u − ϕ (resp.
minimizer) such that ϕ(x0) = u(x0), we have

H(ϕ, x0) ≤ λ (resp. ≥).

We should remark that, in this generalized setting, there is no
uniqueness of the number λ for which (8.44) admits a viscosity solu-
tion, even less uniqueness of viscosity solutions. For instance, unique-
ness of λ it is false for the equation

−u+H(D2u,Du, x) = λ,
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which either admits viscosity solutions for all values of λ, or does
not have any viscosity solution. Uniqueness of viscosity solution also
fails as the following elementary example shows: let ψ : Tn → R be
a non-constant C1 function. Then

Du(Du−Dψ) = 0 (8.45)

has two different solutions u = 0 and u = ψ.

Theorem 95. Let λ ∈ R and let u : Tn → R be a corresponding
viscosity solution to the Hamilton-Jacobi equation (8.44). Assume
that the operator B is monotone, that is, ϕ1 ≥ ϕ2 implies Bϕ2 ≥
Bϕ1, for all continuous functions ϕ1, ϕ2, and, furthermore, that it
is continuous with respect to uniform convergence, that is, ϕn → ϕ

uniformly, implies Bϕn → Bϕ uniformly. In addition, suppose that
there exist Ck functions uε such that

H(uε, x) ≤ λ+O(ε),

and, finally, that uε → u uniformly. Then

inf
ϕ

sup
x
H(ϕ, x) +

∫
Bϕdν = λ+

∫
Budν.

Proof. Let λ and u be as in the statement of the theorem. Then, for
any smooth function ϕ : Tn → R, there exists a point xϕ at which
u− ϕ has a minimum. Clearly,

inf
ϕ

sup
x
H(ϕ, x) +

∫
Tn
Bϕdν

≥ inf
ϕ
H(u(xϕ) + ϕ− ϕ(xϕ), xϕ) +

∫
Tn
Bϕdν

+
∫

Tn
B(u(x0)− ϕ(x0))dν,
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where we have used (8.5) to add the constant u(x0)−ϕ(x0) to ϕ. By
the viscosity property we conclude that

inf
ϕ

sup
x
H(ϕ, x) +

∫
Tn
Bϕdν

≥ λ+ inf
ϕ

∫
Tn
Bϕdν +

∫
Tn
B(u(xϕ)− ϕ(xϕ))dν.

Since xϕ is a minimum of u−ϕ, we have u(x)−ϕ(x) ≥ u(xϕ)−ϕ(xϕ),
which implies u(x) ≥ ϕ(x) + u(xϕ) − ϕ(xϕ). This inequality yields,
from the monotonicity of B, that

B [ϕ+ u(xϕ)− ϕ(xϕ)] ≥ Bu,

and thus

inf
ϕ

sup
x
H(ϕ, x) +

∫
Tn
Bϕdν ≥ λ+

∫
Tn
Budν.

To establish the reverse inequality, we use the sequence uε to
obtain:

inf
ϕ

sup
x
H(ϕ, x) +

∫
Bϕdν ≤ lim inf

ε→0
sup
x
H(uε, x) +

∫
Buεdν

≤ λ+ lim inf
ε→0

∫
Buεdν.

As an example, consider the discounted Mather problem, in this
case σ = 0, f(x, v) = v and

Avϕ = −αϕ+ vDxϕ,

and
Bϕ = −αϕ.
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The corresponding Hamilton-Jacobi equation is

αuα +H(Dxu
α, x) = 0, (8.46)

and the value of the generalized Mather problem is given by

α

∫
uαdν.

Therefore, if we set ν = δy(x) we have

uα(y) =
∫
uαdν =

1
α

sup
ϕ

inf
x

[−αϕ−H(Dxϕ, x) + αϕ(y)] ,

which is a representation formula for the value of any viscosity so-
lution of (8.46) and, in particular, implies uniqueness of solution of
(8.46).

Lemma 96. Let λ ∈ R, and assume that there exists a viscosity
solution of

H(u, x) = λ.

Furthermore, suppose that for all sufficiently small ε > 0, there exist
Ck functions uε such that

H(uε, x) ≤ λ+O(ε).

Suppose further, that
∫
Buεdν −

∫
Budν = O(ε). Let µ be a mini-

mizing measure with trace ν, and µ̃ any probability measure. Then∫
Ldµ ≤

∫
L+Avuεdµ̃−

∫
Buεdν +O(ε).

Proof. Since pointwise L + Avuε ≥ −H(uε, x), for any probability
measure µ̃ ∫

L+Avuεdµ̃ ≥ −H(uε, x) ≥ −λ+O(ε).
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Furthermore, ∫
Buεdν =

∫
Budν +O(ε).

Thus we conclude that∫
L+Avuεdµ̃−

∫
Buεdν ≥ −λ+

∫
Budν +O(ε) =

∫
Ldµ+O(ε).

8.6 Support of generalized Mather mea-

sures

The next result concerns the approximation of the support of mini-
mizing measures.

Theorem 97. Suppose that for all sufficiently small ε there exists a
Ck function uε that satisfies

H(uε, x) ≤ λ+O(ε).

Assume further that U is convex and that

L(x, v) +Avuε

is strictly convex in v. Let

vε(x) = argminL(x, v) +Avuε, (8.47)

and let µ be a minimizing measure. Then∫
|v − vε(x)|2dµ = O(ε).
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Remark. Since U is convex and v 7→ L(x, v) + Avuε is strictly
convex its argmin is single valued, and thus vε is well defined.

Proof. Since vε is a minimizer, the strict convexity hypothesis implies
L(x, v) +Avuε ≥ L(x, vε) +Avεuε + θ|v − vε|2. Thus∫

Ldµ =
∫
L(x, v) +Avuεdµ−

∫
Buεdν

≥
∫
L(x, vε) +Avεuε + θ|v − vε|2dµ−

∫
Buεdν

≥ −λ+O(ε) +
∫
θ|v − vε|2dµ−

∫
Buεdν

≥ O(ε) +
∫
Ldµ+ θ

∫
|v − vε|2dµ,

where in the last inequality we have used Lemma 96.

Corollary 98. Under the hypothesis of the previous theorem, let λ ∈
R, and suppose that there exists a Ck solution u : Tn → R to

H(u, x) = λ,

and let µ be a corresponding Mather measure. Then

v ∈ argmin [Avu+ L(x, v)]

µ almost everywhere.

8.7 Perturbation problems

This last section of this chapter is dedicated to the study of pertur-
bations of the generalized Mather problem and its applications to the
study of singular perturbations for viscosity solutions of Hamilton-
Jacobi equations. In particular, we would like to understand which
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are the possible limits of regularizations of the Hamilton-Jacobi equa-
tion in situations where there is no uniqueness of solution.

8.7.1 Regular perturbation problems

In this section we establish a selection criterion for certain problems
in which the perturbation arises in the holonomy constraint. One of
the main applications is the study of vanishing discount rate problem
for Hamilton-Jacobi equations, see Corollary 102.

Assume that

Lε(x, v) = L0(x, v) + εL1(x, v), (8.48)

satisfying the hypothesis in the previous section, uniformly in ε, and
that, additionally,

0 ≤ L1 ≤ CL0,

for some C > 0.

The linear operators that we consider have the form

Avεϕ = Av0φ+ εAv1ϕ, (8.49)

with corresponding boundary operators

Bεϕ = B0φ+ εB1ϕ. (8.50)

We say that the perturbation terms Av1 and B1 are regular, if for any
sequence ϕε converging uniformly to ϕ we have∫

Av1ϕεdµ→
∫
Av1ϕdµ,

and ∫
B1ϕεdν →

∫
B1ϕdν.
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Now we state our main result:

Theorem 99. Let Lε(x, v) be as in (8.48), and consider operators of
the form (8.49), (8.50) such that the perturbation terms are regular.

Fix a probability trace measure ν, and let µε be generalized Mather
measures. We further assume that there exist viscosity solutions of

Hε(uε, x) = λε,

and corresponding Ck functions vε satisfying

Hε(vε, x) ≤ λε +O(ε2),

and such that, as ε → 0, vε, uε → u, uniformly in Tn, for some
viscosity solution of the limiting problem. Suppose µε ⇀ µ. Then
µ is a Mather measure for the limiting problem. Furthermore, we
assume that for each solution ũ of the limiting problem, there are Ck

functions ũε such that

H0(ũε, x) ≤ λ0 +O(ε2).

Then, for any viscosity solution ũ of the limiting problem, we have∫
L1 +Av1ũdµ−

∫
B1ũdν ≤

∫
L1 +Av1udµ̃−

∫
B1udν.

Proof. Since, for any minimizing measure µ̃ for the limit problem we
have∫

L0dµ ≤ lim
ε→0

∫
L0dµε ≤ lim

ε→0

∫
Lεdµε ≤ lim

ε→0

∫
Lεdµ̃ =

∫
L0dµ̃.

Since by a simple limiting argument∫
Av0ϕdµ =

∫
B0ϕdν,
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it follows that µ is a minimizing measure.

Note that∫
Lεdµε =

∫
Lε +Avεvεdµε −

∫
Bεvεdν

≤ O(ε2) +
∫
Lε +Avεvεdµ̃−

∫
Bεvεdν

=
∫
L0dµ̃+ ε

[∫
L1 +Av1vεdµ̃−

∫
B1vεdν

]
+O(ε2).

Similarly,∫
L0dµ̃ =

∫
L0 +Av0ũεdµ̃−

∫
B0ũεdν

≤ O(ε2) +
∫
Lε +Avε ũεdµε −

∫
Bεũεdν

− ε
∫
L1 +Av1ũεdµε + ε

∫
B1ũεdν

=
∫
Lεdµε − ε

[∫
L1 +Av1ũεdµε −

∫
B1ũεdν

]
+O(ε2).

Thus we conclude that∫
L1 +Av1ũεdµε −

∫
B1ũεdν ≤

∫
L1 +Av1vεdµ̃−

∫
B1vεdν +O(ε),

(8.51)
and then the result in the theorem follows from sending ε→ 0.

Two elementary corollaries to the previous theorem are:

Corollary 100. Suppose Av1 = 0, B1 = 0, and

Lε(x, v) =
|v|2

2
+ P · v + εU(x).

If P is rationally dependent then the Mather measures at ε = 0,
are not unique, as their ergodic components are supported on lower
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dimensional tori or periodic orbits. In this case, the limiting Mather
measure minimizes ∫

U(x)dµ,

among all possible Mather measures.

Corollary 101. Suppose Av1 = 0, B1 = 0. Let P ∈ Rn, and

Lε(x, v) = L0(x, v) + εP · v.

Assume that at ε = 0 there are Mather measures with different rota-
tion numbers

Q[µ] =
∫
vdµ.

Then the limiting measure minimizes the functional

P ·Q[µ],

among all possible Mather measures.

Also as a further corollary to the previous theorem we have the
following selection criterion for the discounted Mather measure prob-
lem:

Corollary 102. Suppose uε is the unique viscosity solution to the
Hamilton-Jacobi equation

εuε +H(Duε, x) = 0.

Consider a probability trace measure ν on Tn and the corresponding
discounted Mather measure µε. Let 〈f〉 denote

〈f〉 = f −
∫
fdν.

Suppose 〈uε〉 → u and µε ⇀ µ. Let ũ and µ̃ be, respectively, any
viscosity solution or Mather measure for the ε = 0 problem. Then∫

〈u〉dµ̃ ≤
∫
〈ũ〉dµ.
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As an example, consider a one dimensional Hamiltonian

H(p, x) =
p2

2
+ U(x),

with the potential U(x), 1/2 periodic. Suppose further that the po-
tential has a maximum at 0. In this case, one can verify directly
that the viscosity solutions uε to the discounted problem are also
1/2-periodic. However, when ε = 0, there are stationary solutions
which are 1-periodic, and not 1/2-periodic.

Consider the Mather measure µ = 1
2

[
δ0(x) + δ1/2(x)

]
δ(v). It is

easy to see that µ is a Mather measure. Consider now the trace
measure dν = dx, and corresponding Mather measures µε. Let u be
the unique 1/2 periodic solution, which is given by

u(x) =

u(x) = 1−cos(2πx)
π for x ∈ [0, 1/4] ∪ [3/4, 1]

u(x) = 1+cos(2πx)
π for x ∈ [1/4, 3/4].

We also have that µ̃ =
[
λδ0(x) + (1− λ)δ1/2

]
δ(v) is a Mather

measure. Thus, for any viscosity solution ũ, we have

λu(0) + (1− λ)u(1/2)−
∫
u(x)dx ≤ ũ(0) + ũ(1/2)

2
−
∫
ũ(x)dx.

(8.52)
In the case of U(x) = cos(4πx), if we choose ũ to be the only C1

solution, we have,

Dũ =


√

2(1− cos(4πx)) 0 < x < 1/2

−
√

2(1− cos(4πx)) 1/2 < x < 1.

Then, Dũ = 2 sin(2πx). We have u(0) = u(1/2) = ũ(0) = 0. A
simple computation yields ũ(1/2) = 2

π , and
∫
u = π−2

π2 ,
∫
ũ = 1

π .
Thus, the inequality (8.52) is strict and reads 2−π

π2 < 1
π −

1
π = 0,

which rules out ũ as a possible limit.
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As a second example, let ψ : Tn → R be a smooth function and
consider the Lagrangian L(x, v) = |v−Dψ(x)|2

4 . The corresponding
Hamiltonian is H(p, x) = p · (p−Dψ(x)). The discounted Hamilton-
Jacobi equation is then

εuε +Duε · (Duε −Dψ) = 0,

which has a unique solution uε = 0. When ε = 0 there are several
solutions, for instance, u = 0 and ũ = ψ. Our selection criterion
reads then ∫

〈0〉dµ̃ ≤
∫
〈ψ〉dµ.

The minimizing measures when ε = 0 are supported at the critical
points of ψ. This criterion rules out the possibility of these measures
being supported at the maximizers of ψ, unless ν is itself supported
there (in which case one would have 〈ψ〉 ≥ 0 everywhere).

8.7.2 Vanishing viscosity problems

In many important problems such as the vanishing viscosity problem
[AIPSM04] the perturbations are not regular. However, the other hy-
pothesis on theorem 99, namely, the existence of viscosity solutions,
approximate supersolutions and convergence of these to the corre-
sponding solutions of the limiting problem still holds. Therefore we
still have inequality (8.51). Thus the main problem consists studying
the limit ε→ 0 in (8.51).

In the vanishing viscosity problem we have B ≡ 0, and

Avεϕ = vDxϕ+ ε∆ϕ.

Formally, as ε→ 0 we obtain∫
∆ũdµ ≤

∫
∆udµ̃.
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In general, the previous inequality may not make sense. However, in
some examples is still possible to make the proof of theorem 99 go
through. As an example, consider the case in which

Hε(u, x) = −ε∆u+Dxu · (Dxu−Dxψ),

where ψ is an arbitrary smooth function in Tn.

When ε = 0, the Hamilton-Jacobi equation

Dxu · (Dxu−Dxψ) = 0

has two solutions (up to constants) u = 0 and u = ψ. However, for
ε > 0 there exists only one solution of

−ε∆uε +Dxuε · (Dxuε −Dxψ) = 0,

which is (up to constants) uε = 0. Clearly, in this case the proof of
99 goes through as its is possible to take the limit as ε→ 0 in (8.51).
Thus any limiting Mather measure will satisfy∫

∆ψdµ ≤ 0. (8.53)

There is a nice interpretation of this result, that we describe next.
The Lagrangian for this system is simply

L(x, v) =
|v −Dxψ|2

4
.

Therefore, when ε = 0 the minimizing measures are invariant mea-
sures with respect to the gradient flow

ẋ = Dxψ(x),

and therefore it should be supported in the critical points of ψ. Equa-
tion (8.53) means that, in average, these points should be maximiz-
ers. In fact, this can be proved directly, see [AIPSM04] for a different
proof technique and related results, or by observing that in this case
the projection in the x coordinate of the stochastic Mather measure
has density θ(x) = e−

ψ
ε .
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8.8 Bibliographical notes

In what concerns Mather measures the main references are, of course,
the papers by Mather [Mat91] and Mañe [Mn96]. The connection
of Mather measures with viscosity solutions was first observed by
A. Fathi [Fat97a, Fat97b, Fat98a, Fat98b], and subsequent papers.
Some PDE methods using viscosity solution techniques were first in-
troduced in [EG01] and [EG02]. The reader is also advised to look
at the forthcoming book by A. Fathi [Fat], as well as [CI99]. Gen-
eralized Mather measures were discussed in [Gom08] as a key tool
to understand perturbation problems. Different techniques are also
discussed in [AIPSM04]. An important problem related to Aubry-
Mather theory is optimal transportation. A key reference for this
problem is the book [Vil03].
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Monotone semigroups

In this last chapter we summarize without proof some results concern-
ing a viscosity solution characterization of monotone semigroups.

9.1 Monotone semigroups

We will follow here the approach in [Bit01], which simplifies the orig-
inal work [AGLM93].

Assume we are given a family of operators Tt (t ≥ 0) mapping a
subset X of continuous functions in Rn to itself.

We suppose that Tt is monotone in the following sense: if f ≤ g

then, for any t we have

Ttf ≤ Ttg.

201
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We suppose also that Tt satisfies the following semigroup property:
Tt1 ◦ Tt2 = Tt1+t2 , for all t1, t2 ≥ 0.

The translation operator τ is defined by τyψ(x) = ψ(x + y), for
any ψ : Rn → R. We assume that the domain of functions X where
T is defined satisfies the following hypothesis:

H1 C∞c (Rn) ⊂ X;

H2 for all f ∈ X and all y ∈ Rn, τyf ∈ X.

H3 for any f ∈ X there exists f̃ ∈ C∞ ∩X such that f ≤ f̃ .

To describe the hypothesis that the operator will satisfy, we will
need the following notation: for any sequence d = (dk) of positive
reals we define

Qd = {η ∈ C∞c (Rn), ‖Dαη‖∞ ≤ dk, |α| ≤ k}.

I Continuity: for every ψ ∈ X the function (t, x) 7→ Tt[ψ](x) is
continuous and for all b > a ≥ 0 there exists C = C(a, b, ψ)
such that

|Ttψ| ≤ C,

for any t ∈ [a, b].

II Locality: for every ψ1, ψ2 ∈ C∞(Rn)∩X and any fixed x ∈ Rn,
and r > 0, such that ψ1 = ψ2 in the ball B(x, r) then

Tt−h,tψ1 − Tt−h,tψ2 = o(h),

as h→ 0+.
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III Regularity: for any sequence of positive numbers d = (dk), any
compact set K ⊂ Rn and for every ψ ∈ C∞(Rn)∩X there exists
a function mK,f,d(·) : R+ → R+ such that mK,f,d(0+) = 0,

|Tt[ψ + λη]− Tt[ψ]− λη(x)| ≤ mK,f,d(λ)t,

for any (x, η) ∈ K ×Qd and any λ, t ≥ 0.

IV Translation: for any compact subset K ⊂ Rn and every ψ ∈
C∞c (K), there exists a function nK,ψ : R+ → R+, with nK,ψ(0+) =
0 such that

|τyTt[ψ](x)− Tt[τyψ](x)| ≤ nK,ψ(|y|)t,

for any x ∈ K and t ≥ 0.

Theorem 103. Let X be a subspace of C(Rn) for which (H1)-(H3)
hold. Let Tt be a monotone semigroup satisfying (I)-(IV). Then there
exists a continuous function F : Rn×R×Rn×Rn×n → R such that,
for all f ∈ X, u(x, t) = Ttf is a continuous viscosity solution to

ut + F (x, u,Du,D2u) = 0,

with u(x, 0) = f(x).

9.2 Bibliographical notes

The main reference for this chapter is the paper [Bit01], in addition
to the paper [AGLM93].
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