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Preface

For almost a century, classical and quantum field theory have occu-
pied center stage in theoretical physics, whose main object of study
are the so-called gauge fields. Examples are Weyl’s description of
classical electromagnetism as a U(1) gauge theory, Yang & Mills’
model of isotopic spin and Weinberg & Salam’s standard model of
particle physics.

The theory of fiber bundles, connections and characteristic classes
was being developed at around the same time, with little relation to
the physicists’ work. It was only in the early 70’s that physicists and
mathematicians realized that the gauge fields were best described
as the curvature of a connection on some principal or vector bundle,
and that characteristic classes were topological “charges”, akin to the
usual electric charge.

Once made, this observation led to a hurricane of activity in math-
ematical physics during the 70’s and 80’s. I believe it is no exagger-
ation to say that the interplay between pure mathematics and the-
oretical physics during those two decades have revolutionized both
fields.

The goal of these notes is to provide the reader with one aspect
of this revolution. We will study anti-self-dual connections on 4-
dimensional Riemannian manifolds and some closely related objects
in lower dimensions. More precisely, we will discuss the two most
fundamental results of the subject, in my opinion: Donaldson’s non-
existence theorems in differential topology and the Hitchin-Kobayashi
correspondence between stable holomorphic bundles and anti-self-
dual connections. Rather than focusing on the (very hard) techniques
involved, we will concentrate on the ideas and basic definitions, trying
to give a flavor of how these results are proved.

While it is probably true that these (and other) results could have
been proved without any input from physics, such input provided
important motivation and inspiration. It is hard to imagine how
one could even dream of these two fundamental results without the
physics input.

Another important feature of these two Theorems is that they
provide true examples of the unity within mathematics. To prove a
result in differential topology, Donaldson uses the geometry of con-



“cursoNew”
2005/5/17
page

i

i

i

i

i

i

i

i

nections and deep analytical tools together with the more traditional
methods of algebraic topology; and it is worth noting that most of
the examples that have been studied actually come from algebraic
geometry. The Hitchin-Kobayashi correspondence is a bridge from
differential geometry to algebraic geometry through the analysis of
partial differential equations.

These notes are organized as follows. In Chapter 1 we revise the
basic notions of vector bundles, connections and their curvature and
characteristic classes. The anti-self-duality equations are introduced
in chapter 2, where we also explain the construction of the instan-
ton moduli space as a Riemannian manifold. This manifold is then
used in Chapter 3 to sketch the proof of Donaldson’s non-existence
theorems and the existence of fake R4’s. Chapter 4 is dedicated to
complex geometry and the second main result, the Hitchin-Kobayashi
correspondence. We conclude in Chapter 5 by examining the simplest
dimensional reductions of the anti-self-duality equations to dimension
3 (Bogomolny equations), dimension 2 (Hitchin’s equations) and di-
mension 1 (Nahm’s equations). We focus on Hitchin’s equations to
emphasize how gauge theory provides a bridge between algebraic ge-
ometry and the theory of integrable systems.

Donaldson’s non-existence theorems links the differential geome-
try of vector bundles to the topology of smooth 4-dimensional mani-
folds, while the Hitchin-Kobayashi correspondence links the differen-
tial geometry of vector bundles to algebraic geometry. Gauge theory
has also found equally profound links and applications to other tra-
ditional fields of mathematics, like representation theory, symplectic
geometry and differential geometry itself, which unfortunately are
outside the scope of these notes. Moreover, the infiltration of gauge
theory within other mathematical subjects is by no means over; in
fact, gauge theory has evolved into a set of tools available for use
in a wide variety of problems. It is our hope that these notes will
motivate the reader to further explore such links, which place gauge
theory as a keystone of 21st century mathematics.
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Chapter 1

Vector bundles with
connections

We start with a brief review of the central objects of study in gauge
theory: vector bundles with connections. A more detailed exposition
can be found at [14, 16, 17].

1.1 Vector bundles

Let X be a smooth manifold of dimension d. Recall that a rank r
complex vector bundle over X is a smooth manifold E together with
a smooth map π : E → X satisfying the following conditions:

1. π is surjective;

2. for each point x ∈ X, Ex = π−1(x) is a complex vector space
of dimension r;

3. for each point x ∈ X, there is a neighborhood U of x and a
smooth map φU : π−1(U) → U×Cr such that φU |Ex

: Ex → Cr

is an isomorphism.

The vector space Ex is called the fiber of E over x, while the map φU

is called a local trivialization of E.
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2 [CAP. 1: VECTOR BUNDLES WITH CONNECTIONS

In other words, a complex vector bundle E → X is a family of
complex vector spaces parameterized by X which is locally a product
of the parameter space with a fixed complex vector space. Clearly,
one can define real vector bundles in the same manner simply by
substituting Cr for Rr in the definition.

Every complex vector bundle defines a set of transition functions.
More precisely, consider the complex vector bundle π : E → X, and
let {Uα} be an open covering of X such that φα : π−1(Uα) → Uα×Cr

are local trivializations. If Uα ∩ Uβ 6= ∅, we can consider the maps

gαβ = φβφ
−1
α : Uα ∩ Uβ × Cr → Uα ∩ Uβ × Cr

which are called the transition functions of E with respect to the
covering {Uα}. It is easy to see that they must satisfy the following
relation:

gαβgβγgγα = 1 , on Uα ∩ Uβ ∩ Uγ .

Conversely, given the set of transition functions, one can reconstruct
the bundle E.

Proposition 1. Let X be a smooth manifold, let {Uα} be an open
covering of X, and let ταβ be a collection of smooth functions

ταβ : Uα ∩ Uβ → GL(Cr) ,

satisfying
ταβτβγτγα = 1 , on Uα ∩ Uβ ∩ Uγ .

Then there exist a rank r vector bundle E → X with local trivializa-
tions

φα : π−1(Uα) → Uα × Cr

satisfying φβφ
−1
α (x, v) = (x, ταβ(x)v).

The proposition above helps us to form new vector bundles out
of two vector bundles E and F over the same base space X. Assume
that E and F are given by transition functions gαβ ∈ GL(Cr) and
hαβ ∈ GL(Cs), respectively. Then one can define the bundles:

• E ⊕ F is the bundle given by transition functions

kαβ =
(
gαβ 0
0 hαβ

)
∈ GL(Cr+s) ;
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[SEC. 1.2: CONNECTIONS AND CURVATURE 3

• E ⊗ F is the bundle given by transition functions

kαβ = gαβ ⊗ hαβ ∈ GL(Cr ⊗ Cs) ;

• ΛpE is the bundle given by transition functions

kαβ = Λpgαβ ∈ GL(ΛpCr) ;

• E∗ is the bundle given by transition functions

kαβ = gαβ
t ∈ GL(Cr) ;

and so on. It is easy to see that (E ⊕ F )x = Ex ⊕ Fx, (E ⊗ F )x =
Ex ⊗ Fx, etc.

The simplest example of a (real) vector bundle over X is the tan-
gent bundle TM . The bundle of p-forms on X is defined as Λp(TM).

A map between vector bundles E and F is a smooth map f :
E → F such that f(Ex) ⊂ Fx and f |Ex : Ex → Fx is linear for each
x ∈ M . An isomorphism g : E → E of the vector bundle E is called
an automorphism or a gauge transformation of E; note that the set of
gauge transformations of a given vector bundle form a group, denoted
by G(E).

A section σ of a complex vector bundle π : E → X over U ⊂ M
is a smooth map s : U → E such that πσ = 1X , i.e. σ(x) ∈ Ex.
The section σ is said to be global if it is defined over all of M . The
set of all sections of E, denoted by Γ(E), is a complex vector space,
and it has the structure of a C∞(M)-module. For instance, the space
of smooth p-forms on X being its space of sections of Λp(TM), i.e.
Ωp

X = Γ(Λp(TM)).

Proposition 2. Given two vector bundles E,F →M , there exist an
isomorphism of C∞(M)-modules

Γ(E)⊗ Γ(F ) → Γ(E ⊗ F ) .

1.2 Connections and curvature

A connection ∇ on E is a C-linear map ∇ : Γ(E) → Γ(E) ⊗ Ω1
X

satisfying the Leibnitz rule:

∇(fσ) = f · ∇σ + σ ⊗ df for f ∈ C∞(M) and σ ∈ Γ(E) .



“cursoNew”
2005/5/17
page 4

i

i

i

i

i

i

i

i

4 [CAP. 1: VECTOR BUNDLES WITH CONNECTIONS

On a local trivialization,
Two connections ∇ and ∇′ on E are said to be gauge equivalent is

there exists a gauge transformation g : E → E such that∇′ = g−1∇g.
Any connection ∇ on E → X can be extended to an operator:

∇(p) : Γ(E)⊗ Ωp
X → Γ(E)⊗ Ωp+1

X

satisfying the following Leibnitz rule:

∇(p)(fσ) = (−1)degff ∧∇(p)σ + df ∧ σ .

Given two bundles with connection (E1,∇1) and (E2,∇2), one
can form connections on all of the bundles derived from E1 and E2,
as in the previous section. For instance,

∇1 ⊕∇2 : Γ(E1 ⊕ E2) → Γ(E1 ⊕ E2)⊗ Ω1
X

is a connection on the direct sum bundle E1 ⊕ E2, while

∇1 ⊗ 1E2 + 1E1 ⊗∇2 : Γ(E1 ⊗ E2) → Γ(E1 ⊗ E2)⊗ Ω1
X

is a connection on the tensor bundle E1 ⊗ E2.
A connection ∇ on E is said to be reducible if there are bundles

with connection (E1,∇1) and (E2,∇2) such that (E,∇) ' (E1 ⊕
E2,∇1 ⊕∇2). ∇ is said to be irreducible if it is not reducible.

The curvature F∇ of the connection ∇ is defined as the composi-
tion:

F∇ : Γ(E) ∇→ Γ(E ⊗ Ω1
X) ∇

(1)

→ Γ(E ⊗ Ω2
X)

Notice that F∇ is linear as a map of C∞(M)-modules; indeed:

F∇(fσ) = ∇(1)(f · ∇σ + σ ⊗ df) = ∇(1)(f · ∇σ) +∇(1)(df ⊗ σ) =
= f · ∇(1)∇σ + df ∧∇σ − df ∧∇σ + d2f ⊗ σ = f · F∇σ .

Thus we can think of F∇ as a section of End(E) ⊗ Ω2
M , i.e. a 2-

form with values in the endomorphisms of E. It satisfies the Bianchi
identity:

∇F∇ = 0 (1.1)

Finally, note that if ∇ and ∇′ are gauge equivalent, then F∇′ =
g−1F∇g:

F∇′ = ∇′∇′ = g−1∇∇g = g−1F∇g .
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[SEC. 1.3: CHERN CLASSES 5

1.3 Chern classes

Characteristic classes are topological invariants of vector bundles. In
this course, we will only need Chern classes, which we now briefly in-
troduce. An excellent, more general approach to characteristic classes
can be found at [14].

Let (E,∇) → X be a rank r complex vector bundle with connec-
tion over X; as above, F∇ denotes the curvature of ∇. We define the
total Chern class by:

c(E) = det
(
1 +

i

2π
F∇

)
(1.2)

Since F∇ is a 2-form, c(E) is a sum of even degree forms

c(E,∇) = 1 + c1(E) + c2(E) + · · ·
where cj(E,∇) ∈ Ω2j

X is called the jth Chern class of E.

Proposition 3. Each cj(E,∇) is a closed 2j-form, and the coho-
mology class it defines does not depend on the connection ∇.

We will therefore denote cj(E) = cj(E,∇). The Chern character
of E is defined by:

ch(E) =
[n/2]∑

j=0

1
j!

(
i

2π

)j

tr(F j
∇)

= rk(E) + c1(E) +
1
2
(c1(E)2 − 2c2(E)) + · · ·

Given two vector bundles E and F , the Chern character satisfies the
following summation and product formulas:

ch(E ⊕ F ) = ch(E) + ch(F ) (1.3)
ch(E ⊗ F ) = ch(E) · ch(F ) (1.4)

Since we will only be working mostly in dimension ≤ 4, it is
enough for us to keep in mind the following two formulas:

c1(E) =
i

2π
tr(F∇) (1.5)

c2(E) =
1

8π2

(−tr(F∇ ∧ F∇) + (tr(F∇))2
)

(1.6)
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6 [CAP. 1: VECTOR BUNDLES WITH CONNECTIONS

In particular, if E is a hermitian vector bundle then tr(F∇) = 0, and
c1(E) = 0.

1.4 What is Gauge Theory?

Roughly speaking, gauge theory is the study of vector bundles over
manifolds, provided with connections satisfying some gauge invariant
curvature condition.

For instance, the simplest such condition is that of flatness. More
precisely, a connection ∇ on a vector bundle E is said to be flat
if its curvature vanishes, i.e. F∇ = 0. Clearly, if ∇ and ∇′ are
gauge equivalent then ∇ is flat if and only if ∇′ is, i.e. flatness is a
gauge invariant condition. Note that if E admits a flat metric, then
c(E) = 1 and E is topologically trivial. In other words, there are
topological obstructions to the existence of solutions to the equation
F∇ = 0.

As another example, let X be a closed 2-dimensional manifold
and let ω denote its (normalized) volume 2-form. Using 1E : E → E
to denote the identity map and λ ∈ R, the equation:

F∇ = λ1E · ω (1.7)

is clearly gauge invariant. Note that if ∇ satisfies the above equation,
then c1(E) = λ · rk(E); this means that (1.7) admits a solution only
if λ = c1(E)/rk(E).

In these lectures, we will focus on examples of gauge-theoretic
equations over manifolds of dimension four, three and two. Higher
dimensional gauge theory is also extremely interesting, though, see
for instance [10].
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Chapter 2

Yang-Mills equation in
dimension 4

In this chapter, X will denote a closed (compact without boundary)
smooth manifold of dimension 4, provided with a Riemannian metric
denoted by g. Recall that the associated Hodge operator:

∗ : Ωp
X → Ω4−p

X

satisfies ∗2 = (−1)p. In particular, ∗ splits Ω2
X into two sub-bundles

Ω2,±
X with eigenvalues ±1:

Ω2
X = Ω2,+

X ⊕ Ω2,−
X . (2.1)

Note also that this decomposition is an orthogonal one, with respect
to the inner product:

〈ω1, ω2〉 =
∫

X

ω1 ∧ ∗ω2 .

A 2-form ω is said to be self-dual if ∗ω = ω and it is said to be
anti-self-dual if ∗ω = −ω. Any 2-form ω can be written as the sum

ω = ω+ + ω−

of if its self-dual ω+ and anti-self-dual ω− components.
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8 [CAP. 2: YANG-MILLS EQUATION IN DIMENSION 4

2.1 The Yang-Mills and anti-self-duality
equations

Let E be a complex vector bundle over X as above, provided with a
connection ∇. As we have seen, the curvature F∇ is a 2-form with
values in End(E) satisfying the Bianchi identity ∇F∇ = 0.

The Yang-Mills equation is:

∇ ∗ F∇ = 0 (2.2)

It is a 2nd-order non-linear equation on the connection ∇. Note that
if F∇ is self-dual or anti-self-dual as a 2-form, then the Yang-Mills
equation is automatically satisfied:

∗F∇ = ±F∇ ⇒ ∇ ∗ F∇ = ±∇F∇ = 0

by the Bianchi identity.
An instanton on E is a smooth connection ∇ whose curvature F∇

is anti-self-dual as a 2-form, i.e. it satisfies:

F+
∇ = 0 . (2.3)

The instanton equation is still non-linear (it is linear only if E is a line
bundle), but it is only 1st-order on the connection. It is easy to see
that it is gauge invariant; it is also conformally invariant: a conformal
change in the metric g does not change the decomposition (2.1), so it
preserves self-dual and anti-self-dual 2-forms. The topological charge
k of the instanton ∇ is defined by the integral:

k =
1

8π2

∫

X

tr(F∇ ∧ F∇) . (2.4)

Note that k = c2(E)− 1
2c1(E)2, and it is always an integer.

If X is a smooth, non-compact, complete Riemmanian manifold,
an instanton on X with be an anti-self-dual connection for which the
quantity (2.4) is finite. Note that in this case, k as above need not be
an integer; however it is expected to always be quantized, i.e. always
a multiple of some fixed (rational) number.
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[SEC. 2.2: THE MODULI SPACE OF INSTANTONS 9

Variational aspects of Yang-Mills equation. Given a fixed
smooth vector bundle E → X, let A(E) be the set of all (smooth)
connections on E. The Yang-Mills functional is defined by

YM : A(E) → R (2.5)

YM(∇) = ||F∇||2L2 =
∫

M

tr(F∇ ∧ ∗F∇)

The Euler-Lagrange equation for this functional is exactly the Yang-
Mills equation (2.2). In particular, self-dual and anti-self-dual con-
nections yield critical points of the Yang-Mills functional.

Splitting the curvature into its self-dual and anti-self-dual parts,
we have

YM(∇) = ||F+
∇ ||2L2 + ||F−∇ ||2L2

It is then easy to see that every anti-self-dual connection ∇ is an
absolute minimum for the Yang-Mills functional, and that YM(∇)
coincides with the topological charge (2.4) of the instanton ∇ times
8π2.

One can construct, for various 4-manifolds but most interestingly
for X = S4, solutions of the Yang-Mills equations which are neither
self-dual nor anti-self-dual. Such solutions do not minimize (2.5).
Indeed, at least for gauge group SU(2) or SU(3), it can be shown
that there are no local minima: any critical point which is neither
self-dual nor anti-self-dual is unstable and must be a “saddle point”
[2].

2.2 The moduli space of instantons

Now fix a rank r complex vector bundle E → X. Observe that the
difference between any two connection is a linear operator:

(∇−∇′)(fσ) = f∇σ + σ · df − f∇′σ − σ · df = f(∇−∇′)σ .

In other words, any two connections on E differ by an endomor-
phism valued 1-form. Therefore, the set of all smooth connections
on E, denoted by A(E), has the structure of an affine space over
Γ(End(E))⊗ Ω1

M .
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10 [CAP. 2: YANG-MILLS EQUATION IN DIMENSION 4

The gauge group G(E) acts on A(E) via conjugation:

g · ∇ := g−1∇g .

We can form the quotient set B(E) = A(E)/G(E), which is the set
of gauge equivalence classes of connections on E.

The set of gauge equivalence classes of anti-self-dual connections
on E is a subset of B(E), and it is called the moduli space of instan-
tons on E → X. These sets are labeled by the topological invariants
of the bundle E; for the sake of simplicity, we take c1(E) = 0 (i.e. E
is equipped with a hermitian metric), and denote by MX(r, k) the
moduli space of instantons on a rank r complex vector bundle E → X
with c1(E) = 0 and c2(E) = k > 0. The subset of MX(r, k) consist-
ing of irreducible anti-self-dual connections is denoted M∗

X(r, k).
It turns out that MX(r, k) can be given the structure of a Haus-

dorff topological space. In general, MX(r, k) will be singular as a
differentiable manifold, but there is an open dense subset which can
always be given the structure of a smooth Riemannian manifold.

We start by explaining the notion of a L2
p vector bundle. Recall

that L2
p(Rn) denotes the completion of the space of smooth functions

f : Rn → C with respect to the norm:

||f ||2L2
p

=
∫

X

(
|f |2 + |df |2 + · · · |d(p)f |2

)
.

In dimension n = 4 and for p > 2, by virtue of the Sobolev embedding
theorem, L2

p consists of continuous functions, i.e. L2
p(Rn) ⊂ C0(Rn).

So we define the notion of a L2
p vector bundle as a topological vector

bundle whose transition functions are in L2
p, where p > 2.

Now fixed a L2
p vector bundle E over X, we can consider the

metric space Ap(E) of all connections on E which can be represented
locally on an open subset U ⊂ X as a L2

p(U) 1-form. In this topology,
A∗p(E) becomes an open dense subset of Ap(E). Since any topological
vector bundle admits a compatible smooth structure, we may regard
L2

p connections as those that differ from a smooth connection by a L2
p

1-form. In other words, Ap(E) becomes an affine space modeled over
the Hilbert space of L2

p 1-forms with values in the endomorphisms
of E. The curvature of a connection in Ap(E) then becomes a L2

p−1

2-form with values in the endomorphism bundle End(E).
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[SEC. 2.2: THE MODULI SPACE OF INSTANTONS 11

Moreover, let Gp+1(E) be defined as the topological group of all
L2

p+1 bundle automorphisms. By virtue of the Sobolev multiplication
theorem, Gp+1(E) has the structure of an infinite dimensional Lie
group modeled on a Hilbert space; its Lie algebra is the space of
L2

p+1 sections of End(E).
The Sobolev multiplication theorem is once again invoked to guar-

antee that the action Gp+1(E) × Ap(E) → Ap(E) is a smooth map
of Hilbert manifolds. The quotient space Bp(E) = Ap(E)/Gp+1(E)
inherits a topological structure; it is a metric (hence Hausdorff) topo-
logical space. Therefore, the subspace MX(r, k) of Bp(E) is also a
Hausdorff topological space; moreover, the topology ofMX(r, k) does
not depend on p.

The quotient space Bp(E) fails to be a Hilbert manifold because
in general the action of Gp+1(E) on Ap(E) is not free.

Proposition 4. Let A be any connection on a rank r complex vector
bundle E over a connected base manifold X, which is associated with
a principal G-bundle. Then the isotropy group of A within the gauge
group:

ΓA = {g ∈ Gp+1(E) | g(A) = A}
is isomorphic to the centralizer of the holonomy group of A within G.

This means that the subspace of irreducible connections A∗p(E)
can be equivalently defined as the open dense subset of Ap(E) con-
sisting of those connections whose isotropy group is minimal, that
is:

A∗p(E) = {A ∈ Ap(E) | ΓA = center(G)} .

Now Gp+1(E) acts with constant isotropy on A∗p(E), hence the quo-
tient B∗p(E) = A∗p(E)/Gp+1(E) acquires the structure of a smooth
Hilbert manifold.

Remark. The analysis of neighborhoods of points in Bp(E) \ B∗p(E)
is very relevant for applications of the instanton moduli spaces to
differential topology. The simplest situation occurs when A is an
SU(2)-connection on a rank 2 complex vector bundle E which reduces
to a pair of U(1) and such [A] occurs as an isolated point in Bp(E) \
B∗p(E). Then a neighborhood of [A] in Bp(E) looks like a cone on an
infinite dimensional complex projective space.
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12 [CAP. 2: YANG-MILLS EQUATION IN DIMENSION 4

Alternatively, the instanton moduli space MX(r, k) can also be
described by first taking the subset of all anti-self-dual connections
and then taking the quotient under the action of the gauge group.
More precisely, consider the map:

ρ : Ap(E) → L2
p(End(E)⊗ Ω2,+

X ) (2.6)

ρ(A) = F+
A

Thus ρ−1(0) is exactly the set of all anti-self-dual connections. It is
Gp+1(E)-invariant, so we can take the quotient to get:

MX(r, k) = ρ−1(0)/Gp+1(E) .

It follows that subspace M∗
X(r, k) = B∗p(E) ∩MX(r, k) has the

structure of a smooth Hilbert manifold. Index theory comes into play
to show that M∗

X(r, k) is finite-dimensional. Recall that if D is an
elliptic operator on a vector bundle over a compact manifold, then D
is Fredholm (i.e. kerD and coker D are finite dimensional) and its
index

ind D = dim kerD − dim coker D

can be computed in terms of topological invariants, as prescribed by
the Atiyah-Singer index theorem. The goal here is to identify the
tangent space of M∗

X(r, k) with the kernel of an elliptic operator.
It is clear that for each A ∈ Ap(E), the tangent space TAAp(E)

is just L2
p(End(E)⊗ Ω1

X). We define the pairing:

〈a, b〉 =
∫

X

a ∧ ∗b (2.7)

and it is easy to see that this pairing defines a Riemannian metric
(so-called L2-metric) on Ap(E).

The derivative of the map ρ in (2.6) at the point A is given by:

d+
A : L2

p(End(E)⊗ Ω1
X) → L2

p−1(End(E)⊗ Ω2
X)

a 7→ (dAa)+ ,

so that for each A ∈ ρ−1(0) we have:

TAρ
−1(0) =

{
a ∈ L2

p(End(E))⊗ Ω1
X | d+

Aa = 0
}

.
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Now for a gauge equivalence class [A] ∈ B∗p(E), the tangent space
T[A]B∗p(E) consists of those 1-forms which are orthogonal to the fibers
of the principal Gp+1(E) bundle A∗p(E) → B∗p(E). At a point A ∈
Ap(E), the derivative of the action by some g ∈ Gp+1(E) is

−dA : L2
p+1(End(E)) → L2

p(End(E)⊗ Ω1
X) .

Usual Hodge decomposition gives us that there is an orthogonal
decomposition:

L2
p(End(E)⊗ Ω1

X) = im dA ⊕ ker d∗A ,

which means that:

T[A]B∗p(E) =
{
a ∈ L2

p(End(E)⊗ Ω1
X) | d∗Aa = 0

}
.

Thus the pairing (2.7) also defines a Riemannian metric on B∗p(E).
Putting these together, we conclude that the space T[A]M∗

X(r, k)
tangent to M∗

X(r, k) at an equivalence class [A] of anti-self-dual con-
nections can be described as follows:

T[A]M∗
X(r, k) =

{
a ∈ L2

p(End(E)⊗ Ω1
X) | d∗Aa = d+

Aa = 0
}

(2.8)

It turns out that the so-called deformation operator δA = d∗A ⊕ dA:

δA : L2
p(End(E)⊗ Ω1

X) → L2
p+1(End(E))⊕ L2

p−1(End(E)⊗ Ω2
X)

is elliptic. Moreover, if A is anti-self-dual then coker δA is empty,
so that T[A]M∗

X(r, k) = ker δA. The dimension of the tangent space
T[A]M∗

X(r, k) is then simply given by the index of the deformation
operator δA. Using the Atiyah-Singer index theorem, we have for
SU(r)-bundles with c2(E) = k:

dimM∗
X(r, k) = 4rk − (r2 − 1)(1− b1(X) + b+(X)) .

It is interesting to note that M∗
X(r, k) inherits many of the geo-

metrical properties of the original manifoldX. Most notably, ifX is a
Kähler manifold, then M∗

X(r, k) is also Kähler; if X is a hyperkähler
manifold, then M∗

X(r, k) is also hyperkähler. Other geometric struc-
tures on X can also be transfered to the instanton moduli spaces
M∗

X(r, k).
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14 [CAP. 2: YANG-MILLS EQUATION IN DIMENSION 4

2.3 Instantons on Euclidean space

Let X = R4 with the flat Euclidean metric, and consider a hermitian
vector bundle E → R4. Any connection ∇ on E is of the form
d + A, where A ∈ Γ(End(E)) ⊗ Ω1

R4 is a 1-form with values in the
endomorphisms of E; this can be written as follows:

A =
4∑

k=1

Akdx
k , Ak : R4 → u(r) .

In the Euclidean coordinates x1, x2, x3, x4, the anti-self-duality equa-
tion (2.3) is given by:

F12 = F34 , F13 = −F24 , F14 = F23

where
Fij =

∂Aj

∂xi
− ∂Ai

∂xj
+ [Ai, Aj ] .

The simplest explicit solution is the charge 1 SU(2)-instanton on
R4. The connection 1-form is given by:

A0 =
1

1 + |x|2 · Im(qdq) (2.9)

where q is the quaternion q = x1 + x2i+ x3j+ x4k, while Im denotes
the imaginary part of the product quaternion; we are regarding i, j,k
as a basis of the Lie algebra su(2). From this, one can compute the
curvature:

FA0 =
(

1
1 + |x|2

)2

· Im(dq ∧ dq) (2.10)

We see that the action density function

|FA|2 =
(

1
1 + |x|2

)2

has a bell-shaped profile centered at the origin and decaying like r−4.
Let tλ,y : R4 → R4 be the isometry given by the composition of

a translation by y ∈ R4 with a homotety by λ ∈ R+. The pullback
connection t∗λ,yA0 is still anti-self-dual; more explicitly:

Aλ,y = t∗λ,yA0 =
λ2

λ2 + |x− y|2 · Im(qdq)



“cursoNew”
2005/5/17
page 15

i

i

i

i

i

i

i

i

[SEC. 2.3: INSTANTONS ON EUCLIDEAN SPACE 15

and FAλ,y
=

(
λ2

λ2 + |x− y|2
)2

· Im(dq ∧ dq) .

Note that the action density function |FA|2 has again a bell-shaped
profile centered at y and decaying like r−4; the parameter λ measures
the concentration (or size) of instanton A.

Instantons of topological charge k can be obtained by “superim-
posing” k basic instantons, via the so-called ’t Hooft ansatz. Consider
the function ρ : R4 → R given by:

ρ(x) = 1 +
k∑

j=1

λ2
j

(x− yj)2
,

where λj ∈ R and yj ∈ R4. Then the connection A = Aµdxµ with
coefficients

Aµ = i

4∑
ν=1

σµν
∂

∂xν
ln(ρ(x)) (2.11)

are anti-self dual; here, σµν are the matrices given by (µ, ν = 1, 2, 3):

σµν =
1
4i

[σµ, σν ] σµ4 =
1
2
σµ

where σµ are the Pauli matrices.
The connection (2.11) correspond to k instantons centered at

points yi with size λi. The basic instanton (2.9) is exactly (mod-
ulo gauge transformation) what one obtains from (2.11) for the case
k = 1.

SU(2)-instantons are also the building blocks for instantons with
general structure group [1]. Let G be a compact semi-simple Lie
group, with Lie algebra g. Let ρ : su(2) → g be any injective Lie
algebra homomorphism. Then it is easy to see that:

ρ(A0) =
1

1 + |x|2 · ρ(Im(qdq)) (2.12)

is indeed a G-instanton on R4. while this guarantees the existence of
G-instantons on R4, note that this instanton might be reducible (e.g.
ρ can simply be the obvious inclusion of su(2) into su(n) for any n)
and that its charge depends on the choice of representation ρ.
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16 [CAP. 2: YANG-MILLS EQUATION IN DIMENSION 4

Furthermore, it is not clear whether every G-instanton can be
obtained in this way, as the inclusion of a SU(2)-instanton through
some representation ρ : su(2) → g.

The ADHM construction All SU(r)-instantons on R4 can be
obtained through a remarkable construction due to Atiyah, Drinfeld,
Hitchin and Manin. It starts by considering hermitian vector spaces
V and W of dimension c and r, respectively, and the following data:

B1, B2 ∈ End(V ) , i ∈ Hom(W,V ) , j ∈ Hom(V,W ) ,

so-called ADHM data. Assume moreover that (B1, B2, i, j) satisfy
the ADHM equations:

[B1, B2] + ij = 0 (2.13)

[B1, B
†
1] + [B2, B

†
2] + ii† − j†j = 0 (2.14)

Now consider the following maps

α : V × R4 → (V ⊕ V ⊕W )× R4

β : (V ⊕ V ⊕W )× R4 → V × R4

given as follows:

α(z1, z2) =




B1 + z1
B2 + z2

j


 (2.15)

β(z1, z2) =
( −B2 − z21 B1 + z11 i

)
(2.16)

where z1 = x1 + ix2 and z2 = x3 + ix4 are complex coordinates on
R4. The maps (2.15) and (2.16) should be understood as a family of
linear maps parametrized by points in R4.

A straightforward calculation shows that the ADHM equations
imply that βα = 0 for every (z1, z2) ∈ R4. Therefore the quotient
E = kerβ/imα = kerβ ∩ kerα† forms a complex vector bundle over
R4 or rank r whenever (B1, B2, i, j) is such that α is injective and β
is surjective for every (z1, z2) ∈ R4.

To define a connection on E, note that E can be regarded as a
sub-bundle of the trivial bundle (V ⊕ V ⊕W ) × R4. So let ι : E →
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[SEC. 2.3: INSTANTONS ON EUCLIDEAN SPACE 17

(V ⊕V ⊕W )×R4 be the inclusion, and let P : (V ⊕V ⊕W )×R4 → E
be the orthogonal projection onto E. We can then define a connection
∇ on E through the projection formula

∇s = Pdι(s)

where d denotes the trivial connection on the trivial bundle (V ⊕V ⊕
W )× R4.

To see that this connection is anti-self-dual, note that projection
P can be written as follows

P = 1−D†Ξ−1D

where
D : (V ⊕ V ⊕W )× R4 → (V ⊕ V )× R4

D =
(

β
α†

)

and Ξ = DD†. Note thatD is surjective, so that Ξ is indeed invertible.
Moreover, it also follows from (2.14) that ββ† = α†α, so that Ξ−1 =
(ββ†)−11.

The curvature F∇ is given by:

F∇ = P
(
d(1−D†I Ξ−1D)d

)
= P

(
dD†Ξ−1(dD)

)
=

= P
(
(dD†Ξ−1)(dD) +D†d(Ξ−1(dD)

)
=

= P
(
(dD†)Ξ−1(dD)

)

for P
(D†d(Ξ−1(dD)

)
= 0 on E = kerD. Since Ξ−1 is diagonal, we

conclude that F∇ is proportional to dD† ∧ dD, as a 2-form.
It is then a straightforward calculation to show that each entry of

dD† ∧ dD belongs to Ω2,−.
The extraordinary accomplishment of Atiyah, Drinfeld, Hitchin

and Manin was to show that every instanton can be obtained in this
way; see e.g. [3].
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Chapter 3

Topology of smooth
4-manifolds

The magic of gauge theory resides on the fact that the geometry
and topology of the moduli spaces MX(r, k) capture a lot of the
geometry and topology of the original manifold X.

Since MX(r, k) as a whole is a topological invariant of X, one
can use the classical topological invariants of MX(r, k) (intersec-
tion form, Euler characteristic, etc) to define interesting nontrivial
invariants of X. The paramount example of that are Donaldson’s
theorems on the existence and non-existence of smooth 4-manifolds
with certain intersection forms: one assumes the existence of one of
the manifold in question and finds that its instanton moduli space
has impossible topological properties. It also leads to the existence
of manifolds which are homeomorphic but not diffeomorphic to the
usual Euclidean 4-space.

3.1 Donaldson’s theorems

Let X be a closed (i.e. compact with no boundary) oriented 4-
manifold, and let V = H2(X,Z). The cup product defines the fol-
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[SEC. 3.1: DONALDSON’S THEOREMS 19

lowing symmetric bilinear form on the Z-module V :

〈α, β〉 = (α ∪ β)[X] ,

where [X] ∈ H4(X,Z) denotes the fundamental class. Moreover, this
so-called intersection form 〈·, ·〉 is unimodular, i.e. its determinant is
1.

The relevance of unimodular, symmetric bilinear forms is provided
by a classical 1949 result of Whitehead: simply-connected, closed
oriented 4-manifolds are classified, up to orientation-preserving ho-
motopy equivalence, by their intersection forms (see [13], which also
contains a classification of symmetric bilinear forms on Z-modules).

This result immediately poses an existence question: which uni-
modular, symmetric bilinear forms on a Z-module can arise as the
intersection form of a simply-connected, closed oriented 4-manifolds?
More interestingly, this question can be asked both in the topological
and in the differential categories; it turns out, rather surprisingly,
that the answers are quite different.

In the topological category, the answer was provided by Freedman
in 1982: every unimodular symmetric bilinear form is the intersection
form of a simply-connected, closed oriented 4-manifolds [4].

In contrast, it has been known since 1952 that there are some
forms which cannot be realized as the intersection form of a smooth
simply-connected, closed oriented 4-manifold. Indeed, a theorem due
to Rokhlin asserts that if X is smooth simply-connected, closed ori-
ented 4-manifold, whose intersection form is even, i.e. it satisfies:

〈α, α〉 = 0 mod2 ∀α ∈ V

then its signature (the number of positive eigenvalues minus the num-
ber of negative eigenvalues) is congruent to 0mod16. This rules out
for instance the positive definite bilinear form induced by the follow-
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20 [CAP. 3: TOPOLOGY OF SMOOTH 4-MANIFOLDS

ing matrix:

E8 =




2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 1 0
0 0 0 0 1 2 0 0
0 0 0 0 1 0 2 1
0 0 0 0 0 0 1 2




which has signature 8.
Little progress was made beyond Rokhlin’s theorem, until the

following results due to Donaldson [3]. Recall that a bilinear for is
said to be negative definite if

〈α, α〉 < 0 ∀α 6= 0 ∈ V

Theorem 5. Donaldson [3]. The only negative definite forms realized
as the intersection forms of smooth, simply-connected, closed oriented
4-manifolds are the standard diagonalizable forms n(−1).

Now let H denote the matrix:

H =
(

0 1
1 0

)
,

which is the intersection form for S2 × S2.

Theorem 6. Donaldson [3]. Assume that the form n(−E8) ⊕mH
is realized by a smooth, simply-connected, closed oriented 4-manifold.
If n > 0, then m ≥ 3.

In other words, the forms 2n(−E8) are not realized, something
that is not ruled out by Rokhlin’s theorem.

The overall strategy for the proof of both non-existence theorems
is the same. Supposing that a manifold X of the type in question
does exist, one carefully chooses a vector bundle E overX and studies
the moduli space of instantons MX(E) on the bundle E. From the
known topological features of MX(E) and its embedding into B(E),
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the space of gauge equivalence classes of connections on E, one derives
a contradiction.

For instance, we sketch an argument due to Fintushel and Stern
which shows that there is no smooth, simply-connected, closed ori-
ented 4-manifold X whose intersection form is −E8 ⊕−E8 [3, Theo-
rem 8.1.1].

Suppose such a manifold exists, and let e ∈ H2(X,Z) be such that
e2 = −2. Let L be a complex line bundle over X with c1(L) = e, and
let E = L⊕ R, which is an SO(3)-bundle. Fixing a generic Rieman-
nian metric on X, the general theory outlined in the previous chapter
tells us that the moduli space MX(E) of irreducible instantons on
E → X is a compact 1-dimensional manifold with boundary. How-
ever, there can be one and only one reducible U(1) connection on E;
since reducible connection correspond to boundary points, ∂MX(E)
would consist of a single point, which is impossible.

3.2 Exotic R4’s

Finally, the results of Freedman and Donaldson may be combined to
obtain the following remarkable result:

Theorem 7. ([5]) The exists infinitely many differentiable manifolds
which are homeomorphic but not diffeomorphic to the standard R4.

This phenomenon is really particular to dimension 4: there are
no “exotic” Rn’s for n 6= 4!

Let us sketch the simplest construction of an exotic R4, following
Gompf [7]; in the process, we will also show the existence of an exotic
S3 × R. Before that, we must collect a few topological facts.

Recall that the K3 surface is the 4-dimensional smooth submani-
fold of CP 3 defined by the equation z4

1 + z4
2 + z4

3 + z4
4 = 0 ([z1 : z2 :

z3 : z4] are homogeneous coordinates in CP3); its intersection form
is 2(−E8)⊕ 3H. Notice also that 3H is the intersection form of the
compact manifold with boundary X = #3(S2×S2)\ (open 4− ball).

The following statement is a particular case of Freedman’s topo-
logical surgery.
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22 [CAP. 3: TOPOLOGY OF SMOOTH 4-MANIFOLDS

Theorem 8. Freedman [4]. There are embeddings ı : X → K3 and
 : X → #3(S2×S2) and diffeomorphic neighborhoods U of ı(X) and
V of (X) such that the following diagram commutes:

U ⊂ K3

diffeo

²²

X

ı

77oooooooooooo



&&NNNNNNNNNNNN

V ⊂ #3(S2 × S2)

In particular, U \ ı(X) is diffeomorphic to V \ (X); since the
boundary of X is a 3-sphere, we can assume that U \ ı(X) is homeo-
morphic to S3 × R.

Notice that K3 \ ı(X) is an open manifold collared by U \ ı(X),
which is homeomorphic to S3 × R. Thus we may topologically glue
4-ball B4 on K3\ı(X) to obtain a closed 4-manifold with intersection
form −E8 ⊕−E8. Remark that, by Theorem 6, this cannot be done
smoothly, i.e. (K3 \ ı(X)) ∪B4 is not a smooth manifold.

Hence U \ ı(X) cannot be diffeomorphic to S3 × R, i.e. it is
an exotic S3 × R. This is because it cannot contain any smooth
S3 separating its two ends; if it did, we could trim off the end of
K \ ı(X) by cutting along such a 3-sphere, and then cap the new
boundary smoothly with a 4-ball, obtaining an impossible smooth
4-manifold.

The last ingredient is the following topological characterization of
the standard R4.

Theorem 9. Freedman [4]. Any open 4-manifold X with π1(X) =
H2(X) = 0 and whose end is topologically collared by S3×R is home-
omorphic to R4.

We are finally ready to exhibit our exotic R4. Take the embedding
 : X → #3(S2×S2) from Theorem 8 and let F = #3(S2×S2)\(X).
It is not difficult to check that such F satisfies the hypothesis of
Theorem 9, so that F is homeomorphic to R4.

Let us now argue that F is not diffeomorphic to the standard R4.
Note that F is collared by V \(X), which is diffeomorphic to U\ı(X),
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the exotic S3 × R constructed above which contains no smooth S3

separating its ends. This means that there can be no smooth 3-sphere
near the end of F .

Therefore, there exists a compact subset C = F \ (V \ (X)) in
F which is not enclosed by any smooth 3-sphere. Such behavior is
clearly impossible in the standard R4, hence F cannot be diffeomor-
phic to it.

In [7], Gompf modifies Theorem 8 to obtain, via a similar argu-
ment, two other examples of exotic R4’s embedded in CP2, rather
than #3(S2 × S2).
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Chapter 4

The connection with
algebraic geometry

The second main result to be presented in this lectures is the Hitchin-
Kobayashi correspondence. It says that the analytical problem of
finding solutions to the anti-self-duality equation on a complex man-
ifold is equivalent to the algebraic problem of finding holomorphic
vector bundles satisfying a purely algebraic problem.

4.1 Stable holomorphic bundles

Let X be a compact Kähler surface, i.e. a complex manifold of com-
plex dimension 2 equipped with a hermitian metric g such that the
associated (1,1)-form:

κ =
i

2

∑
gabdza ∧ dzb

is closed; κ is called a Kähler form. More invariantly, we have for
tangent vectors v, w ∈ TpX:

κ(v, w) = g(v, Iw)

where I is the complex structure I : TX → TX, I2 = −1.



“cursoNew”
2005/5/17
page 25

i

i

i

i

i

i

i

i

[SEC. 4.1: STABLE HOLOMORPHIC BUNDLES 25

Locally, we may take the hermitian metric g to be diagonalized;
on the model space C2 with complex coordinates z1 = x1 + ix2 and
z2 = x3 + ix4, we have that:

κ =
i

2
dz1 ∧ dz1 + idz2 ∧ dz2 =

= dx1 ∧ dx2 + dx3 ∧ dx4 (4.1)

A complex vector bundle E → X is said to be holomorphic if its
transition functions gαβ are holomorphic. Alternatively, a holomor-
phic bundle E → X is a pair (E, ∂E) consisting of a complex vector
bundle E → X and an operator

∂E : Γ(E ⊗ Ω0,q
X ) → Γ(E ⊗ Ω0,q+1

X )

satisfying the following conditions:

• ∂E(fσ) = (∂f)σ + f(∂Eσ), where f ∈ C∞(X) and σ ∈ Γ(E ⊗
Ω0,q

X );

• ∂Eσ = 0 on an open subset U ⊂ X if and only if σ|U is holo-
morphic.

Let us now recall the notion of stability for holomorphic vector
bundles over Kähler surfaces. Let E be a holomorphic vector bundle
on X. The degree of E with respect to the Kähler form κ is defined
by

degκ(E) =
∫

X

κ ∧ c1(E) .

The slope of E is the rank-normalized degree, i.e.:

µκ(E) =
degκ(E)
rk(E)

.

The bundle E is said to be stable with respect to κ if every holomor-
phic sub-bundle F ↪→ E satisfies:

µκ(F) < µκ(E) .

Moreover, the bundle E is said to be semistable with respect to κ if
every holomorphic sub-bundle F ↪→ E satisfies:

µκ(F) ≤ µκ(E) .
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In this context, the meaning of the word sub-bundle must properly
understood, because in slightly more general than the usual meaning
in differential geometry. We say that F is a sub-bundle of E if there
is a bundle map ψ : F → E such that ψ(x) is injective for all but
from finitely many points x ∈ X. In algebraic geometric terms, F is
a sub-bundle of E if the sheaf of sections of F is a subsheaf of the
sheaf of section of E such that the quotient sheaf E/F is torsion-free.

Stable bundles on algebraic surfaces are of great interest within
algebraic geometry. As we will see below, they sit at the crossroads
of algebraic and differential geometry.

Let us know examine the link between stable bundles and anti-self-
dual connections, known as the Hitchin-Kobayashi correspondence.

4.2 The Hitchin-Kobayashi correspondence

Let X be a compact Kähler surface as above, and let g denote the
hermitian metric, while κ denotes the associated Kähler form. From
(4.1) we see that κ is self-dual. Moreover:

dz1 ∧ dz2 = (dx1 ∧ dx3 − dx2 ∧ dx4) + i(dx2 ∧ dx3 + dx1 ∧ dx4)

Thus the real and imaginary parts of dz1 ∧ dz2 (and of dz1 ∧ dz2) are
also self-dual. Since the decomposition

Ω2
X = Ω2,+

X ⊕ Ω2,−
X

is an orthogonal one, we conclude that:

Ω2,+
X = Ω2,0

X ⊕ Ω0
X · κ⊕ Ω0,2

X ,

and Ω2,−
X = (Ω0

X · κ)⊥

Here, (Ω0
X · κ)⊥ ⊂ Ω1,1

X consists of the (1, 1)-forms orthogonal to the
Kähler form κ. In other words, a 2-form ω is anti-self-dual if and
only if ω is of type (1, 1) and 〈ω, κ〉 = ω ∧ κ = 0.

Let E be a complex vector bundle over X. We begin by noticing
that any connection ∇A on E whose curvature FA is of type (1, 1)
induces a holomorphic structure ∂A on E. Indeed, the covariant
derivative

∇A : Γ(E)⊗ Ωd
X → Γ(E)⊗ Ωd+1

X
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splits as a sum of operators

∂A : Γ(E)⊗ Ωp,q
X → Γ(E)⊗ Ωp+1,q

X

and
∂A : Γ(E)⊗ Ωp,q

X → Γ(E)⊗ Ωp,q+1
X .

With respect to the decomposition:

Ω2
X = Ω2,0

X ⊕ Ω1,1
X ⊕ Ω0,2

X

the curvature operator FA = ∇A∇A is then written as:

FA = (∂A)2 + (∂A∂A + ∂A∂A) + (∂A)2 .

Thus if FA is of type (1, 1), then (∂A)2 = 0 as desired.
This means, in particular, that anti-self-dual connections induce

holomorphic structures because they are of type (1,1). Even more,
the holomorphic structure induced by anti-self-dual connections are
very special.

Theorem 10. (Hitchin-Kobayashi correspondence) Let E be a her-
mitian vector bundle over a Kähler surface X. There is a 1-1 corre-
spondence between the following objects:

• SU(n)-gauge equivalence classes of irreducible anti-self-dual con-
nections on E;

• SL(n,C)-gauge equivalence classes of stable holomorphic struc-
tures on E.

One side of this correspondence is relatively easy to demonstrate.
Let ∇A be an irreducible anti-self-dual connection on the hermitian
vector bundle E → X, and consider the associated holomorphic struc-
ture ∂A on E; denote by E the holomorphic bundle (E, ∂A). Since
c1(E) = 0 (E is hermitian), we have that µ(E) = 0. Thus the goal
is to show that every holomorphic sub-bundle F ↪→ E must have
degκ(F) < 0.

First, if rk(F) = p note that c1(F) = c1(
∧p F), hence degκ(F) =

degκ(
∧p F). The map F ↪→ E induces a map

∧p F → ∧p E , which
may be regarded as a section of the bundles

∧p E ⊗∧p F∗.
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Proposition 11. ([3, page 212]) Let L → X be a holomorphic line
bundle over a Kähler surface X; let κ denote its Kähler form and ν
its volume. Then there is a compatible connection ∇B on L so that:

FB ∧ κ =
−2π
ν

degκ(L) · κ2 .

As a holomorphic line bundle, we can find a connection ∇B on∧p F∗ whose curvature is

FB ∧ κ =
2π
ν

degκ(F) · κ2

since c1(
∧p F∗) = −c1(F).

The anti-self-dual connection ∇A on E naturally induces a con-
nection ∇(p)

A on
∧p E , which is also anti-self-dual, hence FA(p)∧κ = 0.

Tensoring ∇(p)
A with ∇B , we get a connection

∇Ã = ∇(p)
A ⊗ 1 + 1⊗∇B

on the tensor bundle
∧p E ⊗∧p F∗; it follows that

FÃ ∧ κ = FA(p) ∧ κ+ FB ∧ κ =
2π
ν

degκ(F) · κ2 . (4.2)

Proposition 12. Let (V, ∂B) → X be an holomorphic vector bundle
over a compact Kähler surface. If FB ∧ κ > 0, then V has no non-
trivial holomorphic sections. If FB ∧ κ ≥ 0, then any holomorphic
sections is covariantly constant (i.e. ∇Bσ = 0).

Together with (4.2), we conclude that if degκ(F) > 0 then
∧p E ⊗∧p F∗ has no sections, which contradicts the fact that F is a sub-

bundle of E . If degκ(F) = 0, then E splits as a sum F ⊕ F ′, which
contradicts the assumption that the original instanton connection A
is irreducible. Thus the only possibility left is degκ(F) > 0, thus E is
stable. That completes the proof of the easy part of the correspon-
dence.

The other side of the correspondence is much harder, and it
amounts to an existence result: given a stable holomorphic bundle
E = (E, ∂E), one can find an unique compatible connection ∇A on E
(i.e. ∂A = ∂E) which is anti-self-dual. The proof of such statement
involves hard analysis [3, 10].
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Chapter 5

Hitchin’s equations and
integrable systems

Now let X = R4 provided with the flat Euclidean metric. A connec-
tion on a hermitian vector bundle over R4 of rank r can be regarded
as 1-form

A =
4∑

k=1

Ak(x1, · · · , x4)dxk , Ak : R4 → u(r)

Assuming that the connection components Ak are invariant under
translation in one direction, say x4, we can think of

A =
3∑

k=1

Ak(x1, x2, x3)dxk

as a connection on a hermitian vector bundle over R3, with the
fourth component φ = A4 being regarded as a bundle endomorphism
φ : E → E, called a Higgs field. In this way, the anti-self-duality
equation (2.3) reduces to the so-called Bogomolny (or monopole)
equation:

FA = ∗dφ (5.1)

where ∗ is the Euclidean Hodge star in dimension 3.
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Now assume that the connection components Ak are invariant
under translation in two directions, say x3 and x4. Consider

A =
2∑

k=1

Ak(x1, x2)dxk

as a connection on a hermitian vector bundle over R2, with the third
and fourth components combined into a complex bundle endomor-
phism:

Φ = (A3 + i ·A4)(dx1 − i · dx2)

taking values on 1-forms. The anti-self-duality equation (2.3) is then
reduced to the so-called Hitchin’s equations:

{
FA = [Φ,Φ∗]
∂AΦ = 0

(5.2)

which were introduced by Hitchin in [8]. Conformal invariance of the
anti-self-duality equation means that Hitchin’s equations are well-
defined over any Riemann surface.

Finally, assume that the connection components Ak are invariant
under translation in three directions, say x2, x3 and x4. After gauging
away the first component A1, the anti-self-duality equations (2.3)
reduce to the so-called Nahm’s equations:

dTk

dx1
+

1
2

∑

j,l

εkjl[Tj , Tl] = 0 , j, k, l = {2, 3, 4} (5.3)

where each Tk is regarded as a map R→ u(r).
We will now focus on Hitchin’s equations, which have an extremely

interesting relation with algebraic geometry and the theory of inte-
grable systems. Those interested in monopoles and Nahm’s equations
are referred to [15] and the references therein. An interesting appli-
cation of Nahm’s equations is the existence of hyperkähler metrics on
coadjoint orbits of complex semi-simple Lie groups, first established
by Kronheimer [11].

It is also worth mentioning the beautiful book by Mason & Wood-
house [12], where other interesting reductions of the anti-self-duality
equations are discussed, providing a deep relation between instantons
and the general theory of integrable systems.
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5.1 Hitchin’s equations

Hitchin’s equations (5.2) where first introduced in [8, 9], and have
sparked a lot of interest from the algebraic-geometric point of view
because of its relation with the theory of integrable systems. Our
goal now is to expose such relation.

A completely integrable Hamiltonian system is a symplectic mani-
fold (X,ω) of dimension 2n provided with n functionally independent,
Poisson-commuting functions h1, · · · , hn, that is:

• dh1 ∧ · · · ∧ dhn 6= 0

• {hk, hl} = Xhk
(hl) = −Xhl

(hk) = 0.

where the Hamiltonian vector field Xf associated with a function
f : X → C is characterized by

ω(Xf , Y ) = Y (f) , ∀Y ∈ Γ(TX) .

We can put the functions h1, · · · , hn together into a map H : X →
Cn; the fibers H−1(v) are, for generic v, n-dimensional subvarieties
of X admitting n linearly independent vector fields Xh1 , · · · , Xhn .

Furthermore, X is said to be algebraically completely integrable
(ACI, for short) if X is an algebraic variety and the generic fiber of
the map H is an open subset of an abelian variety. That will force
the vector fields Xh1 , · · · , Xhn to be linear along the fibers of H.

The surprising fact, noticed by Hitchin in [9], is that the moduli
space of solutions of Hitchin’s equations modulo gauge transforma-
tions has exactly the structure of an algebraically complete integrable
system, so-called Hitchin system.

Indeed, let V → S be a rank r vector bundle over a Riemann
surface S of genus g ≥ 2. Let A be a connection on V , and Φ ∈
Γ(End(V )⊗KS) be a Higgs field as above; here, KS = Λ1,0

S denotes
the canonical bundle of S, consisting of holomorphic 1-forms. In the
same way as we did for instantons on 4-dimensional manifolds, we
may consider the moduli space H(V ) of solutions of the Hitchin’s
equations as the quotient of the subset of the configuration space

C(V ) = A(V )× Γ(End(V )⊗KS)
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consisting of solutions of (5.2) by the action of the gauge group G(V ),
given by:

g · (A,Φ) = (g−1Ag + g−1dg, g−1Φg) .

Analytical considerations similar to the ones in Chapter 2 will
also provide H(V ) with the structure of a Riemannian manifold, at
least away from reducible solutions of (5.2). It turns out that, in the
case r = 2, H(V ) is a complex manifold of dimension 6(g − 1).

Moreover, H(V ) admits a complex symplectic form, constructed
as follows. The space tangent to (A,Φ) ∈ C(V ) is just

Ω1
S ⊗ End(V ) = Ω0,1

S ⊗ End(V )⊕ Ω1,0
S ⊗ End(V )

Then

ω((a1, b1), (a2, b2)) =
∫

S

Tr(a1 ∧ b2 − a2 ∧ b1)

defines a complex symplectic form on C(V ), which descends to (the
smooth part of) the quotient space H(V ). The real and imaginary
parts of ω define two real symplectic forms on H(V ).

Any connection A on a vector bundle V over a Riemann surface
induces a holomorphic structure ∂A on V , since the curvature FA is
always a (1, 1)-form. The second equation of (5.2) says exactly that
Φ is holomorphic with respect to ∂A.

For each point x ∈ X, Φ(x) can be thought as a r × r matrix
and we can consider its eigenvalues λ1(x), · · · , λr(x). As x sweeps
out the whole surface, we end up with a r-fold branched covering
Σ of S living inside the total space of the canonical bundle KS ; Σ
is a complex submanifold of KS , and it is called the spectral curve
associated with (V,A,Φ). The branch points of Σ → S correspond
to the points x ∈ S where the eigenvalues of Φ(x) come together.

We can go one step further, and define a “line bundle” L → Σ by
assigning to each point s ∈ Σ the corresponding eigenspace of s as
an eigenvalue of Φ(x). Remark that L is not an actual line bundle,
because not all eigenvalues of Φ(x) are of multiplicity one; however,
if Σ is smooth (and generically it is), then L is a well-defined line
bundle. In algebraic geometric terms, the best way to describe L,
which is called the spectral data associated with (V,A,Φ), is as a
torsion sheaf on KS supported on Σ.
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It turns out the moduli space H(V ) of solutions of Hitchin’s equa-
tions is diffeomorphic to the space of suitable spectral data (stable
torsion sheaves of pure dimension 1 on KS). In other words, given a
spectral curve Σ ⊂ KS which is an r-fold covering of S and a “line
bundle” on it we can reconstruct a rank r vector bundle V → S and
a solution (A,Φ) of (5.2).

Considering S as the space of all possible (smooth) spectral curves
within KS , this diffeomorphism yields a map σ : H(V ) → S which
takes each (A,Φ) to the associated spectral curve Σ. The fiber σ−1(Σ)
is the set of all (suitable) line bundles over Σ, i.e. is an open subset
of the Jacobian of Σ. The miracle here is that the dimension of S
coincides with the genus Σ, and it is given by 3(g − 1) in the case
r = 2, exactly half of the dimension ofH(V ); of course, the dimension
of the fibers σ−1(Σ) also coincides with the genus of Σ.

In other words, σ : H(V ) → S is a fibration in middle dimension.
The picture is complete once one verifies that the 3(g − 1) function-
ally independent holomorphic functions σ1, · · · , σ3(g−1) defining the
map σ are Poisson-commuting. Once the moduli space is properly
understood as a symplectic reduction, this follows from the general
theory.
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