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Introduction

In general terms, Dynamical Systems theory has two major goals: to describe
the typical behavior of trajectories, specially as time goes to infinity; to under-
stand how this behavior changes when the system is modified, and to what extent
it is stable under small perturbations. Even in cases of very simple transforma-
tions the orbits may have a rather complicated behavior. Moreover, systems may
display sensitivity on the initial conditions, i.e. a small variation on the initial
point gives rise to a completely different behavior of its orbit. Among many
others, these are obstacles that we find when we try to predict the long-term
helavior of a system and its stability.

Related to the first goal we have mentioned are the Sinai-Ruelle-Bowen (SRB)
ot physical measures which characterize asymptotically, in time average, a large
set of orbits of the phase space. These SRB measures may be understood as
cquilibrium states for a probabilistic description of the system. Significant infor-
mation on the dynamical properties of a system is given by the correlation decay
of an SRB measure, which in particular tells the velocity at which the equilibrinm
is reached. Connected to this is the statistical stability of o system, which means
continuous variation of the SRB measures under small modifications of the law
that governs the system; this naturally points in the direction of the second goal,
as does the stochastic stubility of a system. Briefly, this may be understood as the
characterization of the stability of the statistical properties of the system when
small random errors are incorporated in measurements along the way.

Systems displaying uniformly expanding/contracting behavior on Riemann-
iann manifolds have been exhaustively studied in the last three decades, and
several results on their statistical properties have been obtained, starting with
Sinai, Ruelle and Bowen; see [Si72, Si68, Ru, BR, Bo70, Bo75] and also
[Ki86, Ki88, Yo86]. The study of systems exhibiting expansion only in asymp-
totic terms has been done in the pioneer work of Jakobson [Ja], where the exis-
tence of SRB measures for many quadratic transformations of the interval is es-
tablished; see also [BC85, BY92]. In addition, decay of correlations and stochas-
tic stability for this kind of systems have been obtained in several significant works
by Baladi, Benedicks, Carleson, Viana and Young [BC85, BaY, BaV, BY92].
Moreover, related to this is the remarkable work of Benedicks and Carleson
[BC9I1] for Hénon two dimensional maps exhibiting strange attractors; see also
[MV, Vil, BY93, BY00, BeV01, BeV02]. Motivated by the results for
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multidimensional nop-uniformly expanding systems in {Vi2, Al00], general con-
elusions on the existence of SRB measures for systems exhibiting non-nniformly
expanding behavior are drawn in [ABV]; see [Car, BoV] as well. Subscquent
works pave rise to several results on the statistical properties of those SREB mea-
sures, for instance [AV, AA1, Cas, ALP3, O], Va).

The aim of this text is to present recent developmients on the study of the
statistical bhehavior of no-nniforinly expanding transformations in Riemannian
compact manifolds in finite dimenston, thus wnifying some of the results men-
tioned above and presenting a global theory for this sort of transformations. Our
analysis will be focnsed on SRB measures, decay of correlations, statistical and
stochastic stability, Readers should be acquainted with concepts from Measure
Theory, Integration and Brgodic Theory such as measure spaces, L? spaces, ab-
solute coutinuity, weak® convergence, invariant measures and ergodicity. For the
sake of completeness we include a preliminary chapter where we present all these
concepts, and in appendices we guide an overview on functious of bounded vari-
ation in higher dimensions, and on the statistical properties of Markov towers.

In Chapter | we introduce the notion of non-uniforinly expanding map, in the
sense of [ABV]. This comprises the case of maps with {non-degenerate) critical
sets wlose orbits have slow recurrence to the critical set. In Section 1.2 we study
a few examples of non-uniforly expanding maps defined in higher dimensional
manifolds: the class of local diffeomorphisms introduced in [ABV], and the class
of transforiations {(with critical) sets introduced in [Vi2]. Following [AAS], in
Section 1.3 we show that if non-uniform expansion condition is verified on a set
of total probability, then the transformation must be uniformly expanding.

A powerful tool for the study of ergodic properties of non-uniformly expand-
ing maps has been introduced in [A100] through the notion of hyperbolic times,
This concept, that we define in Chapter 2, has been put into an abstract setting
in [ABV], and plays a key role in a large part of the theory we explain here.
Besides, we believe that some properties of hyperbolic times have also a mathe-
maiical interest on their own. In the first sections of Chapter 2 we present the
two main features of hyperbolic times: namely, the local control of distortion in
a uniform way (not depending on the point nor on the iterate), and their exis-
tence with positive frequency for non-uniformly expanding maps. In Section 2.3
we prove that if the first hyperbolic time map is integrable with respect to the
Lebesgue measure, then there exists an absolutely continuous invariant measure.
Finally, in Section 2.4 we disclose some results from [AA2] connecting the posi-
tive frequency of hyperbolic times to the integrability of the first hyperbolic time
map. In particular, we study an example which evinces that the integrability
of the first hyperbolic time map is not a consequence of an almost everywhere
pesitive frequency of hyperbolic times. On the opposite direction we point out
that if the integrability is “sufficiently strong”, then there is some *large portion”
of the pliase space whose points have positive frequency of hyperbolic times.
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Sinai-Ruelle-Bowen (SRB) measures are defined in Chapter 3. In Section 3.1
we give results from [ABV] indicating that the phase space of a non-uniformly
expanding system is covered (up to a zero Lebesgue measure subset of points)
by the basins of finitely many SRB measures. Using the notion of functions of
bounded variation in general dimension, in Section 3.2 we prove the existence of
absolutely continuous invariant measures for piecewise expanding maps in higher
dimensions [GB89, Al00]; and moreover there is a finite number of ergodic mea-
sures for maps of that type. The results of Section 3.2 are used in Section 3.3 to
prove (via return maps) the existence of absolutely continuous invariant measures
for certain classes of maps exhibiting non-uniform expanding behavior. These re-
sults yield, in Section 3.4, to the framework developed in [AV] supplying sufficient
conditions for the statistical stability of some classes of non-uniformly expanding
transformations,

In Chapter 4 we show that some induced Markov structures exist for non-
uniformly expanding maps [ALP3]. This can be thought of as a partial gen-
eralization, to the framework of non-uniformly expanding maps, of the main
classical statement that uniformly hyperbolic systems may be endowed with a
finite Markov partition; see [Bo70] and also [AWE7, AW70, Si68]. The sig-
nificance of such Markov structures goes well beyond the consequences for the
statistical properties of the map. A first consequence of the existence of these
Markov structures is establishied in Section 4.2, where sufficient conditions are
given for the statistical stability of non-uniformly hyperbolic maps. One of the
purposes of Chapter 4 is to give rates for the correlation decay of non-uniformly
expanding transformations. Therefore we relate the time generic points need to
attain some uniformly expanding behavior with the tail of the Markovian struc-
ture (that part of the set that has not been partitioned yet). A key role in this
context is played by the results of Young [Y099] for Markovian towers,

In the last chapter we study random perturbations of a non-uniformly ex-
panding transformation. We start by introducing, in the first two sections, the
concept of random perturbation of a map and the notion of stationary measure.
In Section 5.1 we define physical measures and stochastic stability, and verify that
non-uniformly expanding transformations possess only a finite number of physi-
cal measures; see [Ar00, AA1]. We also show that the number of such physical
measures is bounded by the number of SRB measures of the unperturbed system,
at least for small noise level. In the last section we present the results from [A A1}
giving both necessary conditions and sufficient conditions for the stochastic sta-
bility of non-uniformly expanding transformations. As a corollary we settle the
stochastic stability of the non-uniformly expanding maps from Section 1.2.

I wish to thank my co-authors V. Aratjo, C. Bonatti, S. Luzzatto, V. Pinheiro,
B. Saussol, and M. Viana whose contribution to this work is invaluable. I also
thank H. Vilarinho for helpful collaboration. A special thanks to V. Araijo for
many useful discussions on several topics. Porto, June 5, 2003
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Preliminaries

In this chapter we present the basic concepts and results from Measure Theory,
Integration and Ergodic Theory that are relevant for a good understanding of this
text. All theorems we present here are standards and proofs may easily be found
'in se}veral books in these subjects. We just mention [Mul], [Bré8], [Ma87] and
Wal. !

1. Measure spaces

Let X be set and A be a collection of subsets of X. We say that A is a

o-algelra if the following conditions hold:

(1) X € A4

(2) if A Athen X\A € A4

(3) if Aj, Ay, Ay--- € 4 then Uzl A e A
We will refer to a pair (X, A) where A is a ¢-algebra on X as a measurable space.
Let 2 A — [0, -}00] be a function defined on a g-alpebra A of X .We say that u
is a measure if the following conditions hold:

(1) pu(9) = 0.

(2) If Ay, Ag, -+ € A are pairwise disjoint, then p(UR, A;) = >0, p(A;).
We say (X, A, p) is a measure space if (X, A) is a measurable space and 'w is a
measure on A4 . I p(X) = 1 then we say that g is a probability measure and
(X,.A, 1) is a probability spuce. !

ExaMPLE 0.1 (Counting measure}. Let X be a set. We define a function #
in the o-algebra P(X) (the collection of all subsets of X) taking #{A} as the
nuinber of elements of 4 (+oo if A infinite) for cach A C X. # defines a measure
on P(X) that will be called the counting measure on X.

ExaMpLE 0.2 (Dirac measure). Let X be a set and fix a point z € X. Given
A C X we define d, in P(X) as §,.(A) = 1if z € A, and §,(A) = 0 otherwise.
8, defines a probability measure on X that will be called the Dirac measure
supported on x.

Let (X, A, i) be measure space. We say that A C X has null measure if there
is B € A such that A € B and u(B) = 0. We say that some property on the
elements of X holds almest everywhere (a.e. for short), if the set of points for
which that property does not held has null measure.

1
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Now we assume that X is a metric space. We define B(X), the Borel o-ulgebra
on X, as the g-algebra generated by the open sets of X, i.e. the smallest (in terms
of inchusion) g-algebra that contains the open sets of X. This sinallest o-algebra
always exists, since P{X) is a g-algebra containing the open subsets of X and the
intersection of g-algebras with this property still has this property. A measure
defined on the Borel g-algebra of a metric space is said to be a Borel measure.
The support of a Borel weasure g, which is denoted by supp(e), is defined as

supp(pe) = {x € X: p(U) > 0 for each neighborhood U of «} .

A Borel probability measure g on a compact metric space X is said to be regular
if for all A € B{X) and € > 0 there are a closed set F, € A and an open set
U, > A such that g{UA\F) < e

TuoneM 0.3, Bvery Borel probabitity measure of a compact metric spuce is
regular,

Oune interesting problem in Measure Theory is to decide when a certain func-
tion defined over a class of subsets of a given set can be extended to a measure
defined on the g-algebra generated by those sets.

Tusorem 0.4. Let B be the Borel o-algebra on RY. There is o unique measure
m defined on B such that for intervals 11, ..., [; C R one has

m(HI,-) =0 % - x| L],
i=1

where each || denotes the length of 1;. !

The measure m given by the previous theorem is said to be the Lebesgue
measure on R Using a volume form and the exponential map we introduce the
Lebesgie measure on Riemnannian manifolds in a similar way.

2. Integration

Let (X, A, ) be a measure space. We say that ¢: X — R is measurable
Junction, if ¢~ '(B) € A for every Borel set B C R. A function ¢: X — C is
.said to be measurable if both its real part and its imaginary part are measurable
functions. We say that v: X — Cis a simple function if there are 4,..., A, € A
and ai,...,a, € C such that

11
p= Z ailﬂi:
i=1

where 1,4 denotes the characteristic function of A C M. A simple function ¢ is
said to be an integrable functionif 3 1, a;u(Ai) < oo (we assume that 0-00 = 0).
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In such case we define the integral of @ with respect to g as

[ otu= 3 anan.

=1
This value does not depend on the way we write  as a combination of charac-

teristic functions. We say that a measurable ¢: X — C is an integrable function
if there is a sequence of simple functions @,: X — ©C such that

lim () = (), for almost every z € X,
n—od

and :
lim / ]tp,‘: — @mlde = 0.
X

n—0no

In this case we define the integral of ¢ with respect to p as

f wdie = lim f ipndpt.
X =00 X

One can prove that this limit exists and is independent of the sequence we take,
Moreover, a function  is integrable if and only if |¢| is integrable. Given A € A
we say that @ is integrable on A if 14 is integrable. In such case we write

ftpd;t:/ ol 4dpe.
A X

We drop X when the integral {s over the whole space.

THEOREM 0.5 (Dominated Convergence). Let (p,). be a sequence of mea-
surable functions such that |@,| < o, where 4 is integrable. If ¢ = lim, o, On
almost everypwhere, then o is integrable end

f&pd,u: lim f«,o,,d,u..
H—0oo

Let (X, A, 1} be a measure space. Given p > 1 we define L?(u) as the set
of those p: X — C such that |¢[” is integrable, identifying two function that
coincide almost everywhere. Then

Iell = ( / tor) .

defines a norm in L?(p1). The integral is well-defined, since maps that coincide
almost everywhere liave the same integral. We define L*{1) as the set of those
measurable functions ¢ for which there is Then

@ +— [lollos = inf {C 2 0: |f(z)] < C almost everywhere}

also defines a norm on L*(p). L"{y) endowed with the norm || | is & Banach
space for 1 < p < oo,
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Tieorem 0.6 (Holder Inequality). Let f € LP(n) for some p > 1, and lct
g € LNp) forq>1 withp™ +g¢7' =1. Then fg€ L'(y) and

[ 155t < 1l

Let g2 and v bhe finite measures defined on a same g-algebra A, We say that v
is absolutely continuous with respect to g, and write v <€ g, if v(A) = 0 whenever
fi(A) = 0. The measures p and v are said to be equivelent if both 1 < v and
v & . :

TueoreM 0.7 (Radon-Nykodim}. The meosure v is absolutely continuous
with respect to p if end only if there is w: X — R nonnegative and integrable
with respeet to o sueh thot

v{A) = f wdp  for each A € A
A

Moreover, any fwo functions with this property coincide p almost everywhere.

The function given by the previous theorem is called the Radon-Nykodim
derivative of v with respect to g and denoted by dv/dp.

Lot and v be measures defined on a o-algebra A of X. We say that g
and v are singular measures, and write ¢ L v, if there exists A € A such that
p(A) = 0= (X \ A).

Theorem 0.8 (Lebesgue Decomposition). Let p and v be finite measures
defined on a o-algebra A, Then there are (finite) measures pt, and g, with ji, € v
and pty L v osuch thet g = o, + ps.

3. Invariant measures

Let (X, A, 1} be a measure space. We say that f: X — X is a measurable
transformation if f~'(4) € A for each A € A. The measure g is said to be
invariant by f (or f preserves p) if p(f~'(A)) for all A € A. We may associate
to a measnrable transformation f and a measure ¢t a new measure that we denote
by f.pe and call the push-forward of the measure g by f, and is defined as f.u{A) =
(S~ A)) for each A € A. Note that pu is invariant by f if and only if fop = .

Let X be a compact metric space. We denote by P(X) the space of probability
measures (efined on the Borel o-algebra of X. Note that P(X) is a convex space.
We introduce the weak* topology on P(X) in the following way: a sequence (i, ),
in P(X) converges to p € P(X) if and only if

/ pdt, — / wdu, for each continuous w: X — R.
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Since we are taking X a compact metric space, then C(X) is separable, and so
we may find a sequence (i, ), dense in C(X). The function

dll‘(/-tvu) = Z 5;]' '-/.wn d:u - /d’" dv
k=1

defines a metric on P(X) which gives the weak® topology.

We may associate to a measurable transformation Fi X — X an operator
Jor P(X) — P(X), assigning to each p € P(X) the push-forward f,p of y by f.
If f is a continuous transformation of a compact metric space X, then taking
some measure p € P(X), a Dirac measure for instance, we define a sequence of
measures in P(X),

(0.1)

n—1
Bn = Z ff/-"
j=0

If f is continuous then it happens that £, is also continuous, and a weak* accu-
mulation point of the above sequence is a fixed point for f,.

THEOREM 0.9. Let X be a compact metric space. Iff+X — X is a contin-
wous transformation, then f has some invariant Borel probability measure.

Let u be a measnre invariant by f: X — X. We say that p is an ergodic
measure if the phase space cannot be decomposed into invariant regions that are
‘relevant in terms of the measure g, ie. if A € A satisfies FY(4) = A, then
p(A){X\ A)=0. '
THEOREM 0.10 (Birkhoff). Let f: X — X preserve a probabilify measure y.
Given any ¢ € L' (1) there exists p* € L\(11) with 4" o f = ©* such that

n—1

: 1 U} R
Jlim =3 o f1(z) = p(z)
i=0
for y almost every x € X. Moreover, if f is ergodic, then * = [odyp almost
cverywhere.

The following result shows that any probability measure which is invariant by
a continuons transformation of a compact metric space can be decomposed into
ergodic components.

THEOREM 0.11 (Ergodic Decomposition). Suppose that X is a compact metric
spuce and f: X — X is o continuous transformation that preserves a probability
measure . Then there is a family of ergodic probability measures (jip)eex defined
for i alinost every x € X such that for each @ € L' ()

fsodu=f[/90(y) d,um(y)} dy(z).

In particular, continvous transformations of compact metric spaces always
have ergodic probability measures.







CHAPTER 1
Non-uniformly expanding maps

Let f: M — .M be a smooth map of a compact connected, and let m denote
the Lebesgue measure on M. The map f is said to be uniformly expending if
there is soime ¢ > 1 such for some choice of a metric in M one has

IDf (@)l = o||vl), forall z € M and all v € T, M. (1.1)

The ergodic properties of uniformly expanding maps are quite well understood,
with several results making a good description of the statistics of their orbits.
Our aim here is to try to obtain similar results for maps displaying some weaker
forms of expansion. This weakness may be carried out in two directions: on the
one hand, restricting the set of points for which expansion holds; on the other
hand, assuming that expansion holds only in time average over orbits,

1. Definition and examples

Let f: M — M be a continuous map which is a local diffeomorphism in the
whole manifold except at a set C C M of critical points. This set ¢ may be taken
as some set of points where the derivative of f fails to be invertible or simply
does not exist.

DEFINITION 1.1, We say that C C M is a non-degenerate critical set if the
following conditions hold. The first one says that f behaves like a power of the
distunce to C: there are constants B > 1 and 8 > 0 such that for every z € M\C

(s1) %diSt(-‘b‘,C)ﬁ < “Dl—mﬂu < Bdist(z, €)™ for all v € T, M.

Moreover, the functions log|det Df| and log{|Df~!| are locally Lipschitz at
points = € M \ C, with Lipschitz constant depending on dist(z,C): for every
®,y € M\ C with dist(z, y) < dist(x, C)/2 we have

() [log N1 @)™ 108 1D ) ) | < gy st
(s2)  [log|det Df(z)] ~ log|det Df(y){| < ﬁ dist(z,y).

Given ¢ > 0 and « € M \ C we define the §-truncated distance from z to C

P if dist(z,C) > 6;
dists(z,C) = { dist(z,C), otherwise.

7




8 L. NON-UNIFORMLY EXPANDING MAPS

Note that this is not really a distance function: dist(x, y) + dists(y,C) may be
smaller than dists(z, C).

DEFINITION 1.2. Let f: M — M be a €? local diffcomorphism outside a
non-degenerate critical set C. We say that f is non-uniforinly expending on a set
i C M if the following conditions hold:

(1) there is A > 0 such that for each z € H

H—=

log [ DF(F N < = (1.2)

i=0

. 1
limsup —
L 00 7"

(2) for every € > 0 there exists § > 0 such that for each z € I

. =]
limn sup 1 Z —log dists(f7(x),C) < e. (1.3)
oo T =0

We will refer to the secoud condition above by saying that the orbits of points
in £ have slow recurrence to C. The case £ = § may also be considered, and in
such case the definition reduces to the first condition. A map is said to be non-
undforinly cxpanding if it is non-uniformly expanding on a set of full Lebesgue
measire.

REMARK 1.3. 1t is worthwhile to stress that condition (1.3) is not needed in
all its strength. The only place where we will be using (1.3) is in Proposition 2.12.
As we shall see it is enough to have condition (1.3) for some sufficiently small
€ > 0 and conveniently chosen § > 0; see Proposition 2.12 and Remark 2.13.

, [
Notice that in the one-dimensional case the condition (1.2) is equivalent to
the existence of one positive Lyapunov exponent at 3:

n—1

lim inf |(f*)(z)| = liminf—l- Zlog|f'(f“(a;))l >A>0.

H—00 n—od fl =0
In dimension greater than one condition (1.2) is not equivalent to say that f
lias dim(M) positive Lyapunov exponents at x € M, as Example 1.4 below
illustrates. The formulation in the higher dimensional case is motivated by the
fact that we want to make an assumption about the average expansion in every
direction. Indeed for a linear map A : R? '— RY, the condition ||4] > 1 only
provides information about the existence of some expanded direction, whereas
the condition |A™!|| < 1 says that every direction is expanded by A.

ExAMPLE 1.4. Consider a period 2 orbit {p, g} for a local diffeomorphism f
on a surface which, for a given choice of local basis at p and g, satisfies

o= 5) wa pra=(G 1))
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Then it is clear that both Lyapunov exponents at p or ¢ are log(3/2)/2 > 0 and
the limit in (1.2) with z = p or ¢ equals log?2 > 0.

The following result gives an useful criterium for proving the non-uniform
expansion of a map as we shall illustrate after it.

PROPOSITION 1.5. Let f: M — M be a C* local diffeomorphism outside a
critical set C. Suppose that f has an invariant meesure p <€ m such that:

1) [ 106105t du < 0;
(2) iogdist(:t:,C) is pe-integroble.
Then there exists a set H C M with positive Lebesgue measure where f is non-

uniformly expanding.

Proor. The assumption on the integral of log || D f(z)~|| with respect to g
together with Birkhoff’s ergodic theorem ensure that there is some ¢ > 0 for
which the set

E= {:a: eM: 11111 —ilog”Df (FE) < —c} (1.4

satisfies p(F) > 0, and so mn(E) > 0. It remains to show that a positive Lebesgue
measure subset of points in & have slow recurrence to C. We start by fixing o > 0

such that

H(l —e ) >1-—m(E)}.

n>1
The integrability of log dist{x, C) with respect to the measure g and the definition
of the d-truncated distance dists ensure that for each £ € N we may find é; > 0
for which

/M logdlst,;,'(r, Cldp € —— &2L+1
We define for each k € N

=1
N = T il —Inmdi J
() = HLHE)O " Jzn tog dists, (f*(x), C).
This ¢y is well-defined g almost everywhere in M by Birkhoff’s ergodic theorem.
Moreover .
/M o diy = /A‘f —log disty, (z,C) dp < T
Let

1
Ry, = {.’L‘Gﬂ/]:lpk($)>g}.
Since ). > 0 we have

. / /M ;
< dp < cdy <
5 S chp;.d,u_ Prdp < o
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which implies that je(R;) < 2741 By the absolute continuity of o with respect
to m we may find £y € N osuch that (M \ By ) = 1 —e™™. This is the first step
in e following construction by induction on 7. Asswning that we have chosen
by < by < -0 < By satisfying
M\ (I, U--- Ut ) = (1 = e (M (B, N--- N R, L))
for all § = 2,...,n, then we may find a big cnongh Ky p > Ky, such that
(M (R, O N R, O Ry, )) 2 (- e DY (M (R, Mo OV ).
Now we take
S=M\(RURU--).
Let s show that points in S have slow recurrence to C. Given € > 0 we choose
by € N for which £ > 1/ky. [fw € S, then in particular = ¢ fy,, and this implics

4 H--1

. i it _ » 1
ul].lgw - Z — log dists, (f*(x),C) = or () < T <e.

=
Since
m(S) = H(l - g7 > 1 mf{A),
n>l {
then H = AN S has positive Lebesgue measure. O

ReMarK 1.6, Note that we have used the assumption on the integral of
log |2/ ()~"| just to guarantee that the set £ in (1.4) has positive Lebesgue
measure. Thus, that assunption can be omitted if we know in advauce that
there is some set [ © M with m(H) > 0 such that (1.2) holds for all z € 1.

Quadratic maps have served as a model that inspired many of the statistical
results about non-uniformly expanding maps. Although it might scem unnatural
from that point of view to use the knowledge of those statistical properties for
quadratic maps to prove that these are non-uniforinly expanding, we include it
lere just to illustrate that the model fits the general theory.

EXAMPLE 1.7 (Quadratic maps). Consider f,: R — R given by flx) = a~a?,
with « € R. The most interesting part on study of the dynamics of f, occurs for
—1/4 < a < 2, with f, restricted to the interval [£2(0), £(0)]. It is well known
that there is a positive Lebesgue measure subset of parameters —1 Jd<a<2
for which f, has an ergodic absolutely continuous invariant measure g, which is
also equivalent to m on [f2(0), £(0)], see e.g. [Ja, BC85, BY92]. Moreover,
dyie/dm belongs to some LP(m) with p > 1, and f, has a positive Lyapunov
exponent g almost everywhere. This gives the first part of Definition 1.2. For
showing the slow recurrence to the critical set C = {0}, we observe that since
log |:z| belongs to all L7(m) with 1 € ¢ < oo, we have by Holder inequality
that log|x| is g, integrable. Thus, by Proposition 1.5 we have that fo i non-
uniformly expanding on a set with positive g (thus m) measure. Ergodicity gives
non-uniform expansion Lebesgue almost everywhere.



1. DEFINITION AND EXAMPLES 11

The example we present below has some special features that we will explore
later on. By now we just prove that there is a positive Lebesgue measure subset
of points where the map has non-uniformly expanding behavior. Actually, in our
later study we will see that the non-uniform expansion holds Lebesgue almost
everywhere.

0.5

(ST B L
-1 =05 o] 05 t

FiGure 1.1. The map of Example 1.8.

ExAMPLE 1.8. Let [ denote the interval [-1, 1], and consider the map from
I into itself whose graph is drawn in Figure 1.1, given by

o0z -1 ifz>0,
€T
1—24/|x| otherwise.

This map induces a continuous local homeomorphism f : 5! — S* through the
identification §! = I/ ~, where —1 ~ 1, differentiable everywhere except at the
point 0. One can easily verify that C = {0, %1} is a non-degenerate critical set
for f, in the sense of Defiuition 1.1.

Let us show that f preserves Lebesgue measure. It is enough to check that
f preserves the Lebesgue measure of the intervals, since these generate the Borel
o-algebra. Observe that f has two inverse branches ¢; : (—1,1) — (0,1) and
g2 : (—1,1) = (—1,0), given by

1= (152) gt =~ (152)

Thus the pre-image of an interval (a,b) is made by two intervals whose lengths

1+6\% [1+a\? 1-b\* [1-a\?
(57 -(57) = -(59) (%)
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We immediately verify that the snm of these two lengths is precisely b~ a, and
so we conclude that f preserves Lebesgue measure.

Observe now that log |(f/(x)) '] = log /2] is integrable with respect to the
Lebesgne measure on S, and

[ ottt ) ]“k ||(‘m) lf‘u pd = L
L4 & = — log (e —dr | = = vy = ——
Ja O ) e 412 LA 2 5 ) w 2

(we are taking measure 71 normalized on 51). We also have that

log || if 2] < 1/2

rlist(x,C) = i LT

log dist{x, C) { log(1 — |]), otherwise,

is integrable with respect to the Lebesgue measure on 5. Hence, we may apply
Proposition 1.5 and thus conclude that f is non-uniformly expanding on some
sef with positive Lebesgue measure.

2. Some open classes

In this section we present two open classes of non-uniformly expanding maps
in higher dimensional spaces. The first class was introduced in [ABV], and its
maps display non-uniform expansion Lebesgue almost cverywhere but are not
uniformly expauding, The maps of the second class, introduced in [Vi2], have a
non-cpty critical sets (points with non-invertible derivative) and display non-
unifori expansion at Lebesgue almost all points.

2.1. Local diffeomorphisms. Here we present robust (C' open) classes of
local diffcomorphisms (with no critical sets) that are non-uniformly expanding.
Such classes of maps and can be obtained, e.g. through deformation of a uniformly
expanding map by isotopy inside some small region. In general, these maps are
not uniformly expanding: deformation can be made n such way that the new
map hag periodic saddles.

Let M be a compact manifold supporting some uniformly expanding map fo.
M could be the d-dimensional torus 7%, for instance. Let V C M be sowe small
compact domain, so that the restriction of fy to V is injective. Let f be any map
in o sufficiently small Cl-neighborhood A of fy so that:

(1) f is volume expanding everywhere: there exists oy > 1 such that
|det Df(z)| > oy for every x € M,
(2) f is expanding outside V: there exists g > 1 such that
|Df(x)7'| < o0 for every z € M\V;
(3) fis not too contracting on V: there is some small § > 0 such that
IPfz) < 1+8 foreveryz€ V.

We are going to show that every map f in such a C'-neighborhood A of fy is
non-uniformiy expanding.
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LEMMA 1.9. Let By, ..., Bp, By = V be any partition of M into domains
such that f is injective on By, for 1 < § € p-+ 1. There exists 6§ > 0 such that
the orbit of Lebesgue almost every point x € M spends a fraction @ of the time
in By U~ UB,, that is,

#{0<j<n:fi(x)e BiU---UB,} >8n
for every large n.

PRroOOF. Let n be fixed. Given a sequence i = (g,%1,...,%,—1) in {1,...,p+1},
we (lenote

il = B N7 (B) N N (B, ).

Moreover, we define g(i) to be the nmmber of values of 0 < 7 € n — 1 for which
i; < p. We begin by noting that, given any & > 0, the total number of sequences
i for which g(f) < #n is bounded by

2 ()2 (k)"

k<tn k<fn

A standard application of Stirling’s formula (see e.g. [BoV, Section 6.3]) gives
that the last expression is bounded by e"3°*, where - depends only on ¢ and
gocs to zero when @ goes to zero. On the other hand, since we are assuming that
f is volume expanding everywhere and not too contracting on By, we have
m([i]) < m(M) o7 =", Then the measure of the union I, of all the sets [i] with
g(i) < @ is less than m(M)oy eyt Since ¢y > 1, we may fix § small
so that "0’ < ¢}7?. This means that the Lebesgue measure of I, goes to zero
exponentially fast as n — oco. Thus, by the lemma of Borel-Cantelli, Lebesgue
almost every point 2 € A belongs in only finitely many sets I,,. Clearly, any
such point x satisfies the conclusion of the lemma. O

Let @ > 0 be the constant given by Lemma 1.9, and fix § > 0 sinall enough so
that a§(14-8) < e for some A > 0. Let 2 be any point satisfying the conclusion
of the lemma. Then

n—l1
TTID7 (@) < obr + 50~ < e

i=0

for every large enough n. This implies that x satisfies

1 -1 ]
lim sup — log [ DF(F(z) "M < =A.
'ﬂ.—*-{ncx! T JZ=l; g” ‘f(f ( )) "

and since the conclusion of Lemma 1.9 holds Lebesgue almost everywhere we
have that f is a non-uniformly expanding map.
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ReManrk 1.10. We have also proved that, for any such f, the Lebesgue mea-
sure of the set

{we M: |Df(x)"|| > e for some j = n}
poes Lo zero exponentially fast when n — oo.

2.2. Viana maps. In what follows we study an open classes of non-uniformly
expanding maps with critical sets in higher dimensions. We skip the most tech-
nical points and refer to [Vi2] for details. We study the two-dinensional case,
and then say how the arguments can be adapted to higher dimensions.

2.2.1. Two-dimensional case. Lot ag € (1,2) be such that the critical point
& = [} is pre-periodic for the quadratic map Q(x) = ag — . Let .51 R/Z and

: 5' = R e a Morse function, for instance, b(s) = sin(2ws). For fixed small
e > {), consider the map

f: S'xRkR — Sl xR
(s,) +— (_(]'(S),(}(S,:I:))

whiere § is the uniforinly expanding map of the circle defined by §(s) = ds (mod
Z) for some d > 16, and §(s,z) = a(s} — 2* with a(s) = o + b(s). 1t is casy
to check that for o > 0 snall enough there is an interval / C (=2,2) for which
f'(S' x I} is contained in the interior of S'x . Thus, any map f sufficiently close
to f in the CU topology Las S' x [ asg a forward invariant region. We consider
fromi here on these maps f close to f restricted to S1 x {. Taking into accommt
thie expression of f it is not difficult to check that f (and any map f close to f
in the C? topology) behaves like a power of the distance close to the critical set.

The results in [Vi2] show that if the map f is sufficiently close to fin the ¢3
topology then f has two positive Lyapunov exponents almost everywhere: there
is a constant A > 0 for which

lim mf ]05,||Df“ s,z)u]| = A

for Lebesgue almost every (s,:z:) € §' x I and every non-zero v € T(, (S* x I).
This does not necessarily imply that f is non-uniforinly expanding. However,
a slightly deeper wse of Viana's arguments enables us to prove the non-uniform
expansion of f. For the sake of clearness, we start by assuming that f las the
special form
f(s,2) = (g(s),q(s,2)), with 8.q(s,2)=0 ifandonlyif z=0, (1.5}
and describe how the conclusions in [Vi2] are obtained for each C* map f satis-
fying
If = fllez €@ on §'xI. (1.6)
Tlhen we explain how these conclusions extend to the general case, using the
existence of a central invariant foliation, and we show how the results in [Vi2]
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give the non-uniferm expansicn and slow approximation of orbits to the critical
set for each map f as in (1.6).

The estimates on the derivative rely on a statistical analysis of the returns of
orhits to the neighborhood §'x(—+/a, /&) of the critical set C = {(s,z) : & = 0}.
We set.

JO) =\ (-Vo,vVa) and J(r)={zxel:|z|<e™} forr>0.

From here on we only consider points (s,z} € S' x I whose orbit does not hit
the critical set C. This constitutes no restriction in our results, since the set
of those points has full Lebesgue measure. For each integer j > 0 we define
(8j,2;) = fi(s,x) and

ri(s,2) =min{r > 0:2; € J(r)}.

Consider, for some small constant 0 < 5 < 1/4,
; 1 1
G= {0 <j<mnirsz) > (5 - 21;) loga}_

Fix some integer n > 1 sufficiently large {only depending on « > 0). The results
in [Vi2] show that if we take
By(n) = {(s,z}: thereis 1 < j < n with z; € J([v/a]) },
where [/7] is the integer part of /n, then we have
m(By(n)) < const e™V/4, (1.7)
and for small X > 0 (ouly depending on the quadratic map Q)

n—1
logH |8ug(s;, ;)| = 2An — er(s,w) for (s,z) ¢ Ba(n), (1.8)
=0 J€C

see [Vi2, pp. 75 & 76). Moreover, defining for € > 0
Bi(n) = {(s,:n) ¢ Ba(n): er(s,w) > sn},

JEG
then for small £ > 0 there is a constant £ > 0 for which
m(Bi(n)) <e ™, (1.9)
see [Vi2, p. 77]. Taking into account the definitions of J{r) and r;, this shows
that if we take § = {1/2 — 27)log(1/c), then
n—1
Z —log dists(f*(s,2),C) <en for (s,z) ¢ Bi{n)U Ba(n). (1.10)
=0
On the other hand, we have for (s,z} € §* x I
- 1 8.q(s, ) 0 )
T : 1.11
Dj(s,z) 8.q(s,z)8.g9(s) ( —0.q(s,x) 0s9(s) (1.11)
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Since all the nors are cquivalent iu finite dimensional Banach spaces, it is no
restriction for onr purposes to take the norm of D f(s,x)™! as the waximum of
the ahsolute values of its entries. From (L5) and (1.6) we deduce that for small
> ()

|0} 2 d — e, (0] S V|4 <8 and  |deq] £ 22] + o <4,
which together with (1.11} gives
NDF(s,2)"|| = |Deals, 2)| 7,

as long as v > 0 s taken sufliciently sinall. This implies

n-1 -1
S log (D f(s5, 00 Il = = Y log 9eq(s;,25)] (1.12)
=0 i=0

for every (s,x) € S' x . Taking € < A, then we have

u—1| n-1
Zlog |0 (54,2} = logH |Boq(s;, 250 2 An {1.13)
J=0 : Jj=0

for every (s,2) ¢ Bi(n) U Ba(n) (recall (1.8) and the definition of By(n)). We
conclude from (1.12) and (1.13) that

-1

Z]()g||Df(sj,:::j))"1:|[ <=M for (s,2) ¢ Bi(n) U Ba(n). (1.14)

=0

If we take &, = B|(n)U B-,,.(n) and [, = Ugs, By, then in view of the estimates
(1.7) and (1.9) on the Lebesgue measure of the sets By (n) and Ba(n), there is
¥ > 0 for which
m(l',) < const e foralln > L (1.15)

Morcover, it follows from (1.10) and (1.14) that for each (s,2) ¢ I,

=

% Z —logdists(fi(s,),C) € e for all k > n,

Rt

an
=
Z ZlogHle(sj,:a:j))"lH <X forallk>mn
j=0

This shows that f is non-uniformly expanding,.

REMaARK 1.11. Let us observe, for future reference, that the constants §, A
and « only depend on the quadratic map @ and ¢ > (. In particular, the decay
estimate (1.15) on the Lebesgue measure of I, only depends on the quadratic
map Q and ¢ > 0.
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Now we describe how in [Vi2] the same conclusions are obtained without
assuming (1.5). Since f is strongly expanding in the horizontal direction, it
follows from the methods of [HPS] that any map f sufficiently close to f admits
a unique invariant central foliation F* of §! x I by smooth curves uniformly close
to vertical segments; see [Vi2, Section 2. o] Actually, F¢ is obtained as the set
of integral curves of a vector field (¢5,1) in S' x I with £° uniformly close to
zero. The previous analysis can then be carried out in terms of the expansion of
f along this central foliation F*¢. More precisely, |0.q(s, z)| is replaced by

[0.q(s,x)| = |Df(s,x)ve(s, )|,

where w.(s,z) is a unit vector tangent to the foliation at the point (s,z). The
previous observations imply that v, is uniformly close to (0,1) if f is close to .
Moreover, cf. [Vi2, Section 2.5], it is no restriction to suppose |8.q(s,0)] = 0, so
that d.4(s,x) = ||, as in the unperturbed case. Indeed, if we define the eritical
setof f by
C={(s,x} € S' x I: B.q(s,z) = 0).

by an easy implicit function argument it is shown in {Vi2, Section 2.5] that C is
the graph of some C? map 5 : §' — I arbitrarily C?-close to zero if o is small.
This means that up to a change of coordinates C2-close to the identity we may
suppose that 7 = 0 and, hence, write for o > 0 small

uy(s, ) = wp{s,x)  with |9 4 2| close to zero.

This provides an analog to the second part of assumption (1.5). At this point,
the arguments apply with d.¢{s, z) replaced by ch(s z), to show that orbits have
slow approximation to the critical set C and [ {0.q(s:, ;)| grows exponent.]a,lly
fast for Lebesgue almost every (s,z) € §! x I. A matrix formula for D f*(s, z)™!

similar -to that in (1.11) can be obtained if we replace the vector (0,1) in the
canonical basis of the space tangent to S! x [ at (s,2) by v.(s,z), and consider

the matrix of D f"(s,z)~! with respect to the new basis.
2.2.2. Higher dimensions. Here we explain how the previous construction can
be adapted to higher dimensions. Consider f: T™ x R — T™ x R given by

f(0,2) = (3(6), 148, )),

where § is an expanding map on the m-torus T™ and fL(G,m) = ag -+ (ab(f) - 22
As Defore, and ag € (1,2) is such that the critical point z = 0 is pre-periodic
for the quadratic map Q(z) = ag — #°. For simplicity, we take § to be linear
and to have a unique largest eigenvalue A,. Then we suppose the function b
to vary in a Morse fashion along the corresponding eigendirection V. In this
setting an admissible curve is a curve of the form {(8(#), X(£))} € T™ x R with
() = 6y + tV,, and | X'|, |X"| small. Then, up to assuming A, sufficiently large
{depending only on the Morse function b), the same arguments as before prove
that for small enough o the map fohas m-+1 positive Lyapunov exponents at
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£ (6(0), X(£)), for almost every &. Moreover, the same remains true for all small
perturbations f of fa, as long as every eigenvalue of § is larger than 4, in order
to assuce that the invariant foliation {# = const} is normally expanding.

3. Uniform vs. non-uniform expansion

Irom [Ma85] one knows that C* local diffcomorphisms in one-dimensional
manifolds are necessarily uniformly expanding. The situation is completely dif-
ferent in higher dimensions. As we have seen in Subsection 2.1 there are examples
of maps in dimension greater than one which are non-uniforinly expanding and
not uniformly expanding.

Uniformly expanding maps are many timnes defined as differentiable maps for
which the hypothesis of the proposition below holds. Since we are working in
finite dimensional compact manifolds, then all norms are equivalent, and so that
other possible definition is equivalent to the one we have given in (1.1). A metric
for which the constant ¢ > 0 below may be taken equal to 1 is said to be an
adupted metric for f.

Provosimion 1.12. Let f: M — M te e diﬁemntz’a}blc map for which therce
are C >0 and 0 < X < 1 such that

1D f*(@)ull = CX*[loll, (1.16)
foralln>1,z€ M andv € T,M. Then f is uniformly czpanding.

ProOF. Assmme that there are ¢ > 0 and 0 < A < 1 for which (1.16) holds.
Taking 1 < o < A, we define the norm | - | on the tangent space of x € M by
ot
=3 swp o™ D @) ol forallve TuM.
wn VES ()
This is well defined by (1.21) and by the choice of o. We have for each v € T, M
o0
|Df(x)v) = Z sup  a"||Df ) Df ()|
ne=0 yE_f*"(f(:ﬂ)}
> Z sup  o" || Df () Df(z)v
n=1 YEST{Sf(z))
(=]
> sup oD Hy)y Ml
n=1yef~ (- D(x)

= oy
This concludes the proof of the proposition. O

Our aim now is to investigate whether (apparently) weaker forms of expansion
might still imply uniform expansion or not. This will be the case if we replace the
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set of full Lebesgue measure by a set of total probability in the definition of non-
uniformly expanding map. Recall that a Borel set in a topological space is said
to have total probability if it has probability one for every f-invariant probability
measure. Let us start with a couple of auxiliary lemmas.

LEMMA 1.13. Let X be a compact metric space and f: X — X a continuous
map. If o: X — R is continvous and
-1

liminf ~ Z w(fi(x)) (1.17)

n—+oo 7

holds in a subset of pointsx € X wzth'total probability, then it holds for allz € X.

PRroor. Arguing by contradiction, let us suppose that there is some z € X

such that
n-1

lmlmf—Z:p fi(z)) = 0.

n—+oo 1

Then, for every k € N, there is some mteger 1y; for which

1 np—1
3 el > -
Ty ‘=0
It is no restriction to assume that n; < ny < -+ and we do it. We define the

sequence of probability measures

ng—1

Hi = ; Z afl{z)) k> 1,

where each dys(, is the Dirac measure on f7(z). Let p be a weak® accumulation
point of this sequence when k& — +4oo0. Taking a subsequence, if necessary, we
assume that je,, converges to p. Standard arguments show that g is f invariant.
Since the function ¢ is continuous we have

mp—1

Jotn=im = 2 ) 20

by definition of i and the way we have chosen the sequence (n;). However, since
we are assuming that (1.17) holds in a set of total probability measure, we have
that g almost every y is such that

u—1
) - _ 7
Ply) = lim ~ Z;w(f )
p=

On the other hand,

f@rlu=fsodu20
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by Birkhoff’s ergodic theorem. This gives a contradiction, thns proving the
lenuna, O

LEMMA 114, Let X be o comnpact mebrie space and f: X — X o conlinuous
map. If o X — R is a continuous function and for allz € X
n-1
li L i
32 st <,
then there are Ce > 0 and p € N such that for el € X andwm = 1

mp=-1

Z e f{x)) < ~em+ C.

i=0
Proor. According to the hypothesis of the lemma, for cach x € X there are
q{x) € N and c(x) > 0 such that

1 y(x)-1

T 2 PN < ~2ee).

F=0

Thus, by continuity, for cach z € X there is a neighborhood V,; of & such that
for every y € V, one has

()~

%Z o(f () < —cle).

Since X is compact, there is a finite cover V..., V,, of X by neighborhoods of
this type. Let

p=max{g(z)),...,¢(x)} and c¢=min{c(x),...,c(x:}}. (1.18)
We define for € X
qi{x) = min{g(w;): x € Vo, i=1,...,s}
and a sequence of maps g, : M — {1,...,p}, £ > 0, in the following way:
q(z) =0,  qerile) = qe(2) + fh(qu(w)-"")- (1.19)

Observe that there is no conflict in the definition of g;. Now it will be useful to
take

a = rgg;up( 1)

Let us fix ;x € X. Given m > 1 we define

o= max{k > 1: qu(z) < mp}.
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We must have mp — ¢.(z) < p. It follows from (1.18) and (1.19) that for £ > 0

rpr(z)—1 a7 z))-1
SToelfE) = ), plfeE)
j=ax(z) j=0 '
< ~cq.(f‘**(“’}(;1:))
= —e(gen(z) — gi(x))
Hence
mp—1 ) g (x}—1 ) gnfz)~1 ) mp—1
Yo wlfiz) = Y oD+ Y e(fEN+ Y o)
j=0 F=q(x) F=tno1 () F=an)
h
< ) lgs(e) — gi-(@)] + o(mp ~ ()
=1
< —cqple) +ap
< —om-tap
(observe that g,(z) > mp/p = m). Thus we just have to take C' = ap. ]

The next result gives in particular that if a local diffeomorphism f is non-
uniformly expanding on a set with total probability, then f is uniformly ex-
panding; observe that condition (1.20) in Theorem (1.15) is weaker than condi-
tion {1.2}.

THEOREM 1.15. Let f : M — M be a C* local diffeomorphism. If for all
x € M in a set with total probability

n—1
el -1
11113_1»1Dr°1f - ,?:0 log | Df5igll <0, (1.20)

then f is uniformly ezpanding.
PROOF. The fact that f is a local diffeomorphism implies that the map
A=) =log | Df ()7

is a continuous function from M to R. Fix v € M and 0 # v € T:M. Observe
that

mp—1 .
1Dyl < oxp (30 A7) ).
3=0
Let Cp > 0 be as in Lemma 1.14. Taking Ky = ¢ and p = e~%/2, we have for
allm>1
vl = 1D (@)~ Dfm*(@)vll < Kp™ | Df™()v]l,

!
i
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which is cquivalent to

Hegr 1 - m"m
1Dyl 2 o™y el
On the other hand, we wve for all c € M, v € T, M and n > |
fDf ()|l = e " |lv]|.

Let an integer 2> 1 be given. There are m > 1and » € {0),...,p— 1} such that
n=mp-+r. llence

1D.£ Gy

LD () DI ol
e ™| DU G|
oy

7 U
i
e—;mpr'/p

K
Thus we have proved that for all e > 1, @ € M and v € T, M
1D f (o)l = CXYv|l, (1.21)

where ¢ = ¢ p/IK > 0and A = p~ /P > 1. O

v

v

(o o]



CHAPTER 2
Hyperbolic times

A powerful tool for the study of the ergodic properties of Viana maps has
been introduced in [A100] through the notion of Ayperbolic times. This notion
has been extended to a very general class of maps in [ABV]. Roughly speaking,
liyperbolic times are iterates of a given point at which some uniform (not depend-
ing on the point nor on the iterate) backward contraction holds, thus implying
uniformly bounded distortion on some small neighborhood of that point. This
makes hyperbolic times play a key role in the study of the statistical properties
of many classes of dynamical systems. We fix once and for all B> 1 and 8> 0
as in Definition 1.1, and a constant b > 0 such that 26 < min{1, 37'}.

DEFINITION 2.1, Given o < 1 and 6 > 0, we say that n is a (o, §)-hyperbolic
timeforapoint z € M ifforall 1 <k < n,
n—1
H IDF(F ()" € 0* and  dists(f**(x),C) > o, (2.1)
i=n-k
In the case C = @ the definition of {o,d)-hyperbolic time reduces to the first
condition in (2.1) and we simply call it a o-hyperbolic time.

As we shall see below, hiyperbolic times appear with positive frequency at
Lebesgue almost all points for non-nniformly expanding maps. In such a case we
are able to define at Lebesgue almost every point a first hyperbolic time map. Our
goal in this chapter is to present the most important features of hyperbolic times
and to connect the positive frequency of hyperbolic times to the integrability of
the first hyperbolic time map positive frequency of hyperbolic times and to the
existence of absolutely continuous invariant measures.

1. Bounded distortion

Hyperbolic times of a given point correspond to iterates where the map locally
behaves as if it were an expanding map, namely with uniform expansion and
uniform bounded distortion. This is stated precisely in Proposition 2.3. We start
with a preliminary technical result.

LEMMA 2.2. Given § > 0 fir §; > 0 so thet 45; < § and 4B8; < 6°|logo|. If
n is a (o, 8)-hyperbolic time for z, then
1DF) | < o ADF( () 7|

23
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Jor any 1 < j <n end any point y in the ball of radins 28,09/ around f*~7(z).
IProor. Since n is a (o, §)-hyperbolic time for & we have for any 1 < j <n
dists(f*(z),C) > o7,
Aceording to the delinition of the truncated distance, this means that
dist(f*7(x), C) = dists(f779(x),C) > ¥ or elsc (list;(‘_f”’j(:r),C) > 4.

[u either case, we have dist(y, f*~7(x)) < dist(f*~#(x),C)/2 for any 1 < j < u,
hecause we chose b < 1/2 and §; < §/4 < 1/4. Therefore, we may use (52) to
conclude that

3 . [TE ¥ P /2
DI sty fIE) 20
|Df(f"‘1( 14| dist(f2=3(x)),C)? min{ab8i §8}
Since & and o are smaller than 1, and we tock b4 < 1/2, the term on the right

hand side is bounded by 286,677, Moreover, our second condition on §; means
that this last expression is smaller than logo—'/2. ]

log

The previous lemma will be very useful in proving one the maiu features of
hiyperbolic tites, namely the existence of inverse branches wnth uniform backward
contraction, as stated in the next result.

Prorosition 2.3. Given 0 < o < 1 and § > 0, there exists §, > 0 such that
ifn is o (o, 8)-hyperbolic time for z, then there exists a neighborhood V,, of x such
thet:

(L) f" maps V, diffeomorphically onto the ball of radius 6, around f*(2);
(2) foralll <k <nandy,z eV,

dist(f"~ (), [*7(2)) < "2 dist(f*(3), f*(2))-

Proor. Let §, be given by Lemma 2.2. We shall prove, by inductionon § > 1,
that there exists a well defined branch of f=7 on the ball of radius §; around f*(x),
mapping f*(x) to f*7(x). In addition, this branch is a ¢#/2-contraction.

Starting the induction argument, we note that for § = 1 the Lemma 2.2 gives

12" < o 2IDF )T S 02

since n is a hyperbolic time for x. This means that f is a o~ '/2-dilation in
the ball of radius 26;0'/2 around f"~!(z). As a consequence, there exists some
neighborhood V(n — 1) of f*~!(z) contained in that ball of radius 25,0'/2, that
is mapped diffeomorphically onto the ball of radius § around f"(z).

Now, given any j > 1, let us suppose that we have constructed a neighborhood
V(n — j-+1) of f*=+1(x) such that the restriction of fi* to V(n—j+1)isa
ditffeomorphism onto the ball of radius 4, around f*(z), with

IDF(F) M < e 2D ) (2.2)
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forallzinV(in—-j+1)and 0<i<j—1 Then by Lemma 22 and the
hypothesis that n is a hyperbolic time for =,

IDF )l < HIIDf (FfeN™ < HG“”IIDf(f”"*'(w <o

=0 i=0

for any point y in the ball of radius 28,6%/2 whose image z = f(y) is in V(n—j+1).

Now we can construct an inverse branch of f7 on the ball of radius §; arcund
f*(x), by lifting geodesics in the following way. Given a geodesic v connecting
f*(z) to a point in the boundary of the ball, there is a well defined lift of the
restriction of y to a small neighborhood of f*(z), into a curve starting at f*~7(x).
Moreover, as far as this curve does not leave the ball of radius 28,67/2, the de-
rivative on it is a ¢~#/?-dilation. This means that the length of the hfted curve
is less than §;07/2, and so the curve is actually contained in a smaller ball. This
proves that the lift is well defined on the whole geodesic . Thus, we have a
well defined branch of = on the ball of radius 6, around f*(z) as we claimed.
We call V(n — j) the image of that inverse branch. By construction, V(n — j)
is contained in the 2§;07/2-ball around f* #(z) and its image under f coincides
with V(n — 7 + 1). So, in view of Lemma 2.2, we also recovered the induction
assumption (2.2) for points in V{n — j) and times 0 < i < 5.

In this way, we construct neighborhoods V{n — j) of f*=(x) as above, for all
1 €4 £ n. The lemma follows taking V,, = V(0). J

We shall often refer to the sets Vi, as hyperbolic pre-balls and to their images
f*(V,,) as hyperbolic balls. Notice that the latter are indeed balls of radius d; > 0.

REMARK 2.4. It follows from the proof of the previous proposition that for
every = belonging to a hyperbolic pre-ball V,, associated to a (¢, d)-hyperbolic
time n we have [|Df*(z)~!| < o™/2

One of the most important properties of hyperbolic times is the uniformly
bounded distortion on hyperbolic pre-balls given by the next result.

COROLLARY 2.5 (Bounded Distortion). There exists Cy > 0 such that for
every hyperbolic pre-ball V,, and every y,z € V,,

|det Df"(p)f _

108 3t Dfr(z)] =

< Godist(f"(y), f7(2))-

PROOF. Let = € M be the point having n as a (o, §)-hyperbolic time with
associated hyperbolic pre-ball V,,. By Proposition 2.3 we have for each y,z € V,,
and each 0 <k <n

dist(f*(y), f5(2)) < 616972,
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On the other hand, since u is a hyperbolic time for «

dist(f5(5),€) > dist(f*(2),C) — dist(f*(), £ (o))
> nb(u—-k} _ 610_(:1--k)/2
> %o,b(n—-k) (23)
> 26'0,(:1—&')/2’

as long as § < 1/4; recall that b < 1/2. Thus we have

dist(F4(), 14(2)) < 5 dist(£4(0),C),
and so we may use (s;) to obtain
lop | det D F(F* ()] < B
B [ det DF((z))| = dist(f*(),C)?
lence, by (2.3) and Proposition 2.3
|det Df* ()] _ <=, |det DF(f*(»))|
8 [Tt D~ 2 8 [det D))

dist( f* (), =)

ul

(n—k)
22” ”m.. st ) M)

1A

1t suffices to take Cy 2 3 0e, 2"B0‘(‘/"'“’ﬁ)"; recall that bf < 1/2. |

Many times along this text it will be useful to have the following weaker form
of the previous coroliary.

COROLLARY 2.6. There exists C, > 0 such that for every hyperbolic pre-bull
Vi, and everyy,z € V,,
i
1 (et
C, ~ |det Df(z)]|

Proor. Take Cy = exp(CyD), where D is the diameter of Ad. 0
COROLLARY 2.7. There is a constant Cy > 0 {only depending on 6; and Cy)
sich that for everyn = 0
El 1t
o Hn <G 1
dm f* (m l ) = V2
where H,, is the set of points that have n € N as a (g, 8)-hyperbolic time.

Proor. Take §; > 0 given by Proposition 2.3. It suffices to show that there
is some uniform constant C > 0 such that if A C M is & Borel set with diameter
smaller than §,/2, then

m(f™(4) N H,) < Cm(A4).
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Let A be a Borel set in M with diameter smaller than §,/2 and B an open ball of
radius 6,/2 containing A. Taking the connected components of F*(B) we may
write
FB) = B
k>1
where (By)izy is a (possibly finite) family of two-by-two disjoint open sets in
M. Considering only those By that intersect H,, we choose, for each k > 1, a
point zx € f, N By. For each & > 1 let V, be the neighborhood of zj given
by Proposition 2.3. Since B is contained in B( f”(a:k),tfl), the ball of radius &,
around f"(xy), and f* is a diffeomorphism from V;, onto B(f"(a:k), 51), we must
have B, C V,, (recall that by the choice of By we have f*(By) C B). Asa
consequence of this and Proposition 2.3 we have that f* | By: By — B is a
diffeomorphism with uniformly bounded distortion for all n > 1 and & > 1:
1 _ |det Df*(y)|

— < 122 Al .
Cy ~ |det Dfr(z)| = Cr forally,z € By

This finally gives
' m(f(A)NH,) < Y m(f™(ANB)NBy)

k21
' m{AN B)
< z C1————m(By)
& m(B)
< Cym(A),
for some constant Cy > 0 only depending on ¢} > 0 and on the volume of the
ball B of radius 4,/2. |

2. Positive frequency

In the first half of this section we will derive some consequences of the existence
of many points in the phase space with positive frequency of hyperbolic times.
In the second half we show that non-uniformly expanding maps have positive
frequency of hyperbolic times at Lebesgue almost 'every point.

DEFINITION 2.8. We say that the frequency of (o, d)-hyperbolic times for z €
M is positive, if there is some 8 > 0 such that for large n € N there are £ > fn
and integers 1 < ny < ng--- < ng £ n which are (o, §)-hyperbolic times for z.

We will extract several interesting consequences from the lemma that we
present next.

LEMMA 2.9. Let A C M be a set with positive Lebesgue measure whose points
have positive frequency of (o, 8)-hyperbolic times. Then there are 8 > 0 and
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1, € N such that for n > ny

1~ m(ANH;)

Yy >y
n ; m{A) — '
where Hj is the set of points that have j as o (o, 8)-hyperbolic time.

ProOOF. Since we are assuming that points in A have positive frequency of
(o, 6)-hyperbolic times, then there arc 6 > 0, a set B C A with m(B) = m(A4)/2,
and ng € N such that for every x € B and n > ng there are (o,d)-hyperbolic
times 0 < 7y < 7g < -+ < ng < n for £ with £ > 20n. Take now n > ny and
let £, be the measure in {1,...,n} defined by £,(J) = #J/n, for ecach subset J.
Then, using fubini’s Theorem

;lignz(BﬂHjj - / ( fB l(w,i)flm(fﬂ)) dé. ()

/B (/ 1(z,7) dﬁu(i)) dm(z),

where 1(z,1) = 1 if z € I}, and 1{z,%) = 0 otherwise. Since for every x € B and
1w > ng there are 0 < 1y < ng < -+ < ng < n with £ > 26n such that z € H,, for
1 < i < ¢, then the integral with respect to d€, is larger than 26 > 0. So, the last
expression in the formula above is bounded from below by 20m(B) = #m(4). O

Before we state our next result, let us recall that a set I C M s said to be
positively invariant by f: M — M if f(HYC H. |

THeorEM 2.10. Let f: M — M be a C? local diffeomorphism outside o non-
degenerate critical set C C M. If there is H C M with m(H) > 0 whose points
have positive frequency of (o, 8)-hyperbolic times, then f has some absolutely con-
tinuous invariant probability measure p. Moreover, if H is a positively inveriant
closed set, then p has support contained in Ny f7(H).

PROOF. We let (p,,),, be the sequence of the averages of the positive iterates
of the Lebesgue measure restricted to H,

H—

1
1 .
B = — E ,fi(m | H).
nj=n

Letting H; be the set of points in A that have j > 1 as a (o, 8)-hyperbolic time,
we define

-1

1 .
= - E 2 .
Uy n ~ f*(m I HJ)
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By Lemma 2.9 we have some 8 > 0 and ng € N such that for each n > ng
(M) 1§ (H;) li (HNH)>6
vo(M) 2 = > m(H;) =2 — » m(HNH;) > 0m(H). 2.4
n s P ) (H) (2.4)
Moreover, by Corollary 2.7, every fi(m|H;) is absolutely continuous with respect
to Lebesgue measure, with density uniformly bounded from above, and so the
samne Is true for every uv,.

Since we are working with a continuous map in the compact space M, we
know that sequences of probability measures in M have weak™ accumulation
points. Take n, — oo such that both p,, and 14, converge in the weak® sense
to measures ¢ and v, respectively. Then p is an invariant probability measure,
jt = v+ for some measure 7, ¥ is absolutely continuous with respect to Lebesgue
measure, and v(H) > 0 by (2.4). Now, if 5 = 1, + 7, denotes the Lebesgue de-
composition of # (as the sum of an absolutely continuous and a singular measure,
with respect to Lebesgue measure), then pq. = » + o gives the absolutely con-
tinuous component in the corresponding decomposition of p. By uniqueness of
the Lebesgue decomposition, and the fact that the push-forward under f pre-
serves the class of absolutely continuous measures, we may conclude that p,. is
an invariant measure. Clearly, pro(H) > v(H) > 0. Normalizing p,. we obtain
an absolutely continuous f-invariant probability measure.

For the second statement of the theorem we just have to observe that since
H is a positively invariant closed set and the measures p,, are supported in the
positive images of H by f, then the support of g must be contained in the
maximal invariant set contained in H, which is precisely Nj»1 f7(H). a

Qur aim now is to show that hyperbolic times appear with positive frequency
for non-uniformly expanding maps. The following lemma, due to Pliss [P]], plays
a crucial role in the main result that we are going to prove in that direction.

LEMMA 2.11. Given 0 < ¢ <6 < Alet0 = {ca—¢))/(A—e1). Given real
numbers ay,...,ay satisfying a; < A for every 1 < j < N and

N
Zﬂj 2 CgN,

=1
there are l > 6N and 1 < ny < -+ <ny < N so that

ng

Z a; = ci(n;—n)

j=n+l
forevery0<n<mnandi=1,...,L
Proor. Define for each 1 < n < N,

Sp = Z(aj - Cl), and also Sp=0.

=1
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Then define 1 < 1y < «-+ <y < N to be the maximal sequence such that
S, 2 S, forevery 0 €<n < n; and i = 1,...,1. Note that { cannot be zero, since
Sy > Sy. Moreover, the definition means that
n;
Z gj >c(ni—n), for 0<n<m and i=1,... L
FEL R
So, we only have to check that { > #,N. Observe that, by definition,

Syl < 8u., andso Sy, < Suo, +{A-q)
for every 1 < i < 1. Moreover,
S:ul S (.A - Cl) and S"l 2 SN 2 N(62 — Cl)-
This gives,
!
N(CQ - Cl) S Srl, = Z (Su,' - Sn,._l) -+ Su1 < l(A — Cl),
i=2

which completes the proof. O

ProrositioN 2.12. Assume that f: M — M is non-uniformly expanding on
HC M. Then there are 0 < o < 1, § > 0 and 8 > 0 (depending only on A and
ot the wmap f) such thet the frequency of (o, 8)-hyperbolic tirnes for peints in H
is greater than 8.

Proor. The strategy is to use Lemma 2.11 twice, first for the sequence given
by a; = —log||Df(f7~1{z))™"|| (up to a cut off that makes it bounded from
above), and then with @; = logdists(f~'(x),C) for a convenient § > 0. We
prove that there exist many times n; for which the conclusion of Lemma 2.11
liolds, simultaneously, for both sequences. Then we check that any such n; is a
(o, §)-lhiyperbolic time lor x.

Assuming that (1.2) holds for © € H, then for large V € N we have

N-1
> —log|DF(F N = AN
=0
Take § > 0 given by Definition 1.1, and fix any p > 8. Then (s2) implies that
{og 1D ()11 < | logdist(z,C)| (2.5)

for every z in a neighborhood V of C. Fix g1 > 0 so that pe; < A/2, and let
71 > 0 be so that

N-1
> logdist,, (f(2),C) = —e1N . (2.6)
=0
The assumption of slow recurrence to the critical set ensures that this is pos-
sible. Fix any I{; > p|logri| large enough so that it is also an upper bound
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for —log|[Df~!| on the complement of V. Then let J be the subset of times
1 < § < N such that —log || Df(f~1(z))~|| > K1, and define

[ —toglDFE @) i ¢
7 0 ifjelJ
By construction, a; € K for 1 < j < N. Note that if § € J then fi~(z) € V.
Moreover, for each j € J
pllogri| < K1 < —log[[DF(f7Ha)) ™' < p|logdist(f (). C)],
which shows that dist{ fi=(z),C) < r, for every j € J. In particular,
dist,, (f77Y(2),C) = dist(f/~Hz),C) <, forall j€ J.
Therefore, by (2.5) and (2.6}, ‘ _
S log [DA( @) < 53 Hlogdist(f(2),€)| < perN.
Jed i€t

We have chosen £; > (0 in such a way that the last term is less than AN/2. As a

consequence,
N N ‘ _ A
>y = 3 ~log |DA(F @) - D ~log D) =GN
j=i i=1 jeJt
Thus, we have checked that we may apply Lemma 2.11 to the numbers a,, ..., a5,

with ¢, = A/4, ¢ = A/2, and A = K;. The lemma provides #; > 0 and {; > WV
times 1 < py < »-- < py, < N such that
bi

> —log D™ @) M > Z a5 = g~ ) 27)

J=utl F=n-t1
forevary 0 <n<pand 1 <i <.
Now fix g; > 0 small enough so that go < :bA/4, and let 2 > 0 be such that
N-1

> log dist,, (f(2),C) = —eN . (2.8)
3=0
Let ¢; = —bA/4, ¢o = —£9, A =10, and
Ca— O 452
= =] — =~
bo=ag bA

Applying Lemma 2.11 to a; = log dist,, (f~*(x),C), with 1 < § < N, we conclude
that there are Iz > &N times 1 < ¢ < --- < @, < N such that

i~

$ togaist (7, 0) 2 -2 (=) (2.9)

F=n

forevary 0 <n<gand1<i<lh.
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PPinally, our condition on g, means that 8, +¢; > 1. Let 8 =6, +8; — 1. Then
there exist { = (I, +ly — N) > 0N times 1 €0y < -+ <y S N at which (2.7)
and (2.9) occur simultaneously:

[T |

. N A
S~ log |05 (F ) Ml = Fl —n)
J=n
and
ni--1 ' . b/\
> log dist,, (f(x),€) 2 (s = m),
i=n

for every 0 <n < n; and 1 <4 <. Letting o = e~ we casily obtain from the
inequalitics above
ni—1

1T 125 E) <ot and  dist, (7 (2),C) = o®

i=n;—-k

for every L €4 € L and 1 € k < n;. In other words, all those n; are (o,6)-
Liyperbolic times for z, with § = ry. [}

Rimank 2.13. From the proof of Proposition 2.12 one easily sees that con-
dition {1.3) in the definition of non-uniformly expanding map is not needed in
all its strength for the proof work. Actually, the only places where we have used
(1.3) are (2.6) and (2.8). Hence, it is enough that (1.3) holds for € = min{e|, ex}
and § = wax{r), ra}.

REMARK 2.14. QObserve that the proof of Proposition 2.12 gives more precisely
that if for some x € M and N e N

N-1 N-1
ST —logIDF(fF) " 2 AN and Y logdists(fi(),C) = —eN
=0 J=0

(where £ and § are chosen according to in Remark 2.13), then there exist integers
0<n < <y <N with 1 > ON such that n; is a (&, d)-hyperbolic time for
for each 1 <i <L

3. First hyperbolic time map

The existence of (o, §)-hyperbolic times for Lebesgue almost all points in M
allows us to introduce a map h: M — Z7% defined Lebesgue almost everywhere
and assigning to each © € M its first (o, §)-hyperbolic time. Related to integra-
bility properties of this first hyperbolic time map are some statistical properties
of several classes of dynamical systems, such as stochastic stability and corre-
lation decay. The same conclusion of Theorem 2.10 can he obtained under the
assumption of integrability of the first hyperbolic time map.
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Consider (g,), the sequence of averages of forward iterates of Lebesgue mea-

sure on M
n—1

fn = %fom
i=0

Since we are dealing with a continuous map of a compact manifold, we know that

the sequence (p,),, has accumulation points, which belong to the space of prob-

ability measures invariant by f. Now the idea is to show that such accumulation

points are absolutely continuous with respect to the Lebesgue measure.
Defining, for each n > 1,

H! = {z € M: nis the first (o, 8)-hyperbolic time for z},

we immediately have
f hdm = ka(H;:). {2.10)
M k=1

It will be useful to define, for each n, k > 1,
H,={re M: nisa (o,§)-hyperbolic time for =},
and |
R,i= {:z: €H,: f'(z) € H; }.
Observe that R, is precisely the set of points x € M for which n is a (o, d)-

hyperbolic time and n+k is the next (o, §)-hyperbolic time for  after n. Defining
the measures

v = fil{(m | Hy) (2.11)
and
oo k-1 .
T = ZZ ffﬂ(m | Ru.k)a (212)
k=2 j=1

we may write
n—-1

ftn S %Z(Uj + ?fj)'
i=0
it follows from Corollary 2.7 that
dv,
dm
for.every n > 0, with C; not depending on n. Our goal now is to control the
densities of the measures 7,.

<G ' (2.13)

PROPOSITION 2.15. Given e > 0, there is C3(g) > 0 such that for everyn > 1
we may bound 1, by the swm of two non-negative measures, 1, < w + p, with

dhw
fsadiiy :
g Cale) and p(M)<e
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ProoF. Let A be some Borel set in M. For each n > 0 we have
co k-1
m(A) = 3.3 m{f A N Ry
k=2 j=I
oo k-1
< D S m(fr (A N ) N L)
k=2 j=|
oo k-1l

< YOS Cam(fA) N ).

=2 =

=
—

(in this last inequality we have used the bound (2.13) above). Let now € > 0 be
some fixed small number, By the integrability of & and since (2.10) holds, we
may choose sowe integer ¢ = £(g) for which

ka ;) < —

We take

f-1 k-1
=Cy ) ) flm| 1)
k=2 j=1

and
oo k-1

= ZZ (m | Hg). l (2.14)
Jozf

This last mncasure satisfies
oo k-1

CzZZm H) < ng.km H)<e

k=£ j=1 k=¢
Ou the other hand, we have

-1 k-1

w SCQZfom

k=2 j=1

and this last measure has density bounded by some constant since we are taking
a finite number of push-forwards of Lebesgue measure by the non-degeneracy
conditions of f. O

It follows from this last proposition and (2.13) that weak* accumulation points
of (), cannot have singular part, thus being absolutely continuous with respect
to the Lebesgue measure. Since such weak® accumulation points are invariant
with respect to f, we have proved the following result:
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THEOREM 2.16. Let f: M — M be a C? local diffeomorphism outside a non-
degenerate critical set C C M. If the first (o, 8)-hyperbolic time map b : M — 7+
is Lebesgue integrable, then f has some absolutely continuous invariant probability
TMEQSUTE.

4. Integrability vs. positive frequency

Here we relate the integrability of the first hyperbolic time map with the
existence of a positive frequency of hyperbolic times. This is far from being com-
pletely understood, but we have already some results depicting a good part of
the situation. A first result in this direction may be obtained for local diffeomor-
phisms.

‘THEOREM 2.17. Let f: M — M be a C? local diffeomorphism. If for some
0 < o < 1 the first o-hyperbolic time map is Lebesque integrable, then there
i & > 0 such that Lebesgue almost every & € M has positive frequency of -
hyperbolic times.

PrOOF. Observe that by definition of o-hyperbolic time, if n is a o-hyperbolic
time for = and % is a g-hyperbolic time for f*(z), then n + k is a o-hyperbolic
time for z. Moreover, since h is well defined Lebesgue almost everywhere and f
preserves sets of Lebesgue measure zero, then Lebesgue almost all points must
have infinitely many hyperbolic times. Thus we have

o .1 n—1 ; .

limnf ;ﬂlog IDF(F ()| < logo <0 (2.15)
for Lebesgue almost every z € M. Let u be the absolutely continuous f-invariant
measure given by Theorem 2.16. We have that (2.15) also holds for g almost
every x € M. Since we are assuming f a local diffeomorphisiz we have that
log |[Df(x)!| is continuous and hence integrable with respect to 4. Birkhoff’s
ergodic theorem then ensures that the limit in (2.15) exists  almost everywhere,

and so
-1

.1 Feony—1
Jim ; log || Df(f(2))!| < logo < 0 (2.16)
for u almost every x € M. Since p is absolutely continuous with respect to m we
have that condition (2.16) holds for a set of points in M with positive Lebesgue
measure. Actually condition (2.16) holds for Lebesgue almost every = € M.
Indeed, let H be the set of points for which (2.16) holds. Since H is positively
invariant by f and h[y is integrable with respect to m|H, then if m(M \ H) > 0,
by the previous argument we would prove the existence of some A C M\ H with
m(A) > 0 such that (2.16) holds for every z € A. This would naturally give a
contradiction,

Now since (2.16) holds for Lebesgue almost every x € M, applying Proposi-
tion 2.12 we obtain the desired conclusion, , O
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We are interested in relating the integrability of the first hyperbolic time map
to the existence of positive frequency of hyperbolic times for maps with critical
sets as well. We assume until the end of this section that f: M — M is a c?
local diffeomorphism outside a non-degenerate critical set C C M.

PROPOSITION 2.18. If C is o compact submanifold of M with dim(C) <
dim(M), then logdist(z,C) belongs to LP(m) for every 1 < p < co.

PROOF. We may assume without loss of generality that C is connected. Let
dim(C) = k < n = dim(M). We may cover C with finitely many images of charts
() (i = 1,...,p) such that U; ¢ R™ is a bounded open set and ;7 1(C) C
U; N (R* x 0"%). Denoting by A the usual n-dimensional volume on R* and by d
the standard Euclidean distance on R®, then there are constants C, K > 0 such
that foralli=1,...,p

d(y7r)sm
<=5 =G

Ql-

- and for all w,z € U;
%d(w, 2) < dist{us(w), ¥5(2)) < Kd(w,2).

Hence, for showing that log dist(z, C) is integrable with respect to m, it is enough
to show that log d(z, U N (R* x 0"~*)) is integrable with respect to A for any open
and bounded neighborhood U of the origin in R®. We may assume without loss
of generality that U is sufficiently small in order to U C By x By..x, where By
and B,_; are the unit balls around the origin in R* and R** respectively. For
z=1(z1,...,2n) € R" we have

Az, RF x 0"F) = (22, + - + 22)M2

Hence, we have for 1 < p < o0

f |log d(z, RF x 0" *)|Pd) <
U

1
(/ |log(22,, + -+ 22 )Pdarsr - dz,,) dzy - - - dzy.
Bn

= 9
2 By —k

Now it is enough to show that the inner integral in the last expression is finite.
Actually, denoting by S;,‘"“l the (n — k — 1)-sphere with radius p around the
origin in R™*, dA its area element and o the total area of ST, we have

1
[ Hlog(zpy, + -+ 22)Fdzkyr - dzg = / f |2logpiFdA | dp
Bn_k fi] S;‘)I.—k—l

1
= a f P75 log pI? dp.
0

Since this last integral is finite, we finish the proof of the result. O
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Assume now that £ is integrable with respect to the Lebesgue measure. By
Theorem 2.16 there exists an absolutely continuous invariant probability measure

ufor f.

COROLLARY 2.19. If the density du/dm belongs to LY(m) for some g > 1,
then log dist(z,C} 4s p-integrable.

ProoF. This is an immediate application of Hélder inequality. Actually, since
. . dp
log dist(z,C)du = | log dist(z, C)EE dm,

and we have du/dm belonging to L(m) for some ¢ > 1, and logdist(z,C) be-
longing I?(m) for every p, then taking p equal to the conjugate of ¢, that is
p~l 4+ ¢! = 1, then Holder inequality gives that the integral above is finite. O

Our aim now is to get the same conclusion of the previous corollary under
an integrability hypothesis on the first hyperbolic time map. Observe that the
absolutely continuous f-invariant measure g may be obtained as a weak* accu-
mulation point of the sequence (g}, of averages of push-forwards of Lebesgue
measure. As shown in Seciion 3, we may write

1 n—1
Ha < 'E Z(Vj -+ Wj):

3=0
where v; and #; are given by (2.11) and (2.12}.

LeMMA 2.20. If the first (o,8)-hyperbolic time map h : M — Z% belongs to
L?(m) for some p > 4, then logdist(z,C) is u-integrable.

Proor. We take any € > 0 and use Corollary 2.7 to ensure the existence of
two non-negative measures w and p bounding 7, where w has density bounded
by some constant and p has total mass bounded by &. Recall that p was defined
in (2.14) by

kel

p=C:Y. " fitm| HY),

(=]
k=8 j=1

o,

where £ is some large integer.

Let us compute now the weight p gives to some special family of neighborhoods
of C. For i > 1 let d; = o* where 0 < ¢ < 1 comes from the definition of (o, 6)-
hyperbolic time. Define for 1 > 1

B;={x € M: dist(z,C) < d;}.
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If n is a (o,d)-hyperbolic time for z € M, then f/(z) € M\ B; for all j €
{n ~i,...,n—1}. This implies that

oo k-1

=Gy Y.y m(H; N fH(B

k=f j=1

ca k—i

=Co) .Y m(H;Nf(B))
k=¢f j=1
00 ki

<G Y. Y m{HELINfT(B)

k=max{£i} 7=1
o
<Gy km(H}),
k=i
for all i > 1. Now by Corollary 2.7 and Proposition 2.15 we know that

1n—1
Zug+w+p<u+p
j=)

where v is a measure with uniformly bounded density. Hence any weak® accumu-
lation point g of the sequence (i), is bounded by v+ p. Since we are assuming
that C is a submanifold of M, then logdist(z,C} is integrable with respect to v
by Proposition 2.18. On the other hand,

f——logdlst.;(:r:c dp<Z——p(B logdips < blogo’Z(z-l- ka(H};)
M

i=1 fawl k=i
We have h € LP(m) by assumption, which is equivalent to
> kPm(I}) < co.
k21

This implies that there is some constant C' > 0 such that m(H}) < Ck™? for all
k > 1. Thus we have for i > 2

=<3 o C
ka )<ka~1 —/ , Pl do = (p —2)(i — 1)p-2’

k=1 k=i

and so

Zz—?—l)ka(Hk 22(21-:];’“2

i=2

This last quantity is finite whenever p > 4. Hence log dist(z,C) is integrable with
respect to u for all p > 4, . O
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REMARK 2.21. As a consequence of the definition of non-degenerate criti-
cal set, if logdist{x,C) is p-integrable, then log || D f(x)*|| is also p-integrable.
Actually, by condition {s;) we have for some ¢ >

[log | Df (z)7")|| < ¢]logdist(z, C)|

for all z in a small open neighborhood V of C. Since log||Df(x)!|| is bounded
on the compact set M \ V, this function is necessarily integrable with respect to
p#on M as long as log dist(z, C) is u-integrable.

Now we are able to prove a result for maps with critical sets similar to the
one we have in Theorem 2.17, under an integrability assumption on the first
hyperbolic time map.

THEOREM 2.22. Let f: M — M be a C? local diffeomorphism outside o non-
degenerate critical set C C M. If for some 0 < o < 1 and & > 0 the first
(o, 8)-hyperbolic time map h : M — Z belongs to LP(m) with p > 4, then there
are & > 0 and 8 > 0 such that the frequency of (7, §)-hyperbolic times is bigger
than 8 for Lebesgue almost every z € M.

Proor. Assuming that the first (o, d)-hyperbolic time map k belongs to
LP(m) for some p > 4, it follows from Corollary 2.19, Lemma 2.20 and Re-
mark 2.21 that both

(2) log || Df(z)~|| is integrable with respect to y;

(b) logdist{x,C) is integrable with respect to p.
Observe that by definition of (¢, §)-hyperbolic time, if n is a (o, §-hyperbolic time
for x and if k is a (o, §)-hyperbolic time for f*(x), then n+k is a (o, §)-hyperbolic
time for . Moreover, since h is well defined Lebesgue alinost everywhere and f
preserves sets of Lebesgue measure zero, then Lebesgue almost all points must
have infinitely many hyperbolic times. Thus we have

n—1
1 ,
‘ . = Fraay—1 < )
lim inf — JE:D log [|Df(f(x))'[] < logo < 0 (2.17)

for Lebesgue almost every x € M, and hence for p almost every z € M. The
-integrability of log || D f(z)~!|| and Birkhoff’s ergodic theorem then ensure that

n—1

1 .
im — D)7 < 2.18
Jim 53 log|Df((a)) ) < g <0 (2.18)

for p¢ almost every x € M.

Then by Proposition 1.5 (see also Remark 1.6) there is H € M with m(H) > 0
where f is non-uniformly expanding. Actually, we will to prove that f is non-
uniformly expanding Lebesgue almost every £ € M. Let H be the set of points
where f is non-uniformly expanding, and take B = M \ H. Observe that B
is invariant by f and also h € LP(m|B) with p > 4. If m(B) > 0, then by
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the previous argument there would be some A C B with m(A4) > 0 and f non-
uniformly expanding on A. This would naturally give a contradiction. Thus we
have proved that f is non-uniformly expanding Lebesgue almost everywhere in
M. Now we apply Proposition 2.12 and obtain the result. O

We do not know if the strong integrability condition in the hypotheses of the
previous theorem is really necessary, or it is just a lack of the method we have
used to prove it. It remains an interesting open question to find the smallest
value of p > 1 for which the conclusion of Theorem 2.22 holds.

REMARK 2.23. Observe that the hypothesis of & belonging to L?(m} for some
p > 4 can be replaced by dp/dm € L7(m) for some ¢ > 1. In fact, the integrability
of h has only been used to prove that logdist(x,C) is integrable with respect
to j¢, which implies that log [[Df(z)™!| is also integrable with respect to p by
Remark 2.21. As stated in Corollary 2.19 this is a consequence of du/dm € L¢(m)
for some g > 1. '

In the opposite direction, one could ask whether the positive frequency of
hyperbolic times is enongh for assuring integrability of the first hyperbolic time
" map or not. As we shall see below, the map we have introduced in Example 1.8
- shows that the answer to this question is negative. It remains an interesting
open problem to know if there is a map with those properties and no critical set,
i.e. does positive frequency of hyperbolic times imply integrability of the first
hyperbolic time map for transformations with no critical sets?

* EXAMPLE 2.24. Let us consider again the map f from S into itself that we
have introduced in Example 2.24. Recall that f has been defined as que quotient
of the map of the interval into itself

2WE—-1 ifz>0,
T
1-2/jz| otherwise.

. We have already seen that f preserves Lebesgue measure and that there is a set
H ¢ 5! with positive Lebesgue measure where f is non-uniformly expanding.
Here we will show that the uniform expansion holds Lebesgue almost everywhere
(thus deducing that Lebesgue almost every point has positive frequency of hy-
perbolic times by Proposition 2.12), and that no first hyperbolic time map is
integrable with respect to Lebesgue measure. It will be useful to have shown
that f is topologically mixing.

Topological mizing. We will show that given any open interval J C S' there
is some N € N such that f¥(J) = S*. As we have observed before, f has two

inverse branches g, : (=1,1) — {0,1) and g2 : {(—1,1) — (—~1,0), given by

gl(w)=(1;‘”)2 and 92($)=—(1;m)2-
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Let X = {g?(0}, g3(0): n > 0} be a set of points in the pre-orbit of 1 € $* and let
@ # J C 5! be an open interval. We note that if X N J £ @, then there is n > 1
such that 1 € f*(J), thus the interval f*(J) would contain a neighborhood of 1
in §' . We easily see that this implies f***(J) = §' for some k € N. Hence to
prove topological mixing for f it is eniough to show that given any open interval
J C 8! there is j € N such that fH(J)N X # §.

Let us take an interval J C 5" such that JNX = 0. Hence 0 ¢ J. Assume
for definiteness that J C (—1,0). Thus there is n € N such that f*|; is a
diffeomorphism and f*(J) < (0,1). It is clear that there is ¢ > 1 independent of
n such that m(f*+1(J)) > om(J). Now let J, = f*+1(J) C (0,1). If ;N X £ B,
then we are done. Otherwise, by the symmetry of f, we repeat the argument
obtaining an iterate J; C (—1,0) of J with m(J) > o*m{J). Since (¢%)1>; is
unbounded, after a finite number of iterates the image of J will eventually hit X.

Positive frequency of hyperbolic limes almost everywhere. As we have shown
before, there is a positive Lebesgue measure set 7 C S* where f is non-uniformly
expanding. Then by Let us now prove that Lebesgue measure is ergodic with
respect to f. Then by Theorem 2.10 there exists some absolutely continuous
f-invariant probability measure p. Using an ergodic component if necessary
(Theorem 0.11) we may assume that g is ergodic. Moreover, taking

111—1 e
G = {:::E St ;Zéfj(x) — i, whenn-—voo},
S

we have that there is an interval J C G, up to a mull Lebesgue measure subset;
see Lemma 3.3. Due to the topological mixing property and the regularity of
f (preserves null Lebesgue measure sets) this implies that G equals 8' up to a
Lebesgue measure zero subset. Hence, by Birkhoff’s ergodic theorem m = p.
Now, by the ergodicity of m, the limits in (1.2) and (1.3) are constant m almost
everywhere. Since m(H) > 0, then f must be non-uniformly expanding Lebesgue
almost everywhere.

Non-integrability of the first hyperbolic time map. We now show that the map
h: 8! — N assigning to each z € S the first (o, §)-hyperbolic time of = cannot
be Lebesgue integrable in 8! for any 0 < ¢ < 1 and 6 > 0. We observe that if n
is a (¢, §)-hyperbolic time for z, then in particular it must be

IF () 207 > 1

Hence the first (o, §)-hyperbolic time for a given & € 5*\C is at least the number
of iterates needed for z to enter into a neighborhood of 0. Considering the inverse
branch g; of f and iterate a point z; € (0,1/2) under g;, we obtain a sequence
(Zn)ns1 in (0, 1) satisfying

1 n 2
Ty = (—Jr:—)., nzl (2.19)




2 - 2. HYPERBOLIC TIMES

According to the observation above, we must have
/ hdm > Zn(mnﬂ — Ty).
st nzt
In order to see that k is not integrable with respect to m, it suflices to show that
Zn(an — Zy) = 400, (2-20)
nzl
We first prove (by induction) that

0<z, <1 - 51— for every n > L. {2.21)
n

This obviously holds for n = 1 since we have chosen z, € (0,1/2). Assuming that
(2.21) holds for n > 1 we then have
(1+x)°
4
- 2
L (2-1/(2n)
- 4
1 1
=l 5t e

-1 1 n+1_n+1
o on+2 n 8n? /°

It is enough to o-bserve that
' n+l n+l 8nf+7n—1

0L 21 =

>1, foralln2>1.

‘ n 8n? 8n?
Using the recurrence relation (2.19), a simple calculation now shows that
1—an)?
xn-{-l—mn:( 4n),

which together with (2.21) leads to

Tnyt — T 2 W

This is enough for concluding (2.20), which implies that h in non-integrable with
respect to Lebesgue measure.



CHAPTER 3

SRB measures

One effective way for studying the statistical properties of dynamical systems
is by determining the time (in average) typical orbits spend in different regions
of the phase space. According to the ergodic theorem of Birkhoff, such times
are well defined for almost all points, with respect to any invariant probability
measure. However, the notion of typical orbit is usually meant in the sense of
Lebesgue measure, which is not always captured by invariant measures. Indeed,
it is a fundamental problem to understand under which conditions the behavior of
typical points is well defined from this statistical point of view. This problem can
be precisely formulated by means of the following notion, introduced by Sinai,
Ruelle, and Bowen.

DEFINITION 3.1. Let 1 be a probability measure invariant by f. We say that
t is an Sinai-Ruelle-Bowen (SRB) measure if for a positive Lebesgue measure set -
os points x € M
n-1
lim =% o(fi(z)) = /{pd,u for any continuous ¢ : M — R. (3.1)
g=0
This is equivalent to say that the averages of Dirac measures along the orbit of
= converge to 4 in the weak® sense. We define B(u), the basin of p, as the set of
those points x € M for which (3.1) holds.

From Birkhoft’s ergodic theorem one easily deduces that if u is an ergodic
probability measure which is absolutely continuous with respect to the Lebesgue
measure, then p is an SRB measure. Actually, Birkhoff’s ergodic theorem guar-
antees that if 4 is ergodic then B(y) has full u measure. Since p is absolutely
continuous with respect to the Lebesgue measure, then the basin of g cannot
have zero Lebesgue measure.

1. Ergodicity and finiteness

Here we study the existence of SRB measures for maps with non-uniform
expansion on subsets of positive Lebesgue measure. Throughout this section we
assume that f is a C? local diffeomorphism outside a non-degenerate critical set
C C M. The main result of this section is the following one.

THEOREM 3.2. Assume that f: M — M is a non-uniformly ezpanding map.
Then there are ergodic absolutely continuous probability Measures (i, . . ., fip whose

43
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basins cover o full Lebesgue measure subset of M. Moreover, if p is an invariant
. probability measure, then u is a convez linear combination of those SRB measures:
there a; > 0,...,0p > 0 with oy +---+op = 1 such that aypn + -+ oty = phe

The existence of absolutely continuous invariant measures is a consequence
of Proposition 2.12 together with Theorem 2.10. The next lemma will allow
us to show that M is covered by the basins of finitely many ergodic absolutely
continuous invariant measures.

LEMMa 3.3. Let G C M with positive Lebesgue measure be such that f is
non-uniformly expanding on G. Then there exists some disk A with radius 8,/4
such that m(A\ G) =0.

ProoF. It suffices to prove that there exist disks of radius d,/4 where the
relative measure of G is arbitrarily close to 1. Let € > 0 be some small number,
G, be a compact subset of G, and G, be a neighborhood of G, such that G\ G,
has Lebesgue measure less than em(G). Then by Proposition 2.12 and Lemma 2.9
there are 8 > (¢ and ng € N such that for n > ng

ln—l 1n—1
- m(Gy) = — m{GnNG;) = 0m(G),
2 2 mi@) 2 1 Y m(ENG)) 2 0m(C)

where Gy is the subset of points in & for which j is a (o, 8)-hyperbolic time.
Hence, there exist arbitrarily large values of § > 1 such that m(G;) = 0m(G),
and so

m(G.NG,) 2 gm(G). (3.2)

Assure that 7 is large enough so that for any point z in G.NG;, the neighborhood
Vi(z) is contained in G,. Here Vj(z) is the neighborhood of z constructed in
Proposition 2.3: it is mapped diffeomorphically onto the ball of radius §, around
(z) by fi. Let W, C V;(x) be the pre-image of the ball of radius &, /4 under this
diffeomorphism. Let zy,...,zy be points in G.NG; such that W, ..., W, cover
the compact set G, N G;. Up to reordering, we may suppose that Wy,,..., W,
some n < N, is a maximal sub-family whose elements are two-by-two disjoint.
Notice that the V;(z1),..., V;{2,) cover G.NGj, since their union contains every
Wa,, 1 <4 < N. Indeed, every Wy, must intersect some W, with k¥ < n. Then
its image under f7 intersects the ball of radius &,/4 around f#(x;) and so it is
contained in the corresponding ball of radius §,. This means, precisely, that W,
is contained in Vj(zy).

By the bounded distortion property given by Corollary 2.6, m(W;) is larger
than the product of m{V;{z)) by some uniform constant 7 > 0 (independent of =
or 7). So, the Lebesgue measure of W, U-+-U W, is larger than rm{G. N Gj).
If £ > 0 is such that m(W,, \ (G:NG;)) > ém(Wy,) for each 1 < ¢ < n, then by
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(3.2)
m{We, U UW )\ (GeNGY)) > &rm(G.NGy) > f'rgm(G).

On the other hand, since each W, is contained in G, and G. N G; C G, this
measure must be smaller than em(G). This means that by reducing € (which we
may, by increasing j), we can force £ to be arbitrarily small. In other words, we
may find § and Wy, such that the relative Lebesgue measure of Wy, NG.N G} in
W, is arbitrarily close to 1. Then, by bounded distortion, the relative Lebesgue
measure of G O fH(G. N G;) in the ball of radius §;/4 around f7(z;) is also
arbitrarily-close to 1. So the proof of the lemma is complete. g

Proor oF THEOREM 3.2. Let iy be any absolutely continuous invariant
probability measure. If pp is not ergodic, then we may decompose M into two
disjoint invariant sets Iy and H both with positive py-measure. In particular,
both H; and H» have positive Lebesgue measure. Let gy and p» be the normal-
ized restrictions of ug to Hy and Hy, respectively. Clearly, they are also absolutely
continuous invariant measures. If they are not ergodic, we continue decomposing
them, in the same way as we did for ;9. On the other hand, by Lemma 3.3,
each one of the invariant sets we find in this decomposition has full Lebesgue
measure in some disk with fixed radius. Since these disks must be disjoint, and
the ambient manifold is compact, there can only be finitely many of them. So,
the decomposition must stop after a finite number of steps, giving that py can be
written po = Y .i_, po(H;)p; where Hyq, ..., H, is a partition of M into invariant
sets with positive measure and each p; = (po| H;)/1o(H;) is an ergodic probability
measure. &

COROLLARY 3.4. Assume that f: M — M is non-uniformly exponding mep.
If [ is trunsitive, then M is covered (Lebesgue mod () by the basin of a unique
SRB measure, which is ergodic and absolutely continuous.

PrOOF. Assume by contradiction that there two distinct SRB measures p,
and pp as in Theorem 3.2. Since B(p,) and B{us) are positively invariant sets,
then by Lemma 3.3 there are disks A; and A, such that m(A; \ B(p;)) = 0 for
i =1,2. The transitivity of f and the invariance of B(y;) and B(yp) imply that
m(B(11) N B(ug)) > 0. Since distinet SRB measures have disjoint basins we have
a contradiction. . O

2. Piecewise expanding maps

One possible way for proving-the existence of invariant measures for certain
dynamical systems may be by choosing conveniently some region in the phase
space and studying an induced return map to that region. This method can
also be very efficient in proving the existence of absolutely continuous invariant
measures. In this section we are particulary interested in the study of the return
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maps themselves. Later on we will make several applications of the results of this
section.

Let A be a (topological) disk in R?, for some d > 1, and consider a map
. F: A — A. Using local charts we can easily derive the same conclusions of this
section for maps defined on disks of any d-dimensional manifold.

DEFINITION 3.5. We say that F : A — A is a C? piecewise expanding map, if
there is a countable partition P of a full Lebesgue measure subset of A, such that
F is a C*? Dbijection from the interior of each U € P onto its image, admitting a
(2 extension to the closure of U, and the following conditions hold:

(1) Exzpansion: there is 0 < s < 1 such that for z in the interior of the
elements of P
IDF ()™ <&
(2) Bounded distortion: there is some constant K > 0 such that for every
UePandz,yel

det DF(x)
€| et DF(y)

(3) Long branches: the elements of P have piecewise C? boundaries with
finite {d — 1)-dimensional volume, and there are constants o > 0 and
B > 0 with s(1 — k)~! < 8 £ 1 such that for each U € P:
(i) the boundary of F{(U) has a tubular neighborhood of size p inside
F(U);
(i) the C? components of the boundary of F(U} meet at angles greater
than arcsin(8) > 0.

< K dist(F(z), F(y)).

" The main goal of this section is the theorem below, which assures the exis-
tence and finiteness of absolutely continuous invariant probability measures for
piecewise expanding maps. Despite of its own interest it will also be very useful
in forthcoming sections.

THEOREM 3.6. Let F : A — A be a C? piecewise expanding map. There is
a finite number of absolutely continuous F-invarient probability measures such
that any absolutely continuous F-invariant probability measure can be written as
a conver linear combination of those measures.

The proof of Theorem 3.6 uses the notion of variation for functions in mul-
tidimensional spaces. Let F be as in the statement of Theorem 3.6 and let
{U;}2, be its domains of smoothness. For each 7 > 1 we let F; be the C? bijec-
tion from the interior of U; onto its image. We introduce the transfer operator
L: LY (RY) — LARY _associated to F, defined by

Ly = ZU FﬁlllF(U)
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By change of variables

[worsin = [ oo ram, (3.3)

‘'whenever these integrals make sense.- In particular, each fixed point of £ is the
density of an absolutely continuous F-invariant finite measure. We will use the
fact that £ never expands L' norms:

[ 1cctim < [ ciolam = [ iglam, (3.4

The next lemma provides a useful estimate on the distortion of F' restricted
to its domains of smoothness. Actually, the estimate given by the lemma could
be taken as the definition of bounded distortion as well, since one can easily prove
that it is equivalent to the one given in Definition 3.5.

LEMMA 3.7. There is a constant K| > 0 such that for every i > 1

[ECEY ]
S erT 1I
where J = det DF is the Jacobian of F.

PRrRoOOF. First we observe that
12 (7o FY)

[(J o F1 |
Thus we just have to prove that the functions log |.I o I l| with ¢ > 1, have
uniformly bounded derivatives. Take any point z in the interior of A and v
a vector of the canonical basis of RY. By the bounded distortion condition in

Definition 3.5 we have for smallt e R
log |J o £ (x + tv) — log |J o FY| () € K dist(P(F (z + tv)), F(F7Y(2)))
= Kt.

= (1D (tog |7 o £} -

This impiies uniformly bounded derivatives of log IJ o Fi_ll, i> 1 0

Next we prove a Lasota-Yorke type inequality for functions in BV (R¢), which
plays a crucial role in the proof of the existence of fixed points for £.

PROPOSITION 3.8. There are constants 0 < A < 1 and K3 > 0 such that for
every ¢ € BV (RY)

var(Lyp) < Avar{p) + K / || dne.

Proor. We start by proving the result in the case that o is a C? function.

We have o .
- AL
Lo=) dilrwy, where =iy,

i=1 i
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Hence, using the subaditivity of variation and Lemma A.6 we deduce

o

var(Lp) < Y var(dilrw)

i=1

Z (/F(U_) | Dslldm + _/aF(U-) ]¢i|dmo) )

i=1

where mg denotes the induced (¢ — 1)-dimensional Lebesgue measure on the
boundaries of the elements of the partition. Let us now estimate each one of the
terms involved in this last sum. For the first one we have

f | Dildm. <
P(U:)

-1
< f EID(tpoﬁ_’,-1 )Ildm+/
oy 1o F )

F1
of AP [ |eef
ry o F FLUA T AR
where K; > 0 is the constant given by Lemma 3.7. By a change of variables

induced by F in these last two integrals we obtain

[ Ipslan<s [ 1plm+ i [ pldm.
F(Us) U Ui

_ 1
(('POF; ])'D(JDF-—I) ‘dm

1

IA

dm,

For the second term in the sum above, we have by Lemma A.7

1/1
Jd 2 (= . D¢, |d

1 / 1
- dm-l——/ D¢, dm
s leol B Jows 1-D4:

1 Kl) nf
4t dm+ % [ | Dyfldm.
(ﬁp ) [ et % [ 1Dl

IA

IA

Altogether, this yields

[=+]

wte) < 3 [(w5) [ 1polan+ (it g B2 [ folim]

i=1

K (1 + %) var(y) + (K1 + = ! ) /|(p|dm

from which we deduce the result for the special case € C*(R?), simply by taking
A=k(t+1/8) and K, = K; + 1/(8p) + K1/B. This proves this case, because
the long branches condition {es) implies that (1 +1/8) < 1.

IA
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For the general, case we observe that by Proposition A.3, given p € BV (R9)
we may choose a sequence ()i of functions in C'(RY) such that
lim |lgx —lly =0 and  lim var(ipy) = var(p).
k—+00 ) k—oo
As a consequence of what we have seen for the case ¢ € C*(R%), we have in par-

ticular that £(C"'(RY)) C BV (RY). By (3.4), the sequence {£py)) also converges
in L'(R?) to L, and so we may apply Proposition A.2 to get

var(Ly) < liminfvar(Lyy)
k—+too
lgfjgf(ﬁ(l + 1/8) var(ipe) + HKollex )
K(1+1/B) var(g) + Kol
This proves the general case, again by the long branches condition. O

REMARK 3.9. The proof of the last lemma gives A = x(1 + 1/8) and K, =
K, +1/(Bp) + K18. The knowledge of these expressions for A and K, will be
useful in the future.

IA

Consider for each k£ > 1 the function

=
wr = —,l;: Z v IA.
F=0
Using (3.3) and the fact that ¢;, > 0 we have
f|99k|dm =1, foreveryk>1.

By Proposition 3.8 we have var(p) < Kj for £ > 1, where K3 = var(1a) +
K3 oo A + 1. It follows from Proposition A.4 that (), has a subsequence
converging in the L'-norm to some p with var(p) < Kz. Hence, up = pm is an
absolutely continuous F-invariant probability measure. This proves the first part
of Theorem 3.6.

LEMMA 3.10. Given any p € L'(RY), the sequence 1/n3 5 L7 has some
accumulation point in L'(R?). Moreover, such accumulation point is a function
with variation bounded by 4K;||¢|;-

PROOF. Let p € L'(RY) and take a sequence (i0,,),, in BV(R¢) converging to
0 in the L'-norm. It is no restriction to assume that {|p.fl; < 2|l¢|, for every
n > 1 and we do it. For each n > 1 we have

var(£on) < N var(pn) + Kaflpalls < 3Kallel:
for large j. So, taking k large enough we have

k—1
i R
var (E Zﬁ(p,,) < 4Ka)o|)s.-

J=0
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Moreover
”_ Zf' (’oﬂlll = k Z ”ﬁjtpnlll < 2”90“1
3=0

for every j > 1. It follows from Proposmon A.4 that there is some ¢, ¢ BV (R%)
and a sequence (k;); for which

Jim |1 3 Z Epn = nll
j==0

and, moreover, var(@n) < 4K|l@|l,. Now we apply the same argument to the
sequence (¢n)n in order to obtain a subsequence (n;); such that ($y,); converges
in the L'-norm to some ¢ with var( “) < 4K, |pl)1. Since

llk— Ef’ P — 90“1 = ”k Z‘C Py — ‘Pﬂz"1 + ”‘Pnz Pl

=0 7=0

=0

there is some sequence (k;); for which

1
Jim, II— Zﬁ o = 2l =0.
On the other hand,
kr'-l 1 k-1
g 2 Com = L), < 5 3 llew =l = I = ol
j=0 F=0

and this last term goes to 0 as ! — oo. Finally, this implies that
: | ot

l1m ”k Z‘C’J‘p ‘P||1 =0,

thus proving that ¢ is an accumulation point for the sequence 1/n 372, Lip. O

Observe that any accumulation point ¢ of a sequence as in the lemma is a
fixed point for the transfer operator.

COROLLARY 3.11. Let A C A be an F-invariant set with positive Lebesque
measure. There is an absolutely continuous F-invaricnt probability measure g =
wam for which pa(A) = 1. Moreover, p4 may be taken with var{p,s) < 4Ks.

PRrOOF. Let A C A be an F-invariant set with positive Lebesgue measure.
Considering in the previous lemma ¢ = 1, € L'(R?), we find ¢ € BV (R?) and
a sequence (k;); for which var(p,) < 4K,||14|: < 4Kz and

=,

lim ||— EL',JIA — ‘PAH1 =0.

-0
J-—D
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In particular [jpall; = m(A) > 0. Then pa = (pa/m(A))m is a probability, and
it is F-invariant because @, is a fixed point of £. Since
1 Qk;—l
lim — ﬁle dm
I—o0 k); JX=U: AV
1 kp—1 )
lim — 1 iy =
t—lﬂkz J.E___%j;( ava @ F)1a dm =0

m(A)ua(A\ A)

il

It

we have that 1, gives full weight to A, thus concluding the proof of the result. 0O

COROLLARY 3.12. There is a constant o > 0 such that if A C A is an
F-invariant set with positive Lebesgue measure, then m(A) > o.

PROOF. Let A C A be a F-invariant set with positive Lebesgue measure
and pg4 = pam a measure as in Corollary 3.11. Since p4 € BV(RY) C L*(R)
(recall Proposition A.5) and 4 gives full weight to 4, it follows from Minkowski’s
inequality that

1= f adm < pally - [1Lall, < K14Ky m(A)V4,
A

We take o = (K4K;) <. O

It immediately follows that A can be decomposed into finitely many minimal
F-invariant sets Ay, ..., A, with positive Lebesgue measure. By minimality, for
each ¢ = 1,...p, the absolutely continuous F-invariant measure p4, giving full
weight to A; is ergodic. Moreover, any absolutely continuous F-invariant proba-
bility measure 4 can be written as g =3 &_, u(A;) pa,. This completes the proof
of Theorem 3.6.

3. Return maps

Here we will apply the results of the previous section to the setting of return
maps. Let f: M — M be a map from some d-dimensional Riemannian manifold
into itself, such that the push forward of Lebesgue measure f,m is absclutely
continnous with respect to m. Let F: A — A be a return map for f in some
topological disk A C M. This means that there exists a countable partition P
of a full Lebesgue measure subset of A, and there exists a return fime function
R: P — Z* such that

Fly = ff9), foreach UeP.

We will assume throughout this section that F' is a C? piecewise expanding map.
with bounded distortion and long branches. Thus, by Theorem 3.6 it has some
invariant probability measure pp which is absolutely continuous with respect
to the Lebesgue measure on A (henceforth denoted by m and assumed to be
normalized). Moreover, from Lemma 3.10 and Proposition A.5 one easily deduces
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that the density di/dm belongs to LP(A) for p = d/d — 1. Observe that p~ +
d~! = 1. Now we define

o

r=Y fpsl{R>4}). (3.5)

j=0

" PROPOSITION 3.13. If R € LYA), then p} is an absolutely continuous f-
invariant probability measure with support contained in Ujpo f?(A).

_ PROOF. We first show that u} is f-invariant. Let A be an arbitrary Borel
subset of M. We have

p(fHA) = D our (FGHANN{R > 5

i=0

e S e (U A (R =G 1 U{R > G+ 1))
=0

S (O (A) N (R = +1)) +

=0

F3ur (F N {R> 5 +1}).
F=0

N_ow we have
. Z HE (f_U+1)(A) N {R =j+ 1}) = Up (szl (f_j(A) n {R = J}))

= pr(F7(A) = u(A),

and

Z# (oA N{R>5+1}) = ui(A)—pe(AN{R>0})

p3(A) — pr(4),
which altogether give

1 (f7HA) = pr(A).
Thus the measure u} is f-invariant.

The absolute continuity of u} is a consequence of the absolute continunity of
pp. Note that since we are assuming fom abgolutely continuous with respect to
m, if A is a Borel set in M with m(A) = 0, then m(f~7(4)) = 0 for every § > 0.
Then, by the absolute continuity of up, we have pp(f~7(A)) = 0 for every j > 0,
and so u7(A) = 0 by the expression of 7.



3. RETURN MAPS a3

Finally we prove that 5 1s finite. Observe that
* = . ) d
py(M)=>" pr{R>j} = fR;uF = /Rf—mpdm
i=0 :

Since the density dyp/dm belongs LP(A) with p = d/(d—1), and we are assuming
that R € LY(A), then this last integral is finite by Hélder inequality. a

PROPOSITION 3.14. There are ergodic absolutely continuous f-invariant prob-
ability measures pi, ..., u; with supports contained in U;sf7(A), and there are
ay, .., 0 2 0withoy + -+ o, =1 such that ps = angey + -+ + appel.

ProoF. Normalizing u} if necessary we assume that 14} is a probability mea-
sure. If i} is ergodic, it is enough to take r =2 1, @y = I, and p} = £y Otherwise,
there exists some f-invariant set A such that 0 < #5(A) < 1. Let us observe that
AN A is necessarily F-invariant: -

FYANA)={z e A: F(z) e A} ={ | (F (AN {R = j}) = AnA,

izl

Because of the assumption z3(A} > 0 and the definition of I, there exists j > 0
such that pp(f~9(A)N{R = j}) > 0. Then pup(A4) = pr(f9(A)) is also positive.
Since py is supported in A, this is the same as saying that pupr(ANA) > 0. Then,
by absolute continuity, m(A N A) > 0. So, by Corollary 3.12, we have

m(ANA) = afd). {3.6)

Now, either A is minimal, in the sense that there is no f-invariant set B C A
with p3(A) > p3(B) > 0, or else we apply the same arguments as before, with B
and A\ B in the place of A. Of course, all this can be said about the complement
Ujz0f#(A)\A as well. The important point is that at all stages we have an uniform
lower bound as in (3.6). Thus this subdivision must stop after a finite number
of steps. That is, we find a decomposition of U;»0f?(A) into a finite number of
f-invariant sets A, ..., A, with positive u;-measure, such that m(A4;NA) > a(d)
for 1 £ i £ r and, most important, each A4; is minimal in the above sense. Define
o; = p3(4;) and g} to be the restriction of 1} to Ay, divided by ¢;. Clearly, each
i is absolutely continuous and f-invariant (becanse 4; is f-invariant). Moreover,
u? is ergodic, because A; was taken minimal. O

CoroLLARY 3.15. If f hes a unique SRB measure pp in Upsoff(A), then
By = 4;.

ProoOF. Each of the measures p? in Proposition 3.14 is an SRB measuie.
Therefore, the assumption implies that r = 1 and = p4i = py. O
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4. Statistical stability

Let F be a family of C* maps, for some k > 2, from a d-dimensional manifold
M into itself, and endow F with the C* topology. We assume that each f € F
admits a unique absolutely continuous f-invariant probability measure yy in some
forward invariant (by every f € F) region U containing A.

" DEFINITION 3.16. We say that fy € F is statistically stable, if the map

Fofe
dm

is continuous in f; with respect to the L'-norm in L!(m).

The goal of this section is to give sufficient conditions for the statistical sta-
bility of maps in such families.
_ Suppose that we may associate to each f € F a C? piecewise expanding
map Fy: A — A with bounded distortion and long branches as in Definition 3.5.
For f € F, let P; denote the partition into domains of smoothness of Fy and
Ry: Py — Z* be the corresponding return time function. We assume that these
maps are in the conditions of Proposition 3.13. In particular, we have R €
" L4(A), which then implies that p} = Y77, ff (url{R; > j}) is an absolutely
continuous f-invariant finite measure, where pp is an absolutely continuous F-
invariant probability measure given by Theorem 3.6. Moreover, from Lemma 3.10
and Proposition, A.5 one has that the density dup/dm belongs to LP(A) for
p=d/(d—1).

- We consider elements fi of F satisfying the following uniformity conditions:
(u1) given € > 0 there is § > 0 such that for any f € F

If— follex <6 = By = Rplla<e

{uz) the constants s, K, 8, p as in Definition 3.5 may be chosen uniformly
for f in a C* neighborhood of fj.
We also assume that the maps in a neighborhood of fy satisfy the following
non-degeneracy condition: given any e > 0 there exists ¢ > 0 such that
m(E)<d = m(fHE)<e (3.7)
for any measurable subset E of U and any f in {. This can often be enforced by
requiring some jet of order ! < k of f; to be everywhere non-degenerate.
THEOREM 3.17. Let U be as above, and suppose that every f € U admits o
unique SILB measure pp in U. Then
(1) 5 is absolutely continuous with respect to the Lebesgue measure m;
(2) if fo € U satisfies (u1) and (va) then fo is statistically steble.

In the remaining of this section we will obtain several results that altogether
will give the proof of Theorem 3.17. Take F a uniform family of C* maps such
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that each f € F admits a unique SRB measure p +. Denote by Fy be the return
map of fy, and by Ry the corresponding return time.

At this point we also introduce the transfer operator £ 5 associated to f € F,
defined for each ¢ € L}(RY) as

_ o(z)
Lroly) = xe;(y) [det DA @) (3.8)

The function Lryp(y) fails to be defined only when y is a critical value of . We
have

J@oran=[owe an

for all ¢,9 € LY(RY) such that integrals make sense. For the sake of notational
simplicity we will denote by £ the transfer operator £ ¢ associated to f € F.
Similarly, we will simply denote by £y the transfer operator £ fo @ssociated to
fo € F.

LemMMA 3.18. Let fo € F. Given e > 0 there is § > 0 such that for any f € F
with || f — follor < & we have

160 Lopldm < evac(e) + el

for every ¢ € BV(RY) with support contained in A.

PROOF. Our assumptions, namely the existence of a piecewise expanding
return map, imply that the critical set of f; (the set of points where f; fails to
be a local diffeomorphism) intersects A in a zero Lebesgue measure set. Given
any ¢ > 0, define C{e;) as the es-neighborhood of this intersection. Clearly,
m{f(C(e1))) < const m(C(e;)) for some constant that may be taken uniform in a
C" neighborhood of f;. So, using (3.7) we may fix €; small enough so that

o
m(r e < 3 (55 (5.9)

for every f, f in some neighborhood of f3, where K; is the constant in Propo-
sition A.5. We decompose A \ C(¢,) into a finite collection D(f;) of domains of
injectivity of fy. Observe that if f is close enough to fy, in the C? sense, then
C(e;) also contains the critical set of . Hence, we may define a corresponding
collection D(f) of domains of injectivity for f in A\ C(e;), and there is a nat-
ural bijection associating to each Dy € D(fp) a unique D € D(f) such that the
Lebesgue measure of D A [y is small, where D A Dy denotes the symmetric
difference of the two sets D and Dy. Observe that £; is supported in

fa)y=fceapu |4 s,

DeD(f)
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and analogously for £g. So,

[ 120 togiam < | (Lol +1Copl)dm  (3.10)
So(ClenUf(C(er))
+ > f |y - Lap|dm (3.11)
Dueﬂ(fu) fD(DD}nf(D)
+ 5 f (1ol -+ |Lol)dm,  (3.12)
DOED(fU) fD(DO)Af(D)

where D always denotes the element of D(f) associated to each Dy € D(fo). Let
us now estimate the expressions on the right hand side of this inequality. We
start with (3.10). For notational simplicity, we write E = fo(C{e1)) U f(C(e1)).
Then

[ 1eelim < [ 12(clplim = [azonigiam.

1t follows from Minkowski’s inequality, Proposition A.5, and (3.9) that

[0 iplim < m(7(E) “llly < g Kavarle) = gvar(i)

The case f = f; gives a similar bound for the second term in (3.10). So,
.
/ (1| + Lol dm < & var(e). (3.13)
Jo(Cle))UF(Cler))
Making the change of variables y = fo{%) in (3.11), we may rewrite it as
_® ( flo fo)—

©
fﬁu | det D ff [dethg|‘

where Do = f57*(fo(Do) N f(D)) = DeN (f5* o £)(D). For notational simplicity,
we introduce g = f~! o fy. The previous expression is bounded by

|d8th()i ldethul
fﬁo("“g #l [detDflog T [fastDog ~ ) ™

Choosing & > 0 sufficiently small, the assumption ||f — follot < 6 implies

| det D fo | det Dfo|
|det Df]eg [det Df[og =

on A\ C(e;) (which contains ﬁg). Hence, using Lemma A.8,

| det D fo|dm,

—1‘SE, and so

f |Lo — Lopldm < 2 [ |pog—ypldm+e [ |pldm
Jo(Da)NF(D) Dy

FaN

2Kl — id |I¢ var(p) + ¢ ] pldm.
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Reducing é > 0, we can make ||g — id ||¢ arbitrarily small, so that
€
/ 126~ Logldm < £ var(p) + el (3.14)
Fo{Do)Nf(D) :

We estimate the terms in (3.12) in much the same way as we did for (3.10).
For each Dp let E be fo(Dg) & f(D). The properties of the transfer operator,
followed by Minkowski’s inequality, yield

fE |Cpldm f 15(£lpl) dm

/lf“(E)]ﬂf’ldm <m(FUE) Nl -

IA

Fix € > 0 such that #D(p0)4e; < e. Taking § sufficiently small, we may ensure
that the Lebesgue measure of all the sets

FHEY= £ (fo(Do) & f(D))

is small enough so that, using also Proposition A.5, the right hand side is less -
than e; var(f). In this way we get

/ (Lo + L]} dm < 2, var(e) (3.15)
fo{Do)af(D)

{the second term on the left is estimated in the same way as the first one). Putting
(3.13), (3.14), (3.15) together, we obtain

] L ~ Lopldm < (§ + #D(fo)2e2) var(e) + eflel

and this is smaller than e(var(yp) + |[le||1)- |

LEMMA 3.19. Givene >0, there are N > 1 and § = 8(e, N) > 0 for which

If=foller <8 = | D 1zenll, <«
i=N

PROOF. For the sake of notational simplicity we denote Ry by R and Ry, by
Ry. Let € > 0 be given, and take N > 1 in such a way that

oD
1> Lingss3lla < ¢/3.

=N
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This is possible because we are implicitly assuming that Ry € L4(m). Then we
have

N-1
I Z Linss |y = [|B = Ro+ Bo ~ Z Lirg>s + Z Lroviy — 9 Lol
=N =0 =]
F J N . 2
< IR~ Rolla+ || Z Lnilla+ 2 [ Lerossy = Lirssp s
j=N j=0

and so, if we take 6.= 8(N,€) > 0 sufficiently small then, under assumption (uz),
the first and third terms in the sum above can be made smaller than €/3. O

Fix fo € F and let (f,). be a sequence of maps in F converging to fo in the
C* topology. Let o be an absolutely continuous Fy-invariant probability measure
and ) be the wy-invariant measure obtained from it as in Proposition 3.13. We
. represent by py the density of uo. Moreover, we denote by Fy, Ru, fa, ) Pn
the corresponding objects for each f,, and we denote by Ly the operator Lg,
associated to fy € F for every n > 0.

‘Qur goal now is to prove that the denmty of u converges in the L'-norm
(with respect to the Lebesgue measure) to uj as n goes to infinity. We remark
that, as a consequence of our construction,

var(p,) < K3 and / pndm <1

for every n > 1 (recall Proposition 3.8). Thus, by Proposition A.4, the sequence of
densities (p,)n is relatively compact with respect to the L' norm: any subsequence
contains another subsequence which is L! convergent. This means that we only
have to prove that {u} ); converges to yj for every subsequence (n;); such that
(on,;); converges in the L'-norm to some function pe. The previous remark also
gives var(po,} < K3. We consider pin = poom and define

=}
o= 2 F (pool{Ro > 5} -
=0
We want to show that the densities of ¥ with respect to the Lebesgue measure

converge in the L'-norm to the density of u?, and, moreover, the measure u7,
coincides with .

dur,. du?
Hn converges to 22
dm dm

PROOF. We are going to prove that given e > 0 there is § > 0 for which

LEmma 3.20.

in the norm of L'(m).

dpn, _ dito

-~ = < e whenever ||fu, — follor < 8.




4. STATISTICAL STABILITY 59

We have

o

= Z(fg)* (Ju'oo | {RO > J}) and nun Z(fn, J“'n. | {Rn > .7})

j=0
(3.16)
By Lemma 3.19 there is an integer N > 1 and é = 6{¢, N) > 0 for which

If~ follor <6 = ”Zl{ﬂm}” <

=N

e K e (3.17)

In what follows we take ¢ > 1 to be sufficiently large so that || f,,, — fol] < 6. We
split each one of the sums in (3.16) as

N N
= Z Voo,j F Toa,N and ﬂ';,- = E Vng,j 1 i,y (318)
i=0 j
where
Voo = (fol] (tool{Ba > 71)s Mo = D (fo] (ol{Bo > 53},
F=N+1

and vy, ; and 1, v are defined similarly, with ¢y, , ta; , Ry, in the place of f, p,
Ry, respectively. We have

oo, v (M ZMOO{RU >j} = Z_/Pocl{au>g}dm < Mool - f Z Lt |

=N
and, analogously,
nni.N(ﬂ’I) < ”pm “p ’ ” Z l{Rn‘->j}"q
i=N
which together with Proposition A.5 and (3.17) yield
dnn‘-,N _ dnoo,N
dm dm
On the other hand, for j =1,..., N

i DWooj
dm dm

< s, v (M) + N0, v (M) < €/2. (3.19)
1

= ||£43, (Pn 2 (Ro>) — £ (Pooiro> )] - (3.20)
1

Denote

A= ”CL{I_ {(Pns L {fn>51) — 'C'ff;l_ (Pool{ro5} )l
and

B= L (poalimo>}) — £pi(peolime>ip)lla-
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Here we also use the transfer operators for the iterated maps f,{‘, and fg defined
in the same way as for f in (3.8). Then

A 10n L (Bng >3} — Poolimoss3lln

{081 {7,551 — ool (a5t T P00 LiRe 5} = Poolime>

: I0n: = poollt + 0o LiRn; 557 — Limamsp) It

and the last term is bounded by ||poa[lpll1 (2., 553 — L{re>} lo - Taking into account
(1), we get A < ¢/(4N) if i is sufficiently large. Using Proposition 3.18 we also
get B < ¢/(4N), for large i. It follows that (3.20) is less than A+ B < e/(2N)

for each 1 <€ 7 < N. Thus the sum over all these j’s is less than /2. Together
with (3.19), this completes the proof of the proposition.

IA A A

LeMMA 3.21. p*_ is an fo-invariant measure.
Hoo

PRoOF. It follows from Lemma 3.20 that {u}, ); converges to s, in the weak™
topology. Hence, given any ¢: M — R continuous we have

;
f pdi,, — j wdu, when i— oc.

* On the other hand, since pj, is fn-invariant we have

f wdity, = f (po fa)dy,, for every i
So, it suffices to prove that
[0 i~ [too s when i oo (3.21)
We have
I f (9 © fui)pin, — / (9 0 fo)dpes} <

I / (90 fur)dpn, — f (0o fo)dup,| +1 f (0o fo)du, — f (19 © fo)dudy-

Since @ 0 fu; = @ © fo is uniformly close to zero when i is large, the first term in
the sum above is close to zero for ¢ sufficiently large. On the other hand, since
(15, ): converges to p, in the weak* topology we also have that the second term
in the sum above is close to zero if { is large. a

Tt follows from this last result and the uniqueness of the absolutely continu-
ous w-invariant measure that p., = pf. So, Lemma 3.20 really states that the
measures 4y, have densities converging in the L!-norm to the density of pf. This
completes the proof of Theorem 3.17.



CHAPTER 4

Markov structures

Onre successful way for studying the statistical properties of uniformly expand-
ing transformations is by codification of the system via Markov partitions. This
strategy gives very good results in the setting of uniformly expanding transforma-
tions. For non-uniformly expanding maps the existence of the classical Markoy
partitions is still unknown. A partial answer to this problem has been given in
[ALP3], where it was shown that some Markov structures exist for non-uniformiy
expanding maps. The existence of these structures will play a key role in proving
some statistical stability results and in obtaining rates for the correlation decay
of the system, as we shall see below.

DEFINITION 4.1. Let f be some map from a manifold M into itself. We say
that f induces a Markov structure on a disk Ag C M il there is a countable
partition P (mod 0) of Ag, and a return time function R : Ay — N constant on
elements of P such that the following properties hold:

(1) Piecewise ezpansion: the induced map F : Ay — Ay given by F(z) =
f=)(z) (which is defined almost everywhere) is a piecewise expanding
map; cf. Definition 3.5.

(2) Markou: the map F is a C? diffeomorphism (and in particular a bijection)
from each U € P onto A,.

The induced F': Ag — Ay is said to be a Markov map.

Observe that, by definition, an induced Markov structure gives rise to a piece-
wise expanding map where the geometric long branches condition (see Defini-
tion 3.5) is replaced by the stronger Markov condition.

A problem that much interests us in this subject, because of the implications
it has, is to understand how the Lebesgue measure of the set of points © € Ay
for which R(z) > n decays as n tends to infinity. The Lebesgue measure of these
sets will be related to the Lebesgue measure of some tail sets for non-uniformly
expanding maps that we will introduce latter on. If f: M — M is non-uniformly
expanding map, then condition (1.2) implies that the expansion time function

£(z) = min {N >1: %glog NDf(fi(z)) M < =A, foralln > N} (4.1)
61
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is defined and finite almost everywhere in M. We think of this as the waiting
time before the exponential derivative growth kicks in. Then, according to Re-
mark 2.13, we fix ¢ > 0 and > 0 in (1.3) in such a way that the proof of
Proposition 2.12 works. The recurrence time function

. 1 n-—-1 .

R(x) = min {N >1: - Z —logdists(f(2),C) <¢, foraln> N} (4.2)
=0

is also defined and finite almost everywhere in M. Again this is an asymptotic

statement and we have no a-priori knowledge about how fast this limit is ap-

proached or with what degree of uniformity for different points z. We introduce
the tail set (at time n)

T, ={z:£(z)>n or R(z)>n}. (4.3)

This is the set of points which at time n have not yet achieved either the uniform
exponential growth of derivative or the uniform subexponential recurrence given
by conditions {1.2) and (1.3). If the critical set is empty, we simply ignore the
reeurrence time function and consider only the expansion time function in the
- definition of I'y.

1. Inducing Markov structures

Our aim here is to show that Markov structures exist for non-uniformly ex-
panding maps, and control the decay of the return map in terms of the decay of
the tail set. If such a Markov structure exists, then necessarily there will be some
recurrence to the domain of such Markov structure. This remark should make
natural the transitivity assumption on the hypotheses of the main result in this
section.

THEOREM 4.2. Let f : M — M be a transitive C? non-uniformly expanding
map. Then f induces some Markov siructure on a disk contained in M. More-
over, if there exist C,y > 0 such that m(I'y) € Cn™" for all n € N, then there
exists C > 0 such that m{R >n} < Cn™" foralln e N.

As we shall see in Remark 4.14, if the map f is uniformly expanding then
m{R > n} decays exponentially fast with n.

We do not need transitivity in all its strength. Before we tell what is the
weaker form of transitivity that is enough for our purposes, let us recall that
given § > 0, a subset A of M is said to be §-dense if any point in M is at a
distance smaller than & from A. For the proof of the theorem above it is enough
that there is some point p € M whose pre-orbit does not hit the critical set
" of f and is -dense for some sufficiently small § > 0 (depending on the radius
of hyperbolic balls for f). As the lemma below shows, in our setting of non-
uniformly expanding maps this is a consequence of the usual transitivity of f.
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LeEMMA 4.3, Let f: M — M be o tronsitive non-uniformly expanding map.
Given 6 > 0 there isp € M and Ny € N such that U?f_fo F~3{p} is d-dense in M
and disjoint from the critical set C.

PrROOF. Observe that the assumptions on f imply that the images and preim-
ages of sets with zero Lebesgue measure still have zero Lebesgue measure. Hence,
the set B = Uuzof ™ (Unz0f™(C)) has Lebesgue measure equal to zero. On the
other hand, since f is transitive, we have by Corollary 3.4 that there is a unique
SRB measure for g, which is ergodic and absolutely continuous with respect to
Lebesgue measure, and whose support is the whole manifold . This implies
that 1 almost every point in M has a dense orbit. Since g is absolutely contin-
uous with respect to Lebesgue, then there is a positive Lebesgue measure subset
of points in M with dense orbit. Thus there must be some point ¢ € M \ B with
dense orbit, Take Np € N for which ¢, f(g),..., f¥(q) is é-dense. The point
p = fY{(q) satisfies the conclusions of the lemma. : O

The proof of the Theorem 4.2 requires several technical constructions which
we will explain along this section. Assuming that f is non-uniformly expanding,
then by Proposition 2.12 there are ¢, § and ¢ such that Lebesgue almost every
® € M has frequency of (¢, d)-hyperbolic times greater than §. We fix once and
for all p € M and Ny € N for which

UXef~#{p} is 6,/3-dense in M and disjoint from C, (4.4)

J=
where 6; > 0 is the radius of hyperbolic balls given by Proposition 2.3. Take
constants € > 0 and & > 0 so that

Vi < /2 and 0<e<dp
We start the proof of Theorem 4.2 with a couple of auxiliary lemmas.

LEMMA 4.4. There are constants Ko, Do > 0 depending only on f, o, §, and
the point p, such that for any ball B C M of radius 8, there are an open set
V C B and an integer 0 < m < Ny for which:

(1) f™ maps V diffeomorphically onto B(p,2v/d,);

(2) foreachz,yeV
det Df™(z)
det D fm(y)

Moreover, for each 0 < j < Ny the j-preimages of B(p,2v/8y) are all disjoint
from C, and for x belonging to any such j-preimage we have

1 ;
i, S 1PF @)l < K.

log < Do dist{(f™(z), ™ (y))

ProoF. Since U?'r:”u f7{p} is 6;/3 dense in M and disjoint from C, choosing
% > 0 sufficiently small we have that each connected component of the preimages




L 4. MARKOV STRUCTURES

of B(p, 2\/50) up to time Ny are bounded away from the critical set C and are
contained in a ball of radius 4, /3.

This immediately implies that any ball B C M of radius §; contains a preim-
age V of B(p, 24/6,) which is mapped diffeomorphically onto B(p, 2v/3p) in at
most Np iterates. Moreover, since the number of iterations and the distance
to the critical region are uniformly bounded, the volume distortion is uniformly
bounded.

Observe that &, and Ny have been chosen in such a way that all the connected
components of the preimages of B(p, 2v/8y) up to time Ny are uniformly bounded
away from the critical set C, and so there is some constant Ky > 1 such that

1
o 12f™ (=)l < Ko.

for all 1 < m < Ny and z belonging to an m-preimage of B(p, 2v85). O

Next we prove a useful and non-obvious consequence of the existence of hyper-
bolic times, namely that if we fix some € > 0 then there exist some N, depending
only on € such that any ball of radius ¢ has some subset which grows to a fixed
size with bounded distortion within N, iterates.

LEMMA 4.5. There exists N. > 0 such that any ball B C M of radius €
_ contains o hyperbolic pre-ball V,, C B with n < N..

ProOF. Take any ¢ > 0 and a ball B{z,¢). By Proposition 2.3 we may
choose n, € N large enough so that any hyperbolic pre-bell V, associated to
a hyperbolic time n > n. will have diameter not exceeding £/2. Now notice
that by Proposition 2.12 Lebesgue almost every point has an infinite number of
hyperbolic times and therefore

m(M\ I Hj) — 0 asn— oo

J=Tie

Hence, it is possible to choose N, € N such that
m (MU, H5) < m(B(z¢/2))

This ensures that there is a point £ € B{z,¢/2) with a hyperbolic time n < N,
and associated hyperbolic pre-ball V,(z) contained in B(z,¢). a

REMARK 4.6. Observe that if n is a hyperbolic time for f, then it is also a

" hyperbolic time for every map in a C* neighborhood of f. Hence, for given & > 0

the integer N, may be taken uniform in a whole C* neighborhood of f, and only
depending on £, ¢ and 4.

1.1. The partitioning algorithm. Here we describe the construction of
the partition (mod 0) of Ay = B(p, ). The basic intuition is that we wait for
~ some iterate f¥(Aq)} to cover Ap completely, and then define the subset U C Ay
such that f* : U — Ag is a diffeomorphism, as an element of the partition
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with return time k. We then continue to iterate the complement Ay \ U until
this complement covers again Ay and repeat the same procedure to define more
elements of the final partition with higher return times. Using the fact that small
regions eventually become large due to the expansivity condition, it follows that
this process can be continued and that Lebesgue almost every point eventually
belongs to some element of the partition. Moreover, the return time Function
depends on the time that it takes small regions to become large on average and
this turns out to depend precisely on the measure of the tail set.
Now we introduce neighborhoods of p

Ay = B(p, do), Ay = B(p,24), Af = Blp, \/30) and  Aj = B(P;2‘/30)'
For 0 < o < 1 given by Proposition 2.12, let '
I = {z € Aj : &(1+0*?) < dist(z,p) < Go(1+ g* Y k>,

be a partition (mod 0) into countably many rings of A} \ A,.

The construction of the partition of Ay is inductive and we give precisely the
general step of the induction below. For the sake of a better visualization of the
process, and to motivate the definitions, we start with the first step.

First step of the induction. Take Ry some large integer to be determined
below; we ignore any dynamics occurring up to time Ry, Let k& > Ry+1 be the first
time that AgNHy, # §. For j < k we define formally the objects A;, A;, AS whose
meaning will become clear in the next paragraph, by 4; = A = A; = Ay, Let
(U:;); be the connected components of f~*(A3) N Af_, contained in hyperbolic
pre-balls Vi _,, with k¥ — Ny < m < k which are mapped diffeomorphically onto
Ad by f*. Now let

Ul =Ud;nf*Al i=0,1,2
and set R(z) = k for z € U} ;. Now take
Ak = Ak—-l \ {R = ]C}

We define also a function £ : Ay — N by

s ifz € Uy, and f*(x) € I, for some j;
ti(z) = o
0 otherwise.

Finally let
A ={x € Dy 1 t(2) =0}, Bp={re Ag:t(z) >0}

and
AL = {z € Ay dist(F (), FEUA)) < e}
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7 General step of the induction. The general inductive step of the construction

now follows by repeating the arguments above with minor modifications. More
precisely we assume that sets A;, A;, Af B, {R =i} and functions ¢; : &; = N
are defined for all i < n — 1. For i < Ry we just let 4; = Af = A; = A,
B; = {R =i} =0 and t; = 0. Now let (U};); be the connected components
of f~*(Ag) N AS_; contained in hyperbolic pre-balls Vi, with n — Ny <m < n,
which are mapped onto A} by f*. Take

Ui, =URnfa, i=0,1,2
and set R(z) = n for z € UY;. Take also
An = A:u—l \ {R = n}

The definition of the function t,, : A, — N is slightly different in the general case:

5 if z € Up; \US; and f*(z) € I, for some j,
ta{z) =< 0 if 2 € Anoy \W;UL 5,
taa(z)—1 ifz € Buy \UUL;.
Finally let '
Ap={z €, t.(z) =0}, B,={z €l t,(z)>0}
and

AC = [z € A, : dist(f* ! (2), [T (An) < £}
- At this point we have completely described the inductive construction of the sets
Ay, A, By, and {R =n}.

The construction detailed before provides an algorithm for the definition of
a family of topological balls contained in Ap and satisfying the Markov property
as required. Next we show that this algorithm does indeed produce a partition
mod 0 of Ay as required.

REMARK 4.7. Associated to each component US_, of {R = n — k}, for some
k > 0, we have a collar U2 _, \ U?_; around it; knowing that the new components
of {R = n} do not intersect “too much” Ul_, \ UL, is important for preventing
overlaps on sets of the partition.

* In order to see that the sets we construct at each step do not intersect the
previously constructed sets, it is enough to show that if £ > 0 is sufficiently small,
then U! M {t,.1 > 1} = @ for each component U;. Indeed, take some k > 0 and
let U2_, be a component of {R = n—k} such that its collar Qj, (the part of U, L
that is mapped by f** onto I;) intersects UL. Recall that Q) is precisely the
collar around U2_, on which t,; takes the value 1. Letting g1 and ¢z be any two
points in distinct components (inner and outer) of the boundary of Q, we have
by Proposition 2.3 and Lemma 4.4

dist( " (q1), F* () < Koo®~M2 dist(f"(a1), f*(g2). (4.5)
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We also have

dist(f**(q), " ()

v

So(1 + o™ V/2) . 5y(1 + o*/?)
= S0 (e V2 - 1)

3

which combined with (4.5) gives
dist(f"(a1). fH(@)} 2 Kg'o™255(07 % — 1).
On the other hand, since U, C A%_, by construction of U!, taking
€ < Kg'o™/ (012 - 1) (4.6)
we have Ul N {t,_; > 1} = 0.

1.2. Expansion. Recall that by construction, the return time R for an el-
ement U/ of the partition P of Ap is formed by a certain number n of iterations
given by the hyperbolic time of a hyperbolic pre-ball ¥, > U, and a certain num-
ber m < Ny of additional iterates which is the time it takes to go from (V)
which could be anywhere in M, to f**™(V,) which covers Ay completely. It
follows from Remark 2.4 and Lemma 4.4 that

1D+ @)~ < UDS™(f @) - 1P ()M < oo™ < Iega o= o2,
By taking f%, sufficiently large we can make this last expression smaller than 1.

1.3. Bounded distortion. For the bounded distortion estimate required in
Definition 3.5 we need to show that there exists a constant & > 0 such that for
any z,y belonging to an element I/ € P with return time R, we have

det D f?(z)
det D f{y)
Recall that by construction, the return time R for an element I/ of the partition
P of Ay is formed by a certain number n of iterations given by the hyperbolic
time of a hyperbolic pre-ball V,, D U, and a certain number m = R — n < N, of

additional iterates which is the time it takes to go from f*(V},) (which could be
anywhere in the manifold M) to Ag and cover it completely. By the chain rule

log < K dist(f7(z), FR(y))-

det Dff(z)| . |det DfE"(f"(z)) det D f™(z)
8 |3 D7) | = 8 |qe DG | T 8 st D) |

For the first term in this last sum we observe that by Lemma 4.4 we have
det D fAm(f*(z))
det D fR-( f2(y})
For the second term in the sum above, we may apply Corollary 2.5 and obtain

det D f(z) istl f ().
WD) < Codist(f™(z), f*(y)).

log < Dydist(F%(2), £ ().
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Also by Lemma. 4.4 we may write
_ dist(f(x), f*(v)) < Ko dist(f*(2), F7())-
Thus we just have to take K = Dy + CoKp.

1.4. Metric estimates. Here we prove that the construction defined in Sub-
section 1.1 does indeed produce a partition of Aq as in the Theorem 4.2, modulo
a zero Lebesgue measure set. We split our argument into two parts.

1.4.1. Estimates obtained from the construction. In this first part we obtain
some estimates relating the Lebesgue measure of the sets A, B, and {R >n}
with the help of specific information extracted from the inductive construction
we performed in Subsection 1.1.

LEMMA 4.8. There exists a constant ag > 0 (not depending on dy) such that
m(B,—1 N Ag) 2 agm(Bnp..1) for everyn = L.

PROOF. It is enough to see that this holds for each connected component
of B,_; at a time. Let C be a component of B,_; and @ be its outer ring
corresponding to t;_; = 1. Observe that by Remark 4.7 we have @ = C N A,.
Moreover, there must be some &k < n and a component U of {R = k} such that
f* maps C diffeomorphically onto U2, J; and @ onto Ik, both with distortion
bounded by C; and e’ where L is the diameter of M; cf. Corollary 2.6 and,
Lemma 4.4. Thus, it is sufficient to compare the Lebesgue measures of U2, /;
and I,. We have

m(l) [8o{1 + a®- D/ — [§(1 + o*/2)} 1 g2
m(U2,1:) [Bo(1 + o®-1/2))d — 55
Clearly this proportion does not depend on dp. O

LEMMA 4.9. There exist b, co > 0 with by + ¢y < 1 such that for everyn > 1
(1) m(An..l ﬂ.B“) < bom(A,,_l);
(2} m(Ap..a N{R =n}) < com(An-1}.
Moreover by — 0 and cg — 0 as §p — 0.

PROOF. It is enough to prove these estimates for each neighborhood of a
component U? of {R = n}. Observe that by construction we have U C A%_j,
which means that U2 C A,_;, because ¢ < & < v/8,. Using the distortion
bounds of f* on U2 given by Corollary 2.6 and Lemma 4.4 we obtain

m{UA\UD) _ m(A§\AD) &
mUI\UD) ~ m@3\ Ay " gE <t
which gives the first estimate. Morecver, ‘
m(U3) m(Af) &

VAN AV S R i

s
and this gives the second one. a

0
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The next result asserts that a fixed proportion of A,,..; N H,, gives rise to new
elements of the partition within a finite number of steps (not depending on n).

PROPOSITION 4.10. There exist ¢; > 0 and o positive integer N = N(g) such
that m (UX{R=n+ i}) = evm(An_ N H,) for every n > 1.

Proor. Take r = 550K(‘)V°, where Ny and Kj are given by Lemma 4.4. Let
{23} be a maximal set in f*(4,, N H,) with the property that B(z;,7) are
pairwise disjoint. By maximality we have

UjB(z.'fi 2?‘) > fn(An—l n Hn)-

Let z; be a point in H, such that f"(z;) = z; and consider the hyperbolic pre-
ball Vo(z;) associated to z;. Observe that f* sends Vo{z;) diffeomorphically
onto a ball of radius 6; around z; as in Proposition 2.12. In what follows, given
B C B(z;,4,), we will simply denote (f"V,(z;))~!(B) by ~(B). :

Cram. The set f™(B(z;,7)) contains some component of {R =n+k} with
0 < k; < N+ Np for each §.
We start by showing that

btk | f " (B(25,€)) > 0 for some 0 < k; < N, + N, (4.7)
Assume by contradiction that btk | 7 (B{z5,€)) = 0 for all 0 < k; < N+ Ng.
This implies that f~(B(z;,¢)) C Ay, for all 0 < k5 < N, + Ny, Using
Lemma 4.5 we may find a hyperbolic pre-ball ¥, C B(zj,¢) with m < N.. Now,
since f™(V,,) is a ball B of radius 6, it follows from Lemma 4.4 that there is some
V € B and m' < Ny with f™(V) = Ag. Thus, taking k; = m + m' we have that
0 < k; < N+ No and f~(V;,) is an element of {R = n+4;} inside F™(B(z,¢)).
This contradicts the fact that taak; 1S T (B(24,€)) = 0 for all 0 < ki < N, + Ny,
and so (4.7) holds. Let k; be the smallest integer 0 < k; < N, + Ny for which
turiy | fT"(B(25,€)) > 0. Since

FM(Blz€)) C Ay C {tan <1},
there must be some element U2, , (5} of {R = n + k;} for which
Bz, €) N g, (5) # B,

Recall that by definition f*** sends U, (7) diffeomorphically onto A}, the ball
of radius (1++s)dy around p. From time n to n+ k; we may have some final “bad”
period of length at most Ny where the derivative of f may contract, however being
bounded from below by 1/Kj in each step. Thus, the diameter of (U} iy (7))

is at most 4o K. Since B(z;,€) intersects F{Un sk, (5)) and £ < by < oK,
we have by definition of r

FT(Bz,1)) D Uy, (5)-
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Thus we have shown that f~(B(z;, 7)) contains some component of {R = n-+k;}
with 0 < k; < N, + Ny, and so we have proved the claim.

Since 7 is a hyperbolic time for z;, we have by the distortion control given by
~ Corollary 2.6

m(f " (B(z,2r))) m(B(z;, 2r))
(B~ O m(Bl) (48
and
m{f(B(z;;7))) m{B(z;,7))
mO00) = Cm U ) (“9)
Here we are implicitly assuming that
r =7{d) < d./2. {4.10)

This can be done by taking &y small enough. Note that estimates on Np and Kp
1mprove when we diminish dp.

'From time n to time n + k we have at most k; = my + my iterates with
m; < N., mg < Ny and f*(U2 J(j))) containing some point w; € H,,,. By
the definition of (o, 6)~hyperbolic time we have dists(f*(x),C) = o*N¢ for every
0 € i < my, which implies that there is some constant D = D(¢) > 0 such that_
|det(Dfi(z))| € D for 0 < i < my and z € f*(US,(5)). On the other hand,
since the first Ny preimages of Ay are uniformly bounded away from C we also
have some D' > 0 such that |det(Df¥(z))] < D' for every 0 < i < mp and
belonging to an { preimage of Ag. Hence,

| (M (U1, ) > F(Bo)
which combined with (4.9) gives
m{f (B(z;,7))) < Cm{Up,s,(9));

with C only depending on Cy, D, D', &, and the dimension of M. We also deduce
from (4.8) that

m(f(B(2;,2r))) S C'm(f7"(B(z,7)))
with C’ only depending on C) and the dimension of M. Finally let us compare
the Lebesgue measure of the sets U; O{R n+ z} and A,_1 N H,. We have

(An1 N H,} Zm F(B(z;,2r))) <C’Zm(f B(zj,7)}).

On the other hand, by the disjointness of the balls B(zj, r} we have
> m(f™(B(z,7))) < C‘Zm( 9,5, (7)) SCm (UL {R=n+i}).
)

It is enough to take ¢ = (CC')~L. ' O
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REMARK 4.11. It follows from the choice of the constants D and [V (hence
C and C’) that ¢; only depends on the constants g, b, N., C1 and Np.

1.4.2. General estimates. For the time being we have taken a disk A, of radius
0y > 0 around a point p € M with certain properties, and defined inductively the
subsets A,, B,, {R =n} and A, which are related in the following way:

A, =N \ {R < ﬂ'} = AsUB,.

Since we are dealing with a non-uniformly expanding map, for each n € N we also
have defined the set H,, of points that have n as a {0, 8)-hyperbolic time, and the
tail set I', as in (4.3). From the definition of I's, Remark 2.14 and Lemma 2.9
we deduce that:

(m,;) there is # > 0 such that for every n > 1 and every A C M\ T, with
m(A) >0

1 ~m( 5)
Ty 20

Moreover, we have proved in Lemma 4.8, Lemma 4.9 and Proposition 4.10 thaf
the following metric relations also hold:
(mg) there is ap > 0 (bounded away from 0 with &) such that for all n > 1
m(Bn—l N An) 2 aom(Bu—l);

(mgz) there are by, cp > 0 with by + ¢y < 1 and bo, co — 0 as §y — 0, such that

foralln>1
m(An_l N Bﬂ_) m(A,,_l N {R = n})
—_— < < .
mdn gy S0 ed —— ey S

(my) thereis c¢; > 0 and an integer N > 0 such that for alln > 1
m (U;-V:(,{R =n+ z}) > em(A,_1 N Hy).

In the inductive process of construction of the sets Ay, Bn, {R=n} and A,, we
have fixed some large integer Ry, being this the first step at which the construction
began. Recall that A, = A, =Agand B, = {R=n} =0 for n < Ry. For
technical reasons we will assume that

Ry > max {2(N + 1},12/6} . (4.11)
Note that since N and ¢ do not depend on R, this is always possible.

This is the abstract setting under which we will be completing the proof of
Theorem 4.2. From now on we will only make use of the metric relations {(m;)-
(my4) and will not be concerned with any other properties about these sets. This
may be useful for future applications.

LEMMA 4.12. There is a; > 0, with a; — 0 as 8y — 0, such that for alln > 1
m(B.} < eym(4,).
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PRroOF. We have by (m3)
m(A, N An_1) = pm(An), {4.12)
where n = 1 — by — ¢o. Then we take
bot and a; = —-——-———(1 + o)l +C°.
Qo ao7}
The fact that @, — 0 when d; — 0 is a consequence of by, co — 0 when & — 0,
and ag being bounded away from 0. Observe that 0 < < 1 and < a.

Now the proof follows by induction. The result is obviously true for n up
to Ry. Assuming that it holds for n — 1 > By we will show that it also holds
for n, by considering separately the cases m(Ba—1) > Gm{A,-1) and m(B,_1) <
ﬁm(An_l).

Assume first that we have m{B,_;) > @m(A,-1). We may write m({B,_1) =
'.m'(Bn—l M An) + m(Bn—l n Bn): which by (m2) gives

m(Bn_l n Bn) _<_ (1 - au)m(Bn_l). (414)

Since we have m(B,) = m(B, N By_1) +m(Bp N Ap-1), it follows from (4.14) and

(m3) that m(B,) < (1 — ag)m(Bn_1) + bgm(Aa-1). According to the case we are

considering this leads to )

m(Bn) S (1 - aO)m(Bn—l) + bﬂam(Bn—l) S m(Bn—l)' (415)

On the other hand, we have m(A4,) = m{A, N Au-1) + m(Ay N By—1), which

together with (ms) and (4.12) gives m({4,} > nm{As—1) + aom(Bn_1). Again by
the case we are considering we have

m(Ap) 2 nm(An-1) + agdm(Ay_1) = m(A,_1). (4.16)

Inequalities (4.15), (4.16) together with the inductive hypothesis yield the result
* in this first case.

Assume now that m(Ba._1) < @m{An_;). Since m(B,) = m(B, N B,1) +
m{B, N Ap_), it follows from (mg) that m({B,) < m(Bpu—1) +bom(An-1). On the
other hand, (4.12) implies m{A4,) > nm(A,-..). Hence

m(Bn) < m(Bn_l) =+ bgm(An_l) a4+ by
== S = ai,
m(An) m(An-1) n
which proves the result also in this case. O

(4.13)

a=

COROLLARY 4.13. There exists ¢y > 0 such that for everyn 2 1
m(A,) < eam (D).
PRrRoOOF. Using (ms) we obtain
m(An1) = m(Aps1) 2 (1 —bo — co)m{4s,).
On the other hand, by Lemma 4.12,
m(An) = m{As) +m(B,) € (1 + a7 )m(4,).
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It is enough to take ¢ = (1 + a7")/(1 — by — c). ' O

At this point we are able to specify the choice of &,. First of all, let us recall
that the number ¢ in (m;} does not depend on &,. Assume that

m(l';) < Cn™, for some C,y > 0,
and pick ¢« > 0 such that

g
Then we choose §y > 0 small enough so that
a; < 2o (418)

This is possible because a; — 0 as & — 0 by Lemma 4.12.
Since m(4,,) = m{A4,)+m(B,), we easily deduce from (m4) and Lemma 4.12

that if we take
Cr

1+G.1

by = , (4.19)

then

(An—l N Hn)

m(UL{R = nti}) 2 b= e (A, ).

This immediately implies that

A1 NH,
m{Ann) < (1 - blm—(m(Al_l))'

At this point we have some recurrence relation for the Lebesgue measure of
the sets A,. Now take any large n and let &y > 1 be the smallest integer for
which n — 1 — ko(N + 1) < Rp. Assumption (4.11) on Ry and N implies that
n—{ky+1)(N+1) > 1. Consider the partition of {n— (ko +1)(N+1),...,n— 1}
into the sets

Iy = {n—l,n—ﬂ1—(N+1),...,n—~1—ku(N+1)},

) m(A"_l). (420)

Ji= (n—-Nn—-N—-(N+1),....,n~ N — k(N + 1)},
Jo = {n—(N+1),n—-2(N+1),...,n— (ko + 1}(N + 1)}. _
Applying (4.20) repeatediy we arrive at the following set of N + 1 inequations:

m(Amn) < ] (1 - 1'71%1—)) m(4o),

i m{4;)

m@a) < J] (1-™80He)) pia)

i m(Ay)
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Multlplymg the terms in the inequations above and ignoring the factors from
~ (ko + 1)(V + 1) to By — 1 on the right hand side (observe that those factors
are smaller than 1), we obtain

[T s T (1- 02000 agpen

j=0 F=ily

- Since (A,), forms a decreasing sequence of sets we finally have

m (A4} < exp ( N + I Z ’Hl AL )) m(Ao). (4.21)

We will complete the proof of Theorem 4 2 by considering several different cases,
according to the behavior of the proportions m(A;-1 N H;)/m(A;-1).

REMARK 4.14. A straightforward calculation shows that if the average

1 Zn: m(A;—1 N Hj)
n p m(A-_l)

is bounded away from 0 for large n, ther m{R > n} = m(A,) decays exponen-,
tially fast to 0. This happens, for instance, when f is uniformly expanding.

Now we are in conditions to give the last result of this section, from which we
will conclude the proof of Theorem 4.2. It will be useful to introduce

En={j§n: M<a}, for each n > 1,
m(Aj__[)

and

. #E &
F—{ne T on 12}

An issue we have to address is the link between the statistics of hyperbolic
times, the spatial distribution of points having hyperbolic time at some given
time, and the geometrical structure of sets arising from the construction of the
partition described before. We are able to implement a partially successful strat-
egy in this respect: in the polynomial case we establish an essentially optimal
Jink between the rate of decay of the tail set and the rate of the return tirne map.
The nature of the argument does not immediately extend to the exponential case.

PROPOSITION 4.15. Take any n € F with n > Ry. Ifm(A,) > 2m(T,,), then
there is some 0 < k = k(n) < n for which m{A,) < (k/n)" m(Ay).

ProOOF. Assuming that m(A,) > 2m([,), we easily deduce that

m(Au\Tn) m(A, NT,) _1_
Ay LT TmAy 22
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Thus we have for 1 < j < n
(A O Hy) | m(A\Ta) m((ANT) N H;) 1 m{(Ag\Tu) N H))
m(4,) T  m(4,) m(A\[) T2 m(A.\T,)
which together with the conclusion of (m;) for the set A = A, \ T, gives

1"

lzm(AanJ) > 8

> 7. (4.22)
ni m(A,) 2
Define (
_f. - m{A; ) ¢
Gn = {J € Ay T Toa)
Sinee n € F', we have
lim(A,,nHj) <01 Z m(A, N H;)
(e m(4,) ~ 12 =n m(A,)
g 1 m{A, NH;)  #G,
< 1 )
"’12+n_z m{A,) + n
JEEn\Gn
Now, for j € E, \ G, we have
m(An n HJ) _ m(An ﬂHj) : m(Aj_l)
miA,) m{A; 1) m(A,)
< [m(Au NA; NHy) + m{{An\ 4;1) N H) | m{4;.y)
- m{A;_) m{A;_1) m(4,)
m(Aj_]_ n HJ) f
< | —a —,
= [ mA) Y T2a

For this last inequality we used the fact that (A, \ A1) C Bjyand j ¢ G,.
Hence

1 m(4, N Hj) 9 1 m(Aj_ NH;) 6 g #GC,
Sy e m) ¢ Zq2 3 mAand) 9, 0 #G
i m(An) 12 bl m(A;_1) 12« 120 =n

< g + 6 +a b + #Gn
12 %1% T M12a n
By the choice of a; we have that the third term in the last sum above is smaller
than 8/6. So, using (4.22) we obtain
#G, 6
—— 4,23
—=> (4.23)
Now, defining k = max(@,) — 1, we have m(4,) < 12a6~1m(Ay). It follows from
(4.23) that k + 1 > 0n/6, and so k/n > 8/12, because n > R, > 12/6. Since we
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have chosen o < (6/12)"*", we finally have

EY 126\ 1%
n g \12 g’
which completes the proof of the result. O

Now we are able to conclude the proof of Theorem 4.2. It easily follows from:
Lemma 4.12 that

m(Aa) < (14 ar)m(Ay). (4.24)
Hence, it is enough to derive the tail estimate of Theorem 4.2 for m(Ag) in the
place of m{R > n} = m(A,).
Given any large integer n, we consider the following two cases:

(1) If n € N\ F, then by (4.21) and Corollary 4.13 we have

. blf)a
12(N + 1)
(2) If n € F, then we distinguish the following two subcases:
(a) If m(A,) < 2m(T,), then nothing has to be done.

(b) If m(4,) = 2m(T,), then we apply Proposition 4.15 and get some-
k1 < n for which

m{An) < (%)%(Ahy

The only case we are left to consider is 2(b). In such case, either & is in situation 1
or 2(a), or by Proposition 4.15 we can find k; < k; for which

m(Ay,) < (%)Tm(.ﬂkz).

Arguing inductively we are able to show that there is a sequence of integers
0 < ks < -+ < ky < n for which one of the following situations eventually holds:

A I Y e O o)) m(Bo).

(B) m{4.) < (%)7 m(Ts,).

©  mian) < (2) ma

In all these three situations we arrive at the desired conclusion of Theorem 4.2.
Situation (C) corresponds to falling in case 2(b) successively until k; < Ro. For
the first part of the theorem, observe that for a non-uniformly expanding map,
m(l',) always goes to zero when n goes to infinity, even if we do not have any a
priori knowledge of the rate at which it decays.

(A < o exp( (n— o)) m o).
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REMARK 4.16. As one can easily see from case (B) above, the constant ¢ > 0
in Theorem 4.2 will depend on the constant ' > 0, Moreover, from (4.24) and
alt the three possible cases one deduces that & also depends on some previous
constants, namely a, ay, by, &1, 8, N and Ry. It is possible to check that all these
constants ultimately depend on the constants B, 3, b and X associated to the
non-uniformly expanding map f. Naturally they also depend on the first and
second derivatives of f. For future reference we explicit the dependence of the
various constants in the table below:

Constant | Dependence Reference
g, 8,8 A Proposition 2.12
& B, B o, 6 Lemma 2.2
@ 8 (4.17)
Ny &, {4.4)
Du, K() a, (51 Lemma 4.4
Chy B, 3 b e Corollary 2.5
o Co Corollary 2.6
50 51, o Lemma 4.4, (410), (417)
a a, Cy, Dy Lemma 4.8
b{), Cn 01, Do, 53 Lemma 4.9
(431 g, bu, Cp, & (413), (418)
c o, b, N, Cy, Ny Remark 4.11
bl ap, & (419)
Co ay, by, ¢g Corollary 4.13
Kg, Ng, 5[), o (46)
N, g, o, 0; Remark 4.6
N Ny, N, Proposition 4.10
0 Ko, 0, No, N, 8| Subsection 1.2, (4.11)

For a better understanding of the dependencies above we used the principle
that no constant depends on a constant from a line below. Consequently we have
all constants depending on B, 3, b and A.

2. Uniformness

In this section we show that if the rate of expansion decays with some uni-
formity in a family 7 of C*, k > 2, non-uniformly expanding maps of a d-
dimensional manifold M, then each f € F is statistically stable.

DEFINITION 4.17. We say that a family F as above is a uniform fomily if the

constants £, and A (cf. Definition 1.2 and Remark 2.13) can be chosen uniformly
for all f € F.
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Observe that an induced Markov structure for f gives, by definition, a piece-
wise expanding map defined in some ball Ag of the ambient manifold; cf. Defi-
nition 3.5. Moreover, the ball may be taken the same for every map belonging
to a sufficiently small C? neighborhood of f in a uniform family. Indeed, the
ball Ap is centered at a point p € M which has been chosen in (4.4) in such a
way that for some Np € N the set U;ED f~3{p} is 6;/3-dense in M and disjoint
from the critical set, where §; > 0 is the radius of hyperbolic balls given by
Proposition 2.3. Since &; may be taken the same for every map f in a uniform
family and the radius &y of the ball Ag may be taken uniform in a neighborhood
of f (see Remark 4.16), then the point p and Np, and hence the ball Ap, may be
. taken the same for every map belonging to a sufficiently small C? neighborhood
of f. By an implicit function argument one can prove that the critical set varies
continuously with the map in the C? topology.

The construction of the Markov structure as described in Section 4.1 can be
performed in such a way that the following uniformity condition holds:

(ug) given any integer N > 1 and any ¢ > 0, there is § = d(e, N) > 0 such
that for j=1,...,N

If = foller <6 = m{Ry=3}a{Rp=7})<s (4.25)
where A represents the symmetric difference of two sets.

This is just by continuity of the inductive construction for mapsin a C* neighbor-
hood of the original map. In fact, the construction of the partition on which the
map Ry takes constant values is based on a finite number of iterations of f. By
continuity, we can perform the construction of the partition in such a way that
for some fixed integer N the Lebesgue measure of {R; = j} varies continuously
with the map f for j < N. Moreover, the Lebesgue measures of the auxiliary
sets A; and B; also vary continuously with the map f for j < N. Hence, the
construction can be carried out with Ry depending continuously on f as stated
in (ug).

The following lemmnia gives a useful criterium for checking uniformity condition
{u;} presented in Section 3.4. Let us recall that we have proved in Lemma 3.19
that condition {u;) implies the hypothesis (4.26) in the lemma below. Here we
prove that the converse holds under assuming (uy).

LEMMA 4.18. Assume that () holds for fo, and that given any € > 0 there
ere N > 1 and 6§ > 0 for which
IIf —.fenck <é = “ Z I{R!>.‘i}“d <€ (4.26)
=N

Then uniformity condition (u; ) holds for fy.
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PROOF. For the sake of notational simplicity we will write R instead of Ry
and Hy instead of Ry,. Let € > 0 be given, and take N > 1 in such a way that

1) Lmsiplla < /3.

=N

This is possible because we are (implicitly) assuming that R, € L4(m). Since

Ry = Zl{ﬂcoj}a

=0
then we have

o0 N-1 N-1 N-1
I Ymoilly = |R— Bo+ Ro - > Upssy + D mesiy = msil,
=N 7=0 i=0

=0

oo N-1

SR~ Rolla+ || D Limosip ||, + Y L irossy — Linsiyl,
=N =0

S0, if we take & = 6(N, €) > 0 sufficiently small, then under assumption (ug) and

by (4.25), the first and third terms in the sum above can be made smaller than

€/3. This gives the desired conclusion. 0

Let 7 be a uniform family of non-uniformly expanding maps. Given f € ¥
we let the expansion time function £ and the recurrence time function ®¥ be
defined as in (4.1) and (4.2) respectively. The tail set I'{ is also defined for ferF
as in (4.3) for n > 1.

THEOREM 4.19. Let F be a uniform family of C* non-uniformly maps, with
k > 2, for which there are C > 0 and v > d such that

mlf) < Cn™, foralln>1and fEF.
Then uniformity conditions {w) and (uy) hold for each f € F.

Proor. Take any fy € F. If we assume that there are C > 0 and v > d such
that m(I'}) < Cn™" for all n > 1 and all f € F, then by Theorem 4.2 there is a
constant C' > 0 such that m({R; > j}) < Cn7 foralln > 1 and all f € F, as
long as f is taken in a sufficiently small C* neighborhood of f; in F, say f € F
with ||f ~ follgx < 6. Actually, as we have observed in Remark 4.16 the constant
¢ may be taken uniformly in a neighborhood of the map f;. Thus, given f € F
with || f — follcr < & and an integer N > 1, we have

oo o0 o
127 Leriplly < D miRy > 5Y4 < 3 G,

j=N j=N =N
Since we are assuming v > d, this last sum can be made arbitrarily small by taking
N sufficiently large. Applying Lemma 4.18 we obtain uniformity condition (u1).
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For proving that (uz) holds, we just have to show that the constants £ and
K in Definition 3.5 may be chosen uniformly for f in a C* neighborhood of fj in
the uniform family F. This is because in our setting the images of the elements
of the partition are all equal to the ball Ay, which then implies that the long
branches condition is trivially verified.

The constant X is given in Subsection 4.1.3. As it has been shown there, it
only depends on Cg, Dy and Ky. From Remark 4.16 we see that these constants
may be chosen uniformly in F. On the other hand, the constant  is given in
Subsection 1.2 &, No, Ko and Ry which again may be chosen uniformly in 7. [

As an immediate consequence of Theorem 4.19 and Theorem 3.17 we obtain:

COROLLARY 4.20. If F is a uniform family of C* (k = 2) non-uniformly
. maps where non-degeneracy condition (3.7) holds, then each f € F is statistically
stable.

EXAMPLE 4.21. Let V be the class of Viana maps introduced in 1.2.2, which
has been described as a small neighborhood of a map f from the cylinder into
itself. It follows from the construction that V is a uniform family. Moreover,
(3.7) holds in this context, as long as the neighborhood V is chosen sufficiently
small. Indeed, denoting Jr = det Df, we have

;.04 aJf . 8%
Jf_Dg@:c and e —Dg3$2'
Our assumptions give that the last expression is bounded away from zero. So,
choosing V small enough, then there exists ¢; > 0 such that |8J;/8z| > ¢, for
any f € V. Consequently, m(f~1(E)) < constm(E)!/? for any f € V and any
measurable set B. It follows from Corollary 4.20 that Viana maps are statistically
stable.

3. Rates of mixing

An invariant measure g for a map f is said to be mizing if for all measurable
sets A, B ¢ M we have p(f~(A4) N B) — p(A)u(B) as n — oco. Defining the
correlation function

Culio,¥) = { [ oo e - [otu [ wan

it is sometimes possible to obtain specific rates of decay which depend only on
the map f (up to a multiplicative constant which is allowed to depend on ¢, ¢) as
long as the observables ¢, v belong to some appropriate functional space. Notice
that choosing these observables to be characteristic functions this gives exactly
the definition of mixing.

The precise dynamical features which cause mixing, and in particular the
dynamical features which cause different rates of decay of the correlation function,
are still far from understood. Exponential mixing for uniformly expanding and

7
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uniformly hyperbolic systems has been known since the work of Sinai, Ruelle
and Bowen [Si68, Bo70, Bo75, BR] and may not seem surprising in view of
the fact that all quantities involved are exponential. However the subtlety of the
question is becoming more apparent in the light of recent examples which satisfy
asymptotic exponential expansion estimates but only subexponential decay of
correlations.

We are also interested in conditions for the validity of the Central Limit
Theorem, which states that the probability of a given deviation of the average
values of an observable along an orbit from the asymptotic average is essentially
given by a Normal Distribution: given a Hélder continuous function ¢ which is
not a coboundary (@ # 9o f — for any 1 € L*(u)) there exists ¢ > 0 such that
for every interval J C R, '

B {:1: €X: \/_72_:( (F(=) /qod,u) € J} - 0;2?[13“2/2"2&.

Here we study of the correlation decay and validity of the Central Limit Theorem
for non-uniformly expanding maps in terms of the tail set. We will use the results
in [Y099] for Markov towers.

THEOREM 4.22. Let f: M — M is a transitive C? non-uniformly ezpanding
map, and suppose that there exists v > 1 such that

m(l,) < On™).

Then f has a unigue ergodic absolulely continuous invariant probability mea-
sure p. Some finite power of f is mizing with respect to p, end the correlation
function for ¢ € L®(m) and Hdlder continuous ¢ satisfies

Culp$) < O™
Moreover, if v > 2 then the Central Limit Theorem holds.

ProoF. The existence of a unique ergodic absolutely continuous probability
measure 4 is a consequence of Corollary 3.4. We are left to prove the correlation
decay and the Central Limit Theorem for (f, 1.

From Theorem 4.2 we know that there is some disk Ap C M, a countable

partition P into sub-disks of a full Lebesgue measure subset of Ap, and a return
time function R : Ay — N constant on elements of P, for which

m{R > n} < O(n""), (4.27)

such that the following conditions on the induced map F : Agq — Ay given by
F(z) = ff)(z) hold:
(1} there is 0 < 2 < 1 such that for z in the interior of the elements of P

IDF(z)~ < 8.
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(2) there is some constant K > 0 such that for every U € P and z,y € U

det DF(z)
det DF(y)

(3) the map F is a C? diffeomorphism (and in particular a bijection) from
each U € P onto Ag.
It immediately follows from the uniform expansivity property (1) above that for
any x,y € Ag which have the same combinatorics, ie. which remain in the same
elements of the partition P for some number s(z,y) of iterates of the induced
map F, we have

log < K dist(F(z), F(y))-

dist{z,y) < g,
Together with properties (1)-(3) above this implies that F is in the conditions of
. Appendix B. Since we have no a priori knowledge of ged{R;}, we may need to
take some finite power of f in order to assure that ged{R;} = 1.
Then we introduce the Markov tower,
A= {(z,n) € HoxN: 0<n< R(z)},
and the tower map T': A — A given by
_{ (z,n+1), ifn+1< R(z);
T{z,n) = { (F(z),0), ifn+1=R(z).
We have by construction
T™)(3,0) = (F(z),0) = (f“)(2),0).

We take mp the Lebesgue measure on Ay, and take 7 the push-forward of mg
to the higher levels of the tower by the action of T as described in Appendix B.
(We use 7 instead of m in order to distinguish it from the Lebesgue measure on
M). Theorem B.1 gives that T has an invariant probability measure v which is
equivalent to . Letting

Hp={p:A—R| 3C > 0such that |p(z) — p(y)| < CH Y Va,y € A},
we have by Theorem B.2 that the correlation function for ¢ € Hg and 9 € L*(mn)
in the underlying space (A, ¢} satisfies

CLlp,¥) < O™, (4.28)

"(We use the superscript 7" in order to distinguish this from that associated to f).
Moreover, if v > 2 then the Central Limit Theorem holds for T'.
Now we define a projection

T A — ngnf"(AD)-
(®,n) +— f'(z)

Observe that this map m satisfies

for=moTl.
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Letting p* = m,v, we easily verify that p* is an absolutely continuous f invariant
probability measure. Thus x* must coincide with the unique ergodic absolutely
continuous f invariant probability measure p.

Let now ¢ € L®(m) and : M — R be Holder continuous with Hélder
exponent 7 > 0. Defining ¢ = gpor and = po, then ¢ € L°(n) and & € Hy
where § = max ||(Df%)~||". Moreover,

Jormyiu- [oin [pau= [(gorrypar - [oar [av

which together with (4.28) gives the desired estimate for the correlation decay.
A similar observation leads to the Central Limit Theorem by application of The-
orem B.3. , O

As we have observed in Remark 4.14, the Lebesgue measure of {R > n}
decays exponentially fast when f is uniformly expanding. Since the proof of
Theorem 4.22 also works in that case, this method also gives the well-known
exponential decay of correlations for uniformly expanding maps.







CHAPTER 5
Random perturbations

The goal of this chapter is the study of the statistical behavior of a system
evolving under random perturbations of a fixed transformation, and to under-
stand how the statistical behavior of this random system relates to the statistical
behavior of the original system when we consider small perturbations.

The stability of a dynamical system f under random perturbations can heuris-
tically be introduced in the following way. Assume that instead of time averages
of Dirac measures supported on the iterates of g € M » we consider time averages
of Dirac measures §,;, where at each iteration we take T;4y close to f(z;) with
a controlled error. One is interested in studying the existence of limit measures
for these time averages and their relation to the analogous ones for unperturbed
orbits, that is, the stochastic stability of the initial system. Stability results
have been established in [Ki86, Ki88] for uniformly expanding maps, and in
[BY92, BaV] for certain quadratic maps of the interval. Another important con-
tribution is the announced work of Benedicks and Viana for Hénon-like strange
attractors. Here we follow the approach of [AA1] in the study of the stochas-
tic stability of non-uniformly expanding dynamical systems, and give sufficient
conditions and necessary conditions for their stochastic stability.

We will use the approach of [Vi3, Ar00] for putting in precise mathematical
terms the heuristic description of random perturbation introduced above. We
take a continuous map

F: T — CYM,M)
t — f;
from a metric space T' into the space of C? maps from M to M, with f=fi for

some fixed i* € T. Given ¢ = (i),%s,23,...) in the infinite product space T we
define f? = idy, and for n > 1

L =frno o fy.

Given z € M we call the sequence ( f#(z)),,, & random orbit of z. We will
restrict the class of perturbations we are going to consider for maps with critical
sets: we take all the maps f; with the same critical set C by imposing that

Dff(z)=Df(x), foreveryxc M\CandteT. (5.1)

Perturbations of this type may be implemented, for instance, in Lie groups; see
Example 5.3 below.

85
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We also take a family (f.).>o of probability measures on T such that their
supports form a nested family of connected compact sets, and

supp(f:) — {t*}, when ¢—0.
Given an integer n > 1 and z € M, we define the map
TN M, THE) = R (2).
The family (7.)zem gives the possible transitions from the point = to points in
M through f, with £ € T. This enables us to introduce the probability measure
(77),6%, which is the push-forward of the probability measure 6 from TN to M

via 77. The value of (7;).8" at Borel set A C M gives the probability of the
point x fall into the set A when iterated by the maps f; with t € supp(&,).

DEFINITION 5.1. We will refer to a pair {F, (f.)0} as above as a random
perturbation of f. We say that {F, (6.).>0} is a non-degenerate random perturba-
tion, if for small € > 0 we may take £ = £(e) > 0 for which the following holds
for all z € M:

(1) {fi(z): t € supp(fe)} contains the ball of radius £ around f(z);
(2) (75).0Y is absolutely continuous with respect to m.

The first condition in the definition above means that perturbed iterates cover
a full neighborhood of the unperturbed ones for all sufficiently small noise levels,
while the second one means that sets of perturbation vectors with positive g
measure send any point x € M onto subsets of M with positive Lebesgue measure.
The example below shows that we can always construct a non-degenerate random
perturbation of any smooth map f : M — M on a compact manifold.

EXAMPLE 5.2, Let f : M — M be a continuous map of a d-dimensional
compact Riemannian manifold. We take an open cover of M given by the images
of finitely many local charts ¢; : B3(0) — M, for i = 1,..., k, with the property
that

k
U #:(B1(0)) o M, (5.2)
i=1

where B, (0) denotes the ball of radius r > 0 around 0 in R%. Foreach 1 <i<k
we take orthonormal C? vector fields X7, ..., X¢ in ;(B3(0)), and extend them
respectively to C? vector fields ¥}!,...,Y;? defined in the whole M, in such a way
that foreach 1 €1 < kand 1 € 7 < d both:

(1) ¥7 is null outside 1;(B5(0));

(2) Y/ coincides with X7 in ¢;(B4(0)).
Since (5.2) holds, then at each * € M there is some 1 < ¢ < k such that
Y#(z),. .., Y#(z) is an orthonormal basis for T.M. Let I': TM x R — M be the
geodesic flow associated to the Riemannian metric. Then we define a continuous
map

F: (RY)* — C¥(M, M)
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k d 5
PO, .. U)(@) =T ((f(:c),zzu,.,-xg(f(m))) ,1)

im] j=l
where U; = (ui,...,uq) for 1 £ ¢ < k. Now let the family of probability
measures (#,), in B* be defined for each ¢ > 0 as
1
8, = ——— ()| B,
= 3B MEO),

where A is the Lebesgue measure on R*. It is straightforward to check that
{F,(8.)c>0} is 2 non-degenerate random perturbation of f.

EXAMPLE 5.3. Let f : A — M be a map from some Lie group M into
itself, for instance M = T* the d-dimensional torus, and let (6;)c»0 be a family
of probability measures on M such that supp(#,) contains an open neighborhood
of the identity ¢ and is contained in a e-neighborhood of e. We define a function

F:M— C*(M,M)
associating to each t € M the C* map f; from M into itself, defined as

where the operation is that of the group structure on M. Then {F, (f.)0} is 2
non-degenerate random perturbation of f for which (5.1) holds.

1. Stationary measures

Let a non-degenerate random perturbation {F, (f)esa} of a map f: M — M
from a. Riemannian manifold into itself be given. It will be useful for our purposes
to introduce the skew-product map

S: T9xM — TVxM
(t! Z) L (U(t)a ff.] (Z))
where ¢ is the left shift on the elements t = (¢;,t,...) € TV, defined as
G'(t],tg,tg ) = (tg,ts, . )

The notion below replaces the usual invariance of a measure with respect to a
transformation in the present context of random perturbations.

(5.3)

DEFINITION 5.4, Given ¢ > 0, we say that a probability measure p° on the
Borel sets of M is a stationary measure, if

[ [ otte) dutay s = [ oan (5.4)

for every : M — R integrable with respect to p°.

We leave it as an exercise to reader to check that p is a stationary measure
if and only if the measure 6F x uf on T x M is invariant by 5.
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LEMMA 5.5, If (119,50 is a family of stationary meesures having jy as o weak’
eceumulation point when e — 0, then py is invariant by f.

Proor. By the weak® of (j¢),»¢ to pty when € — (0 we have that for any
continuous g: M — R

/Lpd;t‘ — ftptl;tu when e — 0.

On the other hand, since pf is stationary we have

J[eli@) abodita) = [pa tor cvory e

Therefore, it suffices to prove that

//cp(f;(w)) df, (t) dy (x) — ](po fdpg when € — 0.

We have

l// w{fi()) dBe(t) dpe () — flp o fduy
'//‘P(fe(ib')) df(t) dus(x) — /‘POfd,u‘

+ Uwfdu‘ - ffpo S
Since supp{8,) — {¢*} when ¢ — 0, we have that

[oti@) doe - oo s
. |
converges uniformly to 0 when € — 0. Then the first term in the sum above is

close to zero for small e > 0. Oun the other hand, since ;f converges in the weak*
topology to jy, we also have that the second term in the sum above is also close
to zero for small ¢ > 0. u

<

Let us now fix z € M, and consider the sequence of measures

n—

1
1 .
po == D (6 (5.5)
=0

Since this is a sequence of probability measures on the compact manifold M, then
it has weak® accumulation points when n — oo. We will show that such accu-
mulation points are always absolutely continuous with respect to the Lebesgue
measure. Let ns remark that the assumption on the density of (7.).8 in the
result below is quite general, holding for instance for the random perturbations
of Examples 5.2 and 5.3.

LEMMA 5.6. Every weak® accumulation point of (15), is a stationary measure,
which is absolutely continuous with respect to the Lebesgue measure.
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PRrooF. Let yf be a weak* accumulation point of (uf),.. Then, there is some
sequence 1, — oo such that we may write

[ etryawcwao = [ i —Zl [etntsim s as.to

for each continuous ¢ : Af — R. We have by domlna.ted convergence

ng—1
[ m w2 [ e o a)

= Jim az [ [ etitsi@n e oo
’ tp—1
hm — Z f(p( FH (@) dol(t)
ne—1
= nglolon._k Z/ ft (x)) dl‘)N(t )+ Ilm —/ e(fi*(x)) — (p(a:)] doN(t)

Since y is bounded, then the second limit in this last expression is equal to 0,
while the first one gives precisely the integral of ¢ with respect to pf. Thus we
liave shown that ¢ is a stationary measure.

Let us now check the absolute continuity. We have for every measurable set

AcCcM
f Ladie = j f 14(fu(2)) dp() do(t)

/ / 14(£u(z)) dB.(t) dp(z)
[ .05 du ).

This shows that
KA = [ (0N du(a),

Since (73.).0% is absolutely continuous with respect to m (recall Definition 5.1),
then we must have pf(A) = 0 whenever m(A4) = 0. O

The next result shows that stationary measures must be supported in topo-
logically relevant regions of the phase space. A Borel set A C M is said to be
invariant (by o random perturbation) if fi( A) C A for every t € supp(f.}, at least
for small ¢ > 0.

LEMMA 5.7. If u* is a stationary measure, then supp(i®) is an inveriant set
with nonempty interior.
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Proo#. Let p¢ be a stationary measure. Take any z € supp(p®) and let U be
some swall neighborhood of f,{z) in M, for s € supp(d,). We have

() =f1ml,u‘ :// -1 (@)dpet () db. () = /;.L‘(f[l(U))db‘,(t).

Since f,'() is a neighborhood of z in M, then by continuity, i H(U) must be a
neighbothood of z. Then we have u*(f7'(U}) > 0 for all £ in a small neighborhood
of s, because z € supp{p). Since s € supp(f,), the last integral in the expression
ahovc is positive, and so p{U) > 0. This shows that stipp{ge*) is an invariant set.
Since f,(supp{pe)) C supp(yf ) for all ¢ € supp(8.), by Definition 5.1 this implies
that the interior of supp(g®) is nonempty. a

2. Physical measures

The notion that we present below plays in the present sctting a role similar
to that played by SRB measures in deterministic systems. SRIB measures are
frequently called physical measures in several places. llere we use this last term
only in the context of random perturbations of a map, in order to distinguish
them from the previously introduced SRB measures.

DEFINITION 5.8. Let p° be a stationary measure for a random perturbation
{F, (0 )es0} of f: M — M. We say that u is a physical measure if, for a positive
Lebesgue measure set of points = € M,

n]

_ €
Jim Zw / @yt (5.6)

for all continnous ¢: M — R and gN almost every t € TV The set of points
@ € M for which (5.6) holds for all continuous w: M — R is denoted by B(xf)
and called the besin of g*.

The result below guarantees that every stationary measure can be decomposed
into a combination of ergodic measures. We say that a stationary measure j° is
ergodic if the measure 6N x ¢ is ergodic for the skew-product dynamical system
S: TN x M — TV x M defined in (5.3).

PROPOSITION 5.9. Let pif be a stationary measure for a random perturbation
{F,(f)esa} of f1 M — M. Then there is a family of ergodic probability measures
(18 )cps such that for every pf-integrable p : M — R

[oae = [ [ etwaust)aneio)

PROOF. Let u° be a stationary measure as in the statement. Then O x pe
is invariant by S. By the ergodic decomposition of Theorem 0.11 we know that
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there is a family 7f, of S ergodic probability measures defined for 6N x u¢ almost
every (t,z) € TN x M such that for any 8% x yf-integrable v : TN x M — R

[y = [ [var) a@mo ). (5.7

We now show that 7, = 8 x ps for a probability measure . which will be S

ergodic by construction, for 6) x p¢ almost every (t,z) € TN x M. Indeed, since
64 is a product measure on TV we may write (5.7) as

Joaorcur= [ [ ([ virin.) a000] a < 9ie 2,

where ut is the vector (u,t),ts,...} with £ = (&, £, ... ). Since (5.7) holds for
every 1 € LN x 1) we must have

MW= f Mg e (1),

for 8 x p ahnost all (£,2) € TN x M. This argument may be reapplied any
number of times, thus proving

< € &
i = -/.nizl'ltz...txkg,x dac (ul L uk)}

for 88 x pf almost all (£,2) € T x M and every k > 1. Hence

Mow = f % 2 d67 (),

for 8% x ¢ almost all (¢,2) € TV x M. This is equivalent to say that there is a
family (7).ear of probability measures in TV x M such that

Nie =75, for 62 x pf almost all {¢,2) € TN x M.
Using this back in {5.7) we obtain

Jvaexuwy= [ ( [var) a0 < uwye 0
=/ ( / wdn;) a5 (@), (5.8)

Applying this to the characteristic function of an arbitrary Borel set A C M we

have ) f(lA o 7 d(% x ) = / (_/(IA o) d"f?;) dpt(z),

where m : TN x M — M is the projection on the second coordinate. Hence for
any measurable U ¢ 7% we also have

(0 %1) U x A) = 880 A) = [ 60) ( [aomang) duto)
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Defining the push-forward gf = 7,75 we arrive at
(B8 % 1) (U x A) = /(65" x pe) (U x A)dp‘(x)

for all measurable sets U € T and A ¢ M, thus showing that 7, = n, = 8% x pt,
for 87 x g almost all (¢, ) € TN x M. The statement of the proposition follows
from this by taking ¥ = p o7 in (5.8). O

LiMMA 5.10. If pf is an ergodic absolutely continuous stationary neasure
for « non-degencrate randem perturbation of f: M — M, then puf is ¢ physical
measure. Moreover, there is £ > 0 (depending only on ¢ > 0) such that the basin
of any physicel measure conteins Lebesque almost cvery point in some ball of
radius €.

Proor. Letting 7: TNx M — M denote the projection onto M, by Birkhoff’s
Ergodic Theorem we have for every pf-integrable p: M — R
n—1

tin 23 pom) (S60)) = [ om)dlel x i

j=0

for BN x ¢ ahnost every (¢,z) € TN x M, where S is the skew-product map
defincd in (5.3). This is equivalent to say that

n—1
1

F ey = €
5ot o

for 8N x < almost every (¢,%) € T™ x M. Hence p almost every 2 € M belongs
to the basin of 4. Since p* is absolutely continuous with respect to the Lebesgue
measure, then g€ is a physical measure. Thus we have proved the first part of
the lemma. :

Take now x an arbitrary point in the basin of a physical measure u°. Since
we are assuming that the random perturbation is non-degenerate, then there
is £ = &(e) > 0 such that {f,(z): t € supp(f,)} contains the ball B(f(x),§)
of radius & around f(x). Also by non-degeneracy of the random perturbation
we have that (r.),0N is equivalent to m on 7.(supp(6Y)). Then m almost every

y € B(f(x), £) belongs in the basin of u¢, by the invariance of basin under random
iterations. O

PRroprosITION 5.11. Let {F, (0:)cn0} be o non-degenerate random perturbation
of f1 M — M. Given e > 0 there are | = l(e) € N and physical measures
K, ..., 1 such that for any absolutely continuous stetionary measure p° there
are ay, ... 0p =2 0 with oy + -+ oy =1 end p€ = aqpuf - - + oy,

ProoOF. Let uf be an absolutely continuous stationary measure (it exists by
Lemma 5.6), and let (ug), be the family of ergodic stationary measures given by
Proposition 5.9. Since uf is absolutely continuous with respect to m, then pf is
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also absolutely continuous with respect to m for pf almost every © € M. From
Lemma 5.10 we have that uf is a physical measure for p¢ almost every T € M.
In particular, the set of physical measures is non-empty. Since distinct physical
measures have disjoint basins, we also have by Lemma 5.10 that for a noise level
€ > 0 the number of physical measures is finite (possibly depending on ).

Let now pf, ..., uf be the set of all physical measures of f for a given noise
level € > 0, where [ = I(¢) > 1. Let x be an absolutely continucus stationary
measure, and consider {1S).eas the family of ergodic stationary measures of the
decomposition given by Proposition 5.9. Since u¢ is a physical measure for y¢
almost every € M, we must have y£ coinciding with some of the physical measures
His. .., for p almost every & € M. Defining for each 1 < § < {

Pj={mEM:,u;=y_.‘,-},

then the sets Py,..., P, partition M up to a null ¢ measure subset of points.
Given any p-integrable ¢ : M — R we have by Proposition 5.9

f pdu’ = f [ f o(y) dui(y)] dpf(z)
g fp ,- [ f w(y) fl#;(y)] dp ()

!
Z 1(B;) / pdyts.
i=1

This gives the conclusion of the proposition with a; = pf(#) for 1 <5< 0O

Recall that up until now we used no more than the continnity of the map. For
the proof of the next theorem we need non-uniform expansion. It may be under-
stood as the version of Theorem 3.2 in this context. Observe that, depending on
the perturbation vector we choose, ergodic averages of & same point may approx-
imate distinet plysical measures. More properties of these physical measures are
given in [Ar00]. In particular,

supp(pf) C Byf), for1<i<i (5.9)

The method for proving this inclusion involves minimal invariant domains for
random perturbations and it is out of the scope of the present work; see [Ar00,
Proposition 7.3] for details.

TUEOREM 5.12. Let {F), (fc)es0} be a non-degenerate random perturbation of
e C? non-uniformly ezpanding map f : M — M. Then there is | > 1 such that
for small enough € > 0 the physical measures p5, ..., S satisfy:
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{1} for each x € M there exists a 6N mod O partition T (x),.... Ti{z) of ™
such that

n—1
‘ 1 13
= "11_1;010; _Zl:éff(“’) for every £ € Ti(x);
J:

(2) if m|B{us) denotes the normalized restriction of the Lebesgue measure to
the basin of pS, then

w—1

= lim ;Z [ mBn) e,

Both limits are taken in the weak™ sense.

Proor. Fix small € > 0 and let p5,..., u¢ be the physical measures given
by Proposition 5.11. Take any £ € M and let p* be a weak* accumulation
point of the sequence (1¢),, defined in (5.5). We will prove that this is the only
weal® accnmmulation point of (5.5) by showing that the values of the ay, ..., o
in the decomnposition given by Proposition 5.11 depend only on 2 and not on
the subsequence that converges to ¢, From (5.9) we deduce that the physical
measures have disjoint supports, and so

o = pf(supp(ps)), for1<i<i
We define for 1 <4 <{

Ti(x) = {t € supp(6l'): f{(x) € supp(y;) for some j > 1}.
We clearly have . E
T~(:::) = U5 T (x), with THz) c T (a) for each j > 1, (5.10)

where T} (x = {t € supp(6) : ft (z) € supp(pf) }, since the supports of physical
nleasures au. themselves invariant by Lemma. 5.7. Now we fix some 1 <4 < { and
take any small 5 > 0. Since u¢ is a regular probability measure, we may find an
open set U D supp{yf) and a closed set K C supp(u§)} such that E(UNK) < g
and p{OU) = p(8K) = 0. In fact, there is an at most countable number of
g-neighborhoods of supp(u§) whose boundaries have positive y¢ measure, and
likewise for the compacts coinciding with the complement of the d-neighborhood
of M \ supp(us). Then, taking o; = pf(supp(y§)) we have

ae—1
o+ 2 pU) = lim ST oMeeTV: fi(z) e U}
j—
n—1

> llmsup—l- Z o8 (T ()

k—+too Tl =0
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for some sequence of integers 1 < ny < ng < nz < ---, and likewise for
=1
—m < u K — : - N N . o
=S pK) = lim = Z_; PteT: fi(x) e K}
mp—1
< hmmf— Z HN TJ

k—too T

Since > 0 was arbitrary, this shows

np—1

o = pf{supp(pf)) = hm — Z SN T (2

Moreover, from (5.10) we have that

n—

6 (Ti(2)) = lim 67(T7(2)) = lim — Z 68 (T () = o,
i=0

which shows that each «; depends only on the random orbits of z and not on the
particular sequence (ng)r. Thus we see that the sequence of measures in (5.5)
effectively converges in the weak® topology. Moreover, the sets Ti(z), .. T;(:c)
are panwu,e disjoint, by definition, and their total ¥ measure equals o + -+
o; = 1, thus forming a 6% modulo zero partition ot TN, We observe that if
te Ti(:z:), then f(x) € supp(,uf) C By}, for each ¢ = 1,...,l. This means that
the (Jf" modulo zero partition of T¥ satisfies the first item of the proposition.
Now fix 1 <4 < 1. For all € B(uf) it holds that

-1

E

”gglmggw HOE /sodu,-
for 0N almost every t € T™. Recall that m(B(4$)) > 0 by the definition of physical
measure. Using dominated convergence and integrating both sides of the above
equality twice, first with respect to m and then with respect to 8, we arrive at
the statement of the second item.

We are left to prove that { = I{e} does not depend on ¢ for small enough
e > 0. Fixing 1 <4 <[ we let z in the interior of supp(y) be such that
the orbit {f?(z)); has infinitely many hyperbolic times. Recall that f = f.
is non-uniformly expanding. Then there is a big enough hyperbolic time n so
that V,, C supp(pf), where V,, is the hyperbolic pre-hall containing x given by
Proposition 2.3. Since ¢* € supp(fl.) and supp(yf) is invariant under £, for all
t € supp(6.), we must have

supp(if) > [ (V) = B(f(2),8), (5.11)

where d; > 0 is the constant given by Proposition 2.3 and B(f}(z},8,) is the
ball of radius §; around fi*(x) = f*(z). Then, we easily deduce that the number
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I = l{e) is bounded from above by some uniform constant since A is compact.
On the other hand, since cach invariant set must contain some physical measure,
we sce that for 0 < ¢ < ¢ there must be some pliysical measure p¢ with supp{p®’)
contained in supp(pt). In fact, supp(pf) is invariant under f; for every t €
supp(fe) C supp(f). Thus we conclude that there must be e > 0 such that
! = l(e) is coustant for 0 < ¢ < €. [}

REMARK 5.13. Let us point out that from (5.11) one easily deduces that the
Loshesgue measnre of the basin of each physical measure is uniformly bounded
from below, since the support of such a measure is always contained in its basin.

REMARK 5.14. If the map f: M — M is topologically transitive, then every
stationary measure must be supported on the whole of M, since the support is
invariant and has nonempty interior. According to the discussion abuve, there
must be only one such stationary measure, which must be physical.

We note that the number [ of physical measures for small € > 0 and the
wimnber p of SRB measures for f are obtained by different existential arguments.
[t is natural to ask whether there is any relation between { and p.

PROPOSITION 5.15. Let f: M — M is a C? non-uniformily cwpanding map.
If p = 1 is the number of SRB meusures of f and l > 1 is the number of physical
measures of o non-degenerate random perturbation of f, then for € > 0 small
enongh we hove L < p.

Proor. Observe that supp(gf) is forward invariant under f = f,» and, more-
over, f is non-uniformly expanding for Lebesgne almost every x in supp(u),
because it holds almost everywhere in M (by assumption) and supp(y®) has
nonempty interior. Thus by Theorem 3.2 we assure the existence of at least one
SRB measure p with supp(pe) C supp{p®). Hence, we have seen that each support
of a physical measure p¢ must contain the support of at least one SRB measure
for the nnperturbed map f. Since the number of SRB measures is finite we have
[ < p, where p is the number of SRB measures. O

The reverse inequality does not hold in general, as the following example
shows: it is possible for two distinct SRB measures to have intersecting supports
and, in this circumstance, the random perturbations will mix their basins and
there will be some physical measure whose support overlaps the supports of both
SRB measures.

EXAMPLE 5.16. The first example is the map f : [-3,1] — [-3,1] whose
graph is given in Figure 5.1
fy= {122 if —1<z<1
Tl 2z 4+2%-3 if 3Lz~
The dynamics of f on [~1,1] and [—3, —1] is conjugated to the tent map T'(z) =
1 — 2|z| from [-1,1] into itself. We may interpret f as a circle map through
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T
1
1
1
1
1
'
1
1
1
1
[

FIGURE 5.1. map for which 1 =1 <p=2

the identification S' = [~3,1]/{~3,1}. This is a non-uniformly expanding map
(with a critical set), and there are two ergodic absolutely continuous (thus SRB)
invariant measures p¢; and p» whose supports are (—-3,-1] and [-1, 1] respectively.
Moreover, defining F(t) = Ryof, where R, : S' — S' is the rotation of angle ¢ and
8. = (2e}~!(m|{—¢,¢]) for small € > 0, we have that {F,(Bc)e>p} is non-degenerate
random perturbation of f. Since supp(su) Nsapp(p2) = {—1} we have that for
€ > 0 small enongh there must be a unique physical measure. Indeed, any weak*
accunuation point of a family of physical measures must have the point ~1 in
its support.

It is possible that a random perturbation of a system have more than one
physical measure for small noise level, as the next example shows.

ExAMPLE 5.17. The second example is defined on the interval I = [~7,2].
We take the map ¢,(z) = a—2? on [-2, 2] for some parameter a € (1, 2) satisfying
the good conditions of [BC85), and the “same” map on [—7, —3], conveniently
conjugated: p.(x) = (x +5)* — 5 — a. Then the two pieces of graph are glued
together in such a way that we obtain a smooth map f : I — I sending 7/
into its interior, as Figure 5.2 shows. The intervals I, = [¢2(0), g.(0)] and £, =
[pa(—5), P;(~—5)] are forward invariant for f, and then we can find slightly larger
intervals I; O I, and I; D I, that become trapping regions for the map f. So,
taking F(t) = f +t, and 6, as in the previous example with 0 < ¢ < en for
some €y > 0 small enough, then {F, (8,).} is a random perturbation of f leaving
the intervals I; and I invariant by each F(¢). Moreover, Lebesgue alnost every
@ € [ eventually arrives at one of these intervals. Then by [BY93] the map f
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FicURE 5.2. A map for which i =p=2

has two SRB neasures with supports contained in each trapping region, and f
admiits two distinct plysical measures whose supports are contained in [, and [,
respectively, for small enonugh noise level.

3. Non-uniform expansion on random orbits

In this scction we introduce some definitions and results which have a similar
in Chapter 2. Proofs of results will use essentiality the same ideas.

DerRINITION 5.18. Let f: M — M be a local diffeomorphism ountside a non-
degenerate critical set C, and let {F, (0)e-o0} as a random perturbation of f. We
say that f is non-uniformly ezpanding on random orbits if the following conditions
hold, at least for small € > O

(1) there is ¢ > 0 such that for 6 x m almost every (t,z) € TV x M

n—

1
lim sup Zlog ||Df(fg(:c))ﬁll| < —cC. (5.12)
3=0

1
n—+too T

(2) given any small v > 0 there is § > 0 such that for O x m almost every
(t,z) e TN x M

n--1

1 ;
limsupRZ—logdistg(fg(m),C) <. (5.13)
n--++oe N
=0
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From here on we assume that f: A — A is a local diffeomorphism outside a
non-degenerate critical set C. When C is equal to the empty set, then we naturally
disregard the second condition in the definition above. For the case of C = B we
have to be particularly careful in the proof of Proposition 5.20 due to the fact
that we are not assuming condition (5.1) for maps with no critical sets. For the
next definition we fix B > 1 and 8 > 0 as in Definition 1.1, and take a constant
b > 0 such that 2b < min{1, g-'}.

DEFINITION 5.19. Given 0 < @ < 1 and § > 0, we say that n € Z¥ is a
(cr,8)-hyperbolic time for {¢,x) € TV x M if for every 1 < & <n
n—J
H 1D £, (F @) <a* and dists (£ (x),€) > ot*. (5.14)
Jj=n-k
In the case of C = § the definition of (o, 8)-hyperbolic time reduces to the first
condition in (5.14) and we simply call it a a-hyperbolic time.

The results we present below will be proved by mimicking the corresponding
ones in the deterministic sitnation; of. Sections 2.1 and 2.2

Prorosition 5.20. Let {F,(0)es0} be o random perturbation of f and as-
sume that f is non-uniformly ezpanding on randowm orbits. Then there are
0 <a<1andd >0 such that 05 x m almost every (t,2) € TN x M has
some («, &)-hyperbolic time.

PROOF. Assume first that the critical set C is nonempty. Thus we are taking
random perturbations of f which satisfy (5.1). Let (t,«) be a point in T8 x M
satisfying (5.12). For large N we have

N-1
> —log|| DS )| 2 eN > 0.
=0

Take 3 > 0 given by Definition 1.1, and fix any p > 8. Then {s2) implies that
[log [[Df(z)7"|| < pllogdist (x,C)| (5.15)

for every x in a neighborhood V of C. Now we take y, > 0 so that M < ¢/2and
let 4; > 0 be small enough to have

N-1

> logdist s, f(), 8) 2 N, (5.16)

7=0
which is possible for large N after condition (5.13). Moreover, fixing H > p|log |
sufficiently large in order that it be also an upper bound for

{-log|Df(z)7"|: s e M\ v},
then the set

E={1<j<N:~log||Df(ff (=)'l > H}

[
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is such that ff“l(:r) €VioraljeE, and
p|logdist (i~ (x).C)| > — log |[DF (=)™ > I = pllogdyl.
This hmplies dist,( ), €) < 8y, and so
dists, (fi 7 (x),€) = dist(f{ " '(&),C) < &, forallje€ £
Hence, defining
. { —log||DF(F @) if ¢ E
S if jekE
we have a; < I for 1 £ j < N, and from (5.15) and (5.16}
—Zlog”Df(fJ " 1|| < pZIlO{,dibt fJ (&) C)I < .
jen i€k

Since y; > 0 has heen chosen so that py < ¢/2 we deduce

N .
i _ . _ c
> aj= Z—]og [ @) = D0 —log || DFUT )| 2 L
J=1 j=1 ’ jeE
This we may apply Lemma 2.11 to the sequence a,,...,an, with ¢, = ¢/4,

¢y = ¢/2, and A = H (we may also assume H > ¢ by increasing 1 if needed).
Thus there are 8, > 0 and &, > N times 1 < g < ... <, < N such that

i i .
j:,ZlH —log “Df( f‘l(:ﬂ))_'” > j;laj > g(qi —n) (5.17)

for every 0 < n < ¢ and 1 € i < l;. We observe that (5.17) is just the first part
of the requirements on (e, §)-hyperbolic times for (¢, ) if « = exp(c/4).
Now we apply again Lemma 2.11, this time to the seqnence

= log distg, ( J'fl(:c) C),

where §; > 0 has been cl:oaen so that for v, > 0 with 72 < B be/4 we have by
(5.13)

Z log dist,sz(_fg(a:),C) > —N.
‘ §=0
Defining ¢y = befd, ¢ = —ya, A =0 and
€y —C1 4y,
92_ A-—'Cl _I_E,
then Lemma 2.11 ensures that there are Iy > N times 1 <y <... <71, < N
satisfying

i . b
S logdists,(f*(2),€) 2 Z(ri—n) (5.18)

F=n+l
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for every 0 < n < r; and 1 <4 < {,. Let us note that the condition on Yo ASSULES
81+6; > 1. Soif @ =6, + 0, — 1, then there must be { = (I, + I, — N) > 4N and
I <ny < ... <y < N for which (5.17) and (5.18) both hold. Thus if we take
& = 4§ and v = exp(—c/4) then we have for 1 < i <land 1 < k < my

I IPf(E) || < of and  dists,(£47%(z),C) = o*. (5.19)

J=ui—k

In the case of a map f with critical set this means that these n; are (e, §)-
hyperbolic times for (¢,4), since we have assumed in (5.1) that in this case the
perturbed maps satisty

Df(x)=Df(x) foreveryze M\CandteT.

Let us now prove also the result in the setting of random perturbations of a
tocal diffeomorphism without assuming (5.1). Actually, taking the perturbations
i in a sufficiently small C"—neighborhood of f, then

1 -1 2 1
1D e(y) ||<\/—|lDf(J) |

for every y € M, which together with (5. 19) gives

ni—1 ni—1
IT 1pssEy "< JI Z=IPsH @) < o
Jj=ni—k J=n;— \/_
This shows that n; is a /c-hyperbolic time for (g, z). O

REMARK 5.21. Similarly to the deterministic case, one easily sees that con-
dition (5.13) is not needed in all its strength in the proof of Proposition 5.20.
Actually, it is enough that (5.13) holds for some sufficlently small v > 0 and
some convenient & > 0.

Observe that the proof of Proposition 5.20 also gives a definite positive frac-
tion of hyperbolic times for 85 x m almost every (¢, ) € T x M. In the present
context of random perturbations of a map we will not make use of the existence
of such a positive frequency.

LEMMA 5.22. Given § > 0 fix §; > 0 so that 46, < 6 and 486, < 6%|log .
Ifn is a (e, d)-hyperbolic time for (§, ), then

IDF )™ < o~ 2D f (77 @)
for any 1 < j < n and any point y in the ball of radius 26,69/? around fg'_j(m).
Proor. Since nis a (o, 8)-hyperbolic time for (£, ) we haveforany1 < j <n
dists( ""(:c),C) > ol
According to the definition of the truncated distance, this means that
dist(f; (), C) = dists(f7 7 (x),C) = o orelse dist(f;" 7 (x),C) > 6.
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In any case, we have for all y in the ball of radius 26,07/ around fi ' J( )

dist(y, £ (@) 2 dist(f; 7 (x),C)/2,
hecause we have chosen & < 1/2 and §; < 5/4 < 1/4. Thercfore condition (s,)
implies
[BIOM dist( ;7 (x), ) 26,0/
log — <B = B T A 581
\DfCf! N (llst(f; J(:1;), )8 inin{ o, 54}

Since § and « are smaller than 1, and we took b8 < 1/2, the terin on the right
hand side is bounded by 2438,67?. Moreover, our second condition on §; means
that this last expression is smaller than log a2, O

PROPOSITION 5.23. There is 8; > O such that if n is (e, 8)-hyperbolic time
for (t,@) € TN x M, then there is a neighborhood V, (¢, ) of x in M such that:

(1) fi maps V. (L, ) diffeomorphicelly onto By, (f](x));

(2) for cucry y, 2 € Vi(t,x) and 1 < E<n

Qs (7= (), £174(2) < o2 dist( () 7 (2))-

Proov. Let 8§ > 0 be given by Lemma 5.22. The proof will be by induction
on j > 1. First we show that there is a well defined branch of f~ ¥ on a ball of
small enough radius around ft (). We observe that Lemma 5.22 gives for j =1

“Df U) 1” < CV—1/2”Df n—1 ( ))—1“ < (l'l"z,

because n is a (o, §)-hyperbolic time for (t x). This means that f is a a2
dilation in the ball of radius 28;a'/? around f"" (x). Consequently there is
somne neighborhood Vi(t,z) of f;*~'(x) inside the ball of radius 28;'/? that is
diffeomorphic to the ball of radius §; around f}*{z) throngh fi, when f is a map
with critical set satisfying {5.1).

For j > 1 let us suppose that we have obtained a neighborhood V(£ 2) of

fi I() such that f, o+ 0 fi,_,,, | Vi{t,z) is a diffeomorphism onto the ball of
radlins g, around f}(x) with
”D-f(ftuvjﬁu 0---0 ft.-—j+1(z)) “ < a_lﬂ”Df( prititl B))_IH (5-2{))

for all z € V;(¢,z) and 0 <4 < 7. Then, by Lemma 5.22 and under the assumption
that 7 is a (e, §)-hyperbolic time for =,

TIPS ssclfn sricn @+ Fuucs @)l

=0

7

|| ANl OV
i=0

(a-1/2)3'+1 Lot = a(j+1)/2

”D(ffvn 0:--0 fﬂu—j(y))_l“

1A

IA

1A
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for every y on the ball of radius 26, 1/2 ground fi"_j'l(a:) whose image f,,_.(y)
is in Vj{¢, z) (ahove we convention Jtacjpici© 00 fo_(y) =y for i = 0).

This shows that the derivative of f, 0. 0 fr._; is 8 a~ Ut/ 2 dilation on the
intersection of f;;! (V;(¢, z)) with the ball of radius 26,202 ayound [,
and hence there is an inverse branch of f,, 0.+ o f, _ ; defined on the ball of radius
4y around f}'(x). Thus we may define V; (¢, z) as the image of the ball of radius
81 around f*(x) under this iuverse branch, and recover the induction hypothesis
for j+ 1. In this way we obtain neighborhoods Vj(t, ) of f;*7(z) as above for
all 1 < j <. ‘ ) O

COROLLARY 5.24. There is « constant Cy > O such that ifn is a (o, d)-
hyperbolic time for (t,z) € TN x M and y,z € V,(t, %), then
1 det D f7(s,
L _lde D) _
Cy 7 |det DfF(z)]

PROOF. For 1 < k < n the distance between ff(z) and either ff(y) or f}(z)
is smaller than o®~#/2 which is smaller than o®"~% < dist(f}(z),C). So, by (ss)
we have

(Lot DAt fi%Mmamdﬁwm
| det Dfi(z)] = |det Dy, (=)

=, |det DF(fHu)
28 [t DI )

n—1 a,(n-k)/Z

< Z 2B abB—ky

k=0

and it is enough to take C) < exp (3072, 2Bali/2-¥8) recalling that b8 < 1/2
and also (5.1). £

IA

4. Stochastic stability

Here we give both necessary conditions and sufficient conditions for the phys-
ical measures of a random perturbation of a non-uniformly expanding map to
accumulate on the SRB measures of that map, when the noise level goes to zero.

DEFINITION 5.25. A C? non-uniformly expanding map f: M — M is said to
be stochastically stable if for any non-degenerate random perturbation {F, (0)es0}
of f the weak* accumulation points (when e > 0 goes to zero) of the physical
meastures are convex linear combinations of the SRB measures of f.

A necessary condition for the stochastic stability of a non-uniformly expanding
map with no critical set will be given below. Let us prove first an auxiliary lemma.
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LeMMa 5.26. Let f: M — M be a stochastically steble non-uniformly ex-
panding map. Given ¢: M — R continuous and § > 0 there is ¢g > 0 such that

for 0 < € < gy we have
/ wdp® — / wdje,

where ji, is a convex lincar combination of the SR measures of f.

<,

Prooy. We will use the following auxiliary result: Let X be ¢ compact metric
space, K C X o closed (compact) subset and (x,)i50 @ curve in X (not necesserily
continuous) such that ell its accumulation points (us t — 0" ) lie in K. Then for
every open neighborhood U of K there is ty > 0 such that 2, € U for every
0 <t <ty Indeed, supposing not, there is a sequence (¢,), with ¢, — 0% when
n — oo such that @, ¢ U. Since X is compact this means that (z;),50 has some
accumnlation point in X \ U, thus outside K, contrary to the assumnption.

Now, the space X = P(M) of the probability measures on M with the weak®
topology is a compact metric space, and the convex hull K of the finitely many
SILB measures of f is closed. Ieuce, considering a curve of pliysical measnres
(11)e»u in P(M), we are in the context of the above result, since we are assuming
f stochastically stable. A metric on P(M) giving the weak” topology is

o0

1
dp{ps, v) = Z g \f P dhjt — f‘P-n dv
1

"=

1

where g, v € P(M) and (i0,,),, is a dense sequence in C'(M, R); sec (0.1).
Take any continuous map w: M — R and any 6 > 0. By the density of (¢,),
in CY(M,R), there must be some & € N such that

)
lle — wello < 3

By the aforementioned auxiliary result, there must be some ¢ > 0 with the
following property: for every 0 < € < € there exists p, € P(M) which is a
convex linear combination of the finitely many SRB measures of f such that
dp(p€, p1e) < 8(3 - 2%)~!. This in particular implies that

| [ i - f dy| < =
o | | orit o dpe| < g
by the definition of the distance dp, and so
. )
Pedp’ — | Prdiic| < 3.
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Hence we get

fwiﬂ‘ —/tpd,ur’ <
< ’ / wdpt — [ Pk d/t"' + ’ f o dpt — f @i At
i 6 4

< -+5+ =9,

+'/sokdm—ffpdus'
37373

which completes the proof of the lemma. 0

The next result shows that non-uniform expansion on random orbits is a
necessary condition for the stochastic stability of a non-uniformly expanding local
diffecmorphisins.

THEOREM 5.27. Let f: M — M be a non-uniformly expanding C* local dif-
feomorphism. If f is stochustically stable, then f is non-uniformly ezpanding on
rundom orbits.

Proor. We know from Theorem 5.12 that there is { > 1 such that for small
€ > () there are pliysical measures g, ... ., y1f with the following property: for each
x € M there is a 8N mod 0 partition T3(x), ..., Ti(x) of TN such that

n—1 '

= lim =3 8y foreach teTi(e),
=1

where the convergence is in the weak® sense. Since f is a local diffeomorphism,
then log [[D f(x)™"] is a continuous map. Thus, we have for each + € M and 6V
almost every t € TV there is some physical measure 5 with 1 <4 <[ such that

n-1

o1 iroay—1 - ¢

Y S log D7 (@) = [logDf@ Meut. ()
4=0

Now it suffices to show that there is ¢ > 0 such that i pf =5 forany 1 <4 <,

then

flog |Df(x)y |du < ~¢ for small € > 0. {5.22)
Let A > 0 be the constant given by the non-uniform expansion of f; cf. Defi-
nition 1.2. Applying Lemma 5.26 to the continuous map ¢(z) = log |2 f(z)~!||

and § = A/2, then we obtain ¢y > 0 such that for each 0 < € < ¢p there is e &
convex linear combination of the SRB measures g, ..., i, for which

[ o105 I ~ [ 105 1D5)Hldu] < 3. (5.23)
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Since jy; is an SRB measure for 1 < ¢ < p, then we have for Lebesgne almost
every © € B(;)
n—

1
1 P
ey = i -~ D FCFHe))! — AL
o105 s = i 2 5t 07 <
J:
Since j¢, is a convex linear combination of jur, ..., 14, then we also have

[ log [| D7 (2)~ [ldjte < A,

which together with (5.23) gives

A
[ gt < -3
Thus we have proved (5.22) for 0 < € < e with ¢ = A/2. 0

The previous result legitimates the assumption of nou-unifori expansion ou
random orbits, if we want to prove the stochastic stability of a non-uniformly
expanding map. Under such assumption Proposition 5.20 allows us to introduce
a map

he: TN M — 2,
by taking h (£, x) the first (e, §}-hyperbolic time for (¢, x) € TN x M. Integrability
properties of ki, will play an important role in the proof of the stochastic stability

of f.

DEFINITION 5.28. Assuine that h, is integrable with respect to the product
measure 68 x m. This means that

oQ
Il = kO x m){(t,2): helt,2) = k} < o0.
k=0
We say that the family (/i )0 has uniform L'-tadl if the series above converges
wniformly, as a series of functions on the variable e.

Assume that f is non-uniformly expanding on random orbits and fix § > 0 and
v > 0 in such a way that the proof of Proposition 5.20 works; recall Remark 5.21.
Choose for 8% x m almost every (t,z) € TN % M a positive integer N = N (¢, )
for which

Ny—1 Ne—1
> log | DF(f ()M € —cNe and Y —logdists(f (2),C) < ¥Ne.
F=0 7=0

Take N, (¢, z) the smallest integer with this property. This allows us to introduce
a map

N:TVNx M —Z* (5.24)
such that i < N, (recall the proof of Proposition 5.20). Thus, the integrability

of the map h, is implied by the integrability of the map N, which can in practice
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be easier to handle. The following lemma. gives a useful criterium for obtaining
the uniform L'-tail for the family of first hyperbolic time maps. This is an
immediate consequence of the considerations above and Weierstrass criterium for
the uniform convergenee of a series of functions.

LEAMMA 5.20. Assume that there is o sequence (@4)n of nonnegative numbers
such that for smalle > 0

o0
m{z € M: N(t,z) > n} <a, and Znu,, < 00
k=1

for 6% almost every t € TN, Then (h), has uniform L!-tail.

Next we present some results heading in the direction of Theorem 5.32, that
gives sufficient conditions for the stochastic stability of a non-unifermly expanding
map. We will prove our results in the context of maps with critical sets; then the
proofs will follow for local diffeomorphisms, since all we use from now on is the
existence of hyperbolic times for random orbits given by Proposition 5.20 and
the properties of those hyperbolic times.

Let f: M — M be a C* non-uniformly expanding map, and asswne that fis
non-uniforinly expanding on randomn orbits and (), has uniform L!-tail. Let ne
be a physical measure of level € for some small € > 0 and define for each n > 1

A= ; Y gt
=53 ey | G- nlBG) a8,

=0
We know from Theorem 5.12 that p€ is the weak* limit of the sequence of prob-
ability measures {3if,),. Define for eacht € T% and n > 1
H,(t) ={z € B(z): nis a (o, §)-hyperbolic time for (¢, z) },
and
Hi(t) = {x € B{p): nis the first (e, §)-hyperbolic time for (¢,z) }.
H\(t) s precisely the set of those points © € B(yf) for which /.(t, ) = n. For
n,k > 1 we also define R, ,(t) as the set of those points £ € M for which n is a
(e, d)-hyperbolic time and n 4 & is the first (¢, 8)-hyperbolic time after n, that is
Rui(t) = {z € H,(8): V(x) € Hy(a"t) },
where o: TN — TP is the shift map o(t1,t3,...) = (t2,%3,...). Considering the
1eASures

vi= [ i (0)de ()

and
oo k—

1 -
=3 f (F49).. (ml R () 467 (2),
1

k=2 j=
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we may write

4 n—1
j, < %Zﬂmw 1),
PROPOSITION 5.30. There is @ constant Cy > 0 ST:L(:JL that
L) m 1 10) s
for cue Ty n >0 and ¢ ¢ TV

PM)OI-‘. “wke §; > 0 given by Proposition 2.3. It is sufficient to prove that
there is some uniform constant €' > 0 such that if A is a Borel set in M- with
diameter smaller than §;/2 then

m(f7H(A) N (¢ )} £ C(A).

Let A he a Borel set in M with diameter smaller than 4,/2 and B an open ball
of radins 4, /2 containing A. We may write

—n U B’”

k=1

where (Bg)rs1 is a (possibly finite) family of two-hy-two disjoint open sets in AL,
Discarding those By that do not intersect I1,(£), we clioose for cach & 2 1 a point
ay € I, (8 N By, For k > 1 let Vi (¢, ) be the neighborhood of 2 in A7 given
by Proposition 2.3. Since B is contained in B(fi{ax), d1}, the ball of radius 4,
aronnd [ (), and fi is a diffeomorphism from V,(t, xr) onto B( bt (), 61), we
must have By C Vi, (¢, ;) (recall that by our choice of By we have }“ (B) C B).
As a consequence of this and Corollary 2.6, we have for every k that the map
I | Be — B is a diffeomorphisin with bounded distortion:

1 < |(Iel'.Df£”(y)| <c
Cy ~ jdet Dfp(2)
for all ¥, z € By. This finally gives

m{f7 (AN H,(8) < Zm(, T"ANB)N By)
A B
< ch SLIBNGEN
g C‘lm( )1
where Cy > 0 is a constant only depending on C, on the volume of the ball B of
radius 4, /2, and on the volume of M. O
1t follows immediately from Proposition 5.30 that
iy < Cy forevery n > 0 and small € > 0. (5.25)

dm
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Our goal now is to control the density of the measures 7y, in order to have the
absolute continuity of the weak® accumulation points of the measures 4 when
€ > 0 goes to zero.

ProprosiTioN 5.31. Given { > 0, there is C3(¢) > 0 such that for every
n 20 ande >0 we may bound 15, by the sum of two non-negative measures,
W <wc 4+ pf, with

tw €
dm

PRroor. Let A be some Borel set in M. We have for each n > 0

S Gsl) and pf(M) < (.

oo k-1

5 = % f m {77 (A) N R p(£))d8%E)
k=2 j=1

S Z / m (7 (F70A) 0 B (0") 1 HL(0) D)

k=2 j=1

1A

oo k-1

> [ m(s7 () n ) a8 ).

k=2 j=1

<

]

(in this last ineqguality we used Proposition 5.30 and the fact that N is o-
invariant). Let now { > 0 be some fixed small number. Since we are assuming
(fec)e with uniform L'-tail, then there is some integer N = N(() for which

Zk/m H(1))doN () <

Jj=N
We take
N-1 k-1
=G 30 3 [ (mltti @) sl
k=2 j=1
and
oo k-1
@ZZ] o (| H}(2)) 6 (2).
k=N j=1
For this last measure we have
oo k-1
(M) =G, Zme (HA (L)) do¥(2) < C; Zk/m Hy (1)) doS(t) <
k=N =!I

On the other hand, it follows from the definition of (@, §)-hyperbolic times that
there is some constant @ = a{N) > 0 such that dist (H,c t),C) Zafor 1<k <N
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Defining K C M as the set of those points in M whose distance to C is greater
than a, we have
N1 k-1
v Gy Y [(DmlK) ),
k=2 j=1°
aned this ast measure has density bounded by some uniform constant, as long as
we take maps f; in a sufliciently small neighborhood of f in the C! topology. T

It follows From Rewark 5.13, Proposition 5.31 and (5.25) that the weak®
accmulation points of ;¢ when ¢ — 0 cannot have singular part, thus being ab-
solutely continnous with respeet to the Lebesgue measure. Morcover, Lemma 5.5
implics that the weak® accumulation points of a family of stationary measnres
are f-invariant measures. Thus we have proved the following result.

THEOREM 5.32. Let f: M — M be u C? non-uniformly cxpanding map. If f
is non-uniformly expanding on random orbits and (h)e has uniform Ll-tail, then
[ is stochastically stable.

Next we show that the local diffeomorphisms of Subsection 1.2.1 and Viana
maps from Subsection 1.2.2 satisfy the hypotheses of Theorem 5.32, thus being
stochastically stable.

4.1. Local diffeomorphisms. Let us show that the non-uniformly expanc-
ing local diffeomorphisms presented in Subsection 1.2.1 are stochastically stable.
Recall that any such f has been obtained through deformation of a nniformly
expanding map by isotopy inside some small region of compact Riemannian man-
ifold M. Cousider a continuous

P T —— CHM,M)
t | ft
where 7' is o metric space, and take a family (8:)e»n of probability measures on

T such that their supports sapp(f,) form a nested family of connected compact
sets and

supp(f.) — {t*} when €0,
where £* € T is such that f,. = f. The construction of f has been made in such
a way that we may assume that there is some small compact domain V C M so

that the restriction of f, to V' is injective for every ¢ € T reducing 7" if necessary
to a small neighborhood of t*. We may assume moreover that for every t € T

(1) f. is volume expanding everywhere: there exists oy > 1 such that
|det Dfy(z)| > oy for every z € M;
(2) f is ezpanding outside V': there exists op > 1 such that
1Df() "t < o0 forevery z € M\ V;
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(3) fi is not too contracting on V' there is some small § > 0 such that
I1Dfi(z) N <1+4 foreveryze V.

Now we are going to show that f is non-uniformly expanding on random orbits.
We begin with an essentially combinatorial lemma. ’

LEMMA 5.33. Let By, ..., By, Byy1 = V be any partition of M into domains
such that f is injective on Bj, for 1 < j <p+1. Then there is ¢ > 0 such that
for 08 x 1w abmost all (t, x) € T x M and lerge enough n > 1

#{0<j<n: fi{z)e BlU...UB,} > (n; (5.26)

Morcover, there are 0 < 7 < 1 and N € N such that for each t € T® the set
1,(t) of points x € M for which (5.26) does not hold satisfies m(I,(t)) < 7" for
n>N.

Proor. Let us fix n > 1 and ¢t € TN, Given a sequence i = (ip,...,in—1) €
{1,...,p+ 1}"* we write
[i] = Biy N (f) T (Ba) -0 (717 NB;, L)

and define g(i) = #{0 < j < n :i; < p}. We start by observing that for ¢ > 0
the number of sequences § such that g(s) < ¢n is bounded by

> ()= ()
k<Cn k<én

Using Stirling’s formula (cf. [BoV, Section 6.3]) the expression on the right hand
side is bounded by e™p, where v > 0 depends only on ¢ and goes to zero when
¢ goes to zero.

On the other hand, asswnptions (a) and (b) on the maps f, ensure that
m([d]) < o=(=9" (recall that we are assuming m(M) = 1). Hence, given t € TV
the measure of the union I, (t) of all the sets [¢] with g{¢) < ¢n is bounded by

o.—(l-—()ue')'anu.
Since ¢ > 1 we may choose { so small that e"p¢ < ¢'=9. Then m(/,(2)) < 7,

with 7 = 7" 1p¢ < 1, for n greater than some N € N. Note that 7 and N do
not depend on ¢ € TM. This proves the second part of the lemma. Setting

L= U ({E} X Iu(z)):
teTN
we have (6F x m)(,) < 7" by Fubini's Theorem, for n > N. Since
3 (0% x m)(1,) < o0,
n=l
then Borel-Cantelli's Lemma implies that
(giq X m) (N1 Upzn I) = 0,
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and this means that 08 x m almost every (t,x) € TN x M satisfies (5.26). a

Let ¢ > 0 be the constant provided by Lemma 5.33 Weftixn >0 sufficiently
small s0 that rrﬁ(l +d)<e™™ holds for some ¢ > U, and take (f,x) € " x M
salisfying (5.26). The asswnptions on fi for L€ T imply

n--1
I R G AR ANE
Gt
for large enough 7. This implies that f is non-uniformly expanding on randon

orbits:
n—1

. 1 Frony—

lnusup—Zlog WDFU ) S -
oo T =0 -

for 0N x m almost all (t,2) € TN % M. Morcover, defining N, as in (5.24), from

the second part of Lemma 5.33 we have

m{:r: c M: NAt,z) > ?L} <7

for n > N and 0% almost every £ € TN Fyom Lemma 5.20 we deduce that the
fnily (k). of first hyperbolic time maps has uniform L'-tail. Thus we have
proved the following result: '

TironaM 5.34. There are open sets U C CP(M, M) such that every f € U is
non-uniformly expanding on random orbits and the Jumily (i) of first hyperbolic
time functions hos unifortn LY -tail.

Ly particular, every feldis stochastically stable, by Theorem 5.32.

4.2. Viana maps. Let f be a Viana map as d‘escribcd in Subscction 1.2.2.
As we Lave seen before, it is no restriction to assume that C = {(s,2) €
gl % {: ¢ = 0} is the critical set of f and we do so. Fix {F,(8.)} & random
perturbation of f for which (5.1) holds. Our goal now is to prove that any such
| satisfics the hypotheses of Theorem 5.32 for € > 0 sufficiently small, and thus
couchide that f is stochastically stable. So, we want to show that if ¢ > 018
guall enongh then

o fis non-uniforinly expanding on random orbits;
o the family of hyperbolic time maps (he)e has uniform L'-tail.

We observe that in the estimates we have obtained in Subsection 1.2.2 for
log dists{z;,C) and log |](Df(s,-,$,-))"‘\[ over the orbit of a given point {s,x) €
S x I, we can easily replace iterates (s5,%;) by random iterates (s, .'L‘D = fg (s, 7).
Actually, the method we used for obtaining estimate (1.8) rely on a delicate
decomposition of the orbit of the point {s,z) from time 0 until time n into finite
pleces according to its returns to the neighborhood S* % (—+/e, /o) of the critical
set. The main tools are [Vi2, Lemma 2.4] and {Vi2, Lemma 2.5] whose proofs
may easily be mimicked for random orbits. Indeed, the important fact in the
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proof of the referred lemmas is that orbits of points in the central direction stay
close to orbits of the quadratic map Q for long periods, as long as « > 0 is taken
sufficiently small. Hence, such results can easily be obtained for random orbits
as long as we take € > 0 with e <« o and perturbation vectors ¢ € supp(d,).

Thus, the procedure of described in Subsection 1.2.2 applies to this situation,
and we are able to prove that there exists some ¢ > 0, and for ¥ > 0 there is
§ > 0 such that

n—1 n—1

Zlog 1Df(s],2)) ™| < ~en and Z—-logdistg(:ci,(f) <n

i=0 e
for (s,2) ¢ Bi(n) U By(n), where By(n) and By(n) are subsets of S! x  with
m(Bi(n)) <e ® and m(By(n)) < const e~V

for some constant £ > 0 only depending on <y. This gives the non-uniform expan-
sion on random orbits. Moreover, defining N, as in (5.24), we have for t € TN

m{(t,z) € TN x M: N,(¢,z) > n} < conste~V*,

thus giving that the family of first hyperbolic time maps has uniform Ll-tail by
Lemma 5.29.

For the sake of completeness let us explain how the Markov partitions P, of
5! can be defined in this case, in order to obtain the estimates on the Lebesgue
measure of B(n) and By(n). We consider M = S' x I and define the skew-
product map

F: TNxM —  TNxM,
(E: z) — (0‘(}2), fil (z))

where  is the left shift map. Writing f,(z) = (9:(2), qe(2)) for z = (s,2) € S x 1,
we have that g,(s, ') is a2 unimodal map close to §for all s € S! and ¢ € supp(6.)
with € > 0 small.

PROPOSITION 5.35. Given t € TN there is o C! foliation F¢ of M such that
if L) is the leaf of Ff through a point z € M, then
(1) Ly(2) is a C* submanifold of M close to a vertical line in the C* topology;
(2) fu(Lu(2)) is contained in Ly,(f,(2)).

ProOF. This will be obtained as a consequence of the fact that the set of
vertical lines constitutes a normally expanding invariant foliation for fo LetH
be the space of continuous maps £ : TN x M — [-1,1] endowed with the sup
norm, and define the map A:H — H by

aﬂfqil(z)g(F(zl z)) — awgh (z)
— s, (Z)f(F(E, Z)) + aa'ﬂh (Z) ,

Af(.t?z)_—“ £=(t1,f2,...)ETN and ze M.
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Note that A is well-defined, since

<1

(d+a+e)+a+e

, IAE(E»’ 2l s —(const v + &)+ {d — v — €)
fur small ¢ > 0 and € > 0. Morcover, A is a contraction on H: given £,{ € H
and {t,z) € TN x M then
|A£(£r Z) - AC(L Z)l

. [detD f, ()] - 1608, 2) = (2, 2)]

T (- 0 (E(F (L 2)) + Bug (2)) - (= Butre, (2)C(F (2, 2)) + Dt (2))]
(d+a+e){d+a+e+a+te) |étz) ~ (L)

(d — consta — €)? )

This last guantity can be made smaller than [£(2, 2) —n(i, 2)|/2, as long as e and
¢ ure chosen sufficiently small, This shows that A is a contraction on the Banach
space H, and so it has a unique fixed point £° € H.

It is no restriction for our purposes if we think of T" as being equal to supp(é,)
for some small €. Note that the map A depends continuously on £ and for ¢ > 0
small enough the fixed point of A is close to the zero constant map. This holds
heeause we are choosing snpp(f,) close to {#*}, fi- = f and f close to f. Then,
for € > 0 small enough, we have £%(¢,-) uniformly close to £5(2*,-} and it is not
hard to chieck that & = £°(t*, -) is precisely the map whose integral leaves of the
vector field (€5, 1) give the invariant foliation F¢ associated to fi. = f. Since this
folintion depends continuously on the dynamics and for f = f we have §f = 0
(see [Vi2, Scction 2.5]), we finally deduce that £9(¢,-) is uniformly close to zero
for small € > 0.

We have defined A in such a way that if we take £°(, 2) = span{{€“(t, z), 1)},
then for every t € TN and z € St x [

Dfy(2)E*(t, 2) € B(F(t,2)). (5.27)

Now, for fixed t € TV, we take F{ to be the set of integral curves of the vector
field z — (£°(¢,2),1) defined on S! x I. Since the vector field is taken of class
C", it does not follow immediately that throngh each point in S! x-I passes only
oune integral curve. We will prove uniqueness of solutions by using the fact that
the map f has a big expansion in the horizontal direction.

Assume, by contradiction, that there are two distinct integral curves Y, Z €
F7 with a common point. So we may take three distinet nearby points zg, 2, 22 €
S'xIsuchthat 2 € YNZ, 2 €Y, 23 € Z and 2, 2, have the same z-coordinate.
Let X be the horizontal curve joining z; to z3. If we consider X,, = mp0 F(t, X)
for n > 1, where 7o is the projection from TN x S! x I onto S* x I, we have that
the curves X,, are nearly horizontal and grow in the horizontal direction (when n
increases) by a factor close to d for small & and ¢, see [Vi2, Section 2.1]. Hence,
for large n, X,, wraps many times around the cylinder §! x I. On the other hand,
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since ¥, = mo F*(t,Y) and Z,, = my 0 f™ (£, Z) are always tangent to the vector
field 2 — (£5(0™t, 2), 1) on 8*x I, it follows that all the iterates of Y, and Z, have
small amplitude in the s-direction. This gives a contradiction, since the closed
curve made by Y, Z and X is homotopic to zero in S! x I and the closed curve
made by ¥, Z, and X,, cannot be homotopic to zero for large n. Thus, for fixed
t € T we have uniqueness of solutions of the vector field 2 — (6L, 2),1), and
from (5.27) it follows that F¢ is an F-invariant foliation of M by nearly vertical
leaves. O

Now, using the foliations given by the previous proposition we are able to
define the Markov partitions of $! also in this setting. Given any smooth map
X : 8" — I whose graph is nearly horizontal, denote Xi‘(s) = fi (s, X (s)) for
n > 0and s € §'. Take some leaf L? of the foliation Fi. Letting L} = f*(Ly)
for n > 1, we define the sequence of Markov partitions (7.1")” of §! as )

Py = {[s', s"): (s',¢") is a connected component of ()?;‘)‘1((31 x 1) \LE‘)} .
It is easy to check that ‘P;'+l refines Py for each n > 1 and, taking ¢ < o,

(d + const @)™ < |wf < (d — const )™

for each w € Pp'. This permits to obtain estimates (1.7) and (1.9) for the Lebesgue
measure of the sets B,(n) and By(n) exactly in the:same way as in Subsec-
tion 1.2.2, also with the constants only depending on the quadratic map @ (cf.
Remark 1.11). Thus we have proved the following result:

‘THEOREM 5.36. Viena maps are non-uniformly expending on random orbits
and the family (he). of first hyperbolic time functions has uniform L'-tail.

In particular, Viana maps are stochastically stable, by Theorem 5.32,







APPENDIX A

Functions of bounded variation -

In this appendix we introduce the notion of variation for fanctions defined on
higher dimensional spaces, and we present some results in this subject. The def-
inition we present here corresponds to a generalization of the classical definition
of bounded variation for functions defined in one-dimensional spaces. Recall that
the usual definition in dimension one uses the fact that R is well-ordered and so
It cannot be immediately generalized.

DEFINITION A.l. Let ¢ € LYR%) have compact support. We define the
variation of v as

var(y) = sup {f wdiv(y)dmy : 3 € CHRY, RY and llle < 1} ,
R

where Cj{RY,R") is the set of C! maps with compact support from R to R,
I o is the sup norn in GL(R, RY), and div(®) denotes the divergence of 1.

It is not hard to check that if : RY — R js a ¢ function, then

var(p) = f 1Dg] dm,

(see i.g. [Gi, Example 1.2]). We define the space of bounded variation functions
on R

BV(RY) = {p € L}{R%): var(p) < +oo}.
Next we present some of the most important results on functions of bounded vari-
ation. For a complete and general exposition in this subject we recommend [Gi]
or [EG]. Also [GB8Y] and [AV] contain some results on functions of bounded
variation that are useful for us.

. ProrosiTion A.2. If (g)s is @ sequence of functions in BV (R?) converging
to p € L'(R?).in the L' norm, then var(y) < liminfy, var(y,).

PROOF. See [Gi, Theorem 1.9). 0

The next proposition gives some kind of density of the C™ functions in the
space of functions of bounded variation. It can be shown that B V(R¥) is a Banach
space with the norm

lellsv = llell + var(e).
However the proposition does not say that C™ functions are dense in BV (RY)
with the norm above.

117
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ProOPOSITION A3, Given ¢ € BV(RY), there is a sequence (p,), of C®
meaps such thet

lim /|zp— wldim =0 and lim /HDL,O,,Hrlm = var(ip).
"—'w. Ll S e v]

Proor. See {Gi, Theorem 1.17]. a

Another important result in this subject is the following compactness result.

PropOsITION Ad. If (pi)e is @ sequence of functions in BV (RY) such that
there is a constent Iy > 0 for which

var{y,) < Ky and /|gpk|tlm < Ky for cvery k,

then there is o subscquence of (pp)e converging in the L'-norm to some @y with
var{ipy) < K.

Proor. See {Gi, Theorem 1.19]. O

I higher dimensions a function of bounded variation need not be bounded;
see [GBY2). The result below gives in particular that BV(RY) < LP(RY) for
p=d/(d-1).

PRrorosITioN A5, Let ¢ € BV(RY) and teke p=d/(d - 1). Then

I, < K var(e),

where I > 0 is a constant depending only on d.

Proor. Sce [Gi, Theorem 1.28). O

I the next two lemmas we nse my—, for the Lebesgie measure induced on
(d — D-dimensional submanifolds of R%.

LEMMA A.6. Let S C RY be a closed domain with piccewise smooth (d — 1)-
dimensional boundary and take p € L*(RY). Assume that ¢ is equal to 0 in R*\ S,
continuous in S and C in int(S). Then

var(p) = f (s) | Deo||darey + fd Sltpldm,,_l.
int i

Proor. See [Gi, Remark 2.14]. a

LEMMA A7, Let S C RY be a closed domain with piecewise smooth (d — 1)-
dimensional boundary of cluss G, Assume that 85 has a tubular neighborhood of
size p > 0 inside S, and the C? components of the boundary of § meet at angles
greater than aresin(8) > 0. If p: S — R is CY, then

1/1
/ wdmy_y < = (— [ wdmy -+ f IIlelfim,x).
s B\pJs s

Proor. See [GB89, Lemma 3]. a
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We finally present the last result we need in this subject.

LEMMA A8. There is Ky = Ky(d) > 0 such that, for any ¢ € BV(RY) and
any C' embedding f: D — RY of a compact domain D C RY,

f @ o f ~ wldm < K| f ~ id | var(i).
D
. PrROOF. See [AV, Lemma 3.1].







APPENDIX B
Markov towers

In this appendix we present some results from [Yo98] which are used in these
notes. We start with a set Ag, a measure myg defined in some c-algebra By of Ag
such that mg(Ag) < oo, and an integrable function R : Ay — N. Using R we
introduce a partition {Ag;} iz1 of Ay by

Aoy =R7Y(i) for each i > 1.

We define ; = R | Ag; and assume that that ged{R;} = 1. We also assume that
there is a function F': Ag — A, satisfying some properties that we will explicit
below. Before that, we introduce s : Ag x Ag — Ny, called the separation time
function, given by "
s{w,y) = min {n > 0: F"(x) and F"(y) lie in distinct Ap,}.

We assume that this function is well-defined myg almost everywhere on Ag, and
the following conditions hold:

(1) Markov: Fla,, : Ag; ~ Ag is a bijection.

(2) Regularity: F has a Jacobian JF with respect to My, Le.

mo(F(B)) = / JFdmy, forall B € B,
B

which is positive g almost everywhere.
(3) Bounded distortion: there are G > 0 and 0 < B8 < 1 such that for all
t 2 1and all z,y € Ap; we have
IJF(:L')
JE(y)
We introduce a set A, called a Markow tower,
A={{z,n):z€Ajand 0<n < R(z)},
and a map T': A — A, called a tower map, given by
rem = { (G0 niiShe
We have by construction 77)(z,0) = (F(2),0). From here on we make no

distinction between Ag x {0} and Ag. We call A, = An {n = £} the £ level of
the tower, and define

— 1| € CHHFEEFED, (B.1)

Agli =A;/N {:E & /—\U,i}:
121
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50 that Ap,.y is preciscly the last level of the tower above Aq;. We introduce 8
the o-algebra on A such that B|A,, is formed by sets of the type {£} x By with
By € BylAg,. Finally we nse 77 to push the measure myq to the upper levels of
the tower. Thus, we oltain a measure m on B such that m|Ae,; = T,(m|Ag;)
for € < 12, — 1, and midy = my.

It will be convenient to have the separation time function s defined in A. This
may be done by taking (e, v} = s(&’,9/) if & and y lie in a same Ay, where 2,y
are the corresponding clements of Ag;, and s{x,y) = 0 otherwise.

Now we introduce soie spaces of functions. Letting & < 1 be as in (13.1) we
define

Hy = {(p (A R| 3C > 0such that |p(x) — @(y)| < CHEY Vi, y e A}
’HI',' = {(p € Hg | 3C > 0 such that on cach Ay, either p =0, or

plx)
w(y)

The following resnlt gives the existence of an equilibrium probability measure for
the tower map, aud gives its basic properties.

p >0 and

- l| <O ey € Ai.i}

TuroreM B.1. If R is integrable with respect to my, then
(1) T has en invarient probability measure v which is equivalent to m;
(2) dvfdm belongs to 'H[', and ts bounded from below by some ¢ > 0;
{3) (T, ) is cxact end, hence ergodic end mizing.

PrOOF. See [Yo099, Theorem 1]. 0

We are interested in studying the correlation decay of the random variables
{peT™: n > 0} where @: A — R is an observable and the underlying space is
(A, ). Recall that the correlation function is defined as

/ (po T Mpdr — / pdy / Wy

for observables ¢, 4 and n > 0.

Cu(‘P-» "»b) =

TneoreM B.2. Assume that p € L™(m) and ¢ € Hy. Then we hove:
(1) if m{R > n} = O(n™") for some v > 1, then Cy(p,¢) = O(n~11);
(2) if in{R > n} = O0) for some 0 < 0 < 1, then there is 0 < 6 < 1 such
that C,(p, 1) = 0(6").i

ProoF. See [Yo98, Theorem 2 & Theorem 3). D

It is also possible to obtain conditions for the validity of the Central Limit
Theorem, which states that the probability of a given deviation of the average
values of an observable along an orbit from the asymptotic average is essentially
given by g Normal Distribution.

i
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THEOREM B.3. Assume that m{R > n} = O(n~") for some v > 2, and take
¥ € Cy with [odv = 0. Then there ezists ¢ > 0 such that for every interval
ICR,

1 &7 1 -
reX:—=)>» I —f dL)EI fe_”2"dt
u{ ﬁ;n(so(f(r)) oy }“’g =/
if and only if o # o f ~ 4 for any .
PROOF. Sce [Y098, Theorem 4).
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