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Preface

Simulating a spatial point process is not an easy task except for the Poisson
point process. Usually Monte Carlo Markov Chain methods have been used
to generate samples from spatial point processes, for a detailed review see
Mgller (1999). One of the most common approaches is to ideﬁtify the point
process as the invariant measure of a spatial birth and death chain and run
the corresponding chain for a long time until the distribution of the chain
is close to equilibrium, see Kelly and Ripley (1976), Preston (1977), Mgller
(1989), Baddeley and Mgller (1989), Clifford and Nicholls (1994) for exam-
ples. The problem here is to assess how long the chain should run in order
to achieve the desired approximation. In finite state Markov chains, this is
related to mixing times and cut-off phenomena [see, Aldous and Fill (1999)).
For spatial point processes, the state space is uncountable and usually these
techniques cannot be applied.

However, after the pioneer work of Propp and Wilson {1996) we can
reach a much more ambitious goal: to simulate perfectly from the invariant
distribution. In the last few years there have been an enormous amount of
papers written on the subject ranging from suggestions of practical (and not
so practical) methods of achieving such goal to applications of such methods
to specific problems. This work presents a review of some of the schemes used
to perfect sample from spatial processes. As examples, the area-interaction
point process, Strauss process, penetrable sphere model, Peierls contours
of the Ising model and continuous loss networks are studied under three
proposed algorithms in the literature.
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The outline of this book is as follows. Chapter 1 describes several point
processes of interest beginning with the Poisson process which will be the
basis for all of the other processes studied. Chapter 2 describes a graphieal
construction for the birth-and-death processes with desired invariant measure
that can be used as a theoretical tool to prove probabilistic properties and
also used as a basis for a simulation scheme. Chapter 3 describes three meth-
ods for simulating point processes, applying them to the processes described
in Chapter 1.

At this point I would like to point out that this text do not intend to
be an exhaustive account of the perfect simulation schemes applied to all
possible spatial point processes. The objective of this work is to intro-
duce the subject and fo give a flavor of the techmiques and some nice ex-
amples of applications. An interested reader should check periodically the
site http://www.dimacs.rutgers.edu/~dbwilson/exact where one can find an
enormous amount of information related to perfect simulation.

My knowledge about the subject was constructed by many interesting and
enlightening discussions with several colleagues and coauthors. In particular,
Tom Kurtz introduced me to the world of spatial point processes that can
be obtained from Poisson point processes. To work with Pablo Ferrari and
Roberto Ferndndez during the last few years have been a privilege and I have
learned with them a great amount of things, one among many was perfect
simulation. Of course, they are the ones to blame for any errors in these
notes!

I would like to thank the organizers of the 230. Coléquio Brasileiro de
Matemadtica for the opportunity to teach this course and the Statistics De-
partment of University of California - Berkeley for the hospitality, these notes
are based on a series of invited lectures given there when I was a visiting
scholar. My thanks to Nevena Mari¢ who wrote the Matlab programs used
for the pictures of the simulation procedure and to Laura Rameos for reading
a preliminary version of the notes.
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Chapter 1

Point processes

1.1 A little bit of history

The origins of the theory of point processes are certainly ancient, since way
back in the past man have been counting stars in regions of the sky, recording
natural events such as floodings, earthquakes and appearances of comets. In
more recent times, point processes have been used in life tables, counting
problems, particle physics, population processes, communication engineering,
etc.

The theory of point processes, probably had its beginning with the study
of intervals between occurrences of events. In particular, the renewal pro-
cesses can be viewed as the study of sequences of intervals between successive
changes of components subject to failures that are substituted for new ones
as soon as a failure occurs. This subject was broadly studied in the 30’s and
reached its peak with the work of Feller, Smith among others in the period
following the Second World War. However, its origin can be seen in early
periods in demography problems, insurance and mortality tables. The first
life table appeared in the work of John Graunt Observations on the London
Bills of Mortality in 1662. This work is considered a mark in statistics his-
tory, notice that the exchange of letters between Pascal and Fermat occurred

1



2 CHAPTER 1. POINT PROCESSES

in 1654 and was published in 1679. Several authors studied these problems
related to what is known today as survival analysis, among them, A. de
Moivre, Laplace, Euler, R.C. Ellis. In this century, at least three big areas
of application were developed:

¢ queuing theory, more specifically telecommunications problems (Erlang
(1909) derived the Poisson distribution for the number of calls in 3 fixed
interval of time);

e Actuarial science using differential and integral equations for popula-
tional growth; and

+ Reliability.

A basic approach for spatial point processes that can be generalized to
higher dimensional spaces is the counting of number of events intervals or
regions. An important mark is the work of Poisson (n.d.} that includes
the derivation of the Poisson distribution as a binomial limit. The first
discussions about counting processes would be Seidel (1876) and Abbé (1879)
that deal with the occurrence of thunderstorms and the number of blood cells,
respectively, apparently independent of the work of Poisson. Erlang (1909)
derived the Poisson distribution for the number of calls in a fixed interval of
time. Bateman (1910), a mathematical consultant in the work of Rutherford
and Geiger in the counting of « particles, obtained the Poisson distribution
as the solution of the system of differential equations:

2f) = =) +pai(t), (n21)
po(t) = —=Apo(t).

These equations represent the formulation of the problem in terms of pure
birth process and they were the first step in the quick development of the
theory of birth and death processes in the following two decades (specially,
McKendrick (1914), McKendrick (1926) and Yule (1924)). These works pre-
ceded the general formulations of birth and death processes as Markov pro-
cesses in the 30's.
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Non-Poissonian models appeared in ecology and other fields where the
dispersion is bigger than the mean. Another important contribution in this
field was made by Neyman (1939) when studying the distribution of beetle
larvae in space considering the distance they appeared from the nest. Sev-
eral articles developed this theme that also appeared in astronomy problems.

Another area of application of spatial point processes is particle systems
and communication engineering. During and after the Second World War
there was an explosive growth in theory and applications of stochastic pro-
cesses. New applications were introduced and existing fields were explored
in depth. Moreover, a great development in the theory was used in order to
unify basic concepts. In queuing theory, C. Palm (1943) studied fluctuations
in the intensity in traffic theory (general arrival flow to telecommunications
systems). In his work there is a systematic description of the properties of
renewal processes, for instance, the use of the Poisson process as the arrival
process in a service station. His notion of regeneration point gave rise to
several amazing applications. In Palm’s terminology, the Poisson process is
characterized as the only process where all points are regeneration points.
Also, he conjectured and partially proved that the superposition of a large
number of sparse renewal processes, in the limit, converges to a Poisson
process. In his work, the term point processes was used for the first time.
Khinchin (1955) gave a complete and more rigorous proof of Palm’s results
and extended them in several directions. This work initiated the develop-
ment of this theory by Russian and east-European probabilists. During this
time there was a great leap in the development of theoretical physics and the
study of probability was a favorite in the Russian schoal.

The theory of weak convergence to measures in metric spaces by Pro-
horov (1956) and others preceed the study of general random measures that
is the current view in the study of point processes. A point process models
the random distribution of indistinguishable points in some space, for con-
creteness we take this space to be R? or Z¢. We identify a point process IV
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with the counting measure NV given by assigning unit mass to each point,
that is, N(A) is the number of points in a set A. With this identification
in mind, consider A'(R?) be the set of counting measures on R, The latter
assumption implies that such a process N is determined by the probability
distribution of the random variables N(A) = number of points in A € B(R?),
the bounded subsets of R?. This section is a very short summary of a much
more general general discussion given in Daley and Vere-Jones (1988). From
now on, unless noted, we are going to consider only orderly processes, that
is, processes that have at most one point per site.

1.2 Poisson point processes

The Poisson point process is one of the most popular models for counting
problems. Besides being a good description of many natural phenomena, it is
very simple from the computational point of view. Furthermore, or perhaps
relatedly, it is used as a reference measure to define other types of processes.
Its general definition is as follows.

Definition 1.2.1 Let v be a Radon measure on R®. A point process N, on
R? is a Poisson process with mean measure v if its state space is N = {N €
{0,1}* : N(z) = 1 for only a countable number of T € R?}, and defining
N.(4) = [, N, (dz),

(i) For any disjoint Ay, As,..., Ay € B(R?) the random variables N, (A,),
Ny(4z),..., N,(Ax) are independent, and

(ii) For each A € B(R®) and k > 0

e~ A y(A)F

BIN.(A) = k] =

(1.2.2)

We can think the process N, either as a random counting measure N, =
25, Or as the random set of points N, = {z € R® : N,(z) = 1} =
{&,&,-. .}
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A k-homogeneous Poisson process is a process with v = KMy, where K is
a constant and my the Lebesgue measure on RY.

Algorithm 1.2.3 The simulation of o &-homogeneous Poisson process is
simple:

e For each finite window W, generate R ~ Poisson(mmd(W));

e Given R =r generate Uy, ..., U, independently distributed according to
the the uniform distribution in W.

o Repeat independently for disjoint windows.

Poisson processes have the “lack of memory” property. In particular, a
Poisson process NV conditional on n points of N being sited at Z1,T9,...,%n
has the properties of N + (¢, z,,..z.}. Thus, for all purposes the process
“forgets” where it had the n points and behaves as it were N with the n
points adjoined. The notion of conditioning in this case is not straightforward
since the the event “having a point at z” has probability zero, either we
may condition on a formal way in terms of Palm probabilities and Palm
distributions (see Karr (1986}, section 1.7 or Daley and Vere-Jones (1988),
section 12.1) or we may make direct use of (i), for example Garcia (1995)
showed

Proposition 1.2.4 Let N be a Poisson process on R® with mean measure
p Letc:R* — [0,00), p: R X R = R and ¢ : [0,00) — [0,00) be Borel
measurable functions. Then

(| c@( [, pla, )N (ds))N(a2)] =
= | cmiptot) + | ol N (e

—{z

More general Poisson processes in which » is absolutely continuous with
respect to the Lebesgue measure in R* with density w, can be simulated
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using the projection method introduced by Kurtz (1989) and described by
Garcia (1995). Consider the set

Cp = {(:c,s);z: eERY,seR0<s< w(m)} , (1.2.5)

and the Poisson process Ny,,,, on R+ with Lebesgue mean measure mg,;.
Then the process N, on R? defined by

Nu(A) = Ny, (Co N (A X B)) (1.2.6)

is Poisson with mean ». In words, it is enough to simulate Ny,,,, as above,
and then take the points that lie in C,, and project them onto RY. More
generally, this scheme can be used for Poisson processes whose measure v

has the form

W(A) = mag (c N (A x R)) (1.2.7)

for some C € R4+,

Doubly stochastic point processes or Cox processes If u is a random
Radon-measure on R? independent of N, such that

u(B) =fw(9;) dz.
B
then, denoting N, the process (1.2.6),
E[N, (A)] = u(A).

That is, conditional on p, N, is a Poisson process with mean measure p.

Finite total rate. For future purposes we consider the case v(R? xRt) < oo;
we interpret the last coordinate as time. One can compute the distribution of
the {not necessarily finite) time 77, the smaller time-coordinate of the points
(if any) of the process. Indeed, calling N the point Poisson process with rate
v,for 0 <t < oo,

P(r, > 1) = P(N(R? x [0,1)) = 0) = exp(—v(R¢ x [0,8))) .  (1.2.8)



1.3. MARKED POISSON PROCESSES 7

In the case of one-dimensional processes (d = 0) the above reads

P(r, > 1) = B(N([0,)) =0) = exp(~[0,%)). (1.2.9)

1.3 Marked Poisson processes

Sometimes it is convenient to allow each point of the process to have a mark
belonging to a set AM. That is, a marked point process is a point process M
on R? x M such that the marginal process of locations M (- x M) is a point
process on R?,

Notice that not all point processes on a product space are marked point
processes, for example a x-homogeneous Poisson process on R? cannot be
represented as a marked point process on R x R.

An important example is the completely independent marked point pro-
cess. Let N be a marked point process on R x M with the property that
the n random variables of the set

{N(4; x B;) : bounded A; € Bge,B; € By, i=1,2,...,n} (1.3.1)

are mutually independent whenever A; are disjoint. It is easy to see Daley
and Vere-Jones (1988) that a marked point process with the complete inde-
pendence property is fully specified by two components:
(i) a Poisson process of locations N(- x M); and
(ii) a family of probability distributions {P(: | z},z € R?} giving the distri-
bution of the mark in M.

A very important example of a completely independent marked point
process is the so called Boolean model. Let N be a x-homogeneous Poisson
point process in k%, represent it by the location of its points as

N= {fl,fg, .. } (132)

Let 51, 5,, ... be a collection of independent Bge-valued random variables.
That is, S; is a random Borel set on R? and construct the marked point
process

M = {(61, S]_), (Eg, 52), . } (133)
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or Tepresent it as a coverage process Hall (1988) on R? given by
C={&+5;,1=1,2,...} (1.3.4)

where £ + S = {£ + z;z € S}. Boolean models have the property that the
number of sets C € C that cover a fixed point z € R? is a Poisson random
variable with mean xE(vol(S)).

Poisson Cluster Processes When dealing with processes that can have
more than one occurrence per site, sometimes we can work with a baseline
orderly process and a marks that indicate how many occurrences at this
site. For example, Neyman (1939) introduced a Poisson cluster process to
model particle counts in entomology and bacteriology. This model was later
applied to cosmology by Nyeman and Scott (n.d.) and it is also known as
the Neyman-Scott process:

1. Locations are realizations of an inhomogeneous Poisson point process
with mean measure p; :

9. To each location z associate independent and identically distributed
random variables K, according to a discrete probability distribution;

3. The distribution of the new K, particles around the original loca-
tion z are independent and identically distributed according to a d-
dimensional density function f;

4. Superimpose the location of the new particles erasing the original lo-
cations.

Notice that this description gives an algorithm to simulate Neyman-Scott
processes.

1.4 Interacting spatial processes

The independence property characterizes the Poisson process. Most of the
applications deal with point processes having interaction between points. In
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this work, we are going to consider a particular case, point processes with
probability law (restricted to a finite box A C R?) which are absolutely
continuous with respect to the probability law of a homogeneous Poisson
point process. In fact, if we call ¢} the law of the unit-homogeneous Poisson
process, their distribution is characterized by the Radon-Nikodym derivative
( or Gibbs measure)} given by

1
pa(dN) = ZE"H(N M} (dN) (1.4.1)

where H (N, A} is the energy function, Z, is a normalizing constant.

The Radon-Nikodym derivative can be thought as a measure of how much
more likely are the configuration NV in this process than in the Poisson pro-
cess. That is, the set of possible configurations are the same for the interact-
ing process and the Poisson process. However, their likelihood changes and
the RN derivative measures this likelihood.

Questions of interest in the study of these processes are about the exis-
tence of limits of these measures as A — R?. That is, is there a well-defined
counting measure g such that gy — p¢? In what sense? How rapidly? How
to simulate from these infinite-volume measures?

1.4.1 Area-interaction point processes

In these processes, introduced by Baddeley and van Lieshout (1995), each
point (=germ) has associated a grain formed by a copy of a fixed compact
(and usually convex) set G C R?%. The intersections of these grains determine
a weight that corrects the otherwise Poissonian distribution of the germs. In
this case, the Gibbs measure {1.4.1) is given by
KNA) g=ma(NOG)

ZA(K: ‘;b)

where k and ¢ are positive parameters, Z(k, ¢} is a normalizing constant
and N @ G is the coverage process given by

NeG = |J{z+6}. | (1.4.3)

TEN

#a(dN) =

ud(dN) , (1.4.2)



10 CHAPTER 1. POINT PROCESSES

Note that when N is Poisson process, this coverage process is a Boolean
model. Hence the area-interacting process defined by (1.4.2) can be thought
as a “weighted Boolean model” with weights depending exponentially on the
area of the covered region.

The parameter ¢ controls the area-interaction between the points of N:
the process is aftractive if ¢ > 1 and repulsive otherwise. If ¢ = 1 the
process is just the (unweighted) Boolean model with grain G and Poissonian
rate k. The case ¢ > 1 is related to the penetrable sphere model introduced
by Widow and Rowlinson (1970} and described in Section 1.4.3. The case of
area-exclusion corresponds to a suitable limit ¢ — 0.

Baddeley and van Lieshout (1995) established basic existence and exten-
sion properties. For dimensions d > 2 and ¢ sufficiently small there is a
phase transition (Lebowitz and Gallavotti, 1971; Ruelle, 1971), in the sense
that limits of bounded-window distributions lead to several infinite-volume
measures, depending on the boundary conditions chosen. Purely probabilis-
tic literature focus rather on free boundary condiﬁons, in which case there
is a unique, well defined infinite-volume process.

1.4.2 Strauss Processes

A related process to the area-interaction point is the so-called Strauss process.
In this case, the unit Poisson process is weighted according to an exponential
of the number of pairs of points closer than a fixed threshold 7. In this case,
the Gibbs measure (1.4.1) is defined by

1
pa(dN} = —Z:eﬁlN(AHﬁﬁS(N-A) 12 (dN) (1.4.4)

where S(N, A) is the number of unordered pairs such that |jz; — z;] < 7.
The case f, > 0 was introduced by Strauss (1975) to model the clustering

of Californian red wood seedlings around older stumps, however in this case
(1.4.4) is not integrable, see Kelly and Ripley (1976).



1.4. INTERACTING SPATIAL PROCESSES 11

1.4.3 Penetrable spheres mixture model

The penetrable sphere model was introduced by Widow and Rowlinson (1870)
to study liquid-vapor phase transitions. It is a point process with two types
of points, therefore it can be seen as a bi-dimensional point process (N, M )
in the product space A x A which is absolutely continuous with respect to
the product of two independent unit Poisson processes and Radon-Nikodym
derivative given by

- 1
Pa(dN, dM) = B8 D iamanys ry (1 % )(@N,dM)  (1.45)

where d(N, M) = min{d(z,y);z € N,y € M} is the shortest distance be-
tween a point of N and M. That is, in this model points of different type
cannot be at a distance shorter than R.

Marginal and conditional distributions:

It is easy to see that the conditional distribution of N given M is a
homogeneous Poisson process with intensity f; on A\ (M ® G). Where G is
a sphere of radius R. Similarly, the conditional distribution of M given N is
a homogeneous Poisson process with intensity 8, on A\ (N & G).

The marginal distribution of NV is an area-interaction point process with
k = B, and ¢ = e®2. Similarly, the marginal distribution of M is an area-
interaction point process with x = 8, and ¢ = ef1.

1.4.4 Simulation procedures

The measures defined by (1.4.2), (1.4.4) and (1.4.5) cannot be simulated so
easily as in the Poissonian case. On the one hand, disjoint regions are no
longer independent, due to the coverage, and, on the other hand, the normal-
izations Zw are difficult to estimate. The usual approach is to obtain them as
the invariant measure of a spatial birth-and-death process as discussed below
(Section 2). Whereas for the measure defined by (1.4.5) we can use the fact
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that the conditional distributions are homogeneous Poisson processes which
are easy to simulate.

1.5 Statistical mechanics models

Spin systems, on a finite set A C Z¢ model random configurations o €
{—1,41}A. We can identify ¢ with a point process on A viewing

o(B) =Y _ Yoli) =1}.
i€B
A Gibbs measure in this case, is the distribution of the system in equi-
librium

1
pualo) = Z—Ae-f“""‘)/k“" (1.5.1)

where H(o, A) is the energy function, T is the absolute temperature and &
is the Boltzmann constant. Usually, 8 = 1/kT is used in (1.5.1).

We can partially order the set of configurations by declaring ¢ < 7 when-
ever o(i} < 7(¢) for alli € A and we say that p, is attractive if the conditional
probability of ¢ (¢) = +1 is an increasing function of ¢(7) for j # i. Formally,
fix i € V given o € {-+1,~1}V and define ¢%’ and o as

M= T 17"
o(f), j#i

We say that u, is monotone if

pa(e®) > pa(r)

un(e®) T ua(r)

or, equivalently,
pa(eDuar) 2 ualoP)ua ()
for all configurations c < 7 and alli € V.

There are several dynamics that have pa as their invariant measure, for
monotone measures one of the most used is the heat-bath algorithm, which is a
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procedure that visits all sites (deterministically or randomly that guarantees
an infinite number of visits per site almost surely) and updates the value
at site 7 according to the conditional probability for us. For example, the
uniformly random heat-bath algorithm can be update at time n as

o, U < pa(08)/ (ualof™) + (o)),
oA, U 2 (o) (ua(od) + a(087),

(1.5.2)
where {U,,n > 1} are independently and identically distributed U(0, 1) ran-
dom variables, {V,,n > 1} are independently and identically distributed
U{A} and o is the configuration at time n — 1.

¢(0': U, Vn) =

1.5.1 Low-temperature Ising model

The Ising model is a particular case of spin systems where

H(o,A)y ==Y ayo()o(j) — > Bio(i) (1.5.3)

i<jeA ieA

where B; is the strength of the external field at site ¢ and oy; models the
interaction strength between sites 7 and j. We are going to concentrate in
the case where there is no external field (B; = 0 for all £) and o;; = 1 if { and
J are neighbors, that is |- j| = 1 and ay; = 0 otherwise, for a more complete
discussion see Liggett (1985). In this case, a very important question is about
existence of phase transition.
It is immediate to see that when A is finite the Gibbs measure (state)
given by
palo) = ie"ﬁ 2ijeA limjl=1 0(i}o () (1_5_4)
Zp
where § is (up to constant) the inverse of the temperature, is well defined.
However, when we want to consider the Ising model on a countable space S,
we cannot apply (1.5.4) directly with A replaced by S. In this case, the Gibbs
state is defined for configurations on finite subsets A C S and then pass to
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the limit. Formally, let A C S be a finite set, A° = S\ A and ¢ € {-1,+1}4°,
Let pa e be the probability measure on {—1,+1}* given by

pag(0) = —exp{—ﬁ{ > cei+ Y c@E})

bieA li-gl=1 A jeAe Ji-ji=1
(1.5.5)

where again Z4 ¢ is a normalizing constant. In this case, pp¢ is called the
Gibbs state with boundary condition £ (which can depend on A). Let

G = {p; u is a weak limit of ps ¢ for any A — S and boundary conditions £}.
(1.5.6)
Notice that definition (1.5.6) only makes sense if all z5 are defined in the
same probability space, but this can be accomplished by extending the pa ¢
to measures in the full space {—1,+1}® in the natural way, namely acting as
the delta measure on £ for events outside A.

Definition 1.5.7 We say that the model ezhibils a phase transition if G
contains more than one element.

Let pp+ and pp — be defined by (1.5.5) with £ = +1 and £ = —1 respec-
tively. It can be proved that

(1) p4+ = Hma s pa4 and po = Hmy g pa — exist;

(ii) phase transition occurs if, and only if, u, # p_;

(iii) phase transition does not occur if, and only if, for all z € S
pi{o;o(z) = +1} = p{o;0(z) = +1} (1.5.8)

(iv) forallz € S,

pi{o;o(z) = +1} + p_{o;o(z) = +1} = 1. (1.5.9)

For the case, S = Z% d > 2, there is phase transition for 8 sufficiently
large. The proof of this affirmation can be found in Liggett (1985) and it uses
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Figure 1.5.9: Peierls contours for 2-dimensional Ising model with positive

boundary conditions in A = {1,...,9}?

the well-known Peierls contours which allows to map the measures tia+ and
tia,— of the ferromagnetic Ising model at low temperature into an ensemble
of objects —the contours— interacting only by perimeter-exclusion. See, for
instance, Section 5B of Dobrushin (1996), for a concise and rigorous account
of this mapping. Contours are hyper-surfaces formed by a finite number
of (d — 1)-dimensional unit cubes —links for d = 2, plaguettes for higher
dimensions— centered at points of Z¢ and perpendicular to the edges of
the dual lattice Z4 + (3,---,3). To formalize their definition, let us call
two plaquettes adjacent if they share a {d — 2)-dimensional face. A set
of plaquettes, v, is connected if for any two plaquettes in v there exists a
sequence of adjacent plaquettes in <y joining them. The set v is closed if
every (d — 2)-dimensional face is covered by an even number of plaquettes
in v. Contours are connected and closed sets of plaquettes. For example,
in two dimensions contours are closed polygonals. In this work we are going
to study the construction and simulation of the measure y,. for values of 3
where there exists phase-transition.



16 CHAPTER 1. POINT PROCESSES

Two contours v and # are said compatible and denoted by v ~ @ if no
plaquette of v is adjacent to a plaquette of 8. In two dimensions, therefore,
contours are compatible if and only if they do not share the endpoint of a
link. In three dimensions two compatible contours can share vertices, but not
sides of plaquettes. Ising spin configurations in a bounded region with “4”
(or “~”) boundary condition are in one-to-one correspondence with families
of pairwise compatible contours.

The probability distribution for the set of contours in a bounded window
A is absolutely continuous respect to the counting measure, and assigns to
each configurations £ € {0,1}¥® (G(A) is the set of all possible contours
inside A) probability weight given by

1a(€) = —— e B Smecn=t b (1.5.10)
ZA
where }v| is the number of plaquettes comprising +y.[For simplicity we are
absorbing in £ a factor of 2]. Notice that

un®) = 7 (I] 167~ 6)) () (1512

T.06€

(here Z, is not necessarily the same as in (1.5.10)) where 44 is the product
of Poisson random variables with mean e~# for v € G(A). The state-space
of pa is contained in {0,1}%, the one of uY is contained in N, where G is
the set of all possible contours.

Contour ensembles can therefore be considered extreme cases of perimeter-
interacting point processes (in a discretized space). They are extreme on two
counts: (1) they involve perimeter-repulsion, i.e. a limit ¢ — 0, and (2) they
correspond to an infinite (but countable) family of grains of arbitrarily large
size.

An important issue for these contour ensembles is the extension of (1.5.10)
to a well defined infinite-volume process. Traditionally this problem has been
tackled via cluster expansions. Our alternative approach, besides yielding the
perfect simulation scheme discussed in Section 3.4, allowed us to prove that
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such an extension is possible and unique as long as

o = sup l—l— > 18le ™ < 1. (1.5.12)
Oy

Ferndndez, Ferrari and Garcia (1999). This is a weaker condition than the one
obtained by usual expansions (for instance in Lebowitz and Mazel (1998)).
A condition of this sort is unavoidable because the contour description cer-
tainly can not remain valid at the Ising critical temperature, in fact at high
enough dimension it breaks down at a temperature strictly below criticality
Aizenman, Bricmont and Lebowitz (1987).

1.6 Loss networks with fixed routing

A loss network models, for instance, the occurrence of calls in a communica-
tion network. The network is formed by a countable family of links (e.g. Z9),
and each link j comprises a number C; € Z.. of circuits joining its bound-
aries. A call is characterized by a route v and a holding period. There is
a countable family, G, of routes, each one defined by the numbers Ay of
circuits used from each link j. Calls requesting a route v arrive as Poisson
streams of rate w(7) and as + varies it indexes independent Poisson streams.
The call is lost if on any link j there are fewer than A4;, circuits free. Other-
wise, the call is connected and simultaneously holds A;, circuits from each
link j for the holding period of the call. Holding periods are independent,
and independent of earlier arrival times and holding periods. For a survey
on loss networks, see Kelly (1991). The state space of a loss network is ei-
ther {0,1}€ if no more than one call per route is allowed or N® when more
than one call can use the same route at the same time. The notation &(v)
indicates the number of calls occupying route v at time ¢.

This type of loss networks is labelled fized-routing, as opposed to the
alternative-routing networks in which calls that are blocked on a route can
search for another route. The latter are not addressed in the following. The
main issues in the theory of loss networks are:
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(i) To establish conditions granting the existence of the (infinite-volume)
process, for finite time-intervals. This means, conditions precluding the
occurrence of an “explosion” in a finite time.

(ii) To establish conditions for the existence of the process(es) for un-
bounded time-intervals, that is, conditions ensuring that the process
has well defined limits for ¢ — +oco.

(iii) To prove existence of invariant measures and to determine the regime
in which there is uniqueness.

(iv) To analyze the properties of this(ese) measure(s), for instance mixing
properties, finite-volume corrections and validity of the central limit
theorem.

(v) To determine, or find bounds for, the speed of convergence to the in-
variant measure.

In Section 2 we will see the results of Ferndndez ef al. (1998, 1999)
which give an answer to all these questions. In fact, the technique of analysis
employed there leads to a perfect simulation scheme (Section 3.4).

1.6.1 Continuous unbounded one-dimensional loss net-
work

A natural generalization of the preceding setting is to consider continuous
loss networks, that is, networks with routes in a continuous, as opposed
to discrete, space. The simplest of these models is the loss network in R
introduced by Kelly (1991). Callers of this network are arranged along an
infinitely long cable and each call between two points s, s € R on the
cable involves just the segment between them. The cable has the capacity to
carry simultaneously up to C calls past any point along its length. Hence, a
call attempt between s; and sz € R, 81 < 89, is lost if past any point of the
interval {sy, so] the cable is already carrying C calls. Calls are attempted with
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initial (leftmost) point following a homogeneous space-time Poisson process
with rate density (i.e. time rate per unit length) &, and (space) lengths given
by a distribution , independent of its leftmost point, with finite mean p.
The holding time of a call has exponential distribution with mean one. The
location of a call, its length and its duration are independent.

Ferrari and Garcia (1998) used a continuous (non-oriented) percolation
argument to prove that this model has a unique invariant measure whenever
7 has finite third moment and the arrival rate & is sufficiently small. The
argument also shows that the process is ergodic, that is, converges to a unique
invariant measure whatever the initial distribution.
~ Let N={£,&,...} be a x-homogeneous Poisson process on R x [0, cc),
H,,Hy,... be iid. random variables with E[H,] = 1 and W, Wh,... iid.
random variables with common distribution 7, the variables H’s, W's and
the Poisson process being independent. Consider the random rectangles

By ={(z,y); 60 Sz < € + Wy, b <y < G+ Hid,

then {R;,i > 1} = {& + S;,i > 1} is a boolean model in the continuum
R x [0,00) Hall (1988, p.43) where S; = [0, W;] x [0, H;] and it represents the
independent process of attempted calls. Fix (z,y) € R x [0, 00), then

P((z,y) is not covered) = IP( for all 4, (z,y) ¢ R;) = gt

Let v(S;) the content of the largest sphere contained in S; and V(S;) the
content of the smallest sphere containing ;, then

oS =B AT and V(S)= Sy %)2
since E[u(S;)] > 0, if we assume E[(%:i v %)) < oo, there exists a critical
value k. such that there is no contimmum percolation Hall (1988, Theorem
4.11}. That is, the number of rectangles in each clump is finite with prob-
ability 1. In this case, each (s,t) € R x [0,00) belongs to a finite number
of random rectangles R; and the loss network process can be constructed
from the independent process by “erasing” the rectangles which lead to more
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than C calls. When H corresponds to an exponential distribution it has all
moments. Hence, for this argument it is sufficient to ask that the random
variable W with distribution 7 have a third moment finite. A refinement of
the above argument shows that this condition can be weakened to 25 p < 1.
This construction is heart of the graphical representation of spatial birth
and death processes defined in Section 2 that leads to the backward-forward
perfect simulation scheme.

This invariant measure can be considered a generalized point process
where the germs are the leftmost points of a call and the grains are randomly
chosen segments. It can be generalized to any dimension, just substituting
the segments by curves or arbitrary bounded sets.



Chapter 2

Spatial birth-and-death

processes

The common feature linking all the spatial processes described in Section
(1.2) is that oll these distributions can be realized as invariant measures of
spatial interacting birth-and-death processes.

2.1 Spatial birth-and-death processes

Non-spatial birth and death processes are continuous time Markov chains
with {0,1,2,...} as state space and transition probabilities that are positive
only to neighbors (see, for example,Feller (1968) for an overview). Preston
(1977) introduced a birth and death process which takes into account the
position of the individuals. He defines the process as a continuous time
jump process with state space that contains all possible configurations of
individuals. In our case, we are interested in point processes that are specified
through a density (Radon Nikodym derivative} with respect to a unit Poisson

21
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point process, that is,
1
pa(dN) = Z=e MDY (dN) (2.1.1)

where H(N, A} is the energy function, Z, is a normalizing constant.

Therefore, the state space for this process is § = {n; H(n,A) < 00},
that is the set of configurations with positive density. Ripley (1977) showed
that such measure p, is the invariant measure of a spatial birth and death
process. We specify this process in terms of a nonnegative functions ) :
R* X M (R*) — [0, 00} and & : R* X NV (R¥) — [0, co). The meaning of A is that
if the point configuration at time ¢ is n € A/(R?), then the probability that a
point is added to the configuration in a neighborhood of the point z having
area AA in the next interval of length At is approximately A(z, n)AAAL.
The interpretation for § is similar, except that, a point can only be deleted
from the configuration if already present, that is, if the point configuration at
time ¢ is n € N (R?), then the probability that a point z € n is deleted from
the configuration in the next interval of length At is approximately é(z, n)At.
In fact, there is more than one process that has the same invariant measure,
we can choose A and ¢ in such way that they satisfy the detailed balance
condition:

A(z,n)e 70N = §(z n)e~ @A) rny{z} €8S, (2.1.2)

Notice that equation (2.1.2) says that any pair of birth and death rates

such that
Az, n)

8(z,n)
will give raise to a process with invariant measure having the density given
by (2.1.1). We can always take é(z,n) = 1, that is, whenever a point is added
to the configuration it lives an exponential amount of time independently of
the configuration of the process.

The variable-birth and constant-death process has generator given by

= exp{—H(nU {z},A) + H(n,A)} (2.1.3)

Af(m) =f(f(77+5x) —f(n)))\(ﬂ?,n)dx-l-f(f(n—c?z) — f(m)n(dz) (2.1.4)
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for “suitable” functions f.
Consider first a finite range birth rate, that is, there exists a compact set
G such that if 7 = 7 inside z + G then A(z,m) = Az, 7.) satisfying

A = sup Mz, ) < oo. (2.1.5)
zm

We are going to use a oriented percolation argument to show the existence
of the (infinite-volume) process, for finite-time intervals. More restrictive
conditions in X will ensure ergodicity and exponential rate of convergence.

Graphical construction

In order to get a graphical construction for the process with generator
(2.1.4), we begin with a A-homogeneous Poisson point process on R? x R.
Denote it by N = {(£1,T1), (&2, T2),...}. For each point (&,T3), associate
two independent marks S; ~ exp(1) and Z; ~ U(0, 1).

We can see the marked point process C = {(&, T}, 5;, Z:),4=1,2,...} as
the graphical representation of a birth and death process with constant birth
rate A and constant death rate 1 (call this free process &) and Z; will be used
as the indicator of “allowed” births.

From now on, a marked point {(£,7},S;, Z;) will be identified with a
marked cylinder ((§ + G) x [T, T; + S;), Z;) with basis &;, birth time T,
lifetime S; and flag Z;. Calling C = (£,1, 5, 2), we use the notation

Basis (C) = §, Birth(C)=t¢, Life(C)=[t,t+s], Flag(C) =2 (2.1.6)

Define incompatibility between cylinders C and C' by

C'# C ifand only if Basis(C)+GNBasis (C')+G # 0 and Life (C)NLife (C') # 0,
(2.1.7)
otherwise C' ~ C (compatible}.

2.1.1 Finite-volume construction

The construction of the spatial birth and death process in a finite box A
with an initial configuration 7y = {(1,4s,...} using the Poisson processes
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is straightforward. We use only the finite set {(§, T3, S5, %) : & € AT >
0}. Let C*» = {C € C : Basis(C) N A # 0,Birth(C) > 0}. To each
point ¢; present in the initial configuration 7, we independently associate
an exponential time 5',- and a cylinder {¢;,0, S'j, 0). The collection of initial
cylinders is called C}. We realize the dynamics 7 as a (deterministic)
function of C* and C#. Let

CA0, 8] = {(¢,5,1,2) e CPUCH0< s+ 1,5 < ¢t} (2.1.8)

Consider 0 < t; < #a < ... < ty as the birth and death marks T}, S; lying
in the set [0,¢]. By the properties of the Poisson process all of these times
are distinct.

{tr,-. it} =[0,8) N {s, s+ (€, 8,1, 2) € CH[0,1]}. (2.1.9)
We construct the process 7 inductively as follows:
FV.1. Suppose that 7" is already defined, and that £;_; < u < ;. We set
nt=nd, forallu<s<t;. (2.1.10)

If u > iy then
nt =qnt, forallu<s. (2.1.11)

FV.2. If ¢; is a death time, that is, &; = s+ for some (£, 5,1, 2) € CA[0,1]
then we delete the point &: we set

7t =\ {e). (2.112)
Go back to F.V.1,

FV.3. If ¢; is a birth time, that is, £; = s for some (&, 5,1, 2) € C*[0,1] then
we do not add the point £ if z > A(&;,7l_): we set

T = M- (2.1.13)
Otherwise the point £ is added: we set
7 = my- U {€}. (2.1.14)

In either case, go back to F.V.1.
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15 L el | 1 ] ] 1 ] 1 1

Figure 2.1.9: Independent process

It is tedious but easy to show that n} has generator A* defined as
in (2.1.4) restricting the sums to the configurations contained in A. It is
easy to find an invariant measure p* for this process (through the equation
J Ap?(n) = 0). Some regeneration argument should show that 7 converges
in distribution to p* for any initial configuration . This, in particular,
implies that u* is the unique invariant measure for n.

Using the same Poisson marks for 7 and o; (the process with constant
birth rate A and constant death rate 1), we have

T (4) < a(A), (2.1.15)
for all A C A because in the process a; all cylinders are kept. This implies

pMn: n(4) =0} > P{a: alA) =0}. (2.1.16)
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Figure 2.1.14: Thinned process

2.1.2 Infinite-volume construction

If we try to perform an analogous construction in infinite volume we are
confronted with the problem that there is not a first mark. However, notice
that the free process o, always exist. The goal, is to find conditions under
which the process o can be thinned by the finite-volume construction.
From Figure 2.1.14 it is easy to see that the presence of a cylinder C at
time ¢ depends only on the cylinders that were born before it, are alive at
the time of birth of C' and that intersects C. This is loosely speaking the
definition of the first generation of ancestors of C. The second generation is
formed by the ancestors of the first generations. Recursively we can construct
the clan of ancestors. Therefore, for each cylinder of the free process present
at time ¢, if we can go backwards in time up to time 0 and find only finitely
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many cylinders we have to check then the process at time # is well-defined.
To be precise, define the total order < in the set of cylinders induced by
the birth times. That is C' < C" if and only if Birth (C) < Birth (C").
For an arbitrary space-time point (z,t) define the set

AT' = {C€C;zeBasis(C)+G, Life(C) 3t} (2.1.17)

the set of cylinders containing the point (z, t).
For any cylinder C define the set of ancestors of C as the set

Af={C"eC;0"<C;C #C} (2.1.18)

Notice that the definition of ancestor does not depend on the lifetime of C.
Recursively for n > 1, the nth generation of ancestors are defined as

A ={C":C" € A{ for some C' € A™ }. (2.1.19)
and for a given cylinder C,
AS = {C":C" € AY for some C' € AC_}. (2.1.20)

We say that there is backward oriented percolation in C if there exists
a space-time point (z,%) such that A% # {§ for all n, that is, there exists
a point with infinitely many generations of ancestors. Let the clan of the
space-time point (z,t) be the union of its ancestors:

A% = ] Azt (2.1.21)
n>1
and C[0,t] = {C € C : Birth (C) € [0, }.
In the next theorem we give a sufficient condition for the existence of
the infinite-volume process in any finite time interval in terms of backwards
percolation.

Theorem 2.1.22 If with probability one A®* N C(0,t] is finite for any z, €
R? and t > 0, then for any box A C RY, the process with generator AM is well
defined and has at least one invariant measure ut.



28 CHAPTER 2. SPATIAL BIRTH-AND-DEATH PROCESSES

Proof. We construct the process for A = R%. The construction for other A
is analogous. The initial distribution is denoted 79 = {1, 2, ...}. For each
@; € mp let S; be an independent exporentially distributed random time of
mean 1. The time S; represents the lifetime of the cylinder with basis ¢;,
birth time 0 and flag 0. We call C(0} the set of cylinders {(y;,0,S5;,0);¢; €
no}. Since the cylinders in C(0) have no ancestors in C[0,%], under the
hypothesis of the theorem, every cylinder in C(0)UC(0, ¢] has a finite number
of ancestors in C[0, ¢].
It is easy to see that we can represent the constant birth and death process
oy as
oy = {Basis (C); C € C(0) U C[0, 1], Life (C) 3 ¢}. (2.1.23)

We will construct 7, as a thinning of the constant birth and death process o,
for this consider C' € C(0)UCI0, t] such that Life (C) 3 ¢, then Basis (C) € o,
to decide if Basis (C) € ; we need to look at C{0)U UnZIAf , which is finite
by hypothesis. In this case, we can perform the mark-by-mark construction
defined in the previous section can be accomplished in a finite number of
steps.

It is possible to show that 7, has generator A given by (2.1.4). D

Invariant measure

The usual approach to find invariant measures for Markov processes is to
construct the process beginning at —oo in a given configuration and cut the
process at time 0. If, the process is independent of the initial configuration,
the process at time 0 has invariant measure.

In the graphical construction above, the lack of percolation allows us
to construct 7, as a thinning of ¢; for times in the whole real line. Since
the construction is time-translation invariant, the distribution of 7, will be
invariant.

Theorem 2.1.24 If with probability one there is no backwards oriented per-
colation in C, then the process with generator A can be constructed in {(—o0, 00)
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in such a way that the merginal distribution of n, is invarient.

Definition 2.1.25 The distribution of n; is called p.

Remark: A consequence of Theorem 2.1.24 is that the spatial birth and
death process in a finite box A can be constructed for all £ € R.

2.1.3 Time ergodicity

The main theorem in this section shows that all that is needed for expo-
nential convergence to a unique invariant measure is the absence of back-
wards and non-oriented percolation. The key to prove this fact is a domi-
nation by a branching process which will be sub-critical under the condition
A £ 1/mé(G).

Note that the collection of cylinders

¢ = {(Basis (C) + G) x Life (C); C € C} (2.1.26)

is a boolean model Hall {1988) and for any z € R? and ¢ > 0 we have that
the number of hypercubes that cover (z,t) is Poisson distributed with mean
m4(G)A. In fact,

P((z,t) not covered) = P((z,?) ¢ ((Basis(C) + G) x Life (C) for anyC € C)
e~ O (2.1.27)

Notice that the process of ancestors is not a Galton-Watson process, a
cylinder in the first generation can also be in the second generation of a
cylinder. However, we can define a Galton-Watson branching process B, € N
such that the offspring distribution of a cylinder C has the same (marginal)
law as the distribution of A{, but the branches behave independently. The
key point is to fix & way to distribute common ancestors. Let ¥;* be i.i.d.
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non negative integer valued random variables with Poisson distribution with
mean m?(G)A. Defire By = 1 and

B
By = ¥ (2.1.28)
fe==1

(with the convention 35, ¥* = 0). It is possible to couple the BO-cluster
A% and (By)n>o in such a way that the number of ancestors in the nth
generation of (z, ) is less than or equal to By,. The total number of ancestors
of (z,t) is bounded by

|A=H <> By (2.1.29)

n>0
Therefore, there is no backward oriented percolation if the process is sub-
critical, that is,
X< (m*(@) (2.1.30)
Defining the time-length and the space-width of the family of cylinders
A% be respectively

TL(A®") = t—sup{s:Life(C) 3 s, for some C € A**}, (2.1.31)
SW (A} = |Ugea=: Basis(C) + G|, (2.1.32)
we get
SW (4*%) < m*(G)B (2.1.33)
B
TL(A™) < Y5 (2.1.34)
i=1
where
B=> B, (2.1.35)

n>0

and 5,7 > 1 are 1.i.d. exponentially distributed random variables with mean
1.
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Since o 1
Bl = =y 7l (2.1.36)
we have . _ .
EJTL (A%Y)] L (2.1.38)

S T-mi@x
Moreover, the moment generating function of TL (4%9) is given by
Efa™ “*)] = F[(1 - loga)™] (2.1.39)
where F(b) is the generating function of Z and consequently,
P[TL (A*®) > bt] < Fg(b)e™™. (2.1.40)

2.1.4 Time convergence and uniqueness
We say that two sets of cylinders A and A’ are incompatible if there is a
cylinder in A incompatible with a cylinder in A"

A4 A ifand onlyif C o C' forsome C€ Aand C' € A", (2.1.41)

Theorem 2.1.42 Assume that there is no backwards oriented percolation
with probability one. Then,

1. Uniqueness. The measure y 4s the unigue invariant measure for the
process ;.
2. Time convergence. For any compact set A,
tlilg sip |En (A} — En(4)| = 0. (2.1.43)
Furthermore,
sup [En(A) — Er (4)]
< P(Ugea{A™ o6 C(0) or TL (A=) > ¢}) (2.1.44)
< (]P(UWGATL (A0} > bt) + e~ (- E(SW (A“”“))) (2.1.45)

for any b € (0,1).
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3. Space convergence. As A — R%, ud converges weakly to p. More
precisely, if A is a finite set contained in R%, then

1(4) - (4)] <P(A(4) # AN4)) . (2.1.46)

Moreover, by construction we have that the invariant measure p is
space-invarient. That is, we have spatial ergodicity of the stationary
distribution.

Proof. Existence of u has been proven in Theorem 2.1.24.

In order to prove uniqueness of the invariant measure we use the same
Poisson marks to construct simultaneously the stationary process 7; and a
process starting at time zero with an arbitrary initial configuration 7. The
second process is called 57, where 5y = 5. The process 7} ignores the cylinders
in C with birth times less than 0 and considers C(0) = {(;,0,S5;,0) : ¢p; €
n}, the set of cylinders with basis given by the initial configuration 5 and
birth time zero —the times S; are exponentially distributed with mean 1 and
independent of everything,.

It is enough to prove that

sup P((n(4) ~ 7} (4)| > 0) = 0 (2.1.47)

as i — oo.

Since we are using C to construct 7 and C[0,%] U C(0) to construct 73},

it follows
72(4) - m(4)] < 3" 1{(a% £ C(0) or TL(a%) > )} (2148)
TEA

Note that A®* % @ for finitely many z € A. The proof of the above
results is done similarly as in Fernindez, Ferrari and Garcia (1998). The
estimates for the moments of TL (A®) and SW (A®?) are given by (2.1.37),
(2.1.38) and (2.1.39).

The arguments prove that the process converges, uniformly in the initial
configuration, to the invariant measure p. An immediate consequence is that
¢ is the unique invariant measure. Moreover, it is easy to see that the velocity
of convergence is exponential.
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2.2 More general birth-and-death processes

2.2.1 Peierls contours of the Ising model

In this case, we are considering a birth-and-death process where the indi-
viduals are contours in G, a birth rate depending on the configuration of
contours already present and unit death rate. Specify this process in terms
of a non-negative function A : G x {0,1}® — [0, 1] given by

A7) = e PPIE(y ~ 7). (2.2.1)

The above process has generator given by

Af(m)y = eyt € {0, 3SHF () = FEN + D n(nF ™) = £ ()]

ye@ 1€G
(2.2.2)
where f is a cylindrical function and

7t =6, (2.2.3)

A construction similar to Section 2 shows that a sufficient condition for
existence of the process is

o = supiz 8] e™?]6] < oo (2.2.4)
| |074"r

where as ergodicity is obtained under the condition (1.5.12) (& < 1). In this
case, consider the origin of a contour to be the first point in lexicographic
order and define

dpi= > e hhl, (2.2.5)

~ori(v)=0

Begin with Ag-independent Poisson streams {N,;z € Z¢}. Denote
Nz = {T1 (;’L‘), Tz(:ﬂ), . } (2.2.6)

and to each point T;(z) assign independent marks:



34 CHAPTER 2. SPATIAL BIRTH-AND-DEATH PROCESSES

o 7;(z) = -y chosen from {7y : ori(y) = z} with probability exp(—B|7v|)/As;

o Si(z) ~exp(l) .

Consider the set of marked cylinders:

C{((x), Ti(x), Si()); o € 24,5 > 1)
= (%(e) x [Te), Bile) + S@hz € Z4i =1} (2.27)

and as before for C = (v,t, s), we use the notation
Basis (C) =4, Birth(C)=t, Life(C)=[t,t+ s]. (2.2.8)
Define incompatibility between cylinders C and C' by

C' % C if and only if Basis(C) o Basis (C') and Life (C)NLife (C') # 8,

(2.2.9)
otherwise C' ~ C (compatible), where compa,t1b111ty between contours was
defined in Section 1.5.1.

The construction follows as Section 2.1.1 and 2.1.2, except that here we
erase all incompatible cylinders (we do not need to check the flag). Conditions
for lack of backward percolation and velocity of convergence are obtained
through a domination by a multi-type branching process b,, where the types
are the contours and () denotes the number of cylinders of basis & in the
nth generation of a cylinder C with basis 4. In this case,

> 50) 2 149 (2.2.10)
g

It is easy to see that the mean number of descendents type # from a mother
type < is given by

m(y,8) = e P11y 2 6) (2.2.11)
and

> m™(7,8) <Y |0m"(7,6) < |yl (2.2.12)
[ 0

where o is defined by (1.5.12) and the process is sub-critical if e < 1. Detailed
calculations can be found in Ferndndez et al. (1998, 1999).
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2.2.2 Loss networks

‘They can be associated to point processes with grains stochastically chosen
(possibly with sizes forming an unbounded set). For instance, for the contin-
uous loss network of Section 1.6.1, the germs are the leftmost points of calls
and the grains are segments with random lengths. In this case, domination is
done through a multi-type branching process with uncountable many types.
Assume, in general, that the leftmost points of calls appear with rate f(z)
and that call lengths are given by a distribution 7 independent of z. We
only require the latter to have a finite mean p. Consider a germ sitting at
the origin, that is & call stretching from the origin to the right, born at time
zero. Its ancestors correspond to cylinders with sufficient lifetime and with
bases given by either calls starting at negative sites and passing through the
origin, or calls of arbitrary length originating within the sites occupied by the
initial call. Therefore, the sub-criticality parameter has two contributions:

0 o0 L
/_ dz f(@) n({L > z}) + fo r(dL) fn dz (z) . (2.2.13)

[We have omitted a factor 1 corresponding to the lifetime of the ancestors.]
If the rate f is constant, say equal to , each contribution in (2.2.13) is equal
to kp. The finite-time process therefore exists as long as p < oo and the
ergodic stationary process if

26p < 1. (2.2.14)






Chapter 3

Perfect Simulation

Perfect simulations or ezact sampling are labels for a recently developed set
of techniques desigred to produce output whose distribution is guaranteed
to follow a given probability law. These techniques are particularly useful
in relation with Markov Chain Monte Carlo, and their range of applicability
is rapidly growing (see Green and Murdoch (1999), Section 1.3, and Mira,
Mgller and Roberts (1999) and Mgller and Nicholls (1999) and references
therein, or visit the site http://dimacs.rutgers.edu/"dbwilson/exact).

Several technigues have been suggested recently in the literature. The
outbreak of these subject come with Propp and Wilson (1996) paper where
they suggest a practical method of achieving a perfect sample of a Markov
chain with finite state space. Their Coupling from the Past (CFTP) algo-
rithm have been applied for infinite (or huge) state spaces require a mono-
tonicity property: there must exist a “maximal” and a “minimal” states and
a coupling such that the coalescence of trajectories starting from these two
states imply the coalescence of all other trajectories (“monotone coupling”).
Examples of processes with this property include Glauber dynamies of spin
systems with the FKG property (Propp and Wilson, 1996) and attractive
point processes (Kendall, 1997; Kendall, 1998). In fact, through a minor
modification the algorithm is also applicable to repulsive point processes

37
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(Kendall, 1998; Héggstrom and Nelander, 1998).

One of the biggest problem with CFTP technique is that it has the so
called impatient-user bias. Fill (1998) introduced a technique, free of the
impatient-user bias, based on the well-known rejection algorithm for gener-
ating independent random samples. Fill's algorithm (usually called Inter-
ruptible Algorithm (IA)) applies to Markov processes whose time-reversed
process has a monotonicity property. Thus its range of applicability over-
laps with that of the CFTP algorithm at reversible monotone processes like
Glauber dynamics of attractive automata or ferromagnetic spin systems and
attractive point processes (Fill, 1998; Thénnes, 1999).

Fernédndez, Ferrari and Garcia (2000) introduce yet a different perfect
simulation scheme, Backward-Forward Algorithm (BFA), applicable, in prin-
ciple, to any process that can be sampled from the invariant measure of a
spatial birth and death process and is continuous with respect to a Pois-
son point process. This perfect simulation scheme allows to simulate the
distribution of the infinite-volume invariant measure u in a finite region,
or window, A. For example, area-interaction point processes Baddeley and
van Lieshout (1995), Strauss processes (Strauss, 1975), fixed-routing loss
networks (Kelly, 1991) and Peierls contours of low-temperature Ising model
(Ferndndez et al., 1998). Some of these processes have been subjected to
other perfect simulation methods. For instance, attractive point processes
can be simulated using dominated CFTP or IA methods, if the models can be
sandwiched between a “maximal” and a “minimal” weighted Boolean mod-
els (Fill, 1998; Kendall, 1998; Thénnes, 1999). The CFTP algorithm can be
applied to repulsive point processes as well (Kendall, 1998). Nevertheless,
these treatments consider processes in a finite window with fized boundary
conditions. From the statistical mechanical point of view it is important to
consider finite windows of an infinite-volume distribution. The only mention
to this is by Kendall (1997), who points out a scheme valid when the un-
derlying Boolean model does not exhibit (unoriented) percolation. In this
case, the CFTP method can be extended by looking at [—T',0] x [-K, K]¢
for ever increasing T and K. The lack of percolation ensures that eventu-
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ally the area-interaction process will not be affected by whatever boundary
conditions are imposed outside [—K, K]%. On the other hand, Higgstrom,
van Lieshout and Mgller (1999) (first appeared in 1996 as a research report)
combine ideas from CFTP method with two component Gibbs sampler to
deal with infinite area-interaction point processes. This paper together with
Kendall (1998) (which also appeared as a technical report in 1996} are among
the very first papers on perfect simulation of point processes.

BFA has distinctive features: there is no coupling involved, consequently
the scheme is insensitive to the presence of monotonicity; it directly samples
a finite window of the equilibrium measure in infinite-volume without fur-
ther limit procedures; it relies on a graphical construction that has the added
value of being a proven theoretical tool for the analysis of properties of the
target measure (Ferndndez et al., 1998; Fernéndez et al., 1999) obtain mix-
ing properties, finite-volume corrections and asymptotic (in temperature)
distribution of “defects” of the low-temperature Ising translation-invariant
extremal measures.

All of the three algorithms, dominated CFTP, IA and BFA algorithm are
based on the construction of the underlying (marked) Poisson process where
objects are born.

3.1 General definition

Let us start with an abstract definition embodying the three exact simulation
algorithms, Coupling from the Past (CFTP), Fill’s Interruptible (IA) and
Backward-Forward Algorithm (BFA) described in the Introduction.

Definition 3.1.1 A perfect simulation (or exact sampling) scheme for a
probability space (X, 8, F, 1) consists in:

(i) A process V.= (Vi)e>o,
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(it) A {G:}-stopping-time, 7 = 7(V), where G, = o(V,,0 £ s £ t), such
that
P(r(V) <o0) = 1, (3.1.2)

(iti) A rendom function ®y : Ry — X such that

P(@y(r) € A) = u(A). (3.1.3)

The definition is completely general: V is some underlying process and P
is a probability measure defined in a sufficiently large space encompassing X
and the state-space of the process V. In fact, in CFTP and our algorithm,
the set up is such that

P(®y(t) € A) = p(d) , Vt>7. (3.1.4)

This is not so in the IA algorithm. Property (3.1.4) stems from the fact
that in CFTP and in our case, the algorithm “looks into the past”, and the
process V is related to past history or ancestry of what happens at a fized
time, say time zero. The IA algorithm, instead, is constructed on the basis
of the forward evolution but incorporates a time-reversed trajectory for the
acceptance-rejection procedure.

3.2 Coupling from the past

The coupling from the past algorithm (CFTP) was the first feasible algorithm
for a perfect simulation scheme. It was introduced by Propp and Wilson
(1996) and after this paper was made available, there was a sequence of
articles applying the method to several different situations. We are going
to describe the application to some situations ranging from the simplest
(discrete-time finite state Markov chain, vertical CFTP) to more complicated

problems (area-interaction point process and Strauss processes, dominated
CFTP).
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3.2.1 Discrete-time

Consider the problem of generating a random sample from a distribution
# on a finite set S which is the unique invariant measure of a discrete-
time aperiodic, irreducible, positive recurrent Markov chain {Xt:,t € Z} with
state space 5. Let P denote its transition matrix. Their approach can
be described as follows: simulate the Markov chain, coupling all the paths
beginning from all possible initial states, a predetermined amount of time
(from —T to 0), if all paths coalesce at time 0, the coalescent state Xy, has
the desired distribution #. If the paths did not coalesce, restart the chain at
—T" < =T, from all possible initial states, preappending new moves to the
old ones. They show that if enough moves are preapended, eventually all
the paths will coalesce and the resulting coalescent state X, is an unbiased
sample from 7.
In this case, the ingredients of the algorithm are:

o A discrete-time backwards process defined by a sequence (Ui)i<o of inde-
pendent random variables uniformly distributed in [0, 1]. The forward
process V is simply defined as its time-inversion: V; = U_;.

¢ An updating function F': X x [0,1] — X such that the Markov chain
constructed by setting X, = F(X,_1,V,) has p as unique invariant
measure.

‘The definition of 7 and ®y is based on iterations of F:
Fepy(@V) = F(Fpu-y(z, V), Ve) (32.1)

for ' > k, where Fiz (2, V) = F(z,V;). Notice that Fip(z, V) depends
only on (Vk,...,Vi). Now,

T = min {n t Fi_png)(z,V) does not depend on :c} (3.2.2)

and
Py (t) = Fiq(z, V) = Fl.g(z,V) (3.2.3)
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for any z € X and £ > 7. For ¢ < T the value of @y is arbitrary.

In words, the process is simulated from time —% to time 0, using the same
realization u_,...,u_; of the random variables (U;)_i<i<—1 for all possible
initial states X_; = z. H all the resulting trajectories coalesce at or before
time 0, the value of X is taken to be a sample of u. If not, the simulation is
started some other time ¢’ > 1, using, for the period [—£, 0], the previous real-
ization u_g,...,u—; of the independent random variables. This (backwards)
iteration is continved until all trajectories are seen to coalesce before time
0. The key points of this prescription are: (i) the use of the same random
numbers to generate trajectories for different initial states (coupling), (ii) the
keeping of a given realization of random numbers for a given period in all
iterations, and (iii) the use of a fized time —called time 0— to register the
sample.

The efficiency of the algorithm depends on the choice of the function F.
A badly designed coupling can lead to extremely large values of 7. As an
example of this, consider a process with X = {0,1} and with probability
1/2 of jumping from any state to any other. Here u(0) = u(l) = 1/2. If
one chooses F'(0,v) =1 — F(1,v) = {v < 1/2}, the resulting coupling time
7 is infinite with probability one. The construction of “good” couplings re-
quires the maximization of min, , P(F(z,V;) = F(y, V). This condition is
strongly model-dependent. Every homogeneous (uniform) ergodic Markov
process admits an F' yielding a finite coalescence time, e.g. the Vaserstein
coupling used by Dobrushin (1965) or the construction provided by Num-
melin’s splitting technique to get a constant € > 0 and a probability measure
@ such that P(Fj_q(z,V) € -) > eQ(:). See Foss and Tweedie (1998) for
more details.

For completeness, let us see why the algorithm performs as stated. By
definition of F',

u@) = lim IE”(F[_T,Ol(a,K)zx) (3.2.4)

—T——c

=  Jm [IE”(F[“T,UI(G, V)=2,7<T) + P(Rrgle,V) =2, 7> T)]

—T——co
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and by definition of 7,

P(Fra(aY) =z,7< T) = P{oy() = z) W27,  (325)
On the other hand, if F is well chosen, 7 is finite with probability one, hence

, ]P(F[_T,o](a,Z)=m,'r>T) SBr>T|Xqr=a) = B(r>T) —0.
(3.2.6)
This shows property (3.1.3).

While it is true that trajectories also coalesce when looked forward in
time, an algorithm based on this fact does not lead to a perfect simulation
scheme. Indeed, if 7" is the forward coalescing time, the analogous of (3.2.4)
holds,

ue) = Jim P(Fom(a,V) = 2)
= lim [P(Fom(a,V) =3, 7" <T) +B(Fomy(a, V) =, r* > )],

(3.2.7)
but in general
Jim P(Fom(a,V) =3, 7" < T) # P(@z(r*) = z) (3.2.8)

(in fact, the limit may not even exist).
Fxample 3.2.9

Let’s consider a very simple example, take the random walk on {0, 1,2, 3,4}
with transition probabilities ‘

P(i,i+1)=P@E+1,4) =1/2, fori=1,2,3;
P(0,0) = P(0,1) = P(4,4) = P(4,3) = 1/2.
m=(1/5,1/5,1/5,1/5,1/5,1/5)

In this éase we have a stochastic flow defined as: if X = i then X, = F,(7)
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QR W

- - - - -

-10 -9 -8 -7 -6 -0 -4 -3 -2 -1

Figure 3.2.9: CFTP for the symmetric random walk in Example 3.2.9

The usual MCMC approach is to run the chain X, = Fy (i) for n large.
Define
Ya() 1= Fp (i) 2 X, given X, = i.

Notice that {Y;,n > 0} is not a Markov chain. Define
T, := inf{n; ¥,,() do not depend on ¢}.
Then, it is easy to see that

Yoo = lim ¥;(i) = ¥, (i) ~ .

We have that T}, is coalescence time and it is a stopping time in the reverse
filtration:
T, = inf{n; F_, ¢is constant}

and F_po(t) = Y4 has the desired distribution .

In the example, showed in Figure 3.2.9 T, = 10 and F_j0(¢) = 1 is an
unbiased sample from 7.

Notice that if we run the chain forward in time until coupling of all
trajectories we have that the only possible coupling states are 0 and 4. In
this case, :
P{Xr = 0] = P[X,- = 4] =1/2.
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Let ...,,U_3,U_s,U_y, U, be independent identically distributed random
variables and ¢(-,) a deterministic function such that

Plg(i, Uy} = j} = P
for all 7,7 € 8. Define

Frn=d($((..,Ucm),Ucrnsi)s - - -, Ucn).

If, with probability one, there exists a T such that Frg is constant, which
value we denote by ¢(...,U_s,U_;,U). Then,

¢( T U—?: U—ls UO) ~ .

Monotonicity

The CFTP algorithm has been designed for use with finite state space X.
The problem is to verify coalescence when the state space is very large or
even infinite. Assume that we can update the chain using a monotone rule
@:

z Ly = é(z,Us) < ¢ly, Un)

almost surely with respect to Us.

Moreover, assume that & has maximal 1 and minimal § such that 0 <
z < 1 for all z € § in some partial ordering. In this case only the extremal
states have to be followed. In actual simulations 7 is not really computed.
In general Fi.ng(z,V) is computed for all x and for different —but not
all— values of n (for instance powers of 2) up to the first time Fj_,q is
constant in z. Notice that the number of simulation involved is equal to
2(1+2+4+...) < 2%, (2 comes from following 2 trajectories). However,
this is close to the optimum since 7, has to exceed 2F-!, therefore to verify
the coalescence we have to run 2.2%-! = 2* simulations. Consequently, the
procedure of doubling until “overshooting” is within a factor of 4 from the
best algorithm that prevent “overshooting”.
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Pseudo-code:
T+1
Uy ~U(0,1)
repeat
upper + 1
lower « 0
forn=-Tto —1
upper +— ¢(upper, Up)
lower + ¢(lower, U,)

T 2T
for n=-T to—T/2
U ~ U(0,1)

until upper = lower
return upper
Remark: It is never to much stressing the fact that the same uniform
random variables are used in each loop, that is, U_, is going to be generated
only once to go from step —1 to 0.

3.2.2 Jump processes in continuous-time

The previous algorithm can be trivially adapted for invariant measures of
Markov jump processes with an embedded ergodic Markov chain. Let (¥})
be a process of this type, with finite state space X, rates Q(z,¥), z,¥ €
X, and (unique) invariant measure g. It is convenient to consider another
process, with rescaled transition times, having the same invariant measure.
The new process has transition times given by a Poisson process N(t) of
rate A = max; ), Q(z,y) and transitions determined by an skeleton Markov
chain X with transition probabilities

A7 Q(z,y) fy#z
P(z,y)= . (3.2.10)
{ 1-x"1 PR Qz,z) fy==

‘We have that
RAEDTY (3.2.11)
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Therefore, the invariant measure for X coincides with that of the original
process (¥3). It is therefore enough to proceed as in the discrete-time case.

3.2.3 Dominated CFTP

In the case of unbounded infinite (or very large) state space, it is not possible
to use the above described method. Kendall (1998) introduced a modification
in Propp and Wilson’s algorithm in order to apply it to point processes. The
idea, however, is not limited to this case and has been used to generate from
continuous unbounded state space (Green and Murdoch, 1999). It is also
called horizontal CFTP (Kendall and Mgller, 1999) and coupling into and
from the past (Wilson, 2000).

The idea is to find another Markov chain {C;,t € Z} — chosen in such
way that we know how to generate exactly from its invariant measure ~— that
dominates the chain under study. Assume, without loss of gererality, that
the state space has a minimal state 0, but not a maximal state. In this case,
the ingredients of the algorithm are:

e A coupling that guarantees that if for some ¢ we have C; > X, that
the same is true for all subsequent times. Usually this is reached using
the same variables V to update both chains at the same time. That is,
there exist ¢, and ¢, such that (Xiy1, Cea) = (61(Xy, U3), 92(Ch, U3))
and if z < ¢ we have ¢,(z,u) < ¢o(z,u) for all w € [0,1].

o For any value z € & and time £ < 0, there exists a.5. an s < ¢ such
that X; < Gy if X, =z for u < s.

e We can simulate directly from the invariant distribution of C;.

e Given C; the conditional distribution of (Cy—1,U;—1) is known and we
can sample from this distribution. That is, we can simulate C, into the
past. This can be obtained easily if C; is reversible.

In this case, we can use the CFTP algorithm based on generating an
upper process in the same way that vertical CFTP.
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3.2.4 Point processes

Kendall (1997, 1998) introduced deminated CFTP algorithm to obtain sim-
ulations of processes that can be obtained as weighted Boolean models using
quermass integrals. These include the ares-interaction processes considered
by Baddeley and van Lieshout (1995) described in Section 1.4.1, where the
point process is produced by the germs of a Boolean model © under the
weighting

- 8rea(e),

Its Radon-Nikodym derivative (restricted to a bounded window A) is given
by (of: (1.4.4))
gN(A) §=ma(NG)
ZA ("ﬂ) ¢)
where x and ¢ are positive parameters, Zx(x, ) is a normalizing constant
and N @ G is the coverage process given by
NeG:= |J{z+G}. (3.2.13)

zeEN

pa(dN) = A (dN) (3.2.12)

The attractive processes can be simulated using CFTP methods in the
presence of monotonicity, when models can be sandwiched between a “max-
imal” and a “minimal” weighted Boolean models. In fact, through a minor
* modification the algorithm is also applicable to repulsive point processes
Kendall (1997). We describe his scheme.

Consider the space-time Boolean model of cylinders constructed in Sec-
tion 2.

Finite-volume construction

Now, fix =T < 0; for t € [-T,0] we are going to follow the evolution
of three processes: 7™&(t), 7™&(t) and 7_r(¢) on A. Each process will have
initial configuration 7™# (—T) C n_7(=T) C n™&(—T') and they will use the
finite set of marked cylinders

¢t = {C € C;Basis (C) € A, Life (C) N [-T,0] # #}. (3.2.14)
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The initial “maximal” and “minimal” configurations are defined by

7™(~T) = {Basis(C);C € Chp,Life(C) > —T} (3.2.15)
TU(-T) = {Basis(C);C € Cy,Life(C) 5 —T,Flag (C) < ¢~™()}
(3.2.16)

while 7_r(=T") can be any arbitrary subset of #™&(—T) and superset of
mll]( T)
Using the graphical construction defined in Section 2.1.1, it is possible to
couple monotonically the trajectories 7™2%(f) and #™i(¢) for all -T < ¢ < ©
until the coalescence time

Te = min{T; 7"(0) = n"™2(0)}. (3.2.17)

In general, the algorithm is run for fixed times 7} < T35 < T3 < ..., with

TN = eN.

The modification needed for the repulsive case, is that in F.V.3 (Section
2.1.1),

e a point £ is added to n™&(¢) if the mark

2 > G- mal(E+ONTT (-)8G))

e a point £ is added n™(¢) if the mark

z> ¢md(G)—md((£+G)\(ﬂT%"(f-)@G))_

The above references analyze processes in a finite window with fized
boundary conditions. On the other hand, it seems interesting to consider
finite windows of an infinite-volume distribution. The only mention to this
is by Kendall (1997), who points out a scheme that requires that the un-
derlying Boolean model do not exhibit percolation in space-time. In this
case, the CFTP method can be extended by looking at [-T,0] x [-K, K]*
for ever increasing T' and K. The lack of percolation ensures that eventually
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the area-interaction process will not be affected by whatever boundary condi-
tions are imposed at time —T and outside [— K, K|2. This lack of percolation
argument is the same used in Section 1.6.1 for continuous unbounded loss
networks, as before an oriented-percolation argument can lead to a scheme
that can be applied to a broad regimen.

3.2.5 User Impatience Bias.

The coupling from the past algorithm possesses the impatient-user bias. That
is, it has a running time which is not independent of the state sampled, thus if
the user aborts a long run of the algorithm a bias is introduced. The following
simple example is presented in Thénnes (1999). Consider the Markov chain
X with state space {0,1,2} and transition matrix

1/2 1/2 0
P={ 0 0 1
1/2 0 1/2

The stationary distribution is given by 7 = (2/5,1/5,2/5). We can simulate
X using the following rule:

0, forz =0,2and U <1/2
#(z,U) = { min{z+1,2}, forz=0,2and U > 1/2
2, forz=1

where U is a U(0, 1) random variable. Notice that this rule is not monotone
and to run CFTP we need to follow the simulation for all 3 states.
Denote by

oz, U, Uy, ..., Ur) = ¢(o(... d(¢(z, Up), Uh),...), Ur) (3.2.18)

the state of the chain at time 0 starting the chain at time ~T in state z.
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Suppose now that the user always terminates a run of CFTP after I iter-
ations without obtaining coalescence. In this case, if coalescence is attained
at time T' we are sampling from the distribution defined by

P(¢(z,U,...,Ur) € A|T < I) (3.2.19)

which is different from 7 since

P(T < I and ¢(z, U, ...,Ur) = 1)

P(¢(z, Uy, -, Ur) =7|T < 1) = P(T < 1)

(3.2.20)
Let N = 27-1, then by combinatorial arguments we can show that

N k-1 (N—F) (N~F)
P(¢(z,Un,..., Up) =r|T < I) = D r=a(1/2)"[L/2P ™ 4+ 1/2P, 7]

1- (/2"
(3.2.21)
where P®) is the k-step transition matrix. Therefore, for I > 3 we have
2r 1—2-V
P(¢($,U1,,UT) =OIT< I) = g[m]
1r1-27%
P(¢(z,Un,...,Ur)=1|T <1} = g[m]
3r1—-2N
P(gb(ﬁ?,Ul,...,UT) =2|T< I) = 1- g['l—_:m]-

Although the bias decreases with I as expected, the sample will always be
biased.

3.3 Fill’s interruptible algorithm

Fill (1998) describes a perfect sampling scheme based on a rejection sam-
pling method, which protects against the user impatience bias. Consider a
Markov chain on a partially ordered finite state space (S, <) with stationary
distribution u. Suppose that the state space has a maximum element 1 and
a minimal element 0. The transition matrix P is such that its time reversal
P defined by

#y) Py, z)

Play) = p(x)

(3.3.1)
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for = such that u(z) > 0 is monotone with respect to <. As P is monotone,
it is well-known, e.g. Theorem 1 in Kamae, Krengel and O’Brien (1977),
that there exists an upward kernel Kz (-, ) such that

Ply,y) =) _ Plz,7)Key(@,y) (3.3.2)
z'esS

forally e 8.
It is assumed that it is possible to sample from the measure Kz (',)
whenever z < y and P(z,z’) > 0.

Definition 3.3.3 A monotone transition rule for a transition meatriz P on
a partially ordered space (S,<) is a measurable function f:8xU > S
together with a random varieble U taking values in an arbitrary probability
space U such thai:

(i) F(z,u) < F(y,u) for all u € U whenever z < y;

(it) B(f(z,U) € -) = P(z,-) for dllz € S.

If P has a monotone transition rule f then we can take as upward kernel

Ky(@,y) = B(f3,U0) =¥ | f(z,U) =7), (3.3.4)

for all 4/ € S when z < y and P(z,z') > 0.

Algorithm 3.3.5 Fill’s algorithm consists in three steps:

1. Start X in 0 and runs it for t steps. Record the obtained trajectory
(Xo=0,X1,..., X, =2).

2. Reverse the obtained trajectory in time leading to the time-reversed
trajectory (which is regarded as a P trajectory conditioned to start at 2
and to end at 0)

(X():Z,Xl,..., t:f])z(Xg=z,X¢_1,...,X0=O).
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8. A second Markov chain ¥ is simulated for t steps using the upward
kernels Kz 4)(+, ) together with the time-reversed trajectory. The initial
state of ¥ is set to be 1. Then Y, fork = 1,...,t is simulated according
to the kernel

K{jk—laf"k—l)(xk’ )
If Y, = 0 the proposed sample z is accepted.

4. If the sample is not accepted, reinitiate the process with t + 1 indepen-
denily.

Notice that this algorithm is based on the well-known acceptance-rejection
algorithm for sampling, see Ripley (1987).

(a) Generate an observation from P¥(0,-);

(b) Find a constant ¢ such that

c> m(z)
Pt(0, 2)’

for all z € S such that P(0,z) > 0.

(c) Accept z as an observation from 7 with probability ¢~lor(2)/Pt(0, z).

Notice that for this algorithm to work there is a couple of questions to be
answered.

e How to choose ¢7 By definition of P we know that

n(z) _ _«(0)

e = (3.3.6)
PH0,2)  Pz,0)
and by the monotonicity of P, we can choose
c= "0 _ (3.3.7)
PH1,0)

Thus, step (¢} says to accept z as an observation from 7 with probability

PO mx) _ PMLO) w0 _ P4L0)
7(0) * P(0,2)  w(0) 8 Ptz,0)  Pt(z,0) (3.38)
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« How to design a coin-flip with probability of heads equals to P*(1,0)/P*(z, 0)
Running the coupled-reversed chain starting at 1 for ¢ steps, if the
¥, = 0, the coin flips head. In fact,

_ PG,
Pi(z,

[}

) -
)
In this case we can construct the process V. = (V;,t > 1) where V; =

((Xo,...,Xs), (Yo,.. ,ﬁ_)) are independently generated by the rejection al-
gorithm described above.

P(ﬁ=ﬁl.ig=z,2t=6,%=i)

(3.3.9)

=t

T =min{t; ¥; = 0} (3.3.10)
and
Dy(t) = X;. (3.3.11)

Fill suggests the the algorithm should be run using ¢ as powers of 2
similarly to CFTP.

3.3.1 Application to attractive spin systems

Consider an attractive spin system with attractive equilibrium measure .
Comnsider the Gibbs sampler (heat-bath algorithm) with uniform random up-
date for attractive spins systems as described in Section 1.5. In this case, the
chain is reversible with P = P which is monotone since the system is attrac-
tive, then (1.5.2) gives us a monotone transition rule ¢ = f. IA algorithm
becomes:

1. Start the chain ¢ at ¢™" = —1 and run it for £ steps using ¢ as an
updating rule. We obtain

(oo =-1,01,..,04-1,0: = ().
2. Construct the time reversed trajectory

(5’0 =C,5’1 =O't_1,...,5'tE -—1').
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3. Simulate 2 second Markov chain # for £ steps starting at fi, = +1 using
the following rule:

(a) When &,,.; # &, (they disagree at a unique site ),
o If Gp-1(4) = —1 and &,(4) = +1 then set 7, {s) = +1;
o If &,1(6) = +1 and &,(i) = —1 then set

fi(f) = =1, with probability ——"a=t).  =(eazt)ta(ze)
fin(i) = +1, with probability 1 — W(ﬁ;:‘;"'i;l(}m) e

(b) Gn-1 = &n = 3*, then the computation of the conditional prob-
ability is a little messy, but we can overcome this problem by
noticing that &, = oy, and 6p—1 = 0y_n4; and this transition
was produced in step 1 by generating U ~ U(0,1) and V ~ U(A)
independent and updating

& = ¢(6*,U, V).
So we can store (U, V) and use it to set
Ty = ¢(ﬁn—l: U: V)

4. If fj = —1 then the proposed sample ¢ is accepted, if not reinitiate the
process at Step 1.

3.3.2 Point processes

Thdnnes (1999) uses IA algorithm to simulate from penetrable sphere model
without impatient user bias. Her argument follows Fill’s interruptible algo-
rithm and uses a forward construction and a backward checking.

The objective is to simulate from the bi-dimensional point process (N, M) €
N x N described in Section 1.4.3. The crucial observation is that under the
model (1.4.5), the the conditional distribution of N given M is a homoge-
neous Poisson process with intensity 5, on A\ (M & G). Where G is a
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sphere of radius R. Similarly, the conditional distribution of M given N is a
homogeneous Poisson process with intensity 8z on A\ (N & G).

In this case, a convenient Markov chain to be used is the Gibbs sampler.
Given the configuration of the process at time { to be (ng m;), then in the
next step

Mes1 ~ o Poisson on A\ (n: ® G) (3.3.12)
Tgpe1 ™~ ﬂl Poisson on A \ (mt_,.l 5] G) (3313)

Notice that, this Markov chain has an uncountable state space we can
partially order this space by considering

(n,m) < (v, m’) if ncn andmDOm.

It is easy to check that the Gibbs sampler defined by (3.3.12) and (3.3.13)
defines & monotone transition rule f given by

fln,m, V1, Vo) = (v, m) (3.3.14)

where Vi and V; are independent Poisson point processes on A with rates §;
and S, respectively and n' =V} \ (m & G) and m' = V2 \ (n' & G). Notice
that

fln,m, W, Va) < f(»',m,V1,Va) whenever (n,m)<(n/,m'). (3.3.15)
In fact, if (n1,m,) = f(n,m, V1, V2}, and (n},m}) = f(n',m', 1, V2), then
m=V\(neG@) o>m =ViI\(#'&G), since n®@GCndG
and
m=W\{m&G cnl=V\(m &G), since m ®G D m; &G.

However, the state space A x A does not have a maximal or minimal
element. Instead, Higgstrom et al. (1999) call an element (n,m) guasi-
maximal if

AcneG and m=0. (3.3.16)
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Similarly, the element (n,m) is quasi-minimal if
n=~0 and AcmeG. (3.3.17)

It is easy to check that if (n%,mP) is a minjmal state and (n!,m!) is a
maximal state, then for an arbitrary configuration (n,m), if we call (N9, M),
(N, M) and (N, M") the Markov chains obtained with initial states (Ng, M?) =
(n®,m°), (No, Mp) = (n,m) and (N, M3) = (n!,m') respectively, we have

(N7, MD) < (N, M) < (NE, MY, for all n > 1. (3.3.18)
In faCt: if (NP:M{)) = f(no,mo,Vl,Té), (NlaMl) = f(n:m: Vl! V-Z) and
(Nllerl) = f(nl,ml,vl’%)’ then

M=Viand N =W, \(V1® @)
and
Ml =Vi\A=0and N} =V,
Then,
MYD>M;>M and N)CN,cNL

This proves (3.3.18) for n = 1, for n > 1 it is a consequence of the mono-
tonicity of f.

Notice that, the Markov chain defined by the monotone rule f defined by
(3.3.14), is reversible. However, the two-step rule (3.3.12) and (3.3.13) is not
reversible. The {wo step rule for the reversed chain is:

fien ~ [y Poisson on A\ (M & G) (3.3.19)
M1 ~ [z Poisson on A\ (fis1 & G). (3.3.20)

Fill’s algorithm

1. Start the chain {n,m) at a quasi-minimal point (n°% m°) and run it for
t steps using (3.3.12) and 3.3.13 as a two step update rule. We obtain

((?’Lu, mo) = (nﬂ’mﬂ)’ (nl, ml): ey (nt—l, mt—l)i (nt! mt) = (n*a m*))



58 CHAPTER 3. PERFECT SIMULATION
2. Construct the time reversed trajectory
(oo, 0) = (n*,m*), (Aon, 1) = (o1, Mam1), . ., (Fig, ) = (00, m")).

3. Simulate a second Markov chain (@, @) for ¢ steps starting at a quasi-
maximal state using the following rule: '

e If at time n we have the following transitions on the time-reversed
chain (fip—1,Mn—1) = (Fin-1,Mn) = (fin, 5 ), then let

v, ~ [ Poissonon m,_1 &G (3.3.21)
Ty 4 [fin Uvn] \ [tin1 @ G] (3.3.22)
Wy = 1, \ [0, @ G]. (3.3.23)

4. If (9y,w,) is quasi-minimal then the proposed sample ¢ is accepted, if
not reinitiate the process at Step 1.

3.4 Backward-Forward Algorithm

3.4.1 Spatial point processes

Consider first the case of the simulation of the invariant measure of a spatial
birth and death process on R? as described in Section 2 with finite birth rate
A such that

A =sup Az,7) < o (3.4.1)

z,n
and unit death rate.

Moreover, suppose that A is G-local, that is, there exists a compact
convex set G such that A(z,n;1) = A(z,m2) if ny and no coincide inside
G. Then, by (2.1.30) we know that condition A < (m?(G))~' is suffi-
cient for the birth and death process to be ergodic and its invariant mea-
sure p is absolutely continuous with respect to the law of a A-homogeneous
Poisson process on R?. In the case of the area-interaction point process
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described in Section 1.4.1, G is a compact convex set and X = k. For
the attractive case, A(zn) = k¢~ ™(E+E\ME) and for the repulsive case
Mazn) = wkgme(@)-ma((z+G\®EG))  For the Strauss process, G is the ball
centered at the origin with radius r, X = € and A(z,7n) = eftefrnle+@),
In this case, our approach requires a truncation of the form S(N,A) =
min{S(N, A), K}, for some K > 0, to guarantee uniformly bounded birth-
rates.

The objective is to simulate from y restricted to a finite-box A. The
outline of the scheme is:

1. Generate the free process o as a A-homogeneous Poisson process on A
according to Algorithm 1.2.3.

2. Construct the clan of ancestors of all points of «.

3. Apply the deterministic finite-volume “cleaning procedure” described
in Section 2.1.1 to decide which points of o are going to be kept.

Algorithm 3.4.2 Construction of the clan of ancestors

(i) Generate the free process oy = {z1,22,...,Zr} as @ A-homogeneous
Poisson process on A according to Algorithm 1.2.8.

(ii) Generate SY,...,5% independent mean one ezponential random vari-
ables and construct the following cylinders:

Co={(z: +G) x [-8?,0};i=1,2,...,R}. (3.4.3)
(iii) Consider the following fattening of Cy, a subset of R% x (—o0, 0]
Ao = Ugec, (Basis (C) & G) x Life (C) (3.44)
where Basis (C) ® G = {z + y;z € Basis (C),y € G}.

(iv) Set £ = 1. Generate a A-homageneous Poisson process {€},€},...,&k }
on Ag according to Algorithm 1.2.5.
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{v) Generate Si,...,Sp, independent mean one exponential random vari-
ables and construct the following cylinders:

C = {(¢f+ G) x [-85,05i=1,2,...,R}. (3.4.5)

(vi) Consider the following fattening of Ce, @ subset of R% x (—oc0,0]

Ay = Ueeg, (BaSlS (O) 132] G) X l'&fﬂ(C) (346)

(vii) Generate a A-homageneous Poisson process { (€571, THY), (667, THY), ..
on Ag\ Ay according to Algorithm 1.2.8.

(viii) e If Ryq =0, set the clan of ancestors of a
A% = UHG (3.4.7)

and stop.

o If not, set £ = £+ 1. Generate S¢,... ,szt independent mean one
ezponential random variables and construct the following cylin-
ders:

Ce={(E+PD x-S}, Thi=12,...,Re}. (3.4.8)
and go back to (vi).

A slight modification of the algorithm allows to simulate the penetrable
sphere model described in Section 1.4.3.

1. Generate the free process o as a marked point process on A according
to Section 1.3 where the location process is a 8 + Sz-homogeneous
Poisson process and the marks are independent with

By B

P)= B+ B2 B+ B

and P(2)=

2. Construct the clan of ancestors of all points of a.

(e



3.4. BACKWARD-FORWARD ALGORITHM 61

4 v T 1 T T r-l T L]
1o
1
35 11 4
i
bl
Pt
3r It
I
_——— I
| { 11
25F Lz=d-- 1
cCto 1 .
I |
L ¥
2F -
L—wed 1L
bl rmm—-
toro |
15 P !
Pl Lewod
(T
1 L
esk t |1
| | .
L
D 1 1 1 1 1 1
-1 ) 1 2 3 4 5 [ 7

Figure 3.4.8: The free process

3. Apply a modification of the deterministic finite-volume “cleaning pro-
cedure” described in Section 2.1.1 to decide which points of @ are going
to be kept.

FV.3a. Ifi; is a birth time, that is, ¢; = s for some (£, 5,1, z) € CA[0, ]
then we do not add the point (¢,2) if 2 =1 and d(£, 7. (1, 1)) < R
or if z =2 and d(&,n_(+,2)) < R: we set

né = nt‘:_. (3.4.9)
Otherwise the point (¢, z) is added: we set

M = - U {(6,2)}- (3.4.10)
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Figure 3.4.10: Cleaned process

3.4.2 Peierls contours of the ferromagnetic Ising model

The above algorithm do not translate immediately to the Ising model be-
cause the fattening of the cylinders cannot be done before the generation of
the contours. In fact, practical limitations prevent even the inclusion of all
possible sizes in the simulation, in fact the mere enumeration of the possible
contours is beyond reach when more than a few dozens of links are involved.
Also, this scheme suffers from the user impatient bias as described for the
CFTP. In this case, we do have a simulation scheme from the distribution
¢ conditioned on two events, letting X' = “maximum perimeter of bases of
cylinders in the clan” we sample from (using the notation of Definitior 3.1.1)

P(oy(r) € 4 | {K <k} n{r<5}) (3.4.11)
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where & = 30 and S =“the maximum time left in order to have the results
ready for the next congress”, for instance.

In fact, our approach also admits a joint realization (1, £) with the right
marginal distributions such that n = £ if K < k and 7 < 8, and such that
P({K >k} n{r > S}) goes to zero exponentially fast in S and in the cutoff
of the length of the contours (30 in our example). Slightly more precisely,

P({K >k} {r> S}) < O(a” x sup (K > k)) . (3.4.12)

"This follows from the sub-criticality of the majorizing branching process. For
the Ising model, for instance, m,(K > k) = O(e~?*).

Ferndndez, Ferrari and Garcia (2000) propose a non-homogeneous time-
backwards construction of these clans based on a result proven in Section
4.5.1 of Ferndndez et al. (1999). It is shown there that the clan of ancestors
of a family of cylinders can be obtained combing back in time and generating
births of ancestors with an appropriate rate. In fact, this rate is equal to
the rate density of the free process multiplied by an exponential time factor
ensuring that the ancestor has a lifespan large enough to actually be an
ancestor. This time factor involves the time-distance to the birth of existing
cylinders, which can be expressed through the following function. For a finite
region A and a finite set of cylinders H, let the set of basis of the potential
ancestors of H and A x {0} be defined by

G(H,A) = {0 € G : Basis(C") # 6, for some C' € "} J{seG:ona+ 0}
(3.4.13)
and for a given individual 8 € G(H, A),

TI(H, A, 6) = min{Birth (C'): C" € H, Basis (C") 2 9} (3.4.14)

with the convention min® = 0. By definition, TI(H, A, §) < 0.
The outline of the scheme is:

1. Generate in A the “free process” of contours ¢ with distribution #§,
product of Poisson random variables with mean e~#1 for v € G such
that }y| < K and yNA# B (cf. (1.5.11)). Let & = {1,%2,...,7r}-
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2. Construct the clan of ancestors of all contours of &.

3. Beginning with the first ancestor (the one first born), erase all incom-
patible contours.

Algorithm 3.4.15 An algorithm to construct the backwards clan of
a finite region

The combination of (8.4.18)/(8.4.14) can be translated into the following
explicit algorithm. We do it first for the case of countable number of individ-
uals and indicate at the end of this section how to proceed in the continuous
case. To generate AMY:;

BFA.1. Set £ =0 and 79 = 0. Generate S, 53,...,8% independent mean
one ezponential random variables.

Set
Co={(%,0,5);1=1,2,...,R}. (3.4.16)

BFA..2. For each v € (G(Cg, A) generate an independent random variable
7(7y} such that

P(r{y) > t) = 1 — exp(—v,(s)} (3.4.17)

where
va(s) = e~BMe—s+THCT M 16 5 7], (3.4.18)

Notice that () may be infinity.
BFA.3. Let Let £ = £+ 1 and 7 = inf{r(); v € G(C¢, A)}.
e If 1y < oo, call 7y be such that 7o = 7(%). Let
Ce = Co—y U {(F, =78, 7e + TI(Cs_1, A, 7) + 59} (3.4.19)

where S¢ is an exponentially distributed mean one random variable
generated independently of everything else. Go back to BFA.2.
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o If 1y = oo, let the clan of ancestors of € be defined as
At:=¢, (3.4.20)

and stop.

The above algorithm can be improved by removing the generation of the
free process and beginning with the empty configuration. The algorithm will
generate the cylinders and we can find which ones survive at time zero. See
Section 4.2 (Step 1) of Ferndndez, Ferrari and Garcia (2000).

In the continuous loss network described in Section 1.6.1, time and space
can not be in general separated. Instead of steps BFA.2 and BFA.3 above
we must consider a random sample w of 7« and the events (z, s) of a Poisson
process with rate

v(z,5) = ke TTCAD 15 > 1,1 Uy € G(Cp, A)} (3.4.21)

where v = (z,z + w).

For a finite window A the total rate is finite, hence these events can be
well ordered by looking to the time coordinate. If the set of these events is
not empty, we take 74 to be the minimal time coordinate (it is strictly positive
with probability one) and denote ¥ the associated interval (z, + w). If the
Poisson process with rate density (3.4.21) yields no event we take 7 = oo.
‘We then continue as in BFA.3.

3.5 Concluding remarks

There are several different approaches to perfect simulation of spatial point
processes, every week a new procedure is proposed either improving old ones
or suggesting new ideas. As it can be seem from the examples given above,
none of them is better than the others in absolute terms. For example, as
pointed by Mgller (personal communication), CFTP is much more efficient
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than BFA for the Strauss process in a finite region. First, it can be applied
to a much broader regimen. Second, exploring the structure of a model such
as the repulsive behavior in the Strauss process and using upper and lower
processes as described in Kendall and Mgller (1999) give a lower coalescence
time than the stopping time needed for BFA. However, for infinite-volume
regions, it is less efficient since it involves a coupling for maximal and min-
imal configurations and also a limit procedure in time and space. Fill’s IA
has the advantage of having no “user impatient bias”, however it requires
monotonicity of the reversed process. In fact, we can think as all of the
methods to be, in some sense, complementary to each other. Simulations
based on CFTP and IA can be applied to much broader class of processes.
Nevertheless, they need specific conditions such as finite volume or mono-
tonicity. On the other hand, although BFA has a much smaller range of
validity it has the advantage of its generality. Moreover, it is a powerful the-
oretical tool. Probabilistic arguments (successive dominations by oriented
percolation, life-and-death and branching processes) yield all the properties
obtained via usual cluster expansions —except analyticity— in a larger re-
gion and in a more intuitive and concrete way: convergence of the series is
replaced by sub-criticality of a branching process, mixing and central-limit
properties are a consequence of lack of percolation.
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