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Preface

The main motivation for the idea of realization of these lectures in the 23th

Brazilian Colloquium of Mathematics was, of course, the evidence gained by
the subject, far beyond the circle of specialists, due to the inclusion of the
problem of the regularity of solutions of the three-dimensional incompressible
Navier-Stokes equations among the seven “Clay Mathematics Institute Millen-
nium Prize Problems”, launched last year. This immediately prompted the
first author as a highly singular oportunity to disseminate the interest on this
remarkably outstanding problem throughout the Brazilian community of spe-
cialists in Partial Differential Equations. Since he himself is not a specialist on
incompressible Navier-Stokes equations, he would like to express his gladness
for having had the younger second author joining him in this enterprise. This
became easier for both to learn enough about the subject and to figure out a
plan of exposition which, while being as simple and direct as possible, should,
nevertheless, display a truly important aspect of the state of the art on the sub-
ject. The latter was the guiding principle for the elaboration of these notes. The
best partial regularity result for the 3-D incompressible Navier-Stokes equations
as yet is the almost 20 years old theorem of Caffarelli, Kohn and Nirenberg [2]
which improved the pioneering estimates for the Haudorff dimension of the sin-
gular set of suitable weak solutions put forth by Scheffer [12]-[15] from 5/3 to
1. So we decided to present the theorem of Caffarelli, Khon and Nirenberg in
the simplest case: the Cauchy problem without external force. This by itself
provides a considerable simplification in the proofs while retaining the essence
of the method. Moreover, even in this simplest case the solution of the corre-
sponding regularity problem is worthy the 1 million dollars CMI Prize!

In writing the notes the authors have also drawn from F. Lin’s paper [9],
specifically for the second part which is the passage from Scheffer’s estimate
to the actual one of Caffarelli, Kohn and Nirenberg, which provides a slightly
more direct proof of the corresponding result. Unfortunately, for the first part,
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that is, the part giving Scheffer’s theorem, Lin’s paper contains a flaw that
these authors were not able to fix1. So, for that part, we stuck to the approach
in [2], slightly modified, taking advantage of the simplifications allowed by the
considered case. This also seems to highlight yet more the essential points of
the strategy at that stage.

In sum, we think that we will have achieved our goal if these notes encourage
the readers to study fully the original article by Caffarelli, Kohn and Nirenberg
as well as other relevant references.

In concluding this preface the authors would like to acknowledge the support
of FAPERJ, proc. E-26/151.890/2000, without which this project would not
have been possible.

Rio de Janeiro, July, 2001
Hermano Frid

Mikhail Perepelitsa

1The correction of the referred problem in Lin’s paper is contained in [7], which is heavily
based on ideas of [9]



Chapter 1

Introduction

1.1 Preliminaries

We consider the Cauchy problem for the incompressible Navier-Stokes equations
in three space dimensions:

uit + u · ∇ui −∆ui +∇ip = 0, i = 1, 2, 3, (1.1)

∇ · u = 0, (1.2)

u(x, 0) = u0(x), ∇ · u0 = 0, x ∈ R3, (1.3)

where ∇i denotes partial derivation with respect to xi, i = 1, 2, 3, and ∇, ∆ are
the usual gradient and Laplacian operators in R3.

Definition 1.1. We say that the pair (u, p) is a suitable weak solution of (1.1)-
(1.3), in ΠT = R3 × (0, T ), if the following conditions are satisfied:

1. u, p are measurable functions, p ∈ L5/3(ΠT ), and for some constants
E0, E1 <∞,∫

R3

|u(x, t)|2 dx ≤ E0, for a.e. t ∈ (0, T ) and (1.4)∫∫
ΠT

|∇u|2 ≤ E1; (1.5)

1



2 CHAPTER 1. INTRODUCTION

2. For every ψ ∈ C∞0 (R3) and ζ ∈ C∞0 (R3 × (−∞, T );R3), we have∫
R3

u · ∇ψ dx = 0, for a.e. t ∈ (0, T ), (1.6)∫∫
ΠT

u · [ζt + ∆ζ] + u⊗ u : ∇ζ + p∇ · ζ dx dt+

∫
R3

u0(x) · ζ(x, 0) dx = 0,

(1.7)

3. For every φ ∈ C∞0 (ΠT ), φ ≥ 0,

2

∫∫
ΠT

|∇u|2φ ≤
∫∫

ΠT

[|u|2(φt + ∆φ) + (|u|2 + 2p)u · ∇φ] dx dt. (1.8)

Here, as usual, given two vectors u, v ∈ Rn we denote by u ⊗ v the matrix
(uivj)ij , and if A,B are matrices of the same dimensions we denote A : B =∑
ij AijBij . Conditions 1 and 2 in the above definition characterize weak solu-

tions of (1.1)-(1.3). The existence of weak solutions was proved by Leray in [8].
The concept of suitable weak solution was introduced by Scheffer in [14], where
the existence of such solutions of (1.1)-(1.3) was also proved.

Our purpose is to make an exposition of the partial regularity result of
Caffarelli, Kohn and Nirenberg [2], for suitable weak solutions of the Cauchy
problem (1.1)-(1.3). The latter improves the pioneering result of Scheffer [14],
who began the partial regularity theory of the Navier-Stokes equations in a series
of papers [12]-[15]. The partial regularity analysis consists in obtaining estimates
for the Hausdorff dimension of the set S of singular points of a weak solution.
A point (x, t) ∈ ΠT is said to be singular for the weak solution (u, p) if u is not
L∞loc in any neighborhood of (x, t); the remaining points are called regular points.
Scheffer’s theorem (see Chapter 2) establishes that the Hausdorff dimension of S
is ≤ 5/3, more precisely H5/3(S) = 0, while the theorem of Caffarelli, Kohn and
Nirenberg (C-K-N, henceforth; see Chapter 3) establishes that H1(S) = 0, and
so the Hausdorff dimension of S is ≤ 1. By Hk(A) we denote the k-dimensional
Hausdorff measure of A (see, e.g., [4]). The inequality (1.8) is the basic tool of
the partial regularity analysis for suitable weak solutions of (1.1)-(1.3).

We remark that the definition that (x, t) is a regular point meaning only
that u is merely bounded nearby is motivated by higher regularity results, in
particular the one of Serrin [16] which implies that any weak solution of (1.1)
on a cylinder Q = B × (a, b) satisfying∫ b

a

(∫
B

|u|q dx
)s/q

<∞ with
3

q
+

2

s
< 1
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is necessarily C∞ in the space variables on compact subsets of Q. The effect of
the pressure prevents one from proving such a local higher regularity result in the
time variable. However, if u is absolutely continuous in time and ut ∈ Lqloc(Q),
q > 1, then the same is true of the space derivatives of ut on compact subsets
of Q.

1.2 Dimensional Analisys

An elementary but fundamental procedure to an understanding of the method
is the dimensional analysis of the equations. If u(x, t) and p(x, t) solve (1.1)
then, for each λ > 0,

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t)

also solve (1.1). This property can be encoded, following [2], by assigning a
dimension to each quantity, which we denote by enclosing the quantity in the
delimiters b e:

bxie = 1, bte = 2
buie = −1, bpe = −2
b∇ie = −1, b∂te = −2,

(1.9)

so that each term of (1.1) has dimension −3. Most of the work in the partial
regularity analysis, which we expose in the following chapters, is concerned with
local, dimensionless estimates for suitable weak solutions. Since time has dimen-
sion 2, these estimates are not expressed in balls but in “parabolic cylinders”
instead, such as

Qr(x, t) = {(y, τ) : |y − x| < r, t− r2 < τ < t}, (1.10)

or also

Q∗r(x, t) = {(y, τ) : |y − x| < r, t− 7

8
r2 < τ < t+

1

8
r2}. (1.11)

Note that Q∗r(x, t) = Qr(x, t + 1
8r

2) and that (x, t) is the geometric center of
Qr/2(x, t+ 1

8r
2).

1.3 The Heart of the Matter

Here we outline the main points of the strategy of Scheffer and C-K-N to achieve
an estimate of the Hausdorff dimension of the singular set S. These are given
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by Proposition 1.1, Corollary 1.1 and Proposition 1.2 below, and a covering
argument which we sketch subsequently. In this section we make use of the
fact that u ∈ L10/3(ΠT ), p ∈ L5/3(ΠT ), valid for any weak solution (u, p) of
the Cauchy problem (1.1)-(1.3) in ΠT , which will be proved further on. By an
absolute constant we mean a number whose value does not depend on any of
the data. In all that follows C denotes a generic absolute constant that may
vary from line to line. To simplify the notation, the integration over cylinders
Qr(x0, t0) will frequently be replaced by an integration over the corresponding
cylinders Qr(0, 0), which are contained in the half-space t ≤ 0, where a weak
solution of the Cauchy problem, in principle, does not need to be defined. But,
all the time, we only need the fact that (u, p) is a weak solution of the Navier-
Stokes system on ΠT , for some T > 0 (i.e., satisfies (1.7) for ζ ∈ C∞0 (ΠT ;R3)),
paying no attention to the initial data. So, using that (u(x + x0, t + t0), p(x +
x0, t + t0)) is also a weak solution, now over the translated strip, we could if
necessary replace (u, p) by its translated, which is surely defined in the translated
cylinder. We also remark that even though the statements of the results in this
section keep the same local character as in [2], here we are only concerned with
weak solutions of the Cauchy problem, which then must be defined in some strip
ΠT , for some T > 0.

Proposition 1.1. There are absolute constants ε1 and C1 > 0 with the following
property. Suppose (u, p) is a suitable weak solution of the Navier-Stokes system
(1.1)-(1.2) on Q1 = Q1(0, 0). Suppose further that∫∫

Q1

(|u|10/3 + |p|5/3) ≤ ε1. (1.12)

Then
|u(x, t)| ≤ C1 (1.13)

for Lebesgue-almost every (x, t) ∈ Q1/2. In particular, u is regular on Q1/2.

Applying Proposition 1.1 to the scaled suitable weak solution (uλ, pλ), ob-
tained from (u, p) as above, we obtain the following.

Corollary 1.1. Suppose (u, p) is a suitable weak solution of the Navier-Stokes
system (1.1)-(1.2) on some cylinder Qr = Qr(x, t). If

r−5/3

∫∫
Qr

(|u|10/3 + |p|5/3) ≤ ε1 (1.14)

then
|u| ≤ C1r

−1 (1.15)

Lebesgue-almost everywhere on Qr/2(x, t).
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Proposition 1.1 and its Corollary 1.1 are local versions, proved in [2], of a
(slightly modified) result of Scheffer in [14]. They form the basic tools to achieve
the conclusion that H5/3(S) = 0. Indeed, using Corollary 1.1 and a Vitali’s type
covering lemma (we give details later on), one sees that S can be covered, for
any δ > 0, by a family {Q∗i = Q∗ri(xi, ti)} of parabolic cylinders satisfying

ri < δ for each i, (1.16)

r
−5/3
i

∫∫
Q∗
ri/5

(|u|10/3 + |p|5/3) > ε1, (1.17)

{Q∗ri/5(xi, ti)} are pairwise disjoint. (1.18)

From (1.17) we get ∑
r

5/3
i ≤ C

∫∫
∪iQ∗ri/5

|u|10/3 + |p|5/3. (1.19)

Since δ > 0 is arbitrary, (1.19) shows immediately that L4(S) = 0, where by
Lk(A) we denote the k-dimensional Lebesgue measure of A ⊆ Rk. Further,
since ∪iQ∗ri/5 ⊆ Vδ, where, for each δ > 0, Vδ is a neighborhood of S such that

∩δ>0Vδ = S, we conclude, as δ → 0, that H5/3(S) = 0.

The exponent 5/3 in the left side of (1.19) is due to the fact that
∫∫

(|u|10/3+
|p|5/3) has dimension 5/3, in the sense of (1.9). The idea of C-K-N was then
to obtain a result similar to Corollary 1.1, but with a space-time integral of
dimension 1. Namely, C-K-N [2] prove the following.

Proposition 1.2. There is an absolute constant ε2 > 0 with the following
property. If (u, p) is a suitable weak solution of the Navier-Stokes system (1.1)-
(1.2) and if for some (x, t)

lim sup
r→0

r−1

∫∫
Q∗r(x,t)

|∇u|2 ≤ ε2, (1.20)

then (x, t) is a regular point.

From Proposition 1.2, using the same covering argument as above, one easily
shows that H1(S) = 0. Indeed, we replace (1.17) by

r−1
i

∫∫
Q∗
ri/5

|∇u|2 > ε2, (1.21)
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and (1.19) by ∑
ri ≤ C

∫∫
∪iQ∗ri/5

|∇u|2, (1.22)

and we conclude that H1(S) = 0.
The guess of an estimate like the one provided by Proposition 1.2 is ex-

plained by C-K-N as follows. Suppose (x0, t0) is a singular point; then, by
Proposition 1.1, (1.12) must fail for Qr(x, t) whenever (x0, t0) ∈ Qr/2(x, t). If
we denote by M(r;x, t) the left-hand side of (1.12), then M(r;x, t) > ε1 for
a family of parabolic cylinders Qr(x, t) shrinking to (x0, t0). Because of the
relations (1.27)-(1.32) below, intuitively, we may think of p as being quadratic
in u. So, heuristically, we are led to the conclusion

|u| ≥ C

r
, as r = (|x− x0|2 + |t− t0|)1/2 → 0,

in view of which it is natural to guess that

|∇u|(x, t) ≥ C

r2
as (x, t)→ (x0, t0);

Proposition 1.2 is then, in a certain sense, a rigorous formulation for this guess.

1.4 Interpolation Inequalities

In this section we state and prove an interpolation inequality which, in partic-
ular, shows that u ∈ L10/3(ΠT ), for any weak solution of (1.1)-(1.3). We first
recall the following well-known Sobolev inequality (for the proof see, e.g., [3],
p.141). For an open set U ⊆ Rn, let W 1,q(U) denote the Sobolev space of the
functions in Lq(U) whose first-order partial derivatives, in the sense of distribu-
tions, also belong to Lq(U). For x ∈ Rn, denote B(x, r) the open ball of center
x and radius r > 0. If 1 ≤ q < n, define

q∗ ≡ nq

n− q
.

Lemma 1.1. For each 1 ≤ q < n there exists a constant C, depending only on
q and n, such that, for all u ∈W 1,q(B(x, t)),(

�
∫
B(x,r)

|u− (u)x,r|q
∗
dy

)1/q∗

≤ Cr

(
�
∫
B(x,r)

|Du|q dy

)1/q

(1.23)

for all B(x, r) ⊆ Rn, where (u)x,r = �
∫
B(x,r)

u dy and �
∫
B

= Ln(B)−1

∫
B

.
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Using the above lemma we get the following interpolation inequality.

Lemma 1.2. For u ∈W 1,2(R3) we have∫
Br

|u|q ≤ C
(∫

Br

|∇u|2
)a(∫

Br

|u|2
)q/2−a

+
C

r2a

(∫
Br

|u|2
)q/2

, (1.24)

where C is a constant independent of r, Br is a ball of radius r, and

2 ≤ q ≤ 6, a =
3

4
(q − 2).

If u has mean zero or Br is replaced by all R3, then the second term on the
right-hand side of (1.24) may be ommited.

Proof. We first notice that, for n = 3, 2∗ = 6. If q = 2(1 − θ) + 6θ, 0 ≤ θ ≤ 1,
Hölder’s inequality gives

‖u‖qLq(Br) ≤ ‖u‖
2(1−θ)
L2(Br)‖u‖

6θ
L6(Br).

Setting a = 3θ, we get a = 3
4 (q − 2), (1− θ) = q/2− a, and from (1.23)

‖u‖6θL6(Br) ≤ C‖∇u‖
2a
L2(Br) +

C

r2a

(∫
Br

|u|2
)a

,

which substituting in the former inequality gives the desired result.

When u is a weak solution, (1.24) with q = 10
3 , so that a = 1, gives

∫
Br

|u|10/3 ≤ C
(∫

Br

|u|2
)2/3 ∫

Br

|∇u|2 + Cr−2

(∫
Br

|u|2
)5/3

. (1.25)

In particular, from (1.4), (1.5) and (1.25) it follows∫ T

0

∫
Br

|u|10/3 ≤ C(E
2/3
0 E1 + r−2E

5/3
0 T ), (1.26)

where the second term on the right-hand side may be ommited if Br is replaced
by R3.
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1.5 Relation between u and p

Here we discuss the relation between u and p, when (u, p) is a weak solution of
(1.1)-(1.3). We observe first that taking formally the divergence of (1.1) and
using (1.2) gives

∆p = −
∑
i,j

∂2

∂xi∂xj
(uiuj), on ΠT . (1.27)

Actually, from (1.7) with ζ(x, t) = χ(t)∇φ(x), for χ ∈ C∞0 (0, T ), φ ∈ C∞0 (R3),
using (1.6), one easily deduces that (1.27) holds in the sense of the distributions
in R3, for almost all t ∈ (0, T ). Equation (1.27) holding for a.e. t ∈ (0, T ), allows
one to obtain p explicitly in terms of u:

p =
∑
i,j

− 3

4π

(
∇ij

1

|x|

)
∗ (uiuj). (1.28)

In the right-hand side of (1.28), the operators

Tij(g) = − 3

4π

(
∇ij

1

|x|

)
∗ g

should be viewed as singular integral operators (see [17]). Actually, we have

Tij = RiRj ,

where Ri is the i-th Riez transform, defined by (cf., [17], p.57)

Ri(f)(x) = lim
ε→0

2

π2

∫
|y|≥ε

yi
|y|n+1

f(x− y) dy, i = 1, 2, 3.

Since the Riez transforms are bounded operators from Lq(R3) to Lq(R3), for
1 < q < ∞, which follows from a general result on singular integral operators
of Calderón and Zygmund (cf., [17], p.39), we obtain∫

R3

|p|q ≤ C(q)

∫
R3

|u|2q dx, 1 < q <∞. (1.29)

In particular, for a weak solution on ΠT , from (1.26) one gets∫ T

0

∫
R3

|p|5/3 ≤
∫ T

0

∫
R3

|u|10/3 ≤ CE2/3
0 E1. (1.30)
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Hence, the condition p ∈ L5/3(ΠT ) in Definition 1.1 is, in fact, redundant in the
presence of (1.4), (1.5).

We will also need local Lq estimates for p in terms of u. These can be
obtained by decomposing a certain localization of p as follows. Let Ω, Ω̄1 be
open bounded subsets of R3 with Ω̄1 ⊆ Ω, and let φ ∈ C∞0 (Ω) with φ = 1 in a
neighborhood of Ω̄1. At any time we have

φ(x)p(x, t) =− 3

4π

∫
R3

1

|x− y|
∆y(φp) dy

(1.31)

= − 3

4π

∫
R3

1

|x− y|
[p∆φ+ 2(∇φ,∇p) + φ∆p] dy.

Using (1.27) to substitute ∆p in (1.31) and integrating by parts one obtains
different decompositions of φp. One which we shall use is the following:

φp = p̃+ p3 + p4,

p̃ =
3

4π

∫
∇yiyj

(
1

|x− y|

)
φuiuj dy,

p3 =
3

2π

∫
xi − yi
|x− y|3

(∇yjφ)uiuj +
3

4π

∫
1

|x− y|
(∇yiyjφ)uiuj dy,

p4 =
3

4π

∫
1

|x− y|
p(y)∆yφdy +

3

2π

∫
xi − yi
|x− y|3

p(y)∇yiφdy.

(1.32)

Again the integral defining p̃ is to be understood in the same way as (1.28), and
(1.32) is valid for a.e. t.

1.6 Weak continuity of u as a function of t

In this section we briefly discuss the weak continuity with respect to t of weak
solutions of (1.1)-(1.3). This is a well known fact (see, e.g., [18]) and in the
present context means that∫

R3

u(x, t) · w(x) dx→
∫
R3

u(x, t0) · w(x), for each w ∈ L2(R3) as t→ t0.

(1.33)
This can be seen as follows. First we notice that it suffices to show (1.33) for
w ∈ C∞0 (R3). Let 0 < t1 < t2 and choose ζ in (1.7) of the form ζ(x, t) =
χh(t)w(x), where χh ∈ C∞0 (0,∞) satisfies: χh(t) = 0 out of (t1, t2), χh(t) = 1
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on (t1 +h, t2−h), h < (t2− t1)/2, and χh is monotone over each of the intervals
(t1, t1 + h) and (t2 − h, t2). From (1.7) we get∫ T

0

dχh

dt
(t)

∫
R3

u(x, t)w(x) dx dt =

∫ t2

t1

∫
R3

χh(t)R(x, t) dx dt,

for a certain function R(x, t) which is integrable over ΠT . Hence, making h→ 0
we get ∫

R3

(u(x, t2)− u(x, t1))w(x) dx dt =

∫ t2

t1

∫
R3

R(x, t) dx dt,

assuming that t1 and t2 are Lebesgue points of
∫
R3 u(x, t)w(x) dx. We then see

that the left-hand side of the above equation goes to 0 as t2 approaches t1 and
this proves (1.33). A slight modification of the preceding argument shows that
u(x, t) ⇀ u0(x) as t → 0. The weak continuity of u with respect to t implies
that (1.4) holds for all t. Also, if (u, p) is a suitable weak solution on ΠT , then,
for each t ∈ (0, T ) and each φ ∈ C∞0 (ΠT ), φ ≥ 0 and suppφ ⊆ Ω × (a, b),
0 ≤ a < b ≤ T , we have ∫

Ω×{t}
|u|2φ+ 2

∫ t

a

∫
Ω

|∇u|2φ

≤
∫ t

a

∫
Ω

[|u|2(φt + ∆φ) + (|u|2 + 2p)u · ∇φ],

(1.34)

which follows from (1.8) by an argument similar to the one used above to prove
(1.33). Indeed, we replace φ in (1.8) by φ(x, s)χ((t−s)/h), h > 0, where χ(s) is
smooth, 0 ≤ χ ≤ 1, χ(s) = 0 for s ≤ 0 and χ(s) = 1, for s ≥ 1. Letting h → 0
gives (1.34) for a.e. t, and by weak continuity we obtain (1.34) for all t ∈ (0, T ).

1.7 The measures Hk and Pk

The results in [2] are stated in terms of certain measures Pk, k = 5/3 for Schef-
fer’s theorem and k = 1 for C-K-N’s theorem, defined in a manner analogous
to the Hausdorff measures Hk, but using the parabolic metric on R3 ×R. Both
measures are special cases of a construction due to Caratheodory, which may
be found in [4]. For any X ⊆ R3 × R and k ≥ 0, C-K-N define

Pk(X) = lim
δ→0+

Pkδ (X),

Pkδ (X) = inf

{ ∞∑
i=1

rki : X ⊆ ∪iQri , ri < δ

}
,
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where Qr represents any “parabolic” cylinder, that is, one with radius r in
space and r2 in time. Pk is then an outer measure, for which all Borel sets are
measurable. The Hausdorff measure Hk is defined in an entirely similar manner,
but with Qri replaced by an arbitrary closed subset of R3 × R of diameter at
most δ. Actually, one usually normalizes Hk so that, for integer k, it agrees
with the surface area on smooth k-dimensional surfaces. Clearly,

Hk ≤ C(k)Pk.

1.8 A covering lemma

Here we explicitly state and present the proof of the Vitali’s type covering
lemma mentioned in section 1.3 (cf. [2], Lemma 6.1). It is in fact the analogue
for parabolic cylinders of the well known Vitali lemma for balls (see, eg., [3]).

Lemma 1.3. Let T be any family of parabolic cylinders Qr(x, t) contained in a
bounded subset of R3 ×R. Then, there exists a finite or denumerable subfamily
T ′ = {Qi = Qri(xi, ti) } such that

Qi ∩Qj = ∅ for i 6= j, (1.35)

∀Q ∈ T , ∃Qri(xi, ti) ∈ T ′, such that Q ⊆ Q5ri(xi, ti). (1.36)

Proof. The elements of T ′ are chosen inductively, just as in the version for
balls in Euclidean spaces. Let T0 = T and choose Q1 = Qr1(x1, t1) such that
r1 ≥ 2

3 sup
Qr∈T

r; once Qk, k = 1, . . . , n, are chosen, let

Tn = {Q ∈ T : Q ∩Qk = ∅, 1 ≤ k ≤ n }.

If Tn 6= ∅, we choose Qn+1 ∈ T so that

for any Q = Qr(x, t) ∈ Tn, we have r ≤ 3

2
rn+1. (1.37)

Otherwise the process terminates and T ′ is finite. Property (1.35) is clear from
the construction. To prove (1.36), note first that if T ′ is infinite then rn → 0
as n → ∞. Hence, given any Q = Qr(x, t) ∈ T \ T ′, there exists n ≥ 0 such
that Q ∈ Tn but Q /∈ Tn+1. Then Q ∩Qn+1 6= ∅, and by (1.37), r ≤ 3

2rn+1. It
follows that

Q ⊆ Q5rn+1(xn+1, tn+1).
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Chapter 2

Scheffer’s Theorem:
H5/3(S) = 0

This chapter is devoted to the proof of Proposition 1.1, which, together with
Scheffer’s existence result (see Chapter 4), gives the following theorem of Schef-
fer [14].

Theorem 2.1. There exists a globally defined (T =∞) weak solution of (1.1)-
(1.3) whose set of singular points S satisfies H5/3(S) = 0.

Actually, the result of Scheffer in [14] is stated asserting only that H2(S) <
+∞, but an easy modification of his arguments leads to H5/3(S) = 0. Also,
Scheffer gives more information about the regularity of the suitable weak solu-
tion (u, p) out of S. Namely, he establishes that u coincides a.e. in R3 × R+\S
with a continuous function. Further, he proves that S ∩ {(x, t) : t ≥ ε} is
compact for every ε > 0. While the latter can follow as a consequence of Propo-
sition 1.1, slightly adapting Scheffer’s arguments, to prove the continuity of u
out of S, after redefining it on a set of measure zero, Scheffer makes use of some
results of his in [13]. We shall not enter into these details here.

2.1 Dimensionless Estimates

In this section we prove estimates involving integral functionals of dimension
zero, in the sense of (1.9). These estimates play a decisive role in the proof of

13
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Proposition 1.1. Let

Qρ = Qρ(0, 0) = {(x, t) : |x| < ρ, −ρ2 < t < 0},

and consider a pair of measurable functions u and p defined on Qρ. We define
the following quantities, for r ≤ ρ:

A(r) = sup
−r2<t<0

r−1

∫
Br×{t}

|u|2, (2.1)

δ(r) = r−1

∫∫
Qr

|∇u|2, (2.2)

G(r) = r−5/3

∫∫
Qr

|u|10/3, (2.3)

D(r) = r−5/3

∫∫
Qr

|p|5/3, (2.4)

L(r) = r−2

∫∫
Qr

|u||p− p̄r|. (2.5)

Here Qr = Qr(0, 0), Br = {x : |x| < r}, and

p̄r = p̄r(t) = �
∫
Br

p(y, t) dy.

In this section we use only the fact that the quantities defined by (2.1)-(2.5) are
finite and

∆p = −
3∑

i,j=1

∂2

∂xi∂xj
uiuj , ∇ · u = 0, (2.6)

on Bρ × {t} for almost every t, −ρ2 < t < 0. Note that each of the quantities
(2.1)-(2.5) has dimension zero, in the sense of (1.9). The following two lemmas
provide estimates for G(r) and L(r) in terms of A, δ and D.

Lemma 2.1. For r ≤ ρ,

G(r) ≤ C

{(
r

ρ

)10/3

A(ρ)5/3 +
(ρ
r

)5/3

A(ρ)2/3δ(ρ)

+
(ρ
r

)10/3

A(ρ)5/6δ(ρ)5/6

}
. (2.7)
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In particular,

G(r) ≤ C{A(r)5/3 +A(r)2/3δ(r) +A(r)5/6δ(r)5/6}. (2.8)

Proof. Let r < ρ, and |u|2ρ = 1
|Bρ|

∫
|u|2dx. We have∫

Br

|u|2 ≤
∫
Br

||u|2 − |u|2ρ|+ Cr3|u|2ρ

≤ Cρ

∫
Bρ

|u||∇u|+ Cr3ρ−2A(ρ)

≤ Cρ

(∫
Bρ

|u|2
)1/2(∫

Bρ

|∇u|2
)1/2

+ Cr3ρ−2A(ρ)

≤ Cρ3/2A(ρ)1/2

(∫
Bρ

|∇u|2
)1/2

+ Cr3ρ−2A(ρ).

Replacing in (1.25), we get∫
Br

|u|10/3 ≤ C

(∫
Br

|u|2
)2/3 ∫

Br

|∇u|2 + Cr−2

(∫
Br

|u|2
)5/3

≤ Cρ2/3A(ρ)2/3

∫
Bρ

|∇u|2

+ Cr−2

ρ5/2A(ρ)5/6

(∫
Bρ

|∇u|2
)5/6

+
r5

ρ10/3
A(ρ)5/3


≤ Cρ2/3A(ρ)2/3

∫
Bρ

|∇u|2 + C
ρ5/2

r2
A(ρ)5/6

(∫
Bρ

|∇u|2
)5/6

+ C
r3

ρ10/3
A(ρ)5/3.

Integrating in t over (−r2, 0), we obtain

∫∫
Qr

|u|10/3 ≤ Cρ2/3A(ρ)2/3

∫∫
Qρ

|∇u|2 + C
ρ5/2

r5/3
A(ρ)5/6

∫∫
Qρ

|∇u|2


5/6

+ C
r5

ρ10/3
A(ρ)5/3.
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Finally, dividing by r5/3 we get

r−5/3

∫∫
Qr

|u|10/3 ≤ C
(ρ
r

)5/3

A(ρ)2/3δ(ρ) + C
(ρ
r

)10/3

A(ρ)5/6δ(ρ)5/6

+ C
(ρ
r

)10/3

A(ρ)5/3,

which gives the desired conclusion.

Lemma 2.2. Let r ≤ 1
2ρ. Then

L(r) ≤ C
(
r

ρ

)9/5

G(r)3/10D(ρ)3/5 + C

(
r

ρ

)9/5

G(r)3/10G(ρ)3/5

CG(r)3/10G(2r)3/5 + Cr3G(r)3/10 sup
−r2<t<0

∫
2r<|y|<ρ

|u|2

|y|4
dy.

(2.9)

Proof. We use the decomposition (1.32) for p, with the function φ chosen so
that

φ(y) = 1 if |y| ≤ 3

4
ρ , φ(y) = 0 if |y| ≥ ρ,

|∇iφ| ≤ Cρ−1, |∇i,jφ| ≤ Cρ−2.
(2.10)

We decompose p̃ further as p̃ = p1 + p2,

p1 =
3

4π

∫
|y|<2r

∇yiyj
(

1

|x− y|

)
· φuiuj dy,

p2 =
3

4π

∫
|y|>2r

∇yiyj
(

1

|x− y|

)
· φuiuj dy.

We note that

|p− pr| ≤
4∑
i=1

|pi − pi|, pi = �
∫
Br

pi,

and we estimate each of the the four terms.
For p1 we recall that the operators

Tij(ψ) =

(
∇ij

1

|x|

)
∗ ψ
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are bounded from Lq(R3) into itself, for 1 < q <∞, by the Calderón-Zygmund
theorem. Taking ψ = φuiuj |B2r and q = 5

3 we conclude that

‖p1‖L5/3(Br) ≤ C
(∫

B2r

|u|10/3

)3/5

and so∫
Br

|u||p1 − p1| ≤ Cr3/10

(∫
Br

|u|10/3

)3/10(∫
Br

|p1|5/3
)3/5

≤ Cr3/10

(∫
Br

|u|10/3

)3/10(∫
B2r

|u|10/3

)3/5

.

(2.11)

For p2, p3 and p4 we estimate |pi − pi| uniformly on Br, using the mean value
theorem. Indeed, for |x| < r,

|∇p2(x)| ≤ C
∫

2r<|y|<ρ

(
|u|2

|y|4

)
dy,

|∇p3(x)| ≤ Cρ−4

∫
Bρ

|u|2,

and

|∇p4(x)| ≤ Cρ−4

∫
Bρ

|p|.

Estimating for i = 2, 3 by∫
Br

|u||pi − pi| ≤ Cr21/10

(∫
Br

|u|10/3

)3/10

sup
x∈Br

|pi(x)− pi|

≤ Cr31/10

(∫
Br

|u|10/3

)3/10

sup
x∈Br

|∇pi|,
(2.12)

we see that∫
Br

|u||p2 − p2| ≤ Cr31/10

(∫
Br

|u|10/3

)3/10 ∫
2r<|y|<ρ

|u|2

|y|4
dy, (2.13)∫

Br

|u||p3 − p3| ≤ C
r31/10

ρ4

(∫
Br

|u|10/3

)3/10 ∫
Bρ

|u|2 (2.14)

≤ Cr3/10

(
r

ρ

)14/5(∫
Br

|u|10/3

)3/10
(∫

Bρ

|u|10/3

)3/5

.
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For p4 we have

∫
Br

|u||p4 − p4| ≤ C
(∫

Br

|u|
)

sup
x∈Br

|p4(x)− p4| (2.15)

≤ C r

ρ4

(∫
Br

|u|
)(∫

Bρ

|p|

)
.

Integrating each of the inequalities (2.13)-(2.15) in time and using Hölder’s
inequality as appropriate, we obtain∫∫
Qr

|u||p1 − p1| ≤ Cr2G(r)3/10G(2r)3/5,

∫∫
Qr

|u||p2 − p2| ≤ Cr5G(r)3/10 sup
−r2<t<0

∫
|u|2

|y|4
dy,

∫∫
Qr

|u||p3 − p3| ≤ Cr2

(
r

ρ

)9/5

G(r)3/10G(ρ)3/5,

∫∫
Qr

|u||p4 − p4| ≤ C
r

ρ4
r1/5

(∫ 0

−r2

(∫
Br

|u|
)10/3

)3/10
(∫ 0

−r2

(∫
Bρ

|p|
)5/3)3/5

≤ C r
33/10

ρ14/5

∫∫
Qr

|u|10/3

3/10
∫∫
Qρ

|p|5/3


3/5

= Cr2

(
r

ρ

)9/5

G(r)3/10D(ρ)3/5.

Hence, the assertion follows by summing the above inequalities, using

∫∫
Qr

|u||p− pr| ≤
4∑
i=1

∫∫
Qr

|u||pi − pi|,

and dividing by r2.
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2.2 The Inductive Argument

We pass now to the actual proof of Proposition 1.1. We first recall that if
φ ∈ C∞(Q1(0, 0)), φ ≥ 0, and φ vanishes near {|x| = 1} ∪ {t = −1}, then, for
−1 < s < 0,∫

B1×{s}
|u|2φ+ 2

∫ s

−1

∫
B1

|∇u|2φ

≤
∫ s

−1

∫
B1

|u|2(φt + ∆φ) +

∫ s

−1

∫
B1

(|u|2 + 2p)u · ∇φ. (2.16)

The presence of the factor φt + ∆φ in the first integral on the right-hand side
of inequality (2.16) prompts one to choose the test function

φ∗(x, t) = χ(x, t)(s− t)−3/2exp{−|x− a|2/4(s− t)}

defined on {(x, t) : t < s}, where 0 ≤ χ ≤ 1 is a smooth, compactly supported
function equal to one near (a, s). Where χ = 1, φ∗ is a constant times the
fundamental solution of the backward heat equation φt+∆φ = 0 with singularity
at (a, s). Therefore, using φ∗ in (2.16) leads formaly to a bound for |u|2(a, s).
However, this approach fails because of the lack of a suitable bound for the
last term on the right of (2.16). Scheffer’s idea, as pointed out in [2], was to
approximate the singular test function φ∗ by a sequence of smoother ones; that
is, to apply (2.16) to a sequence of test functions {φn}∞n=1, where φn is more or
less a smoothing of φ∗ of order 2−n. The argument becomes an inductive one,
in which the estimates from Section 2.1 are used at each stage to bound the
right-hand side of (2.16) with φ = φn+1 in terms of the left-hand side of (2.16)
with φ = φk, k ≤ n. Roughly speaking, the right-hand side of (2.16) behaves
like a 3

2 power of
∫
|u|2 +

∫∫
|∇u|2, which follows with the help of the estimates

of Section 2.1. Hence, if in a first run we obtain that
∫
|u|2 +

∫∫
|∇u|2 is small,

say ≤ ε̄2/3, this smallness is improved (by a power 3
2 ) in a second run through

(2.16), say, ≤ Cε̄ ≤ ε̄2/3, for ε̄ sufficiently small, and the inductive iteration can
be carried out successfully.

2.2.1 Step 1: Setting up the induction

Our hypothesis is ∫∫
Q1

(|u|10/3 + |p|5/3) ≤ ε1, (2.17)
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with Q1 = Q1(0, 0). We shall show, for suitable choice of the constants, that

�
∫
|x−a|<rn

|u|2(x, s) dx ≤ C0ε
3/5
1 , (2.18)

for each (a, s) ∈ Q1/2(0, 0) and each n ≥ 2, where

rn = 2−n.

Therefore one concludes that

|u|2(a, s) ≤ C0ε
3/5
1 = C1

provided that (a, s) is a Lebesgue point for u, hence almost everywhere in
Q1/2(0, 0).

Let (a, s) ∈ Q1/2(0, 0) be a fixed but arbitrary point. Note that Q1/2(a, s) ⊆
Q1(0, 0), so that ∫∫

Q1/2(a,s)

(|u|10/3 + |p|5/3) ≤ ε1. (2.19)

Let
Qn = Qrn(a, s), n = 1, 2, . . .

The procedure will consist in proving inductively that, for n ≥ 3,(
�
∫∫
Qn
|u|10/3

)9/10

+ r1/5
n �
∫∫
Qn
|u||p− pn| ≤ ε

3/5
1 , (2.20)

and, for n ≥ 2,

sup
s−r2n<t≤s

�
∫
|x−a|<rn

|u|2 dx+ r−3
n

∫∫
Qn

|∇u|2 ≤ C0ε
3/5
1 , (2.21)

where �
∫∫

denotes an average, and

pn = pn(t) = �
∫
|x−a|<rn

p dx.

To begin with we assume ε1 ≤ 1, and we shall impose several further smallness
conditions on ε1 as we proceed. Clearly, (2.21) includes the assertion (2.18);
thus once (2.21) is established for all n ≥ 2 the proof will be complete.
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We start the induction by proving (2.21)2, which can be deduced from (2.19),
using the energy inequality (2.16). Indeed, choosing a smooth function φ ≥ 0
with φ ≡ 1 on Q2 and suppφ ⊆ Q1, we see from (2.16) that the left-hand side
of (2.21)2 is bounded by

C
{∫∫
Q1

|u|2 +

∫∫
Q1

(|u|3 + |u||p|)
}

which, by Hölder’s inequality and (2.19) is at most C0ε
3/5
1 , provided ε1 is small.

2.2.2 Step 2: (2.21)k, 2 ≤ k ≤ n, implies (2.20)n+1 if n ≥ 2

To achieve this we use the lemmas of Section 2.1. In terms of the dimensionless
quantities A(r) and δ(r), our inductive hypotesis is

A(rk) + δ(rk) ≤ C0ε
3/5
1 r2

k, 2 ≤ k ≤ n, (2.22)

and we also know, from (2.19), that

G(r1) +D(r1) ≤ Cε1. (2.23)

By Lemma 2.1, (2.8), we deduce from (2.22) that

r−5/3
n

∫∫
Qn

|u|10/3 = G(rn) ≤ Cε1r
10/3
n (2.24)

so that (
�
∫∫
Qn+1

|u|10/3

)9/10

≤ C
(
�
∫∫
Qn
|u|10/3

)9/10

≤ C∗ε9/10
1 . (2.25)

Therefore, if ε1 is so small that

C∗ε
3/10
1 ≤ 1/2 (2.26)

we get (
�
∫∫
Qn+1

|u|10/3

)9/10

≤ 1

2
ε

3/5
1 , (2.27)

which is half of (2.20)n+1.
For the second half of (2.20)n+1 we use Lemma 2.2 with ρ = 1/4 and r = rn.

We have
G(rn+1) ≤ CG(rn) ≤ Cε1r

10/3
n
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and

A(rn+1) ≤ CA(rn) ≤ Cε3/5
1 r2

n,

by (2.24) and (2.22). On the other hand, D( 1
4 ) ≤ Cε1, by (2.23). The terms on

the right side of (2.9) may therefore be estimated as follows, assuming ε1 ≤ 1:

r
9/5
n+1G(rn+1)3/10D(

1

4
)3/5 ≤ Cr14/5

n ε
9/10
1 ,

r
9/5
n+1G(rn+1)3/10G(

1

4
)3/5 ≤ Cr14/5

n ε9/10,

G(rn+1)3/10G(rn)3/5 ≤ Cr3
nε

9/10
1 ,

and

r3
n+1G(rn+1)3/10 sup

s−r2n+1<t<s

∫
rn<|y−a|<1/4

|u|2

|y|4
≤ Cr4

nε
3/10
1

n∑
k=2

r−3
k A(rk)

≤ Cr4
nε

9/10
1

n∑
k=2

r−1
k

≤ Cr3
nε

9/10.

Noting that rn ≤ 1, we conclude that, for ε1 ≤ 1,

L(rn+1) ≤ Cr14/5
n ε

9/10
1 ,

from which it follows

r
1/5
n+1�
∫∫
Qn+1

|u||p− pn+1| ≤ Cr−14/5
n L(rn+1) ≤ C∗∗ε9/10

1 ,

for some absolute constant C∗∗. We then require that ε1 be small enough to
satisfy

C∗∗ε
3/10
1 ≤ 1

2
, (2.28)

so that

r
1/5
n+1�
∫∫
Qn+1

|u||p− pn+1| ≤
1

2
ε

3/5
1 . (2.29)

From (2.27) and (2.29) we conclude (2.20)n+1.
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2.2.3 Step 3: (2.20)k, 3 ≤ k ≤ n, implies (2.21)n if n ≥ 3.

We apply the generalized energy inequality (2.16) with a suitable test function
φ = φn. To simplify the notation, we shift the coordinates in space-time to
center them at the point of interest. So, from now on the origin x = 0, t = 0
will represent the point we have denoted so far by (a, s).

We take

φn = χψn, (2.30)

where ψn is a constant times the fundamental solution of the backward heat
equation φt + ∆φ = 0 with singularity at (0, r2

n) and χ is a cutoff function.
More precisely,

ψn =
1

(r2
n − t)3/2

exp

{
−|x|2

4(r2
n − t)

}
,

and χ is C∞ on {t ≤ 0} with 0 ≤ χ ≤ 1 and

χ ≡ 1 on Q2 = Q1/4(0, 0),

χ ≡ 0 off Q1/3(0, 0).

One easily verifies that φn ≥ 0 and

∂φn
∂t

+ ∆φn = 0 on Q2, (2.31)∣∣∣∣∂φn∂t + ∆φn

∣∣∣∣ ≤ C everywhere, (2.32)

1

C
r−3
n ≤ φn ≤ Cr−3

n , |∇φn| ≤ Cr−4
n on Qn n ≥ 2, (2.33)

φn ≤ Cr−3
k , |∇φn| ≤ Cr−4

k on Qk−1\Qk, 1 ≤ k ≤ n, (2.34)

for a suitable absolute constant C, independent of n.
Using φn as test function in (2.16), and estimating φn from below by (2.33),

we see that

sup
−r2n<t≤0

(
�
∫
|x|<rn

|u|2(x, t) dx

)
+ r−3

n

∫∫
Qn

|∇u|2 ≤ C(I + II + III),

where

I =

∫∫
Q1

|u|2|∂φn
∂t

+ ∆φn|,
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II =

∫∫
Q1

|u|3|∇φn|,

III =

∫ 0

−1/4

∣∣∣∣∫
B1

p(u · ∇φn)

∣∣∣∣ .
We must estimate each of the three terms, using (2.20)k, 3 ≤ k ≤ n, and (2.19).

The estimate for I follows easily using (2.32), Hölder’s inequality and (2.19)
to obtain

I ≤ C

∫∫
Q1

|u|2

 ≤ C
∫∫
Q1

|u|10/3


3/5

≤ Cε3/5
1 .

We estimate II using (2.33), (2.34), and (2.20)k, 3 ≤ k ≤ n, to get

II ≤ C
n∑
k=1

r−4
k

∫∫
Qk

|u|3

≤ C
k∑
k=1

r
−7/2
k

∫∫
Qk

|u|10/3


9/10

≤ Cε3/5
1

n∑
k=1

rk ≤ Cε3/5
1 .

The estimate for III is more delicate, since the available estimates are not
good to bound

∫∫
|u||p||∇φn|. We must instead take advantage of the fact that

u is divergence-free, and reduce the problem to one involving the oscillation of
p. For each k ≥ 1 let 0 ≤ χk ≤ 1 be a C∞ function on Q1 = Q1/2(0, 0) such
that

χk ≡ 1 on Q7rk/8(0, 0), χk ≡ 0 on Q1 \Qrk(0, 0),

and

|∇χk| ≤
C

rk
.
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Then, χ1φn = φn. Let Bk = {|x| < rk}. Thus,

III =

∫ 0

−1/4

∣∣∣∣∫
B1

p(u · ∇φn)

∣∣∣∣ ≤ n−1∑
k=1

∫ 0

−1/4

∣∣∣∣∫
B1

pu · ∇((χk − χk+1)φn)

∣∣∣∣
(2.35)

+

∫ 0

−1/4

∣∣∣∣∫
B1

pu · ∇(χnφn)

∣∣∣∣ .
We estimate the terms on the right-hand side of (2.35) separately. Since χk −
χk+1 is supported on Qk and u is divergence-free, we have for k ≥ 3∫ 0

−1/4

∣∣∣∣∫
B1

pu · ∇((χk − χk+1)φn)

∣∣∣∣ =

∫ 0

−r2k

∣∣∣∣∫
Bk

(p− pk)u · ∇((χk − χk+1)φn)

∣∣∣∣ .
Similarly, ∫ 0

−1/4

∣∣∣∣∫
B1

pu · ∇(χnφn)

∣∣∣∣ =

∫ 0

−r2n

∣∣∣∣∫
Bn

(p− pn)u · ∇(χnφn)

∣∣∣∣
while, for k = 1, 2,∫

−r2n

∣∣∣∣∫
B1

pu · ∇((χk − χk+1)φn)

∣∣∣∣ ≤ C ∫∫
Q1

|p||u|

by (2.34). Therefore,

III ≤ C
n∑
k=3

∫∫
Qk

|u||p− pk|r−4
k + C

∫∫
Q1

|u||p|.

Using the inductive hypothesis (2.20)k, 3 ≤ k ≤ n, and also (2.19) we conclude
that

III ≤ C
n∑
k=3

r
4/5
k ε

3/5
1 + Cε

3/5
1 ≤ Cε3/5

1 .

This completes the induction process and proves Proposition 1.1.
We emphasize that the various constants “C” appearing in the argument for

step 3 are universal constants that do not depend on either n or ε1. Therefore
the constants C∗ and C∗∗ in the step 2 are independent of ε1 and n. It follows
that (2.26) and (2.28) will indeed hold if ε1 is small enough, and that ε1 can be
chosen without danger of circular reasoning.
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Remark 2.1. Proposition 1.1 implies that if the dimensionless estimate∫ (∫
|u|s + |p|s/2 dx

)s′/s
dt < +∞, 10

3
< s ≤ s′, 10

3s
+

20

9s′
= 1,

holds, on some domain D = Ω × (a, b) ⊆ ΠT , then u is regular on D. Indeed,
using Hölder’s inequality we find that

lim sup
r→0

r−5/3

∫∫
Q∗r(x,t)

|u|10/3 + |p|5/3 = 0.

Actually, Proposition 1 in [2] allows to obtain a slightly stronger result, which
is the corresponding assertion with 10/3 replaced by 3 and 20/9 replaced by 2.
In this connection, see [10].



Chapter 3

C-K-N’s Theorem:
H1(S) = 0

In this chapter we derive the main result of C-K-N’s paper:

Theorem 3.1. Let (u, p) be a suitable weak solution of (1.1)-(1.3) in ΠT and
S be the set of its singular points. Then H1(S) = 0.

As was mentioned in section 1.3, Chapter 1, Theorem 3.1 is a simple con-
sequence of Proposition 1.2, which in turn was derived in [2] from a certain
“decay estimate” (cf. [2], Proposition 2, p.797). In our presentation here we
follow F. Lin’s paper [9] for the proof of Proposition 1.2 (cf. [9], Theorem 3.3),
which is slightly more direct than the one in [2].

Let
B1 =

{
x ∈ R3 : |x| < 1

}
,

Bθ =
{
x ∈ R3 : |x| < θ

}
, θ > 0,

Q?1 =
{

(x, t) ∈ R3 × R
∣∣∣ x ∈ B1, t ∈ (− 7

8 ,
1
8 )
}
.

In this chapter, by (u, p) we denote a suitable weak solution defined in Π∗1 =
R3 × (− 7

8 ,
1
8 ).

Lemma 3.1. Let (u, p) be a suitable weak solution of Navier-Stokes system in
Π∗1. Then, there exists an absolute constant C > 0 such that, for any θ ∈
(0, 1/2), ∫∫

Q?θ

|p|5/3 ≤ C


∫∫
Q?1

|u− ū|10/3 + θ3

∫∫
Q?1

|p|5/3

 , (3.1)

27
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where ū = ū(t) is the average of u(t) over the ball B1.

Proof. The pressure p is in L5/3(Π∗1) and satisfies

−∆p =
∑
i,j

∂xi∂xj (uiuj) in D′(Π∗1).

Let 0 < θ < 1/2. Let ψ(x) = χB1
(x). Consider the solution p1 ∈ L5/3 (Π∗1) of

the following equation

−∆p1 =
∑
i,j

∂xi∂xj ((ui − ūi)(uj − ūj)ψ)) in D′(Π∗1) . (3.2)

By the properties of the singular integral solution operator, there is an absolute
constant C > 0 such that:∫

Bθ

|p1|5/3dy ≤
∫
R3

|p1|5/3dy ≤ C
∫
R3

|u− ū|10/3ψ10/3dy

≤ C

∫
B1

|u− ū|10/3dy, a.e t ∈ (− 7
8 ,

1
8 ). (3.3)

Let p2 = p− p1. Then, since u is divergence-free we have:

∆p2 = 0 in D′
(
B1 ×

(
−7

8
,

1

8

))
.

By the properties of harmonic functions, for any x ∈ Bθ

p2(x, t) =
1

|B1/2(x)|

∫
B1/2(x)

p2(y)dy. a.e. t ∈
(
−7

8
,

1

8

)
.

Using Jensen inequality with exponent 5
3 in the above representation formula

and integrating in x over Bθ we get a.e. t ∈ (− 7
8 ,

1
8 )∫

Bθ(0)

|p2|5/3 ≤ Cθ3

∫
B1(0)

|p2|5/3.

Integration in t over the interval (− 7
8θ

2, 1
8θ

2) results in∫∫
Q?θ

|p2|5/3 ≤ Cθ3

∫∫
Q?1

|p− p1|5/3 ≤ Cθ3

∫∫
Q?1

|p|5/3

+Cθ3

∫∫
Q?1

|u− ū|10/3. (3.4)

Finally, from (3.3) and (3.4) we get (3.1).
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We need a scaled version of (3.1). Let 0 < ρ < 1, v = ρu(ρ2t, ρx) and
P = ρ2p(ρ2t, ρx). (v, P ) is a solution of Navier-Stockes system on Q?1. In the
above inequality written for (v, P ) we scale the integration variables and set
r = θρ, ūρ to be the average of u(t) over Bρ. We get

∫∫
Q?r

|p|5/3 ≤ C


∫∫
Q?ρ

|u− ūρ|10/3 +

(
r

ρ

)3 ∫∫
Q?ρ

|p|5/3

 , ∀ r < 1

2
ρ, (3.5)

We use Lemma 1.2, with q = 10/3, a = 1, to get for any 0 < r < 1
2ρ

∫∫
Q?r

|p|5/3 ≤ C

ρ2/8∫
−7ρ2/8

dt

∫
Bρ

|u|2dx


2/3 ∫

Bρ

|∇u|2

+ C

(
r

ρ

)3 ∫∫
Q?ρ

|p|5/3

≤ C

 sup
−7ρ2/8<t<ρ2/8

∫
Bρ×{t}

|u|2


2/3 ∫∫

Q?ρ

|∇u|2

+ C

(
r

ρ

)3 ∫∫
Q?ρ

|p|5/3. (3.6)

We introduce the following dimensionless quantities:

D?(r) = r−5/3

∫∫
Q?r

|p|5/3, G?(r) = r−5/3

∫∫
Q?r

|u|10/3,

A?(r) = sup
−7r2/8<t<r2/8

r−1

∫
Br

|u|2, δ?(r) = r−1

∫∫
Q?r

|∇u|2.

Now (3.6) reads

D?(r) ≤ C

{(ρ
r

)5/3

A?(ρ)2/3δ?(ρ) +

(
r

ρ

)4/3

D?(ρ)

}
, for r ≤ 1

2
ρ. (3.7)
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The “starred” version of (2.8) in Lemma 2.1 reads

G?(r) ≤ C

{(
r

ρ

)10/3

A?(ρ)5/3 +
(ρ
r

)5/3

A?(ρ)2/3δ?(ρ)

+
(ρ
r

)10/3

A?(ρ)5/6δ?(ρ)5/6

}
, for r ≤ ρ. (3.8)

The proof is exactly the same as that of (2.8), only replacing A,D, δ,G by
A∗, D∗, G∗, δ∗.

Lemma 3.2. For any r ≤ 1
2ρ,

A?(r) ≤ C
{(ρ

r

)
G?(ρ)3/5 +

(ρ
r

)
G?(ρ)3/10A?(ρ)1/2δ?(ρ)1/2 +

+
(ρ
r

)
G?(ρ)3/10D?(ρ)3/5

}
. (3.9)

Proof. In the generalized energy inequality (1.34), we take a test function ψ(x, t)
satisfying

0 ≤ ψ ∈ C∞0 (Q?ρ), ψ ≡ 1 on Q?3
4ρ
,

|∇ψ| ≤ cρ−1, |ψt + ∆ψ| ≤ cρ−2,
r ≤ ρ/2.

We have

sup
−7/8<t<1/8

∫
B1×{t}

|u|2ψ ≤
∫∫
Q?1

|u|2(ψt + ∆ψ) +

∫∫
Q?1

u · ∇ψ(|u|2 + 2p).

Then, (the term |u|2(t) = 1
|Bρ|

∫
Bρ

|u(t)|2 can be added since u is divergence-free)

A?(r) ≤ Cr−1


∫∫
Q?ρ

ρ−2|u|2 + ρ−1
(
|u|
∣∣∣|u|2 − |u|2∣∣∣)+ ρ−1|u||p|


≤ C

{(ρ
r

)
G?(ρ)3/5

+ r−1ρ−1

∫∫
Q?ρ

|u|10/3


3/10∫∫

Q?ρ

||u|2 − |u|2|3/2


2/3

ρ1/6

+
(ρ
r

)
G?(ρ)3/10D?(ρ)3/5

}
. (3.10)



31

Now, by Lemma 1.1 applied to the function |u|2, with q = 1, we obtain

∫∫
Q?ρ

||u|2 − |u|2|3/2 ≤ C
ρ2/8∫

−7ρ2/8

∫
Bρ

|u||∇u|

3/2

≤ C
ρ2/8∫

−7ρ2/8

∫
Bρ

|u|2
3/4

∫
Bρ

|∇u|2


3/4

≤ Cρ3/4A?(ρ)3/4

ρ2/8∫
−7ρ2/8

∫
Bρ

|∇u|2


3/4

≤ Cρ2A?(ρ)3/4δ?(ρ)3/4.

Inserting this estimate in (3.10) one easly gets (3.9).

We prove the following

Proposition 3.1. Let (u, p) be a suitable, weak solution of Navier-Stokes system
in Π∗1. For any ε1 > 0, there exists an absolute constant ε2 > 0, such that if

lim
ρ→0+

δ?(ρ) ≤ ε2, (3.11)

then
lim
ρ→0+

{G?(ρ) +D?(ρ)} ≤ ε1. (3.12)

Proof. We use the following notations

0 < θ < 1/4, 0 < ρ < 1,

c(θ) is any polynomial in θ−1,

K(θ, δ?(ρ)) is any finte linear combination of terms of the form

θ−αδ?(ρ)β , α, β > 0.

We write (3.7) with r = θρ and then take it to 6
5 power

D?(θρ)6/5 ≤ C
{
θ8/5D?(ρ)6/5 + θ−2A?(ρ)4/5δ?(ρ)6/5

}
≤ C

{
θD?(ρ)6/5 + θA?(ρ) + θ−14δ?(ρ)6

}
= C

{
θD?(ρ)6/5 + θA?(ρ) +K(θ, δ?(ρ))

}
. (3.13)
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Take now (3.8) with r = θρ.

G?(θρ) ≤ C
{
θ10/3A?(ρ)5/3 + θ−5/3A?(ρ)2/3δ?(ρ)

+ θ−10/3A?(ρ)5/6δ?(ρ)5/6
}

≤ C
{
θ10/3A?(ρ)5/3 + c(θ)δ?(ρ)5/3

}
,

and so
G?(θρ)3/5 ≤ C {θA?(ρ) +K(θ, δ?(ρ))} . (3.14)

Now we estimate A?(θρ). Take r = 2θρ in (3.7) and (3.8)

D?(2θρ) ≤ C
{
θ4/3D?(ρ) + θ−5/3A?(ρ)2/3δ?(ρ)

}
, (3.15)

G?(2θρ) ≤ C
{
θ10/3A?(ρ)5/3 + θ−5/3A?(ρ)2/3δ?(ρ)

+ θ−10/3A?(ρ)5/6δ?(ρ)5/6
}
, (3.16)

and r = θρ, ρ = 2θρ in (3.9)

A?(θρ) ≤ C
{
G?(2θρ)3/5 +G?(2θρ)3/10A?(2θρ)1/2δ?(2θρ)1/2 +

+ G?(2θρ)3/10D?(2θρ)3/5
}
. (3.17)

Now
A?(2θρ) ≤ Cθ−1A?(ρ),

G?(2θρ)3/10A?(2θρ)1/2δ?(2θρ)1/2 ≤ θA?(ρ) + Cθ−2G?(2θρ)3/5δ?(2θρ).

Inserting these inequalities in (3.17) we get

A?(θρ) ≤ C
{(

1 + θ−2δ?(2θρ)
)
G?(2θρ)3/5 + θA?(ρ)

+ G?(2θρ)3/10D?(2θρ)3/5
}
. (3.18)

Substitute G(2θρ) and D(2θρ) in the last inequality by (3.16) and (3.15)

A?(θρ) ≤ C
(
θA?(ρ) + θ−1A?(ρ)2/5δ?(ρ)3/5 + θ−2A?(ρ)1/2δ?(ρ)1/2

)
×

(
1 + θ−2δ?(2θρ)

)
+ C

[
θA?(ρ)1/2 + θ−1/2A?(ρ)1/5δ?(ρ)3/10 + θ−1A?(ρ)1/4δ?(ρ)1/4

]
×

[
θ4/5D?(ρ)3/5 + θ−1A?(ρ)2/5δ?(ρ)3/5

]
≡ I1 + I2.
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We estimate I1(note that δ?(2θρ) ≤ Cθ−1δ?(ρ)).

I1 ≤ CθA?(ρ) + c(θ)A?(ρ)δ?(ρ)

+ c(θ)
(
A?(ρ)2/5(δ?(ρ)8/5 + δ?(ρ)3/5) +A?(ρ)1/2(δ?(ρ)3/2

+ δ?(ρ)1/2)
)

≤ CθA?(ρ) + c(θ)A?(ρ)δ?(ρ) +K(θ, δ?(ρ)), (3.19)

and I2

I2 ≤ Cθ9/5A?(ρ)1/2D?(ρ)3/5 + c(θ)A?(ρ)1/5D?(ρ)3/5δ?(ρ)3/10

+ c(θ)A?(ρ)1/4D?(ρ)3/5δ?(ρ)1/4

+ c(θ)
{
A?(ρ)9/10δ?(ρ)3/5 +A?(ρ)3/5δ?(ρ)9/10

+ A?(ρ)13/20δ?(ρ)17/20
}
. (3.20)

We bound each term on the right in (3.20).

θ9/5A?(ρ)1/2D?(ρ)3/5 ≤ θA?(ρ) + θD?(ρ)6/5,

c(θ)A?(ρ)1/5D?(ρ)3/5δ?(ρ)3/10 ≤ θA?(ρ) + c(θ)D?(ρ)3/4δ?(ρ)3/8

≤ θA?(ρ) + θD?(ρ)6/5 + c(θ)δ?(ρ),

c(θ)A?(ρ)1/4D?(ρ)3/5δ?(ρ)1/4 ≤ θA?(ρ) + c(θ)D?(ρ)4/5δ?(ρ)1/3

≤ θA?(ρ) + θD?(ρ)6/5 + c(θ)δ?(ρ),

and also

c(θ)
{
A?(ρ)9/10δ?(ρ)3/5 +A?(ρ)3/5δ?(ρ)9/10 +A?(ρ)13/20δ?(ρ)17/20

}
≤ θA?(ρ) +K(θ, δ?(ρ)).

We use the above estimates, obtaining

I2 ≤ C
{
θA?(ρ) + θD?(ρ)6/5 +K(θ, δ?(ρ))

}
. (3.21)
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Hence, (3.19) and (3.21) give

A?(θρ) ≤ C
{
θA?(ρ) + θD?(ρ)6/5 + c(θ)A?(ρ)δ?(ρ) +K(θ, δ?(ρ))

}
. (3.22)

Inequalities (3.22) and (3.13) together give

A?(θρ) +D?(θρ)6/5 ≤ C
{
θA?(ρ) + θD?(ρ)6/5

+ c(θ)δ?(ρ)1/2A?(ρ) +K(θ, δ?(ρ))
}
. (3.23)

Choose θ such that Cθ < 1/4. Let ε > 0 be fixed and choose ρ0 > 0 such that

C
{
K(θ, δ?(ρ)) + c(θ)δ?(ρ)1/2

}
< min {1/4, ε/4} ,

∀ρ ≤ ρ0.

This can be achieved by choosing ε2 in (3.11), sufficiently small. We get from
(3.23) and (3.14)

A?(θρ) +D?(θρ)6/5 ≤ 1

2

{
A?(ρ) +D?(ρ)6/5

}
+
ε

4
,

G?(θρ)3/5 ≤ 1

2
A?(ρ) +

ε

4
,

0 < ρ ≤ ρ0.

Applying the last inequality recursively to the sequence of points θnρ0, we obtain

A?(θnρ0) +D?(θnρ0)6/5 ≤ 1

2n
{A?(ρ0) +D?(ρ0)}+

ε

2
,

G?(θnρ0)3/5 ≤ 1

2
A?(θn−1ρ0) +

ε

4
.

And consequently,
A?(θnρ0) +D?(θnρ0)6/5 ≤ ε,

G?(θnρ0)3/5 ≤ ε.

for sufficiently large n. We then choose ε > 0 satisfying ε5/6 + ε5/3 = ε1 to
obtain (3.12).
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Proof of Theorem 3.1. In view of Proposition 1.1 and Proposition 3.1 the asser-
tion of Proposition 1.2 is immediate and from the latter the theorem follows as
explained in chapter 1, section 1.3.

The following remarks are taken from [2].

Remark 3.1. Proposition 1.2 implies that if the dimensionless estimate∫ (∫
|∇u|2 dx

)2

dt <∞

holds, over some domain D = Ω × (a, b) ⊆ ΠT , the u is regular on D. Indeed,
Hölder’s inequality clearly implies

lim sup r−1

∫∫
Q∗r(x,t)

|∇u|2 = 0.

Remark 3.2. The set of singular times has Hausdorff 1
2 -dimensional measure

zero in R (cf. [12]). This follows from the fact that, for any X ⊆ R3 × R, its
projection ΣX onto the t-axis satisfies H1/2(ΣX) ≤ CP1(X). We leave the easy
verification as an exercise for the reader.

Remark 3.3. If u has cylindrical symmetry about some axis in space, then
singularities can occur only on the axis (cf. [6]). In fact, any off-axis singularity
would give rise to a circle of singular points, contradicting the fact that H1(S) =
0.
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Chapter 4

Existence of Suitable Weak
Solutions

In this chapter we prove the existence of a suitable weak solution for Navier-
Stokes system (see Definition 1.1 in Chapter 1). The proof given below is taken
“as it is” from Appendix 1 of [2] for the case Ω = R3.

We use the following spaces:

H1
(
R3
)

= closure of C∞0
(
R3;R3

)
in the norm ||∇u||L2(R3)

H2
(
R3
)

= closure of C∞0
(
R3;R3

)
in the norm ||u||L2(R3) + ||∆u||L2(R3)

H−1
(
R3
)

= the dual space of H1
(
R3
)

V = C∞0
(
R3;R3

)
∩ {u : divu = 0}

H = closure of V in L2
(
R3
)

V = closure of V in H1
0

(
R3
)

V ′ = the dual space of V

We use the notation:

ΠT = R3 × (0, T ), Π∗T = R3 × (−∞, T )

E0(u) = ess sup
0<t<T

∫
R3

|u|2

37
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E1(u) =

∫ T

0

∫
R3

|∇u|2

Let u0 ∈ H.

Theorem 4.1. There exist a weak solution (u, p) of the Navier-Stokes system
on ΠT satisfying:

u ∈ L2 (0, T ;V ) ∩ L∞ (0, T ;H) , (4.1)

u(t)→ u0 weakly in H as t→ 0, (4.2)

p ∈ L5/3 (ΠT ) , (4.3)

if φ ∈ C∞0 (Π∗T ) φ ≥ 0, then ∀ 0 < t < T∫
R3×{t}

|u|2φ+ 2

∫ t

0

∫
R3

|∇u|2φ ≤
∫
R3

|u0|2φ(x, 0)

+

∫ t

0

∫
R3

|u|2(φt + ∆φ) +

∫ t

0

∫
R3

(|u|2 + 2p)u∇φ (4.4)

First we establish various properties of the solutions of of linearized Navier-
Stokes system.

Lemma 4.1. Let u0 ∈ H and w ∈ C∞
(
ΠT

)
, divw = 0. Then there exist

unique functions u and p such that

u ∈ C ([0, T ], H) ∩ L2 (0, T, V ) , (4.5)

p ∈ L5/3
(
R3 × (0, T )

)
, (4.6)

ut + w · ∇u−∆u+∇p = 0 (4.7)

in the sense of distributions on ΠT ,

u(0) = u0. (4.8)

Proof. The proof of Theorem 1.1 in Chapter III in [18], which deals with the
case w = 0, can be carried over with unsubstential changes to our case. We just
emphasize some points of it. The existence of

u ∈ L2 (0, T ;V ) ∩ L∞ (0, T ;H) , (4.9)

such that for each v ∈ V

d

dt

∫
R3

(u, v) +

∫
R3

(w∇u, v) +

∫
R3

(∇u,∇v) = 0 (4.10)
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and distribution p, such that (4.7) holds, can be proved using Faedo-Galerkin
method. Then, since w · ∇u ∈ L2

(
R3 × (0, T )

)
, from (4.10) and Lemma 1.1 in

Chapter III, [18] follows
d

dt
u ∈ L2 (0, T ;V ′) .

By Lemma 1.2, Chapter III, [18] and the argument right after it

u ∈ C ([0, T ], H)

and u is the unique solution of (4.7), (4.8). Note also that, by Lemma 1.2,
u ∈ Lq (ΠT ) , 2 ≤ q ≤ 10

3 , and

||u||L10/3(ΠT ) ≤ CE
3/10
1 (u)E

1/5
0 (u). (4.11)

Taking divergence of (4.7) we get

∆p = −
∑
i,j

∂xi∂xj (wiuj). (4.12)

By the properties of the singular integral operator, as in section 1.5, there is a
unique p ∈ L5/3

(
R3 × (0, T )

)
satisfying (4.12) and∫

R3

|p|5/3 ≤ C
∫
R3

|w|5/3|u|5/3 (4.13)

with the appropriate C > 0.

Next we prove the generalized energy equality for the solution of linearized
Navier-Stokes system.

Lemma 4.2. Let u0 ∈ H and w ∈ C∞
(
ΠT

)
, divw = 0. Let (u, p) be the

solution of (4.7), (4.8). Then, for any φ ∈ C∞0 (Π∗T ) and all 0 < t ≤ T∫
R3×{t}

|u|2φ+ 2

∫∫
ΠT

|∇u|2φ =

∫
R3

|u0|2φ(x, 0) +

∫∫
ΠT

|u|2(φt + ∆φ)

+

∫∫
ΠT

(|u|2w + 2pu) · ∇φ. (4.14)

Proof. First we consider the case where suppφ ⊆ ΠT . Let f be a function
defined on ΠT . Define f by 0 on the complement of ΠT . Let fε = f ∗
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ρε(x, t), where ρε(x, t) is a standard regularization kernel in R4. Take ε <
min {dist (suppφ, {t = 0}) ,dist (suppφ, {t = T})}. Then (4.7) can be written
as

(uε)t + (w · ∇u)ε −∆uε +∇pε = 0 in ΠT∩ suppφ (4.15)

By the well known properties of the regularization, taking into an account the
integrability of (u, p), we have

uε → u in L2
(
R3 × (0, T )

)
∇uε → ∇u in L2

(
R3 × (0, T )

)
pε → p in L

5
3

(
R3 × (0, T )

)
(w∇u)ε → w∇u in L2

(
R3 × (0, T )

)
as as ε→ 0. Multiplying (4.15) by uεφ and integrating over ΠT we deduce∫

R3×{t}

|uε|2φ+ 2

∫∫
ΠT

|∇uε|2φ =

∫∫
ΠT

|uε|2(φt + ∆φ) + 2

∫∫
ΠT

pεuε · ∇φ−

2

∫∫
ΠT

(w · ∇u)εφ.

And consequently,∫
R3×{t}

|u|2φ+ 2

∫∫
ΠT

|∇u|2φ =

∫∫
ΠT

|u|2(φt + ∆φ) +

∫∫
ΠT

(2pu+ w|u|2) · ∇φ.

(4.16)

In the general case, when suppφ ∩ {t = 0} 6= ∅, we approximate φ by the
sequence of cutoff functions and proceed as in section 1.6; we leave the easy
verification to the reader.

We now return to the proof of Theorem 4.1. The idea of the proof is to
divide the time interval [0, T ] into N parts and to solve on each subinterval
the linearized Navier-Stokes system (4.7), taking for w the values of u from the
previous subinterval, mollified in a particular way.

Let ψ(x, t) be in C∞ and satisfy

ψ ≥ 0 and

∫∫
ψ dx dt = 1 (4.17)

suppψ ⊆
{

(x, t) : |x|2 < t, 1 < t < 2
}
. (4.18)
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For u ∈ L2 (0, T ;V ), let û : R3 × R→ R3 be

û(x, t) =

{
u(x, t) if (x, t) ∈ ΠT

0 otherwise
(4.19)

We set

Ψδ(u)(x, t) = δ−4

∫∫
R4

ψ
(y
δ
,
τ

δ

)
û(x− y, t− τ)dydτ.

The value of Ψδ(u) at time t clearly depend only on the values of u at times
τ ∈ (t− 2δ, t− δ).

Lemma 4.3. For any u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V ),

div Ψδ(u) = 0, (4.20)

sup
0≤t≤T

∫
R4

|Ψδ(u)|2(x, t)dx ≤ CE0(u), (4.21)

∫∫
ΠT

|∇Ψδ|2 ≤ CE1(u), (4.22)

where C denotes a universal constant.

Proof. (4.20) is straightforward due to the fact that û satisfies div û = 0 on R4.
(4.21) and (4.22) can be deduced directly from the definition of Ψδ(u).

Proof of Theorem 4.1. Let N be an integer and δ = T/N . We define (uN , pN )
to be the solution of

d

dt
uN + Ψδ(uN ) · ∇uN −∆uN +∇pN = 0 (4.23)

uN ∈ L2 (0, T ;V ) ∩ C ([0, T ], H) (4.24)

uN (0) = u0, (4.25)

by inductively solving (4.7) on each interval (mδ, (m+ 1)δ), m ∈ 1, . . . , N −1,
with initial data u(mδ). From the generalized energy equality (4.14), with
φ(x, t) ≡ 1, follows ∫

R3×{t}

|uN |2 + 2

∫
ΠT

|∇uN |2 =

∫
R3×{t}

|u0|2. (4.26)
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This implies that

{uN} is bounded in L2 (0, T ;V ) ∩ L∞ (0, T );H)

Let V2 = closure of V in H2
(
R3
)

norm, and V ′2 = the dual of V2. From (4.23)
we deduce {

d

dt
uN

}
is bounded in L2 (0, T ;V ′2) .

By Theorem 2.1, Chapter III in [18] {uN} is pre-compact in L2 (0, T ;H). Ex-
tracting subsequence if necessary we conclude the existence of u? and p? such
that

uN → u? strongly in L2 (ΠT ) ,

weakly in L2 (0, T ;V ) , (4.27)

*-weakly in L∞ (0, T ;H) ,

pN → p? weakly in L
5
3 (ΠT ) (4.28)

Further, since {uN} is bounded in L10/3 (ΠT ), it also converges to u? in any
Lq (ΠT ) for 2 ≤ q < 10

3 . From the definition of Ψδ (note that δ = T/N) we have

Ψδ(uN )→ u? strongly in Lq (ΠT ) for 2 ≤ q < 10

3
(4.29)

The above convergence results allow us to take the limit as N → ∞ in the
weak formulation of (4.23) and conclude that (u?, p?) is a weak solution of
Navier-Stokes system. In particular u? ∈ C ([0, T ], H) and u?(0) = u0. Suppose
φ ∈ C∞ (Π∗T ), φ ≥ 0. By (4.14), for all 0 < t ≤ T ,∫

R3×{t}

|uN |2φ+ 2

∫∫
ΠT

|∇uN |2φ =

∫
R3

|u0|2φ+

∫∫
ΠT

|uN |2(φt + ∆φ)

∫∫
ΠT

(|uN |2Ψδ(uN ) + 2pNuN ) · ∇φ.

By the lower semi-continuity of the functional 2
∫∫
|∇uN |2φ and the convergence

results we obtained above we finally arrive at (4.4).
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