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PREFACE

During the last decade, a new impulse was given to the study of
planar vector fields, in particular by the introduction of ideas com-
ing from Bifurcation Theory. In the study of planar vector fields the
essencial difficulty is the control of the number of isolated periodic
orbits (limit cycles) and of their bifurcations. This was already clearly
formulated by Hilbert, for polynomial vector fields, in his Sixteenth
Problem. In a given family of vector fields X the possible compact
subsets which are limits of sequences of limit cycles are called limit
periodic sets. The study of their bifurcations is of primordial interest
for the study of local bifurcations in the family X,. In particular, it
is crucial to obtain an estimation for the number of limit cycles which
can bifurcate from any limit periodic set I" (the cyclicity of the unfold-
ing (X, T) : Cyel (X,T)). A general conjecture, which would imply
a positive answer to the Hilbert’s 16'® Problem, is that the cyclicity
of any analytic unfolding (X, T") is finite.

In chapter 1, we recall some general properties of vector fields
on surfaces of genus 0, such as the Poincaré-Bendixson property and
make a first approach to their bifurcation theory.

Limit periodic sets, which are the main subject of the text, are
introduced in chapter 2, where their general properties are established.
We prove a partial result about their structure, in the spirit of the
Poincaré-Bendixson theory, and define the eyclicity : Cyel (X, I"). We
show that the Hilbert’s problem reduces to a general conjecture on the
finite cyclicity for analytic unfoldings. This reduction is described in
detail for quadratic vector fields.

In chapter 3, we consider a single vector field (the “0-parameter
case”) and give a survey on the desingularization theory and on the
solution of the Dulac Problem : To prove that any analytic vector
field on S? has just a finite number of limit cycles. The reason for this



survey is that some ideas introduced in chapter 3 will be extended
to families in the next chapters. For the Dulac Problem, we restrict
ourselves to the case of hyperbolic graphics which can be easily studied
and generalized to families.
The last three chapters are devoted to the study of bifurcations
~of limit periodic sets and to partial proofs of the conjecture on fi-
nite cyclicity. In chapter 4, one considers regular limit periodic sets,
i.e. elliptic singular points and periodic orbits. They can be stud-
ied by standard methods of differentiable and analytic geometry. Of
particular interest is the notion of Bautin Ideal associated to analytic
unfoldings of co-codimension vector fields of “centre type”. This Ideal,
first introduced by Bautin for the study of polynomial quadratic vec-
tor fields, is extended to general ana.lytié unfoldings. Using it, one
can obtain an estimation for the cyclicity. It is also related to Mel-
nikov functions and some applications to quadratic vector fields are
developed. '
In chapter 5, one considers elementary graphics which are the
limit periodic sets whose singular points are elementary. One proves a
general structure result for the unfoldings of the transition map near a
hyperbolic saddle. This result, together with the Bautin Ideal notion,
allows a complete study of the saddle connection unfoldings. In the last
part of the chapter, one presents a review on recent results obtained
by Mourtada, El Morsalani, Il’Yashenko, Yakovenko and others, about
general elementary graphics.
The last chapter is devoted to non elementary limit periodic sets
and their desingularization. One treats in details the simplest case, a
connection at a Bogdanov-Takens cusp point, and gives some indica-
tions about a general desingularization theory for vector field families.
 The principal aim of this text was to put together results which
are dispersed in previous articles, although some results appear here
for the first time. For instance, theorems 4.2 and 5.13 give explicit
bounds for the cyclicity in terms of the Bautin Ideal and are applied
in theorem 5.14 to quadratic vector fields. The paragraph 6.2 is a
presentation of results for generic bifurcations of the cuspidal loop,



which will appear in a forthcoming publication. -
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- Chapter 1

. Families of two dimensional
- vector fields.

1.1 Vector fields on surfaces of genus 0.

In this section we will consider individual vector fields, which may be
~ considered as 0-parameter families. We will suppose that this vector
field is at least of class C!. This will be sufficient to assure existence
and uniqueness for the flow (f,z) (¢ is the time, z € S, the phase
space) and to have the qualitative properties we recall below.

1.1.1 The phase space.

We will suppose S to be a connected surface of genus 0, i.e a submani-
fold of the 2-sphere S2. This surface may be compact or not. In the first
case it may be S? or a surface with boundary, like the closed annulus
5 x [0, 1]. In this case we will assume that the vector field is tangent or
transversal to each component of the boundary 85. Later on, we will
also consider boundaries with corners, such as the square [0,1] x [0, 1],
with some natural conditions for X along the boundary.

1.1.2 The Poincaré-Bendixson property.

The principal reason to restrict ourselves to phase space of genus 0 will
be to avoid non-trivial recurrences.

1



2 CHAPTER 1. TWO DIMENSIONAL VECTOR FIELD...

For instance, if we con51der the vector field X = E?% + a— 50 on the
1 2
2-torus T2 = R*/z, with angular coordinates (8;, 8;), each orbit of X
is dense on 7% when « is irrational. This implies that the w-limit set
of each orbit is the whole phase space. On the contrary, for a 0-genus

phase space, one has the following :

Theorem 1 (Poincaré-Bendizon)

Let X a vector field on a compact surface S of genus 0.
Suppose that each singular point of X is isolated. Let -y be any orbit
of X. Then if its w-limit set w, is non empty, it falls in one of the
following 3 cases :

1) w, is a singular poini,

2) w,, is a periodic orbit,

3) w, contains a non empty subset of singular points ¥ and at least
one requler orbit. The w and a-limit set of each regular orbit in wy is
one point of 1. '

One can find a proof of the Poincaré-Bendixson theorem, for S
compact, in [MP]. The proof for a non-compact S is very similar. I
do not want to repeat it here. The basic idea of the proof is a very
simple and natural topological argument, though some details are a bit
delicate. This argument will be useful later for families, so I want to
give it in the following lemma :

Lemma 1 Let X a vector field on a surface of genus 0. (We don’t
suppose that the singular points are isolated). Lel v be any orbit and
o C 5 any interval transversal to X (i.e, for any x € a, the vector
X () is transversal to the tangent space Tpo). Then w, N contains at
most one point.

Proof Suppose that w, M ¢ contains at least two distinct points a, b.
Let z some point on =, ¢(t, z) the trajectory.

Because a,b € w,, it is p0351b1e to find three times ¢; < t3 < 3 such
that :

1) ay = (b, ) €la, b (interval on o with end points g, b),
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2) Let o, and o; the two open subintervals on ¢ with a; as end
point and containing a and b respectively. Then ¢, = {,o(tg,:c) is the
first return of (%, a;1) on o,

3) az € Op.

Let T' the simple topological closed curve, union of the interval
[21, ¢2] and the orbit arc ¢([t1,12],z). Now, because § is a surface
of genus 0, the curve T' separaies it into two connected components
A, B, by Jordan theorem.

One can choose A to be the component which contains the points
@(t,az) for all ¢t > 0 and B, the one which contains points (¢, a3) for
allt < 0 : but this is a contradiction, because we no longer can go from
@ to az by the flow of X . . »

As a consequence of the lemma, any recurrent orbit cuts any transver-
sal interval ¢ in at most one point. It is the case for periodic orbit. It
implies that any recurrent orbit is a singular point or a periodic orbit :
on a surface of genus 0, a vector field has just trivial recurrence.

If S is compact and if, as in the Theorem, all singular points of X
are isolated, then these singular points are finite in number. Moreover,
if X is analytic, the number of regular orbits which occur in item 3
of the Theorem, must be finite. We will prove this point in chapter
2, using the Desingularization Theorem. Then the third case in the
theorem reduces to a graphic, according the following definition :

Definition 1 Let X a vector field on a surface.

A graphic T for X is a compact, non-emply, invartant subset which
consist of a finite number of isolated singular points {py, - +,p,} and
regular orbits {y1,--,7e} such that the w and a-limit set of each of
these regular orbits is one of the singular points. Moreover T is the
direct image of @ S'-immersion, oriented by increasing time.

Finally, if T is the w-limit set of some trajectory -, one can choose
a transversal segment o ~ [0, 1], with 0 € I, on one side of +, such that
a return map P is defined on o, with P(0)} = 0. We will say that I is a
monodromic graphic.

We can now formulate a more precise form for the Poincaré-Bendixson
theorem in the analytic case :
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Theorem 2 (Poincaré-Bendizson theorem for C¥ vector fields).

Let X an analytic vector field with isolated singular poinis on some
compact surface of genus 0. Let y any orbil and suppose that w(vy) #.0.
Then w., is a singular point, a periodic orbit or @ monodromic graphic.

1.1.3 Phase portrait.

A consequence of the Poincaré-Bendixson theory is that, in general, a
vector field on a surface of genus 0, admits simple classification of its
topological type. To make this precise, we need a notion of equivalence
(of topological type) between vector fields.

Definition 2 Let XY two veclor fields on S. They are topologically
equivalent if there exists @ homeomorphism h from S onto S, which
sends each orbit of X onto some orbit of Y, preserving the time-orien-
tation.

If X and Y are topologically equivalent, one says that they have the
same phase portrait. (In fact one can identify the phase portrait of X
with its equivalence class).

It seems hopeless to look for a classification of all possible phase
portraits . To obtain interesting and useful results, one has to get
rid off the too degenerate vector fields. So one looks either to generic
smooth vector fields, or to polynomial or-analytic ones.

1.1.3.1 Generic vector fields. See [MP] and appendix for details.

To simplify, we suppose now that S is compact. We call X*(S5), for

-1 €7 < oo, the space of all vector fields on S, with its usual C"-topology
for uniform convergence. Because we are interested in this section on
individual vector fields, it is of no interest to look at vector field whose
phase portrait may be destroyed by an arbitrary small perturbation.
So the only vector fields of interest will be the stable ones, according
to the following definition :.

Definition 3 Let X € X7(S). One says that X is C*-structurally sta-
ble (for some s : 1 < s < r) if and only if there exists some neigh-
borhood U of X in X7(S), for the C*-topology, such that any Y € U is
topologically equivalent to X.
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A simple class of vector fields is defined as follow :

Definition 4 X € X7(5) is said Morse-Smale if and only if :

1) all critical elements of X are hyperbolic (a critical element is a
singular point or a periodic orbit),

2) there is no connection between saddle points of X.

The principal result for generic vector fields is :

Theorem 3 (Andronov-Pontryaguin, Peizoto).
" Letanyr:1 <7< o0 Then :

1) the set M S™(S) of all Morse-Smale vectorﬁelds in X7(S), is open
and dense in X7(.5),

2) a vector field X € A7(S) is C'-structumlly stable if and only if
it is in M ST(S).

Each Morse-Smale vector field has just a finite number of critical
elements. The singular points are hyperbolic sources, sinks or saddles.
The periodic orbits may be hyperbolic attractive of repelling. It is pos-
sible, but rather tedious to give a complete classification of the possible
phase portraits.

Irecall that the theorem of Andronov-Pontryaguin and Peixoto was
extended in 1962 by M. Peixoto to oriented compact surfaces of arbi-
trary genus M [P). The proof is then much harder, due to the difficulties
to get rid off non-trivial recurrences by small perturbations. This can
be made by a C7-perturbation for orientable M. But for non-orientable
M, one needs a C!-perturbation. The reason is that on this last case, it
is not possible to construct directly a C"-perturbation and one has to
use the closing-lemma which has only been proved for the C!-topology.
See [MP] for a complete discussion and proofs about these difficult ques-
tions. On the other hand, the proof that any Morse-Smale vector field
on M is C"-structurally stable is very similar to the proof for surface of
genus 0. -



6 CHAPTER 1. TWO DIMENSIONAL VECTOR FIELD...
1.1.3.2 Analytic and polynomial vector fields.

Polynomial vector fields are also of particular interest, even if at first
sight they seem to form a rather special class of vector fields. In fact,
their popularity in many fields of application (electrotechnics, ecology,
biology,...) comes from their apparent simplicity, and as consequence
the belief that their properties would be also simple. We will see that
this belief is somewhat misleading. Nevertheless, one clear advantage
of polynomial vector fields is that they are easy to integrate numerically
and so, they lead to simple modelisation.

Another important point is that polynomial vector fields of a given
degree n, form an explicit family with finite parameters. We call it P,.
Some questions which make no sense in the general context of generic
vector fields, can be addressed now : Is it possible to find algorithms to
locate singular points and periodic orbits ? Is it possible to search them
by means of an algorithm which can be implanted on a computer 7 We
will come back to these questions in the context of families of vector
fields.

Of course one can look as above to Morse-Smale vector ficlds, now
inside the space P,, endowed with the topology of coeflicients. The
density question was solved by J.Sotomayor in [So2].But it appears
that the question :Is each structurally stable polynomial vector field
a Morse-Smale one?, remains unsolved in general. Moreover, it will
be essential for the study of generic smooth unfoldings, to lock at all
polynomial vector fields and not just at the Morse-Smale ones, as it
would be natural in the generic context, for individual vector fields. For
instance, the unfoldings of Hamiltonian vector fields will be of interest.

Almost all the questions we will consider about polynomir}.l vector
fields will only make use of their analyticity.

We will take advantage of this for extending any polynomial vector
field X on RZ, to an analytic vector field X on S2. We refer at this
extension, as the Poincaré compactification of X. The most straight
way to obtain it, is explained as follows :

Identifying R?* with C by taking z + ¢ty = 2, one can write the
differential equation of X € P, as :
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i=P(z,z2)= Y a; 77 witha;€C (1.1)
0<i+i<n
Let Z ='1/z the chart at infinity in C' (the two charts z € C and
Z € C form an atlas of §? = C' U {e0}).

In this chart, the equation (1) writes :
Z = —-f"l =Y a; 277

22 4
Of course the vector field goes to infinity when Z — 0 or z — oo.

(1.2)

But if we multiply X by the real analytic function f.(z) = 1 (237 Sk
2Z

it is easy to see that the vector field X = fnX is analytic on S2. This
is clear in the chart z. On the chart Z, X writes :

72 ZY2Z)"

Z = - ai'Z—izuj i — ai'Z_iZ_j
1+ (ZZ)™ OS?;;S“ g 14+ (ZZ) 2 &
(1.3)
. 2 —_
7z = —L_ z a;; zZrizn

1+ (ZZ)"’ 0<i+jgn

which is also analytic in Z.

In this compactification, one adds just one point to RZ. In the usual
way to present the Poincaré compactification, one adds a circle of points
to R? (the circle at infinity). One obtains a vector field XI on D?, and
R? is identified to int {D?). To obtain this vector field X1 from X it
will suffice to blow-up the point co of §2. This blow-up procedure will
be explained in chapter 3.

In chapter 3, we will also return in detail, to the study of polynomial
and analytic vector fields.

1.2 A first approach to Bifurcation Theo-
ry.

In general, a vector field will depend on n parameters.
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For a vector field modelling some natural phenomenon, the param-
eters will represent the exterior world : damping coefficients, frequen-
cies,... in mechanics; rates of growth, rates of predations,... in ecology,
and so on. So that, even when one just wants to consider an individual
vector field, the parameters will be in fact present in some implicit way.

For instance, if we consider some given polynomial vector field Xy,
of degree n, it will be natural to look at its coeflicients as parameters.
What happens when we modify the coefficients of Xp is of first impor-
tance to decide on the interest of the modelisation of some phenomenon
by the explicit vector field Xj.

The embedding of the vector field X, inside a whole family X brings
many interesting new bifurcation problems. Their study is precisely the
subject of these notes. In this section, we will introduce some general
definitions, which can be easily extended in a more general context, for
dynamical systems in any dimension. Later on, in the next chapter,
we will introduce some notions more specific to vector fields families on
surfaces. :

A vector field family (X)) on S is a map of a parameter space P in
the space A7(S5) : A — X,.

Here, 1 < r £ o0 or r = w for analytic families. We will also
consider the already mentioned family P, of vector fields of degree
< n. For this family the parameter is the set of coefficients. It is the
euclidian space R¥™, with N(n) = (n + 1)(n + 2). In general, the
parameter space P will be a manifold of finite dimension p, usually R?.
We will say that the family (X,) is C* if it is given in a neighborhood-
of each (zq, Ao) € S X P by expressions :

n

Xy(z,A) = E ai(z, )\)52-: ,

i=1

where a;(z,A) are C* functions defined on U,, x W,, where U,, and
W), are respectively charts of S and P in a neighborhood of z and Aq.
Here k =1,---,00 or w.

Of course, one can see a C¥-family {X) as a vector field defined on
the total space S x P, which is tangent to the fibers of the projection
T:S8xP = P, (n(x,A) = }) ; ie, (X)) is associated to the field
X(z,A) = Xi(z) on § x P which verifies dr(z, A)[X (z, A)] = 0.
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If we write x7(.S; P) for the space of all C"-families of vector fields
with parameter in P, the previous remark means : x"(S; P) C x"(S x
P). We put on x™(S; P) the topology induced by the C"-topology on
xX"(S x P).

Let (X)) some family. The set in the parameter space where X, is
structurally stable is an open set U/(X,). On each connected component
of U(X,), the phase portrait of X is constant. On the contrary, this
phase portrait changes in general when we go across L(X,) = P —
U(X,). This is the reason why one calls this set : bifurcation set of
the family (X,). This set is closed. It seems reasonable to think that
this set has empty interior, in general. In fact, this is false as soon
as dim S > 3, as it was proved by Smale [Sm]. (Smale considered
the whole family x"(S), where the parameter space is the space x"(5)
itself, and exhibited an open set of non structurally stable vector fields ;
it follows that there exists generic finite parameter families, with any
number of parameter, such that the bifurcation set has a non empty
interior). When dim § = 2, this remains an open question, if the
parameter dimension is larger than 2.

At least, one knows that the structural stability is a generic proper-
ty, and tha.f (X)) has generically an empty interior for 1-parameter
families. It was proved by Sotomayor in [Sol]. If T is the set of all
non-structural stable vector fields in x" (X}, E({(X))) = p~!(X) where
p is the map X — (X,). The structure of the sets £((X))) depends on
the structure of X. If one could apply the transversality theorem to
% (i.e if £ would be a stratified set, with finite codimension strata),
then for each generic family X, X({X)) would have also a structure
of stratified subset of 5. In particular £((X)) would be generically no-
where dense. But to establish this property for ¥, looks rather utopic.
Up to know, one just knows the (codimension 1)-skeleton of £.[Sel].
Describe the 2-skeleton seems rather complicated. Of course the study
of the skeleton of ¥, up to codimension k is completely equivalent to
the study of all generic families with less than k parameters. In these
notes we want to prove some very partial results in these direction. In
fact, we will emphasize some particular aspects of the bifurcation theory
concerning more particularly the number of isolated periodic orbits, i.e
the question of finite cyclicity. I introduce this concept of cyclicity in
the next chapter. Now I want to give some basic and general definitions
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about families of vector fields.

1.2.1 General definitions.

Definition 5 Let (X)), (Y)) two C7 families of vector fields with the
same parameter space P and the same phase space S ; r = 1,--+,00,
or w and let 3 : 0 < 3 < r. We say that (X)) and (Y2} are (CO-fibre,
C?®)-equivalent, {zf there exists a diffeomorphism ¢ of P, of class C*, such
that for each A € P, X\ and Y, are topologically equivalent. If the
equivalence homeomorphism may be chosen so that to form a continuous
family hi(x), one says that (X)) and (Y)) are (C°,C*)-equivalent. If
@ = Id , one says simply that (X)) and (Y3) are respectively C°-fibre
or C%-equivalent.

Remark 1 .

1) The (C°,C*)-equivalence may be strengthened in the notion of
(Ct,C*) equivalence or even conjugacy (for 0 < £,s < r). But, these
equivalences are in general too sirict to avoid problems of moduli be-
tween generic families which are (C°-fibre, C* )-equivalente. This occurs
for the Hopf-Takens bifurcations with more than { parameters (see [R1]

2) It will be important to have some smoothness for the change
of parameter ¢, since one is interested on the differentiable or even
anealytic structure of the bifurcation set : for applications it will be
relevant to know if 2 lines of bifurcation have some flat contact for
. instance.

Definition 8 Let (YA), A€ P aCr-family and ¢ : Q — P, o(p) = A,
a C"-map. We say that the family X,,pu € Q, given by X, = Y, is
induced from (Y)) by the map .

Remark 2 This operation of induction will be very important to select
a “good” set of parameters; i.e for replacing a parameler u by a larger
one A, where the properties are “unfolded”. (See below the notion of
versal unfolding). '

Definition 7 A germ of family (X, ) at Xo € P is called unfolding
of Xy at Ao. More generally, if I' C S is some compact non empty
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invariant subset for X),, we will also consider the germ of X, along
I' x {Xo}. We will write in short this unfolding (X,,T), or (Xi,T, Xo)
if we want to recall the parameier value.

Unfoldings are represented by local families. For instance (X,T)
will be represented by a family X on some neighborhood U/ x W of
I' x {Xo} in S x P. We can always assume that W is diffeomorphic to
RP, (p = dim P), and U is diffeomorphic to R?, if " is some point. So
that it will be equivalent to speak of unfoldings or local families, i.e
families defined on an arbitrary neighborhood of T' x {Ag}. ‘

Remark 3 The two preceding definitions of equivalence and induction
are easily translated for unfoldings, by taking representative local fam:-
lies. '

Definition 8 Let T, some compact non-empty invariant subset for X,.
We say that (X,,T) is a versal unfolding for the germ (X»,,T'), for the
(C°-fibre, C*) equivalence, if :

1) Any other unfolding (Y,,T) of (X»,,T) (i.€, any unfolding (Y,,T),
4 € @ some parameter space, with I’ an invariant sel for Y,
where
(Yoo, [} = (X, T)) is CO-fibre equivalent to an unfolding induced from
X, by a germ of C*-map (¢, o) : (@, o) — (P, Ao)-

2) dim (P} is minimal for the property 1.

1.2.2 Singularities of finite codimension. The ex-
ample of saddle-node bifurcations.

I refer to [Ma],[GG] for details about transversality theory and notions
related to it : genericity, codimension of a singularity, versality and
structural stability of unfoldings. Here I just give a brief survey of the
terminology.

One defines a singularity & of codimension k as a submanifold of
codimension n + k, (if n = dim §), of some space of {—jets of vector
fields on S. This submanifold is supposed to be invariant under the
natural action of (I + 1)-jets of diffeomorphisms of S. A germ (X, zo)
is “a singularity of type £” if X (29) € . Now, a consequence of the
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Transversality Theorem of Thom is that generically any C*t! family of
vector fields has a I-jet extension (z,)) € § x P — j'X\(z), transversal
to ¥. This means that the set B(X3) = j'X1(E) is a submanifold of
codimension k + n in S x P, and that in particular £(X,) = 0, if
k>p=dim P.

Any known versal family is constructed in the following way. The
germ (X, o) is taken as some singularity ¥ of codimension k and the
versal unfolding (X, {xo}) of (X,z¢) is any k-parameter unfolding
whose jet-extension is transversal to . In all the known cases, the
versal unfolding (X, {zo}) is also structurally stable in the following
sense : any nearby k-parameter unfolding (¥3) has a jet-extension cut-
ting 3 at some (1, A1) close to (xo, Ag) and the germ of (Y3, {z1,M1})
is equivalent to the germ (X, {zo, Ao}). This implies also that all the
germs on X, near (X, zo) are equivalent to (X, zg). i T is defined in
the space of K-jets, we can take in particular any germ with the same
K-jet as (X, zo) : this means that any germ of T near (X, z,) is K-
determinated.

In general one reverses the terminology : singularity of finite codi-
mension k means singularity whose transversal unfoldings are versal
and structurally stable. Then the singularity is finitely determinated
and the codimension k is equal to the number of parameters of any
versal unfolding,. _

A pragmatic way to construct a versal family is as follow : one se-
lects a (finite determinated) singularity of codimension k and considers
any transversal unfolding to it. This procedure is inspired by the unfold-
ing theory of differentiable maps, as developed by Thom,Arnold,Mather
and others. Unfortunately, there are no general results in this direction
for unfoldings of vector fields (even on surfaces).

To illustrate the above remarks, let us consider saddle-node bifur-
cation of codimension k, k > 1,

We say that a germ (X,0) at 0 € R? is a saddle-node singularity of
codimension k, £ > 1 if :

1) 71X (0) has only one eigenvalue equal to 0,

2) Let W any central manifold through 0, of class larger than k,

then

Xl (@) = [aa** + 0(a+1)] .2
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with o ¥ 0 where z is a parametrization of W, with z = 0 at the origin.

It is easy to verify that the set of all germs (X, 0) with these proper-
ties defines a submanifold SN(k) in the (k+1)-jet space of vector-fields
at 0 € R?. This submanifold is a codimension k -+ 2. Using the Central
Manifold Theory [CLW] and the Preparation Theorem {M], it is possi-
ble to prove that any C* unfolding (X, 0) of (X, 0), with Ay = 0, is, for
any finite { >> k, C'-equivalent (i.e, by a CX family of diffeomorphisms
and multiplicative functions) to :

9 B1 S i 9
i=0

where a;()) are C*.germs of functions at 0 € RP.
This means that the unfolding :

3 n—1 i a
Yaziya_yi [$k+1+2 oy CE'] % ’ az(aoa"',ak—l)

1=0

is a versal unfolding for (Xj,0) for the (C¥,CK) equivalence. Moreover
this unfolding is structurally stable and it is easy to verify that :

- any germ in SN(k) is (k + 1)-determinate,

- the (k + 1)-jet extension of Y, is transversal to SN(k).

One can find details for the proofs and the bifurcation diagrams in

[D2).

1.2.3 Bifurcations of singular points versus bifur-
cations of periodic orbits. The Bogdanov-
Takens bifurcation.

What makes easy the study of saddle node bifurcations is that no pe-
riodic orbit is contained in some neighborhood of the origin. If we
consider for instance a polynomial family of vector fields (X), A € R?
some set of coeflicients, all the properties concerning singular points are

described by polynomial equations or inequations. Let Xy = Ay — +

Oz

B -§- where Ay, B) are polynomials of degree < n, in z,y depending

dy
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linearly on the parameter A. The singular set is given by the pdlynomia,l
equations :

Ay = By =0. (1.4)

If we want to look to the set of degenerate singular points, we have
to add the equation : - .
(A, B) ‘
=0 1.5
5z 9) )

The set of parameters values where one has at least one degenerate
singular point is obtained by the elimination of (z,y) between (1),(2) :
it is a semi-algebraic subset in the parameter space. The set of pa-
rameters where X, has a saddle node point of codimension k is also a
semi-algebraic set, defined as the projection on RP of the semi-algebraic
set j¥1 X1 (SN(k)), and so on. ' ‘

On the other hand, if we want to study the periodic orbits, we
have to integrate the vector field X, and the properties defined via
the flow of X, are no longer given in general by algebraic algorithms,
even if the family is polynomial. For instance, to study the periodic
orbits cutting some line interval ¢ C RZ, proceed as follow. Suppose
that for some value Ay € P, we have a return on ¢ : there exists
some line interval ¢’, ¢’ O 7, transversal to X, and such that for each
u € o, the trajectory through u has a return Py (u) on o'. It follows
by continuity that there exists a neighborhood W of Xy in P, and a
first return map Py(u) : ¢ X W — o'. Now, the key remark is that we
just know that Py(u) is analytic, and in general we cannot deduce more
information from the fact that X is polynomial. So that, the equation
{P(u) — u = 0} which gives the equation of pairs (u,)) such that
X has a periodic orbit through u (i.e. the equation of periodic orbits
cutting o) is just analytic and one has not, in general, any algebraic
algorithm to solve it.

To illustrate this point, I want to present now the Bogdanov-Takens
bifurcation. This bifurcation is the most complex one of codimension 2.
and we need to study it to have a complete list of all generic unfoldings
with less than two parameters. For us it will be useful to illustrate the
methods for the study of unfoldings along these notes.

A complete treatment of this bifurcation can be found in [Bo},[T1],[RW].
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Bogdanov-Takens bifurcation.

Let (X,0) be a germ such that 5*X(0) is nilpotent, i.e. linearly con-
jugate to y —. So we assume now that j1X(0) = y —. It is easy to
T

show that, up to a quadratic diffeomorphism, one has :

72X (0) 9 + az? 9 + b xy 6%’ with a,b € R.

=Y %z By

Generically one can suppose that @ # 0 and & # 0. Then by a linear
change of coordinates one can reduce to a =1 and b = +1. So that one
can suppose that :

- a d 7
-2 - 2 2 -
I X(0) =y 52 +z 3y + zy 3 (1.6)
Germs (X,0) with 2-jets equivalent to (1.4) form a singularity of codi-

mension 2 in the space of 2-jets of vector fields with 2 connected com-
ponents TB*, TB~ (depending on the sign &+ of zy E?) We will see
[}
in Chapter 3 that the germ éX ,0) has the same phase portrait as the
Hamiltonian vector field y — + 2% —,
: Oz Jy
the level through the origin. So, one calls (X, 0} : a cusp singularity.
Such a singular point is the simplest non-elementary singularity (see
chapter 3).
Now let (X) be any C* unfolding of (X, 0), with (X,,0) = (X,0).
(The unfolding is defined at Ao = 0 € R*) with (Xo,0) € TB & . Let :

with a cusp singular point at -

= H](.’L‘, y,’\) =y+ 0(||m”2) -+ O(IM) 3 y = H2($,ya)‘) (17)

the differential equation of (X,) ; m = (z,y)}, ||| a norm on R?. One

has aa—zl(m, ¥, A) # 0. So that we can take as local coordinates :

Y = Hy(z,y,)), X = z. Renaming again the coordinates by z,y, the
equation (2) takes the form :



16 CHAPTER 1. TWO DIMENSIONAL VECTOR FIELD...

| (18)
i = Fle,)=geX) + 5 2) 43701,

where g, f and @ are C* functions.

By hypothesis : g(z,0) = 2% + 0(z®), f(z,0) = Lz + 0(z?).

The systems is now equivalent to a second order differential equa-
tion :

i = 9w, )) +2f(z, ) + Q=2 )). (19)

It contains a Hamiltonian part : & = g(z,)) corresponding to the
function H(z,y,A) = 1 4+ G(z, A) where G(z,)) = — f5 g(s,\)ds.

Now, because G(z,0) = % z° + 0(z®), the Hamiltonian H(z,0,0)

has a versal unfolding in the sense of Catastrophe Theory : there exists
a C* differentiable change of coordinates with parameter :

z=U(X,\) =X +0(X) +0(}) (1.10)
such that : :

— g(z, \dz = —(X? + p(A))dX (1.11)

for some C* function p(A). (see [M]).

Using the C*° change of coordinates # = U(z, A), y =y, we obtain
that (1.3) is differentiably equivalent (i.e, up a C*° dlffeomorphlsm and
a multiplication by a C* positive functlon), to:

r =Yy 4
{ii = 224 p(\)+y(vQA) £ 2+ 2%h(z, 1)) + 17Q(z, 3, ). (1.12)

where p(A) and »(A) are C*° functions such that u(0) = #(0) = 0 and
h(z,A), Q(z,y,)) are C*° functions.

At this point it seems interesting to choose y, v as new parameters.
There are two ways to achieve this :
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1) Supposing that X is a generic 2-parameter unfolding in the
sense that 3—?}\%—;}2—)(0) # 0. Then, by a C* change of parameters, we can
suppose that A = (A1, A7) = (g, ¥). Or,

2) Introducing the new family :

+ T =Y '
K { g = z¥+u+ y(v +z + zh(z, /\)) + y2Q(z,y, A). (1.13)

The initial family (1.10) is then induced by the C*® map Q@ : A —
(1O v(N), A) € B2,
If we prove that the parameter A in (1.11) plays no role in the sense

that there exists a C* map of maximal rank =(y,»,A) on the space
(g, v), with 7(0,0,0) = (0,0) such that for each (g,,A) near (0,0,0),

Xy 1s equivalent to X ﬁim) where :
Ne] 2 =y
K { y = rt+p+y(vLa). (1.14)

then, the initial family (1.10) will be (C°-fibre, C*) equivalent to the -
family induced by the map wo®, and we will have proved the following :

Theorem 4 (Bogdanov-Takens).

The polynomial unfolding XV¥ is versal unfolding of the Cusp singu-
larity (Bogdanov-Takens singularity defined by (1.1}) for the (C°-fibre-
C*} equivalence.

Remark 4 It is possible to obtain a (C°,C*)-equivalence ([DR1]).

Of course if we just consider generic 2-parameter unfoldings, we
obtain a weaker result : every generic two parameter unfolding of the
cusp singularity is (CO-fibre, C*) equivalent to X ff But the resull as
. given in the theorem is betier in the sense that it applies to unfoldings
with any dimension of parameter and, in particular, it is indispensable
to study unfoldings of singularities of cod > 3.

In order to begin the proof of Theorem 4, we return to the family
unfolding (8). Note that if we change (z,y, #, v, A) in (x, —y, pt, », A) the
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unfolding X}, , changes into the unfolding — X, ,. So that it suffices
to look to the case +. The equation for singular points is given by :
y =0, ? 4 g = 0. There exists no singular points for g > 0, and two
singular points for p < 0: e, = (—/=4,0) and s, = (/—u,0). It
is easy to verify that s, is a saddle point, and e, a node or a focus.
Moreover, the line { = 0} for » # 0, is a line of (codimension 1)-
saddle-node bifurcations : when we go across the axis Ov, for v # 0,
and in the direction of negative y, it appears the pair of singular points
{ew su}-

At any point (z,0), div Xa(z,y,A) = v + = + *h(z, ) (we put
A= (1w, Y)). |

In particular : div Xp(e,) = vi/=f + z?h(z, ).

So that the equation div Xa(e,) = 0 defines (for all A} a curve
H : p=p(v) = —=v* 4+ 0(v?) for v > 0 in the case + and v < 0
in the case . We only consider the case + from now on. We write
v = vp(p), p < 0for the inverse of y,(v). Along the line H, the singular
point e, is elliptic (its eigenvalues are purely imaginary). In fact it is
easy to prove that div X, (e,) changes of sign regularly across H and
that H is a generic line of Hopf bifurcations of codimension 1. (See
chapter 4). :

Crossing the line H with increasing v, the focus e, becomes stable
and it appears a small unstable periodic orbit 44 around e,. We let it
out for a moment to look at the left hand separatrices of the saddle
point s,. If a small negative value go < 0 is chosen, for a fixed value Ay,
it is easy to see that these two separatrices cross the axis 0z at points
a(A) for the lower separatrix and b(v) for the upper one. Now, observe
that if v increases, the vector Xj(z,y) for A = (o, v, Ao) rotates in
the positive sense, for each (z,y) € R? with y # 0. As a consequence :

da(v db
22(4) 0 and E;(V) < 0.

For small values of v, one has a(¥) < b(r) and for large values :
a(v) > b(v). Then there exists only one value vo = vc(gto) where

a(vo) = b(w).

For this value »y one has a saddle connection. Moreover

d
= (a=B)(») #£0
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and also
CdivXp,(34,) # O(Ao(ﬂo, Vo,)‘O))

: this means that the saddle connection is a generic codimension 1 con-
nection. (See chapter 5). When v increases from values less than v, a
large periodic orbit exists which, for v = vy becomes the saddle connec-
tion and disappears for v > vp. The curve C = {vp = v:(po) | o < 0
small enough } is a generic line of codimension 1 saddle connections.

The two lines : H = {v = wi(p)} and C = {v = v(p)} form the
boundary of a conic region T in the parameter space. A small periodic
orbit appears in this region near H and a large one disappears near C.
It seems reasonable to think that it is the same orbit which appears
on one side and disappears on the other side and also that for each
(4, v) € T we have just one periodic orbit.

Moreover, there is no periodic orbit outside T, in a whole neighbor-
hood of the origin in the parameter space. This will give the complete
description of the bifurcation diagram and is the essential part of the
proof of Theorem 4. But the proof of this point is unexpectedly deli-
cate. It needs the use of a rescaling in phase space and parameter space
(see chapter 6), asymptotic methods and a fine result on Abelian inte-
grals (see chapters 4,5). The reason is that we have no simple algorithm
to control the return map on [e, s,]. '

So that the above example illustrates the difficulties to study pe-
riodic orbits, even in the very simple family X f,’;': We return to it
several times along these notes, to illustrate different technical ideas
and to achieve a complete proof of Theorem 4. In the next chapter,
I want to focus on the principal subject of these notes : how fo study
bifurcations of periodic orbits ¢






Chapter 2

Limit Periodic Sets.

As explained at the end of the previous chapter, the most difficult
problem in the study of bifurcations in a family of vector fields on
0-genus surface, is the control of periodic orbits. In fact, in generic
smooth families, the periodic orbits will be isolated for each value of
parameter. For analytic families we have two different possibilities for
each orbit : it may be isolated or belong to a whole annulus of periodic
orbits. In this last case and for the value of parameter where one has
infinitely many periodic orhits, the vector field has a local analytic first
integral and the nearby vector fields in the family may be studied by
the perturbation theory to be introduced in Chapter 4 : they have in
general isolated periodic orbits. The interest for the study of isolated
periodic orbits is also supported by tradition and applications.

Definition 9 A limit cycle for a vector field X in dimension 2, is
a (one side) isolated periodic orbit. (necessarily 2-sides isolated for
analytic X ).

The most famous question about limit cycles was formulated by
D. Hilbert in his inaugural talk at the first International Congress of
Mathematics in Paris (1901). The 16** problem of the list he submitted
to the audience has a “part a” about the classification of ovals with
polynomial equation {H(z,y) = 0} and a “part b” about limit cycles
of polynomial vector fields. Let us quote this part b of Hilbert’s 16
problem :

21
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..In connection with this purely algebraic problem, I wish to bring
, forward a question which, it seems to me, may be altacked by the same

method of continuous variation of coefficients, and whose answer is of

corresponding value for the topology of families of curves defined by dif-
ferential equations. This is the question as to the mazimum number end
position of Poincaré’s boundary cycles (limit cycles) for a differential
equation of the first order of the form

gy _ Y
dz X
where X and Y are rational integral functions of the n'* degree in z

and y...

Formulated in modern terminology, the question of Hilbert is about
the study of bifurcations of limit cycles in the family P, of all polynomial
vector fields of degree < n, parametrized by the space of coefficients.
One has just retained the following weak question, known presently as.
Hilbert’s sixteenth problem :

For any n > 2, there ezists ¢ number H(n) < oo, such that any
vector field of degree < n, has less than H(n) limit cycles.

Of course one has discarded the case n = 1 as trivial: (H(1) = 0).
Recall that the problem remains opened even for n = 2.

As it was underlined is the Hilbert’s formulation, one has to look
at the bifurcations of limit cycles when the parameter varies. So to
study this question we introduce now the ceniral concept for these
notes : the concept of limit periodic set, organizing center for limit
cycle’s bifurcations. :

2.1 Organizing centers for bifurcations of
limit cycles. '

2.1.1 Definition of limit periodic sets.

Let X, any C! family of vector fields on a surface M not necessarily of
genus 0.

Definition 10 [R3] A limit periodic set for X is a compact non empty
subset ' in M, such that there exists a sequence (Ay)n — Ax in the
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parameter space P, and for eack X,, X, has a limit cycle v, with the

- following property :

T, — I where n — oo in the Hausdorff topology of the space C(M)
of all non empty compact subjects of M.

Recall that if M is a metrisable space, the Hausdorff topology is
defined in the set C{M) of all compact non empty subsets of M, in the
following way : let d be a distance on M, defining its topologﬁ For

A,B€C(M)let: dy(A,B)= Sup {In Jd(z,2) , Infd(',)
reAyeB
It is not difficult to show that dy is a dlstance on C(M ), and that
this distance defines a topology on C(M) independent of the choice of
the distance d : the Hausdor[f topology on C(M). More delicate is to

show that if (M,d) is a compact metric space, the same is true for
(C(M),dx) (see [Ba] for instance).

Remark 5§ 1) Once chosen the distance d on M, the convergence v,, —
T' is equivalent to : for any € > 0, In(e) such that if n > n(e)
s, enters the e-neighborhoods of T' and inversely, T' enters the e-
neighborhoods of v,,.

2) Definitions of limit periodic sets were proposed by many authors,
in particular by Perko [Per], Francoise and Pugh [FP], and more re-
cently by Ilyashenko, Yakovenko [IY2]. These definitions are more re-
strictive in the sense that T is supposed to be a limil of a I-parameter
family of limit cycles :
= lg}g Yae) for a continuous arc A(e) :J0,1[— P. I have preferred
to introduce a definition in terms of a discrete sequence (A,)n, because
it is better adapted to the proofs of topological properties of limit peri-
odic sets. It is clear that the two definitions are not equwalent for C=
families. Take the I—pammeter family

ya%—x(-f— (w(E)—(z +y2))( iﬂi:y)

L , . .. ,
where p(e) = sin (-é-)e e ©(0) = 0. For this family, the origin of R? is
a limit periodic set in the sense above, but it is not in the "continuous”

definition. For analytic families, the equivalence of the two definilions
is an open question. The answer would be yes if it was true that the
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diagram of bifurcation of each limit periodic set in analytic families had
a topological conic structure. But this is again an open question, surely
a fundamental and among the most difficult ones of the whole subject

First examples of limit periodic sets on a surface S of genus

0:
- Singular elliptic points : They appear as limit periodic sets in
Hopi-Takens bifurcations for instance.

- Periodic orbits : A multiple periodic orbit (for instance a double
or semi-stable periodic-orbit) may bifurcate in several hyperbolic ones.

These two first examples are called: regular limit periodic set. Their
bifurcations can be studied, using the theory of bifurcations for smooth
functions (catastrophe or singularity theory) or analytic geometry (for
analytic vector fields, and center point or non isolated periodic orbits).
We will treat them in chapter 4. '

- Saddle connection : We have found a saddle connection in
the Bogdanov-Takens bifurcation for instance. The study of their bi-
furcations brings new problems because the return map near such a
connection is no longer differentiable. They are studied in chapter 5,
together with more general elementary graphics. Later, in chapter 6
we look to more degenerate limit periodic sets. Let LC be the union,
in the product space S x P, of all limit cycles. This set is as smooth
as the family, so is analytic if the family is analytic. But its closure
LC is no longer an analytic subset of § x P, except at the regular limit
periodic sets. It is the reason why bifurcations of limit cycles can’t be
treated entirely by methods of analytic or differentiable geometry.

2.1.2 Structure of limit periodic sets.

Lemma 2 Let I' some limit periodic set in a C? family X, defined on
a 0-genus surface S, for some value A, € P. Let ¢ C S, any interval
transversal to X,,. Then o NT contains at most one point.

Proof Suppose that I'Ne contains at least two points a,b. For n large
enough, the vector field X, is transversal to o and ¥, cuts o at least
in two points : a, near ¢ and b, near b. Because a # b, one has also
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an 7 by for large n. But this is impossible by the same arguments as in
lemma 1.1. : "

So that a limit periodic set has the same basic property as w-limit
set of individual vector field : to be cut at most in one point by any
transversal segment. As it was remarked in 1.1.1, this implies the con-
clusions of theorem 1.1. So we have proved :

Theorem 5 (Poincaré-Bendizson for vector field families)

Let any C! vector field family X\ on a compact genus 0-surface. Let
[ a limil periodic set for this family at the parameter value A\, € P.
Assume that all singular points of X, are isolated. Then T falls in one
of the 8 following cases :

1) T is a singular point of X,.,

. 2) T is a periodic orbit,

3) T' contains a subsel & of singular points and at least one regqular
orbit. Thew and o limit set of each of these reqular orbits in an element
of . Moreover if S is compact and X, analytic, T i3 a graphic.

The result is very similar with the Poincaré-Bendixson theorem for
w-limit sets. Nethertheless it is worth to notice the following differ-
ences :

- a periodic orbit which is w-set must be isolated on one side. On
the contrary a non isolated periodic orbit (for instance a level curve of
a Hamiltonian vector field) may happen as limit periodic set.

- a graphic which appears as limit periodic set may be non mon-
odromic. The simplest example of this phenomenon is the graphic I
made by a central manifold connection at a saddle point of codimension
1. As it was recalled in chapter I, such a singularity unfolds in a 1 di-

mensional versal unfolding, which writes locally : —y ay + (A +2?) é%-
We assume that for A = 0, the separatrix which is locally 0z for z > 0
returns along the separatrix 0z, £ < 0 to make the graphic I'. Then it
appears one hyperbolic attracting limit cycle near this connection T,
for A < 0, riear 0. So that I is a limit periodic set of the unfolding and
it is not monodromic as it appears in figure 1.

We can now give a more accurate classification of possible limit

periodic sets for families on compact surfaces of genus 0 :
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.

Figure 2.1: Non-monodromic limit periodic set

- Regular limit periodic sets : Elliptic singular points or periodic
orbits. They may be of finite codimension or not. In this last case, we
always assume that the family is analytic. Then, infinite codimension
will mean that the return map for X, near I' is equal to identity. (The
elliptic point will be called a centre). ,

- Elementary graphics : Graphics whose all singular points are
elementary. An elementary singular point is an algebraically isolated
with at least one real non zero eigenvalue (they are the irreducible
singular points in the sense of the desingularization theory developed in
chapter 3). A elementary point may be hyperbolic, or semi-hyperbolic.
In the two cases it must be of saddle type (or saddle-node type) to
enter in a limit periodic set. In this case, sources or sinks are of course
forbidden. If all the singular points are hyperbolic saddles, one says
that the graphic is a hyperbolic graphic. Elementary graphics may be
monodromic or not, isolated (among periodic orbits of X, or not). In
chapter 5, we will study some of them. '

- Non-elementary graphics :They are graphics with some non el-
ementary singular points. We suppose again that all singular points in
the graphic are isolated. The most simple example is obtained by con-
necting the two separatrices of a cuspidal singular point of Bogdanov-
Takens type. We call it a cuspidal graphic and we return to it in details
in chapter 6. In this chapter we will explain how, in some sense, to re-
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duce non-elementary graphics to elementary ones. We can find many
non-elementary graphics even in the family of quadratic vector fields
as we explain at the end of this chapter. Elementary graphics may be
monodromic or not, isolated or not from periodic orbits of X,.

- Limit periodic sets with non-isolated singular points.

We will see in chapter 3 that it is easy to get rid off non-isolated
points of some individual analytic vector fields, so the restriction about
the singular points is not too serious in Theorem 1.1. But it is not
the case for families : one cannot easily replace the given family by a
new one such that for each A, all singular points of X, are isolated.
Existence of non-isolated singular points is of course a non-generic phe-
nomenon. But we will see that they appear in a systematic way when
using desingularization methods in families (rescaling of variables for
instance). Also, they are present in polynomial families. We look at
these questions in chapter 6 .

A general theorem of structure for limit periodic sets (even for ana-
lytic families) is not known up to now. In chapter 6 again we will give
some partial results in this direction. The degenerate graphics will be
the simplest examples :

Definition 11 A degenerate graphic I' for a vector field X on a sur-
face, is a compact, non empty invariant subset made by e finite number
of isolated singular points {py,---,p,}, reqular orbits {y1,---,7} and
arcs of non isolated singular points {ry,---,ri}, such that the w and o
limit set of each regular orbits is a point in {p1}U--- {p,}UriU---Ury.
Moreover T is the direct image of a S* -zmmerswn oriented by increas-
ing time along the regular orbits.

For instance, all limit periodic sets with non-isolated singular point
in the study of quadratic vector ﬁelds are degenerate graphics (see
[DRR1)).

2.2 The cyclicity property.

In this section, we will show that the problem to find a uniform bound
for the number of limit cycles of a given family, for instance the Hilbert’s
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16** problem, can be replaced by a local one about the number of limit
cycles which bifurcate from each limit periodic set.

2.2.1 Definition of cyclicity for limit periodic sets.

A precise definition for the number of limit cycles which bifurcate from
a limit periodic set is the following :

Definition 12 Let T a limit periodic set of some C family X, defined
at some value A, € P. Denote by d some distances on S, P and dy the
induce ¢ Hausdorff distance on C(S). For each £,8 > 0 define :

N(6,€) = Inf {number of limit cycles 7 of Xx | du(y,T) <¢
aﬁd d(), A;) < 6}
Then the cyclicity of the germ (X5, T) is given by :
Cyel (X»,T) = f:zéf N(6,¢).

As indicated in the definition, this bound Cycl (X3, T') just depends
on the germ X, along T', i.e. on the unfolding (X,,T). Of course
Cycl (X, T) may be infinite. If it is finite, it represents in a precise way
the local bound for the number of limit cycles which bifurcate from T’
in the given family X.

A priori, if we change the unfolding (X, I') of (X,,T), the cychc1ty
may change. It may happen that there exists a finite uniform bound for
all the possible unfoldings of (X,,T). In this case, we call it : absolute
cyclicity of (X,,,T), or simply absolute cyclicity of T. It just depends
on the germ of the unfolded vector field X, along T.

In the next paragraph, we will return to the general question of the
relation between local bounds (finite cyclicity) and global bounds (as in
the Hilbert’s 16'* problem). Here, to conclude this paragraph, I want
to emphasize that the computation of the cyclicity may be the crucial
step in the obtaintion of bifurcation diagrams.

To illustrate this point, return to the Bogdanov-Takens bifurcation,
Suppose known that any limit periodic set in this family has cyclicity
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less than 1. Then we can easily deduce from this the Theorem I-4. It
works as follows : fix some value pp < 0, small enough. The effect of
increasing the parameter » is just to make a positive translation on the
graph of the return map P,(z) on the interval [e,,,s,,]. This comes
from the rotating property of the vector X)(z,y). Then, the cyclicity

a periodic orbit has JUSt one way to appear from a Hopf bifurcation
and one way to disappear in a saddle connection bifurcation. It is not
possible to create or to annihilate a pair (or more) of periodic orbits.
As a consequence, there is no limit cycle for v ¢)vn(po), ve(po)[ and
just one limit cycle inside this interval. This suffices to establish the
bifurcation diagram and so to prove theorem 1.4.

2.2.2 The finite cyclicity conjecture. Local reduc-
tion of the Hilbert’s 16!* problem.

It is easy to produce C! families where some limit periodic set have
infinite cyclicity. But the author of these notes has the conviction that
it cannot be the case for analytical families. Let us formulate this idea
precisely : k

- Finite cyclicity conjecture : Let T’ a.ny compact invariant sub-
set for an analytic vector field X, on some 0-genus surface. Then, for
any analytic unfolding (X, T') of (X, '), one has Cycl (X,,T) < oo.

These notes are essentially devoted to a partial proof of this con-
jecture. In chapter 3, we will see that it is valid for 0-parameter fam-
ilies (Dulac’s problem). In chapter 4, that it is valid for regular limit
periodic sets. In chapter 5, that it is valid for unfoldings of generic
elementary graphics . Of course, a complete proof of the conjecture
remains an open question. We will show here, how it would imply a
positive answer to Hilbert’s 16** problem.

First, let us remark that a direct consequence of the definition is
that the cyclicity is an upper semi-continuous function on the set of all
limit periodic sets :

Lemma 3 Let (A;) — A a converging sequence in P. Suppose that for
each t, I'; is e limit periodic set for the value A;, such that (I';) — T.
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as 1 — oo, in the Hausdorff sense. Then, I, is a limit periodic set for '
the value A, and Cycl (X5,T.) 2 limsup Cycl (X, T%).

)\,’ —> )\*
As a consequence one has the following :

Proposition 1 [RJ] Let X, a C' family of vector fields defined on
some compact surface S of genus O with a compact set of parameters
P. Then, there exists a uniform bound H((X))) < oo for the number
of limit cycles of each vector field X, (each X has less than H((X)))
limit cycles), if and only if each limit periodic set T' of (X)) has a finite
eyclicity in (X)). '

Proof Of course, if such a bound H{(X))) exists, it is trivial that
each limit periodic set has a finite cyclicity in (X,). Suppose on the
contrary that Cycl (X,T') < oo for each limit periedic set in (X)) but
a uniform bound H((X))) does not exist. This means that one can find
a sequence (A;) in P, and a limit periodic set T'; for each X, such that
Cyel (X,T;) — oo for ¢ —+ oo.

Now, because P and C(S) are compact spaces, one can find a sub-
sequence A;; such that (A;;) — A. and such that I';;, — T, in the Haus-
dorff sense. One has that Cycl(Xy,T;;) — oo for j — oo. It follows from
Lemma 3 that Cyel (X,T.) = oo. This contradicts the hypothesis. =

A family defined an a compact 0-genus surface with a compact set
of parameters, will be called : a compact family. The preceding propo-
sition implies that if the finite cyclicity conjecture is true, then any an-
alytic compact family (X, ), would have a uniform bound H{((X))) < o0
for the number of the limit cycles of each X,. In particular, it would
imply a positive answer to the Hilbert’s 16 ** problem.

Indeed, it is easy to replace the family P, of polynomial vector fields
of degree < n by an analytic compact family on $2 x S¥-! where S¥N-1
is the unit sphere in RN with N = 2n(n + 1), the space of coefficients.
The reason is as follows : for each g € R*, one has X,y = X, where
X € RN ; so that Xux and X, are equivalent and one can restrict A
to SV ; next, we have seen in I-1.3.2, how to embed, up to some
analytic positive function, any polynomial vector field X of degree n,
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into some analytic vector field X defined on S? (R? is identified with
5% — 00). The same formula embeds the whole family (X)) = P,
into an analytic family (X)), defined on 5% x SV-1 (notice that the
multiplicative function (1+(2%)")~" does not depend on A). The vector
field X, | int 52 is equivalent to X3, and so a bound H(n) for the family.
(X)) is also a bound for the polynomial family P,(Xy).

Remark 6 The proof of the above proposition is just a compactness
argument. It does not give an algorithm to compute H((X))), even if
we had an explicit bound for the cyclicity of every limit periodic set
(Notice that we do not assume that there exists a uniform bound for the
cyclicity of every limit periodic set ; this uniformity follows from the
proof). So we have just a proof of the existence of the bound H((X))).

It is exactly the same as in the following simple ezample : suppose that
7 is the projection of some simple compact curve I' C R% on some line
6, and that we know that any critical point of the projection is a generic
fold point ; then there erists a bound B < oo such that for any A € §
the number of points in w=1()) is less than B. But, depending on the
data T, 7,6, this bound B can take any finite value. Here, it is the
same : the finite cyclicity conjecture would imply that for each n, the
Hilbert’s bound H(n) exists, but it does not allow a computation of this
bound. We refer to this problem : “prove that H(n) < oo erists” as the
existential Hilbert’s 16" problem. It may be hoped that this problem is
more tractable than the initial one which can be stated as : “prove that
H(2)=4".

2.2.3 A program for solving the existential Hilbert’s
problem.

As it was said in the last paragraph, a general conjecture is that any
analytic unfolding has a finite cyclicity. Because a direct attack to
this conjecture seems somewhat utopic at this moment, a more reason-
able way to address the question of the existence of a uniform bound
H((X,)), for a given analytic family (X)) is to follow the program
below:

- make a list of every limit periodic set which appears in the family



32 CHAPTER 2. LIMIT PERIODIC SETS.

(Xl\)g

- show that each such limit periodic set has a finite cyclicity.

In [DRR1], [DRR2] we have followed this program for a compact
family equivalent to the family P, of quadratic vector fields. Recall
that the Hilbert’s problem is not sclved even in this case. In [DRRI1],
we achieved the first step of the program. In the second paper we
collected all known results of finite cyclicity and added some new ones.
I want to make a brief review of these two articles and indicate the new
progress made from the time of their publication as well as to state the
principal difficulties which remain open.

Before taking the first step, we have to chose a “good” compact
family equivalent to P;. In paragraph 2.2 above, I showed how fo obtain
one such a family in general, for any n > 2. Here, for n = 2 it is easy to
use the specific properties of quadratic vector fields to obtain a better
compact family (with a minimum number of parameters). In fact, we
are just interested in vector fields X which have at least one limit cycle
~. It is well known that this limit cycle bounds a disk D., in R?, which
contains just one singular point, necessarily a focus or a center [Ye]. So
that, translating this singular point at the origin of R?, and performing
a linear change of coordinates, the vector field X has the following
equation :

T = ar—=PBy+e x2+ey xy+esy? 1)
v = Br4oy+6 2?48 zy+ by’ R

with B # 0. Of course, one can suppose also that (¢1,€2, €3, 61, 62, 83) #
0. A time rescaling allows us to suppose that (o, 3) belongs to S'. Using
the linear change of coordinates {z,y) — (z, ~y), we can even suppose
that § > 0, i.e. (o,8) € Pl. In this way we have included the non
‘necessary value (a, 8) = (1,0), to have a compact domain for (e, 3).
Next, the transformation (z,y) — (&,%) transforms the parameter
(e1,€2,€3, 61, 62, 83) to the parameter % (e1,€2,€3,81,82,83). Hence, it is
sufficient to study X, for A € P! x §° (( By e P, (g5,---,85) € 5'5)
As it was explained in the paragraph 2.3, we can extend (X)) to a
family (X,) in §2, or better on D?, blowing up the point at co on $2.
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So that we have obtained an analytic compact family on § = D? with
parameter in P = P! x §°,

Remark 7 [t is possible to reduce the quadratic part of (1.1) indexed
by parameters in 5%, to a normal form indezed by parameters in S4,
Several such reduciions are available : Kaypteyn's, Lienard’s, Ye's nor-
mal forms.- Fach of them uses a rotation in the parameter space, to
eliminate one coefficient of the quadratic part. But this rotation is nol
unique in general and, depending on the lype of limit periodic set, it
may be more useful to consider one or an other (See [DRR1]). So to
describe the resulls it is better to remain in the 6 parameter family (5(' 1)

Ae Pl x 55

Because we have just to look at limit cycles surrounding the origin,
‘we have not to take into consideration all limit periodic sets in the
family, but we have just to prove that : :

- Any limit periodic set of X surrounding the origin has a finite
cyclicity (such a limit periodic set may be equal to the origin itself, or
bounds a disk containing the origin in its interior).

. Comparing this question to the initial Hilbert’s problem for P, we
have obtained a substantial reduction.

For instance, we do not need to study the following problems :

(1) quadratic perturbation of linear or constant vector fields (by the
way, a question equivalent to the Hilbert’s problem itself !),

(2) finite cyclicity of singular points of nilpotent linear part (for
instance, of the cuspidal Takens-Bogdanov singular point),

(3) finite cyclicity of singular points with vanishing linear part,

(4) finite cyclicity of degenerate graphics with lines or curves of
non-normally hyperbolic singular points,

(5) investigation of the number of zeros of Abelian integral on inter-
vals of periodic solutions (because we look at the existential Hilbert’s
problem, the weak Hilbert’s 16'* problem as defined by V. Arnold [I3]
is not our aim).

This reduction looks a bit mysterious. For instance the quadratic
Bogdanov-Takens family : # = y, § = 2° + g + y(v & z) is a subfamily
of P, and contains limit periodic sets. Of course all limit cycles of this
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family exist inside our family X. The fact is that, when (,v) = (0,0),
the corresponding parameter value A — Ao (after extracting a subse-
quence), due to the compactty of the parameter space. It happens that
the corresponding limit cycle v, converges toward a limit periodic set of
()H(' ») which may be the origin, a periodic orbit or a saddle connection,
or perhaps a limit periodic set: containing a part of the circle at infinity
(the origin in the phase space of the Bogdanov-Takens family, which is
a limit periodic set of it, has been blown-up in our new family (X}, in
the precise sense explained in chapter 6 below).

So let us look at limit periodic sets surrounding the origin. These
possible limit periodic sets may be : l

(a) limit periodic sets with isolated singular points uniquely,
(b) limit periodic sets with some non-isolated singular points.

For the first class, we can apply the Poincaré-Bendixson theorem
1.2. As possible limit periodic set we have the origin (and then o = 0),
periodic orbits or graphics. We will see in chapter 4 that regular limit
periodic sets have finite cyclicity, so we have just to consider graphics.
To obtain the list of such possible graphics, one uses the following
information, available for quadratic systems : :

- a quadratic vector field has at most 4 singular points in B2, counted
with multiplicity,

- a quadratic vector field has at most 6 singular points at infin-
ity (counted with multiplicity), which appear in opposite symmetrical
pairs,

- a line in R? has at most 2 contact points with a quadratic vector
field, or is invariant,

- a polycycle (i.e. a monodromic graphic) with at least 2 singu-.
lar vertices must contain the straight line segment joining any pair of
vertices.

Using these properties, it is not difficult, but rather tedious to obtain
a list of all possible graphics. To present them in a rational way we have
introduced in [DRRI1] some interesting subcategories of graphics. The
figures 2.2, 2.3, 2.4 which present some of them come from [DRR1] :

- finite graphics (i.e. graphics contained in R?). These graphics
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has less than 3 vertices. They may be elementary (hyperbolic or not)
or non-elementary. They may be monodromic or not. One has 10 such
finite graphics. See figure 2.2.

- infinite graphics (i.e. containing a part of the circle at infinity).
We have classified them by the number of their vertices at infinity ,
their total number of vertices, the nature of the vertices(the simplest
ones, with a pair of opposite points at infinity are the ‘hemispheres’.
see fig. 2.3). These graphics form the large majority : 100 among a
total of 121 .,

Next we have to consider limit periodic sets with non-isolated sin-
gular points. Recall that the general structure of such limit periodic
sets is unknown in any analytic family. But fortunately, they are not
so frequent in our family (X)). In fact, if a vector field of (X ») has
non-isolated singular points it is equivalent, up to some linear change
of coordinates, to one of the following vector fields X :

¢=Qz—y)(z+1)
) {y=(x+,\y)(m+1) ACR

T=Ar—y+a?
(b) {?}=a:+)«y+:cy AER

t=z(z+1)
(©) {y=ﬁw+ﬂ

In the first case X has a line of singular points {z-= —1}. In the
second case, the singular set is the circle at infinity. Finally in the third
case we have the union of {z = —1} and the circle at infinity as set of
singular points.

In each case, it is easy to see that the possible limit periodic sets
are all degenerate graphics, according to the definition 2, made by the
union of a regular orbit and one or two segments of singular points.
Finally all the possibilities appear in five different pictures represented
in figure 2.4. Notice that each picture may contain different degenerate
graphics.

This achieves the first part of the program. A few of the 121 different
limit periodic sets were known to have finite cyclicity at the time we
wrote [DRR1] : the finite graphics (1), (F}), F(F}), (F}) in figure 2.2
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and the hemispheres : (H}),(H}) in figure 2.3. In [DRR2], we add
25 new cases to this list. All of them, as the already known ones, are
elementary graphics, and have a cyclicity less than 2. (For some of
them the result was only obtained under generic assumptions).

In chapters 4,5, I shall introduce methods to treat regular and ele-
mentary limit periodic sets. They are the methods used in [DRR2].

From the time of [DRR1] some new results were obtained : in [DER],
Dumortier, El Morsalani and Rousseau proved the finite cyclicity of al-
most all elementary graphics of finite codimension; Mourtada, ElMorsa-
iani and myself treated the case of some infinite codimension hyperbolic
graphics with 2 vertices at infinity (JEMR]) ; this was next extended

by the two first authors to finite graphics of the same type ([EM]) ;
finally, Zoladek obtained the finite cyclicity for infinite codimension
“triangle”([Z]).

At the present moment, none of the non-elementary or degenerate
graphics have been studied. In chapter 6, I shall introduce a method of
desingularization for vector field families. We will verify that using this
method one can reduce the question in our family X, to a problem of
finite cyclicity for singular elementary limit periodic set. These singular
limit periodic sets are a little more general than those introduced in this
chapter ; they will be defined in chapter 6.
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Chapter 3

The O-parameter case.

As an introduction to the theory of bifurcations-I want to consider in
this chapter individual vector field, i.e. family of vector field with a
{-dimensional parameter space. We will present in this chapter two
fundamentals tools : the desingularization and the asymptotic expan-
sion of the return map along a limit periodic set. In the particular case
of an individual vector field these techniques have a complete achieve-
ment : the desingularization theorem says that any algebraically iso-
lated singular point may be reduced to elementary singularities by a
finite sequence of blowing ups. If X is some analytic vector field, on §?
the return map of any elementary graphic has the property of 1solated
fixed point. As a consequence, in this special case one has no accu-
mulation of limit cycles in the phase space. In other words each limit
periodic set has a cyclicity equal to zero and an analytic vector field on
the sphere has just a finite number of limit cycles.

In the following chapters, we will apply these techniques to fam-
ilies of vector fields. In this case, however, they have not the same
degree of achievement and the main problems, which have a solution
for individual vector fields, remain open for families.

The following text is just a survey about the subject and I include it
in these notes to make them self-contained. I am going to follow closely
the texts of F. Dumortier [D1], [D2] concerning the desingularization
and also texts by II'yashenko [12], [I3] and Moussu [Mo] concerning the
BDulac problem.

41
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3.1 Blowing up singularities of vector fields.

In this paragraph, the vector field X is just studied locally in a neigh-
borhood of a singular point. So, we can suppose that the phase space.
is R? and the singular point is the origin. We suppose that X is C*°.

3.1.1 Polar and directional blow ups.

Let X a C*™ vector field on R?, such that X(0) =
We consider the polar coordmate mapping @ : Sl x R — R? given
by ®(8,7) = (r cos #,r sin @). The pull-back X, with ®,(X) = X is

a C* vector field on S n X R, called polar blow-up of X.
The smoothness of X is clear from the direct computation of X.

In fact, let be X = Xl(:r:,y) 3 + Xa(z,y) 32 and look at X =
y

m(0, r) + n2(8, r) . Write < u,v >= uyv; + ugvy for u = (uy, u2),

v= (vl,vg) € R*. Smce

d a d 0 d a
@,(%)uza—y—ya,él(rg)—x£+ya—y (3.1)
one has :
<X,E >=rlqg =< X, mi_yi
o0 dy ° Ox (3.2)
<Zrdoarpecx s 2 2 -
1] 87‘ "".7]2"" swam yay>
This gives : _
m(f,r) = = (—r sin# X;(r cos 8, rsin )
+7cosf X;(rcosd, rsinf)) .
(3.3)

1
72(0,7) = = (+r cos 0X (rcos @, rsind)

+rsinXy(r cos 8, 7sinb)).

Now, because X;(0,0) = X;(0,0) = 0, the term r? can be factorized
in the two parentheses of (3.3) and #y,%, turn out to be C*°.
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This follows from the Taylor formula with integral rest. The same
idea proves that X is C¥-1if X is C*.

One verifies that j*X(0) = 0 implies that j*X(u)} = 0 for all
u € S x {0}. This means that the degenerate singularity has been
transformed into a whole circle of singularities.

In practice, one simplifies the calculations by looking at charts and
performing the so-called “directional” blow-ups.

z — direction : (Z,§) — (Z,§ %) (3.4)
y — direction : (Z,3) — (T v,7)- (3.5)

On {z #£0} = {9 # %, §—2—7E}, (3.4) is the same as polar blow-up, up
to the analytic coordinate change (0,r) — (r cos 8,tg 8).

Indeed, (r cos@,tgd.r cos 8) = (rcosd, rsinf).

The “pull-backs” of the directional blow-up maps are hence merely
expressions of X in well-chosen coordinate systems. Here the degener-
ate singularity is transformed into a line of singularities.

After blowing up the singularity to a circle, one can desingularize

X by considering X = F X, k being the order of the largest zero jet
of X at 0,i.e. : 72X (0) = 0if £ < k and j*H X(O) # 0.

1 -~

1
For the directional blow-up we use — X, resp. — X. These last
'z Y

vector fields are no longer coordinate expressions of X but are equal to
X up to an analytic coordinate change and multiplication by a positive
analytic function. This positive factor does not constitute any problem
since we are only concerned with the orbit structure (phase portrait)
of X around the singularity.

Example 1.
Let X = (2 — 25y) >+ (42 ~ 2y) < +0(([(z, 5)|]2)
oz dy ’

Putting
' c=cosf, s =sind,

one has :
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p
7S

Figure 3.1: A singularity and its polar blow-up.

7=£f=23c(s—c)ai+ :
r (3.6)
(S + s —cs(c+ s))r-(—_;;
X has six singular points for § = 0, :t—g, T, -}, 3 which are all

hyperbolic. The phase portraits for X near S x {0} and X near the
origin are shown in Figure 3.1.

3.1.2 Successive Blow-ups.

In example 1 above, one blowing-up was sufficient to determine the
topological type of the germ. The reason is that after just one blowing-
up, all the new singular points are hyperbolic and so have a well deter-
mined topological type. Then the different topological types glue up to
determine the topological type of the germ X.

It is easy to think of examples of vector fields with singularities
where one blow-up will not suffice to determine their topological type.

Example 2.

Let Y, =y 56; + (2% + bxy) %-i— O(J|(=, )!I*). (A cusp singularity
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Figure 3.2: Successive blow-ups for the cusp singularity.

as defined in chapter 1). One requires three steps to desingularize it
{see below for a precise definition of desingularization) and identify it
topologically as a “cusp”. See the details of computation in [T'3). For
a picture of the three steps, (see Figure 3.2).

The procedure of successive blow-ups can be formulated as follows.
We use the map : :

&’:{z|[|z||>~é-}CR2——>R2:z—-»z (3.7)

z
1=
and then divide out by a power of (]|z|| — 1). To blow up a second time
in a point zp on the unit circle, we translate it to the origin and apply
again & ; the second blow-up mapping is therefore : &, =T, 0 & where
T, (2) = 2+ zo. After a sequence of n blow-ups : ®;0---0®, (including
the required divisions) we find a C* vector field X" defined on some
open domain U, C R2. . :

Let T, = (®,0---0®,)"1(0) C U, and denote by A, the connected
component. of B?\T', with a non-compact closure. One verifies that
dA, C T, ; it is homeomorphic to S and it consists of a finite number
of regular C*®-arcs meeting transversaly at end points. The effect of the
divisions is seen as follows : there exists an analytic function F, > 0
on A, with X» = F,X" and X™ | A is analytically conjugate to
X | R:\{0} by means of ($10---0 D, )(a,.

Definition 13 A singular poinl is called elementary of one of the fol-
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lowing condition is fulfilled :

a) It is a hyperbolic singularily : the two eigenvalues have non-zero
real part.

b) It is a non-degenerate semi-hyperbolic singularity : one eigen-
value is non-zero, the other is equal to zero but the infinite jet corres-
ponding to any centre manifold is non-zero.

¢) It is @ germ of a line of normally hyperbolic singularities.

The topological type of an elementary singularity depends just on
the sign of eigenvalues in the cases a), ¢), and also on principal part of
jet on any centre manifold in the case b) (see chapter 1).

Moreover, elementary singularities cannot be simplified by blowing-
up : if one blows up some of them one just produces new elementary
singularities. So, it is natural to see them as the final state for the
desingularization procedure.

A theorem of desingularization for general real vector field germ of
R?* was proved by Dumortier [D1]. To express the “generality” of the
vector field we need the following definition :

Definition 14 A vector field X on R?, with X(0) = 0 satisfies a Lo-
jasiewicz inequality if there exist k € N, and ¢ > 0 such that :

(X(2)|| = ¢||zi* for Yz € U,

U is some neighborhood of 0.
This property is nof exceplional for X. For instance a stronger pro-
perty is :

Definition 15 A C* wvector field has the origin as algebraic isolated
singularity if the ideal generated by the components contains a power of
the mazimal ideal. Notice that lhis property is equivalent to the same
for formal series. This property for analytic germs is equivalent to the
following topological one : 0 € C? is isolated among the zeroes of the
complezification X of X.

I has been proved in [D1] that there exists a subset £, in the space
of co-jets of vector fields at 0 : J®V, such that if 7°X(0) ¢ L., then X
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Figure 3.3:

has an algebraically isolated singularity at 0. As a consequence in any
generic family with a finite number of parameters, all the singularities
are algebraically isolated.

We can now state Dumortier’s desingularization theorem.

Theorem 6 If X is a C*%° of vector field which satisfies a Lojasiewicz
inequality, then there exists a finile sequence of blow-ups $10®5--- 0
®,, leading to a vector field X' dalong OA, all whose singularities are
elementary.

Remark 8 Because 0 € R? is an isolated singularity of X, all singu-
larities of X in some neighborhoods V,, of A, in A, are on dA,. For
instance the normally hyperbolic ones (case ¢} in the above definition)
occure along smooth arcs of OA,, or may be along oll JA, if 0A, is

smooth (in this case n = 1 and X ~ (2? + y?)* (a: g +y -——-) +
0z Jy
O(ll(z n)II*+)).

A consequence of theorem 1 is that it is always possible to find a
finite number of C*° invariant lines, each cutting JA, in one point. In
the case this number is not zero they divide small neighborhoods of 9A,,
into a finite number of sectors which, after blowing down, provide a de-
composition of small neighborhoods of the singularity into hyperbolic
{or saddle) sectors, elliptic sectors, and parabolic sectors of attracting
or expanding type (see Figure 3.3).

The invariant C* lines in the boundary ol these sectors blow down to
the so called characleristic orbils {or lines) : this means that the orbits
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tend to the singularity for ¢ — 4-co or —oo, with a well defined slope.
Existence of a characteristic orbit may be read on the vector field X"
resulting from the blowing-up procedure. It is equivalent for X" to have
at least one singular point at a smooth point of A,. On the contrary,
one has a well defined return map on a transversal segment to JA,,
which blows down to a return map for X, on a half segment through
the origin. One says that X is of monodromic type. In this case, the
determination of the topological type of X is more difficult because it
is not determined in general by the finite jet of X which determines the
desingularization, and vector fields with the same algebraically isolated
oo-jet may have different topological type : for instance X, with

PPXO) =~y ot

3.1.3 Quasi-homogeneous blow-up and Newton dia-
gram. '

Although the method of successive blow-ups is sufficient to study sin-
gularities in general, in many cases we can significantly speed up the
procedure using quasi-homogeneous blow-ups.

Definition 16 A function f : R* — R is quasi-homogeneous of type
(ai, - 0on) € N and degree k if and only if for anyr € R :

f(,ra: Ty, e, T :y,n_) = f(l'l,"',-'sn)-
d

A veet ldX =X, —+ X3 —
vector fie l@:c-l_ a 9

- type (a1, @) and degree k+1 if X; is quasi-homogeneous of type o; and
degree k - «;, respectively. -

is called quasi-homogeneous of

7} d
Example : (a2? — 2zy) e +(y? — ary) — is homogeneous of degree

dy
2 : i.e. quasi-homogeneous of type (1,1), and degree 2.
Let us consider an example where the quasi-homogeneous part of
lowest degree is determining. For general information on the method

we refer to [BM], [Br].
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We look again to the cusp singularity Y, (which needed a 3 steps
desingularization by homogeneous blow-up). For it, an appropriate
quasi-homogeneous blow-up is : '

w:8'xR—-R* (0,r)— (rz.cos 0-, r® sin §).

We perform this blow-up in the differential equation for Y} :

1]
o

This gives : {writing cos8 = ¢, sinf = s) :

v+ 0(lI(z )| -
2 4 byz + 0(||(z, 1)) (38)

¥ (352 +2¢)0 = (2 + 3¢ — 3) + 0(r*) (3.9)
_ "1 (3s2 + 227 = rlse(l +¢) + 0(r") ’
. . — 1 ~
and a desingularized vector field Y = m Y
o [0 = 23 +32-3+007)
Y { # = sc(l+c)r+0(3) (3.10)

It is easy to verify that the polynomial P{c) = 2¢® +3¢? — 3 has just
one (simple) root cq, cp €]0,1[, and so X, | S x {0} has two simple
singular points 0y €]0, 7 /2[, —fh, with cosly = co.

At these points, the radial eigenvalue Esoco(1 + ¢o) {50 = sin ) is
not zero.

The phase portrait for Y, and Y; are given in Figure 3.4.

To detect determining quasi-homogeneous components there is the
possibility to use Newton’s diagram. The best way to. define and also
to memorize Newton's diagram is to work with the dual I-form of the
given vector field.

For a vector field X, 2 + X, g—-, its dual 1-form is w = Xy dy —

: Jdz dy
X2 dzx.

Take now :
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<

Figure 3.4:

7< w(0) = > ai; oy’ | de + >, bi; &'y’ | dy.
= - 2y
2’1‘1_131 0 z’-%-j'fx

The support of w (or X) is defined by :

So={(+1,7) |a; #0} U {(i,7+1) | b; #0}.
- !
The Newton polyhedron of w (or X) is the convex hull T,, of the set :

P, = U {rs+R}

{r.s)ESu

while the Newton’s diagram of w {or X) is the union of the compact
sides ;. of T',,. We obtain a quasi-homogeneous component by restrict-
ing (¢+1,7) and (7,7 + 1) to some .

The Newton’s diagram of the above vector field ¥; has one compact

side, related to the quasi-homogeneous component y e + z? 3_y We
T

have obtained the weights (2,3) by taking the smallest entire vector
orthogonal to the Newton's diagram side (see Figure 3.5).
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ydy-

" Figure 3.5:

3.2 The ﬁniten.e‘ss result for analytic vec-
tor fields on S2.

A preliminary problem to the Hilbert’s sixteenth one is to prove the
following finiteness result :

- Any polynomial vector field on R? has just a finite number of limit
cycles.

As we have said in chapter 1, any polynomial vector field can be
extended to an analytic vector field on 5? and we can ask the previous
question for any analytic vector field on 52

This question was studied the first time by Dulac in 1923 [Du2]
.He gave a proof which presents a gap as it was noticed a long time
after by Il'yashenko [I1]. A correct proof was given for quadratic vector
fields by Bamon [Bam)]. Very recently, complete proofs of the finiteness
result was obtained independently by Ecalle {E] and II’'yashenko [I2].
In this paragraph, I want to indicate how to reduce the question to the
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property of non-accumulation of limit cycles for a polynomial vector
field : the so called Dulac problem, and in the next paragraph 1 want to
give some indications of the proof of this last problem in the particular
case of hyperbolic polycycles. This case is sufficient to obtain Bamon’s

result (see [Mo] for details).
' d a

So, let us consider any polynomial vector field X = X, E + X5 3
Such a vector field can have non-isolated zeros, but in this case, the two
components X; and X; have a non-trivial polynomial common factor.
Let @ be the greater common factor of X3, X;3. Then :

X =Q(Xi 5+ % 5)

where X;, X, are prime polynomials. As a consequence :

- Any singular point of X = X, % + X, % is algebraically isolated.

Next, if [' is some periodic orbit for X, T doesn’t contain singular
points of X and so, it is also a periodic orbit of X. So, X would have
a finite number of limit cycles if the same result holds for X. From
now, we can suppose that our given vector field has just algebraically
isolated singular points. :

Suppose that such a polynomial vector field has infinitely many
limit cycles. It is the same for the analytic vector field X obtained
by extending it to S%. Using the compacity of the space C(S?) of
all compact subsets of S%, onc can find a sequence of (7,), of limit
cycles converging toward some compact invariant subset T' for X. In
the terminology of chapter 2, I' is a limit periodic set for the trivial
family with 0-parameter, made by the single vector field X. So, to
prove the finiteness result is equivalent to prove that X (as a family
!) has no limit periodic sel. Looking at theorem 2.5, we know that
I' is a singular point, a periodic orbit or contains at the same time
singular points and regular orbits. The two first cases cannot occur,
because the first return map along such a I' is analytic and cannot have
accumulation of fixed points (corresponding to the limit cycles v, ). For
the last case, one has claimed in theorem 2.5 that I’ must be a graphic.

We begin to prove this claim :
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Lemma 4 Let X an analylic family and ' a limit periodic sel for
some value Ay which contains singular points and regular orbils of X),.
Suppose that each smgular point in [ is algebmzcally isolated. Then T
is a graphie.

Proof Because I' is compact, it can just contain a finite number of
singular points : pj,---,pr. To prove that I' is a graphic, it suffices
to prove that T' contains also just a finite number of regular orbits.
Suppose on the contrary that ' contains infinitely many regular orbits.

Then, for at least one of the singular points, say p;, one has an
infinite sequence of regular orbits (n)nen such that a(vy,) = p1.

By assumption, p; is algebraically isolaled and we can apply the
desingularization theorem 1 : the singular point p; has just a finite
number of sectors. Clearly, the above orbits must belong to elliptic or
expanding parabolic sectors. We can find a sub-sequence (7, )ien in a
same sector (which is elliptic or parabolic), and construct a transver-
sal segment ¢ cutting each 7, in one point at least. But this is in
contradiction with lemma 2.2. .

Remark 9 The same proof works for limit sets of analytic vector fields.
On the contrary, it is possible to construct « smooth vector field which
has some limit periodic set or limit set with infinitely many regular
orbits (and non algebraically isolated singular points).

We return now to our vector field X with an accumulation of limit
cycles 4, on some graphic I'. This graphic must have a well defined
returned map on some half interval ¢ transversal to I' (¢ ~ [0,1[ and
{0} = oNT) on the side where one has the accumulation. Such a
graphic is called a monodromic graphic or polycycle.

Now, at each singular point, we can a‘pply the desingularization
theorem.” The desingularization mapping ®; o --- o ®,, at each point
is analytic, so that we can construct, gluing up local charts defined
at each p;, an analytic surface U and a proper map ® : U — U on
some neighborhood of T such that ® is equal to the desingularization
map above a neighborhood of each p; and is an analytic diffeomorphism
elsewhere.
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The vector field X lifts up to a vector field X on U, which may be
desingularized by division by functions defined locally. So, we obtain
on I an analytic singular foliation defined by vector fields X; ; each X;
is defined on an open set U;, and X;, X, differ by a positive analytic
function on U; N U; (we call such a foliation a “local vector field” in
chapter 6). This foliation is oriented and has exactly the same quali-
tative properties as a vector field. The counter-image ®~1(T') = I is
an elementary polycycle (each vertex in T is elementary). Because ®
is an analytic diffeomorphism outside T', the infinite sequence of limit
cycles in U which accumulates on T, llfts up in an infinite sequence in
U accumulating T

Finally, we are reduced to prove that such an accumulation is im-
possible. It is the so-called Dulac problem :

- An elementary polycycle of -an analytic foliation cannot be accumulated
by limit cycles.

3.3 The Dulac problem.

In this paragraph, I want to give some indications on the solution of
the Dulac problem. As [ have said above, this proof is quite recent
and I am not sure to understand all its details. So, I am going to limit
myself to the simpler case of hyperbolic polycycles.

A beautiful proof was given by II’'vashénko in 1985 in this case
(I2). This proof contains some of the ideas used for the general case
and moreover we will see that it can be extended somewhat to general
unfoldings of hyperbolic polycycles (see chapter 5). Here, I am going
to follow partially the survey given by Moussu [Mo].

S0, let be an analytic foliation F in a neighborhood U of some
hyperbolic polycycle T. Let py,---,p. the vertices labelled in cyclic
order. Let o’ any half-segment transversal to I, such thai return map P
is defined from ¢ — ¢’ where ¢ C ¢’ is some subsegment, neighborhoods
of the base point a € ¢’ ~ [a, b]. :

At each vertex p;, one can choose local coordinates (x;, ;) such that
0z;, Oy; are local unstable and stable manifolds and more precisely 0z,
0y} belong to T and the trajectories corresponding to the return map
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Figure 3.6:

near I" are in the first quadrant.

Taking transversal segments o;, 7; to Oy, Oz; respectively we can
define a transition map y; = D;(z;) from o] to ; (o] corresponding to
x; > 0) near each saddle point and also a regular transition R; along
each side of I, from 7;_; to o;.

Taking o' in o for instance, we can write P(z;) as a composition :
P(zy= RooDpo---0 RyoDy(z). (3.11)

The maps R; are analytic diffeomorphisms. We want to look more
-closely to the structure of each saddle transition. Let p any hyper-
bolic saddle and D{z) its transition map. The structure of D depends
strongly on whether the saddle is resonant {(with a rational ratio of
eigenvalues) or not.

In any case, we will prove in chapter 5 that there exists a formal
series D(z), the so-called Dulac series of D :

Z N P Pi(Lnx)

where A; is a sequence of positive numbers : M<hh< <A<

tending to infinity, with Ay =7 = e {the ratio of hyperbolicity of p ;
H1
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f2, i1 being the eigenvalues), and a sequence of polynomials F;, with
P, = A (a positive constant).
This series is asymptotic to D(z) in the following way: for any s,

| D(z) — Z ™ P (Inz) |= O(z™). (3.12)

=1 .
Definition 17 A germ of map f at 0 € R is said quasi-regular if :
(i) f has a represeniative on [0, X[ which is C* on )0, X|.

(ii) f is asymplotic to a Dulac series f

o0
flzy=3" 2% P(Lna), with0 <Ay < Xy < ---a sequence
=1 '
of positive coefficients tending to co and P; a sequence of polynomials.
One says that [ is a quasi regular homeomorphism if f is quasi-
regular and if Pi(z) = A (a positive constant).

It is straightforward to verify that the set of all quasi-regular home-
omorphisms is a group D (for the composition of maps) which contains
the group Dif f, of germs of diffeomorphisms fizing 0.

As a consequence :
Proposition 2 The Poincaré map P is quasi-regular.

Remark 10 This result is also true for C* vector fields or foliations.

Now, suppose that P(z) # z, we have that P(z)—z has also a non-
zero Dulac series and so : P(z) — 2 is equivalent to some ez Ln* z
fora#0,A>0and k€ N,

But this implies that the equation {P(z) — = = 0} has no roots in
10, X], for some X > 0, contradicting the assumption of accumulation.
of limit cycles on I', and so, of roots of {P(z) — z = 0} on {z = 0}.
So, the Dulac series of P is identical to z. We want to prove that this
implies that P(z) = «. It is precisely this crucial step : Plz)—z =
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0 = P(z) — z = 0 which seems to miss in Dulac’s paper. This gap was
filled up by II’yashenko in [I2] in the hyperbolic case. The idea was to
prove for P a more precise property of quasi-analyticity :

Definition 18 Let f: [0, X]— R « function.
One says that f is quasi-analytic if :

(i) f is quasi-regular.

: (it) The map : X — foexp(—X) has a bounded holomorphic ezten-
sion F(Z) on some domain 4, of C, defined by : Oy = {Z = (X +:iY) €
C 1 X > b1+ Y2} where b is a positive real number.

A consequence of the Phragmen-Lindeldf theorem is that for quasi-
analytic function, the mapping f — [ is injective (see [Ch] :

Lemma 5 If [ is a quasi-analytic function, such that f = 0, then

f=0.

Proof For ¥ > 0 large enough, the image of C* = {Real (Z) > 0} by
w:Z — p(Z) =1+ Z)?+ Z with ¢(0) = & is contained in . Let
F(Z)= fo exp(—Z) as in the definition. The function G = Fopisa
bounded holomorphic function on C*, and, because f = 0, there exist
real K, K, for ¥n € N such that :

|G(Z)Y| < KifZeCtand
|G(X) | < Ky ecap(—nX)if X € R*.
Now let be G,(Z) = G(Z). exp (nZ).
We apply two times the Phragmen-Lindels{ theorem . A first time

to the sectors {¥ >0, X > 0} and {¥ <0, X >0}.
Because | G,,(Z) |< K exp (n| Z |), one has for instance :

Sup(| Go(X +iY) |; X 20, Y 20)
S Sup(l Gn(X - 1Y) |,XOT']" = 0) S Sup{]\’, I(ﬂ.}-
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So that | G,(Z) | is bounded on C* and we can apply the Phragmen-
Lindidf theorem a second time :

Sup(| Ga(Z) |;Z € C*} < Sup(| Gn(2) |; Z € 8C*} = K.

Using this last inequality for X € Rt :
|G (X)) < K =5 |G(X)| € Kexp(—nX), ¥n € N, VX € R*.

Of course, this implies that G{(X) = 0. _ .

So, to prove that P(x) = 2 it suffices to prove that P(z) is quasi-
analytic. In the composition P(z) = R,o0D,0---0 Ry 0Dy each R;
is real analytic at = == 0, and so it is a restriction of local holomorphic
diffeomorphism at {z = 0}. Clearly, such a function is quasi-analytic..
The key point is to prove that ;

Theorem 7 The transition map D af a hyperbolic saddle singularity
is quasi-analylic.

We postpone a moment the proof of the theorem 2 to finish, using
it, the proof of the Dulac problem for hyperbolic polycycles.

Let p(Z) = exp (—Z) and ¢™1(z) the branch of —Log (z) such that
e ! (1) =0.

For each mapping g(x) in the composition P(z) = R,0oD,0-- 0
Ry o Dy the map : G(z) = ¢~ 0 g 0 (%) defines a holomorphic dif-
feomorphism of some domain ), into another domain Qy (because g is
quasi-analytic).

So that we can lift up the composition P into a composition of hole-
morphic diffeomorphisms from domains 4, to §,,,, fori =1,-++,2n.
Composing with ¢, we obtain that P is quasi-analytic. This finishes
the proof of Dulac problem.

Proof of theorem 2.

Write g{z) = D(z}, the transition_map. We call X a complex
extension of X in some neighborhoods W of 0 € C?. Up to some mul-
tiplicative factor, the differential equation for X is :
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{‘.é =g | (3.13)

w = —r(l+a(z,w)w

r € R*% is the hyperbolic ratio, and z = z + iz, w = y -+ iy are
complex coordinates. We can suppose that a(z,w) is holomorphic in a,
neighborhoods of a polydisk D x D or radius (1,1) and that [ a |< 1/2 ;
the trajectories of X define an holomorphic foliation F, transversal to
the projection m(z,w) = z.

Any path ¢: [0,1] — D%, starting at = € D* and ending at 1 € D*
has a partial lift ¢ for 7, starting at z = (=, 1), tangent to F'; this means-
that there exists # > 0 such that : :

z:[0,7) = Dt x D, &0) =%, roe=c, and&t)
is a trajectory of X.If n=1,wesay that isa lift ofc. [z =z € R
is small enough, the path ¢; =t — (1 — )a + ¢, t € [0,1] has a lift &,
and by definition of g : ¢,(1) = (1, g(a)).

"Let Z =X +1Y, and I'z the composition of the two paths :
Iy it—=(1-)X+iY +taendTL:t =141 -1)Y.

If ¢z = expo(—I'z) has a lift ¢z one has (1,G(Z)) = éz(1).

It is clear that G is holomorphic and bounded in a neighborhood of
R* C C. It remains to show that this neighborhood contains a domain
Q. :
The path cz is the composition of the two paths ¢}, = exp (-I'})
and ¢& = exp (—I'%). It is convenient to parametrize these two paths
by the flow of the first line of (3.13) :

7 ¢, : te0,—Log]z| — ze
and : (3.14)
tef0,¥]— e Vet '

x}
PN

where z = exp (—2).

We have to find some inequality : ¥ < (X)) (for ¢ of smaller order
than X?%) such that one can lift the path cz, i.c., lift the path ¢ in a
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Figure 3.7:

path &, from mo = (z,1) to my = (——z——-,wl) and next ¢% in a path ¢%
Z
from my to m, = (1,ws). (See Figure 3.7).

To obtain &4, we replace the complex time 7 in (3.13) by 7 = £ €
- [0,— Log |z |]. Using that | a |< 1/2, we have that the solution of the
second line of (3.13) verifies :

lw(0) | ™ < [w(t)| < w(0) e} ™ (3.15)
And in particular, ¢}, can be lifted and :
|z|”2T5]w;|S|z|3/2”. (3.16)

To obtain E%, we replace 7 by 7 =6, 0 € [0,Y].

The solution (2(0),w(#)) verifies : | 2(#) |= 1 and :

j—: =ir(1 4 a)w(9). (3.17)
If we write G = pe¥, p € R, o € R, w(0) = p(0)e®, (3.17) is

equivalent to : ‘
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dp dy . '
(dO +ip = 2 ) =ir (1+a)p. (3.18)
Or: J
@
—— = r-+r Re(a)p
[
@ N (3.19)
do

At this point, we need more information on e, because knowing
that | @ | is bounded would not be sufficient. In fact, using the Dulac
form (see chapter 5), it is possible to choose holomorphic coordinates
(2,w) such that a(z,w) = 0(] z.w |). Here, a(z,w) = a(z(0)w(f)) with

| z(0) |= 1.
So that :
| a(2,) = 0(p)- (3.20)
And finally, the second line of (3.19) gives fl_g = O(ﬁg) or, there
exists K > 0 such that :
dP z
< 21
¥ Kp (3.21)

By integration, this differential inequality implies that :

p(0)
|p(6)] < T 3RV | GO (3.22)

Recall that p(0) =} w; |.
To have 2%, C D x D, it will be sufficient to have :

1=-3K[Y||wi P2 w |°. (3.23)
Taklng in account (3.15), it is suflicient to have :
1 2.x
— (ez™ —1). 3.24
VIS g (% —1) (3.21)

Clearly, the domain defined by (3.24) contains domalns Q.

Remark 11 If r € Rt or if one just use the boundeness of | a | in
place of (3.20), we will obtain a linear inequality [ Y |< KX in place
of (3.24). The domain so defined doesn’t contain an Q,, and we could
not apply the Phragmen-Lindelof idea.






Chapter 4

Bifurcations of regular limit
periodic sets.

In this chapter, (X)) will be a smooth or in section 3 an analytic family
of vector fields on a phase space S and with parameter A € P, as in
chapter I. Periodic orbits and elliptic singular points which are limits of |
sequence of limit cycles are called regular limit periodic sets. A reason
for this denomination is that for such a limit periodic set I' one can
define locally return maps on transversal segments, which are as smooth
as the family itself. As a consequence, the limit cycles near T' will be
given by a smooth equation and the theory of bifurcations of limit
cycles from I' will reduce to the theory of unfoldings of differentiable
functions. In fact, we just will need the Preparation Theorem and not
the whole Catastrophe Theory to treat finite codimension unfoldings.
Section 3 will be devoted to oco-codimension analytic unfoldings.
In these cases the vector field X, we unfold is of center type ; i.e,
it admits a whole annulus of closed orbits. If I' is any of them, the
finite cyclicity of (X, T) could be deduced from a general theorem by
Gabrielov. I prefer to deduce it in a simple way, using the notion of
Bautin Ideal, which is interesting by itself and may be used also for
singular limit periodic sets where methods from analytic geometry are
not sufficient, as we will see in the next chapter. As we will see decom-
positions in the Bautin Ideal are in fact generalizations of the Melnikov
asymptolic formula. Such centre-type vector fields appears in special
analytic families, for instance the polynomial family P, ; they may also

63



64 - CHAPTER 4. BIFURCATIONS OF REGULAR LIMIT...

result from use of rescaling formulas as we will see for instance in this
chapter for the Bogdanov-Takens family.

4.1 The return map.

4.1.1 Return map for a periodic orbit.

Let T be some periodic orbit of X - Let zg € I' and ¢’ some smooth
open interval imbedded in S transversal to X, at any point and such
that =g € o’. We can find a subinterval o, neighborhoods of o in &'
such that : :

yaCo,

ii) a (first) return map for the flow of X, is defined from ¢ into o’
Let A, (u) : ¢ — o' be this map. ;

As a consequence of the implicit function theorem, there exists a
neighborhood W of Ap in P and a map :

h(u,M):ox W — o'

such that, for each A € W, hy(u) = h(u,A) is the first return map
of Xy, from o to ¢'. Here u is a smooth parametrization of o', with
wo = {u = 0}. This map is smooth and analytic if the family (X)) is
analytic.

Let 6y(u) = 6(u, A) = h(u, A)-u the difference map ;6 : o xW — R.
The fixed points of Ay, which are the roots of {6» = 0}, correspond
to the intersections of periodic orbits of X, with . In this way, we
obtain all closed orbits of X cutting o, for A near enough Ag. This is a
consequence of Lemma 1.1.2 which implies that each periodic orbit of
X cuts o in at most one point and the fact that ¢ can be chosen as
small as we need. Let us write explicitly this result :

Lemma 6 For each ¢ > 0, one cen find o(c), a neighborhoods of zq in
o' such that : u € o{e) is a root of {6y = 0} for A € W if and only
“if the orbit v of X, throw u is a periodic orbit with dy(v,T) < & (see .
definition of Hausdorff distance dy in chapter II).
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If N(e,)) is the number of isolated roots of {8y =0} in o(c) =
{| u | €}, it follows from lemma 1 that :

cyd (XA’I‘) = fuf {N(E! A)}
c-»Oo

and that the study of Cyel (X, I') reduces to the study of the number
of roots of the equation {6, = 0} near u = 0, for X near ).

4.1.2 Return map near an elliptic point.

Recall that an elliptic point zo for X, is a singular point with complex
- eigenvalues. It may be a focus or centre type point (if surrounded by a
whole disk of closed orbits). In any case, such a singular point is non
degenérate and using implicit function in theorem, it is easy to see that
the family is smoothly conjugate for (z, A) near (g, Ap) to a family with
Xx(zo) = 0, and with no other singular point other that zo in some
neighborhoods of zq. We will assume this from now on.

In some neighborhoods Wy of Ag, the eigenvalues of X, at x, are
equal to B(A) & ia(A) with a(A) #0. ‘

Let be now a smooth interval ¢’ ~ [0, ¥[, imbedded in S with end
point 0 at o, and transversal to X}, at any point u # 0.

Lemma 7 Let any b €]0,¥[ and 0 = [0,b]. Then there exists a neigh-
borhood W C Wy of Ao such that a return map hy(u) is defined for X,
from o into o' ; this map, extended by hy(0) = 0 is smooth as function

of (u,A) (enalytic if (X,) is analytic).

Proof Let ) a coordinate chart containing z¢ : £ 2 R? of coordinate
(z,y) and zo = (0,0). Let <p(r 8) = (r cos 8, r sin 6) the polar coordi-
nate map. As we have seen in chapter III, there exists a family (X A)
in (S' x R*) x W such that @,(X)) = X) | 2 x W.

Recall that, if X\(z,y) = Xi(z, ¥, ,\)565 + Xa(z, v, /\)aiy in 2 x W,
the ‘blown-up’ family (X,) is equal to :

Xy = m(r,ﬁ,/\) 'a_e +"’?2(7‘,9,)l) r E
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with :
ﬁl (r,8,)) = ;1-2-(—1'3 Xi(re,rs, A) + reXs(re, s, )«))
and _ _ )
n2(r,8,)) = 3 (rch (re,rs,A) + rsXz(re,rs, A))
with :

¢ = cosf and s = sind.

So that clearly (X 1) being smooth or analytic depending on (X,\)
being smooth or analytic.
We can suppose the coordinates are chosen such that :
6 0 a d
P X0 =a(~y 5o +e 5 ) +B(s 5o+ 55).

In polar coordinates :
J' X\(8,0) = 2 + Br 9 for Y0 S
AT 06 or

This implies that X} is non singular for each (f,0) and that the curve
51 % {0} is a periodic orbit. If &' Y > 0 is chosen small enough the interval
{0} x [0,¥[ is transversal to Xy for all A € W and one can choose
b €]0, ¥[ such that the return map h of X) is defined on |0, b{xW.

~ Of course Ba(r) is 2 smooth (resp. ana.lytlc) function of (u, A) if (X)) is
smooth (resp. analytic), Under the mapping ¢, intervals {0} x {0, ¥,
{0} x [0, #[ are sent to the interval o', o resp. in the Oz-axis and because
(X)) = X}, the return map hy for X, is defined from ¢ to ¢’ and is
equal to hy. This concludes the proof. "

The vector field {family (f ») 18 in fact defined in a whole neighbor-
hoods of S x {0} in ST x R (It suffices to take r € R in the polar
coordinate map), and the return map &) extends in a whole neighbor-
hoods ¥ of 0 € R. This return map is clearly equals to the return map
for X, defined on the 0z-axis for negative values. This means that
hx(u) extends smoothly on a whole neighborhoods ¥ of 0 (such that
o = EN{z > 0}). In the same way it is easy to see that the first return
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mw

w=T, (u)

-y

Figure 4.1:

of the flow by ©# € ¥ on the whole axis 0z is a well defined smooth map
Ta(u) : ¥ — R with Ty(u).u £ 0. Moreover one has locally in some
neighborhoods of 0 € X :

hyoTy =T 0h, (see Figure4.l :).

It follows from this, that Py on {u < 0} is locally conjugate to hy
on {u > 0} and that if k) is a contraction (expansion) for {u > 0} it is
the same for {u < 0}. As a direct consequence ;

Lemma 8 Suppose that §,{(u) = hy,(¢) —u is not flat at u=10 {i.e:
'3k such that j* 8,,(0) # 0). Then 8),(u) has an odd order 2k +1 :

6o (u) = (B(Xo) — 1)u + Ofu) with B(Ae) #1 or :
830 (1) = +azkq (,\0). w4 O(u? 1) with B(A) =1 and

aze41 (Ao) # 0.

The case 8(Ao) # 1 corresponds to an hyperbolic focus. If §(Xo) =1
and 6y, (u) = aarpr (/‘k.;,)“w'1 +0(u2"+1) one says that zg is a weak focus
of order k of X,,.
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4.2 Regular limit periodic sets of finite
codimension.

4.2.1 Periodic orbit.

Let I' some periodic orbit for X, as in 4.1.2, with a transversal interval
o, 6x(u) = ha(u) — u the corresponding difference map, for (u, ) €
oxW({u=0}=Tno).

Definition 19 I is said of codimension k > 0 if 6, (u) is of order k+1
at w=20, ie:

83 (W) = apyr u¥F H 0w with qpg #0.

Remark 12 A finile codimension periodic orbit is necessarily a limit
cycle. So, ' is of order 0 if and only if T is a hyperbolic limit cycle. In
this case, one can choose an annulus 0 around I' and a neighborhood
W' of Ag in W such that, for YA € W', X, has an unique (hyperbolic)
fimit cycle 'y, with I' = I'y,. So that the Cyel (X,,T) = 1, in this case.

This result of finiteness is easily generalized :

Lemma 9 LetT alimit cycle of X, ofcodzmenszon k. Then Cyel (X, T) <-
k+1.

Proof As we have seen in lemma 1, Cyel (X, 1") is equal to the number

of local roots for the equation {é,\(u) = 0}. But because aa kf:° (0) #

0, one can find oy : 0 € oy C o and a neighborhood Ay : W3 C W
k+1

such that % (u) # 0 for V(u, A) € o1 x Wy It follows from Rolle’s
[

theorem that the function u — &x{u) has less than k& + 1 roots in oy

(for any A € W). .

Remark 13 If the refurn map hy(u) : ¢ — o' is defined for A € W,
the set of parameter values A € W for which at least one limit cycle of
order k cuts o is given by the equation :

{(a(w) = =8w)=0, 6{*V(w)#£0}.
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The map which at each A € W associates hy(u) € C*(a,0’) is a smooth
map. More generally, if Xo € x*°(S5) has a return map hx,(u) : ¢ — o,
one can find a neighborhoods W of Xo in x*°(8) such that each X €
W, has a return map hx : 0 — o'. The map X € x™(5) :— Px €
C>=(o,0") is also smooth (in the sense of differentiable maps between
Frechet spaces). It is also easy to prove that the above equations define
a codimension k-submanifold of LCy W C x*°(5). (LCx(o) limit cycles
of codimension k, related to ¢). We can call it a singularity as in
chapter I : the singularity of vector fields with 1 limil cycle of cod. k
" {cutling the given interval o). It is more general that the singularities
defined in chapter I which were given by a submanifold in a jet space.
Here, LCi(o) is not defined in term of the jets of the vector fields but
throw its return map on o.

A consequence is that it is difficulf to find this set in a given family :
for instance, the subset LCy of polynomial vector fields of degree < n,
having at least I limit cycle of codimension k is an analytic subset of
P, but we know almost nothing about it. For instance, we do not know
if LC, for k > 4 is emply or nof in Py.

It is easy to give a more precise description of unfoldings of codi-
mension k Hmit cycle . If & is a transversal segment to such a limit cycle
I' for the parameter value g, one has : §,(u) = gy uft! 4 0(uF+!)
({u =0} =T'n o). Then it {ollows from the preparation theorem that
there exist functions U(u, A), with U(0, Ag) # 0 and ao(A),---, ax—1(A)
in a neighborhoods of (0, Ap) and Ag respectively such that :

k=1
63() = Ulu, M) (uh*! + ;} () (4.1)

If X, is analytic the functions U, a; are also analytic [N]. If X} is
C*, one can find U, a; also C*°. This is the “C* preparation theorem”
of Malgrange IM].

From (4.1) one has that the equatlon {6:,(u) = 0} is equivalent to
the polynomial equation :

k-1
w43 a;(A)ef =0 (4.2)

7=1
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This equation is factorized throw the universal unfolding of the
monomial u**! : ‘

k-1 :
P(u,e) =u** 4> o ui =0 (4.3)
k=1
The diagram of bifurcation for the roots of P4y in terms of the
parameter a« = (g, -+, qx1) is rather famous at least for k < 4,

because it gives 4 on the 7“clementary catastrophes” (these reducing
to phase space of dimension 1) : the fold for k = 1, the cusp for k = 2,
the swallow tail for £ = 3 and the butterfly for ¥ = 4. We refer to the
abundant literature on Catastrophe Theory for a description and also
to [D2], for applications to vector fields.

The vector field X is locally equivalent to a any vector field with
differerice function :

k=1
6% (u) = i(uk‘“ + 37 () uj) (4.4)
i=0

So a first question is to construct such a vector field family near
o X {Xo}. It is a trivial exercise in the C* case and I leave it to the
reader :

Lemma 10 (Lifting Lemma) : Let hy(u): o' x W — ¢ ¢ C* family of
diffeomorphisms of ¢’ into 0. Then one can find a C*™ family of vector
field on some annulus U (conlaining o), with parameter in W, whose
has ky(u) as return map.

Remark 14 [ do not know if such a result erists for analyéic vector

Jield families.

Clearly, the initial family X\ is induced throw the map «()) =
(ao(/\), S Qg (A)), from the versal unfolding X** one can construct,

k-1
using lemma 5, for the function §*(u) = i(uk“ + E o uj). Xkt
k=0

is a structurally stable unfolding of codimension %, and in any generic
family with ! parameters, any local unfolding of limit cycle is induced
by some of them with k < £.
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4.2.2 Elliptic focus.

Let us now consider some elliptic focus point zo for X,,. As above
one can suppose that ro is a non degenerate singular point for any
A € W, some neighborhoods of Ag, a transversal segment o’ by z,
o' ~ [0, (x0={u=0})and o C o', o=][0,b and a return map
ha(u) : 0 x W — o', with ky(0) = 0.

To simplify the study of X and of its return map h,, the family is
reduced to its normal form. We just recall this and refer to [D] for an
existence proof ; .

Up to a C* conjugacy (i.e a C* coordinate change, depending on
the parameter), X is equivalent to :

XY = (1 490 + fu) (v 5+ 5)

+ (g(x2 + 9%, X) +gm) (a: 33.1: +y (%) (4.5)

where f(u,)) and g(u,A) are C*°, fo{(z,¥,A), goo(x, A, ¥) are C* and
are flat at the origin: (7° fuo(0,A) = j* ¢(0,1) = 0).
We can ‘write X{' in polar coordinate :

XY = (162 )+ £l 8,3) g5+ (607N +(p,8,0) £ 57 (46)

with feo, g flat at p = 0. Of course, f(0,A) # 0 for any A € Vg and

we can divide X{' locally along {0} x W by the component in 3

So, X, 15 C*° equivalent to a vector field family :

N . 9
Y.= % + (G(p ,)\) + Goo(Psga )\))p ap (47)

To obtain the return map on o (we choose it in {# = 0}), one has
to integrate the differential equation of ¥ :

.
!

= 1
{f» = (G+Gulp (18)
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We can eliminate the time £, and look for the solution p in term of
8. It is solution of the equation :

d
&= (G N + Cualp 0, 1) (4.9)
If p(8, A) is the solution with p(0,A) = u € cr’; the return map is

h(a, A) = hy(u) = p(2m, A).

Now, because (4.9) in a C* equation in p*, up to a flat term, the return
map has the following form : 7
ha(u) = (R, 3) + hoo(u, ) (4.10)

where hy(u?, A} is C, hooln, A) is flat at u = 0 and hy = > 4-0(u?)
(where B{\) £ ¢ are the eigen-values of the 1-jet of (4.8)). But any flat
function can be written as a C* function of u? for u > 0, so that we
can include the term Ao, in b :

ha(u) = u ha(u®, A) (4.11)

and :

6x(u) = u &(u?, X) o (4.12)

with 8y C* in u?and A, 8(x?,A) = (e*™™) —1)+0(w?). Let us suppose
that X, has a weak focus of order k. This means that :

63, (1?) = T v + 0(u*) with @, # 0.

In this case, one hasztrivia.]]y :

Lemma 11 If zg is a weak focus of order k, then Cycl (X, {xo}) < k.

Proof Equation for limit cycles near the origin is {8,{u?) = 0} and 0
is a zero of order k& is u®. So that applying k times the Rolle theorem
to this function of u? gives the result : 8;(u?) has less than k zeros on
[0, U] for some U > 0 and for A € W. "
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Of course, as for periodic orbits, one can obtain a precise description
for the bifurcation diagram. Applying the preparation theorem to the
C* function 4, one has :

k—1
Ba(w) = U, ) [u* + 3 a5(2) u*] (4.13)
i=0
U(0, Ao) # 0 and a;(0) = 0.

Notice that is not possible to kill the term in ¥2*~1) by a translation
in u because we have to preserve {u = 0} which corresponds to the
singular point of the vector field.

6, is then factorized, up to the unity U, throw the versal function :

k-1
30,(11) =u?* 4 z o u?l. (4.14)
=1
It is clear that the zeros of §, correspond to the limit cycles of the
polynomial vector field family :

a 9
Nt - . 2_‘.' 2k . 4.1
Ko™ =gk ( J_§=0: o 0% + o) p P (4.15)

(£ : sign of &).

Remark 15 It is possible to construct a C® conjugacy between the
Poincaré map of XNt and ud,(u?), but in general, not possible “to
kill” by a conjugacy the unity U(u,X). So that, if X:{‘f) is equivalent
to- X for each X, it is not possible in general to construct a (C°,C%)
equivalence for k > 4. One can construct a topological obstruction to
this ! (see [R1]).

One has obtained finally is that XN* is the versal unfolding of the
germ X,,, for the (C°-fibre, C*°) equivalence relation. Recall that this
means that one can find ¢ C* map a()) such that for each value of A,
X is topologically equivalent to X aN(f) If X, is analytic, the map a(A)
is also analytic.

This result was proved for k = 1 by Hopf and extended for any k > 2
by F. Takens [T1]. In fact, Takens proved a somewhat stronger result :
he obtained a smooth map H(z,y,A) : B2 x W — R? x W above the
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map a(A) which bring the limit cycles of X into the limit cycles of the
model XN*. It is why we will call the above unfolding : degenerate Hopf
unfolding, or Hopf-Takens unfolding.

4.3 Regular limit periodic set of infinite
codimension.

We restrict now to an analytic family X, and we suppose that for some
value Ag € P, there exists an interval o’ such that each orbit cutting
it is periodic. We will say that X, is of centre-type. Of course, we
may suppose that o' is a maximal interval with this property and that
the ends of ¢’ belong to singular limit periodic set. This limit periodic
set may be reduced to a single point, a centre. (It is the reason why
I say that X, is centre-type). The simpler case is when this centre is
elliptic : the 1-jet of X, at this point is conjugate to a rotation, and
this limit point is then a regular limit periodic set as the other orbits
through the points of o’. We will consider such a singular point in this
paragraph. The end point of &' may belong to a more complicate limit
periodic set : a single non-elliptic point or a limit periodic set with a
singular point and regular orbit. We will study this possibility in the
next chapter.

If e € do' is an elliptic point, we will suppose as above that e is a
non-degenerate singular point for any value of A in some neighborhood
Wo of Xo. In this case, we will call ¢/ the half-closed interval o' U {e}.

In all cases (¢’ half-closed or open), for any ¢ C o' (e € o if o' is
half-closed), such that @ C o', one can find some neighborhoods W of
Ao in Wy such that the return map ha(u) : (u,)) € ¢ x W — ¢’ and
the difference map 8x(u) = hy(u) —u : ¢ x W — R are analytic. That
X, is centre type is equivalent to 8,(u) = 0. We want to study the
cyclicity and bifurcation properties of the germ of X along {Ao} X 7,
when v, is the orbit of X, throw up € & (included the centre case :
ug = €). To this, we introduce in the section 3.1 an ideal in the germs
of analytic function of A at Ay : the Bautin Ideal I. We will see that
the difference function §, may be divided locally in this ideal, and we
will give also some other properties for T and the division of &5 which
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allows to estimate the cyclicity (X, v.) (section 3.3). Finally, we will
see that the Melnikov asymptotic formula is special case of division in
the ideal and that inversely Melnikov functions may be used to compute
the division. We close this paragraph with applications of the Bautin
Ideal to quadratic vector fields.

4.3.1 The Bautin Ideal.

For any ug € o, we can expand the analytic function §(u, A) in series in
u—Ug :

8(u,A) = Y ai(X,uo)(u — uo)'.
i=0

The functions ¢;(}, ug), are analytic in W x o. To simplify we will
not indicate the dependence on ug and simply write a;(A) for a;(A, u).
Let f denote the germ at Ap of an analytic functions f(A) defined in a
neighborhoods of Ag. (f € O, ring of analytic germs at Ay € P). We
consider the ideal % C @, generated by the germs &; : % = I{a,;}..

This ideal is Noetherian and so, is generated by a finite number of
germs &; :

I =TI{ag, "+ ,an}.

The functions a; and the number N depend on uy.
We have the following division property :

Proposition 3 There exisls a constant R > 0 such that for all ug € o,
there exist a neighborhoods of Ao : W,, C W and analytic functions
ho(u, ), -+, hn(u, A) defined on ([uo — R, uo + Rl Na) x W, and on

this domain :

‘N
6(u, A) =) ai(A) hi(w, A). (4.16)

i=0

Moreover : hi(u, ) = (u — uo)*(1 + 0(u — uo)).

Remark 16 Recall that a;()\) and also N may depend on uo. But the
above constant R is independent of ug.



76 CHAPTER 4. BIFURCATIONS OF REGULAR LIMIT...

Proof We suppose that W is compact. Let K the union of all tra-
jectories of Xy between points in & and the first return on o', for
YA € W ; K is a compact subset of S x P. One can extend the real
analytic vector field family (X, ), to a holomorphic vector field family
(XA) defined for (2,1}) in some neighborhood of K in the complexifi-
cation § x P of S x P. For this holomorphic family, one can choose
sections &, 8' C §, dlffeomorphlc to disks, such that . C int &', and
6NS =0,6'NS = o'. One can also choose some compact extensmn w
of Win P(W =Wn P), such that XA has a holonomy map (&, A) :
& x W — &. Let 8(#, 1) = (@, }) — 4. Then for all iy € &, one has
series expansion :

" _

&(d, ) = E a;(A, to)( — ﬁo)‘ (4.17)

The functions a:(}, fig) are holomorphic on W x & and extend the

real function a;(}, ug). Because & x W is compact, the expansion (1) has

a convergence radius greater that some 2R > 0, where R is independent

from up and A. Also, there exists an independent constant M > 0 such
that :

| &:(},1i0) |< M(2R)™ for Yig N. (4.18)
We want to find holomorphic functions hi(a,A),i=0,---,N defined

on Dg(i) x Wi, (where DR(uo) {ued||i—ip|< R} and Wi, is
some nelghborhoods of Ag = Ap in W), such that :

N
50,3 = 3 &() hi(a, 4) (4.19)
=0
The formula (4.16) follows, if one notices that for :

o

(z,A) €E[uo~ Ryuo+ BlNoxW,, , Wy =W,nP
one has :
N

§(u, A) = 37 ai(\)Relhi(u, V)]

i=0
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So, it suffices to take hi(u,A) = Re(hi(x,A)). To obtain formula
(4.19), we have to use the following theorem in [H] (theorem 7, page
32) :

(D) Let Ayg,: -, An holomorphic functions on some domain V in CA
and let Ao € int V. Let T = I(Ay, - - -, Ax) the ideal generated by germs
of the A; at Ao. Then there exists a polydisk P C int V, with centre at
Ao, and a constant K > 0 such that : for any function ¢ holomorphic
on P, such that @ € Z, there exist functions Hp, -+, Hy holomorphic
on P such that :

N
§O=Z A.‘H; on P

=0
and | Bi [,< K |,
(Here | . |, is the sup norm for continuous functions on P).
We can ‘apply thisto V=W and &; = A;,=10,---, N.
Let W,,, the polydisk in (D). For each j > N one can write :

&%) =3 a@(d)ha(h). (4.20)
For holomorphic functions ilj; on Wuo, such that :
| hii |, < K- 1851, - o (a2

One can extend formulas (4.20), (4.21) to any j > 0, taking A;; = i
for 0 £ 4, 7 < ¢, and replacing K by Sup {1, K} in (4.21). Now, in the
double sum :

S =3 ( 5 a(0)hs(h) (i do), (4.22)
i=0 =0

we can commute the two summations. This is possible, because for all

Lj:

| &:(3).hs(R)(@ — 40)’ |< MK(2R)™ |d— 1 (4.23)



78 CHAPTER 4. BIFURCATIONS OF REGULAR LIMIT...

Corollary 1 The ideal I* is independent of the choice of up in o.

Proof Let any ug, u1 € o such that | up — u; |< R.

One can apply the formula (4.16) at u; and expand k; in series of
U — iy.

1t follows that, if :

§(u, 2) = 2 b () (e = w) (4.24)

one has : Ej € I*. So that : T" C I, .

But this argument is symmetrical : we can write (4.16) at u; and
expand it in series if {u—uo). We obtain Z% C I*! and finally 7% = I*
if [ wp — u1 |< R. The result follows from the connexity of o. . =

Definition 20 We will call “Ideal of Bautin”, the ideal I*® for any
ty € g. This is an ideal of O,,, the ring of analytic germs at Ag. [t is
associated to the germ of (X)) along o x {Xo}.

Remark 17 T # O,, if end only if §(u,Xo) = 0. If T = O,,, the
function 6(u, Ao} has e finite multiplicity at each up € o. The set of
zeros of T : Z(I) is the germ at Ao, of values of the parameter for
which X has a cenire type. Bautin computed this ideal for quadratic
vector fields(see [B]). It is the reason to call it ‘Bautin Ideal’ in general.
We will return to the resull of Bautin in a forthcoming section.

4.3.2 Properties of the Bautin Ideal.

If {@1,---,®¢} is any set of generators for the Bautin Ideal Z, one can
write : :

¢
S ai (A) = Z (pJ(A)hJI (A) fOT' i= 03""N
=1
on some neighborhood W, of Ag and some analytic factors k;; when g;
are the coefficients of (0) at uo.
Putting it in (4.16), and factorizing, we see that we can write this
formula with the functions ¢y, -, .
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Proposition 4 Let ¢y, ,¢; a set of analytic functions on W whose
- germs generate I. Then, for any ug € o, there exists a neighborhood of
Ao, Wy, C W and analytic functions hy(u,)),-- -, he(u,)) defined on
[0 — R,up + B] N o x Wy, such that, on this domain :

¢
5(%)\) =Y wi(}) hiu, ). (4.25)

i=1
Remark 18 Of course, we lost the control of order of h; in u — uy.

Definition 21 We say that {@1,- -+, 3¢} is a minimal set of generators
Jor T if {@1,---,$e} is a basis of the vector space I/ MI, where M is
the mazimal ideal of Oy,. We will call dimension of T, {(T) = dimpg
I/MI, the number of generators of any minimal system. '

It is possible to extract a minimal set of generators from any set of
generators, for instance from the set {&o,---,dn} of the first coefficients
at some point ug.

Lemma 12 Let {@1,++,Pe} @ minimal set of generators and f € T,

¢
. Let f =" @: hi a decomposition of f in this set. Then the vector
=1
(hi(0))i=1,....e depends just of f and {$1,---,Pe} (Remark that the de-
composition of f is not necessarily unique).

4
Proof f = Y hi(0)@ mod IM so that (hy(0),---,he(0)) is the

i=1
vector of f-components for f in the basis {@y,--,&¢} of T/IM, and
are uniquely defined. .

Lemma 13 Let {3} and {;}; 4,5 = L,---,8(T) two minimal sets of
generators. Then, there exists ¢ matriz {H;;} with coefficients in Oy,

‘ — —~
such that (:D',' = z H;j ’IIJJ' and the matriz {H,'j(/\g)},"j is invertible.

=1

Proof Let ¢, 9 the vectors of germs : {;}, {;}. Because these vec-
tors are systems of generators of the same ideal 7, there exist matrices
of germs H, L such that :
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_ p=HtYp and =Ly
It follows that : .

w=HLp (4.26)
Then, as a consequence of lemma 8 : H o L(A) = H{Ao) o L{X) =1d
and the matrix H(Ao) is invertible. "

Proposition 5 Let {$y,-+, @} a minimal system of generators for I.
¢ ' ‘ o

Let 8(u,A) = Y @i(A) ki(u, A) a division formula as in proposition 2,
s
at some point'uo € o.

Then the functions hi(u) = hi(u, do) are independent of uo and so
globally defined on o. Moreover they are R-independent.

Proof The first part of the conclusion is consequence of lemma 8. It
suffices to prove the independence of the germs h; at any point up € o,
and it suffices to prove this for the factors associated to any minimal
system of generators ¢ = {@1,---,%¢}. In fact, if P = {1, , ¢}
is a second minimal systems of generators, it exists, from lemma 8,
a matrix of germs H, such that ¢ = M+ and H(0) is invertible. If
h = (h,---, he) are factors for ¢ :

¢
6"—“2_’1; wi =< h,p>.
i=1

But < h,o >=< h, H >=< *Hh,1) > for where ‘M is the trans-
posed matrix. So that A’ = *Hb is a system of factor for 1 and because
tH(0) is invertible, the component of h’ are R-independent germs at uo,
if it is the case for h. :

So, it suffice to prove the result for a minimal set of generators
which is extracted from the system of generators of coefficient at g :
&01 e, anN.

Proposition 1 gives a division :

N
5:2 a,—h;

i=1



4.3. REGULAR LIMIT PERIODIC SET OF INFINITE... 81

and Hi(u) = hi(u,Ao) =~ (u — up)’. The last condition implies the
gems h;, i = 0,---, N are independent at uo. Unfortunately, the sys-
tem {do,---,dn} is not minimal in general. We are going to extract a
minimal system from this one by a finite number of steps such that, at
each step we have a system of generators {3;,---,%}, obtained from
the last system by dropping one term and such that the associated fac-
tors Hy,---, Hy are R-independent . It suffices to prove the recurrence
step because after N — £ steps we must arrive to a minimum set of
generators.
Suppose that :

k
6= ¢ h (k> €&y (4.27)
=1
with Hy(z),---, Hi(z} R-independent, but such that {@,---,3:} is
not minimal. This means that cne of the @;, say @1, depends of the
others mod IM :

@1 =E :‘fj 61' mod MI.
i>?

But this means that there exist 7, -+, m; € M such that :

t
Gr=Y 5@+, i
i>2 i=1
(1 ~m)@ =D (3; + ;) &;
i»2
P11 = Z gj @; for some germs §j,

322

Putting this in (4.27) :

§ = (X Siei)ki+Y o b

j22 iz2
6 = Z kj -h with
iz2

kj = hj +SJ' hy.
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I say that the K;{u) = k:i(u, Ao) are independent (germs).
Suppose, on the contrary, that there exists some non trivial relation :

. .
E o; K,(u) E 0 (02,“ . ,0.'1;) € Rk_l.

l‘=2

This implies that :

(3 o S:i0) () + g o H;=0.

=2 -
But {Hy(u),- - -, He(u)} being an independent system, this implies that
ag = -+- = o = 0. This is impossible. -

The factor functions H;(u),---, He(u) associated to any minimal
system of generator {y,---,{, are analytic. Because they are R-inde-
pendent, each H; % 0 and then, has some finite order at each %y € .
We are going to prove now that for any wp, it is possible to choose
minimal system to have strictly increasing order of the H;.

Lemma 14 Let any ug € 0. Then it ezists a minimal systems of gen-
erators ($1,+++,P¢) such that :

order Hi(ug) < order Ha{ug) < --- < order Hy{ug) < o0

(order f(ug) =n <= f(u) = alu —ug)™ + 0((u — uo)™), a#0).

Proof Let any minimal system of generators. Clearly, we can order it
such that : '

qrde'r Hi(ug) € --+ £ order Hy(uo).

We are going to construct a sequence of minimal set of generators,
@', -+, ¢ such that ¢! is the given one and such that for @ :

order Hy(ug) < ---order H,_1(up) < --- < order Hy(uo)
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for the associate system of factors hy,---, k.
We just give the recurrence step (how to pass from ¢* to ¢**!, s < ) :

So, let be Hy,---, Hy the factors for ¢*.
If order H,(uo) < order H,y1(uo), we take p*t! = .
If order H,(uo) = order Hy41(uo) = - -- = orderH,, we take :

Ki(v) = Hiu) fors<iandi>s+o
and Ki(u) = Hiu)— % hy for s<i<s+o.
for H;(u) = aj{u —ug)™ +---

These formulas defined an invertible matrix M such that : K =
(K1,--+,K¢) = MH. One has : < ¢p*,H >= 6§ =< ", MK >=<
tM_ltp’,K > . .

So that, K is the factor vector for the minimal set ‘M ~1*. More-
over it is clear that up to a reordering of terms, one has :

order Ki(up) < -+ < order K,y1(uo) < -+ < order Ke(uo).

Definition 22 We say that a minimal system {B1,- -, @¢} such that
order Hy(ug) < --- < order Hy(up) is adapted to the point ug € 0.

4.3.3 Finite cyclicity of regular limit periodic sets.

Let {31, --,@¢} any minimal system of generators, and Hy(u),- -, H¢(u)
the associated factors. Because these functions are analytic and R-

independent, at each up € o, some finite jet of them are already R-

independent.

Definition 23 For any up € o, we define the index ss(ug) by :

ss(ug) = Inf {n € N | {j® Hi(uo)}: i3 ¢ R — independent system}.
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As we remarked above, ss(up) < oo. Also, it follows from lemma
8 that this index is independent of the choice of the minimal system.
Clearly enough, if {@1, -, P¢} is adapted to uo, ss(uo) = order He(uo)
(the maximal order at ug, among the factors H;). This gives a practical
way to compute s5(up) by looking for an adapted minimal system of
generators (see examples below). It follows also from this, that ss(ug) >
£ — 1 (Remark that order H,(up) = 0 in general !).

When e € 9o is a centre singular point we need a slightly different
definition. Of course, at a centre point we have the following :

o0

Lemma 15 Let §(u,X) = > a;(A)u the expansion at the centre point

=1
e (corresponding to u = 0). Then, forVp > 1 : Ggp € T(G1,---,89p-1) *
the ideal generated by the coefficients of previous odd order.

Proof This property may be obtained, looking at recurrence formulas
for the coeflicients a; (see [B] for instance).

A more easy way is to notice that this property is independent of
the choice of the transversal interval o, the choice of parametrization
and also a multiplication of X, by some analytic function g(z,y, A),
§(0,0,2) # 0. So it suffices to prove the result when X, is written in
normal form up to order 2¥ 4+ 1 > 2p. In this normal form, and in
polar coordinate (r,#) we have :

a

9 N . .
Xy= %0 + ( ; ﬁ,‘()\)rz' - O(T‘ZN"'?))T ar

(O(r®M*?) being an analytic function in (r,§, )).
A direct integration of the differential equation of X, gives :

=1, = r( % Bi r* +0(r2N))
1=0

This implies that:

N
8(r,)) = a(g baia(Ar¥ + 0(r?V+7))

b= (2™ —1)u,---
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when {u = z = r} is the parametrization of the Oz-axis.
For these choices (of o, - ) the result is trivial because a3; = 0 for
1< N ]

In the division formula we can write each even ay, as a combination
of odd previous coefficients. It follows a formula :

4 - .
) =0 e 0X) (429
‘with :
- hajan(u, N) = u¥(1 + 0(u)) (4.29)

Now, if we extract a minimal system of generators from the system

{azj+1 }j=1.---.h

each of the corresponding factor has an odd order at e = 0 and it is also
true for the adapted system of generators we can construct from it, as
in lemma 9. As a consequence, for any minimal system of generators :

Inf {n | {7* k;(0)}; is R—independént}z's odd.

Definition 24 If the above number is equal to 2k+1 we define : s5(e) =
k.

Finite cyclicity for regular limit periodic sets is a consequence of the
following Gabrielov’s theorem [G] :

Theorem 8 (Gabrielov} : Let C a compact analytic real set and = :
C — % a proper analytic map of C onto another real analytic set.
Then, there exist a K < oo such that for any A € C, the number of
connected component of #~1(}) is bounded by K.

Here, we take C' = {(u,X) | §(u,A) =0 and (u,A) € & x W} and =
the projection on the parameter space : m{u,A) = A.
The limit cycles for X, through points of ¢ correspond to the connected
components of 0-dimension of 7~1(}).

The notion of Bautin ideal and the related index ss{to) allow us to
obtain an explicit bound for the cyclicity.
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Theorem 9 Let en analytic family as above and up € ¢ any point of
a transversal for X, (uo may be a centre boundary point). Let 7, the
orbit through Xy, by uo (ru, =€ fuo=¢€) :

i) Cyel (X, 7u) < 85(t0),

i) if the Bautin Ideal T is regular (i.e : T = {@1, -, Pe} with
do1(Mo) A+ Adpe(Ao) # 0) then Cyel (Xx, 1) 2 £—1.

Proof

Point i) : As it was proved in lemma 1, it suffices to obtain the
bound ss(ug) for (u,A) € oy x W) some compact neighborhood of
(%0, 40) in & x W. Consider first the case up € int (o) (uo is not a
centre). By hypothesis, we know that :

4
8(u, ) = ‘_Lj wi(AYhi(u, A)

in a neighborhood o1 x Wy of (uo, Ao) with :

ty = order Hy(ug) <ty = order Hy(ug) < --- < t¢ = order Hy(ug) = ss{ug)

(hi(u) = Hi(u, do)).

Let X={AeW |g1(A)=--=pe(A) =0} and W = {A e W, | |
(pt(A) I 2 I (SDJ(A) l for VJ # 1}1 1= 17"'35'

Clearly, the zeros of 8(u, A) are isolated if and only if A € W; — X =
Wlu..-uW!-=%.

We will show that for each i = 1,---,£, there exists an interval
o*, neighborhood of ug in ¢y and a neighborhood W; such that for all
A € Wi — %, the function 6(u, ) has less than ¢; isolated roots on o*.
This interval will be obtained by a succession of restrictive conditions
on ¢y and on W, which will be stated by the claim “restricting u, \”

without more premsnons ¥
So, fixing i = 1,---,£, we are going to construct a sequence of
functions §' = §, 62, ,6', recurrently defined as follow.

Restricting u, A, one can suppose that 8" hy(u, A} # 0 for all (u, )).
(W1 is supposed compact ; we note 8°/g,,s = 8°).
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Then 3‘1 6/6t1 hl = +('02 hz/’atl hl AR
Let 6% = 9(9" 6/ g, hl) =@z hi+ -+ ¢ by
Clearly, the new functions hf so defined, verify :

h2(u, do) = of w1 (14 0(w)) with of #0

and the function 4% is similar to 6!, with one term less.
So, we can introduce the following recurrence hypothesis for

2<5<
C 6 (u, A) = @i (NRH(u, A) + - + e M)hi(w, A) (4.30)
with :
hi(u, Ao) = of u'*=4=171 (14 0(u)). (4.31)

And a recurrence step defined by :

57+ = g(attm1-1 g [ab Y k) (4.32)
forallj <:i-1. ‘
After the last step we obtain the function :
8 = hi+ -+ g b
such that :
A — o ki o+ pr ke
where, restricting u, A, one has : k;(u, ) # 0,
i, X) = 0(u). (433)
Then :

0 E e (k= T k) (439

J=it1 i
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Because | hid |< 1 on W' and (4.33), restricting u, A, we can suppose

t
that | ki | — >, | _‘ﬁ{ | | ke |[= b > 0 for some constant b. But

j=i t

on W — %, | ¢ |> 0 and so 8%~ t-1—1 § (u,A) # 0 for V(u,A) €
(Wi - %) x ¢°.
This last function was obtained from & by a sequence of ¢; +14(t2—#;1—
1) + - -+ = t; + 1 derivations and some divisions by non-zero functions.
So by successive applications of Rolle theorem we have that §(u, A) has
less than ¢; isolated roots on ¢* for all A € Wi — %,
This concludes the proof of point i) when ug is not a centre.

In the centre case, we use the formula (4.28) above : the roots of
5(u, A), different from 0, are roots of :

£
Y. a2i41(A)hain (u, A).

=1

Next, taking a normal form for X\ of order N large, we can see
easily that the factors hyj41 (u,A) = k;(U,X) where U = u? and k;
is a C*-function ; taking N large enough, this order k can be taken
arbitrarily large. Now k;(U, Ag) = U’(1 + O(U)) and we can repeat the
above proof to obtain a bound of the cyclicity by ss(e).

Point ii) : If ¢q,---, ¢ are independent functions, we may suppose
chosen local coordinates Ay,--+, Ag, -+ -, Ap in the parameter space, with
pi=A,i=1,---,Land Ay = (0,---,0).

Of course, we can always suppose that the minimal system {31, - -, &¢}
is adapted to uo which is supposed translated to 0 :

§(u, \) = Z,\ hi(u, A)

with h;(u,0) = ™ (1 + 0(u)), ny < n2-+- < ny.

The essential remark is that the sequence {hi(u,0),---, he(,0)} is a
Cheybicheff system (see [J1]). This means that there exists some U > 0
such that on [0, U] the function :
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, :
6("’1’\) = Z A h,(u,O) A= (Ala"'sAt)
=1
has at most £ - 1 roots counted with multiplicity. Moreover the bifur-
cation diagram for the roots of é is the same as for the polynomial :
¢

3 Aivfon [0,U].
i=1

In particular, one has a simplex A C 5%! in the unit sphere of R’
such that for VX €A, &(u, ) has £ — 1 simple roots on ]0, U[.

Now, let A =uA, XA € §% ' and u € R* and let X = (Qgga,--+, An)-

8(u, \) = u| f; Xi hi(u,0) +0(2)]. | (4.35)

The equation §(u, ) = 0 is equivalent to :

i: X hi(u, A) +0(2) = 0. (4.36)

=1
If we take any open, non-empty compact subset of A, such that

QC 3, we deduce that (4.36) has at least £ — 1 simple roots in ]0, U]
for :

X = uA,

(X,u) € S x RY

and u sufficiently small.
This proves that Cyel (X, vy, ) = €—1 in this case (The proof works
as well in the case that u is a centre). .

Remark 19 It is easy to generalize the result ii). For instance, we can
replace the condition “I regular” by the following one :
“The map A — @(}) is locally surjective at X = M.
It would be interesting to have algebraic characterizations for ideals
T with this property. As an example of such ideal, we may consider

I={%, A}
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4.3.4 Melnikov functions.

In this section we will consider 1-parameter analytic families X, with
¢ € R which unfold X, of centre type. In this case, it is possible to
expand é(u,¢€) in terms of € :

6(u,e) = f} M;(u)e'. (4.37)

=1

The functions M;(u) are analytic on 0. We call M; the #* Melnikov
function. The above series converges near each ug € o.

If the family is not identically trivial (6(u,&) = 0) there exists a k,
such that M;(u) = 0 for ¢ £ k—1 and Mi(u) # 0. In this case, the
Bautin ideal of X, at £ = 0 is generated by e* : T = (e¥).

Moreover the equation {8(u,&) = 0} is equivalent to :

Mi{u) + O(e?) = 0. (4.38)

If uy € o, the cyclicity of 4, is bounded by the order of M} at up
(half the order minus one if ug is a centre). This is of course a trivial
particular case of theorem 14.

We recall now how to compute the Melnikov functions. First, one
can find an analytic function K defined in a neighborhood of any centre
or periodic orbit of the centre type vector field Xy such that KXy is
an Hamiltonian vector field (div (K X,) = 0). This means that there
exists a first integral H for Xo which verifies : —dH = +K X, | dzAdy.
(Tt is trivial to find H, K along a closed orbit of X,. At a centre point,
one can write X in polar coordinates and look for H(r,#}, such that
H(~r,0 + m) = H(r,8)).

Call w, the dual form of X, : w. = X, | dz Ady. Let o a transversal
interval, parametrized by the value & = H(u). Then it is well known
that :

. i/
M](h)='—-[yh w Zf w1=5§

e=0

~ and +y, is the periodic orbit of Xo in {H = &}.
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This formula was recently extended by J.P. Francoise [F] and §S.
Yakovenko [Y] at any Melnikov function M; for linear perturbation

dH -+ Ewy.

I give a more general version obtained by J.C. Pogglale [Po] for any
1-parameter family.

So, w, = dH + ew; + - -+ lwyyy + 0(e*H)) (for any k). We choose
a domain U, invariant by the flow of X, and containing the transversal
o.

Proposition 6 Under the above assumptions, one supposes that M;(h) =
0 for j < k. Then : '

k
Mk.[.l(h) = ,[". (z i Weyp1— _wk+1)
i=1

where the analytic functions g;, i = 1,---, k ere defined recursively on
Uby:

-1 ; C
w; — gi dH = Z g; wr—; +dR;.
i=1

Proof We need the following result :

Lemma 16 Let w be an analytic 1-form defined in the neighborhoods
U. Then f w =0 for h € o if and only if there exist analytic functions

g, R such that in this neighborhoods : w = gdH + dR.

Proof of lemma 11 If ;, is a closed orbit, one can adopt action-angle
variables (H,8) near 7y, (H near hg and 8 € S'). w = gdH + bdf, and

f w=0 = / b(H,8)d# = 0. Then there exist a function b(H,8)

such that b(H,0)df = dR and w = gdH+dR. If 7, is the centre, we use
the same method : the function R(H #) is analytic in (z, y)-coordinate
at the origin. . m

* Return now to the proof of proposition 5.
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First, by integration of the formula w, = dH + ew; + 0(¢) we obtain
that M,(h) = — / wy (it is the usual Melnikov’s formula at order 1).

™
We make now the following recurrence hypothesis : there exist func-
tions ¢1, g2, -, gk—1, analytic on U, such that forall j=1,---,k:

Mj(h) = / ( Jz_: i Wi —-wj) = 0.

T =1
Using this relation for 7 = & and applying lemma 11, one finds two -
analytic functions on U : g, Ry such that :

n—1 )
— 3 giwpi +we = gx dH + dRy
=1
k-1
and then : wp — g dH = Z gi wy—; + dRx.

i=1
This proves that the functions gi, ;x may be constructed by recurrence.
Next a direct expansion gives that :

k k £
(1—2 gi 6‘)% = d(H—Z e R;‘)+Ek+1 (wk+1 "—E gi wk+1—£) +0(5k+1).
i=1 i=1 =1
Because H is a Morse function we can find an analytic diffeormor-

k
phism in U, Id +0(e) which changes H — ) &' R; in H and does not
i=1
modify the coefficient in e*t1. The result for M4 (k) follows by inte-
gration, like for k = 1. u

Remark 20
1) In the linear case dH + ew, the formula is simply My (h) =

gr w1 where the g; are given recursively by :
Yh '

gi dH +dR; = —g;y wi.

2) Proposition § is clearly true for smooth families.

If now X is any unfolding of centre type vector field X, an impor-
tant question is : '
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- can we deduce the cyclicity for X by computing Melnikov func-
tions for 1-parameter subfamilies X,y where A(e) is any analytic arc
in the parameter space with A(0) = A ?

‘ Of course, if 7 is some periodic orbit or centre of X3, Cycl(X,7) >
Sup Cyel(X ,\(E),'y) The above question reduces to prove that we have

the reverse mequa.hty Cyel(X\,71) < S up O)(e) where O, is the order
Me)

of the first non zero Melnikov function for X Ae)- We can be more ex-
plicit. Suppose that {$1,-+,@¢} is a minimal set of generators for the
Bautin Ideal. Then considering theorem 2, it would suffice to prove :

“There exists an analytic curve A(g) throw Ay such thet order (y; o

A)(0) < order (p; 0 A)(0) for any i 3 £7.

In fact, if the above claim was true O, > order he{ug) = 35(u0) >
Cyel(X),vu,) where ¥ = #,,. This is trivially true when the Bautin
Ideal is regular. I don’t know if this is true in general.

4.3.5 Application to quadratic vector fields.
4.3.5.1 Bautin result. .

If we are interested by quadratic vector fields with at least 1 limit
cycle, it is sufficient to consider the Kaypten-Dulac family X, with a
focus or centre point at the origin. Using a rotation, we can eliminate
one parameter and look at the following 6-parameter family :

X,\{ T = —y+Mz—A3 22+ (20 + As)zy + Ae yP
¥

‘.
= sttt @t Azy - A y? 439)

For any A € RS, the origin is a focus or a centre. One can consider

the return map on the Oz-axis, and the difference function é{(z,A) =
oo

> ai(X)a.
i=1
It is easy to compute a;{A) = ¢
The other 7 first coefficients were computed in [Dul] for instance
(see also [B], [Yel,...). We already know that it suffices to compute
coefficients of odd order :

2y 1
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03(A) =3 A5(z\3 e /\5) mod ((11)
0,5(/\) = C5 )\2 /\4()\3 - )\3)()\4 + 5(/\3 -— )\6)) -mod ((11, 0.3)
ar(A) = ¢r Az Aa(As — A6)? (A3 A =20} =A%) mod (a1, a3, 0a5).

For some constant ¢, cs, c7 #0.

A difficult result of Bautin in [B] is that the ideal generated by the
coefficient Z(a;) in the ring of analytic functions of R® is generated by
a1, 43, as, a7, and so the Bautin ideal at each ) is generated by the
germs of : -

v = Ap, v3 = As(As = Ae); vs = A2 Aa(da — Ae)(ha + 5(%s — Ae))

and vr = )lg /\4(/\3 — ’\6)2 (4\3 )\6 —_ 2A§ - /\g)

Using proposition 2 and lemma 10, we can write locally near z =
and each A € R® :

8(x, A) = vy ha(z, XY+ vs ha(z, X) + vs hs(z, ) + vr Ahe(z, A)

with h; = :r‘(l + ¥i(x, A)) and ¢; = 0(z).

This formula implies that at each Ay € R5, 35(0) < 3. So that, by
theorem 2, at most three limit cycles may bifurcate from the origin by
perturbation of the parameter \.

The set Z = {v; = v3 = vs = vy = 0} is the set of parameter
values for which X is centre type. In this case the origin is a centre
surrounded by a “centre basin” B, of periodic orbits. This set was first
described by Dulac [Dul].

It is an algebraic subset of R® with four irreducible components :

QH={A1=A4=/\5=‘0}
QR={/\1=A2=’\5=0}
QD-"—'{/\1=/\3—)\6=0}
QM={A1zA5=)\4+5(/\3-——)\6)=)\3)\5—2/\§—)\§=0}.

Each of these components has a geometrical meaning : Q¥ contains
the Hamiltonian vector fields (equation : div X = 0) Q® contains the
reversible ones : each has a symmetrical phase portrait around one
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line through 0. The vector fields in Q” contains 3 invariant lines (real
or complex) and vector fields in Q¥ contains an invariant parabola
and an invariant cubic. Moreover for each centre one has explicit first
integral and integrating factor (see [Dul] and [S1] for a more recent and
complete study).

Outside the intersection of components, the set Z is a submanifold
and the ideal of Bautin is regular.

Consider for instance Ao € @/ \@™ U QR U QP.

At such a point Ay # 0, Az #0, A3 — A¢ # 0.

Then the ideal % is generated by Ay, As, A + 5(As — Ag) and
Az Ag —2A% — M. So that T is regular and £(Z*°) = 4. Applying point
i1) of theorem 2, we see that the cyclicity at such value Aq is greater that
3 and so equal to 3 : one can find values of A near Ay with 3 “small”
limit cycles.

In the same way one can prove that the cyclicity is larger than 2, 2
and 1 at regular points of Q¥, QF and QP respectively. '

We have seen that Bautin obtained an estimate of the index 35 at
the origin for any Ag € Z. For orbits of X, different from the centre
point no general result is known except in some particular cases : for
instance Horozov and Iliev [HI] proved that for the open subset of Q¥
corresponding to generic Hamiltonian vector fields with three saddle
points and one centre, then ss(tg) = 2 for any up € o, transversal
interval in the Centre basin. Because we know that the cyclicity is
greater than 2, this implies that Cycl( X, 74,) = 2 in this case. For such
a hamiltonian vector field, the basin By is a disk bounded by a saddle-
connection and these authors obtained in [HI] the whole bifurcation
diagram. In particular, they proved that the total number of limit
cycles for near by vector fields is less than 2. This includes the study
of the saddle connection bifurcation we want to consider in the next
chapter.
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4.3.5.2 Bogdano{r—Takens unfolding.

Some unfoldings can be reduced to perturbations of centre type vec-
tor fields. For instance, let us consider the Bogdanov-Takens unfolding
introduced in chapter I, written in normal form :

¥+ r = y . ‘
W g = o+ pty(v+a)+ya? bz, A+ Qe )

where %, ) are smooth functions. To reduce this unfolding to a pertur-
bation of a centre type vector field, one can use the following rescaling:
formulas :

r=6ZF, y=€>§, p=—€' v=¢%. (4.40)

Taking (%,%) € D, some compact domain in R? and 7 € K some
close interval to be defined below, £ € R*, these formulas transforms

A 1 —
the family X* in a new one X, 3 Sl X, where X is the family X+

written in coordinates (Z,%) :

) 'Xnﬁ,s {

This is an e-perturbation of the hamiltonian vector field X, with

=¥
=z

2—1+4eg(p + )+ 0(c?) (4.41)

QA 8-

1 -
"Hamiltonian function Hy = = 4* + z — z (See Figure 4.2:).

To study limit cycles bifurcating for the hamiltonian cycles we take
a disk D large enough to contain the disk bounded by the homoclinic

loop through the saddle s = (+1,0). For each & & [—%, g], let v, be
the cyclein {H = h} ; o is the centre (~1,0) and 12/3 the homoclinic
loop. Let w,, the dual form of X, :

wye =dH — e(v — 2)dy + O(?). (4.42)

~ From proposition 5, the difference map for the family X, has the
following expansion in ¢ :
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Figure 4.2:

6(h, v €) = eMy(h,v) + 0(c)

where :

Mi(h,v) = L (v —a)dy = vIo(k) ~ L(h) (4.43)

"We write ; -

Li(h) =L z* ydz. : o (4.44)

'h

Io(h) is equal to the area of the disk with boundary ;.
So, Iy(k) > 0 for & £ 0 and Iy(h) ~ A.

Because ,(0) = 0, the function Bj(h) = ir-—(h) is defined and ana-

lytic for & € [0,1/s[. The equation for limit cycles {é = 0} is equivalent
to :

6—‘130 = v— By(h) +0(c) = 0. (4.45)
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And the unicity of limit cycle in the Bogdanov Takens unfolding as
claimed in chapter I, reduced to prove the following result :

22
Theorem 10 (Bogdanov) : For ell h € [—;:);,5[, Bi(h) <0 and
Bj(h) — o0
as
h —. g

We will prove this result in a next section about abelian integrals.
The fact that B}(0) < 0 implies that the line H we have introduced in
chapter I, is a line of generic Hopf bifurcations.

We will study the line of homoclinic loops in the next chapter. Here,
the theorem, applied for k& &€ [hg, k1] where kg is chosen near 0 and &,

near 1/g, [ho, h1] C ]—5, 3 [, implies the unicity of the limit cycle in,

the interior of the tongue T" between the two lines H, C.
4.3.5.3 An example of a non-regular ideal.

In the above example, the computation of cyclicity reduces to com-
pute a Melnikov function. This is because the Bautin Ideal was regular
(generated by ¢ in the Bogdanov-Takens unfolding). In this section,
we will consider a case of non-regular ideal, for the quadratic family in
the Kaypten-Dulac form (4.39). This means that we will choose Ao at
intersection of centre-components. So let g € Q¥ N QF — {0}. This
means that Ay = (0,---,0, A¢) with Ag # 1. Changing (z,y) — (By, Bz)
with 8 =| s |71/2 and t in sign(As)t, we can reduce to Ag = —1; X

is an hamiltonian vector field, with hamiltonian function H(z,y) =
1

1
3 ¥+ 3 2 + % z® as in section 3.5.2.

At the parameter value Ag = (0,---,0,—1), the Bautin Ideal is
generated by the germs of Ay, As, A;A4. So that, as consequence of
proposition 2, we can divide (%, )) near (ho, Ag), for ko € [0,1/¢[, in
the ideal :

8(hyA) = Ay hy(hy A) + As ha(hy X) + dada Ra(h, N). (4.46)
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Clearly, {A1, As, A2A4} is a minimal set of generators at Ag. The
functions Hi(k) = hi(k, Ao) are analytic on [0,1/g[. To compute them,
wé can use some l-parameter subfamilies (of (4.39), after the above
substitution and replacing I%:r_l and ] z\’:.I y 1 22, by Aq, A respectively) :

- Computation of H,.

One considers the subfamily :

/\(€)=(A1=E, /\2="'=A5=0,)\6=—1)
£t = ytey
Xx(e){ i = —z—2+ey (4.47)

Substituting A{e) in (4.39), gives :

§(h, A(2)) = eHL (k) + O(e).

This shows that Hy(h) = M;(h), the first Melnikov function for the
family (4.47). Its dual 1 form is :

we = dH + e(—ydz + zdy).
From proposition 5, one obtains :

My(h) = ] — ydz + zdy = 214(h) (4.48)

Fh

(with notation I;(k) introduced in (4.44)).

-Computation of H;.

Take
A(e):(A5_€1/\1—/\2——A3—A4—-0,,\6:—1)
_Jz =y
Xl(a)"‘{ § = —1-—2°+ezy
And then :

Hy(k) = My(h) = ~Li(h). (4.49)
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- Computation of Hj.
We consider the farﬁily :

A(E):(A1=A3:A5:O,A2=,\4 :é, }‘6:—1)

& = y+e(y’ +ay—=z?) :
XA(,){ § = —z—12 42y (4.50)

Now, 8(k, A(€)) = €* Hs(h)+0(£?) and : Hz(h) = M;(h), the second
Melnikov function for (4.50}. Its dual 1-form is :
w, =dH + e with @ = —2zydzr + (y* + 2y — 2*)dy. (4.51)
We can verify that M(h)=0:

My(h) = f

Th

3
—2aydo+(y*+oy—a)y = — [ d(ya+ %)+ [ yad
zydz +(y*+zy—z°)dy ["_ (v 3) | vedy
and :
/ rydy = f m(dH —(z+ :r:z)d:c) =0.
“Yh Yh
As it was proved in 3.4, there exist functions g, R such that :
@ =gdH +dR ' (4.52)
This equation for g is equivalent to :
do=dgANdH , 1.e :

—ydz Ady = dg A [ydy + (z + 2%)dz] (4.53)

Clearly g(x,y) = z is a solution for (4.53), and by proposition 5,
one has : '

Hs(h) = Ma(h) = f Tw = j; —2yx’de + z(y® + zy — 2%)dy (4.54)

“th h
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" We want to compute the four integrals in (4.54). To simplify nota-

tions, we will write a ~ ( for a=0.
Th
1) yz? dx ~ y(dH — ydy — zdz) ~ —yzdr = ~w, (4.55)
2) yridy ~ 2} (dH - (z + 2¥)dz) ~ 0 (4.56)
3) z3dy ~ (3H — —g— yi— g z2)dy ~ —% z? dy
and z? dy ~ —yd(z?) = —2zyde = —2uw;.
So that : z3dy ~ 3uw. (4.57)
1
4) zy? dy ~ 2z(H — -;— z? — 3 3)dy ~ —2hwe — 3w, — % zl dy

~ —4hwo + 6y* dz + 6yz? dz ~ —4hwy — 6wy + 6y° dz
and : y* dz ~ —3y? zdy.

Then, finally :

5 A
2y? dy ~ —2hwy — 3wy — 3 (—4huwo — 6wy — 182y’ dy)

— 1lzy?® dy ~ -g- hwg + wy. (4.58)
Collecting the different contributions (4.55)-(4.58), we obtains :
YD ~ —% huwy + 20 (4.59)
and the following expression for Mz(h) :
Ha(h) = My(h) = 2 . hlo(h) 2w @)
Taking the generators ;3 = —2X;, @z = —As, w3 = —3—23 Az Ay for

the Bautin Ideal at Ao, we have :

8(h, X) = @1 ha(B, A) + @2 ha(hy A) + @3 ha(h, )) (4.61)

for new factors k;, such that Hy(h) = Ip, Hy(R) = I, and Hs(h) =
hip — 31;.
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Proposition 7 For each :

H, Hj H{

helo,l/gl, det ( H, H, Hf ) # 0. (4.62)
H; HY HY

Proof To verify (4.62) we can replace the functions Hy, H,, H3 by

some multiples : LH,, LH,, LH; where L(h) is any analytic function

on ]0,1/g[, everywhere non zero : L(k) # 0 pour Vh €]0,1/g[. Because

I(h) > 0 for k €]0,1/g[ we can take L = I;! = H;'. Let By(k) =

%(h) as above. Then (4.62) is equivalent to :
o

1 0 0
B, B, B
By+h B,+1 B

#0, i.e : Bj(1)#0 for Vhe [0,1/e.

We will prove this in the next section. =

A consequence of proposition 6 is that ss(h) = 2 for VA €]0,1/4].
At the centre point (0,0), corresponding to h = 0, one has h ~ z2,
Then the fact that B;{0) # 0 (see next section) will clearly imply that
85(0) =2,

So that, as a consequence of theorem 2 one has :

Cyel(Xa,v,) 2 2 for YR € [0,1/g].

In fact, Cyel( X, ys) = 2. This can be proved using the remark after
the proof of theorem 2 or deduced from the above result [HI] : using
this paper one can find a sequence (A;); = Ag, A; € @Q¥\QF such that
for each ¢, X, has some periodic orbit 4; with cyclicity 2 and v; — p,.
Then, using the semi-continuity of the cyclicity, proved in lemma 2.3,
one obtains that Cycl (X, 7s,) > 2 and so that the cyclicity is 2. We
have proved : .

Theorem 11 Let Ay € Q7 N QF — {0} and y,, ho € [0,1/g] any
regular limit periodic sef for X»,. Then in the Kaypten-Dulac family
X, Cyel(Xa, vho) = 2.
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Remark 21 From formula ({.46) and proposition 6, it is possible to
deduce the bifurcation diagram for X, near Aq.

4.3.6 Some properties of Abelian Integrals.

In the preceding sections we have seen that the properties of a fam-
ily near a centre-type vector field are closely related to properties of
abelian integrals, equal to integral of algebraic 1-forms of the cycles

of an Hamiltonian function H : @. In our applications H and
“n

@ are rather special. In particular H may be reduced to the form :
2g+1

H(z,y) =y*— P(z) where P(z) = )_ pi z
=0

This special case, I want to present briefly to begin with. General
results were proved by Petrov [Pe].

We suppose chosen a continuous family of closed curve -, each of
them in the level {H = h} ; in general 2 must be chosen in the universal
covering of ' — X where ¥ is the set of critical values of H, but in our
applications, we will take % in some interval image by H of an interval
between a centre ¢ and a next critical point s.

In this case, one may think h € [e,s]| C R C C.
For each meromorphic'l-form w one can consider the abelian inte-

gral : I(h) = | w. In particular, let :
s

w;=m"yd:z:,a;=%dz

and :

»Ii(h):-[y,. w; , J,-=-Lh we;.

Now, the two more important results about abelians integrals for
H(z,y) =y? -~ P(z) are :

1) For each algebraic w, there exist 2¢ polynomials in & : Q;(k),
1=0,---,2¢ — 1, such that :
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2g—1

L(k) = Y Qi(R)L(R).

i=0
2) There exist two (2¢ — 1) x (2¢ — 1) matrices C and M such that :
d 1

I=hi+CJ—MI and —I=—-3J (4.63)

where T = (I)ico,29-1, J = (Ji)iz0,29-1-
One can eliminate J to obtain the linear differential system :

(Id+ M)I + —% (h Id+C) % | (4.64)

This system, which is singular at critical values of H, is precisely
the Gauss-Maning connexion of H.

We are going to give a short proof for point 2). This proof, commu-
nicated to me by S. Yakovenko, is based of a preprint of Givental.

X . 1
First, we have : dw; = d(2* ydz) = «* dy A dz so that : dw; = ~3

%dx/\dﬂz—--l- a; ANdH, a; =0,-++,29 — 1.

2
. . dI 1
This is equivalent to : =3 J.

"Next,forany : n=0,---,2¢~1:

:E"""(P-l-h) da::ha +m“P

wp = z" ydz =

dx. (4.65)
Dividing z* P by P’ we have :

z" P= 2%21 Cri ' + Q(2)P'(z). (4.66)

=0
This formula defines the polynomial @(z), with degree : deg Q =
n+Lg+1—2g=n+1. Let:

n41

Qz)=Y qn;- . (4.67)

=0

Substituting (4.66) in (4.65), one gets :
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2g-1 r
. wy =z" ydz = hay, + Z Chi o; + QP dz.

i=0

(4.68)

Now, writing @ ~ 0 for Q =0, and using P'dz ~ ydy in (4.68),

one has : "
29-1
wn ~han+ Y Cri o +2Qdy. (4.69)
=0
But :
2Qdy ~ —2Q'ydz = -2 (i + 1)gnit1 w;. (4.70)
=0
So that :
29—-1 n .
Wy = hoy, + E Chni ai — 22 (2 + Dgnigr wi. (4.71)
=0 =0
Putting :
C= (Cm')n.l' and M = 2((i + 1)Qni+1)n,i (4'72)

{4.71) is the system (4.63).
We want to apply these general considerations to obtain the re-

sults about the ratio I—I we claimed in theorem 3 and in the proof of
0
proposition 6 above.

1 3
First, notice that the hamiltonian Hy(zy,1) = 3 g + 2% — % in
3
section 3.5.2 and the hamiltonian Hy(zs,¥2) = L ys + % z3 + %2 are
~ equivalent to the hamiltonian H(z,y) = y* —z + z. If we put :
oafa) = -] 4.73
L 2 @)

Then :
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Hy(2,y2) = %ﬁ H(z,y)+ 11—2 (4.74)
And, with :
zi(z) = —\/3z |
{00 2 (79
we have :
Hy(z1,31) = V3 H(z,y) (4.76)

So that, the ratios By(h,), B2(h) of ? for the Hamiltonians Hj, H,
0

are simply related to the ratio for H :

Bi(V3h) = —3B(h) and 192(‘/?g h+11§) = %w/ﬁB(h) - ‘/76 (4.77)

So, to prove the claims in theorem 3 and proposition 6, we just need
to prove the following theorem, for the analytic function :

2 2[
RV A

Theorem 12 B'(h) < 0 for Yh € [—ﬁg , 5%5[ and B'(h) = —oco for
h— :-3%5 Moreover B"(h) < 0 for Vh € [—% , %[

B(h) = %(h) : | — R. (4.78)

Proof First, we want to prove that the function B{A) verify the Ricatti
equation :
4 2y 4B 2 5
9(§—h) o5 = 7B - 3hB+3. (4.79)

This is an easy consequence of the general formula (4.63). Repeating
the above proof we have here : P(z) = z — 23, and then :

AP e = hao+ ‘—D?. (4.80)

wo = ydx =
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2
Writing : P(z) = - z+ = a:(l - 32?) and substituting in (4.80) we
obtain :

5 2
5 Wy ~ hao + § . (481)

In the similar way :

zP(z) = 2 + (__ + % 2?)(1 - 3¢%) and -

2 4
wy; ~ hay + 5‘ ap — §' Wy (482)

and so :

7 2
§ wy ~ 5 ag + ho_-l. (483)
dl; _1
dh 2

Relations (4.81), (4.83) with J; gives :

3t = ohIl+im
3 4 3 (4.84)
gh = 5 L+2L

Which can be solved in I, I :

( L = ~2hh+ i
. 50 49 (4.85)
’ — — — —
( —W) = = lo— g kL

Notice that the roots of i —h? :I:—2— are the critical values of
27 33

H (v = 0). Now (4.85) implies the Ricatti equation (4.79) for B(h) =
(h)

ThlS equation for B(h) means that the graph of this function belongs
to an orbit of the following vector field Z on the space R? of coordinates

(h, B):
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Z= 9(ﬁ—h2) aé;ﬁ( 732—3h3+§) -c,f—B.

This vector field has four critical points :

(4.86)

sl

5
Cf0=(3\/— \/—)1 (m\/—'ga-'?'i ):
' 2 _1

2 5 1 2
aﬂ:(_?’_?’T)’ (3 3’ 7‘5)
and admits the lines Ag = {h —7} and A, = {h-{- \/_} as invari-

ant lines. Along these lines Z is normally hyperbolic and in restriction
to Ap and A, the critical points are also hyperbolic.

The four critical points are hence hyperbolic and it is easily checked
that ap and o] are saddle points, while & and a; are nodes, respectively
unstable and stable. The phase portrait of Z in the vertical strip U =
{B >0, —m <h< m} can now easily be obtained taking into
account the value of the vertical component of Z when B = 0 and when
B is large (see Figure 4.3).

In particular, we notice the existence of a unique Z-orbit lying in

i
the interior of U and having the saddl int ag = {——, ————
e interior of U and having the saddle point aq ( 33 3qrt3)
as an a-limit point : it is the unstable separatrix T of e, which tends
to oy for £ — +oo.

If we notice that B(k) — % for h — —%, it follows that the

graph of B(k) is equal ot T' (of course, this implies that B(h) — %
for b — i)
3v3" )
Let how that B'(h) < 0 for all A
eussowza (k) or a E[ 13\/—[
For h = ~373 e have that B’(—m) =-3" this is simply

obtained, computing the slope of the eigenspace at the saddle point ap.
For the other values of h, we make the following qualitative reasoning.
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Figure 4.3:

We consider the equation —7B% — 3hB + — = 0, describing the point
where Z is horizontal. This equation defines a hyperbola, whose two

connected components are graphs of functions of . The part of this

hyperbola contained in the strip U is an arc S joining ep and ;. Along
. -TB*+5/3 .

S, we can solve h in termof B : h = T8 +5/3 (since B # 0 on S).

Hence Z is transverse to S along it and directed to the right. We now

study the position of 5 with respect to I'. At ap, the tangent to S has a

1 2 1
1 ] to —=, which i ler th ———=) =—=
slope equal to —=, which is smaller than the slope B ( 3 \/?_’) 3 of

[’ at the same point. Then, in the neighborhoods of ey, the separatrix
T is above S. But as, along S, Z is transverse to S and directed to the
right, the orbit I' is not permitted to cut S again for t — 400 : the
orbit I' is hence entirely located in U, above S. But in this region, the
vertical component of Z is negative. It follows that B’'(k) < 0 for all

h e [—32% , 3—%[ For h — g%, B'(h) — —oo because an easy

computation gives that the eigen-value at a; along A, is greater than
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the transversal eigen-value (the two eigenvalues are negative).

Let us now show that B"(k) < 0for all h € [——3—3—5 , 3—% [

First of all, using a development up to order 2 of the equation (4.86)
2304 Vi<

Let us for a moment suppose that B”(h) would have a zero on

2 2 - 2
[—— —[ and let hg > 373 be the minimum of such points :

V3’ 3v3 0
hol.

” _ " e
B"(ho) = 0 and B"(k) < 0 for all h € [: 575
_ We show that this is impossible since Z is a quadratic vector field.
Therefore consider D, the tangent of I in the point mg = (hq, B(ho))-
As B"(hg) = 0, the order of contact between D and I is at least 2.
Let v be a vector orthogonal to D and D(u) a linear parametrization
of D. The function #(u) =< Z(D{(u)),v > (< .,. > denoting the
euclidean scalar product on R?) has a zero of order at least 1 in g, with

inh= _5%’ one obtains that B”(_3\/_)

D(ug) = mg. As Brr(h) <0Oforallh e [—% y ko [, the corresponding
arc of I' is situated below D. The line D hence cuts Ap = {h = }

at a point ng above . At this point, Z is directed downwards
the other hand, in the points of D with abscissa < ko but near kg, Z is
directed towa,rds the half plane above D. From this it follows that the
function (%) must have a zero at some u; # ue with D(u;) €]no, mo.
However, the vector field Z being quadratic, the function () is
polynomial of second degree in u ; the existence of a double zero at
up and another zero uy implies then ¥ = 0 and hence2tha,t L is a line
3v3 )

the proof of the theorem (see Figure 4.4:). n

segment. This is of course not compatible with B"(- < 0, ending

To end this section, I want to give a very useful algorithm due to
Petrov [P] to obtain a bound for the number of zeros of any algebraic

integral I = ] w for the cubic hamiltonian H(z,y) = y* —z + 2%

Yh ;
From the point i) above, we know thatl there exist polynomials P, @ in
h such that :
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1= P(W)Io(h) + Q(h)Ty(h).

One can find in [P] an algorithm to compute P, Q and also an esti-
mate of the degrees of P,Q in term of the degree of w. The number of

2 2
zeros of I(h) on ]——3—\/§ , m[ is the same number as for the function

G=FP+QB.
Now let K = G' C D(P,()) and write :

P=KPF,, Q=KG@Qy, Ps, Qo without common roots.

The number of zeros for G is equal to the number of zeros of K plus
the number for Gy = Py + Qo B.

But, because Py, ¢y have no common roots, no zero of P, is also
zero of Gp. So that, the number of zeros of Gy is the same as the number

of zeros of g = B—l-&.

0
Now, the function ¢ is solution of a Ricatti equation :

4

g(ﬁ ~ k)¢ =Ry >+ Ry g+ Ro (4.87)
with :
N
Ry = — with,
| Q3

N =9(z5 — F) (B Qo — Py Q5) @3 + 3hRy Qo + 3 QF.  (4.58)

The crucial point is the following result of Petrov, based in Kho-
vanskii’s ideas :

' 2 2
Lemma 17 leta < B, a, f € ]_ﬁ , ﬁ[, two consecutive roots

of Qo. Then between two consecutive roots of g there exists at least one
root of N.

Proof (See Figure 4:4:)
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nO
D(u,)
]
m,
N\, D
h
Figure 4.4:

Let two consecutive roots hy, hy of g. If ¢’ is also zero at any of
these roots, it is also the case for Ry, following (4.87). Suppose that g’
is not zero at f; and ks. 7

Then g'(h).g'(R2) < 0, and following (4.87), it is the same for Ry
and also for N. Then N has at least one root between k; and h;. -

An easy consequence of the lemma 12 (extended to the case of multi-
ple root of g), is that the number of roots of g between & and 3, counted
with multiplicity is less than the number of roots for N between the
same points, plus one.

It follows that the total number of roots for g, with multiplicity,

between —3—2ﬁ, %, is bounded by deg (N) + deg(Qo) + 2. From

(4.88) : deg (N} < 2Sup (deg(Fp), deg (@o)) + 1 and so the number of
roots of I is bounded by the above bound plus the number of roots of
K. T'inally, one obtains :

Corollary 2 Suppose that I(h) = P(h)Io(h)+ Q(R) + Q(R)Li(R), P,Q
polynomials in h. Then the number of roots of I, with multiplicity,
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between —:—;—\2/_—3 and 3%/5 is bounded by : 2 Sup (deg (P), deg (Q))+1.

Example.

Let us consider the family of section 3.5.3. As a consequence of
result in this section, the cyclicity may be computed as the supremum
of cyclicity for all subfamilies A(¢) = { f{A1 =€)y, As = €Xs, A2 = X3,
/\4 = 8-X4 l (Xl, Xz, :\-3, X.;, Xs) € SS}

For such a family : '

6(k, Me)) = eMy(h, X) + 0(¢)
with :

My(h, %) = (@1 + B, B4 WIo(h) + (s — 3, BOL(R).  (4.89)

As a consequence of corollary 2, we have that the gota.l gumber of

3v3’3v3
than 3. We have proved above that this multiplicity is in fact less than
2.

zeros of M, and also the multiplicity at each ho € [— [ is less






Chapter 5

Bifurcations of elementary
Graphics.

After the regular limit periodic sets, the simplest }imit periodic sets are
the elementary graphics.

As it was defined in chapter 2, an elementary graphic for X 2o 18 an
invariant immersion of S$!, made by a finite number of regular orbits
and elementary (i.e. hyperbolic or isolated semi-hype rbolic) singular
points. Limit sets of each regular orbit are contained in the set of
singular points and the immersion is oriented by the orbit orientation.

Such elementary graphic I' may be monodromic, this means that it
has a return map (defined on some interval [a, 5] with ¢ € I'). In this
case we often calls it a polycycle.

In this chapter we will deal with monodromic graphics with hy-
perbolic singular points and will refer to them as either as hyperbolic
graphics or polycycles. The same methods apply also to the study of
the non-monodromic case.

The simplest case corresponds to a graphic with just one hyperbolic
saddle. We will call it a saddle connection, or homoclinic loop. The
two first paragraphs are devoted to their study.

The most important fact is that the Poincaré map defined along T
is not differentiable at points whose w-limit is one of the singular point
because the transition map near an elementary point is not differen-
tiable. :

In the first paragraph we will establish an expansion of the transition

115
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near an hyperbolic saddle using a natural unfolding of the logarithm.
We will apply this expansion to study unfoldings of the saddle con-
nexions of finite codimension in the second paragraph, and of analytic
infinite codimension in the following one. In the last paragraph I will
present some recent results concerning general elementary polycycles,
due to Mourtada, El Morsalani, Ilyashenko and Yakovenko and also to
point out some remaining open questions.

5.1 Transition map near a hyperbolic sad-
dle point.

Consider X a C* unfolding at some hyperbolic saddle point sy, of X, ;
A € P ~ R* the parameter space. Since we are just interested here in
the germ of a family at the point (8,,, Ao), without loss of generality we
can suppose that the vector field family X is defined in a neighborhood
V of s, = 3 = (0,0) € R?, for parameter values A in a neighborhood
W of the origin in B*, and has a hyperbolic saddle at s for YA € W.
We can also suppose that the local unstable and stable manifolds are
given by W¥ = 0z NV and W?* = 0y N V. Finally, we suppose that s is
the unique singular point of X in V.

5.1.1 Normal form of X, near the saddle point.
Eigenvalues at s are equal to Az(X), A1(A) with

AN <0< Al(A)

—A2(N)
(A
X at s. Dividing X, by A, (}), we can suppose that the eigenvalues
are 1, —r(}A) and that the 1-jet of X at s is equal to :

for any A € W. Let r(}A) =

. We call it : ratio of hyperbolicity of

71 X0) = - O 5 (5-)

A first consequence of the hyperbolicity of s is the following result
of finite determinacy :
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Proposition 8 [Bon]. There ezists a function K(k) : N = N such
that K(k) — oo for k — oo K(k) > k such that if Y\ is any germ of
C™ vector field family along {s} x W with the property :

FKE (v, — X,5)(0) = 0. (5.2)

Then, the two family germs X, and Y are C*-conjugate. (This
means that there exist ¢ C* germ of family of diffeomorphisms : gy on a
neighborhood of {3} x Wy, such that g)(Y)) = X on this neighborhood).

Remark 22 The result in {Bon] is proved for vector field families on
RP, and gives an explicit function K (k) which just depends on j' X(0).
1t is timportant to notice that this result does not depend on the possible
resonances. _

Proposition I allows us to replace X, by a polynomial family, up to
a C* conjugacy. We want to prove now a variant of the Dulac-Poincaré
normal form theorem for the vector field family X, :

Proposition 9 Let X5 a C*® family as above.

1) Suppose that r(Ao) ¢ Q. Then there exist a sequence of neighbor-
hoods W; of p in W, 42> 1: M e---Ww C W, C--- C Wy, such
that for any N € N and A € Wy

0 0
N1 ~ar 2 9
T Xa(8) ~z e +r(A)y B (5.3)

2) Suppose that r(Ao) = E, p and ¢ without common factors. Then

there exist a sequence of neighborhoods as above and a sequence of
smooth functions az(A) : W; — R, ay(A) = p — gr(}) on Wy, such
that for any

NeNand e Wyyy

1N .
FEHONHL X (5) g % +(=r(}) t3 > ain (M) ¥7))

6 i=1 Y a_y

N
—o gt (P an @ )y 5 G4

q =0
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Here the sign ~ denotes equivalence of jets. Formulas (5.3), (5.4}
are equivalent to the following : X, is CV equivalent to XY + P where
XY is the right hand polynomial vector field family and PY a C* family
on Vi x Wyyy with a N+ 1 or (p+ q)N + 1 zero jet at s respectively,
for any A € Wiy

Proof The proof given in [R4] for the resonant case p = ¢ = 1, is easily

extended. It is based on the following remark : for A = Ay, we have no
2

resonance if r(Ag) # @ or all the resonance relations A; — Y _ n; A; =0,
=1
t = 1,2 are generated by the unique relation

pA1(do) + ¢Az(Xo) =0

if r(Xo) = p/q. By continuity, for each N one can find a neighborhood
Wy of Ap in W such that this remains valid for all A € Wy (of course,
the neighborhoods Wy form a decreasing sequence). One constructs the
normal form up to order (p+ q)N + 1, using subspaces of homogeneous
vector fields, which are independent of A € Wiy ]

Combining the two above propositions, we see that, at each order of
differentiability, one can replace the given famlly near the saddle point
by a polynomial one :

Theorem 13 Let a C™ family X, as above defined near a saddle point
8y, = 8 of Xy,. There exists a function N(k) : N — N such that
in some neighborhood of s and for A € Wy, the family X, is ck-
equivalent to the polynomial family :

N{k)

st (W Y an @) vy (63)

=1

if r(do) =plq ; if r(Xo) € @, all the a;(A) =0 fori > 2.

Proof It suffices to take N(k) such that (p + ¢})N(k)+ 1 > K(k) in
case of resonance p/q and N(k) +1 > K(k) when r()) ¢ Q and to
apply the two above propositions. .
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Remark 23 The function ay()) is uniquely defined by the relation
a1{A) = p — qr(A). It is not the same for the other resonant quantities
ai(A), © > 2, in the resonant case r(XAo) = p/q. Nevertheless, we have
seen that one can choose smooth «; if Xy is C*, and clearly analytic
o; if Xy is an analytic family.

5.1.2 The structure of transition map for the nor-
mal family.

If r(Xo) # @ we have seen that X if C* equivalent to the linear family

XYV =g F r(A) y 3 if one restricts A in Wy(x)41. The transition
T

map for this linear family between o = [0, 1] x{1} and 7 = {1} x]—1,1]
is:z— 2™,

If now r(X) = pfq , we have seen that X, factorizes up to C*
equivalence, through a polynomial family of special type.

More generally, we are going to consider the analytic normal family
XN

d 1 ad a0

XN =g PP +-(; (—p+ > o (27 ¥) )y o (5.6)
=0

where Po(u) = 3 a1 u'*! is an analytic entire function of u € R,

0
and « = (o, a9,---) € A, where A is the set :

1 .
A={a=(ay,02,)| | |<§,|a;|<Mforz22} (5.7)

where M > 0 is some fixed constant.

XY has the axes Oz and Oy as unstable and stable manifolds. If a,
7 are transversal segments as above, the flow of X defines a transition
map D, (z) from o to r, which extends continuously to D,(0) = 0. This
map is analytic in (z, a) for z # 0. We want to study its properties at
{z =0}

Making the singular change of variabl es : u = z? §%, = = z, the
differential equation of X~ is brought in the following form :
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Figure 5.1:

{a. — P.(u)= za, (5.8)

We see that the variables are sepa,rated in (5.8). The first equation
gives z(t,z) = ze'. Let us look at the second one ; P,(u) is analytic for
| u 1< 1 for @ € A. Call u(t u) the solution such that u(0,u) = u (see
Figure 5.1).

We can expand it in series in u for each ¢ :

u(t,u) =Y gi(th'. (5.9)
i=1
One has ¢1(t) = e™* and ¢;(0) = 0 for z > 2.
We want to study the form of the g; and the convergence of the
above series in function of ¢. For this, we are going to compare u(t, u)
to the solution of the hyperbolic equation :
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. 1 > ,
U=zU+M > Ut (5.10)

i=1

We have the following estimations :

Lemma 18 Let U(t,u) = > Gi(t)u' the power series expansion of the
=1
trajectories of (5.10). Then, for eachi>1 and t > 0 :

F:(1) 1< Gi(1) for any o € A.

Proof Substituting (5.9) in the equation : %—? (t,u) = Pa(u(t,u)), we

obtain recurrent equations for the ¢;(t), the system £, :

@) = o1 @ targf
@t) = o193+ 20 g1 g2+ 03 g2

{Q;(t) = o h

And more generally :

_(j,-=0’1 g.-+P,-(a2,---,a'; 3 9'1,"‘,9’:'—1) fOT'iEQ

where P; is a rational polynomial in g, -, a;, g1, - -, g;—1 with positive
rational coefficients. )
Now, let be U(t,u) the trajectory of U = P,(U/) with a = (—

5 M,
M,.. ) We have for G;(t) the system Eg :

1

Gl = § G1
. 1
G2 - 5 G2 + ﬂ.’[Gf

and more generally :

. 1

G£=2 G;“"".P;(M,,M, G],"',G,'_1)
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(with the same polynomials P; as above).
We can solve the system Fg by :

1 t
Gi(t) = e'/*' | Galt) = Pa(t)e3* with 4a2) zjo e~ My G3(r)dr

and more generally :

z,b,-(t)zfot et P(M,- M ;G_l(T),---,G.-'_l(tau))df. (5.11)

It follows easily from these formulas, that G;(t) > 0 for £ > 0. Now
we are going to show that

| g:(2) |< Gi(t)
for each £ > 0. First, this is trivially true for2 =1 :

| gi(1) |< el S est = Gi(2). (5.12)

Suppose that we have shown : | g;(¢) |< G;(1) foreach j: 1 <5 <
i — 1, and any ¢ > 0. We are going to compare the two equations :

Gty =01 g+ Pi (a5 G105 Gi1)
and ;.

. 1

Gi(t) =§ Gi+ P (Ms"'?M; Gls"';Gi—l)-

Because the coefficients in F; are positive, we have :

]P{(Q’Q,"‘,Q’{; gl&"'agi—l)'gpi(lag |,"',|O:’,‘|; |91 I)"'![gi'—l I)

S Pi(f\],,ﬂlf, G]_,"‘,G,’...l). (513)

Now, for ¢ = 0, we have G,(0) = 1 and G;(0) = 0 for ¢ > 2. So,
we have G;(0) = P, (M,---, M ; .GI(O),---,G,-_l(O)) = MG (0 =M
and also | g:(0) | € | ai || ¢1(0) | £ | i |[< M. So, for t = 0 we have :
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9(0) = Gi(0) = 0 and | 4:(0) | < G:(0). By continuity, this gives, for ¢
small enough : | &(2) [< Gi(t).

We want to show now that this inequality holds for any ¢ > 0 (and
so, we will have : | gi(t) |< Gi(t) for any ¢ > 0).

Suppose on the contrary that ¢; > 0 is the inferior bound of the
values of ¢ such that | g:(¢) | = Gi(t). For all ¢ € [0,2] we have :
[ 4i(2) | < Gi(t). So, for all ¢ € [0,1o] we also have : | g:(2) | < Gi(t).
Now, fort =14 ¢

gito) = a1 gi(to) + Piaa, -, 05 5 ;lta),- -, gi-1(to))
Gilto) = 5 Gilto) + B, M ; Gi(to), -+, Gicata)).

By induction on #, we know that G;({g) > g;(te) for 2 < j <i—1.
By the choice of #y, we already know that G;(ts) >| ¢:(ta) | . So, the

inequality | a; |< 3 implies that | §:(to) |< Gi(to). But, by continuity,

this strict inequality is available for £ > {5, ¢ near #p : this last point
contradicts the definition of ¢g. .

Next, we prove the following :

Lemma 19 There exist constants C, Cy > 0 such that :

| g:(2) 1€ Co [Ce?)' For any i >'1, t > 0 and any a € A.

Proof Using lemma 1, it is sufficient to show that G;(t) < Cy [Cez] for
some constants Cy, Q, and 7 > 1,1 > 0, e € A. Recall that the function
U(t,u) = Y Gi(f)u' is a trajectory of the hyperbolic 1-dimensional
i1
a . 1 S i
vector field X = P(u) ™ with P(u) = S u+ M 3" ', From the
’ = i=1
analytic linearisation theorem of Poincaré, there exists an analytic dif-
feomorphism g(u) = u + 0(u), converging for | u |< K for some Kj,
such that :
1 2

g.(P(u) %) =3 U5 (5.14)
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This diffeomorphism g sends the flow U(t,u) of P E» into Up(t) =

uez?, the flow of 1 u -a-

u
This means : Up(t,g(u)) = go U(t,u) for |u |, | U(t,u) |< K;.
Because g is invertible for | u |< K, there exist constants b, B,
0 < b < B such that :

blul|glu) [ Blu| for |uls K. (5.15)
. b 1
Suppose that : | u |< B K, ezt Then :

| g(w) |< B |u|<b Ky e ¥ (5.16)
and : | Up(t, g(u)) | = | g(u) | e < bK:.
Now, one has : U(t,u) = g7 o Us(t, g(u)).
This implies that :
1
Ut 1< 3 | Vol ga)) 1< Fr (5.17)

Using Cauchy inequalities {or the coefficients G;(t), we find :

< Sup {| U(t,u) | [u |= R(t)} < K

| Gi(?) |< < : (5.18)
(R(2)) (R(®))’
b . s
where : R({) = = K; e75.
So, finally, we obtain :
B LY
| Gi(2) |< Ky (I K1) e,
o . . . B
which is the desired estimate, with Cy = K; and - K{°. »

b
We will show below that the ¢; are analytic functions of ¢ > 0. For

the moment, we notice that the formula 2 (t,u) = Py(u(t,u)) shows

at
that the series in u of -j;- has the same radius of convergence as u(t, u).

(Recall that P,(u)} is supposed to be an entire function). The same is
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k
ak(!

an estimate for the coeflicients

u), by induction on k. This remark gives
d* g; . ..
J (t) of this derivative.
th

Using Cauchy inequalities as above :

true for any derivative

k u
st 5 o ()l |u = R())
s TR T

5

d* ¢; by
which gives : | Tk (t)] < Cy (Cez) for some Cy > 0.:
So, we have proved :

Lemma 20 For each k > 1, there exists o constant Cyp > 0 such that :

d* g,
dt*

|<C'k(C'ei) for any i > 1, 120, acA (5.19)

(C is the same as in lemma 2).

We will give now establish more precisely the form of the functions
gi(t). For this, we introduce the function :

|
ay,t) = for ay # 0 and

@

Q0,8) = ¢t

With this notation we have :

Proposition 10 For each k > 1, gi(t) = e Qi(t) where Qi is a poly-
nomial of degree < k—1 in ). The coefficicnts of Qr are polynomial in
oy, -, . More precisely :

Qk = GIQ + Qk(ah Tt Qe Q) (520)

where Qy is a polynomial of degree < k — 1 in Q, with coefficients in
T(ar, -+ o-1) NI(e, -+ o) C Z oy, -, ax]. Here, I(u,v,--)
stands for the polynomial ideal generaled by u,v,-- .
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Proof Write again the system E, for the g; :

§1 = a1 G
g = 019‘2+0ng

Sj’k = o gk+Pk (Q’z,"',ak; 911"'agk—1)'

The polynomial P is obtained from the coefficient of u* in the ex-
pansion Z o; [z g ui]J. It {ollows easily from this, that P is homo-
iz il :
geneous linear in oy, -, ar.
Each polynomial :

k=1 k-1
gh ...gf_’j_—l’ ts such that Z €; > 2and Z 3t =k (5.21)
i=1 =1

First, we show gi(1) = et (Q,(¢) with @y a polynomial of degree
< k—1in 9, and polynomial coeflicients in e, ---, o (in particular :
a(t) = et | g(t) = az et Q,-.).

Look.at the equation for gy :

gk =01 g+ P (@2, 005 91,00 Grm1)s

We use an induction on k. So let us suppose known that for each j <
E—1: g;(t) = em' @;(t), as above. Notice that e** = & + 1. So,
each g; has degree < j in . Now, it follows from (5.23) that :

Pk(ﬁ‘fz,"',ﬂk B 91,"',5”:-1) = ¥ Xk(ﬂ):

where X} is a polynomial of degree < k — 2 in § (to see this point,

replace in each monomial g* - - -gi*_"l’ of Py, a product of two factors g;

g; by €218 Q; Q; and the other factors g¢ by (a1 Q + 1)Q).
Now, g = et Q) with :

t
Qult) = [ e P fon, e 005 g, g )

Qk.(t) = f; 7 Xy (Q)dr = [: Xe () Qdr (5.22)
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(Because = e*1),

It follows from (5.22) that @Q«(f) is a polynomial of degree < k£ — 1
in 2. From the induction, it follows easily that the coeflicients are
polynomials in oy, - -+, ax. To obtain the precise form of the statement,
notice that for £ > 2 :

Pk(afls"':ak; gl!""gk—l) = O gf+ﬁk

where ﬁk is linear in @,---,ar_; and each monomial in Pk contalins
at least one of the ¢; with i > 2. Moreover we knrow that the coefli-
cients of such a ¢; are in Z(ay,- -+, a;). So, the coefficients of B, arein
I(al, Ty, C\fjc_l) N I((Xz, e ,ak)z.

Now :
" ¢ -
Qr = ay, j elb=en gr +[ e~ " PBy(r)dr. (5.23)
0 D
Look at the first term :
t (k—D)ent _ 4 .
(k—1)or d — € .
fo ¢ T T Dar

Using e = a;Q(t) + 1, we obtain :

eb=ert = 1 4 (k- 1}a; Q4+ % S(0) (5.24)
where S(2) is a polynomial in © ; so that :

v g
k-1

The term fj e™*17 P dr gives a polynomial in {2, with coefficients in
T(ay, -+, op—1)NT(as, - - -, ar)?. So, we obtain finally Qi(t) = ax Q+Q,
with @, as in the statement. "

S(9). (5.25)

t
o, / et dr — o, 0+
0

Now, we go back to the map D, (z).

The time to go from ¢ to 7 is equal to {(z) = —Lnz. Notice that
u), = 2 and ), = y%. So that we can compute D, (x) using u(t,z) :
Dy(z)? = u(—Lnz, p) for € 2 0 withD,(0) =0 (5.26)

(and D,(0) = 0).
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There is no problem to sce that D, is well defined for =z € [0, X]
where X is some value > 0, and is analytic in (z,a) for z #£ 0, a € A.
We want to study its behavior at z = 0. For this, we notice that the
lemma 5 implies that for each ¢ > 0, the convergence radius of the

) 1
series & g;{t)u’ is greater that e —%t. So, for any z small enough, the
series ¥  g:(t)x™ converges for each ¢ < —2Lnz and in particular for

1
t = —Lnz. So, we can use this series to compute D,{z) :
Do(2)" =3 gi(—Lnz)e™. (5.27)

The convergence is normal on an interval [0, X] for some X > 0. We
L

9i in lemmas 1,2 to obtain the following :

can now use estimates on g, Tk
«

Proposition 11 Let any k € N. There exists a K(k) such that :

K(k)

o) = Z gi(—Lna) 2P 4y (5.28)
where Pr(z,a) is a C*? function in (z,¢), kp-flat at = = 0 (ie :
3 P 1y,
#0,0)= T 0,0) = - = 5 0,0) =)

Proof Given &, we want to find K (k) such that :

(DO (2) = Z gi(—Lnz)z
. K+1
is a CX?, Kp-flat function.
We are going to see that the series (D7)¥ can be derived term by
term. First, we have :

d : , .
d_'n[gj(_an)mm] = —ggl)(—an)wm'l + pjg;(—Lnz)z™”™'  (5.29)

oy
(o = 22)
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Now, from the estimates of Lemma 2, we have :

|9 (—Lna)| < ¢y | Cz |77
and from lemmal :

| gi(—Lnz) | < Co| Cy |72 .

So, for some constant My > 0, we have :

’Ez% lg5(~Lna)a™l| < My | Cu [-4571. (5.30)

More generally, using lemma 2, we have, for cach s <3 :

d* . 7! 1y,
g los(-Lne)e)| < Ty Mo | G 72 (5.31)

for some constant M, > 0.

1
It follows from these estimates that if (p— 5)K >kandif0 < s <k,
the series : B

d&° |
Z @ (gj(_k7?,(n")mpj)

2R+
converges and is equal to 0 at = = 0. So, we obtain that the function
(DK = Z .« is k-flat and C*. .
§>K+1

We define the function w(z,ay) by :

—n
w(z,oq) = S —— if a1 #0

(o4]
w(z,0) = —Lnz. (5.32)

This function is related with the above function Q(a,,?) by :

wlz, 1) = Qar, —Lnzx). (5.33)

Note that for each & > 0, t*w — —2* Lnz as a; — 0 (uniformly
for x € [0, X], for any fixed X > 0). We are going to consider finite
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combinations of functions z* w’ with 4,7 € N and 0 £ § < i. These
functions z' w form a totally ordered set with the following order

. Y
r'w <zt

&>i'>tori=¢and j > ;. Onehas: 1 < 2w <z < 2%w? < 2k <
22 < ee,

The notation 2'w? +- - - means that after the sign + one finds a finite
combination of ¢"w/’. Then, we have for the transition map D, (z), the
following (z,w)-expansion of order k :

Theorem 14 Let any k € N. Then, the transition map Dy of XV
defined by (5.28) (relative Lo the segments o, T defined above) has the
following (z,w)-expansion of order kp :

(Da(2))? = 2P + ay[aPw+ -]+ c[z®Pw + -] -+

+ o[z w -l-‘- ]+ Yz, @) (5.34)

where K(k) is defined in proposition (5.28), each term between brack-
ets is a finite combination of a*w? (with the above convention) ; the
coefficients of the non writlen 2w’ after the signs + are polynomial
functions in the oy, which arve zero if o = 0. The remaining term ;. is
a C* function in (x,a), which is kp-flat for z = 0 and any a :

. ar

(%—(0,0’) =5, la)=-= 7% Ye(0,0) =0)'

Proof The proposition 3 gives :
gi{—Inz) = e~ Q\(—Lnz)

=27 (opw + Qulan, -, o, w)) (5.35)

with @, of degree € £ — 1 in w and coefficients in Tlag, -y uq) N
T{ag, -, op ) .
So, the general term gr(—Lnz)aP* in (Dy(z))? is equal to :

gr(~Lnx)a™ = 2?7 (e w + G,). (5.36)
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Using 27! = ow + 1 this term can be rewritten as :

ae(—Lnz)2eP* = qpaP* o + arop 2 WP + (1 4+ aw)z™ G, (5.37)

7 for k> 2 and 2P¢g)(—Inz) = 2™ = a; z° w + 2. (5.38)

So, we have :
(Do(2))! = 2P+ a1 27 wtag 27 wtap az 27 W +{1 + a1 omega)z? @

+a; P w+ta; ay P W+ mg”(l + w)-fja +--+ P (5.39)

where + - - - is for the expansion of @™ g,(— Lnz)} for 4 < s < K (k). Now
K(¥)

we rearrange the sum Z gi(—Lnz)a? in the following way : first, we
t=1

take all the terms whose coefficients are divisible by a;. Next, all the

remaining terms (not divisible by ;) but divisible by a2 and so on,

until ax. We obtain the following expansion :

Du(z) =27 + erft’? wtopa®w+a? w@,+ a3 a” W+
+ o [2% w + terms in 2¥ Qy, -+, 2P Qe

divisible by oz, nol by o]

4+ ax ;BKP w -+ "ybk(lb',O’).

Looking at this expansion, it is clear that each term after 2*” w in the
bracket related to a, is of order greater that 2 w and has a coeflicient
in (a1, - - -, ax) {(because it comes from coelficients in Z(ay,--- yar)?

divided by @,). The sum from 1 to A contains all monomial terms in
. I\— -

z,w coming from the expansion Z gi(—Lnx)z and we know that the

i=1 '

remaining term 1t obtained in proposition 4 is C* and k-flat at x = 0.

This ends the proof. ]
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5.1.3 The structure of the transition map of X,.

We return now to the initial C* family X). We suppose chosen a fixed
system of coordinates (z,y) for which the saddle point sy is at the ori-
gin, the 0z and Oy axes are local unstable and stable manifolds of X
respectively, for each A € W, and the 1-jet of X is given by (5.1).

Take now transversal segments o, 7 to 0y and 0z respectively : o is
parametrized by « € [0, X') and 7 by y € [-Y, Y] for some X, Y > 0. For
any k € N, theorem 1 gives a C* equivalence of X with a polynomial
normal form family XQE‘\) ; here a{X) = (ey(}N), -+, an(A)) and the
family XV are defined in seclion 1.1. This C* equivalence defines C*
families of diffeomorphisms $,(z), ¥\ (y) on R, in a neighborhood s of
®,(0) = ¥(0) = 0 such that il D, is the transition map for XY, as it
is defined in section 1.2, one has :

D,\(.’l?) = t[),\ o} Da(.\) o} ‘I),\(:B). (540)
XY is a linear vector field if 7{Ay) ¢ @ and the polynomial normal
form family given in proposition 2 if r(Ag) = L In this last case, we

apply to it the results of section 1.2 in particular in theorem 2. For
any k, we have an (w, 2)-expansion at order k& which depends only on
ar(A), -, an(A) because all the ay(A)=0fori > N+1:

(DQ(A) ('E) 7= 4 Q-i(,\)[;cpw + - ] + -

+anMNaM w4 ]+ e (2, A) (5.41)

where the conventions are the ones in theorem 2 and (z, A) is C* and
k-flat at 2 == 0. Of course, if the resonant quantities may be chosen
independent of %, it is not the case for the expansions in the brackets,

5.1.3.1 Dulac Series for D,,.

In this subsection, I want to verify that the transition map near an
hyperbolic saddle is quasi-regular (we have used this fact in chapter 3).
To expand the transition D(2) for the saddle point of a vector field X,
we can use formulas (5.40) and (5.41) for a trivial family (X constant
and equal to X and Dy, = D). Then oy =0 and w = —Ln z.
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If r = r(0) & Q we have D(z) = 1 0 Dy o p(z) for 1, C* diffeo-
morphisms and Dy(z) = 2",
Hr=2,
q

Do(z)! = 2" + g z(—Ln z) + - + an "7 (—Ln z) + ()

¥y : C¥ k-flat. Expanding 1 o Dy oy and ordering the terms, we obtain
that, for any k, there exists a sequence of coeflicients A; : A} = r <
Az < -+ < Angry, ANngr) = k and a sequence of polynomials P, = A (a
constant),..., Pk such that :

N(k)

D(z)= > z P(Ln ) + ¢u(z)

i=1
where 3. is a C* and k-flat function.

The coefficients A;, and the polynomials P; are well-defined, i.e.
independent on k. This means that il we take &' > &, the sequence for
k', truncated at order N(k). This is similar to the unicity of Taylor
series. Taking k arbitrarily large, we have a well defined infinite series

00
D(z) = >~ & Pi(z) which is asymptotic to D(z) is the following way :

i=1

- for any k€ N — {0} :

| D=) = Y. & PiLn 2) |= 0(z)

=1
with Ay = r < Ay < -+ < A; < --- an inflinite sequence of positive
coefficients tending to oo and P, = P,---, P, an infinite sequence

of polynomials.

The series D is called : the Dulac series of the map D.

A C® function on |0, X[, which admit at = = 0 a series as above is
said to be quasi-reqular.

Remark 24 For the Dulac series of the lransition, we have notliced
that My = r, the hyperbolicity ratio, and P, =1 so that D(z) = Az" +
0(z"). It is also easy to verify that : i € N+ +N for all i, and that P;
is constant for any i when r € Q. (Logarithmic terms just oceur when
one has a resonant saddle).
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5.1.3.2 Dy(z) when p=¢ = 1.

For the study in the next paragraph, we want to write now an
expansion for Dy(z) in the case p = ¢ = 1. So, we have to compute °
(5.40). To this end we need :

Lemma 21 Letl pr(2) « C* parameter family of diffeomorphisms as
above. Then, with the convention introduced in section 1.2 :

woy=c(Aw+ -+ &, A) (5.42)

where ¢(A) > 0 for A € Wy and &, is C* in (2,)) and k-flat at z = 0
uniformly in A € W,

Proof Let:
O =wo®y and ®r(z) = w(N)z(1 + - + &) (5.43)
(again with the above convention) and u(}) > 0.

um T (LA )™~ 1

o=
X
—o cee gk B YM o1 _
g T4 B 1w
oy ag
u -1, .
(A) = —— is a C™ {unction of A and :
aj
=1 [ P —o P $ hCE -
=14 Dy) 1 _ - (144 D) 1_!_“J
o (451

~

(L4 ®p)™™ -1

P = is a C* function in (z,)) and 2™ = oy w+1.
(23]

One obtains finally : & = w=(144{z, A))w+- - - which has the desired

form, once expanded. "

If we substitute ®y(x) in Dyny(z) = 2 4+ enfzw + -]+ -++ and
use the above lemma, it is clear that we obtain a similar expansion as
(5.34), but with new coefficients «; which are now of class C*.

Next, if :
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ba(y) = Ny + 12(\)y? + - - + 2Ny +0(y*) (5.44)

we obtain 0,0y substituting Dy yyows in (5.44). Tt is clear that
we can reorder the terms of this expansion to obtain again a similar
expansion as (5.34). We have proved :

Proposition 12 Let X\, o, 7 as above and D\(x) the transition map
of o to r. Let Wy the neighborhood of Ao such that Dy(x) is defined
Jrom o x Wy to r. Then, there erisls a sequence of neighborhoods of
do : WiDWaD - DWi D - such that for all k € N there exist C*
functions of(A), -+, af(}) and an expansion for (z,A) € Wj :

k
Diz)=z+ay, of(Na'w+ - ]+e(z,))  (545)
t=1
with the conventions as in theorem 2. Here of = ay; =r(A)—1 for any
k.

5.1.3.3 Mourtada’s form for D)

- The expression (5.45) will be used to study unfoldings of homoclinic
saddle loop (see next paragraph). To study hyperbolic polycycles with
more than 1 singular point, A. Mourtada has introduced a simpler ex-
pression, which is valid without assumption on r{Ag).

We consider transversal segments o = [0, X], 7 = [~Y, Y] as above
and let be Dy(z) : o x Wy — 7 the transition map.

Definition 25 (1} Let W), C Wy some neighborhood of Ay and Iy be
the set of functions f: [0, X] x W), — R with the following properties :

(i) f is C® on |0, X] x Uy,

Lo
(ii) For each § < k, p;i(z,A) = 27 % (¥,A) = 0 forz — 0,
untformly on X {we will say that ! = of{z™7) uniformly at A = 0).

dxi

(2) A function f:[0,X] x Wo — R is said to be of class I if f is
C*® on j0, X] x Wy and if for all k there exists Wy C Wy, neighborhood
of Ao € P such that f is of class I;, on W,
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Theorem 15 (Mourtada [M1]). Let Xy, o, 7, Dy as above. Then, for
(-’B,/\) co X W[) N

Dz, 2) = 2" (A(X) + @(z, A)) (5.46)
with ® € [ and A(A) e C™ positive function.

Proof I sketch briefly the ideas of the proof. The details can be found
in [M1]. First, let us notice that,given & and 7 with their parametriza-
tions, the functions A and ® in formula (5.46) are unique.

This follows from the fact that #(A) is well defined and that :

AQ) = lim 7 D(z,4)

and also that : ®(z,A) =z~ D(z, ) — A(}).

Next, let us notice that a function has an expression as in (5.46),
with A(}A) a C* function and @ € I, if and only if this is true after
. compositions on the right and on the left by C* families of diffeomor-
phisms ¢, (z) and ¥a(a), with ¢,(0) = ¢,\(0) = 0 for all X € W,

So it suffices to prove that, in C*-normal form coordinates :

Dagy(z) = 2™ (B(X) + (=, M) (5.47)

with B(}) a C* function and ¢ € Iy.
To prove this, we consider two cases :

(i) if r(Ao) is irrational, then D,y(2) = 2" and the result is
trivial,

(i) if 7(Xo) = B, we apply theorem 2, at some order ¥ >> k. In

fact, we have to notice that the first bracket begins by a monomial
2 w’ with s > 2, £ < p. This is also the case for the other brackets.
So that, we can write for any &' :

(Dapy(2))? = 2P + o (X)2™ + Z age (N2 28 4 g (z, A)

{<s<K
5>2

(5.48)
where the a(A) are C¥, K(&) € N and 9y is C* and k'-flat at = 0.
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Let us notice that z? + oy (A)z™ = 27}, We can rewrite (5.48) in
the following form :

Day(2) =21+ T au(R)a? ) ot

{<s< K
522
+ 277 re(z, A)] . (5.49)

Choosing k' large enough, =9 o5 is C* and k-flat at = 0.
Now, sp—gr(A) 2 ¢ (2 % - 1‘(/\)). For A = Ag: q(2 % — T'(/\g)) = 2p.
If we take A € Wy, some small neighborhood of Ag; there existsa ¢ > 0
P
such that g(2 — —r(A)) > e
22 -r0)

Expansion of the power ~ of the bracket in (5.49)} gives the desired form

for -Dcr()\) (:B) | ]

Definition 26 We call Mourtada’s form, the expression (5.46) of the
transition map and call Dy (respectively D) the class of maps as in
(5.46), when ® € I; (resp.]).

The importance of the classes I, and D comes from the following
theorem, which is easily proved by direct compulations :

Theorem 16 (Mourtada [M1]).

(1) I is an algebra : for f, g € I, a,b € R, we have f.g € I and
af +bg € 1.

(i) Iffe€l andg €D then foge l.

(iii) Maps of class D can be composed. More precisely if Dy () =
Dy(z,2) = 2O (A)(A) + By(z, N)) and Doy (2) = Dy(a,A) = g2
(Az(X) + ®y(z, ), then : Doy o Dia(z) = Daa(z) = 2N (A5(N) +
®a(x, A)) with r3(A) = r2(A).r(A), Aa(A) = Ax(A). 4, (X)) and &3 €
I. Hence, D3y € D.

(iv) If Dy € D then D;' € D.
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d
{v) I is closed under the derivation x di cif fel thens & el

z dz
As a consequence, if Dy = 2 (A(X) + &(z, A))D
then : :
% = r(A)z" M A(X) + P(z, X)) with ¥ € 1. (5.50)

(vi) Any smooth germ is in I; any smooth diffeomorphism germ g
at 0, with g(0) = 0 is in D.

Remark 25 The formula (5.50) is true even if r(ho) = 1. But, if
r(Ao) # 1, if we restrict Wo such that v(A) # 1 for all X\ € Wy, we will

have that z % eD.
dz .

More generally z© aa D € D for Wy small enough if r(Xo) # n.

Tl

It is for this reason thal the Mourtada’s form will be more useful
under generic assumplion : v(Ao) #n < N for N large enough.
i

5.2 Unfoldings of saddle connections in the
finite codimension case.

Let X, be a C* family of vector fields in S such that X, has some
saddle connection I'. We want to study the unfolding defined by X,
along I' x {Ag} so that we can suppose that X, is restricted to some
neighborhood & of T' in 5, diffeomorphic with an annulus (S is sup-
posed to be orientable) and A € W, some neighborhoods of Xg in the
parameter space. Let o, 7 some transversal sections near the saddle
point s of X, as above : we suppose chosen a local system of coordi-
nates (z,y) near s, such that s = (0,0) is the saddle point of X for all
A € W, 0z, Oy are the unstable and stable local manifolds and o, T are
parametrized respectively by @ € [0, X[ and y €] — ¥, Y[. We suppose
chosen a section ¢’ O o, parametrized by ] ~ X', X|.
Let V this chart with coordinates (z,y) (see Figure 5.2)
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Figure 5.2:

The Poincaré map Pi(z) : o0 x Wy — ¢’ =]~ X', X[ may be obtained
as the composition : '

Pi(z) = RV o Dif2) (5.51)

where R, is the C* regular transition map from o’ to 7 for — X (we
suppose chosen Wy and X small enough such that Py is defined on
a X W(])

5.2.1 The codimension 1 case.

As generic assumption for codimension 1 hifurcations we can suppose
that r(Ag) # 1. Using notations and results of section 1.3, T\(A) =
Ry — B(}), where B()) = £;1(0), and Dy are in D. This gives :

Py(z) = "™ (A()) + 0(z, ) + B(N), with ® € 1 (5.52)
with r(A) # 1 and A(}g) > 0.

It follows from theorem 3 that :
apP,

G PNz =1 (AN + By (a, A). (5.53)
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apP
So that —> — 0 or co for & — 0, oo, uniformly in A € W, depend-

ing if 7(Xo) >$1 or r{Ao) < 1, and from Rolle theorem, the equation
{Ps(z) — z = 0} has at most one root in ¢ for any A € Wy, if & is small
enough.

Now, the roots = with | 2 | sufficiently small corresponds to periodic
orbits whose Hausdorfl distance to I' is sufficiently small. This is a quite
obvious generalization of the lemma 1 in 4.1, that we formulate now
without proof for general limit periodic sets :

Lemma 22 Let ' any limit periodic set for a family X, at the param-
eler value Ag. Let o,0" transversal sections to T as above. Let P\(z)
the Poincaré map of Xy from o lo o’ (we suppose that A € Wy some
netghborhoods of Ay in the parameter space).

Let 63(z) = Py(z) — x. Then, for each € > 0, one can find o(e),
a neighborhoods of xgp € ' N o in ¢ such that : x € ofe) is a root of
{8:(z) = 0} for A € Wy if and only if the orbit v of X through z is a
periodic orbit with dy(v,T) < e (dyy : Hausdorff distance corresponding
to a chosen dislance on the phase space).

So, the computation of the cyclicity of T' is equivalent to the compu-
tation of the number of roots of 8, on o(<) for &€ and Wy small enough.

Here, for the saddle connection, the periodic orbits cutting ¢’ must
cut o. The fact that éy(z) = P\(a) — « has at most one root on Wy x o
implies :

- Proposition 13 Let be T' a saddle connection as above, with r(Ao) # 1.
Then Cycl(X,,T) < 1.

In fact one can deduce from (5.52) a more precise result. It is always
possible to construct a C® l-parameter family Xg, near T’ x {0} with
turn map :

Py(z)=2"+8 (5.54)

(r — 1)(r(Xg) — 1) > 0. For instance, one can take a fixed linear vector
field in the coordinate chart with transition map : D{(z) = " and glue
this chart with a second chart near a regular arc on I' — {s} such that
the transition R='(y) = y + 8 (see [IY1]). Now, it is not difficult to
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B <0 $ =0 ' g >0
Figure 5.3:

prove that for all A the two maps P\(z) and ﬁp(;\)(m) are C°-conjugate.
Next, one can extend this conjugacy in an equivalence between .3(’,,(,\)
and X, for each A € W, in some neighborhoods of I' . It is even possible
but more difficult to obtain an equivalence depending continuously on

A [AAD] :

Theorem 17 Let 5(}3 an unfolding of saddle connection with return
map Ps(z) = 2" + B where (r — 1)(r{Xo) — 1) > 0. Then, the unfolding
(X, T) is induced by the map B(A), up to (C°,C°)-cquivalence (Xg is a
versal unfolding of T').

The bifurcation diagram of /\,g is quite simple. One can suppose

that r > 1 for instance (if not, change X3 in —Xg) : a hyperbolic
stable limit stable bifurcates from T for positive g (see Figure 5.3).

Of course, if X, is already a l—parameter‘ family such that (Ao} #
0, one can replace A by §, up a diffeomorphism in the parameter space,
and the diagram of bifurcation of X} is the same as the one of X :

Theorem 18 Let (X,T") a I-parameter unfolding of saddle connection
I', for the value X, which verifies the generic assumptions : v(Ag) # 1
wdﬂ@d%O

Then, the unfolding (X,,T') is (C°,C°)-cquivalent to the “model”
(Xg,T). In particular, this unfolding is unique up to (C°,C°) equivalence
and change X, in —X,) and is structurally slable.
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5.2.2 The k-codimension case, k > 2.

Up to now we suppose the r(Xg) = 1. A saddle connection with this
condition is of course of codimension greater than 2 (one condition is
needed to express the connection and another one is r(A) = 1). To
make precise the notion of codimension, we will used the so-called Dulac
expansion for the return map P(z) = P, (z) for X, along I".

Using proposition 5 for Dy and the Taylor expansion of R,(z) we
_have for

bx(z) = Pr(z) — =,
at any order k € N :

&z} = Fo(d) + ar(M[zw +--] (5.55)
+ BNz + ea(W)fatw -+
+ BNz 4 (N [zFw 4]+ (e, A)

Bo(A) = PA(0) = b(A) — a(X)

where a()), b(A) are the just intersections of the unstable and the stable
manifold of s with ¢'.
a1(A) = 1—7(X), where r(A) is the hyperbolicity ratio. We have o (0) =
po(0) = 0.

The functions §; come from the Taylor expansions of R)(z) and are
C*, but the a;(A) come from the formula for D) depend in general of
k and are just C*. -

Taking A = Ao in the formula (5.55), we obtain an expansion of
Oxo(2) : '

6r(z) = frz + cnz(—Lnz)® + - --
+ B @7 4oy 2¥(—Lna) +0(eF). . (5.56)

We notice that the coeflicients B;, a; we obtain in this way are
.independent of k : if we write a similar expansion at order &' > k for
83, (), then the coefficients a;, B; for 2 < k, j < k-1 are the same. So,
using expansion (5.56) at any order k, we obtain a well defined series :
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Figure 5.4

xo() = i (ﬂ.- z + iy 2t (—Ln;r:)) (5.57)

i=1

which is asymptotic to 85,(x) in the following way for any k € N — {0} -

k
|Br(z) = 3 (Biz + i 2 (~Lnz))| = o(z*). (5.58)

i=1

One calls this series, the Dulac series for §,,(z).

Definition 27 We say that the saddle connection T of X, is of codi-
‘mension 2k if fi =a; =0 for 1 i< k—1and2<j <k We
say that ' is of codimension 2k +1 if fi=a; =0 for 1 <i < k and
2<j <k

In other terms, codimension 2k means that 8\,(x) ~ Ba z* with
Br # 0, and codimension 2k + 1 means that 65,(z) ~ apyy ¥ Lnz
with agyy # 0.

Theorem 19 Let (X),I') a C* unfolding of codimension £ > 2 (this
means that r(Ag) = 1 and that Py, (z) — x is equivalent to z* if £ = 2k,
¥ ng if £ = 2k +1). Then : Cycl(X,,T) < L.
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To study the number of zeros of §y, we have to extend somewhat the
algebra generated by the z'w’. We introduce now the algebra of func-
tions, continuous in (z,A) which are finite combinations of the mono-
mials 4"1w", with £, n € Z, m € N, a1 = a1(}). The coefficients are
continuous functions of A. We call it the algebra of admissible functions.

Of course, we consider also monomials as functions of (z, ), but
when we consider combinations of monomials, v is always replaced by
the function a;(A).

Now, we introduce between the monomials, the following partial
" strict order :

7

AN W g G { 5’ : ﬁ’,o:z’ =n and m’' > m.

Notice that zf+*'* ™ and " W™ with n # n' are not ordered.

Later on, the notation : f + --- where f is a monomial will mean
that after the sign -+ there is a (non written) finite combination of
monomials ¢; with ¢; > f. (This definition extends the one uses in
theorem 2 for instance).

We will also use the symbol * to replace any continuous function of

od

A, non zero at A = Ao, and we write & for the derivationinz : & = e

With these conventions, we indicate now some easy properties of the
algebra of admissible functions :

a) Let g, f two monomials with g ~ f, then g(:f:,al) — 0 for
(z,01) — (0,0). This follows from the two following observations :
w 2 Inf ( , —Lnz) and 2% w™ — 0 (for any continuous

function 3(0:1), w1th s(0) > 0), if (z,e1) — (0,0) and m € N.

. b) Let a monomial f > 1, then f(z, ;) — 0 for z — 0 (uniformly
in @) : f > 1 means that f = 2™ w™ with £ > 1, and we can use
the same argument as in a).

¢) fi = f and any g => ¢fi = gfa.
d) Let f = 2 w™. Then :
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f={+ (n—m)ay)gt 1+ ™ — pgt-tiner ym-l

From this formula follows easily :

e) Let f = 27" w™ with £ # 0 and ¢ any monomial such that
g > f. Then § is a combination of two monomials ¢’ and ¢” and f =
* f' 4. with f' = ¢', f' = ¢".

We shall also use rational functions of the algebra of the following

type : {+_ . We call them : admissible rational functions.

For them, we have :

Hnoy , m .
) (1‘1 “ ) =*1‘1 : if ££0.
We can give now a proof of theorem 7. We consider successively the
two cases oy and Si.

Proof of theorem 7 in the case ary;.

Recall that one can write : .
83(2) = fo+ calzw + -]+ fr + gzt + -] + -

tafzfwH I+ T Fapp T w Yk (5.59)

where ai, B; are continuous functions, 1k is a CX function of (z,a),
K-flat in z, with K > 2k + 1. We suppose that :

ﬂg(/\o) == ﬂk(/\ﬂ) = 0, 0.'1('\0) = v = a‘k(Ao) = 0 and (04 W] (Ao) §£ 0.
From the property d) above it follows :
(Fwy=(-—m)2 wt-if jE£Oand o=z,
_ 5o, differentiating 6y, we obtain, using also property e) :

by = aa[kwt - I+ Bt agfkawt- - 4 A rays 2w +ihk. (5.60)

If, we differentiate éy, k + 1 times, we find :
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6§k+1) =‘al[* x—k—a; +-- ] + 0!2[* x'—(k—l)—m + . ']‘+_' .

ok Qg W P (5.61)

‘All the monomials 8;27, for j < k have disappeared. Multiplying
by z*+t®1, we obtain (using property c)) :

$k+ﬂl 6gk+1) — [*1 + .,.] +a2[*$ _|_ ...] + ‘e

+ % gy T w oo g D) (5.62)

Above and in what follows each bracket designates an admissible func-
tion. l

Locally (in some neighborhood of (Ag,0)), the zeros of
gkt A(k‘H)
ros of the following function & = -*———-"——

6f\k+1) are ze-

where the denominator

14-eeees ]
is first bracket in (5.62).
R
& —-Ofl'i‘(l’zm'i"“
* ks * Qpyp THEO w‘-l----
+ak *1+... + *1+ ...... +¢lo (5-63)

Here &, = is a CX=%-1 function, at least K —k — 1

*l.l. ......
flat at z = 0. Using property f), we have :
beor o
R * gy 2RI o
.64
+ak*]_+ ...... + S [ R +®2 (56)

where ®; = $, isCK-*2 K—k—2flatinz =0; él = o 43+ - - where
u; is invertible as a rational admissible function. Let be & = u;! &
and derive again £, :

£ 14

s T (5.65)

§2=03
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We have ég = o3 uz + ++-, where u, is invertible as admissible
rational function. We define {3 = u3! £, and so on. :

In this way, we find a sequence of functions : £, -, & such that &;
is the product of £;_; and some invertible admissible rational function.
For the last one, &, we have :

b =ar+ T+ + ‘I’k’ (5.66)
where ®; is CK~2* (K — 2k)-flat.
Differentiating a last time, we obtain :
. * o o1 e .
fo= XM TTH L G (5.67)

Then, using the fact that &, is (K —2k—1)-flat, with K ~2k—1 > 0,
and the property a), we obtain :

&7 Wl = +agqr + o(1). (5.68)

(Here o(1) means a function #(z, ), such ¥(z,A) — 0 for z — 0,
uniformly in A). The assumption ay1 (do) # 0 implies that locally
£=*w1¢; and also £ are non zero for (), z), > 0. So, the function
& has at most one zero for (z,) near (0, Xo), £éx—; has at most two
zeros, and so on : ¢ has at most k zeros, locally. Now, & bas at least
the same number of zeros as 6( 1) and ﬁna.lly the functlon 8x(z) has
at most 2k + 1 zeros near 0, for ) near A,.

Proof in the case 3.
We differentiate the map 6 only k times :

(k)(:n) - [* gkt + - ]+

tafkwt ] F 4B 4+ 9P (5.69)
We introduce next :
5("‘)
§r = 2 () PSSk AL

[*_’E—kﬂ—ax _|_] * 14
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¥ o TFIFO ok By Rl Ll

+ & (5.70) .

where @, is CK ~% (K — k)-flat at z = 0.

As in the previous case, we define a sequence of functions : £y, -+, {1
with £; equal to £;—; multiplied by an invertible admissible rational
function. The last function £, is equal to :

* O :Ek""'l'*"al w+ * ﬁk_ml-'-a! F e

ooy =* oy + Tir o + @y (5.71)
and then :
C rap T wtk o e
fk—l - *1 Feenes + @k_1 (572)
where &;_, is CK-2k+1 s (K — 2k + 1)-flat.
We define now a function & :
. 14..- 1
— 4T -1 i - - —* . — @ .
Ee=a " W x 1+ -]k *ak‘i'*ﬂk*l_i__.“ w+ r (5.73)

where the bracket is the denominator in (5.72). The function (I:-k is
CK-%* (K — 2k)-flat.
If we derive £, we obtain :

gmlme 4 1 .
fk"*ﬁk“—l_i_ul_”_ c T O (5.74)
And :
1. . *14.-- .
wszk=*ﬁk+w2 . Py, (575)

* x“I"‘\l .+....

The remaining term is o(1). So, because Bi(Ao) # 0, we have that
£x # 0 for (A, z) sufficiently near (Xo,0). It follows, as in the previous
case, that the map A, has at most 2k zeros for (A, z) near (Ao, 0).
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5.2.3 Bifurcation diagrams for generic unfoldings.

To cover more easily the two cases, we call now all the coefficients in
the §;-expansion : ;. So we write :

6/\(3:) = Bo(/\) -+ ﬂl(A)[mw + ..] +oe

+ Foma(N)[z™ w+ -+ I+ Bam (A)z™ 4+ -+ - + 4. (5.76)

Now, even coeflicients correspond to the monomials ™ and odd
ones to monomials [z™ w + ---].

Suppose that some saddle connection I' for X, is of finite codimen-
sion n: fo(Ao) = -+ = Bu_1 (Xo) = 0 and B.(Ao) # 0.

Then, the following result was proved by P. Joyal [J2] :

Theorem 20 Let n = 2m or 2m — 1. There exists a neighborhoods
[0,€]xWa of (0, Ao) and a mapping a(A) = (ao(A), -+ @n-1 (1)) defined
on Wy such that the zeros of the polynomial :

P(-T,Ot) =apg+mr+--+ ap JZ"__I +z"

in [0,€] are those of (5.76).

Remark 26 In fact, Joyal looked at Ay(2) = Dy(z) — Ra(z) in place
of 6x(x) = Pi(z) — =z, bul the two equations Ay = 0 and 65 = 0 and
equivalent.

If X, is a generic family with { parameters (dim P = £), we know
that any saddle connection I" at A has a codimension n < £ and also
that the map B(A) = (Bo(A) -+ - Br-1 (1)) is of maximal rank at Ag. In
the case that £ = n, Joyal proved :

Theorem 21 Let n =2m or2m ~1. If B(A) = (Bo(A), -+, Bn-1(A)} is
D(Bo, "+, B

Ig)(gil, — in;) (Ao} # 0), then there
ezists a neighborhoods [0,€] x Wy of (0, Ao), and a homeomorphism o)
such that the zeros of (5.76) in {0,¢] are the same as the zeros of the
polynomial P(z,a) in [0,¢].

a mapping of mazimal rank (i.¢ :
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Remark 27

1)The proof of theorem 9 given by Joyal is rather difficult to under-
stand. It would be important to find a more clear one.

2) It is easy to construct by gluing (as I explained in the codimension
1 case)} a generic unfolding of codimension n. Theorem 8 says that such
unfolding is versal for any other unfolding of codimension n saddle
connection. :

3) It is reasonable to think that theorem 9 extend to any generic
unfolding : If n < ¢, it would be a topological submersion af)) near Ao
of the parameter space onto the parameter space (e, -+ -, an_1), and the
local bifurcation diagram should be equal to a topological trivial ‘product
of the diagram with n parameters.

The proof given by Joyal for these two theorems are based on the
notion of Chebychev family.

Definition 28 Let fo,- -+, f. real functions on some interval [a,b] C
R. One says that {fo,-- -, [} is a Chebychev system if any combination

>_ @i fo, @i € R has no more than n isolated zeros on [a,b]. It is called
1=0

regular if any subsystems is also a Chebychev one.

Remark 28 The number of zeros is counted with multiplicity. One
wants fo consider also non differentiable functions (z*Ln‘z for in-
- stance) at least at the ends a,b of the interval. Joyal introduced some
general definition of multiplicity for general function.

For a function with a Dulac series expansion : E a;;x*Lnz the
€<k
mudtiplicity at 0, is defined using the well ordered sequence of the mono-

mials =*Lntz : one says that the multiplicity at zero is n if the first
non zero coefficient in the Dulac expansion is of order n.

Now, the following well-known result for differentiable systems was
ertended by Joyal for general system [J1] :

Theorem 22 Let {fo,---, fn} and {go, -, 0.} be regular systems in
la,b]. Let p = (po,--+,ptn—1) and v = (vo, -+, ¥n1). If ptn # 0 and
vy # 0, then there exists a homeomorphism u(v) such that o fo(z) +
vy foer(Z) Ve fo(z) and o go(z)+- - -+ vnot gao1(2) 1 ga(z)
have the same zeros in [a,b].
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In particular, {1,2,--+,2"} is 2 regular system in any interval [a, 8].
So, the theorem implies that the bifurcation diagram of the zeros of
n

Z #ifiy pn # 0, for any Chebychev system is homeomorphic to the one
=0
n—1

of the polynomial =" 4+ E a;z’.

Of course, one can ajpgly these results for the germs at one end of
the interval.

Any strictly increasing sequence of n monomials ' Ln’ z, with
0 < j <1, and ordered by increasing flatness, is a Chebychev system
for any n. It may be proved by a “derivation-division” argument as in
the proof of theorem 7.

To prove theorem 10, one can look at the extended unfolding :

Bppu=Fo fo+ P fit +Put for+ fu (5.77)

where fi(z,u, A) is the corresponding function factor of 8; where we put
—u

-1 . .
w(z,u) = and look f; as independent function of z,u, A, fo,* -+, Bn
u
are looked at as independent parameter, and f,(z,u,A) = Ba[-- -] + ¢
includes the last term in the expansion of A and the remaining term
V.
It is also a consequence of theorem 7 that the sequence {fo, -, fa}
is a regular Chebychev system, and so the bifurcation diagram ¥ of
g,,u is topologically transversal to the S-planes : (u, A) = Constant. _
The map 6, is equal to : .

8 = b u(n)- (5.78)

So that, the bifurcation diagram of A, is just the counter-image
¢ 1(Z), where ¢(3) = (B(\), A), u(A)).

To prove theorems 9, one has to prove that the map ¢ is (topo-
logically) transversal to ¥. This is not the case for any map . For
instance, look at : '

Sup(z) =Fo+ P zw + =,

- It is easy to prove that for u =0 :

b0,6(7) = Bo + brz(—Lnz) + =
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3

B,

RN

Figure 5.5:

>y

has a bifurcation diagram on [0, cc] with a line d of double zeros and a
sector S with 2 simple zeros (see Figure 5.5).

If we take A = (B, /1) and define the map () = (Bo, B1, ¢ = B1)
one obtains : - -

6:() = fo + "+

which has just 1 zero on [0, 00] for each A € R?.

The proof of this point, i.e. the transversality of ¢ to the bifurcation
diagram ¥ is a very obscure point in the proofs of Joyal’s theorem,
and it is really difficult to check it. I just want to give a direct and
independent proof for n = 2 which appeared in [DRS1)].

So let a generic expansion of 6y at order 2 :

6x(z) = Bo(A)+ AN aw+ Ba( Az + (N2’ + (N2 w9 (z, A) (5.79)

with A € R? — (Bo(}), B1())) a local diffeomorphism at Ag and 0 <
B2(Ao) < 1. Locally, we can suppose A = (fo, £1) in a neighborhoods of
0. .

W=

z™h 1

B

. Put & = fiw + - - - the equation §3(z) = 0 writes :

— fo = &i(=). (5.80)
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B

ok (K) i Bo A
7 ﬁ{X)
B >0 ’ B, =0 ’
Figure 5.6:
One has :
Ex(z) = Ail(1 — B)w — 1) + Bz + o(1). (5.81)

To study the bifurcation diagram we look at different cases :

(i) Case 3; 2 0. Here z7%* — 1 > 0 and because our hypothesis
B2(0) > 0 and 3,(0) = 0 we see that :

dA >0, U > 0, 3E > 0 such that

Ve €]0, E[ and ¥(fy,z) € [0, A] x [0,U] : €, > 0.

(Indeed for B; > 0 : €y — 0o when z — 0 ; for f; = 0 : &y — By
when z — 0) (see Figure 5.6).

For * s > 0, 2o > 0 is solution of £y(z) = —f.

For Bo < 0, 3z > 0 solution of &x(z) = —fF,.

The bifurcation diagram for 8; > 0 is given in figure 5.7.

For each fp > 0 fixed we have the creation of one stable limit cycle
when fy goes from positive to negative values ; {f = 0,5, > 0} is a
half line of saddle connections with non-zero divergence at the saddle
point (codimension 1 bifurcation).

(ii) Case 8, <0.
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Bur
Ocycle
l 1 stable cycle B,
Figure 5.7:
(2 w®)* = 2-281)zw? -2z w
(*w) = @-Flrw—=z

i

Hence :

H=(1+ Bz — 1) +-ﬁ2 — B+ Y[(2-28)z W — 22 W)
+ 62~ fu)z w — ] + 9.

As (z w?)* = (1 - 2B1)w? — 2w :

& = —A(1=F)e "7 +4[(2—-28)[(1 - 28;)0* — 2] — 2(1 — B Jw + 2]

[+6[(2 - Bl —-PBiw—(2-5) -1+ P

& = —Bi(1~By)z™" 1 +2’)‘(1—ﬁl)(1"251)’-"24'(1—ﬁl)[—ﬁ’f"'@—ﬁl)ﬂw

+[27 + (By — 3)8] + ¢
We can find a bounded function O(1) so that :

€= —Fi(l - e~ +w* O1).
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E'-'Hl

w X

Figure 5.8:

From this, we will prove that : 3A’ > 0, 3U’ > 0,-3E' > 0 such
that for all £ €]0, E[ and for all 8, €] — A’,0], the graph of £, on [0, U]
looks like in figure 5.8. '

We see that z is a unique strict minimum : b)) =0, &(z) > 0,
£>0on]zy, /[ and £ <0 on [0, CC,\[WlthE,\—i —oo for z — 0.
Therefore, consider :

1 - Bi(1 = By)
2 o= Lxmf.‘**o(”

B _

1 <| Lnz | for U’ < 1 and E’ sufficiently small.
1

)
Choosing some § > 0, taking —3 < By < 0, and U’ sufficiently small :

1 I B
o €2 W +0(1) > ]1 lslll +0(1).

Take M > 0 so that 0(1) > —M on [0,U’] x [—4,0], then :

g >M flﬂll > M > z <(|ﬁ1|)

rl-¢

Let uswrltemSCIﬂl |“w1thC’=-(2;!—)“a.ndp=m
For these values of U’, 8, M let us consider £ on [C' | 8 |4, U] :
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& = Bull = Br)w + B2 — By + o(1).
As By < 0, the function fyw = 2= — 1 = e A" = 1 is strictly
increasing and negative, so that for all z € [C' | 8 |#, U] :
Brw(C | 1 ) < Prw(z) 0.
And :

Puo(C | B [*) = O(f Buln(C | B1 ) 1)

= pro(z) = 0(| /1La(C | By NIn(C | B 1) 1) for z € [C| By |, U],
’ Hénce : ‘

€= (1= 80| B2 | Ln(C | By ) + B2 = b1 + o(1).

For U’ sufficiently small : | o(1) |< By, ; and for A’ sufficiently
small :

| =61+ (1 = £1)0(| B1Ln(C | B ) ) |Z Bays
implying that : &> B2y, > 0.

As a conclusion we see that for —A’ < B < 0 fixed, there is a
bifurcation value (corresponding to a generic coalescence of limit cycles)
for : £x(z) = —Bo(A). This bifurcation occurs at fp = I'(A1) : Tisa C*®
function for #; < 0 because of the implicit function theorem applied to
the Poincaré mapping of the C® vector field X, in the neighborhoods
of the semi-stable limit cycle (see Figure 5.9:).

Taking I'(0) = 0, we will now say something about the behavior of
I'{$1) in the neighborhoods of 8, =0 :

Ty 18 given by .‘;;A(:t:;\) =0

iie. : Bl = Brw(es)i B — By +0(1) = 0

or equivalently :
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r 1 Bu
2 0 cycles
. cycles
B,
1 cycle
Figure 5.9:
| By | w(zs) = | (ﬁz | ﬁ 1 +o(1)).

| h
Now :
Bo =« Bl wl(zx) — (B2 + 0(1))]

= .’B,\[ﬂlﬁﬁz - ].flﬁl +0(1)] S.‘E,\.

And, as | 81 | | Ln 2 |2] Bi | w(z) > £ for A’ and U’ sufficiently

small we see that :

zx < ¢
and hence :
T(8,) < e 1.

Meaning that T is co-flat for 8, = 0.

157

(5.82)

Remark 29 7 ) Above we just proved that T'(5,) is co-flat at 0 in a
C°®-sense (formula (5.82)). It is reasonable to think that T is C* at 0
and is co-flat in C®-sense (all derivatives tend to zero when ) — 0).
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2) Unfoldings of codimension k saddle connections appear in cusp
unfoldings of codimension k+1 (The Bogdenov-Takens bifurcation cor-
responds to k=1). In [R2] I proved that these unfoldings have a finite
cyclicity. Neat P.Joyal [J3] and P.Mardesic {Mar3] proved that generic
unfoldings of finite codimension cusp singularities are versal and gave
a complete description of their bifurcation diagrams. The saddle con-
nection unfoldings appear inside the cusp unfoldings as perturbations
of Hamiltonian vector fields. In this context an independent proof of
similar theorems as theorems 8,9 above were given by P.Mardesic in

[Mar1],{Mar3].

5.3 Unfoldings of saddle connections of in-
finite codimension.

In this paragraph, we restrict ourselves to analytic unfoldings (X, I")
where I' is some saddle connection for the parameter value Ap. As in
the smooth case, we can suppose that the saddle point is a same point
s for any A € W, some neighborhoods of Aq and that there exists an
analytic chart (z,y) where 3 = (0,0) and the axis 0z, Oy are respectively
unstable and stable local manifolds for X, A € Wy. Let ¢/, T analytic
. transversal segments to Oy, 0z : ¢’ parametrized by z €] — X', X[, 7 by
y€]—Y,Y[; let be o = [0, X]. :
. - Take X,Y small enough such that Dy : o x Wy — 7 and R;' :
T x Wy — ¢ are defined. Let P\(z) = R;l oDy 1 o xWy > o the
Poincaré return map and é)(z) = Pi(z)—z : ¢ x Wy — R the difference
map. '

Definition 20 We will say that the unfolding (X),T') is of infinite
codimension if the Dulac series ), is equal to zero.

For smooth family this condition means that &y, is C* and flat at
z = 0. For analytic family we have seen in chapter 3 that 6),(x) is quasi-
analytic and the condition 85, = 0 is equivalent to &), = 0. This means
that the nearby trajectories, on the side the return map is defined, are
periodic orbits : the vector field X, is of centre type.



5.3 UNFOLDINGS OF SADDLE CONNECTIONS IN INFINI... 159

5.3.1 Finite cyclicity property of analytic unfold-
ings :

I have studied analytic unfoldings of homoclinic connections in [R5). .
Here I just want to explain the principal steps of this study and com-
plete it by some new results (theorem 13 below). I refer the reader to
[R5] for more details.

Firstly, we need a version of the asymptotic expansion at order k,
given in formula (5.45)} for analytic unfoldings :

Proposition 14 Let analytic sections o, ¢’ as above and X, any an-
alytic unfolding with r(Ao) = 1. (We don’t suppose that §,(z) = 0).
Then, for any k € N — {0}, there exist a neighborhoods of Ao, W, C Wy
" and analytic maps B%,---, 6L, of,--- ,aﬁﬂ from W to R, such that on
ax Wy :

5x(z) = B+ oblzwt -]+ + B ¥ +ak,y o wthu(z, ) (5.89)

where 1y is CF and k-flat at z = 0. Ezpressions in brackets are finite
combinations of monomials z'w’, 0 < j < i £ k, with coefficients
analytic in A, zero at Ay ; any monomial in + .- has an order strictly
larger that the leading term’s one.

We cannot use the proof given in the smooth case because the
change of coordinates we use to reduce X, in normal form has a fi-
nite differentiability. As a consequence the coefficients 8¥ have also a
finite differentiability.

So, to replace theorem 3 we used for smooth family, we use now the
following result coming from Dulac :

Theorem 23 (Dulac normal form). For any N € N, up to an analytw
equivalence, Xy is equal to :

) N . N 8
=2 g y(LH Y a)ew) + @)Y Ol V) 5, (589)

where o, G are analytic functions.
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Figure 5.10:

Based on this Dulac normal form, I first established in [R5] the
expansion for Dx(z) with analytic coefficients like in proposition: 7, for

the principal part of X (up to the remainder term (zy)™ Ga—) follows
form theorem 9 ; next I proved that this remainder term ju;{c sum up
a k-flat perturbation.

In fact, one has (and one needs !) a stronger result : the Dulac
normal form works for holomorphic families and one can apply it to
some complex extension of X (in some neighborhoods V of T'in C?)
and for some neighborhoods Wy of Ao in CA % (if the real parameter space
is R*). Using this complex extension of XA of X we can prove that

" 65(z) has also a complex extension : ¢’ may be extended in a disk '
in C and o in a sector & at 0 € C, containing o (see Figure 5.10).

Then, there exists a map 3~(§:) & x Wo — C with a similar ex-
pansmn as (5.83) where € &, & is an holomorphic extension of w on
& x Wy and the coefficients ﬂk, &k are holomorphic on W, :

b(3) = B+ & (&4 ]+ + P (3, ). (5.85)

The remaining term ﬂ,ﬁk 1OX Wg — C is just C*-real and k-flat at
& = 0 (but of course holomorphic like all the other terms, on & — {0}).
From now on, we wani to take in account that (X,I') is an oco-
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codimerision unfolding. In the last chapter we have introduced the
Bautin Ideal I : this ideal is generated by thé coefficient germs @; of
the series expansion 8y(z) = Y ai(A)(z — z0)* at any regular point
1
z9 € o — {0}.
The ‘interest of the holomorphic extenswn comes from the fact that
it permits we to pass 1o the limit 2o =0 :

Lemma 23 Let an expansion of 6y(z} at order k be like in proposition

7. Then for each coefficient germ ﬂ,", @ belongs to T.

Proof First, deriving at order £+ 1 the expansion (5.85) we eliminate
all the monomials 2*, ¢ < k : '

D (3) = & [eR M o Ak 85 G4 G, (5.86)

One divides this expression by the first bracket z =%~ [+1 4 ...] :

+-=af o). (5.87)

The term 0(1) — 0 for & — 0 ( uniformly in 3).

For each 3 € & — {0}, the germ } — 85 (&) at Ag belongs to the ideal
T obtained by the complexification of the Bautin Ideal Z. But, because
this complex ideal Z is elosed, the germ of (6 (k1) (:z:) Ao) belongs also
to 7 and also the left member of (5.87) and its limit for & — Q. This
means that (&%, Ao) € .

We can prove in the same way that any germ (6%, X0) € I.

For instance, if 8y is the left member of (5. 87), one has that (5, —
&%, Ao) € 7 and also & (A) because :

[*1+--]
[*z+--1]
Next, we subtract the “a”-part of the expansion (5.86) :

(81 — 61 — &F) = && + o(2). (5.88)

k ) k
(@) -3 af & o ; ()& +o(zF).  (5.89)

=1
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The first part of the proof implies that the left number of (5.89) has .
a germ at Ao which belongs to I for any & # 0. Using that 7 is closed
we prove as above that (8F, o) € 7 for each j < k. u

The last lemma means that the principal part of (5.85) belongs to
7 for any & # 0. Because it is the same for 6~ itself, we have also the
game property for the remainder term 1,!;1;(3: /\) This permits to divides
the expa.nsion (5.85) in the ideal 7 :

If w1,+-+,¢ is a system of generators for T and @y,- -+, their
complex extension which form a system for Z one can leIde 5,\ (at

order k) :

@)=Y 6 bt (5.90)

=1

with :

h = Igzo + O‘:l [@o 4 -]+ + &ﬁk+1 O+ o+ Jf‘ (%, :\) (5.91)

where the ,J, &f} are holomorphic functions of A and ¢F (&,X) is C¥,
k-flat at z = 0.
One establishes the formula (5.90) as for the regular case in chapter

4 using the theorem (D) (see [R5]), and finally restricting it to & real :

Theorem 24 Let ¢y, ,p¢ analytic functions on Wy whose germs
@1, - P generate the Bautin Ideel . Let k € N, k > 1. There ex-
ists a neighborhood Wy, of Ao (in W) and functions hf(z,X),1 <4 < ¥,
with (w, z)-expansion at order k :

hi(2,A) = Bio T al(Vlzw+ -+ el oM wt gz, A) (5.92)
as in proposition 7. These functions are factors of the division of §(z, )

in @1, yp¢. This means that on [0,z0) X Wi for some zo > 0, one
has : :

bz, )) = Z Wi \kE(z, N). (5.93)
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As in chapter 4, we now restrict ourselves to some ménimal set of
generators for T. Recall that factors h¥(z, Ag) are independent of the
choice of k and also of the base point 2, where we take the expansion.
So, we have functions h(z), defined on o by : hi(z) = h¥(z, Xo) where
h¥(z, A) are factors for any expansion defined at z. Taking the value
at Ao for the expansions of h¥(z, Ag) for all k, we see that h;(z) has at
z = 0 a Dulac series :

Dmh;(m) = i (ﬂ,’j z! + o it an) (5.94)

j=0

D% hy(x) is the series of h;(z) is the following sense :

| Ri(z) — (Z Bii ' + ayjyq 27 L’n:c) I= o(zV) (5.95)

=0

for YN € N.

The functions &; are analytic on ¢ — {0} and are R-independent.
This implies that each of them is non identically zero.

I conjecture that they are quasi-analytic. If this was the case :
hi(z) # 0 = D> hi(z) £ 0. But I don’t know if this is true. What
was proved in [R5] was a weaker result which was sufficient to obtain
the finite cyclicity. Here, I want to make precise this result by giving
an explicit bound. To express it we consider quasi-regular functions :
they are functions f, analytic on & — {0} which has at 0 a more general
Dulac series than (5.94) :

D*f= 5" ayz® Ln'az. (5.96)

05t<s
The monomials z°Ln‘z are totally ordered : 1 < zlnz < z <
z?Inlz < 22Lnx < % < ---.. We call the order of a monomial z°Ln‘zx

s(s+1)

order its in this total order : order (z*Ln'z) = —2£; for instance

(s + 1)(3+4)'

order (1) = 0,.--, order (z**'Lnz) =

We say that the order at 0 of a quasi regular function is k if the first
non-zero coefficient in D* f is of order k. We write : ordero(f} = k. Of
course, one says that ordery(f) = oo if D™ f = 0 (This is equivalent to
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say that f is co-flat at 0). We write DV f for the Dulac series, truncated
at order N € V. .

Using this order for quasi-regular functions, it is possible to propose
a definition of an index 35(0) which extends the index ss(ue) defined
for regular points in chapter 4.

Let any minimal set of generators and A(z),:- -, he(z) the corre-
sponding factors at A = Ap. Let s the dimension of the vector space
generated by the Dulac series fz.— :0<s8< EL Notice that the series Fa,,-
are R-dependent <= s < £ <= one of the A; is zero.

There exists some N such that : dim {DV f;}; = dim{D>=f;}..

Definition 30
35(0) = Inf {N | dim {D" f;}; = s}.

The dimension s and the index s5(0) is independent of the choice of
the minimal set of generators.

If s = 0, this means that any factor is flat. In this case we assume
"35(0) = 0, but we will prove that this cannot occur.

As we have proved for a regular point in lemma 4.9, it is possible to
choose a minimal set of generators for I such that the corresponding
non-flat factors h; are in strictly increasing order :

ordero(hy) < --- < orderg(h,) < oo

and order (k) =oc0if j > s+ 1.

We will say that this minimal set is edapted to 0. For such a minimal
set, $5(0) = ordero(h,). As a consequence, s5(0) > s — 1.

The main result we want to prove in this section, which clarifies the
finiteness result of [R5, is :

Theorem 25 Let X, some analytic unfolding of a cuspidal connection
I'. For a section o to T, 0 ~ [0, X] with {0} =T'nNo.
Let be s, and s5(0) as above. Then :

(i) Cycl(X,),T < s5(0).
(it) If T is regular, Cycl(X,,T') 2 s — 1.
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As in [R5] we introduced a desingularization map : ® : Wy — W,
given by e Hironaka’s theory [H]. This map is a proper analytic map
with the property that at each Ao € D = ®~1()), the lifted functions
@:(X) = ; o ®(}) have a monomial form :

~— -~ A i i
F(%) = wi() T - 2 (5.97)
=1 .
for local coordinates (z1,---,z,) at Xo; : ﬁ.(xo) # 0.

The germs of the &; at A does not form in general a minimal set
of generators of the lifted ideal T (I o @)Aﬂ at Xo, but it is pos-
sible to find a subsequence #; < --- < iy, such that &;,,---,%;,, have
this property ; moreover, if Hy,--- ,H 1, are the corresponding factors,
orderg H; = orderg by, j=1,---,L.

It follows from this that the corresponding index 3%" at 0 € o for
the lifted unfolding X5 at Xo js less than s5(0). (We :vrite 3—3‘(3:) =
64,())(:1:); this map is defined for A in a neighborhood of o).

By the definition of cyclicity, there exist a neighborhood W()\o) of
Xo € D and a value x5, such that :

Cycl (X, aGy T3 Xo) = N(Ro) where
N(Xo) is the maximum of the number of zeros for the equation {57\(1:) =
0} in [0, 25, ] for X € W(Xo).
Extracting a finite subcovering from the covering { W(Ag)}~ of the

compact set D), one obtains that there exists some Ao such that :

Cycl (Xx, T'; do) = N(Ro) = Cyel(X, s, T's o) (5.98)

$(%)
(Choose Xo for which :

Cycl (X, [ 5 h0) = gug Cyel (Xgiy T3 M)
1€

Now, as we have noticed above 3 (0) < s5(0). To prove the part (i)
of theorem 13 it is sufficient to prove it at any Ao € D :
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Proof of part (i) of theorem 13.

Up to now, in this part of the proof, we forget the subscript. We

just denote the family X + 3(%) by X, Ao by Ao and so on.

We suppose chosen a minimal system of generators ¢y, -+, (£ in
place of L) of the special form (5.97). A consequence of thls special
form, proved in [R5], is the following :

Proposition 15 If a minimal set of generators q,- - -, ¢ has the form
(5.97) and is adapted at 0, then, there exists a r, 0 < r <1 such that

if : )
Vi={AeWo| o) 127 0;(N) ], Vi=1,---,8}.
Then :

U Vi =W, (5.99)

Remark 30 This proposition means that the sets V", which are related
to the non-trivial series h; (1 £ 8) are sufficient to cover a neighborhoods

Of )\0

Sketch of proof for proposition 8. (see details in [R5]).
Write i(A) = u;(A) ¥;(A) where u(Ag) # 0 and :

A i P
YA =] - 2* (A= (21,--+, ) and do = (0,---,0)).
1=1 .
Let W; = {hA € Wy | | (V) |=] ¥;(}) | for V5 # i}. Let also
I={i| X €int W;}.
It is easy to prove that :
(a) UierW; is a neighborhoods of Ap and also that int W; = W if

Wi = {) € Wo | | @(2) |>] $:(}) | for Vj # i}. Next, if i € I, it is
possible to find an analytic arc A(e) = (e™,---,e™) for some ny,---,np
such that :

order (Y; o /\)!;:D < order {1; 0 X)j.=0 for all j #1i.
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Taking the division of 6(z, A) given in theorem 12, one has :

, .
(8) 8(z,2) = 3_ @i(Vhi (2, 1),

=1

Substituting A(c) we obtain that :

(¢) 8(z, Me)) = ai hi(x)e™ + 0(e™)

for some «; # 0.

At this point we use a generalization of II’yashenko’s theorem (theo-
rem 3.4) saying that for any analytic unfolding, every partial derivative
of 6(z,A) in the parameter A at A = Xy is also quasi-analytic (see a
proof in [MMR] an d also in [R] for the 1-parameter case).

The proof is quite similar to the one given in chapter 3. We can
apply it to the 1-parameter family X () with difference map A(z,¢) =

ni

8(z, A(e)). We find that h(z) = i (968"-'

As a consequence, we have that T ‘C {1,---,8} (for each index in I,

the corresponding function %; is quasi-analytic and so D*h; # 0). It
L

follows from (a) that [} W; is a neighborhood of )o and that there

i=1

A(z,€).=0 is quasi-analytic.

exists a value r, 0 < r < 1 such that | ¥ is also a neighborhood of _

o =
Let be f1,-++, fn,+*+ the sequence of monomial z* «’, 0 < j < 1,
indexed by order : f, =1, f; = zw, and so on.

Let be a minimal set of generators, adapted to 0, and ky,---, h, the
corresponding functions on o. Let be n; = order h;(0) : ny <ny.-- <
n, < oo and n; = oo for j 2 s+ 1. .

We will use the decomposition of the difference map §,(z) in the

ideal the generators ¢y, -, at some high order of differentiability
E(k >> 35(0), the index at 0) :

6,\(.’17) = Ej: (p,'(/\)h,'(.'r, /\) (5100)

(we don’t write the subscript k).
We can write, with N = 35(0), fori=1,-..,¢:
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N
hl'('rs ’\) = Z @5 (A)jy (*’cs A)+---+ (37: )‘) (5'101)

i=1
where +--- is as usual a finite combination of monomials z*w’ and
¥i(z,A) a C¥, k-flat function at z = 0.
We know that a;;(A) =0if j < n; forVi=1,..- £
We first want to rearrange the combination (100) in a new combi-
nation :

Sx(z) = Z P, (A) Hi(zx,)) (5.102)

i=1
with the following properties : ‘
(I)H("B A) f,(.?: ’\)+ +J;t'($a)‘) i=1,---,N and {[;l'(m:)‘)!a'
C* and k-flat function at z = 0.
() IE W7 = A € Wa | | €o(X) |27 | &;(3) |, Vi = 1,---,N).
Then | ] W, = W, in some new neighborhood [0, zo] x W.

i=1
We proceed in two steps :

(i} For any j we change ¢; in a combination :

@i (M) + D Bie(Npn, (A) where Be(Ao) = 0,

ne<j
such that for the new minimal system one has (101) with the extra
condition : a;, (A)=0forall1 <p<sandj>n,.
Clearly, the new minimal system ¢y, -+, is adapted and taking
perhaps new Wy and r, we have preserved the condition (99).

(ii) We define now the new set of generators ®,,---,®x5 (no longer
a minimal one), by :

¢,

E @i Oy n1—1 = Z Pi Ciny—1

i=1 i=1

¢, = v
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4

o, = Z wioij for i +1 <7< n, (5.103)
=1
®,., = ¢y and soon.

Using that all the coefficients ¢; which enter in the above formula
are zero at Ao, we see that, restricting Wy enough, and choosing 0 <
' <1 small enough, one has, for W' defined as above :

W,f: DV fori=1,---,s
which is the property (ii}, writing r in place of ',
The property (1) for the factors H; follows form the construction : we
can take Hy = fy,++, Huyoq = fo, Hyy = by, Hpypr = Z oy 415 (A)S;

j>2
and so on.

The remaining of the proof mimics the proof of theorem 4.2 part (i)
for regular periodic orbits : we will prove that for A € W, .t < s one
has less than n; roots for {6x(z) = 0} (restricting X, z).

For this, we construct by an algorithm of “derivation-division” (di-
vision by non-zero functions on ]0,z[) a sequence of functions & =
81,+ -, b, such that the last one is locally non-zero, and the bound for
the number of roots will follow from a recurrent application of Rolle’s
theorem. For our present case, derivation will produce non-bounded
functions like z7%. It is the reason we have arrange the expansion of
0y as in (102) with factor H;(z, A) equivalent to fi(z, ) for all A (and
not only for A = Ag as in the smooth case) because we do not want to
“leave behind us” some non-bounded function (with small coefficient).
A proof similar to the one we need was obtained by M. El Morsalani-
for general expansions : Ta;; (A)z' w? + 1 of finite codimension [E2].

Here, I want to give a more direct proof which treats each term in
the sum (103) in the same way. For this, one needs a more general
algebra of admissible functions than the one introduced in section 2.2.
It will be the algebra of finite combinations of monomials :

gt W™ with £, n, m€ Z (m € Z and not in N) oy = al(z\).r
We order these monomials in a partial order as in section 2.2. We

* :I:H-nai P8 g
introduce rational admissible functions f = as in
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section 22, with the same convention for * (a continuous function of 2,
which is non-zero at Ap).

To make computations more easy we extend a little the convention :
+---. We mean now a finite combination of monomials of order strictly
greater than the dominant monomial z+**1 w™  plus some 4 : CF and
k flat at = = 0 (for the k£ assumed in the beginning).

For these new functions, the properties @) — f) written in section
2.2. remain valid. Moreover, we notice that f) remains valid for w™,
m # 0 as dominant term.

We now explain the algorithm. At each step we will produce a
sequence of rational admissible functions. We just write their dominant
terms.

We begin with the sequence of N dominant terms for the H; :

1 < 2w~z < 22w? < 22w < 2% < 2%°% < 2%0w? < 28w---

deriving once, we have the sequence of new dominations :

0, w<1<2w?< zw<z <%’ <% <sw-. -
]

next, dividing by the lowest one obtains :

l<wlt<ow~<rs<aw ' <z <z2w <z .-

which contains one less term.
We now explain the induction step :

- one supposes a sequence of rational admissible functions with
strictly increasing sequence of dominant terms :

i whwithj>1l, n,meZorj=0andn=10

(for instance w™ for m € Z). We have to look at two different possibil-
ities for the sequence of dominant terms :

(i) First possibility :

—2,

1 <w™l <eee Rl <o g gitnen e (5.104)
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with: 1 < ¢ <4, (v > 1) and j > 1, the same =n for all terms ; the
first function 1s 1.

Then a derivation followed by the division by the first remaining
term gives :

1< = w“(‘v_t!) e mj+(h+1)°" wm. (5.105)

- {ii) Second possibility :
' 1 < glotner ymo ... g e ,m (5.106)

Now we have no “pure” terminw, 1 < jo < j,n, m € Z , the same n
for each term and the first function is 1.
The operation of derivation-division gives :

1 < een ¢ gi-iotnen  ym—mo (5 107)

In the two cases, one obtains a similar sequence as the initial one,
with one less term.

After j steps, the first j** functions become zero and the (§ + 1)*
one is transformed into 1.

We apply the operation of derivation- dwzszon to the sequence Hl, -+, Hy

and by linear combination to dy(z) = E ®; H;. After n, steps for
i=1
1 < p < s we obtain a final function :

AX(2) = Buy HE, + ®upy HE + -+ Oy HY - (5.108)

pt1

where H =1 and the dominant term of each H; ¥ for j > ny is of order
strictly Iarger than O (order of 1). This means that Hf(z,A) — 0 for
(=,A) = (0, do).

Taking the size of Wy and z¢ small enough, one can suppose that
1 r
| Hf(z,)) |< N Now take A € Wy :

| &%) 121 @, (M) | = 30 12N || H] (2, A) [2] @a, (A} | (1—7)

J>ﬂp+1
(5.109)
for (z,A) € [0, z0] x Wh.
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Let be £ = {®, = :-- = &5 = 0}, the set of zeroes of the Bautin
Ideal in Wy. We have :

2., () =0, A€W, > AeSOWL.

This means that for A € W) — I, the function Af(z) has no zero
on |0, ze[. But this function dlffers from d» by n, derivations and so,
8x() has no more than n, isolated zeros on 0, zof for A € W .

Applying this argument on each set We,p=1---,swe obtain the
first part of theorem 13.

Proof of part (ii) of theorem 13.

The proof is very similar to the one given for the smooth case,
in theorem 4.2 : if ¢4, -+, are independent functions of A, we can
choose local coordinates Xy,---, Ay, -+, Ay in the parameter space, with
pi=Ah,i=1,---,£and Ao = (0,---,0). Supposing that ¢y, -, ¢, was
adapted at 0, one has :

Si(z) = i Ai hi(z, A)

with order h;{0) =n;, n1 <np <---<ny<oo,mj=o0il j > s+ 1.
Restnct ourselves to the subfamily A,_H =-.- =X =0; we go

on to write A for (My---3 ) 2 da(z) = E Xi hi(z,)) with the orders

as above. As in the regular case, the ke?lpoint is to observe that the
sequence hy(z,0),---, h,(z,0) is a regular Chebychev family of germs
at 0. This point was proved for these functions with dominant term
z'(Lnx)?, 1 > j > 0 by P. Joyal [J2]. The end of the proof is exactly
the same as in the smooth case, and we conclude that in this case,

Cycl(zy,I) =2 s - 1.

5.3.2 An example in Quadratic vector fields

We finish this paragraph, giving an application of theorem 13 to quadratic
vector fields. We return to the example introduced in 4.3.5.3. There
we looked to the 6-parameter family of Kaypten-Dulac (4.39) for the
value Ao(Ag = —1, Ay =--- =X = 0).
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Figure 5.11:

For this parameter value, the vector field is hamiltonian with Hamil-

. 1 1
ton function H(z,y) = 2 v+ 3 z 4+ 3 z3, We have computed the
cyclicity of the smooth cycles of X,,. Now, we want to look at the sad-

dle connection for X, : T C {H = %} (see Figure 5.11).

We have seen that the Bautin Ideal at )g is generated by Ay, As,
Az A4, so that :

6:(2) = w1(Wha(h, N) + ea(NVha(k, 1) + pa(Wha(h, A

with P = —2A1, P2 = —A5, Py = —% Ag/\4 with :

hl(h, /\0) = Io(h) , hz(h, Ao) = Il(h) and ha(h,)\o) = hI(] - 3I1.

Let v =
(TNe = {u = 0}). It is easy to prove directly that any abelian integral

— h a local parametrization of a transversal ¢ at T

S| =

I{u) = | w for any algebraic 1-form w has a Dulac series at u =0 :
Yu

I(u) = yo + mulnu + y2u + o(u).
So that :
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hy = Ip(u) = ap + arulnu + axu + 0(u)
hy = Ii(u) = bo+ biuLnu + byu + 0(u)

1 1 1
h3 = ("é'do - 3bo) 4 (-éa1 - 361)uLnu + (Eaz — 362 - ag)u + 0('&)

It follows from these expansions that ks, hs, ha are independent at |
order 2 (up to the “uLnu”-order) if and only if the 3 x 3 determinant :

o a - a2
bo by b,
=g — 3b0 %(11 - 3b1 %az - 3bz [211]

#0.

This is equivalent to ag # 0 and :

ﬂ-o 01

H|#0

. The first condition is trivna.]ly fulﬁlled : dag is equal to the area of
the disk bounded by T. To verify the second condition, we recall that

T
the ratio By(h) = I—l (k) is equal to :
0

3 V3 V6
By(h) = 7 V2B(= (h— )) -
where B(h) is solution of a Ricatti equa,tlon :
dB 5
—_— 7y — - z2_ ) .
9( h 7h 1B* —3hB + 3 (5.110)

6’ 8 3f
equivalent to the one of B(L‘/_ ~u) = B(u).

We have : By(h) = E + %

So that, to prove that a1 by — @0 b, 7 0 is equivalent to verify that :

~For h = and By(u) has a Dulac series

uLnu + o(uLnu).

B(u) = 70 + muLnu + o(ulnu), with n # 0. (5.111)
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To compute 1, we write the Ricatti equation in B, deduced from
(110) :

4 1 — 2 — 5
Su{—=—u)B =TB" +3(—= —u)B— - 5.112
G- WF =B +32-wB-2 )
and introducing expansion (111) in (110) allows to compute the coeffi-
cients +; by an induction on ¢ and to verify that - # 0.
Now, the independence of hy, hj, hy at order 2 is equivalent to
35(0) = 2. We deduce from this, that in the Kaypten-Dulac family :

Cyc(X,,T) < 2.

Now, as in ‘chapter 4, we can used Horozov’s result for “generic
hamiltonian” : Horozov proved the cyclicity of the saddle connection
for such a generic hamiltonian is 2 . The semi-continuity of cyclicity
implies that Cycl(X),T') > 2 and so, finally :

Theorem 26 The cyclicity of the saddle connection for z = y, §y =
z + 2? in the quadratic Kaypten-Dulae family is equal to 2.

5.4 Unfoldings of elementary graphics.

I want to consider now the general elementary graphics, where one has
more than one vertice and also the possibility to have semi-hyperbolic
points among them.

5.4.1 Hyperbolic graphic with 2 vertices.

Suppose that X, is an unfolding in a neighborhood of a graphic I'
with two hyperbolic saddles p,, p, as vertices for A = Ay = 0. Let be
r1(A), ra(X) the hyperbolicity ratios of p;, p2, which are supposed to be
hyperbolic saddle for each A € W), some neighborhood of 0 € P, the
parameter space. Let r; = r(0), 7o = rp(0). We have a first result,
proved by Cherkas [C]. I follow here a proof given in [DRR2].
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Figure 5.12:

Theorem 27 Suppose fulfilled the following generic conditions
™.re 7’—' ].,
r #1, 7o # 1. Then Cycd (X, ) < 2.

Proof We can suppose that ry.r; < 1. (This means that the Poincaré

map is expanding). We can write the Poincaré map as a composition of
four transitions : Pz, A1) = G2 0 F; 0 Gy 0 Fi(z1, A) (see Figure 5.12:).

Here z; is a coordinate on the transversal segment ¢;. The tran-
sitions GGy, G2 are diflerentiable and the transitions F3, F, have the
Mourtada’s form :

. Ble) = O+ 8(21,0) - (5.113)
YRy zs) = 2P+ By(z, N) (5.114)

We have two different cases to consider :

' ‘ F
1) ry <1, 73 < 1. In this case ok ~ :1:’1"‘()‘)_1 and or ~ :z:?m_l.
oz, dz,

P
So, the derivative i (%1,A) — oo when (z,1) — (0,0) and one has

3:1;1
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at most one limit cycle near I', which is hyperbolic and expanding :
Cycl (X»,T) < L.

2) Up to the ordering of p;, p2 : 7 > 1 and r; < 1. In this case,
instead of studying the solutions of P(zy, ) = z; we rather study the
‘zeros of :

H(ml,)t) = Gl o Fl(.’tl,A) - F{l o G;l(:ﬂ, A) =1 (5.115)
We can write :

Gi(n) = 11 + Bi(X), G (z1) = 71 + F2())
(5.116)

" Fy(z1) = 27V (A1 (A +81(21, A) and Fy Y (zg) = oM (A,(0)+82(z1, V).

Here we put 82(/\) =5y We have included the non-linear part of

. ) 2(A)
Gy, G3lin Fy, Fy, using the fact that the smooth diffeomorphisms are
in D (see theorem 4) ; &1, ®; € I and A,(0), A2(0) > 0. We obtain :

H(z,)) = 2" (A + 81(z,N) + B — X7 (Az + B5(X, N)).  (5.117)

Here £ = z1, X = z1 + B2 and Si(A), B2()) are the shift functions
on the transversal segment 7, and 7, (see Figure 5.12).
A first derivation of H gives :

H’(.’L‘l) = r;:c"‘_l (A + @1($,A)) — 89 X""‘_] (A2 + q)g(X, A)) (5118)

 with 4y, v € I.

Hence, we can observe that H' # 0 when X < z and z sufficiently
small, i.e. there is at most one limit cycle for that position of the
separatrices.

Zeros of H'(z) are the same as zeros of :

K(z) = z(B + &i(x, A)) - (—Ef)_l‘_‘ X3T (By+6(X,N)  (5.119)
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with 61, 62 € I and B1(0), Bz(O) > 0.
We show that K'(z) does not vanish in a neighborhood of (z,y) =
(0,0) yielding a maximum of two zeros of H(z). Indeed :

;K'(x) = [31 +0(1)]~

(2)™ 222 X% Br b ). (5120)

1 -

The first term stays larger than a constant M > 0 while the second
one goes to zero as (z,A) — (0,0). "

Generic two parameter families are defined by the condition : A €
— (B1(X), B2(})) has rank 2 at 0 € RZ.

Such families are structurally stable and versal. One can find di-
agrams of bifurcation in [M3], [DRR2] for instance. The cyclicity of
these versal families is 1 in the case (r; — 1)(ro — 1) > 0 and 2 in the
case (ry — 1)(rz — 1) < 0.

A general study of the unfoldings for these 2- hyperbohc graphics
was begun by Mourtada in [M3], [M4].

He classified the possibilities in the following cases :

(C1) @ mra#l ¢
(C) : mro=1landr ¢Q (5.121)
(C3) : mre=landr, €Q

For the case (C;) new problems arise when r; or r, = 1. One has
to use the expansion in z,w given in proposition 5. The result, rather
unexpected, is that the cyclicity is < 2. For 3-parameter generic families
(if 71(0) = 1 for instance, we suppose r}(0) # 0), a bifurcation diagram
is given in [M3] and [DRR2].

In [M3] Mourtada looked at the case (C;) under the assumption the
Poincaré map was not flat to identity. He proved that (Xo,T’) has an
absolute finite cyclicity, i.e. with a bound depending only on (Xo,I")
and not on the unfolding (X}, T'). Moreover, he computed this cyclicity
in term of the resonant quantities at the saddle and of the Dulac series of
the return map along I'. The more interesting fact is that this absolute
cyclicity does not depend just on the return map. In [M4] Mourtada
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considered the case (C;) for an analytic unfolding (X,,T) such that
Xo has an identity return map. Using a division in the Bautin ideal
(like in paragraph 3 for the homoclinic connection), he proved that
(X,T) has a finite cyclicity, of course not absolute but depending on
the given unfolding (X,T). As in paragraph 3 above he used a (z,w)
expansion of some shift function 6;(z), and divided it in the Bautin
—a(A

Ideal. Here the “compensator” w(z, X) is equal to w(z,A) = 2 -1
where a(A) = 1 — ri(A)re(A).

The last case (C3) was studied in [EM]. One of the difficulties for
this case is that one has to work with two independent “compensators”
wi(z, ) and wq(z, A} associated to each vertice pi, p;. In [E.M], the
authors used an idea, already introduced in El Morsalani’s thesis [E1] :
one eliminates one of the compensators by the “Khovanski-Moussu”
procedure, I explain below. They obtained partial results for this case.
For instance, if the shift function 6(x,0) is equivalent to z"Log™z for
some n, m € N (they say that §(x,0) has a logarithmic order), then
the cyelicity of any unfolding (X,T’) is bounded by —n(n + 5).

So finally the proof that any analytic unfolding of hyperbolic 2-
graphics is almost complete. It remains to look at the case r(0) =
r2(A)~! € @ and é(z,0) ~ z" or equal to identity.

Stmilar results were obtained by A.Jebrane and H.Zoladek [JZ], and
A.Jebrane and A.Mourtada [JM] for the “figure height”-graphic.

5.4.2 Generic unfoldings of hyperbolic k-graphics.

An hyperbolic k-graphic I’ will be an hyperbolic graphic with k vertices:
P1," -+, Px. Let be X, an unfolding of such a graphic defined for X (see
Figure 5.13). We label the vertices in circular order (pr41 = p1). Taking
o; a transversal segment between the vertices p;, piy1, we have a well
defined shift function 8;(A) on each o;, difference between the first
intersection of the unstable separatrix of p; and the first intersection of
the stable separatrix p;y;.

We look to generic k-parameter families. A first generic conditions
is : '



180 CHAPTER 5. BIFURCATIONS OF ELEMENTARY...

Figure 5.13:
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(H1) : A = (B1(A),- -+, Bi(})) has rank & at 0 € R¥. (Observe that
B(0) = --- = Bi(0) = 0).

Next we suppose that the hyperbolic saddle points py,---,pr re-
mains for VA € Wy (some neighborhoods of 0 € B¥). Let be ri(A),--+,r(})
the hyperbolic ratios. '

Another type of generic conditions are put on (X, ') itself through
the hyperbolic ratio r; = r;(0). These conditions say that I and any sub-
graphics which may be created by unfolding have a “non-degenerate”
return map :

(H2) : For each subset J C {1,---,k}: [ r; # L.
jed
The conditions (H1), (H2) are the generic conditions introduced
above for the case & = 2. Mourtada in [M1], [M2] proved a general

result of finite cyclicity for generic unfoldings of hyperbolic k-graphics :

Theorem 28 Let (Xo,I") a generic smooth hyperbolic k-graphic. The
generic condilions included the conditions (H2) among other explicit
rational conditions on the ratios v;. Let (X)) a generic unfolding of
(Xo,T'), i.e. satisfying (H1). Then Cycl(X,,T) is finite.

Moreover there exists a funclion K(k): N — N such that

Cycl(Xy,T) < K(k)

(the bound is uniform, independent on the unfolding X,). K(2) = 2,
K(3) = 3, K(4) = 5 and K(k) is given in a recursively way by «a
formula given in [M2].

Remark 31 The cyclicity of (X\,T') is absolule in the sense that it
depends only on (Xo,T') (in fact just on the number of vertices !). The
generic conditions in theorem 16 are rational inequalities in (ry,- -+, ¢).
They define an open dense semi-algebraic subset U in R* (space for
(r1,+-+,7)) and for each connected component of U one has a given
cyclicity. Mourtade made it explicit in his thesis for k = 3,4. In the
case k = 2, we have two connected components Uy = {rira # 1, (r1 — 1)
(re—1) > 0} with eyelicity 1 and Uy = {riro # 1, (r1—1) (r2—1) < 0}
with cyclicity 2. . '

A striking fact is that the cyclicity may be strictly bigger than the
number of parameters, in contradiction with a previous conjecture of
Sotomayor : for instance it may be equal lo 5 for k = 4.
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Figure 5.14:

It is not possible to give here even a partial proof of this result (this
proof in [M1], [M2] cover more than 100 pages !). [ just want to give a
rough idea of some important steps. '

We introduce 2k transversal segments oy, 7i, 1 = 1, -+, k (see Figure
5.14:) and want to look at the return map on o;.

To have a heuristic idea about how locks like the return map, sup-
pose each transition near a saddle is : z; — z}' (as if X, was linear
near p;) and that the regular map near 7; and ;44 is a translation by
Bi. (Of course one can suppose, under the assumed generic conditions,

that A = (B, -, Bc)).

Then, the return map P is equal o :

P(a,A) = (- (25 + B + B) )" + B (5.122)

In a first part of his proof, in [M1], Mourtada proved that this nor-
mal form (5.122) may be chosen, up to some non essential perturbation.
To give this result more precisely, one has to generalize the property
I* introduced in paragraph 2. Suppose that 7()) is some continuous
function with n(0) = 0. One says that a function f(x,}) defined in a
neighborhoods of (x, A) = (0,0) in the set {z > n()\)} is of “class I¥ for
(z —n(X))” if it is C*, and verily the properties 1), ii) in the definition of
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. i
the class I*, with z replaced by  —7(X) and the limit (x —7) ‘:;—J - 0
2
supposed for (z,A) — (0,0) (and not uniformly in A !) on its domain
of definition. : :
We can define two natural functions p{A), n(A) in the following way :

1) p(X) = Inf (z € o) P(z,A) : 01 — 0o is defined }.

Of course this means that the trajectory of p(}) € oy tends towards
some p; and p(A) is the largest value of z with this property ; P(z, A) :
[2(A), €[ for some fixed € and p(A) is a continuous function with p(0) = 0.

2) We can define a function (A} in a similar way as above for
the trajectories of — X, starting from 7. If Gi(z, A) is the transition
map from 71 to o, one defines 5(A) = G(7j(A),A). It is a continuous
function with 7(0) == 0. Moreover p(}) > 0, p(A) > 7(A) and we may
have 5(A) < 0.

Let Fy,---, Fi the transition maps near the saddles, F; : o; — 7
and Gy, -, Gy the regular transitions, G; : 7; — oi41. For technical
reasons, Mourtada prefer to replace the return P(z, A) by the shift :

Fro-- 0GoFo0Go0F — Gt = Ay, A). (5.123)
The roots of A(z;,A) on the domain U = [ 1p(A),e[x{A} cor-
AEWo

respond to limit cycles sufficiently near I'.
It is now possible to give the first result of Mourtada :

Theorem 29 (Reduction to the normal form [M1]).
Let be p()), 7(2) and the domain U introduced above.
Then : '

A@hn=(n@?+hp+“¢hg”+mquy (5.124)
Here by, -+, by are continuous funclions of A (b:;(A) = 0 &= Gi(A) =

0) ; w(z1,A) = @1 (e A)+ f(z1, X)) where a(A) is positive and continuous
on Wy and f(z,\), defined on V = [ In(A),e[x{A}, is of class I}

A€Wy
for (z — (X))
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Proof A rough idea for the proof of theorem 17 is as follows : taking
any coordinate y; on 7y, the Mourtada’s form for F; is Fy(z,A) =
™t (A(A) + @1(x, A)), with A;(0) > 0. Now, it is possible to change
the coordinate y; by a change 71 = yi(1 + ¥1(z, A)), with ¥ of class
I* such that F} writes : 2, — #; = 2. And so on, one can change
the coordinate on each transversal segment to reduce each regular map

to a translation and each saddle transition to z; — zI*. Of course

the change of coordinate may have some singularity at other points

than 0 : for this reason, one has to work with the larger class I¥ for
some functions z — u({}). Also, the change of coordinates on transversal
segments explains why the shift functions §;(A) are replaced by the
new functions b;(A). At the end of the construction we have reduced
the transition map o; — 7, to its “normal form” and transition G} ' to
Q- bk. )

To obtain the computation of the number of roots of {A(z1, A) = 0}
a rough idea is that in the computations, the term ¢ plays no role in
comparison with the principal normal part. So that, one is reduced to
study the roots of this principal part. This was done in [M2], which is
devoted to the “finiteness algorithm” for the roots of {A = 0}. I just
indicate the first steps of this algorithm, in the case k = 4.

We define recurrently :

hi(e ) = lhya (e, NI +5;
and Ay(z) = Az, A) = hy —z(1 + ). (5.125)
1) First step : We eliminate b, by a derivation (in z) : ’
M) = AP AT AT DY — (1 4 fio(z, ) (5.126)
* is some constant and fi o of [ "\‘ .

2) Second step : (Linecarization in k3 and elimination:

Al(z) = 0is equivelent to :
Arafz) = «*(1+ i} R G —hs =0 (5.127)
r;—1

with z; = ] ]
]
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One can derive :

A'l,/\(a:) = #(14 fo,0) 27V ATV R —pyrgrg AP AT AT (5.128)

with :
Y =rirozg A7 Dy + rizehohy + 20(1 4 f21)hohy.

3) Third step. (Simplify A} , and derive).

One divides Aj ) by B33 AT g7, Then A}y has the same roots
as :

Agp(z) = #(1 + fo0) AP hP RS E — vyrars with y; = 2; — ;. (5.129)
The derivate of A, 5 has the same roots as :

Aga(z) = Q¥ (2, A) = [ha]® Q' + he S:QV +(51)° Q™ (5.130)
with S; = kY, Si = A (5.131)

@™ is a funclion which is homogencous ol degree n in (hy,S1),
having as coeflicients functions Q@™° = * + [, jn-

{Everywhere * : is a positive constant and f;; a function of class
). |
I stop here this computation. I have just presented the text of
Mourtada to show that the first two steps are of similar nature : one
linearizes the expression in the parameter by and next b3, and one gets
rid off it by a derivation. But unfortunately this process stops at the
third step and the last expression is just quadratic in b,. From now on,
Mourtada uses a more sophisticated argument based on the fact that
the expression is polynomial in the parameter with coefficients whose
he can control in a recurrent way.

This change in the algorithm at the third step explains why the
formula for K (k) changes at k =3 :A(2) =2, K(3) =3, but K(4) = 5.

5.4.3 Generic elementary polycycles.

In [IY3], I’yashenko and Yakovenko obtained a general result of finite
cyclicity for elementary graphics. -
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Theorem 30 For any n € N, there exist a number E(n) € N (called
“elementary bifurcation number”) such that any generic unfolding o f
elementary graphic with n parameters has a cyclicity bounded by E(n).

Remark 32 This result seems Lo generalize the previous one of Mour-
tada which just looked at generic n-parameter unfoldings of hyperbolic
n-graphics. In the resull of II'Yashenko-Yakovenko the genericity as-.
sumption tmplies that the number k of vertices is less than the number
n of parameters. Mourteda oblained an explicit bound in function of k.
On the contrary, although the function E(n) is a “primitive recursive”
Sfunction, i.e. compulable by an algorithm, the practical computation of
it remains an open question. Another inleresting problem would be to
oblain an explicit definition for the genericily one needs in the theorem
18. It will be important to know these generic conditions in order to
" apply the resulf in given bifurcalion problems. '

I recall that in theorem 16 of Mourlada, the genericity conditions
are explicit rational inequalities in the hyperbolicily ratios r; and also
the independence of the shift maps f3;.

The biggest interest of theorem 18 is to prove the exisience of E(n).
We can also introduce more particular bounds like: E(k,n) for the
generic elementary graphics with k vertices and n parameters, H(k,n),
H{n) for hyperbolic graphics. Of course E(n) = Sup {E(k,n) | & < n},
H(n) = Sup{H(k,n) | k <n}. A

These numbers are known for small values of n. (For instance
H(2) = 2). A review aboul these results and also a description of all
generic elementary unfoldings for n <3 was made by Kotova, Stanzo

[K-S].

Sketch of proof.

The proof appeared in [IY3]. It is rather long and profound. A
good introduction for it and related results was made in [[Y2]. I just
quote the sketch of proof rom this article (quoted in italics). Personal
comments are added between quotation marks :

(The proof) consists of four principal steps :
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1) C*-smooth normalization of the family near each elementary sin-
gularity. The main tool here is provided by the classification theorems
from [YI1] (“see also paragraph 1, [Bon]”). The polynomial normal
forms are integrable. We perform an explicit integration of normal
forms in the class of Pfaffien functions introduced by Khovanskii [K]
and show that the correspondence maps near each singular points in
the normalization coordinatles can be expressed through elementary tran-
scendental functions which satisfy Pfaffian equations (“see remark be-
low”). The degree and the total number of these equalions can be esti-
mated in terms of n.

2) Algebraization of the system of cqualions oblained at the previ-
ous step : the reduction procedure suggesied in [K] allows to eliminate
transcendental functions from the equalions determining fized points of
the monodromy map. After this elimination, there appears a system of
equations having the form of a chain map, a composition of a polyno-
mial map and a jel of a generic smoolh map.

3) Gabrielov-type finiteness condilions are eslablished for a smooth
map F : R* — R* lo have a wniformly bounded number of regular
preimages # F~'(y) when the point y varies over a compact subset
of R*. These conditions are automatically salisfied if @ map F is real
analytic. We introduce a topological complerily characteristics, the con-
liguily number, in terms of which an upper estimele for the number of
preimage can be expressed.

4) Thom-Boardman-type construction allows us to prove that the
above finiteness conditions can be expressed in lerms of transversality
of the jet extension of T to some semi-algebraic subsels of the jet space.
Moreover, this construction can be generalized lo cover chain maps of
the form P o (j*F), where P in a polynomial, and j°F is the £-jet
extension of a generic smooth map. This is exactly the class of maps
which appear after Khovanskii elimination procedure (step 2 above).
The contiguity number of a chain map is capressed through the integer-
valued date (degree of the polynomial P, order of the jel £ and dimension
of the domain and targel spaces).
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Remark 33 The Khovanskii elimination procedure was firstly used for
analytic vector fields by Moussu and Roche in [MoR] to prove the non-
accumulation of limil cycles on clementary graphics (see chapter 3)
under the assumptlion : the normal form at each singular point in the
graphic is convergent. For instance, we have seen above that al e sin-
gular hyperbolic saddle with resonance p: ¢ the normal form writes :

N R A )
Putting v = 2Py? this sysfem is equivalent to :
T=x, = P(u Z au'. - (5.132)
Assumplion is that P is convergenl.One can obtain an analytic first

integral for (5.132) : the dual {-form of (5.132) w = zdu — P(u)dz =
e P(u)dF with :

Flz,y) = Q(u) — Logzx whereQ(u) = /u Pd_s. (5.133)

Now let y = D(a) the transition map from {y =1} to {:c = 1}.
Using the first inlegral F, we have :

Fla,1) = F(1, D{z)). (5.134)

So thal {y = D(x)} is graph of an integral curve of the following
1-form £ :
ar ar
= E‘ (."L‘, l)(l:l? —_ -gg-;(l,ﬂ)dy
Using the expression (5.132) for F, it is easy to compute that § is
equal, up some analytic factor, lo :

2= (pa? — P(a"))P(y" Mo — yy"2 P(aP)dy. (5.135)

So, {y = D(2)} is graph of infegral curve of the analytic 1-form ).
One says that the function D{x) salisfies the Pfaffian equation Q = 0.
The compulation above is an example of the reduction procedure recalled
in point 2 of the proof sketeh.
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Another example of the same procedure was used by El Morsalani
—a _
in [El] to eliminate one compensator w = r - from expressions.
a

- _

In this case, one remarks thal o = —z7 Y aw + 1). So that
: z
z — w(x, ) satisfies the Pfaffian equation : rdw + (aw + 1)dz = 0.

To conclude this section I want to mention partial but interesting
results about bifurcations studies and computation of cyclicity for ele-
mentary graphics :

- as recalled above Jebrane and Zoladek in [JZ] and others studied
bifurcations of the “eight-figure” (at a saddle point) of finite codimen-
sion. The study of the symmetrical case was made by Roussean and

Zoladek [RZ].

- El Morsalani in [E3] applied the reduction methods to graphics
with two semi-hyperbolic vertices. It was proved in [IY2] that a fig-
ure made by two “opposite” semi-hyperbolic points of codimension 1,
(forming a “lip-figure”) can have an arbitrary “global cyclicity” even
under generic assumptions (the cyclicity of each graphic in this lip-
figure is less than 2).

- In a recent preprint [DER], Dumortier, El Morsalani and Rousseau
proved that any non-trivial clementary graphic in the family introduced
in chapter 2, equivalent to the quadratic family, has a finite cyclicity
(in general < 2). Here, a trivial elementary graphic is a graphic with
identical return map. In [Z], Zoladck announced that the cyclicity of
the trivial hyperbolic triangles in the quadratic vector family is equal
to 3.






Chapter 6

Desingularization theory and
bifurcation of
non-elementary limit
periodic sets.

6.1 The use of rescaling formulas.

In the study of Bogdanov-Takens unfolding, we have introduce in 3.5.2
formulas of rescaling in the phase-space and in the parameter space :
z=rZ, y=1 g p=—r" v=rtp.

The aim was the following : taking (&,7) is some compact disk T
in 1%, and 7 € K, some closed interval, the Bogdanov-Takens fam-
ily is transformed to a r-perturbation of a generic Hamiltonian vector
field X,. Generic means that the two singular points of X, are non-
degenerate.

Of course, the whole operation reduces to take the counter-image
of the family X, ., (we forget the extra-parameter A) by the map
®,(Z,7) = (v* 7, * §), making the change QF(r,7) = (p = 1,
v = r? ) in the parameter. The result of perturbation theories pre-
sented in the chapter 4 and 5 lead to the complete study of the new
family X,; (Z,§) on the disk D and for (r,7) € [0,U] x K for some

191
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)
/

Figure 6.1:

small I > 0. (near regular cycles of the Hamiltonian vector field Xy in
chapter 4 and along the homoclinic loop in chapter 3).

The maps ®¢ and the parameter change ®F are singular at {r = 0}.
This point has the following two consequences :

- The study of X just cover a conic sector in the parameter space
:B = ®7{[0,U] x K], bounded by a curve with quadratic contact with
the Qv-axis (see Figure 6.1). So, to complete the study we have to look
at the family X, , in a complement of B in some neighborhood of the
origin in the parameter space (see [B], [RW] for details).

- For parameter (u,») € B, the study of X, 5, on D gives the phase
portrait of X, , on the disk D, = ®7(D} and the diameter of D, goes
to zero when r — 0. But, we need to obtain the phase portrait on a
fixed disk D, neighborhoods of the origin in the phase space.

In the case of the Bogdanov-Takens unfolding, it is easy to choose
a disk D such that no singularities exists in D\ D,. Then, as a conse-
quence of Poincaré-Bendixon theory, one can prove that X, , | D, is
topologically equivalent to X,,, | D. _

This problem happens as a rule when one uses rescaling formulas in
unfoldings.

In general, rescaling formula for an unfolding (X)) at 0 € R? and



6.1. THE USE OF RESCALING FORMULAS. - 193

at the origin in the parameter space R* are formulas :

{ (z,y) = ®3(z) = (r™ 2,72 §) (6.1)
poo= 7 (R,r) = (" f)izrn '
where i = (g1, -, fix). :

Here we have A = (g, A). We have selected some important param-
eter it = (g1, - -+, g) which enter in the formula (the parameter (g, »)
is that of the Bogdanov-Takens unfolding).

The coefficients «;, 8; are chosen by considerations of quasi-homo-
geneity.

For instance, we can choose the ay, looking at the Newton diagram
for the vector field Xp (A = 0). Next, we can choose the coefficients f3;
with the idea to have the maximal of monomials of the family at the
lowest degree of quasi-homogeneity : it would be the same to take a
face of the Newton diagram for the Taylor series of the family expanded
in all variables z and A. Let us consider :

(@8)7" (Xar) = Toa (@) (62)

where & is the biggest possible. Now, rescaling the family is to take
z € D, some compact domain, and i € S*=', the unit sphere and
r € R*.

This choice covers a neighborhood in the parameter space (contrary
to the restricted choice recalled above lor the Bogdanov-Takens family),
but it remains the problem that the disk D, = ®7(D) shrinks when r —
0. This fact has several inconveniences. Some non trivial bifurcation
phenomenons could happen in the region D\ D, and we have to study
them or to justily that HA—’|D, is equivalent to ._\'_|D. But the problem
is even more serious if the singular point where we use the rescaling
formulas is a vertex of a limit periodic sel we want to study.

Consider for instance a graphic I' of X with the point p as vertex.
Then trajectories v1, with a(y1) = p and 72, with w(y2) = p belong to
[', and to study the unfolding (X, T) we have to look at the transition
map near p, T) : oy — o2 where gy,0, arc transversal segments to +;,
¥z, taken in @D where D is a fixed neighborhoods of 0 € R? (see Figure
6.2). '
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Figure 6.2:

But a study by rescaling just allows to study transition maps be-
tween transversal segments taken in the boundary of D, whose distance
to the origin goes to zero when r — 0. And we remain with an unsolved
singular limit problem.

The idea to get rid off this difficulty was to consider the rescaling
formulas as a partial chart in some global generalized blowing up. The
global blowing-up is defined by the map ®(z, fi,r, A) = (z, 4, A) given
by the rescaling formulas (6.1) (i.e. ® = (&3, ®F A)) when one takes
(Z,2) € S*1, r € R*, A € RP~*. We see that the domain of the rescal-
ing D »x §%~1 is homeomorphic to a part of $¥+1. In fact, corresponding
to the decomposition B*t? = R? x R*, we have a related topological
decomposition of S*+! :

S = x §¥1 y S x DR (6.3)

In this topological decomposition, we replace the “round sphere” by
D x D*) where D* C R* is the disk with centre 0 € R*).
We consider the family X, has a vector field X, defined in R2*+*.
We suppose that X,(0) = 0 for A = (0,A). So that there exists,
in general, a smooth vector field X such that fl>,.(5(‘)\: X. (It is the
case for homogeneous blow-up : o; = f =1 ; if not X is smooth after
multiplication by r%, for some & > 0). In any case there exists a bigger

& such that : Tl& X =X is a smooth vector field. This vector field X will
be called the desingularized vector field (by the blow-up ®). Of course
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Figure 6.3:

X is not identically zero along the critical locus S+ x {0} x RP~* and
we can expect that X has simpler singularities than X.

Taking r € [0,U], for some U/ > 0, A € W, some neighborhoods of
0 € RF %, (z,) € S*, we cover a whole neighborhood of 0 € RP**
in the (z,y, \)-space. A new dilficully is that X is no longer a family :
it remains a family in the old rescaling domain : with on D, with
parameters : (ji,r,A) € SF1 x [0,U/] x W, but not in the other part :
S % D* x [0,U] x W (see Figure 6.3:) we have called the phase space
domain.

For practical computations, it is preferable in general to cover the
two domains by an atlas of charts {we call them rescaling directional and
phase-space directional charts). For instance, we can replace (Z,7) € $°
by an atlas of directional charts : # € K (some interval) § = 1,
z=21,5€ K.

When we restrict the map @ to these choices, we obtain on each
chart C a vector field X¢ which differs from the global one X (obtained
by taking (Z, i) € §**!) by a positive smooth multiplicative function.

So that we replace X by the singular loliation it defines. We will call
it below a local vector field to distinguish it {from the dim 2—{oljation
produced by the blow-up of the fibration on the parameter space.
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From the time I introduced this global blow-up in [R6] and system-
atized the method in a work in collaboration with Z. Denkowska [DeR],
some applications have been developed concerning particular unfolding
questions : nilpotent focus point of codimension 3 [DR2}, and Van der
Pol equation [DR3]. In these notes I want to return to the first example
treated in [R6] : the cuspidal loop, because it is the simplest example of
non-elementary graphic and also because some new progress was made
recently about it. These new results will appear a paper in preparation
[DRS3] and [ want to present them here in the next paragraph. In the
last paragraph, I want to explain how the global blow-up could enter
into a theory of desingularization of families, along the lines presented
in [DeR], also to compare it with the theory of Trifonov [Tr]. Finally I
will point out that this subject has not yet arrived to a conclusion: a
desingularization theory remains to be developed and I want to present
some conjectures and some ideas to attack them.

6.2 Desingularization of unfoldings of cus-
pidal loops.

A cuspidal loop is a singular cycle consisting of a cusp point p and a
connection [ between the two branches of the cusp. We want to study
generic unfolding of such a cuspidal loop. A first generic condition is
that the cusp point is a codimension 2 singularity, i.e. :

. d a .
7% Xo(p) ~ y—a-?— + (n:? + snry) Em with ¢ = x1. (6.4)
The connection adds an extra condition so that it is natural to look
at generic 3-parameter unfoldings of (X, ). '

We consider a segment ¥ transverse to the connection (see Figure
6.4:). Let be P : & — Y (S C ¥, neighborhoods of ¢ = £'NT),
the Poincaré map. [t is a C'-map (see below) and we require that
4 = P'(q) # 1. Changing X, in —~Xj we can suppose that v < 1 (T'is
an attracling cycle).This is a generic condition (H1) for X,.

Let us now consider X to he a 3-parameter unfolding of X, near
I for A near 0 € R® As we have seen in chapter 1, one can choose
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Figure 6.4:

coordinates (x,y) near p, with p = (0,0) such that in a neighborhood
of p, X\ is C*® equivalent to :

=y | 6.5
§ o= 2 A+ () + e+ 2?h(z, ) +12Q(e,y,2) &Y

where h and @ are C* functions.

A first generic condition for the family is ([12) : the map : X —
(2(A),v(A)) is of rank 2 at A =0..

As such, we maintain a cusp at 0 on a regular line L in the parameter
space R?, passing through the origin.

For A € L, it makes sense to define a shifi map between the two
separatrices of the cusp. In X’ is oriented as in figure 6.4 and u(}),
5(A) are the intersections of the unstable and the stable separatrix of p
with ¥', respectively, one defines : a(A) = u(A) — s{A).

Using the desingularization of p by the quasi-homogeneous blow-up
z=7r*Z, y=rg, it is possible to show that ¢ is a C*=° function of L.

A second generic condition for Xy is (113) :the map A € L — o(A)
has ¢ non zero derivalive at A = 0. If we take any C™ extension of o

"in a neighborhoods of 0 € R?, the conditions (H2) and (H3) imply that
the map A — (u(A), v(}), a(X)) is of rank 3 at 0 € R So, up to a
diffeomeorphic change of parameter, we can suppose that A = (g, v, o).
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Definition 31 In the following text, generic 3-parameter unfolding of
cuspidal loop will mean an unfolding which verifies the three generic
conditions (H1), (H2) end (H3). ‘

" Remark 34 Along the technical elaboration that follows I shall make
@ more precise choice of o, depending on the construction thal we will
make at 0 (but I prefer to explain it later).

Knowing the codimension 2 phenomena and using some heuristic
arguments (like the famous “simplicity principle”) it is not too hard o
predict the possible bilurcation diagrains.

I say diagrams since it happens to be {wo cases depending on the
sign = in the Bogdanov-Takens bilurcation. I have pictured these dia-
grams in Figure 6.5 and IMigure 6.6.

It is rather easy to prove the occurrence and genericity of the dif-
ferent saddle connections (lines L,, Le¢, Li, L,). The hard part of the
proof deals with the limit cycles. The fact that the small limit cycle
that appears in the Bogdanov-Takens bifurcation is expanding in the

~case ¢ = 1 induces a slightly more complicated bifurcation diagram,
exhibiting four limit cycles.

Remark 35 1) This number { is not without importance. In codimen-
sion 1 and 2 in the plane, any generic limit periodic sel generates a
number of limit cycles bounded by the codimension. Here in the generic
3-parameter unfolding of the codimension 3 cuspidal loop, one may gen-
erates 4 limit cycles. It is ¢ quile unexpected phenomenon, similar to’
the one observed by Mourtada for generic hyperbolic polycycles of codi-
mension j, which generales 5 limit cycles (see chapter 5 above).

2) The figures 6.5 and 6.6 represent intersections of the cone-like
2-dimension bifurcations set with « 2-sphere S* centered at 0 € R3 One
has removed a point on 5% lo make a planar picture.

In fact, the most intcresting part of the bifurcation set is situated
in a small cylinder (¢ ~ 0}. Indeed, for a fixed o(oc > 0 or ¢ < 0),
it is clear that one can only expeci to find the bifurcation diagram of
the Bogdanov-Takens bilurcation (for (g, ») ~ (0,0)). So, it might be
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more natural durlng the study of the bifurcation set to intersect it mth
a “cylinder box” : {| o [< S, 22 +y? <7}

The blfurca,t]on diagrams in Figure 6.5, 6.6, which summarizes the
results about bifurcations of the generic unfolding remains conjectural.
What will be proved precisely in [DRS3] is that the study can be re-
duced to the properties of some function :

Theorem 31 The diagrams in Figure 6.5, 6.6, are implied by the prop-
erty of monotonicity (M) of a “lransition lime” funclion {,(x). (We
define t,(x) and the property (M) below in subsection 6.2.3).

Remark 36 1) All phenomena of bifurcalions concerning saddle con-
nections are easy lo oblain as we said before. Also the reduction T
present below permit to study and check any codimension 2 phenomenon
without the use of property (M), expect the occurrence of the triple limit
cycle (TC). In fact, property (M) is just needed lo justify the results
about limit cycles : number, eyclicily, and crisience of bifurcations for
them : TC, DC°%, DC*™ (see Figure 6.5, 6.6).

2) C. Simé has obtained a good “numerical evidence” for the prop-

erty (M.)

The next subsections are devoted to present the ingredients for the
proof of theorem 1 whose details will appcar in [DRS3]. These ingredi-
ents are needed to overcome the problem that separatrices of the cusp
suddenly loose any geometrical meaning when s > 0, while on the re-
gion {u < 0}, they turn into separatrices of a saddle point, but in a
non-differentiable way.

6.2.1 Global blow-up of the cusp unfolding.
At (z,y,p,v) = (0,0,0,0), we make the following global blow-up on :

i

T =y (6.6)
Y 22 ptylv+ea+22 D) +4°Q ’

where &, = %1, A(x, A), Q(z,y, A) are C=-funclions and A = (g, v, 0).
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for -X

Figure 6.5: Case € =-1

Figure 6.5:
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Figure 6.6:
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Figure 6.6: Case =1
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Blow-up formulas :

z = r’z

y = 1§

g = rvicos ¢ (6.7)
v = ruvsin g

o =0

with 2% 4+ > + v* = 1 (or (Z,7,v) € OB, where B is some “box”
homeomorphic to D).

So, (6.7) defines a mapping @ : S?xR*xS'x R — R®, & : ((z,7,v),
LER ) O') = (xsyaﬂsya O‘).

Remark 37 Here, we compose the global blow-up with “small-parameter”
r, as described in paragraph 1 with a polar type blow-up i = vi.cos ¢,
7 =wv sin . So that the critical locus is not S° (for any fived o) but
8% x 81 and one passes from one to the other by the branched covering
map : §% x ST — $° which blows up one circle in S3).

We have now a C* vector field : X = H X with ,(X) = X and
r

X is the family (X)), which we consider as a vector field in R°.

For each constant value of (i, o), X induces a 3-dimensional vector
field X, .y defined on $? x R* near 5% x {0}. So, the global blow up
® changes our 3-parameter family into a (i, o)-family X, ,) we want_
to describe now. Several things can be observed making easier this
description :

1) The set {v = 0} is invariant and on it, the map ® is the usual
quasi-homogeneous blow of the cusp singularity (¢ = v = 0), studied
in chapter 3 (see Figure 6.7:).

2) It suffices to study X(,,¢) on {v > 0} to get a complete informa-
tion in the {z,y, A)-space near 0 € R5.

3) For each (ip,0), X(¢0) leaves invariant the foliation given by
{rv} = C*. This is the foliation obtained by the blow up of the foliation
of R’ in the parameter space (g, v,0). For {rv = u}, with u > 0, the
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@;<

leaf is a regular 2-manifold and for {rv = 0}, we get a stratified set as
in figure 6.8, with 2 strata of dim 2: F~S' x R (the blow-up of the
fiber yt, v = 0) and the hemisphere D, in {z* + 52+ 52 =1,% > 0} in
the critical locus.

We already know X,y on F = {v = 0}, and to have X (4r) OD
Dy = {r = 0}, we have to look at X(,,4) on the half-sphere D, .

Near {v = 0} we use the : phase directional rescaling. This means
that in (6.8) we take > 4+ §* = 1 and v near 0. (Or better, we use
subcharts by taking z = %1, resp. 7 = +1).

Take just Z = 1 : we obtain the phase portrait of the vector field
X” represented in figure 6.9, for each value (p, ) : '

The singularities at p; and p; are hyperbolic saddles ; the eigen-
values at p; are : —6, —1, 1 (—6 along the §-axis}. At p, we have
eigenvalues 6, 1, —1 (with 6 along the F-axis). The relation between
the eigenvalues at p; and p; is not a coincidence since in fact the two
points are “the same”. To see this, we use § = 1 (instead of z = 1),
giving a vector field X°.

As in the global blow-up ®, y = r*® 7, the chart § = 1 includes
7 = —1 by changing (Z, r, v, A, ) — (%, —r, —v, A, —1).

We obtain a singular point p on the 0z axis (see Figure 6.10:).

The study of X* at p includes up to a C* equivalence the situation
of X* near p; on {v 2 0, r > 0} and the situation near p;, on {v <0,
r < 0} (if we reverse time).

To complete the picture on the 2-sphere, we use the “family rescal-
ing” (i.e. : the usual rescaling). In (6.7), we take v = 1, leading to a
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Figure 6.8:
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(7,4, o) family of 2-dimension vector fields. On {u = 0} this gives the
following family of vector fields :

T = §
X“’{ﬁ = X+ cosp+ Fsing (6:8)

It is a very simple -parameter quadratic family of vector fields X,
(it is independent of ¢) ; we can draw the picture on the Poincaré disk.
At co (boundary of the Poincaré disk) we add the knowledge that we

got by the phase directional rescaling. Notice that it corresponds to

) v cos sinf
use the quasi-homogeneous compactification : ¢ = —, y = —-
v v

({v = 0} = o0). (See Figure 6.11:).

For X, we can define the limit periodic set as any limit in the sense
of Hausdorff distance, of sequence of limit cycles. All of them are in.
{o = 0} inside F'U D, for some . They are closed curve made by
the connection T from py to p; in F (coming from T') and a connection
between p; and p; in D, . They are all “elementary” in the sense that
they just include the two singular hyperbolic points p;, ps and perhaps a
saddle point, as singular point. See in Figure 6.12, the different possible
limit periodic sets of X.

6.2.2 Asymptotic form for the shift map equation.

Let ¥4, ¥, two transversal sections to orbits in {v = vg}. These sections
are rectangles parametrized by (6, r). We consider the transition maps
for the flow of £X,, from X, to X,. First G,, : T; — I, when we
follow the flow of X, (G, is the transition near the disk D, ,) and
next Ry, when we follow the flow of —X,, (R, is the transition near-
F). ' :
Limit cycles cutting ¥; correspond to solution of the shift map
equation :

Dpo = Goa — Ryy = 0. (6.9)

To obtain the whole information about the bifurcation diagram it
will be sufficient to look at this equation {A, = 0} when v is chosen
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Figure 6.11:
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N
Q

Figure 6.12: Limit periodic set of X

small enough. Of course, the rest of the study will be completed by
looking at similar shift map. for sections X, I} chosen transversally
to F, but it is easy to verify that any limit cycle cutting £/ (small
enough) must be a hyperbolic attracting cycle : one can prove that the
integral of the divergence is always negative. So that no bifurcation
may happen to such a limit cycle.

To obtain an interesting asymptotic form for A, ;, when the critical
parameter ¢ = rv — 0, we introduce “good normal form” coordinate
on 51, 59, coming from some normal form coordinates at the singular
point p which gives birth simultaneously to pi, pa. ’

Recall that X, , has resonant eigenvalues: —1,—6,1 at p and more-
over the function # = rv is a first integral. Moreover, up a multiplicative
function, X, is linear in r and v.

It is then possible to reduce X, in a neighborhoods of p to a C*®
normal formal by a = diffeomorphism ((¢, ¢)-dependant) preserving
in fact the two variables r,v (sce details in [DRS3]). Let us formulate
this special normal form theorem : ‘
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Theorem 32 Let X e parametrized C* vector-field family in a neigh-
borhood of 0 € R* (A € RP, near 0 € R?).
Suppose that the differential equation for X\ writes :

F=—r,v=vand Q=60+ G Q, r, v, A).

Then, for any k € N, there ezist a N(k) and a C*-family of diffeo-
morphisms Hi(r,v,Q) = (r,v, ha(r,v,Q)) which brings X to a N(k)-
normal form :

F=—r 0=uv, =60+ GY(r,v,Q)

where G is a resonant polynomidl of degree N = N (k) -

é,\N(r) v, Q) = | E aije (,\)Qi ri ot
t+j+L<N
6:—3+£L=6
12Here one can show easily that G¥ = a(p)v® + O(r) where a(yp) =
9
_1= N R A
5 6 sin®¢ (625 sin® ¢ + cos ).

Remark 38 This constant a(yp) is a resonant term at infinity for the
quadratic vector field X, = Xy, | v = 0. It is clear that a(p) = 0
if p = 0,7, when X, is a hamiltonian vector field. This value for o
has been obtained directly by computation of the normal form with the
help of Maple. A more clever way to obtain it would be to look at the
complez extension of X,.

From the normal form. coordinates at p we deduce normal form
coordinates for X,,, in the “phase directional chart” (z = 1), where we
see the two points py, ps. Let (r,v,§) be these coordinates near each
point; r = v = { = 0 correspond to p; and p; respectively.

We take as above two sections X, Xp near p;, p; respectively in
{v = o}, vo small enough. We parametrize each one by (Q,u) with
% = rvp (the reason is that u is directly related to the initial parameters
by : g = u? cosyp, v = u sinp). We can now give an asymptotic form
for the transition map R, . (,u) :

Theorem 33 Let be v be the Poincare ezponent for the cuspidal loop
and o{p) the resonani term, defined above. Then :
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Ryo (u)=77" O+ ou™® a(p)(y™' - 1)Lnu + O(ulnu) (6.10})
where the remainder term O(u Ln? u) is a function ®(r,u, 0, ¢) which
k

is C® in Q and all whose partial derivatives ET O(uln?u) (it is
O(uLn®u) in @ C*-sense”).

Proof I don’t want to give a complete proof of this result, but just
some rough idea of it. First, up to a C'-change of coordinates we can
linearize the vector field at p,, p, (following a result of Belitskii; this is
possible since we have no relation of the form A; + A; = Ay between the
eigenvalues).

Taking transversal sections L7, ¥} near py, p in {r = v} for some
rp, we can write K as a composition of three maps :

R:Tz OﬁOTl (6.11)

where T1, T are the transitions s near py and p; and R is a C! transition
from ¥ to ¥, We can write : R, ,(Q,u) =0+~ 2+ O{r?) and :

TO) = (3)° 2, B@) = () =T (). (6.12)

So that, R is conjugate to I by the linear map T, with coefficient

6
(ii) — 0 when u — 0. This conjugacy has a “funnelling effect” :
0

R, (2, u) has to tend toward an affine map when © — 0. We find :
Row (u) = cu™® + 471 Q + O(u®) (6.13)

This argument which was used in [R6], gives only a “C!-control”
on the remainder term O(u®). It would not be sufficient to study codi-
mension 2 bifurcations and also bifurcation lines of double cycles. To
obtain a more accurate estimate we have to use the normal form given
in theorem 2. A first observation is that the integration of such normal
form reduces to a 1-dimensional differential equation. Let (r,Q) € £ C
{v = vo} and (t) = ((t), r(t), v(t)) the flow of X, , with these initial
conditions. One has r(t) = re™", v(t) = vge’ and for Q(t) the equation :
Q = 6Q+GN(Q,r,v, ) (here A = (0,¢)). We look for (2) in the form :
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Q(t) = ¥ Q(1). (6.14)
Substituting r(t}, v(t) in (6.14), we obtain, with (0) = Q :

Q(t) = +69(t) -I-e""ﬁ"l ﬁ(t) = ﬁﬂ(t) +Z oje 6(6'.'_"'4-8)‘ Q(t)_‘rjvé (6.15) :
' it
and so :
ﬁ(t) = z Oije e[_6+6£_j+t]t ﬁ' T'j ‘Ué. (6.16)
it
But, precisely, because G is a resonant polynomial, each coefficient
of —6 + 62 — 7 + £ vanishes and § is solution of an 1-dimension au-
tonomous equation : Q(t) = GN (%(t),r, v) (we no longer mention the
dependence in A = (i, 0)). .
Now, using classical estimates on the solution (t) we can prove
that :

Q) = Q + avs t + O(rLn’r)

and then, T(Q2) = (:E;)G 1] '(Lnuig) with : ‘
Q (Ln ui) =Q+a Ln u+ C + O(ulnu). (6.17)
0

Here, C is a constant term and O(u?Lnu) must be understood in
C>-sense. Up to this remainder term we see that the unique change
with respect to the previous formula (6.12) is the introduction of a
translation term aLnu 4 C. Using a similar result for T3(f2) we obtain
for the composition B = T, 0 R o Ty the asymptotic expression in the
theorem. "

Remark 39 Let 7 = o u™® afp)(y~! — 1)Lnu be the rescaled trans-
lation term which enter in the expression of R,,. This term has to
remain bounded. So, assume chosen some &y (depending on the choice
of sections £y, p) such that & € [y, 5‘0]. We see that :

o € a(p)(v! — Dullnu + u¥[-F), &

This specifies a conic region in the parameter space (u,v,0) of size
u® around the cone 0 = ap)(1 — v ulLnu (recall that p = u'cosep,
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v = u 8iny), in which all the bifurcations occurring in a neighborhood
of T are located. Of course, this remark doesn’t concern the small cycle
and the Bogdanov-Takens theory near the saddle point.

We look now at the function G, » (r,u). If we put g,(?) = G, (,0)
(independent on ¢), in equation (6.9) we obtain :

Gor () =771 Q45 (6.18).
Because v~} is intrinsically defined, we also need to have an intrinsic

definition of B_g It is indeed the case and follows from the fact that

the variable fal gives an intrinsic metric structure to the orbit space
of X,. Look at this point more closely. The vector field X,(z = y,

§ = 2% + cosy + ysiny) is extended on the Poincaré disk D by the

C(:)S2 g Ly = S::} 4 which follows from the global .

blow-up, and as we have noticed, the two singular points py, p; € 9D*
have resonant linear part with eigenvalues +(1,6). Now, we have to
define the map g,(f) as the transition map from I; to X which for
u = 0, are intervals in {v = vo} ; ¥1, L2 are parametrized by the
variable 2, which together with v is a normal form coordinate at p; or
p2. This means that at each point p;, p, the vector field X, has the
following normal form expression :

blow-up formula z =

v = v ' ' _
X‘p{ Q = 60— av® (atp and the opposite at p;). (6.19).
Suppose we consider at p; for instance two different reductions in
normal form Hy, H,. Then, H; o H; is a diffeomorphism which leaves
invariant the equation (6.19). It is easy to prove that such a diffeomor-
phism has to write :

Hy o H' (Q,0) = (2 + Bv®,v) (6.20)

for some 3 € R.

As a consequence, the variable ) is uniquely defined (i.e. indepen-
dent of the normalizing diffeomorphism) up to a translation.

.Another way to say this is as follows : let O,, the space of trajecto-
ries with o-limit in py, in the half space {v > 0}. Then, the map 2 — o
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Figure 6.13:

(orbit in O}, through the point (©2,1) in the normal form charts) gives
to the space O, a well-defined metric (i.e. a parametrization defined
up the choice of some origin). It is the same at the point p;. Finally, we
can see g,(f1) has a map ¢,(?) : O,, — O, between the orbit-spaces
at py and p,, defined by the transition. We call it the “transition at co”
between p; and p;. O,,, Oy, are isometric to R, with variable (2. Strictly
speaking the map ¢,(?) is defined outside the interval of orbits which

tend toward the possible attracting focus e, (when ¢ € [, —g]) So,
let D, C R the maximal domain of definition of g,(f) :

D_chpe]—-— [ D,=R~ lef(pE[Z, ]
(where €l correspond the separatrix of s,) and D, = R-]Q,, Q%[
where 91 Q2 correspond to the two saddle sepa,ratrlces of s, it p €
]—= ---—] (see Figure 6.13).

Finally, the equation (6.9) for limit cycles has the following asymp-
totic form :
9, (Q) =7 Q-5+ O(uln?v) =0
(6.21)
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with 5 = o u=® + ale)(y™t — 1) Lnu

where the remainder term O(uLn’u) is C** in Q and is 0(u Ln? u) in a
C* sense (any derivative in  is O(u Ln? u)). So, the bifurcations in
the family depends on the properties of g,(f2).

6.2.3° The properties of ¢,(0).

First, we are going to obtain a more tractable expression for g,(Q).
Observe that the interval of definition of any trajectory v with afvy) =
7 and w(y) = po is bounded; i.e. for any m € v one tends to p;
“for ¢ = 7, and to p; for ¢ — 75, where 71,72 are finite. We can call
72 — 1 = T'(7) the transition time from p, to p; along 7.

Each orbit 4 as above belongs to D, C O,,, with its natural
parametrization by . So that we will denote by T,(£2) the transition-
time to go from p; to po along the orbit of D, with parameter € . This
function T, (f2) is closely related to g,(2).

Proposition 16

33-;’;’ (Q) = exp(sin pT,H (). (6.22)
Proof Let ,(?) be the orbit of X,p of D, with parameter Q. Let %,
¥, be two sections in normal form charts near py, p; in {v = vo}. Let
G#(Q) denote the transition map between X, and Z,. ‘

If we call || . || the euclidian norm in the normal form charts, it
follows from a well known variational formula that :
dG |1 X (G (SH)I] ™o
— (V)= ——E " exp j div X dt 6.23
a9 EAC A o) (623)

where (1 € %4, G2(£2) € £z and T™ is the time to go from £ to G*(€?).
Now, div X, =sin ¢ and T% = T,(Q) + 0{vo).

- Moreover it can be shown that :

1 Xo (G ()]

X @y o) (6:2)

and also that :
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Figure 6.14:

aGw a 34,
G @= SR @+0w).  (62)

To prove for instance the last estlma,tlve (6.25), we observe that G
is conjugate to g,.
Finally, we have that :

g gtp (Q) ezp (sinT,(N})) + O(vo) (6.26)

v ) 1s in fact independent on vo. w
a0
Because the variable € is not explicitly defined, it is preferable to
parametrize the transition time by the intersection point with the 0z-
axis. Let M, C R (0z-axis) the domain of z such that the orbit through
z has o and w-limit in {p;,p:}. We have a transition diffeomorphism
Q,(z) from M, to D, and M, = Rif ¢ €] —7/2, n/5[, M, = R— =z,

(zl : coordinate of the saddle s,) if ¢ € [g,w] and M, = R—Jz2, zl|

¥?
if ¢ €] — 7, —m /5] where z, is the coordinate of intersection of the left
hand instable separatrix with 0z and 2}, is the coordinate of s, (see
Figure 6.14:).

Definition 32 We define t,(z) = T,(Q,(x)) the function time of tran-
sition for the orbit through z € M,,.
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We can now define the monotonicity property (M). Remark first
that t,(z) = t_,(g9~,)(z)). This follows from the invariance of the dif-
ferential equation of X, by : ¢ — —¢, y — —y, t — ~i. So that, it
suffices to look at ¢ € [0,7] :

Property (M) for {,(z).

1) For each ¢,the function :z — t,(z) has just one extremum (which
is generic) at z, € R when ¢ € [0,7x/2] ; t,(x) is monotonic when
¢ € [x/2,7].

2) % [to(zp)] > 0 for ¢ € [0, % [ :

Remark 40 It is easy to verify that t,(x) — 0, when z — *oo. It
follows from this and point 1) that z, is a mazimum (in case ¢ € [0, -TE[)
and that t,(z) / for x €] — oo,z and t,(z) \, for z €]z, 00[ (in

case @ € [%,W]) Of course, t,(z) — oo if z — z,,z2).

As we have said above, this property (M) has not been proved yet,
but is supported by strong numerical evidence. Moreover it is possible
to prove part 1) when ¢ = 0.

6.2.4 Monotonicity property for to(z) and ¢,(z).

When ¢ = 0, the vector field is a hamiltonian vector field with hamil-
3
tonian function H(z,y) = 3 y:— R

3
Up to an affine change in x, one can suppose that H(z,y) = y? +

z® + = and that the axis Oz is parametrized by the values h of the
hamiltonian. Let be I', the orbit by h € R, i.e.: 'y = {H = h} C R%.
: d;
The transition time t(h) = f =
'n ¥
Now, in the usual compactification of C% C P(C) each Riemann
surface { H = h} has a regular point at infinity. So, on this surface, one
can find a bounded cycle v, homotopic to 'y, and one can make this
choice in a continuous way for h € R.
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Then'/d—x— d_a:
'th_ ‘n.y.

For such a continuous choice of 4, C {H = h}, the abelian integral

d
Jo(h) = [, £ has the properties which are described in 4.3.6. In
particular, we i’lave a Gauss-Manin system in the integrals Iy, I; or Jy,
J1 as a consequence of general formulas (4.63) in 4.3.6. For instance,
for Jy, J1 we obtain :

4 1 1
Ry=)Jh = ——hdo—=J
( 247) o § 9 (6.27)

We want to prove that ¢'(k) = Jj(k) has at most one simple root. To
this end, we can use Petrov’s lemma (lemma 12 in I11.3.6.). First, from

the first line of (6.27) we see that : J} = 0if and only if —% h Jo—‘% Ji =
Oor:

J 3 '
=242 h=o. 2
g 7o 7+ 3 h=0 (6.28)
(Notice that Jp has no root).
From the Ricatti equation for %1— :
0 .
4\ Jiye 1 pJize 1, 1
24 ) (Y =2 (4 S R(2) - =
P+ G =5 ) +34(F) - €
deduced from (6.27), we can write a Ricatti equation for ¢ :
4 3 3 ]
2 = Y 2y Y2, v .
(R+g)d=7a+7h + 5 (6.30)

The polynomial Ro(h) = % h% + 237 has no real root. So, it follows

from lemma. 12 in 4.3.6 that ¢ has at most one simple root, and so that
J{§ has also at most one simple root. Because Jy — 0 for b — +oo it
follows that Jj has exactly one simple root where Jy has a quadratic
maximum.
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Figure 6.15:

In the case ¢ = 7, we have to look to the hamiltonian H(z,y) =
y?2 — z + 2? already introduced in chapter 3. Now, the Ricatti equation.
for ¢ has the form :

4

(E — h?) ¢’ = Ry(h)g + Ru(h) + Ro(h)
. (6.31)
with Ro(h) = = h* — Y

The roots of Ry are precisely the smgular values of H {:l: }

The orbits Ty, for k € [ —00,+ are on the qut of the saddle point

2
3(:1: = —31%) and surround the two critical points for k >
Figure 6.15).

\/_ (see

It is easy to verify that t'(h) = J5(k) > 0 for h < Now,

2
V3

because Ry has no roots for h > ——=, Jj has at most one simple root

2
| V3’ |
for_ he ]m,m] But, because t(k) — 0 for h — oo and t(h) = +oco

2 v
if h — 33 this implies that ¢/(h) has also no root on ]E%,oo].
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6.2.5 Indication for the proof of theorem 1.

We need the transition time T,(?) parametrized by @ : T,(Q) =
t.(z,(f)) where t,(x) is the transition time parametrized by = € M,
and z,(1?) the diffeomorphism D, — M,,. First, we remark that 7,(£2)
has the same monotonicity property (M) as ¢,(z) :

1} T,() has just one extremum (a quadratic one) at w, € R when

¢ € [0, ﬂ-[ T,(€?) is monotonic when € [2 ]

d T
2) & [T.()] > 0 when g € [ ,5[.
To prove it, we have just to notice that :
T, _dt, dz, oz,
-5'6' a BQ and that —= 39 > 0.

Next, T,(€2,) = t,(z,) and the point 2) is equivalent to the same
property for ..
From this property (M), it follows from g,(Q), defined up to a con-

£ = ezp (sin ¢ T,(N)), a behavior which is illustrated -

in figure 6.16, where we represent the graphs g, : B — R for differ-
ent ¢. The invariance of X, by : ¢ = —¢, y —» —y, t — —t implies
that g1 = g_, so that it suffices to consider ¢ € [0,7]. (In fact, for
¢ €] -0 992 <1 and we have no bifurcation for these values of @)

(see Figure 6.16:).

Remark 41 When ¢ goes from 0 to % the value of the derivative at

the unique inflexion point of g, increases monotonically from I to oo.
This follows from :
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Figure 6.16:
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39w _ J .
aw[ Q)] = 3, eap Ginpta(,))

= [cos t,(Q) +sing a% (ta())] (6.32)
exp (singp t,({)).

So that — [Bg<p (ﬂ.p)] > 0.

Recall that the equation of the fixed points for the return map is
equivalent to the shift equation :

Bol0y) = 95(2) — 72 — 4+ O(uLnu) = 0.

Or, graphically, we have to look at the intersection of the graph
Yoo (O, u) = g,(Q) + O(uLn®u) with the line :R=v"1 @+, where &
is related to o by : & = v % + a(y™! — 1) Lnu.

There exists a value ¢, € ]0,%[ where the slope of the tangent at
the inflexion point of g, is equal to 7. For ¢ < ¢, the slope of the
tangent at g,, for any (2 is less than ¥~ and one has just 1 simple
intersection point, and for ¢ = ¢, a generic bifurcation of triple limit
cycles.

For u = 0 this bifurcation is located at {y,, ;) where &y correspond

-to the intersection of the &-axis with the tangent at the inflexion point
of gy, 1 51 = gy, () =77 Q.
By the implicit function theorem, we have a line of bifurcation :

u — (F1(u), p1(u)) with 51(0) = 1, ¥1(0) = ¢y,
which defines a line TC of in the 3-parameter space :
U — (g;l(u), o(u) =ofp1(u)) (v — Du® Ln u+u® ﬁl(u))

or, exphcitly :
I

#(u)
(TC)q v{u)
o(u)

't cos (11 ()
u sin (p5(u)) (6.33)
afp1(u))(v7! — Dulln u + uboy(u).
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e
5

Figure 6.17:

From this line of triple cycles split two surfaces of double cycles.
Their equation is given by :

e _ 2
30 =7 + 0(u Ln* u).
Or:
sin T,(Q) = Log v ! + 0(uln?u). (6.34)

The curve @ — sinT,(?) has an unique extremum whose value

increases with ¢ and tends to oo when ¢ — 3 (see Figure 6.17).

For ¢ > ¢, the graph of g cuts the horizontal Log 4! in two
points £,(i), N2(¢) bifurcating from £y, which define the two surfaces
of double cycles which bifurcate from TC. These two surfaces may be
extended for all values of ¢ < 7.

7
When 3 < ¢ < « the graph g, has a discontinuity at €, and a

vertical gap : [g,g2]. The passage of the line y7*Q + & by the point



!
6.2. DESINGULARIZATION OF UNFOLDINGS OF... 223

(0, 90) oorresponds to a saddle connection bifurcation L, and for the
passage by (Q,42) to L,.

And so it is easy to justify any bifurcations and the existence and
number of limit cycles, outside a small neighborhoods of v =0, ¢ = =.

The study in such neighborhoods is in fact entirely independent of
the hypothesis (M) and just follows from the local properties of g,(§2)
for ¢ near .

For ¢ = m we have g,(Q?)} = §, but the convergence : g,(Q2) — 0 is
not regular when the value of {2 corresponds to a stable separatrix of the
saddle s,. To study the bifurcations at ¢ = = we have to make a second
directional blow-up in the parameter : ¢ = 7 — uf with £ € [~&, &,
4 € RY small.

The vector field family X, is transformed in :

y
x? — 1 + uy(é + ex) + 0(u?). (6.35)

o

[5
e —
@, .

HH

It is a u-perturbation of the hamiltonian vector field Xy with hamil-
2

tonian function H(z,y) = 1 vid+z— :r:_’ which we have studied in
chapter 4 for the Bogdanov-Takens theory.

The map ée',(ﬂ, %) = Gr_ue,o (2, 1) is a u-perturbation of the iden-
tity. It may be studied by composition of regular maps with transitions
near the saddle s on X,. Before entering into the details of this com-
putation, I draw the shape of the graph of G for G, in figure 6.18 for
some small ¢ > 0.

For ¢ small or large enough, we find back the shapes obtained for
9o(2) for ¢ > 7 and ¢ < 7. These extremal shapes are independent
on £. But the transition of these two shapes are not the same in the
two cases. For instance, in the case € = 1, one has the horizontal level
surrounded by large slopes in the central region: this will allow the
possibility of a pair of double cycles and the possibility of four limit
cycles. '

Because G —é|u=0 may be O(u) {(when £ is a regular point) we need
more precision on the remainder term 0(uLn*u) in R, ,(f2,u). In fact,
one can prove that this term writes :

Yo(w) + 1 (W) + Pa(u, 0, 0, )22 (6.36)
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Figure 6.19:

with Po(u) = O(uln®u), ¥1(x) = O(ulnu) and ¥, = O(u®) (6.37)

(in a C*-sense).
So that we can write the transition R :

Ry, (Su) = (7-1+¢1)n+(gu-ﬁ+a(7"l —1)Lru+40)+0(u’). (6.38)

Here the_;emainder term is~diﬂ'erentiable in 9 and can be incor-
porated in G ; we will write R;,(,2) for B after the substitution

p=m—uf.

Bifurcations related to the double connection {(DL) : (see Figure
6.19). :

Because the separatrices of the saddle depend smoothly on the pa-
rameter for (p,u) near (r,0), one can choose origins on X, Lz such
that @ = 0 corresponds to the separatrix intersection. Let 2, be the
coordinate on Ly. We introduce also sections 7y, 72 as in figure 6.19,
with coordinates z, 2; respectively.

1) If © > 0, & is composition of three maps

- From ¥, to ry :
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2z = Q) (1 1 &) (6.39)

where a(é,u,---) = £ + ¢ + 0(u) and &, is of class I (see chapter 5,
section 5.1.3). .

- Fromn to 7y :

21 = ‘U.Bo -+ (1 -+ UB1)Z[1 + @1] (640)

where fo(¢, u,- ) = a{£ - —) + O(u).
uBp is the shift between the 2 “small separatrices” on the Ieft of the
saddle. This quantity was computed in chapter 5 and a = Io( 3) is the

area of the singular hamiltonian disk. ®; = O(u) is smooth.
- From 15 to X3 :
M= 7791 + @,). (6.41).

It is similar to the first transition.
By composition we obtain, for 2 <0:

O = Geo(Q,u) = (B + (1+uf)QH (14 &) 3(1 + 8,). (6.42)
The functions 50, ®, are of class I and are zero for u = 0.
2) If 2 <0, we have just the transition near the saddle :
Q1 = Geo (R u) = QUHH(1 4 §y). (6.43) -

Equation for the connection L, (small connection) is given by 8y =
0,ie.:

© & =éo(u,0) = é + O(u). (6.44)

Equation for the right hand connection L. is given by writing that
Re »(0,4) = 0. This gives :
o = oo(u, &) = a{m — uf)u®Lnu(l + O(xw)). (6.45)

The two equations (6. 44), (6. 45) gives two transversal surfaces.
They cut along the line DL (Double loop).
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Figure 6.20:

To study the bifurcations near DL it is useful to introduce a local
parameter (£,5) by :

=L+, 0 =5+ 00 (6.46)
In this local parametrization L, and L, correspond to £ = 0 and
o = 0 respectively. It is now easy to compute equations for the other

surfaces of bifurcation. For instance, the “lower connection” L; which
corresponds to £ = G = 0 has an equation :

(L:) = u? o {‘“1" (1 4+ O(u)). (6.47)

We have also : for L, (the “upper connexion”) given by @ = 0,

G=R:

(L,) : &= aqu™®™ §+5% (1 4 O(u)). (6.48)

In the case € = 1, we can look for pair of double limit cycles in the
local chart (£,&). We present just an heuristic computation.

We want to write that the “line” i = 0 has double tangency with.
the G-graph (see Figure 6.20:).
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The length of the horizontal level lﬂh £2,] is of order u | Bo |1+'1'°1 .
In first approximation the graph of G is symmetrical, and one has a
double tangent when this tangent passes through the middle of [©;, Q).
Putting this in the equation of G, we obtain :
_ —Logy?
| €1= Ca(l + O@w)e™ ¥ (6.49)

for C3 = 2y 'a™1,

This is the £-coordinate of the crossing point of L; 1L, (for some
fixed value of u).

To obtain the -coordinate of L; [N L,, we have to compute the in-
tersection of the double tangent with the #-axis.

One finds :

ogu—1
&= —y (1 + O(n))uTe 25— (6.50)
The more striking fact is that the two lines DL and L; Ly have

agz_l . N
a flat contect of order ¢“%—. So that the rectangular region in figure
6.5, when we have four large limit cycles is flat in u (the “radius” of
the intersection sphere).

Saddle connection of codimension 2.

Look at the case £ = 1 for instance. The codimension 2 saddle con-
nections correspond to Trace (saddle)=0. They correspond to surfaces
which start from u = 0, { = —1 (we have that the hyperbolicity ratio
is u@; with & = 1 + £ -+ 0(u). Look at the connection of type L, for
instance : £} = 0 correspond to the entering separatrix. We can write :

G = Q+ua(®) + @O+ -]+ &()Q + -]+ O?). (6.51)

with the conventions jntroduced in chapter 5. We know that &o(1) > 0.
Equation of limit cycles G = R gives :

(h =140+ (eu™® —a(y™ ~ 1) Lnu + 1)

—u(dg + & [Qw + - -] + @0) + O(*)0(R) = 0. (6.52).

We can rearrange this equation in :
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8o + @[ + -] + &0 + O(Q) =0 (6.53)
with :
& = ou®—o(y' —1)Lnu+ O(ulny) (6.54)
& = —u@+ 0@ (6.55)
& = v =140 (6.56)

We can see that the bifurcation is a generic one for u # 0 (&; # 0,
& and &g are independent functions of o and €). To verify this, it
suffices to express the parameters o, & in function of the versal ones &,
&1 :

e = aly!—1uln?u +ud& + O(u’ Lnu) 6.57
£—1 = —ula +O(u). (6.57)
A fixed rectangle in the (&g, &y )-plane corresponds to a rectangle in
the (¢,0)-plane with a o-dimension of order u® and the ¢ one of order
u~! ; this domain degenerates when u — 0.
For the connection of type L;, the corresponding formulas are :

& = u S0 —a(y!—1)Lnu+ O(ulny)
d, = ' —=1+0(u)

R
3
1

Remark 42 The formulas (6.58) for the L;-connection are almost iden-
tical to the similar ones for the L,-connection, up to the remainder
term. They cannot permit to separate them. This corresponds to the
fact that the coefficient ap(1) whose sign distinguishes the two cases
ts absorbed in the remainder term. To oblain a separation, we need a
more precise computation which will be given in [DRS3].

The regular values of (£,0).

If we take a value (£,9) where {1 is a regular value of Geo(9,u) at
4 =0, the function G tends C' toward the identity for u — 0. Because
R converges toward v71§) + & with y~! # 1, we can just have simple
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roots in a compact domain which does not contain singular values of

1 : all the bifurcations at ¢ = =« arrive for £ = —e, ——¢ for the 02-

value of the entering separatrix. They are precisely the cases we have
considered above.

This finishes the outline I wanted to give on the proof of theorem
1. A more complete study will be made in [DRS3].

6.3 A method of deSingularization for an-
alytic vector fields.

In this paragraph, we consider an analytic family (X3) on §2. I want
to explain how the generalized blow-up operation may be used to give
a general method of desingularization for a family like (X)), as it was
presented in [DeR]. The geometrical object we obtain by such desin-
gularization is called foliated local vector field. Roughly speaking, it is
given by a local vector field (another name for dimension 1 foliations
with singularities). This local vector field is tangent to a singular 2-
dimensional foliation, which comes from the blow-up of the fibration of
RFt? onto the parameter space RF.

Next, we define precisely what are the desingularization operations.
Apart from a generalized blow-up operation (which generalizes the
above global blow-up used in the last paragraphs), we introduce the
possibility to divide the local vector field by local functions (for instance
the function r in the last paragraph) and also to replace a family by
a new one inducing the first one. Finally, we want to propose general
conjectures concerning desingularizations of analytic families, to look
at relations with the Trifonov’s theory and to formulate what are the
hopes to succeed in proving the conjectures.

In what follows all ours objects such as families, maps and so on
will be real analytic.

6.3.1 Foliated local vector fields.

Definition 33 A local vector field is defined on a compact (maybe with
boundary) analytic manifold E by a finite open covering {U;} of E
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with some analytic vector field X; on each U;, verifying the following
compatibility condition : for each pair of indices i, such that

UinU; £,

there exists an analytic function g;; defined and strictly positive in U; N
U; such that :

X; =g','_,'X_,‘ on U; ﬂUJ‘.

Two collections {U;, X;} and {V},Y:} as above are said to be equi-
valent if there exist positive analytic functions f;; defined on U; N V;
such that X; = f;;Y;. A local vector field on E is an equivalence class.
Of course, each vector field defines a local vector field.

- We denote by Z(X) the union of sets of singular points of all X;
associated to a local vector field X. This set doesn’t depend on the
choice of the collection {U;, X;}.

Remark 43 Such a local vector field is often called : oriented singular
I-dimensional foliation. We prefer the terminology “local vector field”
because we reserve the term “foliation” for another purpose (see below).

Definition 34 We will call singular fibration a triple (E,m,A) consis-
ting of :

- @ compact real analytic manifold E of dimension k + 2,

- a compact real analytic manifold A of dimension k,

- an analytic surjective mapping v : E — A such that for eachz € E
there are local coordinates z,, T2,+++,Zky2 n @ neighborhood of =(z),
sending n(x) to 0, where n takes the form : :

k2 k2, .
Av=T ot A= [ 2f* with pi € N. - (6.59)
i=1 =1

We suppose moreover, that 7 is regular (rank (v) = k} on an open
dense set Up. We suppose also that each regular fiber of ™ in Us is
diffeomorphic to a 2-dimensional compact submanifold of the 2-sphere
(possibly with non-empty boundary), i.e. a surface of genus 0.

Observe that for a foliation defined on an open dense set in E, any
two extensions coincide on the intersection of their domains. Then
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there exists an unique maximal foliation extending the given one. We
apply this remark here and we will denote by F the mazimal foliation
extending the foliation Fy defined by the connected components of the
regular fibers of 7 on Uj. The domain of F will be denoted by U and
the singular set of F, E\U will be denoted by .

Proposition 17 [DeR]/
The mazimal foliation F, associated to a singular fibration (E,x,A)
vertfies the following properties :

1. The set X is an analylic subset of E and it is decomposed into
two analytic manifolds ¥, and Ty, with cod I > 1 and cod Ly > 2,
such that 9%, = Xy

2. If L is a leaf of F, L is homeomorphic to a closed submanifold

of S?, with boundary and corners. For a given leaf L let 8yL stands for

the set of corners and L = OI\G, L.

3. We have UL8L = ¥ and {&iL, L € F} defines an analytic
foliation of X,. Also, UL = ¥g, which can be seen foliated by points.

4. Let z € & and L, be the collection of all the leaves L of F such
that L is an analytic manifold with boundary in some neighborhoods of
z. Suppose that x € ¥y and let £, denotes the leaf of £, through z. We
have : :

(WT:L | L € £, and z € L} = Tk, (6.60)

Stmilarly, for x € Xy, we have :

(WL | L €L, and z € T} = {0}. (6.61)

Definition 35 Given a singular fibration (E,7,A) and a point z € E

a leaf through z is :

- the 2-dimension leaf of F containing z, ifc € U
- the 1-dimension leaf of £y containing z, if 1 € Ty
- the point {2}, if z € Zq.

We will introduce the main object of this paragraph, generalizing
the notion of family of vector fields :
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Definition 36 A foliated local vector field £ = (E,x, A, X) is an object
consisting of a singular fibration (E,m,A) and a local vector field defined
of E such that X is tangent to the fibers, i.e. dr(z)[X(z)] =0 for all
z € E.

Remark 44 An example of foliated local vector field is given by any
analytic family Xy on 52, with X € A, some compact analytic manifold ;
FE = 5% x A and 7 is the natural projection of E on A and X is the
family seen as a vector field on E.

Proposition 18 A foliated local vector field X is tangent at cach point
z € E to the leaf through .

Proof The field X is tangent to the regular fibers by definition, so, by
continuity and by the density of U, it is tangent to all the leaves of the
maximal foliation F. _

Now, take a point z € ;. By continuity and using the point 4 of
the proposition 5, we get that X (z) € T,£, where £, is the leaf through
z. The same holds when z € %,. n

Of course, the notion of foliated local vector field is motivated by the
global blow-up as it was used in paragraph 6.2 above. For instance let
E = 5%x 5% and R? x R? alocal chart at some point (29, Ag) € 52 x §2
(with 2o = 0, Ao = 0). The usual blow-up at this point is a map
® : EXE. The new space £ has a singular projection ¥ = 7 o ® on
A ~ 82, The critical locus of @ is a 3-sphere D. For regular values of
7, A € §% — {Ao} we have regular fibers #~1()) ~ 5% ; on the contrary

‘1()\0) = DU F (where F is the blow-up of the ﬁber F = 771(Xp).
The foliation Fo, whose leaves are the #=1(A) for A # Ag, extends in a
maximal foliation F. The set ¥ ~ S' is just the critical locus of fiber
F~ D% with© = 8D?; 2 C D an d D\Z is made by 2-disks fohatmg
D\Y with boundary equa.l to ¥ (see Figure 6.21).

6.3.2 Operations of desingularization.

A himit eycle of a foliated local vector field is a limit cycle of the re-
striction X, of X to some leaf of F.
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>

R :

Figure 6.21:

In this paragraph, I want to define operations to pass from a foliated
local vector field to another, keeping conirol on the number of limit
cycles we have in each leaf.

Definition 37 We say that K is a uniform bound on the number of
limit cycles by leaves for a folidted local vector field £ (in short a uni-
form bound for ) if, for each L belonging to the mazimum foliation F,
the number of limit cycles of the restricted field X is not greater than
K. If such a bound exists for a given foliated local vector field £, we say
that € has the finiteness property. '

The most important property of the three operations described be--
low is that they preserve the finiteness property, i.e. if a uniform bound
exists for £, obtained from £ by one of the desingularization operation,
then £ has also the finiteness property.

Induction.

Definition 38 We say that £ = (FxA,w, A, X1) is induced by another
Jamily € = (F x A, 7, A, X5) if there ezists an analytic map ®: A — A
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such that for any A, (X)) is topologically equivalent to (Yq;(,\)). Observe
that if K is a bound for (X5), then it is also a bound for (X).

Local division.

Definition 39 Given two local vector fields X, Y on E, we say that Y
is the result of local division of X if there is a finite open covering {V;}.
of E, for which both X and Y are defined by local vector fields X;, Y:
and analytic functions f; : Vi = R such that : X; = f;Y; on V..

The functions f; may have zeros and Y may have more limit cycles
than X;, but any limit cycle of X is also a limit cycle for Y. So that if
Y has the finiteness propertly, it i3 also the case for X.

Generalized blow up.

First, we define the global blow-up at a point in the context of
foliated local vector field. Let £ = (¢,n,A,X) and p € E. Suppose
one chooses local coordinates (z,,---,z,) around p, (A, -, A) around
#(p) where 7 is monomial (as above). Suppose chosen a system of
weights (ay,---,a,) € N*. We can define a map in coordinates :

w: S 'X R = R by =7%%= (1 Zq,- -+, 7" Fy).
We define a blow-up space :

E=(B\{ph)US"" x R*/ ~

where ~ is the identification (Z,7) € S*™! x B* ~ Top(Z,7) € E and
T is the coordinate map T : R* — E. ,
Now, the blow-up map @ is defined by the commutative diagram :

S*lx Rt — R
z’l JT (6.62)

E 2, p

We denote by D the set i(S"! x {0}) ¢ E which is the critical
locus of ®.
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Now, we look at the effect of such a blowing-up on a vector field
defined near p. So, let X a vector field in W = T'(R") with X(p) = 0.
Then, an easy computation shows that there exists s € Z such that
r* ®71(X) = X is an analytic vector field on S™! x R*. We take
the minimal such s. If £ = (E,r,A, X) and X(p) = 0, the above
operatlon gives a well-defined local vector field X on E, such that
X1 Bo =~ X|g\{p)- Finally, the blown-up foliated local vector field of €
is equal to £ = (E,%,F\,Y) where A = A and # = 7w 0 ®.

One can generalize the blow-up operation by replacing p by some
compact submanifold C C E. If cod C = n, this submanifold is subject
to some restrictions : in order to blow-up with a given system of weights
(a1, --,n) we need that the embedding C' C E has the so-called
admissible irivialization by an atlas of charts W; ~ U; x R*, where
U; is a chart in C and moreover that the projection = on each W; is
monomial in the normal factor R". See definitions and details in [DeR).

If the above conditions are fulfilled and if C C Z(X), the sét of zeros
of X), then we can blow-up FE along C, using the weights {c1,- -+, ).
We produce a new foliated local vector field £ = (&, %, A, X) where :

- E is the blown-up space,
-T=mn0®, where @ : E — E is the blow-up map,

- X is a local vector field on E which is equal to ®71(X) on E\D,
where D is the critical locus of ® (D is a fibered bundle over C, with
fiber diffeomorphic to S™~1).

Because C' C Z(X), we do not destroy any limit cycles of X. The
blowing-up may disconnect some leaves, but each leaf of £ is covered
by an uniform finite number of leaves of £, so that, finiteness property
for £ implies finiteness property for £.

6.3.3 Conjectures.

Definition 40 Let £ = (E,m, A, X) be a foliated local vector field and
p € E be a singular point of X(p € Z{X)). We say that p is an ele-
mentary singular point, if for each L € L,, the point p is an elementary
singular point of Xy, (i.e. the I-jet J*X;(p) has at least a non-zero real
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eigenvalue). Nole that p may belong to the critical set ¥ and in this
case, p € L. means that p € L. £, may contain many leaves L.

We say that a compact invariant set I' is a limit periodic set of
E if there erists a sequence of limit cycles of £ which converges to T
in the sense of the Hausdorff topology in C(E), the topological space of
compact, non-empty subsets in E. A limit periodic set is said elementary
if each of its points is either regular (X{(p) # 0) or is an elementary
singular point.

Remark 45 [i seems possible to show, using Poincaré-Bendizson the-
orem like in chapter 2, that each elementary limit set is formed by a
finite number of arcs, each of them being either a regular trajectory or a
normally hyperbolic arc of zeros, and e finite number of isolated singu-
lar points. Besides, each of these ares would be confained in the closure
of one of the leaves of F, and the singular poinls in T would be in ¥,

Such a curve is similar to the degenerate graphics of families in-
troduced in chapter 2, with the difference now that I' can go through
several leaves and the critical set I.

Such elementary limit sets may be see in figure 6.12 above.

Definition 41 A step of desingularization is a correspondence :

_ {&}ier = {&;}agers
between two collections of folinted local vector fields, satisfying the fol-
lowing conditions. Let be & = (E;,m;, A;, X;). One supposes that there
exists a collection {E3}yerxa, G = (Eij, Tijy Aij, Xij) such that :

(1) E;; C E; for all (2,]) elxd

(2) for each i € I, every non elementary limit periodic set of £; s
contained in the interior of one of E;j,

(3) for each (z,5) € I x J, the mazimal foliation of £; is the trace
on Ei; of the marimal foliation of &. Moreover, there is an analytic
map ;; : Aij — A; such that Titg,; = Pij © Tijs

(4) for each (3,7) € I x J, &; is either equal to £y or is induced
from E; by one of the three desingularization operations of the previous
paragraph.
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Using the above conditions, we can now formulate two conjectures :
Desingularization Conjecture.

For any analytic family (X)), A € A some compact analytic man-
ifold, on 5%, a finite number of desingularization steps can be chosen
such that in the resulting final collection {&;} of foliated local vector
" fields any limit periodic set is elementary.

Reduced Local finite Cyclicity Conjecture.

Each elementary limit periodic set I' of an analytic foliated local
vector field £ = (E,n, A, X) has a finite cyclicity property, i.e. there
exists € > 0 and K € N such that for each leaf L € F the number of
limit cycles of £, at E-Hausdorff distance to I" less than &, is bounded
by K (we suppose chosen some metric on E).

Now, as for the compact families in chapter 2, the finite cyclicity
© property for each limit periodic set implies the finiteness property for

£:

Lemma 24 ([DeR]). If each limit periodic set of a foliated local vector
field £ has a finite cyclicity, then £ has the finiteness property.

A finiteness conjecture for compact analytic families was formulated
in chapter 2 (section 2.2). We can now replace it by a more elaborate
one, in fact by the two above conjectures :

Proposition 19 Desingulerization Conjecture together with Reduced
Local Finite Cyclicity Conjecture imply that each compact analytic fam-
ily on: S% x A as the finiteness property.

Proof Suppose that after & desingularization steps we have obtained a”
final collection of foliated local vector fields whose limit periodic sets are
elementary. It follows from the above lemma and the second conjecture
that each foliated local vector field £ in this collection has the finiteness
property.

To finish the proof, we repeat this argument inductively. Suppose
we have proved that in the s** step of desingularization, s > 1, all
foliated local vector fields have the finiteness property. Let £ be one of
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the foliated local vector field of the (s — 1) step. Since the finiteness
property is preserved by the three desingularization operations, each
non elementary limit periodic set of £ has the finite cyclicity property.
Each elementary limit periodic set has it too, as it follows from the
second conjecture. So, £ has the finiteness property as a consequence
of lemma 7. Therefore, by a finite induction, we obtain the required
result. . "

6.3.4 Final comments and perspective.

The desingularization method was useful to study several unfoldings
and to obtain their diagrams of bifurcation. I have presented in the
paragraph 2 a detailed review about the study of generic unfoldings of
cuspidal loops, to appear in the forthcoming publication [DRS3]. Some
other examples of the desingularization method were given in [DR2] for
the unfolding of codimension 3 nilpotent focus and for the Van der Pol’s
singular perturbation equation in [DR3]. In each of these examples the
singular points have a non-zero linear part : if degenerate, they must
be nilpotent. Moreover the desingularization needed just a one-step
global blow-up.

A first step in direction of the desingularization conjecture proof
is to consider families where any singular point has a non-zero linear
part. As said before all the already studied bifurcations verify this hy-
pothesis. It includes singular point of finite codimension whose 1-jet
is nilpotent (the codimension 3 was studied in [DRS2] and also the
generic “turning points” of singular perturbation equations of any fi-
nite codimension. In [PR1] we proved that such families can be reduced
to families with isolated nilpotent point (but perhaps with non-isolated
elementary singular points) and we proved a Poincaré-Bendixson the-
orem in these last families : any limit periodic set must be a graphic,
degenerate or not (as defined in chapter 2). In a forthcoming paper
[PR2] we intend to prove the Desingularization Conjecture for families
with isolated nilpotent points (the other points have to be elementary):
for instance, the local differential equations at a nilpotent point of finite
codimension write :

E=y, 5= (o +-) b y(Bat+ ) +4°Q, with @, B£0; (6.63)
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by blowing-up one does not produce more complicated points than iso-
lated nilpotent one (isolated among the other nilpotent ones) ; moreover
it is possible to introduce at each singular point of the foliated local
vector field we obtain by induction an index (%,¢,s) which decreases
strictly (in the lexicographic order) at each step of blowing-up. (For
nilpotent point of finite codimension (6.63), the index is (k, ¢, 0)).

A general theorem for the desingularization for holomorphic line
fields (i.e. holomorphic smgular foliation of dimension 1) was proved
by Trifonov :

Theorem 34 [Tr] Let # : E — A an holomorphic fibration with an
holomorphic line fields £ tangent to the fibers. Then, there exist another
fibration 7 : E— A and holomorphic proper surjective maps II : E—
E, ¢ : A — A such that the following diagram is commutative :

2, E

x , (6.64)

2
S SR

Moreover there ezists a line field £ on E, whose image (%) is £ (for

each regular point p of € : dO(B)((p)) = £(D(P))), and every singular
point of £ is elementary.

We can translate this theorem to real analytic line fields and also to
analytic vector field families. But the Trifonov’s theorem just looks at
the foliation defined by the vector field : if f is an analytic non trivial
function the vector fields X and fX define the same foliation.

So that the transcription of the theorem 9 for real analytic vector
field families is :

Given an analytic vector field family (X,) deﬁned on E =8 xA
for instance, one has an enalytic vector field family (X5) on E=8xA

and analytic proper surjective map &, & as above such that ‘I',,(X ) =
( '1’(5\)) Moreover for (o, o) € E there exists an analytic function f

and a vector field ¥ defined in a neighborhood of iy € , 5 such that po is
a reqular or an elementary singular point of V and X~ = f¥.
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So, the zeros of XUI., may be non-isolated and moreover the factor

f(p) cannot be extended in general in a neighborhood of (B, o) to
divide the family X. As a consequence, the non-isolated zeros (in some
- fiber) are unavoidable. In fact, at such point, the family is equivalent
at singular perturbation equation by a singular change of time (see [I]).

As a simple example one can consider the family : ¥y — 37 + & — which

Oz
has a normally hyperbolic line of zeros at ¢ = 0.

At a nilpotent point p, a vector field X writes X = fY which
df(p) # 0 and Y(p) # 0. So that, nilpotent points are elementary
points in the sense of the Trifonov result. The aim in [PR2] is precisely
to complete the desingularization of such unfoldings, and in particular
to get rid off non normally hyperbolic lines of zeros.

In the Trifonov theory one just looks at X up to a multiplicative
function f, because one is just interested in the foliation. It seems
rather clear that the methods used in [Tr] may be used to desingularize
simultaneously ¥ and f i.e. to obtain a desingularized family where
at each point (Fo, Ao) X5, = f.Y with pp a regular or an elementary
smgular point, and f non zero or such that {f = 0} has normal crossing
at po, transversal or tangent to the field Y. If this result was true, we
will have a finite simple list of possibilities to study. In each case it is
possnble to write a sunp]e analytic normal form for the germ of X at

=0¢€ R%:

(a) X =g* [’% k> 1 (for k=1 : line of nilpotent points).
(b) X = y* a% k > 1 (for k = 1: line of normally hyperbolic
points).

a ]
okt i
(X =z*y (3: a$+y ay)’ k> l,l.?Z 1 (f has a normal crossing
and Y # 0 is transversal to {f = 0}).

(d) X =z*y* 6%’ k>1,£>1(f has a normal crossing and ¥ # 0
in tangent to {f = 0}).
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................................

Figure 6.22:

(e) X =z* Y, k> 1 (Y is finite codimension semi-hyperbolic point
and is tangent to {z = 0}).

(f) X =z yY, k> 1,£> 1 (Y is as in () and tangent to {z = 0}
and {y = 0}) (see Figure 6.22:).

The point (b) for £ = 1 is already elementary in the sense of this
chapter and {a), for k = 1, was treated in [PR1]. The first step, to treat
the other cases would be to obtain a good normal form theory for the
unfoldings, and next to apply the desingularization method explained
in the last paragraph.



6.3. A METHOD OF DESINGULARIZATION FOR... 243

- Once the desingularization conjecture is proved it will remain the
second conjecture : prove the finite cyclicity conjecture for elementary
limit periodic sets which appear in a foliated local vector field &,

In the chapter 5, we have looked at unfolding of elementary graphics.
 They correspond to elementary limit periodic sets I' which belong to
the interior of some leaf of £, i.e., such that TN X = @ : in this case £
is equivalent in a neighborhood of " to an usual unfolding. The study
of the cuspidal loop in paragraph 2 of this chapter gives some ideas on
difficulties and ideas we can use in the general case. A new problem,
as we have seen, is to take into account transitions near the elementary
points in [' which are located in the singular set ¥ of £,
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