LECTURES ON SPECTRAL
GEOMETRY

Pierre H. Berard



COPYRIGHT © - 1985 ~ by Pierre H. Berard

Nenhuma parte deste livro pode ser reproduzida,

por gqualquer processo, sel a permisszo do autor.

LECTURES ON SPECTRAL GEOMETRY

Some aspects of direct problems in spectral geometry

by

Pierre H. BERARD

with an Appendix by Gérard BESSON

Département de Mathématigues
Université de Savoie

BP 1104 73011 CHAMBERY cédex

INSTITUTC DE MATEMATICA PURA & APLICADA
Estrada Dona. Castorina, 110

22,460 - Rio de Janeiro - RJ



a Rachel, com muito carinho






Introduction

Chap.
Chap.
Chap.
Chap.
Chap.
Chap.

Chap.

Appendix

Bibliography

References

CONTENTS

{p. 1 to 5}

: Motivations and the physical point of view {(p. I.1 to I.19)

Topics from Riemannian geometry (p. II.1 to II.21)

: The Laplacian and related topics (p. III.1 to IIT.31)

: Isoperimetric metheds (p. IV.1 to IV. 18)

: Isoperimetric methods and the heat equation (p. V.1 to v.17)

: Geometric applications of isoperimetric methods (p. VI.1 to VI.26)

: A brief survey of some recent developments in spectral geometry

{p. VII.1 to VII.10)

: Symmetrization revisited, by G. Besson (P. A.l. to A. 29)

Le spectre d'une variété riemannienne en 1982, by P. Bérard and
M. Berger (p. B.l to B.57}

{(p. R.1 to R.6).






INTRODUCTLION

The purpose of these notes is to describe some aspects of diract pro-
blems in spectral geometry.

Eigenvalue problems were motivated by questions in mathematical physics.
In these notes,we deal with eigenvalue problems for the Laplace-Beltrami opera-
tor on a compact Riemannian manifold. To such a manifold (M,qg) we can associate

a sequence of nonnegative  real numbers {xi} the eigenvalues of the Laplace-

ixl’

g acting con c®(M}. One can think of a Riemannian manifold as

Beltrami operator A
a music instrument together with the musician who plays it. In this picture, the
eigenvalues of the Lapla<~e operator correspond to the harmonics of the instru-
ment ; they depend very much on the music player i.e. on the Riemannian metric :
think of & kettledrum (os brasileiros podef36 melho? imaginar a situagfo pensando
~num sambista tocando uma cuica).

Spectral geometry aims at descriking the relationship between the music
instrument and the sounds it is capable of sending out.

The problems which arise in spectral geometry are of two kinds : direct
problems and inverse problems. In a direct problem we want information on the
sounds produced by the instument, in terms of its gecmetry. For example we know
that the bigger the tension of the parchment head of a keptledrum, the higher
the pitch. In an inverse problem we investigate what geometric information on
the instrument can be r;covered frém the sounds it sends out.

Both types of problems are relevant to deep questions arising in mathe-
matical physics (for example in elasticity theory, in plasma physics, in spectro-

SCopy...).



In Chapter I we give some very simple_minded motivations from mathema-
tical physics. Our purpose is not to derive mathematical models for some phy-
sical phencmena, but rather to show how some mathematical objects which will
be introduced later on arise naturally from physical principles. For further
reading we suggest [C-H] and [TL].

Chaptex II is devoted to Riemannlan geometry. We introduce the basic
notions (gecdesics, curvature,...) and we state, mainly without proofs, the
basic results. In order to understand chapter VI the reader must have in mind
the theorems which involve the curvature of a Riemannian manifold. For further
reading we suggest [CO], [M=-S} and [5I1].

In Chapter III we introduce the Laplace-Beltxemi operator and we des- -
cribe the eigenvalﬁe problems we will deal with in this heok. An iﬁportant part
of this chapter is devoted to the variational characterizations of the eigen-
values. This is very important for later purposes. Although this material can
be considered as classical we have tried to describe it atlength.

The last paragraph
of Chapter III contains general considerations on direct and inverse problems
and some answers to such problems via the variational characterization of the
eigenvalues.

Chapters IV to VI form the core of this book. They contain results rela-
ted to isoperimetric inequalities and to an impertant topic in Riemannian geome-
try namely the interactions between local geometry (curvature estimates) and
giobal geometry (topology...). Many bf the results we present in these chapters

are new and were not yet available in print. These results were obtained in col-

laboration with G. Besson and §. Gallot [B-B-G i to 31,[sB-c1.



In Chapter IV we introduce iscperimetric methods on compact
Riemannian manifolds without boundary. The general setup we describe in S B,
as well as the proof we give of Cheeger's estimate on the first non-zero eigen-
value of a Riemannian manifolds, are new. They arose frog the above mentionned
papers and from brainstorming sessions with G. Besson and 5. Gallot.

In Chapter V we introduce the heat equation and then go directly to the
main tool in this book : the isoperimetric inequality for the heat kernel. The
ideas we develop here are those of [B~G]; time has ripened our understanding,
so that the presentation is different from that of [B-G] and more in the spirit
of Chapter IV. This Chapter also matured frow brainstorming sessions.

Chaptexr VI is devoted to some applications of isoperimetric inequalities
to Riemannian geometry. We use the ideas of [B-G] and the isoperimetriec inequa-
lity cbtained in [B-B-G1] to give bounds on topological invariants. The under-—
lying method is the analytic method intreduced by Bochner in 1945 and further
developped by P. Li and §. Gallot in the early 1980"s. At this point we use a
new idea (that of using Kato's inequality) which is due to M. Gremov and came
to life with the isoperimetric inequalities on the heat kernel given in [B-GI.
It is important to read this chapter keeping in mind the coppactness theorems
of M. Gromov. These theorems are briefly described in the last paragraph of this
chapter (see [SI] forx a review).

These last three chapters are completed by an appendix by G. Besson
(see comments below).

Spectral geometry witnessed much research activity since the late
1960's. In Chapter VII we very briefly sketch some of the important recent
developments.

In the appendix,G. Besson shows how one can think of symmetrization



procedures as relationships between Riemannian geometry/Spectral geometry on
the one hand aﬂd operator theory in a Hilbert spaces on the other hand ; he .
views Kato's ineguality given in Chapter VI and the symmetrization & la Faher-
Krahn given in chapters IV and V as particular cases of a unique geuéral
theorem. This interpretation is important because it distinguishes gdometric
techniques (iscoperimetric inequalities) from analytic techniques (gquadratic
forms and operator theory) ; it also makes the difference between technicali-
ties and fundamental ideas.

I am very grateful to G. Besson for writing this Appendix.

This book includes a bibliography which I compiled in collaboration
with M. Berger. I would like to thank M. Bexger for allowing me to include it
here. This bibliography is reproduced from the printed original ; I thank the
editor Kaigai Publications (Japan) who left us the copyright. This bibliography
is referred to as [B-B} in the text. It is divided into several chapters dea-
ling with the different aspects of spectral geometry. Although the title
refers to 1082,we revised the hibliography in September 1983 ; it should help
the reader through the vast literature on spectral geometry.

This boock was written both as a suppert for,and as a complement to
lectures delivered at the 15° CDlo&uio Brasileiro de Matemé%ica, July 1985.
Although we have tried to give many complete proofs, we deliberately put em-
phasis on ideas rather than on technicalities. We think that it is important to
understand the ideas and the underlying philésophy.in the theorems Qr in the
methods in order to be able to apply them to solve open problems. In a sense
thié book is an invitation to spectral geometry rather than a course on spectral
geometry.

It is a pleasure for me to thank Mrs M-p Cordel and P. Strazzanti who



typed the manuscript with much care and competence.
T
I thank the Organizing Committee of the 15° Cologuio for the opportu-

nity to give a course on spectral geometry.

I profited very much from regular brainstorming sessions with
G. Besson and S. Gallot over the last three years. This book is an outgrowth

of our collaboration, I owe them very mach.

I dedicate this book to Marcel Berger in acknowledgement of his

teachings.






Chapter I
MOTIVATIONS AND THE PHYSICAL POINT OF VIEW
§ A. An elementary example

More

n® 2-20 : The vibrating string ; The principle of least potential
energy ; Admissible functions and boundary conditions ;

Hamilton's principle and the laws of motion ;

The method of separation of variables

n® 21-26 : Separation of variables ; Eigenvalue Sturm-Liouville
problems ;

Generalizations

n® 27-36 : The vibrating membrane ; Eigenvalue problems;

Other points of view

n® 37-48 : The Dirichlet or energy integral ; The Laplaclan ; The
Rayleigh-Ritz quotient ; The point of view of partial dif-
ferential equations ; The point of view of spectral theory ;
Quadratic forms vs physics.

references

rartial differential equations : [GN], [G6-T1, [®yl, [TLl, [Ts], [WR]
Speétral theoxy : [R-s], [sw]
Other possible references for motivations and results : [BE], [C-H],

Ccrl, [TL]






1. The purpose of this chapter is to introduce some basic concepts which
arise naturally from problems in mathematical physics. Qur presentation might
appear childish...: we do not aim at establishing good mathematical models for
some elasticity problems. We only want to show how the notions of energy inte-—
gral, variational methods, boundary conditions, wave equation, separation of
variahles, elgenvalue problems... arise naturally from problems in mathematical
physics and how they are related to other fields in mathematics (partial dif-

ferential eqguations, spectral theory, Riemannian geometry).

A. An elementary example
2. Let us consider a homogenecus elastic string 5 whose position at rest

is represented by the line segment[ 0,7 in the plane. The string being elastic
the tension forces are tangential to the string. The string being homogeneous,
the linear density ¢ and the tension ¥ of the string are constant along the
string.

The first problem we shall deal with is that of the equilibrium posi-

tion of the string S submitted to an external force which acts in the plane,
transversally to the string, with intensity £({x)

A

/\_y—\

¥

Y




I.2

We represent the equilibrium position of the string by a function
u : [0,L]+R, the amplitude of the deflection of the string, therefore assuming
that the points of the string can only move transversally.

The potential energy of the string consists of two terms : the
energy Et(u) vwhich arises from the tension M and the external energy Ee(u)
which arises from the force applied torthe string. The energy Et equals the
tension times thg increase of length of the string ; the external energy is
the werk of the force f. We have

L
E, (u) =u[J (1+(u'x)2)1’2dx -

Q

L] ;
(3)

L .
E (u) = J flxlu{x)dx.
€ 0

We shall now make the assumption that the deflection of the string is

"very small" in the sense that we can replace {1+(u;)2)1/2 by % (u'x)z. The
potential energy of the string can then be replaced by

L 2 L
(4) E{u) = %J (') “ax + J £(x) ulx)dx.
o % 0

In order to find u we apply the principle of least potential energy
which says that a stable equilibrium u is a local minimum of the energy E,
which implies that

(5} 4 E(utev)| =0
de
£=0

where utev represents a position of the string close to the equilibrium u.
If we plug conditien (5) into (4) we find

L L
(6} uj u' v' dx + J flx)vix)dx = 0 .
o * % 0



I.3.

We can of course take local variations v i.e. variations with compact
support in ~J0,L[. Taking such a variation and integrating by parts we find'
. . a0
that for all v~ -in_CO(]D,L[),

L .
E~n u;x:+ £(x)] vix) d&x = 0 and hence

ovY—

2
M w2 = £t loul
dx
8. REMARK. We have made implicitely the assumption that u 1s twice dif-

ferentiable in order to be able to write (7). We shall show how one can make

weaker assumptions later on (n® 43 )

9. Let us now take the function v in CW(EO,L]). Equation (6) becomes,
after integration by parts,
L L
v - u
putv [+ jo (£(x)- Buy ) vix)dx = 0
Taking (7) into account we then have

(10) u' (LyviE) - u'x(O)v(O) =0 -

The fact that one can take one v or another depends on the physical
problem at hand. If we do not impose any condition on v we deduce from (10)

that u must satisfy the natural boundary condition (Neumann boundary condition)

(10N) u'x(O) =0 and u'x(L) = 0.

If we assume that the string is fixed at both ends (think of a violin
or a piano string) we must impose that the deflection of the string is 0 at
x=0 and x=L. This means that both u and v must satisfy the boundary condition
{Dirichlet boundary condition }

{10D) u{0) =0 and u(L) = 0



In that case (10) is void. The boundary condition (10N) corresponds to
a free string for which all deflections are allowed or admissible. The boundary
condition (10D) corresponds to a string which is fixed at both ends. We then
impose that the deflections satisfy u{0)=0 and u(L}=0. It is rhysically very
intuitive that such conditions must be imposed to determine the equilibrium

position of the problem under consideration.

11. SUMMARY. In order to determine the equilibrium of a string submitted
to a transversal external'force £ we can

(1) either seek the local extrema of the energy

L 2 1.
(u‘x) dx + J f(x) u(x) dax

Efu) = H-j
2 0

0

when u varies in a space of admissible functions corresponding to the physical

problem under consideration ;

(i1) or solve the equation

dzu
n —'—E(x) = £(x) 4in 1:0,L[
dx

where some boundary conditions are imposed to u at x=0 and %=L, depending on

the problem which is considered.

Examples :

Dirichlet problem (string fixed at both ends) :

. RAdmissible functions : u € Cz([ G, L]} (see n°8) such that u(0}=u(L)=0
{(utev must also be admissible)

- Boundary conditions : u(0)=0 and u(L)=0
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Neumann problem (free string)
. Admissible functions : u € Cz([QIJ) (see n°8)
. Boundary conditions : w'(0)=0 and u' (L}=0

{imposed by the least potential energy principle).

12. Let us now consider the problem of the vibrating string i.e. let us

determine the laws of motion of an elastic string. We denote by u : R¥ [0,L]+R
the deflection of the string which is assumed to be transverse and small {in
the sense used to derive (4)). The function f considered above may alsoc depend
on the time parameter t. We then have to consider the kinetic energy of the

i

string, namely

Ly 2
(13) Ek(u) = [0 -ﬁ-p(u't) (t,x)dx.

Let t1 and t2 be two instants of time. Hamilton's principle states that

the motion u(t,x) of the string between time t1 and t2 should minimize the

expression

2
J{w) =J ! { %p(%%(t,x))z - %u(g%)z(.t,x) - £{t,x)u{t,x) }dtdx
t, 10
1

among all admissible moticons close to u, taking the same values as u at t=t1,

and t=t2 i.e.

(14) %E J{urev) |

1
o

e=0
for all admissible functions v such that v(ti,x)=0 and v(tz,x)=0 for all x
in [O,L].
The adjective admissible refers to functlons describing the physical

problem under consideration as above (see n°% to 11).
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Applying Hamilton's principle with V—E‘Cm(meG,L]) satisfying

v(tl,x)=0 and V(tz'x)=0 for all x, and integrating by parts, we deduce from

(14) that
t2 B 82 32u
J J {D‘*g'(t,x) -11——5(t,x) + £(t,x) }vit,x)dt -dx
t 0 ot ax

1
t I
+J zu?—(t,x)v(t,x)dt [ =0 .
x® h
t 0

The cholece of v being arbitrary we conclude that

2 2
15y p 22 (e, -5 26,0 + (6,0 =0 in®xo,LL
3t x
. L
(16)  Ee,0vit, x| =0 for all admissible v and all ¢ .
. (4] L

In the case of a string with free ends (i.e. no conditions on u and v)
(18) gives (Neumann conditiong)

3 . _
{16m) —:—-;—(t',f))=0 and -a-;{}-(t,L)=O" for all t.

In tﬁe case of a string with fixed ends, we must impose u{t,0)=u{t,L)=0
and v(t,0)=v(t,L)=0 for all t. Conditions (16) is then always satisfied and we
write the condition that u is admissible (Dirichlet conditions)

(16D) u(t,0)=0 and u(t,L}=0 for all t .
Equation (15) is called the one-dimensicnal wave egquation (the space

variable x being one-dimensional).

17. ‘REMARK. In order to be able to determine the motion uit,x) of the string
we need equation (15), boundary conditions e. g. {16D) or (16N} and initial condi-
tions ; these initial conditions already appeared in the statement of Hamilton's
principle ; we also consider the Cauchy data u(to,x)=u0(x) and u't(to,x)=u1[x),

¢ = x £ L, which describe the string at time to-



18, SUMMARY. In order to determine the motion of a vibrating string submit-
ted to a transversal external force f we can

{i) either seek the extrema of the integral

t L

2 1 u,2 1 . 3u 2

J{u) = J [ Folz) " - iz " - fu)dtdx
tl 0 273t 2 7 ax

when u varies in a space of admissible functions corresponding to the
physical problem under consideration ;
{ii) or solve the egquation

p—=—=-u—7F-£=0 in R x]0,L[

with initial conditions ulty.x)=uy(x) ),x in [o,L]
{.ué(tﬂ.x)wl (x)}
and boundary conditions at x=0 and x=L. (e.g. Dirichlet or Neumann conditions
describe in n°11).
We can reduce the problem of the equilibrium to the present one by

making all functions independent of the time variable t.

19. SOME COMMENTS
(a) Equations and boundary conditions : the transversal force acting on

the string could also be related to the defiection u(t,x) e.g. this could be
an elastic force proportional to ul(t,x} ; we could also assume that there is
a force acting on the ends of the string e.g. the ends could be elastically
attached instead of fixed. Such conditions can give rise to others contribu-

tions to the enexgy of the string.



I.8
{b) Considering elastic bars instead of strings we would arrive at the
following situation

t L
2 M w2 1 B 2
L T(u) = Jt !0 {zp(x)(at) 2 u(x)(ax) fu} dt ax
(20) 1
R 3u
. pi(x) ;;E - Eg(u(x)izﬁ - £

[
o

where p(x) is the linear density of the bar and where u{x) describes the elas-—
ticity of the bar (both functions are positive). We assume these functions to

depend on the space variable x but net on the time variable t.
REFERENCES
fc-H] Chap IV § 10 p 242 ff

(FOl chap. 5 p 130 ££f {p 168 for the elastic bar)

B. The method of separation of variables

21. In oxder to study the wave equation which appears in (20) it is conve-
nient to look at a simpler problem namely the case =0 and to seek solutions

u{t,x) of the form F{t)G(x)} (i.e. to separate variables, a method which goes

back to the 1atp century) .

Equation {20} becones

2
a‘F 4 ac ~
(22) p{xX)G(x) 5;5‘(t) - F{t) a;-(u(x)a;{x)) =0

which is easily seen to split into two equations
d dG
1. E;{u(x}a;{x)) + Ap(x)G(x) =0 , xe 10,L[

(23)

2
2.9——2-(t)+ AF(E) =0 , teR
at

for some constant A.



If we now recall that u(t,x) must be an admissible function e.g. that
it satisfies one of the boundary conditions (16D) or (16N), we have to impose
boundary conditions on G e.q.

G(0) = G(L) =0 {Dirichlet conditions)

(24) or

G'{0) = G' (L) = @ (Neumann conditions) -

Let us for example consider the Dirichlet boundary conditions. We are

led to the Sturm-Liouville problem

uix}G  (x) )} + ap(x)G(x} =0
(25)
G{0) =G{L) =0 .
It can be shown {({SR] chap.IV) that the )'s for which (25) has a non-

trivial selution form an infinite sequence 11 < A.<...+ +o of positive real

2
nurbers going te infinity (these numbers are called the eigenvalues of the
Sturm-Liouville problem (25)). To the eigenvalue An of problem (25) corresponds
a ‘one dimensional space of eigenfunctions.
We can choose an eigenfuncticn Gn corresponding to An’ normalized by
[Z p(x}Gi(x)dx = 1. The basic fact is that a given function f(x) can, under

certain mild conditions, be represented by an infinite series in the Gn's H
oo

£{x) = § a G (x).
n=1 ’

The case of Fourier-sine series is a particular case of this fact

{ y= 1, p=1). Let us make some formal computations. The functions which

appear in equation (20) can be written as infinite series in the Gn's {as far

as the % variable is concerned ; we thus have (summations from 1 to «)



£(t,x) =L an(t)Gn(x)

-~

uf{t,x} =1L bn(t)Gn(x)

u(tl;),x) = uo(x) =-E ann(-x) ;

ué(to,x) = ui(x) = I dnGn(x).

At least at the formal level, plugging these_series into equation (20},
we obtain

b"n(t) + Anbn(t) = an(t
{26) bn(to) =, nin®
b'n(to) = dn

Since it is easy to solve (26), we have an expression of u(t,x) in terms
of series representing £(t,x}, ultg ¥}and ug(tg,x).

These formal calculations explain why it is so important to determine
the eigenvalues of the Sturm-Liouville problem {25). In these notes we shall
deal with generalizations of the situation we have just described.

For more details on Sturm-Liouville problems and their eigenfunctions
expansions we refer to [C-H]l , [SR] Chap IV and [FO] (for the case of Fourier

series), or [D-M].

C. Generalizations
27. Let us now consider a vibrating homogeneous membrane whose position at

rest is represented by a bounded, regular domain @ in R2. We are again interes-
ted in transverse vibrations of the membrane (i.e. normal to the plane Rz).

We denote by ult,x), (t,x) e Rx {3, the.amplitude of such a vibration.
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In order to make, things simpler, we shall assume that no external force acts
on the membrane and that the membrane is either fixed on its boundary aQ{this is

a drum) or free. The corresponding admissible functions in the sense of n°®10-11

are in ¢? () and assumed to vanish on the boundary 3§ when the membrane is
fixed (no condition when the membrane is free). We denote the density of the
membrane by p and its tension by u . The kinetic energy of the membrane is gi#en
by
1 [,8u2
(28.1) Ek(u} = E'DJ(E;? (t,x)dx
Q

and the potential energy is given by u times the increase of area of the mem-

brane, i.e.

1/2

uj[(l +|vxulz(t,x)) -~ 1] ax

Q
which we shall approximate {(under the assumption that the vibration is "small',

compare with n® 3-4) by

1 2
(28.2) E (w) = 5—quVu§ {t,x) dx

Q
where Vu is the gradient of u in_the x-variable i.e.

Yu{t,x) = (——I (t, x).B 2(t,x)) if x = (xl}xz)

in Cartesian coordinates and, |x]2 = xf + xg for x € RZ.
in brder to derive the laws of motion of the membrane we again use
Hamilton's principle.
We define
t
1 2 au 2 2
{29) J{u) = E-J [p( (t,x) —u|Vu| (t,x}] 4t dx,
1 4

and we seek admissible functions u, such that for all admissible functionsv,

with v(tl,i)=0, v(tz,x)=0 for all x, we have
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d —_—
(30) 3T J(lutev) |E=0 = 0.

If we plug (29) into (30) we obtain
£ Ju v 7

J J Lo 3¢ a—t--u(Vu!Vv):] dt dx = 0
t1 Q

where (.!.) is the scalar product in mz.

If we apply integration by parts in the t-variable and Green's formula

in the x-variable (h belng the inner unit normal to an% we obtain

. 3% s
{31) J J(p—-2-+ pAuyv 4t dx - f J pv{Vu|n) dt do = 0
ot
ty Q 1:1 a8
2 2
3 u 3 u . .
where Au = ~(~—§-+ -_— (Note our sign convention)
ax ax

1 1

do = arc length on 3% .

If we take v with compact support in the x-variable (inside 2) we deduce
that u must satisfy the two-dimensional wave equation

2
{32} P g“% (t,x) +pdul{t,x) = 0 in R x Q.
It

If we deal with a fixed membrane we have to impose the condition that
u and v vanish on 3Q so that the second term in (31) is always 0 ; we then have

the boundary condition (Dirichlet condition).

(33D) ul{t,x) = 0 for all (t,x) e R x 3.

If we deal with a free membrane we can take a v in Cw(Rx ) so that (31)

and (32) imply that u must satisfy the natural boundary condition (Neumamn con-

dition)



(33N) (fuln) = 0 on R x 3@

(We shall write %% = (Vu|n)}.

For more details we refer the reader to [[C~H] Chap IV §10 p 242 f£f and

[p¥Y] p 7.

As for the vibrating string, we can now apply the method of separation of
variables and we have to deal with the following problem

AU(x) = AD{x) in Q
(34) U(x) = 0 ‘on 3¢ (for (33D)}

or

au {x} = 0 on 3(for (33W))

on
Problem (34) is far more difficult than its cne-dimensional analogue
(28). As was. shown by H. Poincaré at the end of the 19th century, problem (34}
admits a non-trivial solution for values of A which form an infinite sequence of
" non-negative numbers which increase to infinity, (Os)his 125... . Given an

eigenvalue A of (34}, the vector space formedby the solutions of eguation (34)

with A = ln is finite dimensional (its elements are called eligenfunctions as-
sociated with An).

In these notes we shall be interested in problems similar to problem (34)
with © (& domain in) a differentiable manifold and A an operator which will
generalize the oxdinary Laplacian in m?.

We shall not go into any further details now. The reader interested

in problem (34) may read the appropriate chapters of [TS].
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35. Let us now indicate a generalization of the above situation. In certain
problems of elasticity, dealing with non-homogenecus media, one has to consider
an expression of the potential energy of the following form

(36} Ep(u) = J Q(x,Vu) ax

Q
1
where Q(x,.) is a positive definite quadratic form on Rz whose coefficients are

functions of the space variable (in some mechanical problems Q(x,.) describes
the tensor of constraints). If we plug the expression {36} into (29) and if
we apply Hamilton's principle we obtain an equation similar to (32) with an
operator AQ which generalizes A . We shall meet such expressions later when

Q(x,Vu) will-be associated with some Riemannian metric on the manifold £,

D. Other points of view

Let us now look back at what we did in paragraphs A to C.

The energy integral

L
{1) E(u) =I. (u'x)zdx (in the case of the vibrating string)
o
(37) 4or
(ii) Efu) =J IVu|2dx {in the case of the vibrating membrane)
Q .

plays a prominent role. To this enerqy integral the variational approach as-

.soclates the Laplacian

(1) &4 = - 9—3' or - 2wy {one-dimensional case)
S hdx
dx dx
{38}
.2 42
(1i) A = ~¢ 3 + -wiﬁ (two-dimensional case)
Bx1 sz

(We_use the minus sign for convenience ; we shall kéep this convention

throughout this text).




Raving in mind the eigenvalue problems (25) and (34) and recalling
Lagrange's multipliers method we also introduce the Rayleigh (-Ritz} quotient
L L
(i} R{u) = J (u‘x)zdx / I u2dx {one~dimensional case)

0 0
{(39)

(1i) R{u} = J |Vu]2dx / J n? ax (two-dimensional case)
' : 7 ‘

I

where u is not identically zero. Indeed, if we write
] s R .
i R(u+ev) (e=0 =0, we f_:Lnd, say with (39ii),

(40) J<Vu,Vv> dx = R{u) J uv ax.
Q 1) -
Assume that (40) holds for all functions v in CO(Q) and let R(u)= A.
Integrating by parts gives

Aa = Ju in @ (A as in (38ii)1l)
SUMMARY - THE MAIN CHARACTERS OF THIS PLAY ARE

2
. the energy or Dirichlet integral J |7u|® ax
{2
. the (positive) Laplacian A (positive refers to the sign convention
(41) .
made above n°(38))
. the Rayleigh(-Ritz) quotient R{u)= [|Vu|2dx / J u2 dx

§t Q
42. In the preceding paragraphs, we have shown how the partial differential
equations governing the vibrations of an elastic string or membrane can be
deduced from Hamilton's principle, once we know the expression of the energy.
These partial differential equations involve the Léplapian A. The method of
separation of variables led us to some eigenvalue problems fof_the Laplacian.

These eigenvalue problems are related to the extrema of the Rayleigh qﬁotient

R{u) (or eguivalently to the extrema of the energy J |Vu|2 ax
1]
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under the constraint [ u2 ax = 1).
In
We shall now explain how these considerations are related to other points

of view or formulations.

43. Let us first deal with the peint of view of partial differential equa-
tions (P.D.E}. Let Q denote an elastic membrane which is fixed along 38 and
submitted to a transversal force f. In oxder to find the equilibrium position
of the membrane we have to look for local extrema of the energy
E(u) = J |Vu|2 dx +J £(x} u{x) ax.
Q Q
This leads us to the beundary value problem {compare with §A ; the admissible
functions are required to vanish on 3Q)
(44) Auf{x) + £(x) = 0 in Q , with the boundary condition
u{x} = 0 on 39.
Multiplying (44) by any function v in CE(Q) we cbtain, after integration
by parts,
(i)J <Vu,Vv> dx + Jf(x)v(x) dz = 0
sy 8
{ii} quv dx + J f(x)v(x)dx = 0
1] 1

If u is twice differentiable and satisfies (44) we say that u is a

classical solution of eguation (44}. If u is in Lioc(ﬂ) and satisfies equation

(45ii) we say that u is a solution of eguation (44) in the sense of distributions.
o2 . '

If u and |Vu| are in L°(Q) and if n satisfies (45i) we say that u is a weak

selution of eguation (44). We do not want to go into technical details here, for

precise definitions see [TS] or [&-T].



It turns out that it is much easier tc prove the existence of a weak
solution than that of & classical solution. Cnce the existence of a weak solu-
tion is proved (e.g. by using Hilbert space methods and appropriate Sobolev
spaces) one has to prove that the weak solufion ig indeed a classical solution :
one has to prove interior regularity in Q and regularity up to 3Q.

Note that the bilinear form [< Yu,V¥v >dx in eguaticn {(45i) is just the bilinear
Q

form associated with the quadratic form giving the energy,J|Vu|2dx.
!
46. We have seen (n® 2i-26) that it is wvery important to solve the eigenva-

lue problem Au = Au in @ with some appropriate boundary conditicn,e.g. the
Dirichlet boundary condition u=0 on 3fi. The Laplacian A is a linear {partial
differential) operator. We could view it as a linear operator from Cz(n) inte
CO(QJ but this is not so good if we want to consider the eigenvalues of A.
We could also consider A as a linear operator from c7(n} into € {Q). It turns
out that this is not an appropriate choice because the Cm—topology is too
complicated and because equation (45i) is so much related to the L2-inner pro-
duct in Q, (u,v)-*J ul{x}vix)dx = (u[v] (if we deal with real valued functions
or (u,v)-*J u(xJ;(x?dx if we deal with complex valued functions). It turns out
that the gogd choice is to view A as a linear operator on Lz(ﬂ), with domain
CB(Q) ; this means that we consider A as a linear operator from the dense linear
subspace C;(R) of LZ(Q) into Lz(ﬂ). Spectral theory was devised to deal with
such operators, The Laplacian has the following properties
(471) % u,v e Cp@). (Bulv) = (u|av)

we say that A is a symmetric operator
(4714) #®u e Co(@  (dulu) = Llwlz > 0

we say that A is a positive operator.
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It follows from a theorem of Friedrichs ([R-8] Vol II ) that A can be

2 . s
extended tc an unbounded self-adjoint operator Ae in L {f) . The manner in which

this extension is made depends on the bocundary conditions which are imposed on
3q .

In the finite dimensiénal case there is a very strong relationship
between selfadjoint operators and quadratic forms. This can be generalized to
more complicated situations. For example, in oxder to study the Laplacian A
one can study the quadratic form given by the energy integral u -+ J|Vu|2 dx
{see formula 47ii). Q

| Let us deal with an example. If we want to study the eigenvalue problem

S =Xdu in §
(48)

u(x} =0 on 89, |VU|de

we look at the Rayleigh quotient R{u) =

u2 dx

Q
In order to study R{u) we have to determine what are the admissible
. L . 2 2 2
functions. For u in € (Q} we define ||u[|1 = J u {x)dx + I]Vn(x)] dx.
Y f
We call HI(Q) (resp. Hé(ﬂ)) the completion of C {(R) (resp. C:(ﬂ)) for the noxm
||.||1° ret [].]]g, ||u||§ = J u?(x)dx, be the L’-norm. Since [uall =t]el]
: 0 1

for u e Cm(ﬂ), we have 2

m@ < utm e 12,

The admissible functions for the Dirichlet problem are the functions
in Hé(n) {we would take Hltn) for the Neumann problem). Since § is a compact
. 1
set the inclusion HO(Q} c Lz(ﬂ) is compact (this is the case for Hl(ﬂ) c Lz(n)

under some regularity conditions on 3f).
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From this it follows that

A (@) = inf {R(w) [ugl , u e Hé(ﬂ)}

is achieved on a subspace El(ﬂ) of Hé(n) i EI(Q) is characterized by the pro-
perty

ue El(n)<=> ¥v ¢ Hé(ub [<Vu,Vv>dx = Al(Q)J uv ax.

& n

In order to find the other eigenvalues one has to consider the ortho-
gonal B'') of B (@) in r?(0). One then defines A, (%) = inf{R(u) |u0 uer (@ na
+.. See n° III.18 £f.

This® manner of dealing with the eigenvaluce problem (48) is very close
to the underlying physical propertigs.

; 1, with the same physical pro-.

1
0

For example, consider two membranes £

1 2

perties and such that {1, < 92. We then have Hé(ﬂl) c H (92) and we conclude that

i
Al(nl) z AI(QZ) : the smaller drum has a higher fundamental tone.

As was already alluded to before, a Riemannian metric g on £ may account
for some physical properties (stress,...). Assume that one is given Q with two
Riemannian metrics 9y and 9y such that for any tangent vector U, g1(U,U} < gE(U,U).
Then, for any u in Cg(ﬂ), one has R(u;gl) b= R(u;gz) (recall that R involves the
dual metric) and hence li(ﬁ,gl) 2 Al(ﬂ,gz).

We shall see in chapter IIT n®26 that there are variational characteri-
zations of eigenvalues which are very similar to the one above for Al(ﬂ) (it is
good to keep the finite dimensional case in mind). These characterizatlons are
very important because they are very close to the original physical problems
through the Rayleigh guotient.

Tt will be important in the sequel to keep in mind the physical motiva-

tions we described in this chapter.
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n® 19-24 : Compariscon theorems for the sectional curvature
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§ C. The covariant derivative

n® 34-42 : The Levi-Civita connex ion con vector-fields and tensors

§ D. Curvature from the analytic point of view
n® 43-47 : The curvature tensor, sectional, Ricci and scalar curvatures
n® 48-53 ': The Hessian and higher order derivatives, the gradient vec-

tor field
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II.1
A. GENERALITIES

The purpose of this chapter is teo introduce the basic objects we
shall deal with in the core of these notes (chapters IV to VI)
Riemannian manifolds, curvatures, the covariant derivative...

The reader interested in Riemannian geometry itself is referred to

[B-G-M] chapters I and 1I, [c-E] or [cO] , for more details and proofs.

21l manifolds we shall consider will be c” connected manifolds

{unless otherwise stated).

1, A Riemannian manifold (M,g) is a manifold M equipped with a

Riemannian metric g : for any peint x in M,gx is a scalar precduct on the
o
tangent space TxM which depends ¢ on x {this can be checked in a local

coordinate system).

2. EXAMPLES

{a) (Rn,can) : the space Rn equipped with the usual Euclidean structure
is a Riemammian manifcld ; we can alsc consider (RF,gA), where A is a C map

from " to the space S+(n) of positive definite symmetric nxn matrices on &"

and gA(x,y)ﬂ(Ax|y) for any vectors X,y in " (here (.|.) denotes the usual
euclidean structure). We can alsc restrict our attention to a smooth bounded
domain D in B ; in that case 9 could represent a strain tensor inside the

body D.
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We call (Hn,can) the Riemannian manifold (B,gH) where B is the open ball
of radius 2 in & and for U,V tangent to X in B
ww - 202 g
gy (U V) = ) |
when |x] is the norm of the vector x in ®" .

This Riemannian manifold is called the n-dimensional hyperbolig sﬁace.

(b) Let £ : M » W be an imbedding of a manifold M inte R. The induced

N
‘metric g on M is defined as the pull-back by £ of the canonical metric on R

i
for any vectors U and V in'TxM we define gx(U,V) = (Ql]h@\n the scalar pro-
duct in RN of the images of U and V by the tangent map § to £ . A very impor-

tant instance of such a Riemannian submanifold of RN is the canonical sphere

: . + . . . . .
(Sn,can), where s" is the unit sphere in Rr" ! with induced Riemannian metric,

s? = {x € mn+1| (x|x) =1} (For example S1 in R2).

(c) The Riemannian product (MxN, gxh) of two Riemannian manifolds (M,q) and

(N,h) is defined in such a way that Phythagoras theorem be true : if (U,V)
(resp (U',V')) are tangent vectors at (x,y) in MxN then

(gxh)((U;V),(U',Vf)) = g{Uu,u') + hiv,v') .

Por example, the n-torus (Tn,can) is the product (Sl,can) n times (see

Example (b)).

3. An isomegzx £ : (M,qg) > (N,h) between two Riemannian manifolds is a
Iy n *® '
diffeomorphism f between M and N such that f h = g i.e for any x in M and U

in TxM N hf(x)(f*U, £Ul = gx(U,U) .

4. EXAMPLES (continued)
{Q) Let (M,g} be a Riemannian manifold and let & he a discrete group of

isometries of (M,q) such that the quotient space M/G = N be a manifold.
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It is then clear that one can define a Riemannian manifold
(N,h) = (M]G, 4/G) . For example (Tn,can) defined in (4) (c¢) is isometric to
{ Rp/zn, can/zn). Other tori can be defined as follows : let G be a lattice in
R i.e G = e 2 v ... ¥ e %  where [31,...,en] is a basis of R . We
can define the torus (Tg,can) as ( RP/G, can/G). The tori (Tn,can) and (Tg,can)
are not necessarily isometric (they are howewer always diffeomorphic).

Another instance of such a situation is the canonical Riemannian metric
on the projective space ®P". We can view mP“ as the quotient of the sphere s?
by the antipodal map which sends'the point % in s™ to -x. We can then write

gt = Sn/{l,o} . We define the Riemannian manifold | RPn,can) as

can
/

(Sn/ O}) because ¢ is an isometry of (Sn,can) {it is induced by the

{l,0}' {1,
-+
symmetry about O in [ 1).
From the definition of the quotient Riemannian manifeld (M/G, g/G) it

follows that one can also define a natural Riemannian metric on a covering space

M over a Riemannian manifold (N,h).

For more details see [B-G-M] chap. I, [CO} chap. 1.

5. A Riemannilan invariant is a function F defined on the space of Rieman-

nian metrics of a manifold M, which is invariant under isometries. This means

that F is in fact a function on the space of Riemannian structures on M i.e.

on the quotient space of the space of Riemannian metrics by the group of 4if-

feomorphisms.For example, wé¢ do not necessarily want to view the Riemannian

o+
manifold (Sn,can) as the unit sphere in Rn 1

with induced metric ; any other
isometric representation can serve. Any positive definite quadratic form on &"

with constant coefficients give rise to the same Riemannian structure on

[T { Rn,can)-



6. Scaling. Given a Riemannian manifold (M,g), ohe has a whole family of
Riemannian manifolds (M,ga) which are obtained from (M,g) by multiplying the
Riemannian metric g by the positive constant a : g9, =39 . A Riemannian lnva-
riant F(g) may have a weight r i.e satisfy Flag) = arF(q). Since dilating
the metric is very often a trivial operation, we shall be mainly interested in

Riemannian invariants with weight O . This will appear in a c¢rucial way later

on .

7. On a Riemannian manifold one can define the length of a curve

¢ : [0,1] » M by

24t

1 . . i
£lc) = J glelt),elt)) 3

o]

c(t} is the velocity vector of the curve.

One can now define the Riemannian distance d(x,y) or xy between two

points x and y of (M,g) as the infimum of the lengths of the curves in M going

from x to y .

CAUTION. Let us consider (Sz,can) in Ra. It shall be clear later on that

the Riemannian distance hetween two antipodal points is 7 ; we have to consider
curves lying on 32, not curves going through the ball (ships do not dig tunnels
to go fxom one point of the earth to another l). For this reason the Riemannian

distance on a submanifold of R is also referred to as the intrinsic distance

(vs extrinsic distance)

8. PROPERTIES
(1) 4 is a distance (in the sense of metric spaces) and this distance
defines the same topology on M as the one given by the differentiable manifold

structure ;
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(ii) & classical theorem of H. Hopf and Rinow ([COJ chap. 7} states that
if the metric space (M,d} is complete then any two points x,y in M can be

joined by a curve (called shortest path) whose length is exactly d(x,vy).

9. Variational arguments show that a shortest path is carried by a

geodesic. Geodesics are curved which satisfy a certain second order {non-linear)
differential equation on M, see n°4l.Given x in M and U in T M there exists a
unique geodesic <y starting from x with velocity vector U at x. An aésertion

in the Hopf-Rinow theorem states that CU(t} is defined for all values of t if
and only if (M,d) is a complete metric space. In that case one says that (M,q)

is a complete Riemannian manifold.

From now on,all Riemapnian manifolds are assumed to be complete {un-
less otherwice stated).

Geodesics are always parametrized proportionally to arc-length and
are locally length minimizing (for ¢ small enough, c is a shortest path bet-
ween the points c(t) and c(tte)).

The geodesics of (52, can) are the great circles. A shortest path bet-
ween two peoints X,y of S2 is the piece of a great clrele through x and y with
smallest length. Antipodal points are 5oined by infinitely many shortest paths.
Bny two points of the sphere can be joined by at least two geodesics ane of

them of shortest length (two arcs of a great circle through.x and y).

10. The diameter Diam(M,g) of the Riemannian manifold {M,g) is defined by
Diam(M,g) = sup {d(x,y) : %,y in M}.
It is finite if and only if M is compact. {(As indicated ahove (M,g) is already

assumed to be complete).
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11, Let {xl,...,xn} be local ccordinates near a point p in M . In these

coordinates -the metric g can be represented by the matrix (gij),

1/2
) /

= g(=2- , 2 ;
95 = g(ax‘ P axj ) . The measure [Det((gij))] dxl...dxn does not depeéd on

the choice of the local coordinate system (use the theorem on change of varia-

bles in an integral). It defines a canonical Riemannian meagure which we shall

denote by Vg (or sometimes simply by dx) ([B-G-M] chap. IT.A). Given a conti-

nuous function £ on M we shall write J £ (x} dvg(x), J fdvg or simply J £
M

M M

for the integral of the function f on M.

12, PROPERTIES Let (M,g) be a Riemannian manifold. Then

(i) v = ::1n/2
ag g
(ii) Dpiam(M,ag) = a1/2 Diam(M,q)
if dim M =n {a > O) ; see n° &,
13. Given a point X in a complete Riemannian manifold (M,g) we define the

exponential map at the point x, exp : TxM + M as follows.
Given a vector U in TxM we define expx(U) as the point cU(1) on the

geodesic ey issued from x with initial velocity véctor U .

For n® 7-13 see [B-G-M Jchap II.C, [CO] chap. 3 and 7.

B. CURVATURES : The geometric peoint of view

As we shall see in a minute, there are several notions of curvature.
These Riemannian invariants are very difficult to grasp and we will meet them

under various circumstances. We first give definitions of a geometric flavor..
{See [B-G-M] chap XI1.D and E, [CO] chap 4 and 8).
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14. Sectional curvature, Let X be a peint in (M,g) and let P be a (2-dimen-—

sional) plane in Txp. We call CP(r} the image, under the exponential map eXP s
of the circle centered at 0, with radius r, in P. This is a curve in (M,g}
whose length we call 2P(r) (if (M,g) is not complete the map exp, might not
be defined on the whole of TxM but it is always defined on a small ball
centered at 0 in TxM )

It turns out that one can prove the following

r2 3

{15} 2p(r) = 2nr {1 - . o(P)+0(x"))

as r goes to zero. ([{B-G-M] chap II.E.IIX)

The number o (P) which appears in (15) is called the sectional curvature

of the 2-plane P at x. This defines a function on the Grassmannian Gm’thxM)
{the set of 2-planes in TxM} and, when x varies, a function on Gm,Z(M) the
Grassmannian bundle over M. In dimension 2, this is only a function on (M,g).
When (M,g) is a surface in B> with inducea metric, the sectional curvature

coincides with the Gaussian curvature of the surface (product of the principal

curvatures). When dim M is bigger than 2 this is a much more complicated object.

16. COMMENTS The fact that Ep(r) n, 2Tr as r goes to zerc means that a
Riemannian manifold looks like euclidean space in the small. The fact that
there is no second order term in {(15) comes from the fact that in a "good"
coordinate system centered at p in M (namely that given by expp), {xi,...,xn}

9g, .
1l = 0.
axy

one has gij(O) = Bij and -

Local calculations show that curvature involves second order derivati-

ves of the metric.
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17. EXAMPLES
{a) As is easily seen (see Fig. 1), in the case of the canonical 2-sphere
‘(or more generally n-sphere) we have Sing
2
. . r . 3

L (r) = 2wsin r = 2mx (1 - =—"+ 0(x™))

P [
which shews thato= 1 on (s",can) ; .

12-

{b} It is even easier tc see thatg = 0 on (Rn,can), ( Tg,can/G) ;
(c) Exercise Consider the Riemannian manifold (Hn,can) given in example

3 (a). Show that the gecdesics issued from 0 are the rays issued from 0 (Hint :
use the differential equation and the fact that the image of a geodesic by an
isometry again is a geodesic}. Compute the lerigth of the curve t + (tr,0) where

r < 2. Show that for any 2-plane P in Tan, lp(r) = 2wshr.

Conclude that o(P} = -1.

In fact one can show that given any two points x,y in (Hn,can) there

-
1
[y

exists an isometry £ of (Hn,can] such that f£(x) = y. It follews that ¢

for (Hn,can).

18. REMARKS

By adjusting the definitions of (Sn,can) and {Hn,can) {scaling) one
can easily construct the Riemannian manifolds (S;,can) whose sectional curva-
ture is constant and equal to k (any real number).

If k>0 (Sg,can) is homothetic to (Sn,can) i IfE k=0 (Sg,can) is just'
(Rn,can) ; if k<0 (Sz,can) is homothetic to (Hn,can). {{co] chap 8)

The sectional curvature is a very strong invariant. Any Riemannian
manifold (M,g) whose sectional cérvature‘is censtant equal to k,is locally -
isometric to (SE,canJ : given any point x in (M,g) there exists a neighborhood
of x which is isometric to a neighberheood of a point in (SE,can). This local

property is in fact global when M is simply-connected : a simply-connected
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complete Riemannian manifold (M,g) with constant sectional curvature equal to k
is iscmetric te (Sz,can)(These are known as E. C”;Eéhatheorems}.([B—G—M] chap

II.E.III).

19. AN EXBMPLE

We denote by ep" the complex projective space (complex lines in €n+1J

ice. e (0} /2.

We can identify ¢n+1 and R2n+2 so that the unit sphere S2n+1 is the
n+1 2 2
set {(Zorzlr---azn) g C ||ZO| +..+¥Zn1
2n+
The circle 51 acts on S o by

: it i . .
elt.(zo,...,zn) = (Z0 e ,..._.Zrl elt). It is easy to see that CPn is
. . 2n+l , 1 . n .
diffeomorphic to & /5" . Here we view ¢P as a real manifold.
+
Let p 52n+1 + ¢p” be the projecticn map. Given x in S2n t we let Hx denote

+1 . n+l )
the space c" -orthogonal to the complex line Cx of @ (dlmc Hx=n). The

T .
tangent map te p defines. an isomorphism p= from Hx onto Tp(x)mPn' We define
: . T T
& metric g on cP” as follows. Given any vector ¥ in Hx we let gl{p (X),p (X}) =
1

|x]2 [nexrm in Cn+ ).

This metric g turns the map p into a Riemannian submersion

Szn+1,can) - (mPn,q) with fibers Sl. This means that p is a (differentia-

p A
ble) submersicn and that the tangent map Txp is an isometry from the ortheogonal
to the tangeni spagce of the‘f§her at x onto the tangent space at p{x) of CPn-
The geodesics are easily see; to be the images under p of the great circles

52n+1

of which are orthogonal tc the fibers of p. Cne can show that the

sectional curvature of a 2-plane P in TEP" lies between 1 and 4 ([BS] chap 3).

20. Sectional curvature measures how geodesics diverge from one another
(this should be at least intuitive from the very definition of sectional

curvature : see n° (i5)}.
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Let us make this statement more precise. Let us consider a peint x in the
manifold (M,q) and two geodesics cl(t), c2(t) such that

(i) c1(0) = c2(0) =X ;
(21) (i) ci(O) and cé(O) form an angle A ;

(iidi) cl(t)' cz(t) are parametrized by arc-length.

22, Since geodesips'are locally length minimizing, it follows that for t
small enough the Riemannian distance d(x,ci(t)) is just equal to t. Let us

consider the geodesic triangle {x,cl{tl), c2(t2)} whose sides are the minimi-

zing geodesics between the vertices (tl,t2 are assumed to be small). Let us
call T(tl'tz) the length of the side from cl(tl) to CZ(tZ)'

Let us now call {E}E&(tl),zé(tz)} the geodesic triangle on ($E,can)
where X is in {Sz,can) and where Ei(t) are geodesics satisfying assumptions
analogous to (21). Let us call E#(tl,tz) the length of the side from E;(tl)

to Eé(tz) (again tl't2 are assumed to be small encugh). See Fig. 2.

c2(t2)

c1(t1) 1

Fig. 2
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23, DEFINITION

We say that the sectional curvature o = o{M,g ; *) of (M,q) is
bigger than k if for any 2-plane P in TM (i.e. any peint x in M, any 2-plane
Px in TXML ¢(P) > klone defines 2 , < , s similarly).

We then have the following comparison theorem

24, THEOREM (i) (RAUCH)
Let (M,g) be a Riemannian manifold whose sectional curvature satisfies
g 2k (resp ¢ =< k) then, with the notations of n® 22, we have
.= —
T(tlftz) < Tk(tl,tz) {resp. T(tl,tz) z Tk[tl,tz))

for all geodesic triangles constructed as in n® 22, for t1,t2 small enough.

(i1} (RAUCH=-ALEXANDROV-TOPONOGOV)
If ¢ £ k then T(tl,tz) 2 E;(tl,tz) holds for all gecdesic triangles
constructed as in n® 22 (what-ever the size of tl,tz).
This thecorem is difficult see [C-E] chap 2 for more precise statements

and proofs.

25. Ricci curvature Given a point x in the Riemannian manifeld (M,g) it
is easy to show that exp is a leocal diffecmorphism from a neighborhood of O

&
in TxM onto a neighbeorhood of x in M. The pulled-back measure exp, (vg) has a

density with respect to the Lebesgue measure in TxM' Using pelar coordinates

n-1

in TxM, (t,u} ¢ R; X § , We can write exp; (vg) = Bx(t,u}dt du, at least

for t small enough. The following expansion holds

n-1 t2
(26} g {t,m) =& {1 - T *x

as t goes to zero. ([B~G-M] chap II.E.III).

(u,z) + 0(t3}} (n=dim M}

Here rx(u,u) is a quadratic form in u,whose associated symmetric bili-

near form is called the Ricci curvature at x (we shall often forget the index
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X in Bx, rx). The function Sx(t,u) is the density of the Riemannian measure
viewed through the map
b ¢ 10, x 771 o m
(t, u) -+ expx(tu) = Cu(t)

(Sn—l

is the unit sphere in (TxM’ gx)).
27. COMMENTS

The fact that Bx(t,u} ~ tnnl as t goes to zero means that the Rieman-
nian measure is asymptotically euclidean. The Riceci curvature measures how
the Riemannian measure differs from the Euclidean Lebesgue measure at least

infinitesimally. Let u be a unit vector in TxM and let {u,e ..,en} be an

2
orthonormal basis of T M. Let Pi = [u,ei] denote the 2-plane spanned by the
vectors u and e; in TxM. We then have

(28) rx(u,ui = § c(Pi).
1=2

It follows from formula {28} that the Ricci cﬁrvature of (Sﬁ,can)
satisfies r(u,u) = (n-1)k for any unit tangent vector u or equivalently
r = (n-1)k can.

Formula (28) also shows that an assumption on Riecei curvature is
weaker than an assumption on sectional curvature.

Let us mention the following important thecrem which relates the Ricei

curvature and the diameter of the manifold (M,qg).

29, THECREM (MYERS)
Let (M,g) be a complete Riemannian manifold whose Ricci curvature

satisfies xr(u,u) 2 (n-1)k > 0 for any unit tangent vector u.
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Then the diameter of (M,g) satisfies
Diam(M,q) < 7/vk
énd hence (M,g} is compact. Furtherpore the fundamental group “i(M} is finite.
({col chap. 9, [C-E] chap. 1).
The following comparison theorem will be of utmost importance in the

sequel.

30. TBEOREM
Let (M,g5) be a n~dimensional Riemannian manifold whose Ricci curvature
r satisfies xr(u,u) » (n-1)k for any unit tangent vector u , k any real number.
Let B;(t) be any geodesic ball with radius t in (SE, can) {all such balls are
iscmetric). Then
(i) (BISHOP} For any peint x in M and any t in R+ 3
Vol(B(x,t)) < VOL(B,(t))
{B(x,t) is the geodesic ball with radius t and center x in {M,q)) :
(ii) (GROMOV) The function
£ > Vol(B(x,t})/ Vol (8 (£))
is non-increasing.

([B-C] or [GV1]}

31. CAUTION. Reverse inequalities when r(u,u) £ (n-1)k DO NOT HOLD ({exept

when n =2 orn = 3).

32. Curvature versus scaling. Let (M,g) be a Riemannian manifold and let

c : [0,1] +M be a curve. If the length of ¢ in (M,g) is equal to L then the

length of ¢ in (M,ag) {(whexe a > 0) is Jal.. If we denote by o(M,g) the sectio-
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nal curvature of the Riemannian manifold (M,g) it follows from (15) that

‘G(M;ag) = al_1 o{M,g) (a > O) ; the sectional curvature is a Riemannian inva-
riant of weight -1 (see n® 6). The products Diam(M,g)2 oM, q), VOl(M,g)Z/nU(M,g),
are therefore Riemannian invarianté of weight 0O .

Let r(M,g) = r (resp. rmin(M,g)) denote the Riceci curvature

(resp inf {i%giﬁ%-; ue T, u # 0}) of the Riemannian manifold (M,g).
I
33. EXERCISE. Show that r(M,g) is a Riemannian invariant of weight O and

that rmin(M'g) is a Riemannian invariant of weight -1 (Hint : use formula (28)

and the fact that r{M,g) is a bilinear foxrm on TM).

C. THE COVARIANT DERIVATIVE

34, Given a manifold M and a function £ : M + R one can define the dif-
ferential of £ , df as follows. Let p be a point in M and U a tangent vector in
TPM. Let {xl....,xn} be a local coordinate system centered at p . The function

f can then be viewed as a function f(xl""’xn)' We let

=1

af
af W = I == (o) u,
O !
¢ 3
if U= E wog - It is easy to prove that df is invariantly defined
i=1 i

2 .
on T™¥ . A straightforwaxrd computation shows that (%;Eaio)) 1 £1i,j < n does
i3

not definé an invariant object on M unless dfP =0 .,
One of the main features of Riemannian geometry is that to a Riemannian
metric g on a manifold My is naturally attached an intrinsic notion of derivation.

Let X(M) denote the vector space of c” vector-fields on M .
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35. THECREM AND DEFINITION.

Let (M,g) be a Riemannian manifold. There is a unique map
D % (Mp X (M} —X{M)
Y
X, ¥} — D,
with the following properties (for any X, ¥, 2 in %(M) and £ in Cw(M))

(1)  X. gl¥,2)

g(DthZ) + q(Y.DxZ) H

(ii) DXY - Dyx = [X,Y] ;

{iii) D is R-bilinear ;

(iv) Yy = £2Y;

Digx) X
(v} .Dx(fv) = (X.f)Y + DXY .

This map D is called the Levi-Civita comnexion of the Riemannian ma-

nifold (M,g}.
36. EXERCISE. Using property (iv) above show that (DXY)(x) depends only
upon Xx the value of the vector-field X et x .

Caution : the same property does not held for Y see n® 39(3) .

n
37. Metrics and Connexions on tensor products. Let {ei}1 be an orthonormal

basis of TxM . Let {e;}? be' the dual basis in T:M,the dual space of TXM . We
exte nd 9, to a scalar product g; on T;M such that the basis {ez}T be orthonor-

mal.

EXERCISE. Show that the matrix (g;j) of g* in a local coordinate system
. -1 . : .
{xl,...,xn} is (gij) , the inverse of the matrix (gij) of the metric g .
*
We extend 9, to a scalar product on gPTqugTXM by taking an orthomormal

*
basis {ei}T of TxM and by requiring that the natural basis of g?TxMQSTxM
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deduced from {ei}? be orthonormal.

We can also extend the Levi-Civita connexion ¢n tensors. For this pur-
pose we require that Leibnitz rule be true, e.g. if u,v, X are sections of TM
and if w is a section of T*M,we let (using the same symbol D for the extension

of the connexion

(1} Dx{uﬂv) = (Dxu)®v +u ®(va) .
(38)
(i1} X.(w(u)) = (Byw) () + W (Dyu)
We also define Dxf, for £ in dm(M) as X.f . This extension of the

Levi-Civita connexion satisfies properties similar to those of Theorem 35.

39. EXERCICES.

¥
The "musical® isomorphisms TM = T M are defined as follows : for

E-3

U in T and £ in T'M we let

u =gfu,.) .
(1) Show that for all X,Y in X¥(m),
b b

DX{Y } = (DXY) .

(2} Show that for all X inX (M),
. . 2 %

ng = Q (view g as a section of & T M).
(3) Let p be a point in (M,9) and let (U,F) be a chart centered at p,i.e U is
an open set in M containing p and F : U + F(U) < R® is a diffeomorphism

F(p) = 0 . Let {xi"'°’xn} be the local coordinate on U . Let X,Y be vector—

£flelds on M whose expressions in {U,F) are

n n

3 3 . =
E Ko (X pouerx ) — , y ¥ {X,r+..,X ) = . Show that there exist C
ist i7"l n Bxi 124 i1 n axi
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. i . :
functions on U , ij , such that DXY is represented by the vector-field

n n A aYi nr i 3
iy=_1 {j)él X Ry reeex) [E (ryroeeex ) ¥ k§=:1 I‘jk(xi,...,xn)Yk(xl,...,xn)]}E
Compare with Exercise 36. The coefficients Fik are called the Christoffel
symbols of the metric g .

(4) Let p in M and u in TPM . Let Yl' Y2 be vector-fields on M in a neigh-
borhood of p . Let ¢ : J-a,a[ +M be a ¢ -curve such that c{0) = p and c' (0)=u.
Assume that for all t in J-a,al, Yl(c(t)) = Y2(c(t}). Show that Dqu = DuYZ N
{5) Find the levi-Civita connexion on ( Rn,can) (Rint : compare it with the
usual derivation of a vector field}.

{6) Let D be the Levi-Civita connexion on (Sn,can] and let B be the Levi -

+
Civita connexion on ( & 1,can). Let X,Y be vector fields on s”. Show that

R VR T
; X, ¥ and that for any

+
they can be extended to local vector fields con ®"
- n : \ \ N n X
x in 5 (DXY)(X) is the orthogonal projection of {D% Y) {x) on sz (Hint

ugse Theorem 35 and Exercice 3%(4}).

o o
40. Let ¢ : J-a,a[ - M be a C -curve in M. A vector-field along ¢ is a €

map X : J-a,al > TM such that X(t) is in Tc(t)M' It follows from Exercise

39(4) that one can define . We say that the vector-field X is parallel

Devigy®

=0 for all t .

along the curve c if Dc(t)

In a local coordinate system {xl,...,xn} near the point c(o), we can
write c(t) as the curve (Altt),...,hn(t}) in ®" and c’'{t) as the veqtor
(Ai(t),...,A;(t)) in R". Let {xi(t)}T be the coordinates of x(t) in this
coordinate system. According to Exercices 39(3) and (4) the condition

X=0 i
Dc'(t) can be written
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n a¥. n .
1A D5 (e, A () + § Th X A(8),..08 (2] =0
j=1 7 1 k=1 7
or
a th i
(41)  —x (&) + §  avefl x (v
dt i 3, k=1 J Jjk 'k
{where X is an extension of X and %k(Altt)....,An(t)) = Xk(t)) .

Equation (41) is a system of ordinary differential equations on

J-a,al . Given a vector u in T Myone can therefore find a vector field X

c(0)
along c such that Dc'(t)x = 0 . A geodesic is a curve ¢(t) whose tangent vec-

tor ¢'(t} is parallel along c(t), c'(t)y =0 .

Por ()

42. REMARK. The map u + X(t) where X is the parallel vector-field

along ¢ such that X{0) = u is called the parallel translation aleng c . This

very important notion can be generalized to tensors on M .

EXERCISE. Let c(t) be a curve in_ ( mp,can) and let u be a vector at ¢(0). Find
the parallel vector-field X(t} along ¢ such that X{0) = u .

For § C see [B-G-M] chap. II. B or [co] chap. 2.

D. CURVATURES : The analytic point of view

43, The curvature tensor R of the Riemannian manifold‘(M,g) is defined

as follows. Given X,Y in ¥(M) one defines the map R(X,¥) from 1(M) to % (M)

by R(X,¥) = [Dx, DY] - DEX’Y]

i.e for any U in (M)

R(X,Y)U = Dx(DyU) - DY(DXU) - DEX,Y]U N
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44, PROPERTIES .
(i} for any X,Y¥ in %(M), R{X,Y) + R(Y,X) =0 ;
(ii) the map from ¥’ to X(M), which associates R(X,Y)U to (X,¥,U)
is in fact a map from (TXM)3 to TxM i.e (R(X,¥)U) (x} depends only on the values
of the vector figlds xx, Yx’ Ux at x {(we say that it is a tensor).
Proof. Use Theorem 35 to show that for any f,q,h in dm(M) and any X,Y,U in %£{M),

R{fX,g¥} (hU) = fgh R(X,Y)U (i.e that R is C (M)-3-linear).

45, DEFINITIONS.
Let us define the tensor R(X,Y;U,V) by
R{X,Y;U,V} = g(R(X,Y)V,U0} . Then

{i} If P is a 2-plane spanned by {X,¥} we define the sectional curvature

¢ of (M,g) on the 2-plane P by o(P) = R(X,¥;X,Y)/g(XrY,XrY) i.e
g(P} = Rle,fre,f) if {e,f} 1is an orthoncrmal basis of the plane P ;

{ii) The Ricci curvature of (M,g) is defined by

n
ri{x,x} = E R(X,ei;x,ei)
i=1

for any vector X in TxM where (ei} is any orthonormal basis in TXM :

1,....n

(iii) The scalar curvature u of the Riemannian manifold (M,g) at x is defi-

ned by

n
ui{x) = E
i3

Il e~151

R(ei,ej;ei,ej) =

r(e.,e.)
-1 i i3

1

[

where {ei} is any orthonormal basis of TxM . The scalar curvature is a function

on (M,g).

46. CLAIM, These definitions coincide with those given in n® 14 and 25.
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47. NOTATIONS,
In order to make things explicit without shtements}we will often use
the following obvious notations Sect, Sect(M,g) ; Riceil, Ricei{M,g) ; Scal,

Scal{M,g). (see [B~G=-M] chap. II, [CO]chap. 4).

48, Let £ be a € function defined on the Riemannian manifold (M,g). Let
X,Y be tWo vector-fields on M . We dencte by DAf(X;¥Y) the one-form DX(df)
evaluated on the vector-field Y . The ® - bilinear map DAf is called the
Hessian of f and denoted by Hess f (with respect to the Riemannian metric g).

According to n°(38) we have’

(49) Hessf(X,¥) = X.{df(Y)) - df(DXY)
50. PRCPOSITION.

o0 .
TheHessian of a C function f, Hess f, is a symmetric two temsor i.e.

(1) (Hessf(X,Y))}(x) depends only on X, and Y

{ii) Hessf(X,Y) = Hessf(Y,X)
Proof Use -the fact that being a tensor is eguivalent to C” (M)~-linearity and
Theorem 35.

This proposition answers the question which was raised in n® 34, and
generalizes for 2nd corder derivatives the well-known Schwarz theorem on func-
tions of several variables. An important fact in Riemannian geometry is that
Schwarz theorem no longer helds for higher order derivatives.

Let £ be a cm function on M and let X,Y,Z be three vector fields on M .

The following lemma holds
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51. LEMMA.

og— - *'
(D, (D, Af}) (B) -~ Dé Dxdf))(Z) - df) (2) = - R{X,¥;df ", 2}

P,y

Proof. Write (using n°®{38}) the first term in the left~hand side

(Dx(DYdf))(Z) X.((Dydf)(z)) - (DYdf)(DxZ)

X.[Y.(df(8)) - df(Dyz)] - Y.(@£(D,Z)) + df(DYsz)

and a similar expression for the second term. This gives

([Dx,Dyjdf)(Z} =X, ¥].(a£(2))y - df([Dx,DY]Z). Then use the definition of the
curvature tenser to conclude that

([DX;DY]df)(Z) - af) (2} = -af (R{X,Y)Z)

Orx,v1
= - R(x,¥v:af%,2)

using n® 45 and n° 39.

52, Pake an orthonormal basis {ei}T at % in M . Using n® 40 one c¢an extend
{ei}? to a local orthonormal frame {Xi}? such that Xi(x) = e and

(Dx xj)(x) = Q ; from Theorem 35(ii) we deduce thet [xi,xj](x) = 0 and from
i

Exercise 36 we conclude that {D df){x) = O . Finally we have from Lemma 51
[xi

x.]
3

3 £ . .
([Dxi, ij]df)(xk) =p f(xi.xj,xk) = - R(Xi,xj,df ,Xk) {the second equality is
a notation) which shows that Schwarztheorem does not hold for derivatives of

order 3 unless R = 0 . We can view the curvature as an obstruction to commuting

dexivatives.

%
53. The vector—-field df , dual to the 1-form 4f, which appears in Lemma 51
is called the gradient of f ; it depends on the Riemannian metric g where as 4f

does not.
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Chapter III

THE LAPLACIAN AND RELATED TCPICS

§ A, Starring : The Laplacian and the Rayleigh quotient
n® 1-8 ; The divergence of a vector-—field, The Laplace-Beltrami
operator and its various expressions
n® 9-11 : Divergence theorem and Green's theorem
n® 12~15 : The Sobolev spaces Hi(M) and HI(M), compact inclusions of

Sobolev spaces into L2

§ B. Eigenvalue problems on Riemarnnian manifolds I
n® 16-17 : The Clesed, Dir;chlet, and Neumann eigenvalue problems,
eigenvalues, eigenfunctions
n® 18-24 : The fundamental theoreﬁ, notatiens, proof of the fundamental
theorem via spectral theory, the Dirichlet.integral, the
Rayleigh-quotient, second proof of Thecrem 18
n° 25-30 : Variational charaterizations of eigenvalues, characteriza-

tion of eigenfunctions by Lz-density property

§ c. Eigenvalue problems on ﬁiemannian manifolds II
n® 32 : Direct and Inverse problems
n® 33-38 : Weyl's asymptotic formula
n® 39-45 : Estimates on the eigenvalues in terms of Ricci curvature
and diameter

More references :
[B-G-m1,[en], [c-nl, [cLl






III.1.

ALL RIEMANNIAN MANIFOLDS ARE ASSUMED TO BE SMOOTH, CONNECTED AND

COMPLETE

Unless otherwise stated, vector-fields, forms, functions... will alsc

be assumed smooth.

This chapter is mainly devoted to the Laplace-Beltrami operator {(or

Laplacian) acting on Cm —functions on a Riemannian manifold (M,qg).

A. STARRING : The Laplacian and The Rayleigh gquotient ’

1. Let (M,g) be a Riemannian manifold with Levi-Civita conne» icn D .
Given a smooth vector-£field X on M,one defines the divergence of X with respect

to the Riemannian metric g as the function Divgx {or simply DivX) defined by

(2} (Divgx)(x) = Trace {u + Dux} (x)

where the trace of the endomorphism u = D X is taken in TxM. Given an ortho-

normal basis {el,...,en} of TM (n = dim M} one can also write

Ire~20

(3) ’ (n‘ivgm (x) = g(D,X,e )

i=1

NOTE. When {el,...,en} is an orthonormal basis we use the notatiosn Di

instead of De .
i
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4. The Laplace-~Beltrami operator (or Laplacian) acting on ¢’ functions

is defined by the formula

g
a'€ = piv @

#
where df is the gradient of £ [see n° II.53). We shall also write A instead

of Ag (Notice our sign convention).

The following propositlion gives useful formulas for the Laplacian.

5. PROPOSITICN. Let (M,g) be an n-dimensional Riemannian mznifold, D its
Levi~Civita conne x ion and A its Laplacian. Let {ei,...,en} be a local orthonor-
mal frame near the pédint . p in M ., Let £ be a c function on M . The following
formulas hold

(i) Af(p) = - Trace Hessf(p),
the trace of the bilinear forn Hessf({p) in TPM or equivalently

n

Af(p) = - E pdf (e, (p) e, (p))
i=1 * *
(see n° I1I.48) ;
n
(i1)  Af(p) .= - 121' {ei.(ei.f) - (Diei).f}(pJ :

(i1i) 1Iet {xl,...,xn} be a loczl coordinate system centered at p . Let

1/2

B ot Ty .
gij(x) = g{EEI" gggd and v = Det(gij) . We denote by (glj) the inverse tma-—

-1
trix (gij) - The local expression of the Laplacian is

e 11
(Af)(xl,...,xn) = [y L Bx

n
3 ij _Bf .
) gy ax.)](xl""'xn) ;
=1 i p]
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{iv) Let {Cl(t)""'cn(t)} denote ygeodesics such that ci(o) =p and
' =
ci(o) ei(p) .
The function Af can be calculated at p by the following formula

n d2
af)p) = - § -=- {foc) (1) ;

i=1 dtz =0

{(v) Let p be a fixed point in M and let h be a ¢ function on ﬁ; .
For r = d(p,x) small enough we assume that. the function =x + h{d(p,x)} = £(x)
is ¢ (for x # p near p). We can write x = expp(ru) (fo£ r in R; and u in the
unit sphere Sn_1 of TPM) and exp;(vg) = 8 {x,u)drdu .
The following formula holds (near p)
?—é% RUlpix) '

where h' and h" are the derivatives of h and §’'(r,u} = g%{r,u) .

A( £)(x) = - h"{d(p,x} -

Proof - The assertiéns (i} and {ii) follow from the defipition of A and from
the definition of Hessf see Exercise III. 39(1) and n® II.48}.

(iti) Let V = vdx ...dxn be the local volume form which represents the

1
measure vg in the local coordinate system. A classical result {[B~G~M]
chap. II.G) states that given a vector field X , the Lie aerivativecf;v is
just Divg(x)v or equivalently,since V is an n-fprm d(ixv) = Div{X)V.

n
Writing X as E xi 3%— in the local coordinates, one can deduce that the
i=1 i

local expression for Div X is

1 3
8x ‘vxi)'

1771

(6) Div X = v

[ R =]

i

The lccal expression for df is 4f = %5— dx:L so that using the
i=1 i



II1.4

duality between TM and T"M induced by the metric g we have
# i3
ag = Z (g T 3} 8
- . X,
lr]=1 ] i
The assertion (iii} follows from these computations.
(iv} The local frame {el,...,en} can be cobtained from {el(p),...,en(p)}
by paralliel translation along the geodesics issued from p . In particular
(see n° II. 41) we can choose e such that ei(ci(t)) = ci(t). It follows from

this choice of {ei} that

o]
[\&)

(i) (ei.(ei.f))(p} = foci(t) , and

dt t=0

n

(iij (De ei)(p) = 0 . It suffices to apply assertion (ii) and the defi-
i

nition of Ddf (Notice that the final resuit is independent of the choice of

the local orthonormal frame {ei}).

(v) See [B-G-M] chap. IX.G or [cnl.
7. COMMENTS. The definition of AY given in n® 4 shows that 29 ig inva-

riantly defined on {M,g) and that 49 is a Riemannian invariant.

Propositicon 5(iii) shows that A is an 2nd order linear differential operator

n . 2
whose leading terms are - z glj ——jL——-. The function £ = g*(E,E), whose
i,9=1 ax,dx,
L |
n s .
expression in local coordinates is E glj Eigj is well defined on T'M and
i,j=1

is called the principal symbol of the operator A . For x in M the principal

symbol maps T;M into R+ by £ =+ g:(E,E). It follows that 4 is elliptic
(see [G-T] and [NN] chap. 3) ; this fact will be very important in the sequel.

Proposition 5{(v) shows that the Laplacian A is strongly related to the Ricci
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curvature through ¢ (r,u} (see n® IL.(26)}. We shall also use this property

later on.

8. Let (M,q) be a Riemannian manifold with boundary. The boundary 8M of

M is a Riemannian manifold with the induced metric g|BM . We use the following
notations
-
a) M = M\3M (the interior of M} :

b) ag +he Riemannian measure on (BM,glaM) H

¢) v the unit normal vector-field on 3N, pointing inward.

FROM NOW ON ALL RIEMANNIAN MANIFOLDS WILL BE ASSUMED TO BE COMPACT

unless otherwise stated.

The following theorems are standard (see [LG] p.204)

9. DIVERGENCE THEOREM. Let X be a C  vector-field on M .
Then
(Divgx) (x) dvg(x) =~ J gl(x,v) {x) dag(x)
M . aM
10. GREEN'S THEOREM. Let f,h be C functions on M . Then
(i) {h(x}af{x) - g{Vh,vf) (x)}dvg(x) ={  hi{x) {v.£f) (x)daq(x)
M M
{ii) {h{x)Af(x) - £(x)Ah(x)} dvg(x) .= {hix) (v.£) (x)
M aM '

- £{x)v.h) (x) }dag(x)
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H . R .
where VI = df is the gradient of f with respect to the Riemannian metric g

cn M (see n® II.53).

11. REMARKS .,

(a) In the sequel wWe will simply write, e.q, for (ii)

(hAf - fah)dvg =| {hiv.£) - £{v.h)} dag .
M oM
(b) Both theorems are true under more general aésumptions : M could be
non-compact provided that the integrations be in fact performed on compact
sets (e.g. f, and X'with compact supports...} ; one can also weaken the requ-
laxity assumptions on X, h, f {e.g. Theorem 9 werks for X a Cl—vectorlfield...),

or on 3M (3M might only be piece-wise smocth).

(c} In order to make things clear let us insist that our Laplacian is

written - £" on R and that our normal v points inward.

Before we go any further with the study of the Laplacian, let us intro-
duce some basic cbjetcs (compare with Chapter I n® 43 £f ).
2 . 2 .
12. We denote by L (M,vg) or simply L (M} the space of measurable functions

2 . . . .
f on M such that |f(x){ dvg < 4= . This space is a Hilbert space with inner
M

product (f|h)o = [ fhdv_ and norm |}f|}O = {fff)élz (we shall mainly deal
M

with real-valued Ffunctions ; when dealing with complex-valued functions we

shall use (ffh)o = J fﬁ&vg as inner product}.
M
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He denote by dZ(M) the set of dm functions on M,with compact support
We define a norm on Cm(M) by

el =« ]f(x)[zdvg(x) + |df|2(x)?vg(x)}1/2
M M

where |df|2(x) is the sguare of the norm of the l-form df{x) in T;M i.e
lagl* (o = g% (afG0, afta)) = g (FEG) ,VE)).

We shall now use the notaticn <.|.>x or <.| .>» for the natural
scalar products on tensor products above the point x in M (see n® II.37) and

<<.|.>>fbr the integrated inner product. For example

<df|df> = gl (a£(x),d£(x)), and
<<dfldf>> = | <df|df> av (=) .
M
The norm ||.[|, is associated with the inner product

(£|@), = (Elgy + <<df|dg>>
o
on C (M) .

o

13, Let us recall that cw(M) and C

o(M) are dense in Lz(M,Vé) for the norm

. . The closure of C (M) {resp. C_(M}) in L2(M,v ) for the norm ||.||
o g 1

©
. 1 i 1 1
will be denoted by H (M,qg) {resp. HO(M,g)) or simply H™ (M) (resp. HO(M)) . The
following inclusions are continucus (with the natural norms)
Hi({d) C_H1 (M) < L2 (M) .

These spaces are called Scbhelev spaces (see re-Tl.
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Let ug point out that whereas Lz(m,vg) only depends on the measure vg
(M being a fixed manifold), HI{M,g) and Hi(M,g) depend on the Riemannian metric
itself since <<df|dge> does.

The elements in Hl(M) are L2—functions on M with first derivatives (in

the sense of distributiens) in LZ(M) (see [G=T] p.142). If 3M = @ then

1 _ .1
Ho(M) = H (M)
The following theorem is standard ([G-T] p-1600r [NN] chap. 3).
i4. THEOREM. Let (M,g) be a smooth compact Riemanmian manifold with

boundary (possibly empty). The inclusion maps

. 1 2
@ e, L) — @favp, [1L(1) , ana
. 1 2
1) E g, | ]) — @ vy, [0
are compact (or completely continuous) : the image in L2 of a bounded set in

H1 or Hé is relatively compact,
15. REMARK, The theorem remains true under weaker assumptions on the regulari-
ty of M ; however the second assertion might be false if M is too irre-

gular.

B, EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS I.

In these notes we shall be interested in the following eigenvalue pro-
bilems.
(16C) (M,g} is a compact Riemannian manifold without boundary, Au = Au

(closed eigenvalue problem)
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{16D) (M,g) is a compact Riemannian manifeld with boundary,

Q

= in M
%Au Au in (Pirichlet eigenvalue problem)

u o} on 3M

(16N {M,g) is a compact Riemannian manifold with boundary,

a
Au = hu in M
{Neumann eigenvalue problem}

v.u =0 on 3M
where v is the unit normal vector-field en M pointing inward (see n® 8).

This means that given the compact Riemannian manifold (M,g), we look
for all numbers A for which there exists a néntrivial solution u in Cm(M) of
the (boundary value) problem (16C), (16D} or (léN).

Notice that if u is a nontrivial solution of one of the problems (16)

then the corresponding number A must be a nonnegative real number (apply

Green's Theorem 10(i) with h = £ = u}.

17. The numbers » for which (16} has a nontrivial solution u in Cm(M)
are called the eigenvalues of problem («), % = C,D or N . The corrésponding
functions u, called the eigenfunctions of problem (x} asscciated with the
eigenvalue 1, form a vectorspace whose dimension is called

the multiplicity of the eigenvalue A .

18. THEOREM. Let (M,g) be a compact Riemannian manifeld and let (*) be
one of the eigenvalue problems {C), (D) or (N) of n® 16.

(i) The set of eigenvalues of problem (*) consists of an infinite se-

quence (0<) Rl < Az < 13 < aead te;

{ii) Each eigenvalue Ai has finite multiplicity and the eigenspaces cor-

responding to distinct eigenvalues are LZ(M,vg) - orthogonal ;
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(iii} The direct sum of the eigenspaces E(i;)
i=1,2,... , is dense in LZ(M,vg) for the Lz—norm topology and dense in

Ck(M) for the uniform Ck—topology, k=0,1,2,... .

19, NOTATIONS. From now on, we will lList the eigenvalues of problem {*} as

{0s) Al < Az <A bt

£ ...
3
with each eigenvalue repeated a number of times equal to its multiplicity.
If necessary we will write
Ase ?«i(M,g,*) . J\i(M,g) or A, (¥)
to point out the dependence on the manifoid (M,g), the eigenvalue problem
which is considered ox both the manifold and the elgenvalue problem.

To the sequence Ai £ 12 <A formed by the eigenvalues of problem

<...
3
(*) one can associate an orthonormal family ¢1,¢2,... of eigenfunctions such

that ¢, satisfies the eigenvalue problem (16%) with A = ) ; * = C,D,N.
i i

The third assertion in Theorem 18 shows that the seguernce {¢i}m is an
i=1

orthonormal basis of LZ(M,vg). For any f in L2(Mb one can write

o o
f = E (ff¢i)0 ¢i in Lz—sense, and |]f||§ = 2 (f|¢i)g
i=1 i=1

Let us sketch two possible proofs for theorem 18.

20. Let D* ; * =C,D,N , denote the following subspaces of Cm(M), which are

dense in LZ(M)

DC = C (M)
D, = {£ in c”(M) | £=0 on am}
D= {f in C (M) | v.£ = D on 3u}.
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When we consider the eigenvalue problem (16%) we view the Laplacian A as an
unbounded operater in LZ(M) with domain D,. It follows from Green's theorem 10
that A is

symmetric i.e. for any f,h in D,

(flah)0 = (Aflh)o

positive i.e. for any f in D,

(Af}f)o = <<Vf,VE>>

A classical thecrem in spectral theory (LR-5] chap X or [TR1] Part 3
and [TR2] Section 3) states that (D,,8) has a unique extension (E;,A*) as an
unbounded self-adjoint operator in LZ(M,vg). The vector-space 5} consist essen-
tially of functions in LZ(MJ whose derivatives (in the sense of distributions)
up to order 2 axe in LZ(M). The operator A* is then A viewed on E} as a @gif-
ferential operator acting on distributions. It must be pointed out that (ED,AD)
and (EN,AN) are quite different operators : they contain both the Laplacian A
as a differential operator acting on distributions and the boundary conditions
(Dirichlet or Neumann). The positivy of A implies that (g;,A*) is a positive
self-adjoint operator which in turn implies that the spectrum of (EQ,A*) is
" contained in R _. The compactness and regularity assumptions on M imply that
the inclusion fb* -> L2(M) is compact. It follows that for A ¢ R, , the resolvent

! is a compact operator in LZ(M). Theorem 18 follows from the classical

(A*—A)
results on the spectral theory of compact operators and from the fact that the
lLaplacian A is an' elliptic differential operator.

(for more details see [TR1} and [TR2) or [R-S5] Vol II)
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21. Instead of looking at the Laplacian A , one can consider the Dirichlet

integral or the Rayleigh (-Ritz) quotieft : for u in C (M)

E(u) =

|du|2 vg (Dirichlet or energy integral) ;

R{u}

|dul2 vg/ J u2 vg {Rayleigh guotient} ,

2 :
where J u vg # 0. For motivations see chap. I.
M

Both E{u) and R{u) are defined on Hi(M) ({see n®13),
In order to prove Theorem 18 one considers the extrema of R{u) on Hi(M) or
equivalently on C:(M), where

¢ (M)

11 w
Ho (M) = E 0 c ()

H_ (M)

It

1 1 £ _ e
b HO (M) CD (M) = CO (14}
1 ©

HN(M)

1 -3

H™ (M) CN(M) =C (M)

denote the sets of admissible functions (see chapter I, n°I.9-il) respectively
for the Closed, Dirichlet or Neumann eigenvalue problems.

Let u: = inf {R(u) : u e Hi(M),J u2 # 0},
M

This infimum exists because R(u) is nen—negative for all u.

Let {un}T be a seguence in H:(M). normalized by J ui = 1, such that

* * i M
< < —_
by = R(un) sy + n

*
From the definition of R(u) we deduce that, for all n, ||un|{2 < u1+2.

. . R 1
The sequence {ug-belng a bounded sequence in the Hilbert space B (M) we can

: ; 1 s . .
find a weakly convergent subsequence {u1 n} in B (M) withweak limit v in Hi(M).
I .
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This subsequence being bounded in Hi(M), its image {ul,n} in LZ{M) is relative-
ly compact and hence one can find a subseguence {vn=u2’n} which cunverges wea-
kly to v in Hi(M) and strongly to an element u in L2 (M) . siuce I]vu}|031 we
have ||u}[=1. Since strong convergence implies weak convergence, {v 1 converges
weakly to u in LZ(M). The inclusion Hi(M) > L2(M) being continuous, the Hi(m)—
weak convergence of {vn} to v implies the LZ(M)-weak convergence of {vn} to v
(viewed as an element of L2(M)) and hence u = v.

Finally we have proved that {vn} converges Hi(M)—weakly and Lz(M)—
strongly to an element v in Hi(M) such that|{v|}o=1.

From Cauchy-Schwarz inequality we deduce that for any £ in Hi(M)

wlof < Hv 2 1] < of + 0+ DL

It follows that

(v|f)§ < (u: + l)ilflli, and taking f=v, R(v) £ u?.
Since R(v) = u:, by definition of ut we conclude that the infimum ut of R{u)
on Hi ig achieved.

Let E, be the set of all elements v in Hi such that v=0 or v#0 and

1

For any u in Hi(M) and t small enough in R we have
oL,
*
R{v+tu) » R(v)=u1. Writing that the derivative at t=0(£he function t -+ R{v+tu)

*
R(v)=u1. Let. v ¢ El'

is zero,we have the following characterization of E1
, r =,
(22) v ¢ E <= for any u € H_ ‘ulv)lm(p1+1)(u|v)0.

From this characterization one can conclude that E1 is @& vector space.
From the fact that the ||.||1—norm and I|.ilc—norm are proportional on Ei' we
conclude (Theorem 14) that the unit—l].l|n~ball of E, is compact and hence that

E1 is finite dimensicnal.
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23. SUMMARY. The infimum
u:'= inf {R{u)| u ¢ ﬁi(M),u#O}
*is achieved on a finite dimensional sub;pace E1 of Hi{M) which is characterized
by.(22J.
Glven u in Hi(M) we also denote by Vu the gradient of u in the sense
ij qu , 3

n n
of distributions (in a iocal coordinate system Vu = E { Z g o %
3 i

i=1 j=1 -

where gﬁ—-are derivatives in the sense of distributions).
i 2

The fact that u belongs to Hi(M) means that |Vu| belongs to L(M).
Formula (22) can be written as follows : for any u in E1 and any f in Hi(M),

. .
<VujVf>»>v = uf v
[ watoew =4} [ e v,
M

which we can state as (see I.43-45)
"any element u in E1 is a weak solution of the eigenvalue problem (16%)"

(The boundary conditions are taken into account through Hi(M)). The classjical
regularity theory of weak solutions of elliptic problems ([TR2]} shows that E1
is in fact contained in Cw(M). Green's Theorem 10 finally shows that u is in
fact a classical soluticn of the eigenvalue problem (16%) : if w is in Hé nc
then u=0 on 3M and hence u satisfies (16D) ; if u is in H; .n thhen Au=iu

o
in M (take £ in c;(m) and J {v.u) £ da =0 which implies that v.u=0 on M

(take £ in cm(M) : compareagith n°I.9 ff.).

24, So far we have proved the existence of the first eigenvalue and its
finite @imensional eigenspace. Let us denote by L1 (resp Hl) the subspace

2
of L” (M) (resp Hi(M)) vhich is orthogonal to E,. Formula (22) shows that H1¢:L1.

These spaces are closed in Lz(M) and Hi(m) respectively and the inclusion H1<:L1

is compact.
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We now define

p; = inf {R(w) | u e H, u # 0}

. *
Following the same arguments as those used above,we can prove that u2

is indeed achieved on a finite dimensional subspace E_, of H, which is characte-

2 1
rized by
*
ue B, <=> for any v ¢ H, , talv), = (u2+1)(ulvio-
Noticing that the right-hand side equality helds trivially for v in El,we
*
deduce that E, is characterized by a formula analogous to (22} (change Uy to

* *
in (22)). It is also clear that LN > U

7" We can construct an increasing

*
L
sequence of non negative real numbers

%

)_[1<]_12< e e
and a sequence of associated finite dimensional subspaces of Hi(M) which are
mutually orthogonal (in Hi(M) and in Li(M))

E1,E2,...

Due to elliptic regularity theory the functions in the Ei's are € and
satisfy the eigenvalue proklem (16%). Notice that these sequences are infinite
because Hi(M) is infinite dimensional and the Ei‘s are finite dimensicnal.

The sequence {p;} either increases to infinity or is bounded. If it
were bounded by some number,we would have an infinite sequence {¢i} of
orthonormal functions in LZ(M) {take Lz-orthonormal bases in the Ej's)
satisfying R(¢,) < u and hence ||¢i![1 < ytl, in Hi(M)‘

This is not possible because the inclusion Hl(M} -+ LZ{M) is compact.

Let E denote the c¢losure in Hi(M) of the vector-space spanned by the
vectors in the Ej's. Assume E # Hi(M). We can thenfind a function u in Hi(M}'
orthogonal to all the Ej's in Hi(M) or equivalently in L2(M) (because of (22)).

* *
It follows that R{u) 2 My and (u]u]1 3 (ui+1) {ulu)o for all i which is impos-
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* . 1
sible because n; tends to infinity. It follows that eEi is dense in H*(M) and
hence in LZ(M}- The other assertions in Theorem 18 follow from elliptic requ-
larity results.

For more details see [SW] chap.III.
25. Given £ in Hi(M) one can write
o 2 @, 2
R(E) =) nay/ ] af
i=1 i=1
= no
where a, = (f[¢i)0 ¢ £#0 (see n° 19).
This expression of R(£) justifies a postericri the second proof we

sketched for Theorem 18 : it also proves the following characterization of the

eigenvalues and eigenfunctions of problem (16x%).

26. VARIATTIONAL CHARACTERIZATION I. (Notations as in n® 19)

The kt]—1 eigenvalue {with multiplicities) Ak is characterized by

Ak = inf {R(u)] uw £ 0, u Lz—orthogonal to ¢1,.. 1

rbypq

where u is taken in Hi(M) or in C:(M). Furthermore, if u is in Hi(M) and R(u)=).k

then u is an eigenfunction of problem (16*) associated with the eigenvaluerlk.

Let us consider A, = inf {R{w) | u in C:(M), u # 0} . If we know enough

functions u on which we can calculate R(ubthen we know an upperbound for Al.
This will turn out to be very important in the future. However, if we want
upperbounds on A2 instead of Al we have to know the eigenfunction ¢1 and take u

L2—orthcgona1 to ¢]. Things are even more complicated with Ak’ k 2 3. The fol-

lowing characterizations deal with these difficulties.
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27. VARIATIONAL CHARACTERIZATION IX

The following variational characterization holds
Ay = sup infiru) | u Lz-orthogonal to M
M1

k froush 1 -
where Mk_1 runs (k-1)-dimensional subspacesof H*(M) ay C*(M).

L _qr U # 0O}

Procf - Let A(Mk_l) = inf {R(u)i u L2-orthogona1 to Mk-l' u # 0}.
Take Mi—1=[¢1""’¢k-1] the vector-space spanned by the eigenfunctions
¢1""'¢k-—1' Then A(M]C:_I)*—* )‘k according to the first variational characteriza-

tion. This implies that

sup A(Mk_l) = Ak‘
M1

It is easy to show {by an argument on dimensions} that given a subspace

M _ir one can find an element v in MO =[¢1,...,¢k] such that v # 0 and v

k k
2
_ < < .
L -orthogonal to Mk—l‘ For such a v one has R(v} £ Ak and hence A(Mk_l) Ak
This implies that :up A(Mk—l) < Ak.
k-1
28. VARIATICNAL CHARACTERIZATION III {Notations as in n° 19)

The kth eigenvalue (with multiplicities) Ak is characterized by
A = inf sup {rR(w)] w in L, u # 0}
Lk

k

1
where Lk runs through k-dimensional subspaces of H (M) or C:{M).

Proof - Taking Lk=[¢1,...,¢k] the vector-space spanned by the eigenfunctions
¢1,...,¢k,we find that

A, = inf sup {R(w) | u in L, su # 0} satisfies Ak < Ay

Ly

k
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Let I, be a k-dimensional subspace in Hi(M) or C:(M). Then there
exists an element u in Lk such that u is orthogonal to ¢1""’¢k~1'
o a8
2
it follows from n° 25 that R(u) = ) Aas / Y ai where a. = (uj¢.}, and
32 337 43 1 ;] j’o
hence that R{u} = Ak. We then deduce that Ak 2z Ak.

For other characterizations see [BE] chap.III.

The following proposition turns out to be useful when one wants to
determine explicitely the eigenvalues and eigenfunctions of one of the

problems (16%}).

29, PROPOSITION
Let (M,g} be a Riemannian manifoid. Let {Vi}m be a sequence of
: i=t
non-trivial subspaces of D, (M} (see n°® 20) with the following properties
(i) For all i > 1, there exists a real number ui such that}for
all £ in Vi, A = uif H

w
(i1} The sum z Vi (finite linear combinations of elements in the
=]
2
-
v, 8) is dense in L (M,Vg) for |l.||0.
Then the sequence {ui} is the sequence of eigenvalues of problem {16%*),

up to increasing rearrangement, and the Vi's are the associated eigenspaces.

Proof - Exercise 31(a).

One can give an analogous statement at the level of Rayleigh guotient.

30. PROPOSITION

Let (M,g) be a Riemannian manifold and let {Vi}m be a seguence of
: i=1

non-trivial subspaces of Hi(M} with the following properties
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{i) For all i 2 1 there exists a real number ui such that for all u
in V., and all v in HI(M)
i *
alvd, = e wlvg s

(ii) 2 Vi is dense in LZ(M) for I
i=1

Al

Then the sequence {ui} is the sequence of eigenvalues of the Rayleigh
: : i - :
quotient in H*(M), up to increasing rearrangement, and the Vi's are the associa-

ted eigenspaces.

*
Proof - Take | ui,EiJ a5 in the procf of Theorem 18.

For u in Vi and v in Ej we can write

(ulv)1 = (ui+1)(u|v)o
*
(uiv)l - (u.+1)(u1v)‘ and (formula {22))
3j Q
*
We then conclude that either (u|v)0 = 0 or By o= uj.

*
This fact and assertion (ii) show that the sequences {ui} and {ui} are equal.
The characterization of the Ei's (formula {22}) shows that (up to an increasing
rearrangement on the ui‘s) Vi c Ei’ Assertion (ii) shows that vi = Ei’ because

vi is orthogonal to Ej' j o# i.

31. EXERCISES
{a) Prove proposition 29 ;
(b) Let (M,g} (resp (N,h)) ke a Riemannian manifold without boundary,

. ; = M
with eigenvalues X? (resp Ai) and eigenspaces Ei (resp E?).
Find the eigenvalues and eigenspaces of the product Riemannian manifold

(M x N, g x h) ;
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(c) Let (N,h) B (M,g) be a finite (Riemannian) covering i.e.,N 5 M is a

finite covering of manifolds without houndaries and p*g = h.
Describe the eigenfunctions of (M,g) in terms of the eigenfunctions
of (M,h) (see [B-G-M] chap III Prop A.II.5 p 145} ;
{d) Let §§ be a smooth bounded doemain in (Rn,can).
Show that for all i (notations in n° 19)
A; (2,0 < A, (Q,D)
{Hint : use n°®26-28) ;
(e) Let @, €, be two smooth bounded domains in (R',can). Show that for
all i (Notations in n® 19}
A (Q,.D) 2 li(ﬂz,D)
(Hint : use n® 26-28) ;
(£) Let be a rectangle with sides a and b in (Rz,can]. Find the

a,b

eigenvalues and eigenfunctions of problems (16D) and (16N} in ﬂa b
I

(Hint : use separation of variables and proposition 29}, When axe

all the eigenvalues problem (16D) or problem (16N) in & simple ?

a,bh
(g) Give upper and lower bounds for 11(3(0,1},D) where B(0,1}) is the unit

ball in (m?,can) (Hint : use n® 26-28 and generalize Exercise (f)} ;

C. EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS II.

32. Much research effort has been devoted to eigenvalue problems since the
18EP century. These problems arise from (linear) mathematical models for gques-
tions in mathematical physics : acoustics, elasticity, plasma physics, spectros-
copy, wave guides... These problems can be roughly divided into two types

direct problems and inverse problems.
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In a direct problem one seeks information about the eigenvalues and

the eigenfunctions of the Laplacian A9 in terms of gecmetrical data. It turns
out that it is usually not possible to determine explicitely the eigenvalues
or the eigenfunctions (except when symmetries allow to reduce the original
problem to one-dimensional eigenvalue problems : see Exercise 30(f} and (cn]
Chapt.II). Important progress have been made in the field of high-speed
computers which allow reliable numerical computations of eigenvalues.
Alth_ough these numerical methods are now used extensively, they do not
discard theoretical investigations on the eigenvalues and eigenfunctions
(see [X~-8] }.

B very important theoretical problem consists in finding bounds on
the eigenvalues. Due
to the variational characterizations of eigenvalues (n® 26-28) it is easler to
obtain upper bounds than lower bounds. It turns out that lower bounds are more:
interesting from both the mathematical and physical points of view. For example,
lower bounds determine safety limits of some mechanical systems in order to
avoid buckling : rods, plates, beams.

The most powerful methods which have been developped in order to obtain

bounds on the eigenvalues are the isoperimetric methods. These methods owe very

much to the works of G. Pblya and G. Szegd in the 40s(see [pP-8] or [PE]) ; we

will study them in chapters IV - V of these notes.

In an inverse problem one assumes that one or several eigenvalues of

the Laplacian 29 are known and cne seeks information on the metric g :

curvature, form {i.e. topology) of the manifcld... . Let us quote sir A. Schuster
{1882) who created the word spectroscopy : "to find out the Aifferent tunes

sent out by a vibrating system is a problem which may or may not be solvablerin



I1I.22

certains cases, ‘but it would baffle the most skillful mathematiclan to solve
the inverse problem:and to find out the shape of a bell by means of the sounds
which it is capable of sending out. And this is the problem which ultimately
spectroscopy hopes to solve in the case of light. In the meantime we must
welcome with delight evep the smallest step in the desired direction " (quoted
in [G~5] Intreduction p 8).

We will not deal with inverse problems in these notes but for a brief
survey {chap. VII ).

However, we shall be interested in an inverse geometric problem ; one

important question in Riemannian gecmetry is to determine the global influence

on the manifold of (local) estimates on the curvature. Theorem I11.29 (Myers'

theorem) gives a partial answer to this question in dimension n ; the Gauss-
Bonnet theorem also gives a partial answer in the two-dimensional case {([HF]
Theorem III p.113). Chapter VI is devoted to an analytic approach to the
above question. In chapter V-VI we shall show how local estimates on the

curvature (after scaling the metrie appropriately) imply bounds on gecmetric

invariants such as the Betti numbers of the manifold.

Let us now give two examples, oreexample of an inverse problem (Weyl's
asymptotic formula) and one example of a direct problem (Cheng's upper bounds

on the eigenvalues).

33. Let @ be a smooth bounded domain in (mn,can) i,e. with the usual
Euclidean structure and Laplacian. We consider the Dirichlet eigenvalue problem
(16D} in g

Au=_ du in g

u=0 on aQ
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Let us consider a grid with size a in R" i.e. the pattern of cubes in

&" made by a lattice (az)n centered at an interior point in  : see Figure 3

N

\
4
J

Fig. 3

Let us call Eii (resp. %Se) the collection of all cubes of the grid
which are contained in @ (resp. which contain a point lying in @ ).

Let %Ei (resp. %58) be the collection of all eigenvalues (with multi-
plicities) of all the cubes in %3i (resp. QZE) with Dirichlet (resp. Neumann)
boundary condition : an eigenvalue which appears for two different cubes

should be counted twice. Arrange the sets %31 and fﬂe in increasing sequences

i o ™
{p(;)} and {u SE)}
3=1 I 4=
Denote by {Aj} “  the increasing sequence of the eigenvalues of the
j=t
Dirichlet problem in Q.
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34, PROFOSITION. For j 2 1 the following inequalities hold
(e) (1)
L VAR TN
uj UJ UJ

Proof - Dencte the generic cube of the grid by C. Let

L. =@ Lz(cl ;L o=@ 13(0)
e & Coe¥
€% ®
1 1
B =6 H(c) H =@ H (C)
[of EEE - c eﬁg

We can view the (open) cubes as disjoint manifolds. We then have two

manifolds M, = U o, k=4 ¢
c ek c eE%
(disjoints unions}.

In that case we alsoc have

.2 _ ol _ .2 ool
Li =L (Mi), Hi = HO(Mi), Le =1 (Me), He = H (Me).

Proposition 31 shows that {u;i)} {resp {u;e)}) is the sequence of the
elgenvalues of the Rayleigh quotient on,Hé(Mi) (resp. Hl(MeJ). In particular

we have the following variational characterization

uéi) = inf sup {R(u)| u in Lk' u # 0} {resp. uie))

Lk any k-dimensional subspace of Hi {resp. He).

Let §i, = U c P R = €., It is clear that Q, e 4 c q .
i e i e
o4 Eei C sc;

1 1
Since Hi [= Ho(ﬂi) [ HO(Q) we have

(i ' . _ .
My E Ak(ﬂi,Dirlchlet} 2 Ak = Ak(Q,Dlrichlet)
Since Hé(ﬂ) c Hi(ﬂ } € B_ we have
‘ e e

- : (e}
Ak = lk(ﬂ,Dlrichlet) z Ak(ﬂe,Neumann) > uk

PR ES

Finally,u;e)skk :
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35, Let N{A) = card(j | P At

N ) = cara (3 | u;E) < A}

a4 () = cara 3 | uj(.i) < A}

LEMMA. When X goes to infinity the following limits hold
/2 N(e)

Lim AP Y]

-n/2 N(i_)(”

cin) Vol(ﬂe)
lim A = c{n) Vol(ﬂi}

where ¢(n) = (27) ".Vol unit ball in R".

Proof — The eigenvalues of a cube with side a are of the form
2
™

2

n
2 ki where
a 1=1

kl ¢ N(Neumann} or kl e W\ {0} (Dirichlet)
Hint : use separation of variables and Theorem 30.
Counting the eigenvalues less than A amounts to counting the points with positi-
ve integer coordinates inside the ball of radius % /A. Bs )\ goes to infinity
. . ) ~n , , ny_n ,n/2

the equivalent for the number of such point is (2w) ~(Vol unit ball in R Ya© A

(2—n appears because we only consider points with positive coordinates).
We can interpret a" as the volume of a generic cube in the grid.

The Lemma follows from the definitions of uil) and uée).

36. THEQREM (WEYL's asymptotic formula)

Let { be a smooth bounded set in (an,canj.

Let {Ak}:_1 denote the seguence of eigenvalues of the Dirichlet eigen-
value problem for the Laplacian in f . Let N(X) = card {5 1js A}. The
asymptotic behavior of N(A) is given by

N{A) mc(n)Vol(mAn/z as A+ (c(n)=(2r) ™ol unit ball in &").
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Proof - Take a g¥rid as above and notice that one can take Vol(ni) and Vol(ne)

very close to Vol(() by taking a small.

Compare with [C~H] Chap VI.4.

37.

38.

39.

boundary, whose Ricci curvature is bounded from below by (n-1)k (k in R}

REMARKS

(1) Weyl's formula also holds for any of the eigenvalue problems (16)
see n® yIT_ 11

(ii) Weyl's formula shows that if we know all the eigenvalues of @ ,

say for the Dirichlet eigenvalue problem, then we know the dimen-

sion n of ¢ and its volume Vol(R). This is an example of an

answer to an inverse—problem : the knowledge of the Dirichlet-

spectrum of { gives both the dimension and the volume of Q.

COROLILARY. For i as in Theorem 36 we have

-2/n 3 2/n
lj(ﬁ)j_‘:mc(n) (V—_ol(ﬂ))

Our next result is an example of an answer to a direct problem.

THEOREM. Let (M,g) be an n-dimensional Riemannian manifold without

Ricci(M,g) = (n-1)kg .

Let r be less than the injectivity radius of (M,g).

For any x in M, the following inequality holds

AI(B(x,r),Dirichlet) =< Ai(k,r)

where Al(k,r) is the first eigenvalue for the Dirichlet problem in a geodesic

ball of radius r in the space (Sﬁ,can) with constant curvature k (see n® II.18).
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40. COMMENTS

(1) The injectivity radius Inj(M,g) is the largest r such that for all x

in M, exp_ is an embedding on the open ball of radius r in TmM' When M is

compact this number is {strictly) positive ([C-E] chap 5).

(2) It follows from Theorem 18 and Green's formula (Theorem 10} that for
a Riemannian manifold with boundary (N,h), the first eigenvalue Al(N,h,D) of
the Dirichlet eigenvalue problem is (strictly) positive. For the Closed or

Neumann eigenvalue problems the first eigenvalue is O,

(3} All the geodesic balls of radius r in (Si,can) are isometric so that

the definition of ll(k,r) in the theorem makes sense.

(4) In fact Theorem 39 also holds for radiilarger than Inj(M,q) : see

Cheng, [CG]

Proof - It can be shown ([CL], chap.II.5) that the first eigenfunction of the
Dirichlet eigenvalue prcblem in the ball B{p,r) in {SE,can) can be written as
¢, = ?(dk(p,.)) vhere ¢ is a positive function and 4 (p,.) is the Riemannian
distance function to p in (SE,can).
Let 8{r,u) = 8(r) be the volume density in (Sz,can) viewed through expP
(see n® XI.25). The function %’satisfies

"(s) + Elizl-lfks) + 2, k) Fis) =0 ;

“el{r)

L) =0
@ <"

From this equation it follows that q’is decreasing.
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For x in M let f(y) = %’(d(x,y)) where vy € B(x,r) and d(x,y) is the Riemannian
distance in (M,q).

From the first wvariational characterization of eigenvalues (n°26) we
can write

2 2
Ay (Blx,r)) = lag|“/ £ because F
B{x,r} B(x,x)

vanishes on the boundary of B(x,r}. Let 8(s5,u) denote the wvolume density in
{M,q) viewed through exp, (n® II.25).
Pulling back the above integrals to TxM we obtain

r
J ldfiz = J’ J (‘-’f' {5))29(s,u)d5 du
B(x,r) 5 7o

xr
f2 = J ICPZ(S)B(s,u)ds du
n-1
B(x,x) S 0

Integration by parts gives

r ¥
J |lag]? = f [ s (=" (s)- g——(s,u)c?'(s))ds du

B(x,r) Sn_1 0

41, LEMMA, With the above notations and under the assumption
Ricci (M,g) 2 (n-1)kg. we have

3 —

3;{9(511-1)/9(5)} <0
for s smaller than Inj(M,qg).
For a proof see [B-C] chap 11.10 ; this Lemma is the key-point in the proof of
the Bishop~Gromov comparison theorem (n° ITI.30)

Now since {'(s) < 0 we conclude that

2 H 8 : ©2
J|df| sJ JL?(S){—(? (s)- 5—(5)({) {s)}Mds du = li(k,r)J J(F (s)8(s,u)ds du .

B(x,r) Snm1 0 Sn—l 0
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, 42, "COROLLARY. Let (M,g} be an n—dimensionai Riemannian manifold without
boundary, whose Riccl curvature is bounded from below by (n-1)k i.e.
Ricci{M,g) 2 (n-1)kg. Let D denote the diameter of (M, an§ let {Ai(M)}:=1
denote the eigenvalues of the closed eigenﬁalue problem on (M,g) counted with
multiplicities.
The following inequalities holds

A M) s Al(ic,D/Z (m-1))

where Al(k,r) denotes the first eigenvalue for the Dirichlet eigenvalue problem

in a ball of radius r in the space (Si,can).

Proof - Take x and y in (M,g) such that d(x,y)=D and consider a shortest path
from x to y. One cén find xl"“"xm on this path such that the cpen balls
B(xi,Dlz(m-l)) are pair-wise disjoint.

Consider the vector-space in Hl(M) gpanned by the m functions‘fl,...,flm where

1% eigenfunction (for Dirichlet) in B(xi,D/Z(m—l))

0 outside B(x;,D/2(m-1))
This subspace has dimension m. BY Theorem 40, for any u in this subspace
R{u)} < J\l(k,D/Z(m—l) Ve
Corellaxry 42 then follows the third variaticnal characterization of

eigenvalues {n°®28).

43, COMMENTS. Because a Riemannian metric is asymptotically Euclidean and
because dilations act on (RP,can) we have
lltk,r) v C{k,n) r_2 when r goes to zero.

It follows from Corollary 42 that

4

2 =2
Ap (M) < Cl(k:n) m- D when m foes to infinity,
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where C(k,n) and Cl(k,n) are constants depending on k,n alone.

Notice that Diam(M,g)2 Am(M,g) is a Riemannian invariant of weight O
i.e. is invariant under dilations of the metric (see n® II.6). It follows from
Weyl's formula (Theorem 36) that m2 is not the power of m we should expect :
we should expect m2/n‘ Because we tock a shortest path from X to y in the proof
of Corecllary 42 we acted as if {M,q) were one-dimensional and we therefore

found mz/lam2

One can indeed prove an estimate of the type
2/n. -2
<
Am(M) = Cz(k,n) m D
{see [CL] p 7B £f or [GV1]) by taking balls which £fill(M,q).
In fact, Gromov also proved ([GVi])that there exists a constant C3(k,n)

such that

(40) 0w 2 (k) n?/0p2

We shall prove such an estimate in chapter VII (our constant will be
better than Gromovw's and our method quiete different). Again in view of Weyl's
theorem we can ask the following question : should not we expect to have the
estimate

Am(M) > C4(k,n) 1112'/n VOI(M}-zln {where we find the volume instead of
the diameter) ?

In chapter we will give counter-examples showing that {44) is best possible
qualitatively : a general lower bound on lm(M) mast depend on-a lcwér beound

on the Ricei curvature and on an upper bound on the diameter of (M,q).
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45, REMARKS
(1) Theorem 39, Corollary 42 and (44) give partial answers to a direct

problem (find information on the eigenvalues in terms of geometric data).

(2) As the variational characterizations show, to a stronger stress cor-

respond larger eigenvalues of given rank. This should be kept in mind together

with our motivations from mathematical physies in chapter I.
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Chapter IV
ISOPERIMETRIC METHODS
§ a. Motivations : The Faber-Krahn inequality

n® 1-4 : Statement of the ineguality

n® 5-8 : Symmetrization and the proof of the Faber-Krahn inequality

§ B. Isoperimetric inegualities and symmetrization
n® 9-12 : Isoperimetric inequalities and the iscoperimetric function of
a compact Riemannian manifold without boundary
n® 13-21 : Symmetrization associated with an isoperimetric inequality
n® 22-30 : Cheeger's isoperimetric constant and Cheeger's estimate
on AZ(M,q;C)

n® 31-32 : Comments

More references :

[BEl, [cL] chap IV, [PpE], [P-s51, [ON]
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In this chapter we give the basic ideas concerning the isoperimetric

methods together with some direct applications.

A. Motivations : The Faber-Krahh ineguality

Given Q , a smooth bounded domain in ®", we denote by AI(Q) the first
*
eigenvalue for the Dirichlet eigenvalue problem in § ; we denote by @ the
Euclidean ball centered at 0 in R” whose volume is equal to Vol (). The

following inequality holds
*
(1} Al(n) E3 Al(n ) (Faber-Krahn's inequality) *
This inequality was stated in dimension 2 by Lord Rayleigh in this
treatise on the theory of sound ([RH], Section 210 ; this is still a very stimu-
lating reading). The procf of inequality (1} was given independently by C. Faber

and E. Krahn in the 1920s.

2. “-etch of the proof of the Faber-Krahn inequality

Let £ be a first eigenfunction for § , associated with ll(ﬁ).

3. LEMMA

One can choose the function f to be strictly positive®n the interio.
of .
Proof. It follows from [G-T] lemma 7.6. p 145 that if u belongs to H;{ﬁ), 50 does
Zraot

luj, and then R{u}=R(|uj).
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According to the variational characterization of 11{9), this implies that one
can take f to be positive in the interior of . The maximum principle ([G-T])

chapt. 3} then implies that f cannot vanish in the interior of Q.
4. REMARK
Lemma 3 implies that the eigenvalue Al(ﬂ) is always simple {(i.e. ll(ﬂ)

always has multiplicity one).

The main idea in the proof of inequality (1) is the idea of symmetriza-

tion.
We consider the sets e = {xe | £x)>t} and we symmetrize them by con-

sidering the Euclidean balls Q; in Rn, with center 0, satisfying Vol(QtJ=Vol(ﬁ:).
Equivalently, we symmetrize the graph F of f above I into a set f* which

*
is invariant under rotations about the axis D {Fig.4).

Fig. 4
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We define a function £ on ﬂ*rby the following properties
(i) the graph of £ is F*, ox equivalently,
f* iz a radial decreasing function
(ii) and

* ok
f takes the value t on‘Bﬁt.

This procedure is called the symmetrization of the function f. (we do

not wish ﬁc go into formdl definitions now i for more détalls see [8E] chap II
or [MO] chap I).

In order to estimate the Raylelgh quotlent R{f) of the functlon f, we
introduce new coordinates on 2,by con51der1ng the level hypersurfaces and the
lines of gradient of f. The following fgrmula is Known as the co-area formula

i

(see [CL] chap IV, [BE] Lemma 2.5 p53,{B-M] Appendix A).

5. LEMMA
For any continuous function h on 2 one has

[Supf

J h(x)ax = (f ntag}”! aa at
Q a(t)

0
where dag is the volume eiémént:of the Riemannian metric iﬁducéé by R" on the
nypersurface G(t) = f-l(t) (this makessense for t in the_set égf of regular
values of £ ; the complement of’lk has measure zero by Sard'srfheoremi.

If we now take h = 1dfl? and if we apply the co-area formula we cbtain
(m=. bupf) o .

o .
lag|2eoax = | ¢ lag|da,rat .
o Jatt) £

e

Bpplying Cauchy-Schwarz inequality,we find
J |df|dat z (J aat)z/f |df|-1dat
G(t) G(t} late)

(for t .?i.n Qf).
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-1
Now J' dat is just the (n-1)-dimensional volume of G{t)=f (&),
G{t)

hence, by the classical isoperimetric inequality in ®" (see n°8 below),

¢ J da )2 » Voltasz:)z.
6{t)

It also follows from the co-area formula that
-1 d d *
_JG(t) |ag] da, = gp Vol(@,) = G- vol(Q).

*
If we now apply the same construction to the radial function £,

(see [CL] chap IV or [B-M] Appendix B) we have

* * * -1 *
f lag™|aa* = ¢ J aa* )%/ |ag®| *aa
J t * t . t
" (o) ¢* () &t ()

* * *e
{]4f |is constant on G (t) = £ 1(t)) and hence,
x & e s
|ag] da, = J |a£” |aa ¢- Integrating in t, this gives

Gl & (t)
J ]df]z(x)dxzf lag™ | % (x) ax.
0 *

It follows easily from the co-area formula that

f fz(x)dx = J f*2(x)dx.
J

Q o

* * )
Finally we have proved that R(£;R)} = R(f 18 ), from which it follows
*
that xl(n) 2z Al(ﬂ J(First variational characterization of the eigenvalues :

II1.26).

6. REMARKS_
(i} One way of dealing with the difficulties arising from the co-area

formula is to approximate functioms in Hé(ﬂ) by "nice" Morse functions (this
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argument was introduced by Th. Aubin : see [B~M] Lemma 10 his p 519} ;
(ii) One can alsc use & more general form of the co-area formula :
see [TX], [MO] ,[KL]: V
{iii) The Faber-Krahn inequality can be generalized to other situwations

see [CL] chap IV, [B-M] and n° 22 below.

7. COMMENTS

The main ideas in the proof are the principle of symmetrization and

the use of the classical isoperimetric inequality (both Cauchy-Schwarz inequa-

lity and the co-area formula are technical details which are easily generalized

to other situations). The classical isoperimetric inequality in R8" states that

among all domains in mf with given n-dimensional volume, the Euclidean balls
have least boundary (n-1)-dimensional volume. Because dilations act on mp, this
inequality can be written as follows : for any bounded demain § in BE

(8) Vol . (s = ¢*(m vol (m P7H/M
n-1 n

where c*(n) = VOln_l(Sn-l)/Voln(Bn)(n"l)/n ,

8% = {x in&"| |x| = 1} , s% l=aB".
(For a more general statement, for example when 38 is very irregular, see [FR]
P 278).

Inequality (8) explains our choice of the symmetrization procedure,
so that the principle of symmetrization and the isoperimetric inequality amount
to the same idea. This idea can be generalized to analogous situations on the

sphere (Sn,can) or on the hyperbolic space {Hn,can) : among domains eof (Sz,can)

with given volume, the geodesic balls have least boundary volume (see [ON] for

a survey on isoperimetric inegualities).
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The point is that the model spaces (sz,can) have many isometries and
nice gecdesic balls. We cannot expect anything like that on a generic Riemannian
manifold. We will now explain how the symmetrization procedure can be extented

to the general case.

B. Isoperimetric inequalities and symmetrizaticn

Although some of the ideas we will deal with can be generalized to other

situations, we will from now con assume that
ALL RIEMANNIAN MANIFOLDS ARE COMPACT, CONNECTED,WITHOUT BOUNDARY .

9. An isoperimetric inequality .on a Riemannian manifold (M,g) (compact,

without boundary) is an estimate from below of the volume of the boundary 3f of
a domain @ in M,in terms of Vol{R). If we take O to be,.the complement of a small
ball in M, we see that it is more realistic to consider Vol{(Q)/Vol (M)}, the
relative volume of 9 in M instead of Vol (g).

We define the isoperimetric function of {M,q) as

h{g) = h(M,g;p) = ine{222 B3 100, vor(p) = gvol(m} , For & in [0,1]
Vol (M) .

(it should be clear that Vol(q) is an n~-dimensional volume, n=dim M, and that

Vol(3q) is an (n-1)-dimensional volume).

-An isoperimetric inequality on (M,g) can then be viewed as a function H

from [0,1] to R+ such that h(g) = H(B) for all B in [0,1].

10. EXAMPLE

i 2
Let us consider {5 ,can). The volume of a geodesic ball of radius r in
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(Sz,can) is 2m(l-cosr}, and the volume of the corresponding geoaesic‘sphéré"bf"
radius r is 27 sinr. It follows from the isoperimetric inequality on (SE,can)

(see end of G&) that h(S>,can;B) = VB(1-8).

11. PROPOSITICN
The function h(M,g;B) has the folilowing properties (n=dim M}

{i) h(8} 2 0

(iiy h{p} hi{i-8)

mvoron VY™ gTD/P uhen g is cisse to 0

?

(1iii) h(B)
{foxr C*(n) see formula (8));

(iv) hi{M,g;.) is continucus on fb;rr and has right and left derivatives

at each 8 in 10,1[ and is differentiable in ]0,1[ except on a denumerable set.

Proof : (i) and (ii) :are clear ;

(1i1) is called the asymptotic‘iﬁdperimetric ineguality ; it says that
for domains with small volume, the isoperimétric inequality looks very much like .
the classical ;isoperimetric inequality in R : see [B-M] Appendix € ;

(iv). is much more delicate : see [B-B-G2]

12. PHILOSOPHY -

Isoperimetric function vs. Isoperimetric inequality.

If we want to use isoperimetric methods on-a given Riemannian manifold
(M,g), the best thing we can hope for is to know the isoperimetric function
h(M,g;B) itself. In general this is not the case and we have to replace h(B) by
some minorizing function H(R}.

¥ow if we want te use isoperimetric methods on a class of Riemannian

manifolds, we have to choose an isoperimetric inequality which is valid for

any manifold
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in the given class.

An example of such a class of Riemannian manifolds is

m

We then consider isoperimetric inequalities of the form h(M,qg;g) = H(n,k,D;B)

Lk D={(H,g)[dim M = n, Ricci(M,g) = (n-l)kg, Diam{M,g) < D}.
Fony

. We will give examples of such situations in chapters

For any (M,q) lnhth,k,D

V and VI.
In the sequel we will study isoperimetric methods on Riemannian manifolds

with a given function H(B)} and with the above philosophy in mind.

13. SYMMETRIZATION

Let (M,g) be a Riemannian manifold equipped with an isoperimetric
inequality H{B). Because a generic Riemannian manifold does not have symmetries,
we cannot compare a domain in M with a geodesic ball in M. Keeping in mind the
symmetrization procedure which we used in the proof of the Faber-Krahn inequali-
ty, we will instead comstruct a model space with nice balls having iseperimetric
properties related to H{(B).

For this purpose we considex Sn—liO,LE with Riemannian metric
g*= az(s)dsz+dsz, where g is in Sn_l, s in 10,L[ , and dez is the canonical
Riemannian metric on (Sn_l,can). We also assume that a{Q)=a(L})=0. We call (M*,g*)
this Riemannian manifold (it is not necessarily complete ; we also use M* for
Sn_lx 10,LLu{N,S} where the north and socuth poles N and § are the points corres-
ponding to Sn-lx{O}_and Sn_lx{L} ; this is a smooth manifold if and only if
a'(0)=1 and a'{L)=-1 ; (M*,g*) can be viewed as a manifold with revolution sym-
metry).

We denote by V* the volume of (M*,g*). We call A(s) the relative volume

of the ball B(N,s} with center N and radius s {i.e B(N,s} = {N}u Sn_1 x J0,s0).
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‘We then have

S
(14)  Als) = v ! vor(s"h J " yae.

0

(see Fig. 5).

Fig. 5

15. In order to have a nice symmetrizaton procedure on the manifold
(M,g;H(B)), we want to construct a model (M*,g*) such that the balls B(N,s) have
B as isoperimetric function i.e such that

v*! vo1(am(N,s)) = H(a(s)), (recall that A(s) is the relative volume
of B(N,s)).

This can also be written as

n-1
a

(16)  A'(s) = H(A(s)) , s € 10,10, because Vol(3B(¥,s)) = volL(s® 11a" (e}
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Given a Riemannian manifold (M,g), with isoperimetric inequality H, we
can construct (M*,g*} as follows. We determine A(s) by the differential equation
{16) and the initial condition A{0)=0 (we could alsc use another condition :
see n° 22 below). | |
This determines A(s) by the equality

(17) 5 =

JA(S) du
2

B H{u)

'

from which we deduce the value of L

1
du
(18) L = J ‘
0 H{u)
19. REMARK
It is clear that the isoperimetric function h satisfies

h{0)=h(1)=0. This implies that‘Ehe,ispper;mgt;ic,inequdiity H must satisfy
H{0)=R(1)=0. It foliows that equations (lf) and (18) only make sense if the
integrals converge. Notice that in view of Proposition 11 (iii), the integral

J: E%ET' converges. For this reason,we will usually assume that H(B) ~ CB“ when
B is close to O with 1 > g = Bil and a similar assumption near B = 1 (the
second inequaljty comes from Proposition 11 (iii) and the assumption that

h(B) = H(B) for all 8). We shall also give an example with a=1 (see n°® 22 below).

20, So far, given {M,g;H{Bf)) we have determined A(s) and L. In ordexr to
determine {Mf,g*) we still have a degree of freedom, namely the choice.éf V*.
This will turn ocut to be convenient later (n® 21 and chap. V) but the choice of
*_1/(nfl)a(s).

* . ; .
V is ip fact irrelevant for the followings reasons. Lét g(s)=

This function is determined by A(s) because
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= - - -1, wn-
ar (s = v lvors™ha ey = vor(s™™h 3 ey -
*
Now let £ be a function orn M which depends only on the variable s. The Rayleigh
E I
guotient R(f) of £ on (M ,g ) is given by
L L

R(£) =J I fzts)a“"l(s)dvds/J J 2 (g1 (s)avas s
n-1 0

8 s Vo

where dv is the Riemannian measure on (Sn_l,can). It follows that

R(f) = r' £2(s) 3“’1(s)ds/r £2 (812" L(s)as
0 ]
does not depend on v* . this is a Rayleigh quotient in one dimension,with mea-
sure gn_l(s)ds. In the sequel we will compare the Rayleigh quotient of a fune-
tion on (M,qg) to the Rayleigh quotienf of a radial function on (M*,g*) (i.e.
depending only on the s-variable) so that we will be able to ignore V*.
On the otherhand, the radial part of the Laplacian on (M*,g*) is given

by (see n° IIX.5(v))

a'{s) 3

32
T2 (n-1) als) s

as
(because e(s,u)=an#1(5) in the loecal chart expN].
This operator does not depend on a choice of V*.
As a matter of fact, it turns out that our mapifold with revolu;ion

%
symmetry (M ,g*) is just.a convenient way of visualizing a one-dimensional model.

21. EXAMPLE

Let (M,g)} be a Riemannian surface with isoperimetric inequality

H(B) =VB(1-8). Formula (17) gives
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Als)
s = J [u(i—u)]_1/2 du,i.e A(s) = sin’ %- and L =1 -
0
v*
It then follows that a(s) = e sin s and that

(M*,g*) = (SiXJO,w[,g*=a2(s)d82+dsz).

A pleasant choice of v* is v¥= 4m, in which case (M*,g*) is just (Sz,can)
whose isoperimetric function is h(Sz,can;B)=fB(1-B) (see Example 10). Another

choice of V* gives a "cigar" with two conic points and constant curvature 1.

22. APPLICATION : Cheeger's isoperimetric inequality.
In 1970,J. Cheeger introduced the following isoperimetric constant,

known as Cheeger's isoperimetric constant. For a Riemannian manifold (M,qg)

we define

n.=h. (M,9)=inf{Vol(an) /vol(Q) [acM, 2Vol(R) < vol(M)} -
it follows that

h{g)=h(M,q:8) = h, min(g,1-8) »

so that we can choose H(B)=hcmin(s,1-3). Notice that H(B)=H{1-B) and that

1
J g?:) diverges at O and 1 {see remark 139) . Taking into account the Symmetry
0

of H(R), we construct the model space (M*,g*) as Sn_lx]—m <[ with g*=a2(s)d62+d52
and we sclve the differential equation (16) with the initial condition a{0)=1/2,

which gives

(23} g =
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Using the symmetry of Hy,we find that for positive s, A{s)+a(-s)=1

and hence a{s)=a(-s). Finally {23} gives

For s 2 0,

A(s)

1

1 - %—exp(—hcé)
(24)

als) = (v* Vous“"l)‘lhc/z)1/(“““exp(-hcs/(n—1))

*  *
so that (M ,g ) is made of two cusps glued, together in a symmetric manner (see

Fig. 6 in dimension 2).

-

-
_——m e ——

-

Fig. 6

ok
The manifold (M ,q ) is complete noncompact and has finite volume.

* -
Using the symmetry of M we can view N as "the point at « : s 1x{w}".

25, Cheeger's isoperimetric constant was introduced in order to give a
lower bound for XZ(M,g;closed) {(see n® I1I1.19). The first eigenvalue AI(M,g;clo—
sed) is always 0, the corresponding eigenspace correspondihg to constant func~
tions. Cheeger proved that

{26) Az(Mfg;closed) Y hé/4.

v
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an eigenfunction f assooiated with AZ(M) being erthogonal to the
constants must change sign in M. We can therefore-find a connected.component f
of M\f_1(0L such that 2vol(f) < Vol{(M). We can also assume that f is positive
in @ . It turns out that le is a first eigenfunction associated with the first
eigenva}ue Ai(ﬂ,g;Dirichlet) of the Dirichlet eigenvalue problem in {t,and that
Ai(n.g;n) = kz(M,g;C) (think of Green's formula, Theorem III.10 or see [B-M]
Appendix D). -

We will now estimate Xl(ﬂ,g;D) from below in terms of Cheeger's iso-
perimetric constant hc. For this purpose we use the model (M*,g*) of Fig.6

*
above,with V =Vol(M} and we mimic the proof of the Faber-Krahn inequality (§a).

* - *

Let @ = {x in Q| £(x) 2 t} and let Q.= s" Ixlr 0y ,%fc " be such
that Vol(ﬂt)=Vol(9§). Define a function ¢ : [x(0),=l » R, by ¢{r(x)) =t . The
function ¢ increases from O to sup £ = m in [r(0),=[. For (8,s) in ﬂ* = Q*o,let

* .
£ (6,8) = ¢(8) . The co-area formula gives (see § A)

2 _ ("
f | ag| v, _J { J | af jaa ) dt
Q G(t)

where G{t) = (f|ﬂ)u1(t). By Cauchy-Schwarz inequality,we can write
2 -1
J. Idf[dat2 (J da.}” / J lag| da,
G(t) G(t) G(t)

Since 2 Vol Qt's Vol({M} we have
. _ * *
VDl(BQtJ =4 hC Vol(ﬁt) = hC VOl(Qt) = Vol(aﬂt);

i . %
by definition of (M ,q ). This can be written as

Vol (G{t)) = Vol(G" (L))

w=1

*
where G (t) = F (t}. Since £¥ only depends on the s-variable we can write
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* *
_ lag|aa, 2 . |ag” | da,
G{t) G (1)

{(we again used the fact that Vol Qt = Vol Qt : see § A).
As in § A we conclude that

(27) |df|2dvg/ fzdvgz |df*|zdvgfc/ £ Qv

* *

Q 11 Q Q
The right-hand side of inequality (27) can be written as

&2(5} exp(—hcs}ds/ ¢2(sJ exp(—hcs)ds = R1(¢}
r{0) Jrio)

because g* = az(s)de2 + d52 (notethat r(0) = O and that |df*lf,is the norm

of &f* on M* for the dual metric g* l). It follows that

A, (M,giclosed) = |df|2dvg / fzdvgz inf{R ($)} = A

2 2
where the infimum in the right-hand side is taken over all functions ¢ such that

(i) ¢ andé are in L2( R,. exp(-hCSJdSJ
(ii) ¢ =0

{¢ the derivative of ¢ is the sense of distributions).

It is easy to see that

A = inf {R;{§) [¢in cZ( R},

and that

-
]

inf inf {R (¢} ¢ in ¢ (lo,nl)} -
o
n>0

Using the first variational characterization of the eigenvalues (N® III. 26),
it follows that

A, = inf {R)($)] ¢ in C:(]O,n[)}



Iv.le

is the first eigenvalue of the Dirichlet eigenvalue problem
C " {s) — hc¢‘(s) + Ap(s) =0
% ¢(0) = ¢(n) = 0
which can be sclved explicitel¥Jshowing that An > hé/4 . Finally we can conclude

that A » h§/4 which proves Cheaeger's estimate (26) .

28, REMARKS.

(1) Cheeger's original proof is shorter than the above one. Although it
uses the same technical details as that of the Faber-Krahn inequality, it is qui-
te different. We found it interesting to show that Cheeger's inequality can be
reduced to an inequality & la Faber-Krahn,with an appropriate model space
o, ¢*)

{ii) One can also consider the surface with boundary 81 x[0,»[, with the
above metric g*. This manifold is not compact but is complete with finite volume.
One can still consider the Laplacian A as an unbounded operator on Lz(M*,g*)
with Dirichlet boundary condition. The number hi!4 then appears as the lower
bound of the spectrum of the Friedrichs éxtension of A (compare with [cLl
Chap. IV. 3) ; (continuous spectrum) ;

(1ii) Cheeger's estimate (26) would be void of sense if we did not know

that hc > 0 . In fact one can prove the following estimate (see [GA 1]).

29, THEOREM. Let {M,g) be an n-dimensional compact Riemannian manifold wi-

thout boundary. Define r ., by
min

¥ i = inf {Ricei(M,¢) (w,u)| u in UM} , where UM is the unit tangent

bundle to M .

. 2 2 .
Assume that rmin.Dlam{M,g) ® eln-1)k%, ee{~1,0,1}, k ¢ R .
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Then
Diam(M,g).hC(M,91 > Kk}, where
k/2 -1 -1
k (cost) dt if g=1
o) .
K(k) =42 if E =20
k/2 1|t
k J {cht) dt if £ =-1
Q
30. REMARKS .

2
(i) Notice that beth L n.Diam(M,g) and Diam{M,g).hC(M,g) are Riemannian

i
invariants of weight O (see n® II. 6)}

(ii) Theorem 29 shows that hC(M,g) is uniformly bounded from below on the
; s o .
class qnfn,k,n given in n® 12 ;

(iii) In Chapter VI we will give an estimate on Az(M,q;C) which is shar-

per than Cheeger's and we will generalize this estimate to hi(M.g;C), iz 2

31. COMMENTS .

(i) Let (M,g) be a Riemannian manifold (always assumed to be compact wi-
thout boundary) equipped with an isoperimetric inequality H{B). If-jié%ﬁi con-—
verges, the manifold ¥ is compact (possibly with two conic points) and we can

easily mimic the proof of the Faber-Krhn inequality to show the following as-

sertion.

Let Q be a domain in M and let Q* be the bhall B(N,r} in m* such that

Vol () /Vol(M) = Volln™)/vol(M*). Then

(32) A (R.9:D) 2-A,(0%,g” D)
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Notice that in oxder to fingd Al(ﬂ*,g*;nb one only has to solve a one-
dimensional eigenvalue problem {indeed the first eigenfunction is radial : com-
pare with n® 20. .

As was already pointed out in Remark 28 (iii), the estimate (32) is wvoid
if we do not know H{B) i.e. if we cannot give lower bounds for h{R) in terms of
geometric data. Se again the main difficulty is to find a good isoperimetric ine-—
quality. This fact will turn out to ke even more important in chapter V : see
n°vge;

(ii) One can also investigate isoperimetric inequalities on a manifold
with boundary. In the case of a domain  in a manifold without boundary Mywe
have use the isoperimetric inequality in M to obtain results on the Dirichlet

eigenvalue problem in @ . One can also consider isoperimetric constants adapted

to the Dirichlet boundary condition. For example one can define Cheeger's iso-
perimetric constant

h (R, g:Dirichlet) = inf{vol(dw)/vellw)| u c &}
for the Dirichlet boundary conditions on 3R . If we want to deal with the Neumann
proplem we have to allow subdomains w such that 3wndf # ¢ ; see [BR] p. 29 .
It turns out that the isoperimetric constants adapted to the Neumann boundaré
conditions are much more difficult to deal with than the othercnes. In fact es-
timates on Altn.g;Neumann) involve the geometry of (f,3R) is a very strong way.
We shall not deal with these problems here : see [ME1] for more details.

For further reading on Cheeger's constant hC we recommend [BR].
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(40)  §(E) = dim Ker < %(t) < exp(-t&, ) Z(t), for all t > O .
Finally we notice that
Ker b = {s €C"(E})|2s =0} = {s ¢ C (B)|Ds = O}

so that

(41) dim Xer A < & = rank (E)

(compare withe Exercise 15 (ii)).

Consequence. Proposition 26 is an easy consequence of (39) - (41) :

it 2 o0 1im 2(t) = 0 so that &(E) =0 ;
mLn .
t
N p—
i L =0 lim Z(t} £ lim Z(t) <4 so that &(E) £ &.
min £ £ e

We now use the following thecrem (see [H-S-U]}.

42. THEOREM. Let E be a Riemannian vector bundle of rank ¥ over the Rie-
mannian manifold (M,g) (see n® 21). Then

Zle) < & z(M,g;t), for all £ > O .

43. REMARK. Notice that equality holds in Theorem 42 when E =M x Rg

Proof of Theorem 42. (for the results on operator theory we use here, see [kO]

in particular chap 9}.

Let £ be a positive nuumber. One can write {see Lemma 12)

%ﬂ(<s|s> + ) ='%—A(<sls>) = <hs|s> - |Bé|2 . On the other hand,

1 2 ) 2 2 2
5 A([sle) = Isle A (|s]€) - |d]le , where is[E = <s|s> + ¢

so that
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o , 2 2
|s|€. A(ls[ei = <hs|s> + |d|5lei ~ |ps|

from which we deduce (see Lemma 31)
Is] - at]s] )= <ts|es .
€ €
Passing to the limit when £ tends to O, this shows that
Isl . al|s|ye < aslss

where ﬁ[isi) is understcod in the sense of distributions, in particular this

izelics that 4(]s|) 1is a zeasure.
For a¢ R;,we deduce from (44) that

ls, . (£+31) (jsj) = <(A+AId}s|s> .

Let 8 = (a+xId)s so that, by Cauchy-Schwarz,
1si < 1s|] (Eerzay

[ EaId s amay | (Beaza)” 8|

fe.  (ama1a)| Eeza) ls| s s

Recall that exp(-tA), the heat operator, preserves positivity. For

A > O,we can write, in the sense of operators,
o0
1 th _-tA
= e e

(a+r1d) dt

o]

s0 that (A+AId)-1 alsc preserves positivity. We conclude that for all A > O and

neiN,

| (Bea1a) ™" 8| < (4+A18)™(|S|]) and then

<(AnId) TSIt > < |1l (aeazd) |s|) .

ta = 1im (1+§ﬂ)un, we conclude that for all 8,7 in Cm(E),

n oo

Recalling that e

< exp(-td).5|T > < |?| expi-ta),(|s]
and finally we conclude that

Kie,x,u) 5 g le, (£,%,%)
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where E(t,x,y) is the heat kernel of & .
We then deduce that Z(t) < & Z(t) .

Finally the above results prove the following

44. THEQREM. With the notations of n°® 21, we have

8(E) < % inf exp(-t ﬂﬁlin}z(m,g:t)
>0

Theorem 44 together with Theorem V. 2B give partial answers to

Problem 27

45, SUMMARY .
o)
Let (M,g) be a compact Riemannian manifold with’boundary such that

2 2 . \
rmin(M.gJ AM, g} 2 (n~1)ea”, g ¢ {-1,0,1} , 0 ¢ R, and n = dim M

(see n° V. 26).
Let E + M be a Riemannian vector bundle of rank %,equipped with a com-
patible connexion D and a Laplacian X which satisfies the Weitzenbdck formula
Es = KE +Gls .

Let thin = inf {<:Es |s> | s ¢ E, <sls> = 1}.

Then there exists a positive number al(n,e,o) {see n® V. 26) such that

dim Ker & €2 inf F{t)
t>0

§(8)

n

where F(t)

1]

exp(-?%indz(M,g}t) . Z(Sn,can;az(n,e,a)t)

In particular, there exists a positive number b(n,e,a) such that
ga. dz(M,g) > - bin,c,q) implies 8(E) < 2 .
min

Note that since Z(Sn,can;t) {see[CL] chap. 1. 4) and az(n,e,a) (see

n® V. 26) are easily computable, the above estimate for S(E) can be made very
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explicit, with intermediate values of t , i.e. with t neither close to O nor

very large. For explicit numerical computations see [B-G] § 5.

46. Let HY be a surface with genus y and constant curvature -1 . The Gauss-

Bonnet theorem {([HF] Part II chap. III} implies that the volume of H, is

. -2
47(y-1). Let MY dencote the Riemannian product of HY with a flat torus ™

with volume 1/4n{y-1). For MY we have r (MT) = -1, Vol(MY) = 1 . However

in
rmin(MY)dz(MY) and bI(MY) tend to infinity with y . This example shows that the
above result (n® 45) is qualitatively best possible.

For more technical details, examples and counter-examples we refer to [B-G] § 3;

see also [GAZ].

47. REMARKS. In fact,Theorem V. 28 and Theorem 42 give the following esti~
mates

N n 2 =2

(1) Vol(M,g)kM(t,x,x) =< Z(%am;a (n,e,a)t a{M) 7) ,

s ™
(1) Kplesx) s expi-tR. ) Kk (t,x,x), |
so that we also get bounds on the L -norms of the eigenfunctions of A on C (M)

A
or of the eigensections of A on CW(E} .

E. UNDERLYING PHILOSOPHY.

48. In n® IV. 12,we introduced the following class of Riemannian manifolds

' = {(M,g)| aim M = n, Ricei(M,g) 2 (n-1)kg, Diam(¥,g) < D}.
n,k,D

In n® V. 26,we stated that h(M,qg;R) is bounded from below by a uniform

function H(B} = H{n,k,D:;B) on M,

i in n°® V. 28 we proved that Z(M,g;t) is
n,k,D

bounded from above by a wniform function Z(t) = Z(n,k,D;t) on 1“! k.D° From
N.K,
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the second estimate, we deduced, in this chapter, that bl(M) is uniformly boun-

ded if M admits a metric g such that (M,g) is in %L

K, D It is very important

to visualize these results in the following picture.

49,
4
dH(X,Y)
the r -

inz .

50.

Given two subspaces X and Y of a given metric space Z,we denote by

the infimum of the positive r such that X (resp. Y) is contained in

neighborhood of ¥ (resp. X). This is the Hausdorff distance of X and ¥
We now define the Hausdorff distance dH(x,Y) between two metric spaces
as the infimum of the number d;(i(x),j(Y)) for all isometric embeddings
Z, 3 :¥>2 in some metric space Z

In [Gv2], M. Gromov proves the following fundamental theorems

THEOREM (precompactness theorem : [GV2], chap. 5). The space %Ln K.D
I ¥’

is precompact for the Hausdorif distance dH between Riemannian manifolds (com-—

pact, without boundary).

Let Uwp

denote the class of all Riemannian manifolds (M,g) such
n,K,D,V

that dim M = n, |Sect(M,g}| € X , Diam(M,g} € D and Vol(M,g) =V

that there exists a metric g on M with (M,g) E.Af

Let denote the class of all differentiable manifolds M such

n,X,D,V

n,K,D,v’

51, THEQREM (compactness theorem : [GV21, chap. 8)
(1) (Cheeger) The set 2K, DLV is finite ;
(i1) (Gromov) The set is compact for the Hausdorff distance d
n,K,D,Vv H
an? the map (M,g} +~ M ffigm Vv;,K,D,V to QL,K,D,V is leccally constant.
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It follows from Theorem 51 that bl(M)’ bP(M) and more generally any

el
topological invariant is bounded on an KD,V * Indeed such an invariant does
Py

not depend on the Riemannian metric and is finite,hence there are

n,xK,np,v

only finitely many non hemecmorphic topological spaces in 42 K.D.V ° Unfortuna-
. ! rLp

tely, given (n,K,D,V) we do not know in general the elements in éan K.D.V 50
r I r

that we do not know any explicit bound on the topological invariants of the

elements intAg,K,D,V' at least from Theorem 51,
However, it follows from n® 45 that we can give explicit bounds on
(i) bl(M) in terms of dim{M), a lower bound on Ricci{M,q) and an
upper bound cn biami{M,q) ;
{ii) bp(M)’ 2¢pgn-2 , in texrms of dim(M), an upper bound on |Sect(M,q)|
and an upper bound on Diam{M,q).
In view of (i} we could conjecture thak any reasonable geometric inva-
riant is bounded on nk,k,n' Theorem 50 would prove this conjecture if these

geometric invariants were continuous for the Hausdorff distance. This is not

so in general}as the following examples show.

52. COUNTER-EXAMPLES. Let us Eonsider bz(Mh the second Betti number.
. 1 -1
(1) (Me,g) = (T",can) x (Tn , £can) converges to (Tl,can) for the
Hausdorff distance, however bz(M ] = (2) and b2(T1) =0
€

1

. . : . 2n-+ R .
(ii) Consider the Hopf fibration S n - CPn,whose fiber is Sl. We can

2n+l
r

multiply the metric in the fiber by g so that we obtain a sequence (8 g )

£
X nd . .
of manifolds whose 2 Betti number is ¢ . This sequence converges for the
Hausdorff distance to (mPn,canb whose an Betti number is non-zero.

One can alsoc show that AZ{M,g;closed)‘is net continuous for dH {see

[1sc]).
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53. Pre-compactness revigited.

Our Theorem V. 28 gives a precompactrness result for Tn% X.D which
r r

might thave some relationship with Gromov's precompactness theorem (theorem 50):
see [B~-B~G3].

2 .
We denote by g~ the Hilbert space of seguences {ai}i>1 sueh that

2
Zla,l < w .
1
We denote by h1 the Hilbert space of sequences {ai} such that

>
2/ izl

Sla.|2(1+i % <w(n fixed in W ).
o 1

2
It is a classical result that the inclusion hl+£ is compact.
Now given a Riemannian manifold (M,g), we define a map ¢ from (M,q)

to EZ as feollows

/2

1
P (x} = {VoliM, g} exp(-?\j)q:}.(x)}j21

on

where {Aj = Aj(M,g;closed)}j>1 is the spectrum of the Laplacian on ¢ (M) and

where @j} is an associated orthonormal family of eigenfunctions.

j=1

If (M,q) is in‘ﬂk we can write (use n® V. 28)

kD

(i) |[¢(x]|l§ = Vol(M,g)k, (2,%,%) < 2(s",can;a(n,k,D)), and
£
2 &
[lotxeM |, = voL(M,qg) E .2/n ~ 2
Bl j=1(1+j yexp{ ZAj)¢j(x) .
Since Aj z B(n,k,D)j2/n in view of Thecrem V. 31, we conciude that
. 2 v . 2
(ii) a7 s volt,a)Cin k,D) | (1+d.)exp(-2A )b (x) -
a 351 3 3773

Using n® ¥. 28 againand a summation by parts,we conclude that

(1ii) j|¢(x)1|2 L ¢ Bk .
h

Here a{n,k,D), B(n,k,D), C(n,k,D, E(n,k,D) are universal functions of

n,k,D.
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From (iii} we conclude that the image of the set m by the

n,k,D

1 : fo a
application ¢ is bounded in h~ and hence relatively compact in 22. This is the

announced precompactness result.



Chapter V

ISOPERIMETRIC METHODS AND THE HEAT EQUATION

§ A. The heat eguation

n® 1-7 : The heat kernel, The partition function, Basic results ;

§ B. Iscperimetric inequality for the heat kernel, I.
n® 8-9 : Statement of the main theorem ;

n® 10-25 : Sketch of the proof of the main theorem ;

§ c. Isoperimetric ineguality for the heat kernel, II.
n® 26-28 : An effective isoperimetric inequality ;

n® 29 : Some philosophical remarks ;

§ D. Applications
n® 30-32 : Lower bounds for the eigenvalues of a Riemannian manifold ;

n® 33 : On the eigenfunctions.

More references :
For other comparison theorems on the heat kexnel see [cL] or the

references in [B-Bl.
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ALL RIEMANNIAN MANIFOLDS ARE ASSUMED TO BE

COMPACT, COMNECTED, WITHOUT BOUNDARY

In Chapter I,we used the wave equation and separation of variables to
motivate eigenvalue proublems ; we could have used the heat equation as well.
In the present chapter we give direct results concerning the heat

kernel of a Riemannian manifold. They will be useful in chapter VI.

A. The heat eguation

Let {M,g) be a compact Riemannian manifold without boundary. To deter-

mine the heat flow ult,x) on (M,g) is to find a function u(t,x) such that

3 ) .
(1) ﬁ(t,x) +Aait,x) = £(t,x), for (£,3) in R xM,
u{o,x) = fo(x), for x in M

o
where f0 and f are given functions (e.g. C functions).
An easy way to solve this problem is to introduce the notion of

fundamental solution of the heat eguation (or heat kernel) on {M,q). The heac

kernel is a function k on ﬂ; x M % M which satisfies the following proper-
ties
(i) k{t,x,y) is continuous on R; *x M x M, c1 in the t-variable and C2

in the x-variable ;
(2) { (i) (5%-+ Ax)k(t,x,y) = 0 for all (t,x,¥) in R; X Mx M ;

(iii) 1im k(t,x,y) = Sx(y), the Dirac measure at X .
0
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Property (Ziii) means that for any h in Cw(M),we have

lim ki{t,x,y}h{y)dv_(y) = hix)
g
t+0+ M

and is usually written as k(C,x,y) = éx(y) .
At least at the formal level, the solution ul{t,x) of (1} is given by
the following formula (known as Duhamel's formula)

t .
uf{t,x) = k(t;x.y)fo(y)dvg(y) + { I k(t_srxry)f(sjy)dvg(y))ds *
M o M

For the following theorem we refer to [cL] chap VI or [B-G-M] chap III.E.

3. THEOREM. Let (M,g) be an n-dimensional compact Riemannian manifold wi-~

thout boundary, with eigenvalues (counted with multiplicities) {.\i}121 and as-

sociated orthonormal real eigenfunctions {dai}ial + There exlsts a unique heat
kernel k(t,x,¥)} on (M,g). This isa C  function on m; X M x M which satisfies
k(t,x,¥) = k{t,y,x) for all {(t,x,y) in m; X M x M . Furthermore, k{t,x,y) can

be expressed as
k(t,x,y) = J exp(-A. )¢, (x)¢, (y) 5
jul | ] J
where the series in the right-hand side converges in the ck—t0pology on any sub-

set of the form [a,«[ = M x M, a » 0, for any k .
For example, this theoxem justifies Duhamel's formula. Theorem 3 also

justifies the following equalities

(1) k(t,x,x = ] expl-A, 004 (x)
j21 i
(4)

(ii) Z{t) = z exp(-'xjt) = Jk(t;xhx)dvg(x)
3=1
M
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The function Z{t) is called the trace of the heat kernel on (M,g) or

the partition function of (M,g). We shall also use the notation Z(M,g;t) to

stress the dependence of Z(t) on (M,g}.

5. EXERCISE. Prove that giving the sequence of eigenvalues (with multiplicities}

{Ai}ial of {M,q) is equivalent to giving the partition function Z(t) of (M.g).

6. EXAMPLES AND EXERCISES.

{i} Aalth_cugh ( Rn,can) is not a compact Riemannian manifold, it has a

n/2

heat kernel : (4rt) exp(—||x—y[|2/4t) ;

(ii) Let T be a lattice in ®" and let r* be the dual lattice :

T* o {Y* € Rn| for all x e T, < x|Y*> ¢ 2} . The eigenvalues of the torus
TF = { /T, can/T} are the numbers 4n2|[Y*||2, with associated orthonormal

. , * -1/2 =% *
complex eigenfunctions exp(2irm < x!y >) Vol(TF) ;¥ € I' . The heat kernel

of TT is given by

M2 Y expte]lxmy—v|12/48) .

vel

k(t,x,y) = (4mt)

In particular, formula {(4ii) can be written as

n/

tant) ™ 2vor(r) § exp(-|1v]12/40) = ], expt-an®|iv"| %0
£

yel YeT

{this formula is known as Poisson summation fermula).

It follows from the Poisson summation formula that

n/2

Z(Tr,can;t) LY (4ﬂt)_ Vol(Tr) when t goes to 0+ (n=dim Tr). In fact the fol-

lowing property holds

7 PROPERTY., For any n-dimensional Riemannian manifold (M,g)

n/2

Z{M,g;t) v (4Tt)" Vol(M,g) when t + o,.
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For moxe details see chap. VII or [CL] chap. VI, [B-G-M] chap. III.E.
The purpose of this chapter is to give an isoperimetric inequality for

theheat kernel.

B. Isoperimetric inequality for the heat Xernel, I.

8. Let (M,g) be an n-dimensional Rierannian manifold (compact, without
boundary) and assume that one is given 2n isoperimetric inequality H on (M,q).
As in Chapter IV,we construct a model space (M*,g*) which is associated with H
(and with a choice of V*). We assume that H satisfies

n-1

B8y v ¢ 8% y 12T

for 8 clese to O and a similar property when B is close to 1 {see n° IQ.lQ).
This implies that (M*,q*) is . a "nice Riemannian manifold™ possibly with twe
conic points {the north and south poles) ; recall that although we see a mani-
fold with revolution symmetry, the mathematics only sees a one-dimensional
medel : see n® IV.20.

Our main theorem is the following (see [B-G] § 2, [B-B-Gl] §IIX).

9. THECREM. Under the above assumptions (n°® 8}, let k(t,x,y) denote the
heat kernel of thé Riemannian manifold (M,g) and let k*(t,N,N) denote the heat
kernel of the Riemannian manifold (M*,g*) evaluated at (&,N;N), where N is the
north pole oé (M*,g*). The following inequalities hold

Z(M,q;t) £ Vol{M,q} supk(t,x,x) < Vol(M*,g*)k*(t,N,N)-
X

10. The main ideas in the proof of Theorem 9 are as follows (compare with

{BE1 chap. IV §3, [M-7])



(a? We consider problem (1) with f

QO and fo > O on (M,g; and we compare

*
the solution u(t,x) to the solution of a symmetrized problem on (M .g*! H

{p} -  We apply a symmetrization procedurs similar to the one described in
chapter IV,but we take the relative volume as new parametex ;
{c) We then let £ tend to a Dirac measure or {M,g), so that we obtain a

comparison theorem for k(tex,y).

11. Since we are mainly interested in geometry in these notes, we only
give a rough sketch of the Qroof of Theorem 9.
For full'analytic details see [BE| IV.3, [B-G], [M-T1.

We divide the proof into several steps

12. Step 1. Let f be a c positive function on M . We define
D{r) = {x ¢ M| £(x}) > r} and
al(r) = vol{D(xr))/Vol(M) .

We now define a function ?-by

T(s) = infizjal) < s} .
The function a(r) is non-increasing, and varies from a(0) = Vol(M) to O when
r increases from Q to sup £ . If a were strictly decreasing and continuous,
¥ would be the inverse function of a (see [TE], [MO] chap. I). Since £ is C ,
it follows from Sard's theorem that a is Cm on an open set whose complement has
measure zerc {use the co-area formula n® IV.5). We alsc have flalr)) = r

for all regulax values r . See Fig. 7
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grapheof m-—af(m)

» * *
graph of m—f (m )

==

a(r) -—\\\\\\\ ‘ f{a)
\

¥

Fig. 7

Let E(s) = D(£(s)}, G(s) = 3E(s) and

1§

Fl(s) f{x)dvg(x) .

E(s)

It follows from the co-area formula (n® IV.5) that



Vol(M)a' (r) = ~ { |df|_1dar ’
ab(r}

when r is a regular value of £ . We deduce that
s

(13} F(s) = Vol(M) J fluydu .
o]

Since the sets D(r) are level sets of f we deduce from Green's formula

{Thecorem XII.1l0} that

BE (x) v, (x) =I X 4o = [ lag| ga -
E{s) G(s) G(s)

Applying Cauchy-Schwarz inequality to the right-hand side of the above

equality,we can write

(14) J Af dvg 2 (VolG(s})2/ J |df|-1das = -(VolG(s))z/Vol(M) a' (?(5))‘ .
E{s) G(s}

Tt follows from the definitions of a,‘F and H,that
vol(G(s)) = Vol{M)H(s)

From (13) we deduce that

2
d—gcs) = Vol (M) %(5) = vol(M)/a' (E(s}) .

ds

From these relations and (14),we deduce that

2

(15) I af dv_ 2 - B ()25 (s)
9 as
E(s)

] * ) .
Let fA be a radial ¢ function on (M*,g ). With the cbvious notations
*
and taking into account the fact that fA is radial,and the very definiticn of M

we have
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2_A
(16) J A F av x = - 5o (s) £E (o)
A g dsz
E (=)

. *
{where A* is the Laplacian on (M*,g 1.

17. Step 2. Let fO be a positive ¢ function on M . Let u(t,x)} be the
sclution of problem (1) (with £ = 0)., It follows from the maximum principle for
the heat eguation ([P-W]} that u(t,x) is positive.

Fixing t,we can apply the first step to u(t,.}. We define

a (r) = vol {x ¢ M| utt,x) > rl/volaw ,

u (x) = inflr |a tr) < s},

E(t,s) = {x ¢ M| ult,x) » E;(x)} p)

Flt,x) = f u(t,x)dvg(x) .
E{t,s}

We deduce from the first step that

2
J Bufe,x) dv_(x) 2 - 82 (s) 2 e .
E(t,s) 3s
18. LEMMA. ({BE] Lemma 4.23 p. 212)

du aF
J W(t,x)dvg(x) = E(t,s) .
E(t,s)

Finally, we conclude from Lemma 18 and the preceding inequality (recall that

ul(t,x)} solves the heat equation) that

2
a9 Eie,s) - rle) X8 <0 .
a3t "
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In particular, by letting fo tend to the Dirac measure SY at y in M we

conclude that we can also take u{t,x) = k{t,x,¥) (y fixed).

20. Let fg be a C radial decreasing function in (M*,g*). We consider the
solution u (t,x} of
] *, A
(EE-+ A )u {t,x) =0
A A
u (0,x) = f° {x}
on (M*,g*). We conclude that uA(t,x) is also a C -radial decreasing function on
* *
(M ,g ) ([BE] Prop. 4.8 p.214).
If we apply to uA what we did before for u and taking the first step
inte account,we conclude (using obvious notations) that
A
o 2g

2
e Egs -1 ts) %;5 (t,s) =0 .

A
Now we choose a Sequence of radial decreasing functions f0 n_converging
r
to BN,the Dirac measure at N in (M*,g*). It follows that (21) also holds for

k(€M) = " (£,.) where k_ 1is the heat kernel on T

: A .
22. SteE 3. Using u{t,x) = k(t,ny) r ¥ fixed in M , and u (t,x} = k*(t'N’X)
we define h(t,s) by

hit,s) = F{t,s) - F (,8) .

This function satisfies the following properties

23. PROPERTIES.
2
{i) EE-(t,s) - ﬂz(s) E—E(t,s} < 0 for (t,s) in R x [0,1] ;
3t as2 +

(1i) h{t,0) = O for all t > ¢ {we integrate functions on a set with

volume equal to O) ;



(11i) lim h(t,s) = O for all s ¢ [0,1] (because k and k, are heat kernels);
0
+

- . a
(iv) hi{t,1} = Q for all t > O (5%1t,1) = 0 for all t because J Af dvg =0
M
for all ¢ £ and k{(0,1) = 0).
From this properties and the maximum principle (see [P-W]) applied to h we con-

clude that h{t,s) £ O oxr

For all (t,s) in R; x [0,11, F(t,s)< F (t,s), or equivalently,
{24) s _ . S
Foxr all (t,s), Vol{M) J U, (r)dr < Vol (M) J u, (r)ar .

o] o]

It follows from the convexity of t—)—t2 and from the seéond mean value

thecrem ([BE] p. 173-174) that

1 1
(25)  For all t > O, Vol (M}% Ei(r)dr < vor (™) ? 522 (ryar .

o] [o]
1

—2 .
Now, Vol (M) ut(r)dr = kz(t,x,y)dvg(y) = k{2t,x,x},
[} M
where the second equality follows from the semi-group property of the heat ker-

1
nel k on M {e.g use Theorem 3) and similarly Vol(M*1 [ Eiztr)dr =k (2t,N,N) .

o]

Finally we have proved that
*
Vol (M)k{2t,x,x) £ Vol(M Yk, (2¢,N,N)

from which THeorem 9 easily follows.



C. Isoperimetric inequality for the heat kernel, II.

As we already mentionned in relation with Cheeger's estimate in chapter
IV n® 28 {iil), Theorem 9 isg only interesting if we have a "good" isoperimetric
inequality H{R) on (M,g). As we also pointed out in n® IV.12,it is not always
possible to use the isoperimetric function h{R) itself, although its properties
{Proposition IV.11) allow us to construct a model (M;,g;) with a "good" heat
kernel (see n° 29 below).

The following theorem (see [B-B-G1]) gives a nice isoperimetric inequa-

lity for heat kernel comparisons (for ancther theorem see [B-G] p. XV.1i7).

26. THEOREM. Let (M,g) be an n-dimensional compact Riemannian manifold
without boundary. We define

rmin{M) = inf {Ricci(M,g)(u,u)|u unit tangent vector toc M} »

a(M) = Diam(M,qg) .
If (M,g) satisfies rmin{M)d(M)2 > ¢(n-1)a° for ¢ ¢ {-1,0,1} and
a ¢ m;, there exists a positive number a(n,e,z) such that for all B in [O,1],

hiM,g:8) = h(s"(R), can;:B)

where Sn{R) is the spherg of fadius R = d(M}/aln,e,a), in RF+1 with induced
metric.
The number a(n,e,x) is defined by
o vor(s™ /" (2Ja/2cos“'1(t)dt)"1/“ ife=1;
0
aln,e,a) = ( o+ nvers™ oy ife=0;
acla) . ife=-1,

where ¢ (a} is the unique positive root of the egquation



[+ 3
-1
x (cht + xsht)™ "~ gt = vol(s™ .
o

The proof of this theorem is rather difficult, we refer to [B-B-G1].

27. REMARKS .
{a) When ¢ = 1, Myers' theoxem (n° II.29) implies that o < 7 ;
{b) Myers' theorem also shows that the estimate when ¢ = 1 improves

-Gromov's isoperimetric inequality on manifolds with positive Ricci curvature
(see [GV1]) ; Theorem 26 generalizes Gromov's theorem to all manifolds whatever

the sign of their Riceil curvature ;

(c) In the case ¢ = -1, we can also replace a(n,~1,u) by the following
lower bound for acln) (see [B-B-G1]) acla) = « min {C{a), C(a)l/n}.
where
Cla) = (n-1)Vol(s")/[exp((n-1)a} - 1] ;
(a) If we now take H(M,g;B) = h(én(R),can;B) as isoperimetric inequality on

(M,9), we notice that H{(B) = H(1-B) and that H(3) ~ cg'P"1}/®

when B tends to O
(for some constant C}. The model space (M*,g*] associated with H{B) is then
(Sn(R),can). Taking into account the behaviour of kM(t,x.y) under scaling (e.g.

use Theorem 3) and the fact that (Sn,can) is 2-point homogeneous, which implies

that k n{t,x,x) is independent of x , we deduce from Theorem 9 and Theorem 26 the
3 .

following

28, THEOREM. Undexr the assumptions of Theorem 26 we have

Z2(M,g;:t) s Vol(M,g)supkM(t,x,x) < Z(Sn,can;t/Rz)
M

{where R = d(M)/'a(n,s,a)J
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29, REMARKS. {of a philoscophical flavor) In Theorem 9,we gave a cﬁmparison
theorem using the heat kernel k* on (M*,g*). as the proof of Theorem 9 shows, we
only used the functicn K*(t,x) = k*(t,N,x) on (M*,g*). The function K*(t,.) is
a radial function with respect to N so that we only use the radial part of the

heat kernel, associated with the radial part of the Laplacian {see n® IV.20}

2
* 3 a'(r) &
B = v 228 2y
r ar2 a(r) ar
where (M*,g*) = (Sn_l x ] o,L [, a2(r)d62 + drz)

Assume that H{B) ~ CBG + 1 > az(n-1)/n,vhen B tends to O (for some
constant C) . It is then easy to check {by making an appropriate choice for V*)
that

al{r) n r if o = {n~1)/n, and

aley v r¥, y>1 if 1>a> (n-1)/n,
when r tends to © .

Now recall that the radial part of the Laplacian in (®R",can) is

2
n ] n-1 3
b= +T 5t
ar
) * , n n-1
We conclude that for x close to O , ﬂr looks like AI when a = o

and looks like Ai s, p>n (pe R, when 1 > g > Eil . This means that our com-

pariscon functicon k*(t,N,N) will leook like an "n~dimensicnal" ked kernel if we

choose o = E§£ and like a "p~dimensional" heat kernel {p > n) when

/2

t>a-> Eil-. ¥n particular, its behaviour when t tends to 0+ will be in t_n

t~p/2

(resp. )} when a = Egl-(resp. 1 >p> IE?& .

Because of Proposition IV.11 we see that it is much better to take an

; : -1 f s :
iscperimetric inequality H such that a = EE_ : this is the case if we use
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Theorem 26.

Another interpretation can be made in terms of the behavicur of the
function A(s) (see n°® IV.14) when s goes to O . If A(s) a C s when s goes to O
this means that the volume of a small geodésic ball in (M*,g*) is of the order
of s and hence that M* has“isogerimetric" dimensicn m (recall that we are
near a conic point). It is clear that it is better to compare (M,q) to an
m-dimensional manifold, with m = dim M . This means again that we have to take

n-1

=0
The case g = 1 is even worst because (M*,g*) is no longer compact (see
n® IV. 22).

Let us also mention here that the isoperimetric function hi{g) has

exactly the required properties which allow us to &efine the heat kernel for

A; on the associated model space (see Proposition IV.11 )y .
D. Applications

In this paragraph we give some direct applications of Theorem 28 ; for

further results we refer to [B-B] § 3 or [B-B-G1] § IIr

30. Let (M,g) be a compact Riemannian manifold without boundary such that
(notationg as in n°® 26-29)
n=dim M ;

2 2
rmin(ﬂ)d(M) > e{n~-1}a

Let {Ai}

is1 be the seguence of eigenvalues (counted with multiplicities)

of (M,g) [Notice that we count he eigenvalues form i =1 ,.., some authors be-

gin with i = 0 e.g [B-G-M]]
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31. THEOREM. Let {M,g) be as above. Then
. 2 -2
(i} J\Z(M.g) z a fpe,a) ndM i

(ii) there exists a number C(n,c,u) such that for i 2 2,

2/ 2

A, (@) 2 Clnse,a) 4 mam .

Proof. Using Theorem 28, we can write
n 2 -2
() 2(M,g;t) < B{5 ,can;a’ (n,e,alt (M) ) .

For any Riemannian manifold (compact, connected, without boundary), we have

Z(Mlg;t)

1

1+ ¥ expl-a.(M,gt)
3=2 ]

because Al(M,g) = 0 has multiplicity 1 .
Assertion (i) follows from (*) by substracting 1 to both sides, by
taking Log and by letting t tend to infinity.
It follows from Property 7 that there exists a constant C(n) such that
/2

(#%) for all t > 0 , Z(s%,canit) € c{myt V< .

Let N(A) = Card{j|1j(M.g)s 3} . We can then write

k < I,q‘(;\k} fe Ajékk exp(-?\j/?«k) g ez(M,gfl/Ak)

and, using Theorem 28 and (%%},

K ¢ e Cln) (@00 /a(n,e,0)™ A2,

Agsertion (ii) follows.

32, REMARKS .
(i) A theorem of Lichnerowicz states that if rmin(M) 2z (n~1) then

AZ}M,g) zn= Az(sn,can) . Recall that Myers' theorem implies that d(M) T

The expression of a{n,e,z) in Theorem 26 together with Theorem 31(1i} give
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/2 da(M) /2 2/n
r . (M zn1= ), (Mg} 2nt cosn-l(t)dt/ cosn_ltt)dt) >n
min 2

o) o]

when d(M) <y . In fact, one can show that Az(M,g) = n implies that (M,qg) is
isometric to (Sn,can) 7 this islobata's theorem : see [B-G-M] chap. III.D and
compare with [CG] and {CL] chap. III.4. In fact Assertion {i) in Theorem 31 can
also be proved by an argument A la Faber-Krahn (see n® IV.31) ; the Lichnerowicz-—
Obata theorem alsc follows from this method : see [B-M] ;

(ii}) For rmin(M) 2 0 , Theorem 31(i)} and Theorem 26 give

lz(M;g) > S/d(M)2 when dim M = 2 ; on the other hand,

AZ(SI(I) x Sl) " wz/dz(sl(r)xsl) when r goes to infinity ;

(iii} Weyl's estimate gives

/ 2/n

A (M:9) & Cln) 2™ voLM,q)" when k goes to infinity. It turns out

/% to a2 in Theorem 31(i), as the fol-

that one cannot substitute Vol{(M,q)
lowing example shows. Consider the Riemannian manifolds

n-l(al/(n—l)

M =8 )y x sli1/a)

a
with the product metric ; they'satisfy Vol(Ma) = Vol(Sn-l) X Vol(sl) = Vol(Ml),
and Diam(M_ ) goes to infinity when a goes to zero. The ﬁumber Na(A) of eigen-
values of Ma less than ) satisfies Na(A) z 2 Ccard {p € N'[ azpzs Al . This
shows that for fixed 3, Na(A) goes to infinity when a goes to zero. In parti-
cular, this implies that Ak(Ma)Vol(Ma)z/n goes to zexo with a . It follows from
Theorem 31(ii) that Ak(Ma)d(Ma)2 is bounded from below when a goes to zero.

For a counter example involving the lower bound on Ricci (M,q) see [GA2]

I.1.2.

At least qualitatively,the estimate in Theorem 31(ii) is best possible
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(it was obtained by Gromov in [Gv1] with a worst constant).

33. REMARK. Since kM(t,x,x) = z exp(-Ajt)¢§(x), Theorem 28 alsc gives
j=t

bounds on the sup-norm of the eigenfunctions ¢, of A on {M,q9).

The next chaptexr is devoted to inverse geometric results. We will use

Theorem 28 in a crucial way.
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ALL RIEMANNIAN MANIFQOLDS ARE COMPACT, CONNECTED

WITHOUT BOUNDARY

In this chapter,we will give some partial answers to the following

geometric inverse problem.

1. PROBLEM. Tc what extent do local estimates on the curvature of a

Riemannian manifeld (M,g) inforce global restrictions on the manifold ?
A Introduction.

In order to explain the meaning of Problem 1, let us give an appropriate

formulation of the Gauss-Bonnet theorem ([HF] Part1I, chap. III).

2. THEOREM. Let {M,g) be any compact Riemannian surface whose curvature
K is bounded from below by the real number k . Then

1 k
(i) XM} = — K(M)dvg z Eg-VO}(M,g) ;

Im

k
(11) b (M) £ 2 - 5 VollM,g) .

Here y (M) denotes the Euler characteristic of M and bltm) =2 - (M

the first Betti number of M (these are topelogical invariants which do not de-

pend on the choice of a Riemannian metric g on M) ; Vol{M,g) is the 2-dimensio-

nal volume of (M,g).
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3. COROLLARY. The number of differentiable surfaces which admit a
Riemannian metric whose curvature is bounded from below by k and whose volume

is bounded from abeve by V (k in R, V in R4] is finite.

4. COMMENTS.

(i} Let us first point out that the product K(M)Vol(M) is a Riemannian
invariant with weight O in dimension 2 ;

{ii) By scaling the metrdc it is always possible to bound any curvature
of an n-dimensional manifold by 1 in absolute value, so that we cannot expect
any éeneral theorem answering Pxoblem 1 without scaling. In order to scale
the metric we can use a ﬁiemannian invariant e.g. the volume or the Diameter.
In the Gauss-Bonnet theorem the metric is scaled by giving an upper bound on

the volume. In generaljwe will have to use the diameter ; the following exam—

ple shows that fixing the volume is a very weak condition. Take any manifold
(N,g). By an appropriate choice of R, the Riemannian manifold

(N x SltR), g x canR) = (M,g,) has volume one. However the topology of M may
be very complicated ;

(iii) In dimension bigger than 2,we have several notions of curvature. We
will always try to use the weakest possible notion. In general we will try to
use the Ricci curvature (the scalar curvature is very often too weak an inva-
raint). This is the case if we want bounds on the eigenvalues of the Laplacian
ﬂg of (M,g) : see n° V.3l. In other situations,we will have to make assumptions

on the sectional curvature (see n® 24 (ii)).

Finally we reduce Problem 1 to the following
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5. PROBLEM. Give global bounds on M (e.g. on topological invariants) in

terms of (Diam(M,g) and Ricci(M,g)) ox (Piam(M,g) and Sect(M,g).

6. EXAMPLES,

(1) Myers' theorem (see n® IX. 29) says that if Riceci(M,g) » O then
"1(M)' the fundamental gro;p of M, is finite. fhis is a partial answer to
Problem 5. Notice that no scaling is required here. In fact a consequence of
Myers' theorem is that Diam(M,g) g n/k, if Riceci(M.g) 2 (n—1)k2 > O . Bowever,
taking Diam(M,g) into accouﬁt gives sharper results (see n° V. 32 and [B-B-Gl]
Corxollaxry 17), so that in some sense scaling is also necessary here ;

(ii} In the 1940’s , Bochner proved the following results

Ricci(M,g) > 0 = bl(M) = 0 (lst Betti number)
Ricci{M,q) 2 0 = bl(M) < dim(M)
These results were obtained by an analytic method which we now describe

(notice that Myers® theorem is proved by geometric methods).

B. The analytic approach, I.

7. Let (M,g) be an n-dimensional Riemannian manifold {(compact, connected,
. . P " &n .
without boundary). We denote by A"T'M , O < p £ n, the p~ exterior product of
* P o : Pk, . .
T M and by (M) the C  sections of A"T M i.e. the exterior forms of degree p
on M . The exterior differential d is a first order differential operator from
+1 '

EP(M) to P (M) . This operator only depends on the differentiable structure.

o
We now define an operator § : B 1(M) — EP(M) by
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(8) <<u|6s>> = <<dafﬁ>>
I - Lo pHL . , ,
for all « in E° (M) and B in E (M) : the metric g on TM induces a metric on

*
each “pTxM which we denote by <.

> oWe define § by

{ <o ]8>, v tx) = J <dalp> dv, (u)
M M

{note that in the first integral we have the scalar product of two p-forms and
in the second integral the scalar product of two {p+l)-forms}. We say that &

is the formal adjoint of 4 (note that § depends on the Riemannian metric g).

9. PROPERTIES.
(i) If £ C (M) = E°{M) then &Ff =0 ;
(ii) If & ¢ E'(M) then §a = - Divg(é*) ;
(iii} Let {el,...,en} be a local orthonormal frame in M . For g in EP(M)
we note
a(il,...,ip} for a(ei EEETLN } where il,...,ips {1,...,n} .
1 P '
Then
p+i -
: : k+1
dafiysen i) = ) (-1) (D, @) (i ,eeupd pevari )
1 p+l Kot i 1 k p+1
n
Soldyreenpi ) = - ]{Fl (Dya) 2y ene i)

{recall that we note Dk for De + where D is the Levi-Civita c¢onnexion of (M,g)) :
k

{iv} If M is oriented and if * denctes the Hodge cperator on M ,
% 3 EP(M) — E"P(M), then

8 : EP(M) — EP1(M) satisfies

§ = (__1)n{p+1) va

* .
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Proof :

(i) follows from the fact that da =0 for a2l) a in ET(M) - ;

(ii) follows from the definiticns of & and Divg {see also [B-G-M] chap.
II.G) ;

(iii) the formulae for d and § follow from the definitions of 4 , § and
of the Levi~Civita connexion D of (M,g) :
For {(iv) see [WA] chap. 6. [The formula <a$a>x dvg(x) = phixo defines *

uniguely].

10. DEFINITION. One defines the Laplace-Beltrami operator (or Laplacian)

on p-forms by & = 64 + dé .
For further details on 6,4 see Lwal chap. 6 and [cL] Appendix or [Lz]
and [RrMI.

The classical Bodge- de Rham theory ([WAl chap. 5 and 6) states that

(1) b 9 = din Haxn® (M) ;
the pth Betti number of the manifold M is egual to the dimension of the space
of harmonic p-forms (Harmp(n) = {o e EP(M)‘ Ao = 0}y,
Note that bP(M) is a topological invarxiant while Harmp{M) depends on the
Riemannian metric.
In order to prove Bochner's results and to introduce the analytic method

we need the following.

12, LEMMA. Let (M,g) be a Riemannian manifold and let @ be a l1-form on M .

The following formulae hold
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(i) Ax = D*Da + Rieci(o¥,.) :

(11) <dafe> = Tatealas) + [Daf? + Ricei(o®,a®).

In formula (i)~ the Laplacian is the Laplacian acting on l~forms, D the
Riemannian connexion on 1-forms and D* its adjeoint ; for a tensor field B,
D* is g{ven by D*B = —'Trace DR {contraction of the first two indices or
*

D R ( ) = - E Dkstk, ) in & local orthonormal frame (notations as in n° 9).
k

Equivalently we have

n

* = - -

DD = AZ {D; (Dja} ~ D al
i=1 i,

in an local orthonormal frame (notations as in n° 9) .
In forxrmula (ii), the left hand side is thepoint—wise'scalar product of

two l-forms ; A{<a|m>} is the Laplacian of the function <u|g>  and |Du|

is the norm of the 2-tensor Dg

13. DEFINITIONS. The operator A = D'D is called the rough Laplacian (here

on 1-forms). Formulae (i} and (ii) are called Weitzenbdck' formulaa-

Proofs. We use the notations of n® 9 ; we denote by {ei} a local orthonormal

frame near x ; we can always assume that we have (Dé e, ){x) =0, at_the point x .
i

Claim 1. For B a section of @fb*m we have

D'B = - Trace DB = - i DBk, ) .

Let vy be a section of @P-l ™M . We consider the 1-form

w = z B(.,I}y(I) where I is a multi-index of length (p-1), Now fu is a4 fune-
4 )

tion on M which is given by (see n® 9 (iii) ) .

n
S = - z &, ,‘(E Blk,I)y(I}} . An easy computation gives
k=1 I
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A
Swix) = -< D sly>x +<g| D v
A
where DR = - Trace D . Since this is valid for all x in M and since
A
J Suw dvq = 0 (Divergence theorem) we have <<D f|y>> = <<f|Dy>> which shows
M

A *
that P ='D  (see n° III.9 and [ B-G-M] chap. II.GII).

Claim 2. For any l-form g ,

x n
DDy =- § {D (Dja) =Dy, a}"
i=1 i
*®
Using the first claim we have for &ll k , D Do (ek) = - z DjB(j,k) where B = po
;A
DADu (e, ) = = ) e, . B3k + 10B(D,3.,k) + B(3,DK)1 -
PO | ! ] ]
J ]
Now . g(J,k) = Daljsk} = (Dju){k),so that
*
DDole ) =~} D, ((D.8))(K) - (Do) (DK
X A | J PR J
J J
+ Yo @) (k) + }{D,2)(D,K)
. D.J A | J
3 ] ]
=-) ip.(po)} ~pD_ &} (k) .
L ipjmgm - oy ol )
3
Note that at the point x we can write
« n
DD g, = - .E Di(Dia)x since Dil(X) =0 .
i=1
Proof of formula (i)
We use the! formula
Auii,g) o= 1Dia){j) - (Dja)(i), see 9(iii}

{this formula easily follows from the definition of 4 and D :

da{%,¥) = X.al¥} - Y. afX) - a((%¥]D)) .
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This gives, at the point x (Dij(x) =0) ,

n
§da(i} = - kzl e -(ule o))

It

o n
- ¥ Dt + ¥ e .((Do)k))_ .
ket k Tk X ket k i X

We can also write

dSa (i) = e,.{fa) = -
x i

e,. (D, a(k]})
X i k!

1

™33

Finally we can write
_ n
da (i) = aofd)  + kzl{ek.((niu) k) - e, (Ba) (k) D,

=
Since (Dja) = Dj(dﬂ), the second term in the right-hand side can be written
as

=
a , e >

- * = <R +
< (DkDi Dka)a A (ek'ei)a D v 7 x

k [ek,ei]

in view of n® 1II.43. Now we have [ek,ei]{x) = Q'Igee-n° II.35) so that

n .
- -
Au(l)x + k£1 < R(ek’ei)a P ey

1

Ao (i)
X

_ n
Aa(i) + Z

Rle, ,a, e
k=1 k4,

k’&$)x (see n° II.45)

1]

- =+
Ax{i}_ + Riecci (a ,e.) (see n® II.45}
x b3 i

Proof of formula {(ii)

In order to prove (ii), it suffices to prove
- 1 2
< baje > = 5 A (<e|a) + |Dal” .
We can write

ek . <u|a> =2 < Dku|u> , and
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A(<ula>)x = - $ek.(ek(<qla>))x
k :

It

-2 é < Dk u|Dka>x -2 E < Dk(Dka)|a>x

(Dki = 0 at %) . Finally we have

2
alcaex) = =2{Da}’ + 2<pal o>
X X x
14. DEFINITION. A& 1l-form ¢ is parallel if Da = O
15. EXERCICES.

{i} Show that the point-wise norm |u|x of a parallel 1-form a is constant ;
(ii) Show that the vector—space of parallel i-forms has dimension less
than or equal to n = dim M [Hint : Take a curve c(t) in M and let {ei] be a

parallel orthonormal frame along c¢ (see n° IT.40 ). Show that if

Coig = Eai(t)e?(t) then the mi(t) are constant functions].
16. Proof of Bochner's results.
Integrating formula 12(ii) on M we obtain
2
<<Aa|a>> = |Da| dav_ + Ricci(u*Zd*)dv
" g M g
because AL dvg = 0 for all C function £ .

JM
In view of the Hodge- de Rham theory (n® (11}), we take a to be a har-

monic 1-form. Finally we obtain

{17) aAny harmonic 1-form ¢ satisfies

B '+J Riceif{a®,a®rav_ =0
M 9 g
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For x in M we define

p(x) = inf ({Ricci({u,u}|u wunit vector in T.M} , and
(18)
roig = inf {p(x)| x in M}.

We have the inegualities

{19) JM Ricci(a*,d*) dvgz JMp (x)<c¢|q > % dvg > rmin <<a]a>> .

20. PROPOSITION. With the above notations,we have the following results
(1) If pix) 2 O and if there exists an X, such that p(xo) >0,

thep bl(M) =0 ;
{ii) If r . =0 then b, (M) € n=4dim ¥ .
min 1

2 ' ‘ .
Proof. Assumption (i) implies that J 1Da| dvg < 0 for any non-zero harmonic
M

t-form : this is impossible, hence bl(M) =0 .,
Assumption (ii) implies that ]Dq]zdvg < 0 and hence that Dg = O .
Any harmoni& l-form is parallel and hence b1(M) £ n by Exercise 15(ii).
Notice that assertion (i) in the Proposition is sharper than Bochner's

‘

result as stated in n® 6 (ii).

21, GENERALIZATIONS.
The above situation can be generalized as follows. We consider a fiber
bundle E over the Riemannian manifold (M,g). We assume that E is equipped with

a Riemannian metric {we say that E is a Riemannian fibre bundle) i.e with a sca~-

lar produgt <.l.>x in the fibers Ex of E , depending ¢ on x . We also assume

that E is eguipped with a connexion D which is compatible with the scalar pro-
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duct i.e
D k(M) x C°(E) » C(E)
is an R-linear map which satisfies the following properties
(1) X .cu|vs = <Dxu1V> + < ulev >,
for all X in }(M) and u,v in Cw(E) H
(ii} Dfxu = f Dxu P

for all £ in C (M), X in ¥(M) and u in C (E) ;

(iii) Dx(fu) = (X.£f) u + fDxu P

for all £ in C¢*(M), X Lax (M) and u in C (E).

Finally, we assume that there is a patural Laplacian X acting on CN(E)
{i.e a an ordor lineir partial differential operator with properties similar
to those of the laplace~8eitrami operator) and that ¥ satisfies the fellowing

Weitzenbdck formula

(22 #s = Bs +Rs

1l

where As - Y {D .(De,S) - DD e,S} is the rough Laplacian, {ei} a local

i=1 i i e, 1
i

orthonormal frame in M and where * is a symmetric endomorphism of the bundle E

ﬁ-x :E Ex is an endomorphism of Ex which satisfies
<2 u|v> = <u|%® vs_ | for all u,v in E_ .
* S X 'x x

As above we define

R (%)
2.

min

inf {<« :’vxulu>x[ u in Ex' <ulu>x=1}

(23}

inf {Rx)} x in M}
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24, EXAMPLES.
(i) E=T™ ’ D is the Levi-Civita connexion, ¥ is the Laplacian on
t-forms, A s = Riccits®,.) ; in that case
min (see n° 7-20) ;
(ii) E = APT*M, D is the Levi-Civita conhexion, K is the Lapliacian on
p-forms, As can be expressed in terms of the curvature tensor of (M,g) ; in
that case ?&in can be computed in terms of upper and lower bounds on Sect(M,qg)
{see [LZ] p 3, [G-M] p. 264 and [B-G] P. XV. 8) ;
(iii) E = S(M) the bundle of spinors, D is the Levi-Civita connexion, K
is the Dirac operatcr,m'= E—(u is the scalar curvature of (M,g) : see n® III.4S).
(iv) Other examples include the moduli space of Einstein metrics ([B-G]

§ 3), Jacobi fields for harmonic maps {[UR]) ...

25, It follows from the WeitzenbSck formula (22) that
K - 12
<As|s> av_ =) |ps|® av + <Rs|s> av .
g g g
M M M

The following Proposition is a direct congequence of the above formula (same

methods as in the proof of Proposition 20).

26. PROPOSITICN. Under the above assumptions, let §(E) denote the dimension
of the space of harmonic sections of E ,
$(E) = din{s € ¢ (£)| ¥s = o}

(this dimension is finite because K is elliptic).
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(i) If Xi(x) 2 O and if there exists an x in M such that 92();“) > 0, then
§(E) =0 .
(i1) If R, =0 then 8(E) < & = rank(E) .
min
Such results are called vanishing theorems. We will now deal with the

following problem

27. PROBLEM. Give upper bounds on §(E} in terms of estimates on R{x) or

Cl . and on the curvature of (M,g)
min :

Proposition 26 gives a partial answer to Problem 27 when % >0 . In

min
the following paragraph)we will investigate the case :Emin < 0.
C. The analytic approach, II.
'3 2 . .
28. Assume that nin =~k , ke m} , and let s be a harmonic section of

E , Ks =0 . It follows from n° 25 that

-2 2 2
(29) J|Ds| Vg ¥ k J |s| A
M M

It follows from the very definition of A and from the minimax principle
(n® III. 26) that (29) implies

§(E} € number of eigenvalues of A less than k2 .

30. NOTE. The operators E and A are non-negative, Symmetric an order el-
liptic linear partial differential operators on € (E) so that the spectrum of 3
(resp.E) consists of a sequence of non negative eigenvalues with finite mul-

tiplicities
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(0g) %1 < *2 £ ... 4+ (resp (D<) 31 gié oo ahtm)

In Fact the above ineguality does not say much because we do not know
the eigenvalue of A . Since fs| is a function on M,we can try to obtain an
inéqﬁality on functions of M { recall that we have bounds on the eigenvalues of
A on Cw{M) by chapter V). For this purpose, we use the following lemma known as

Kato's inequality (see [H-S-U])}.

31. LEMMA. For any s in Cm(E}, the pointwise norm of s, |s|,is in Hl(M,g}
and we have the pointwise ineguality

las|| = Bs}

Proof. 1In the sense of distributions we can write, for any £ in CW(M)

(Dplshe av, = -| |s| Lpee av)
M In

i

- 1in | ([s|ZAYRE (5 av )
r-+Q M g

= lim <E%s|s> (|s[2+r2)n1/2 f dv
0 9
M
s that
0, if si{x) =0
dis|gx) =

< D.s}s>x / |s§x r if s(x) £ 0
and hence d|s| is in HI(M) and satisfies

|d|sI|x < jBé;x .
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Note that |d|sil is the norm of the 1-form d|s| and that ]Bélis the
Pl &
norm of the element [Ds|in T MRE .

If we apply Lemma 21 to (29) we find

{32} ldf|2 av_ < k2 | £° av , with £ = |s
g g

M M

From the minimax principle (n® I1T.26) we conclude that ... k2 =z 0

because Al(M,g),closed) =0 ... this is not very interesting ! An interesting
estimate would be k2 2 Ath,g),because we know how to estimate AZ(M,g) by
Cheeger's estimate (see n® IV. 26-29). In order to obtain such an estimate,we
need to write (32) with a function £ such that [ f =0 (see n® III. 26).

M
Define h{x) by h(x) = Is'x - [ ls}x dvg/Vol(M)
‘u

it is clear that J h = 0 . In order to substitue h to £ in {32), we use the fol-
M
lowing general lemma due to D. Meyer.

33. LEMMA ([ME2]) Let E be a Riemannian bundle over the Riemannian manifold

(M,g). Let F be a finite dimensional subspace of L2(E,vg) = {slj Is!idvg(x} < =}
M
such that

dim F'= N > £ = rank(E} .

Then there exists an element s0 in F such that

vo () 12 Isol

i Gvg < G ( }s { dv J s
/M Iu
btncH@
where C(%,N) is a universal function of {2,%) which satisfies:C(%,N) is’aecrea—

sing in N , C(%,8) =1 , C(%,N) goes to O when N goes to infinity.
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X
In order to apply Lemma 33 we take F = {s ¢ Cm(E)i As = 0} .
Then N = dim F = §(E) . We assume that N > § = rk(E) . Let So be the section

given by Lemma 33 and denote |So| by £ and £ - ( £ dvg / Vol(M) by h . We

I

can then write

(1 - P | 22 o n?

Mok
so that (32) gives
2 2 2 -1 2
[dh| dvy < KT (1-CT (e, m)) hh v,
M M

this last inequality implies that

(34) X, (M,g) iclosed) < k2(1-c2(1,m)‘1 .

We can now prove the following generalization of Bochner's results

35. THEQREM. Let E be a Riemannian fibre bundle over the Riemannian manifold
{compact without boundary) as in n° 21. Assume that
‘ 2 2 . .
rmin(M.g) dM, @ " 2z en-11a" , e ¢ {-1,0,1}, a e R, and n = dim M
{see n® V. 26 ; the interesting case here is ¢ = ~1)

Then there exists a positive number b

b(n,e,a) such that

Qmin a,? 2 - b implies 6(5) ¢ g

Proof. By Chesger's inequality (n® IV. 26-29) there exists a constant
¢ = cl{n;g,a) such that

AZ(M,g;closed) = c/d(M,g)2 . If &(E) z 3+l we can write,in view of
(34) and Lemma 33 (sec n° 28)

cln,e,a) (1-C2(2,8+1)) < | ﬁminl am,g? .
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This proves the theorem.

36. EXAMPLE. Take E = TM , §(E) = b (M) . We obtain
2
r ., (M}d"{M) z - bin,-1,1) = b (M) £ n = dim ¥
min 1
which extends Bochner's result to the case in which the curvature of (M,g) is

allowed to take negative values.

37. COMMENTS.

(i) Lemma 33 is guite general. It also applies to manifolds with boun-
dary. See [ME2] for more applications ;

{ii) Theorem 35 does not yet answer Problem 27. We could imagine to use
(32) with enough functions £ in orxder to apply the variational characterization
of eigenvalues (n® III. 28) and the estimates of chapter V n® 31. The map
s + |s] maps C(E) to a cone in HI(M) so that it is not clear at all that one
can apply the above idea (remember that if s is a parallel section then [s| is
a constant ; in the case of a trivial bundie, the parallel sections form a vec-
tor space of dimension § = rk(E) whose image by the application s - |s|
is R)

¥

‘(iii) The first improvements of Bochner's result (i.e. when the curvature
is allowed to take negative values) were obtained by P. Li (1980) for Betti
numbers ; they were then generalized by S. Gallot (1981). Both used Scbolew
. o ) ) . isoperipegric
inequalities with Sobeolev constants estimated in terms offinequalities. In
1980 M. Gromov gave bounds on the Betti numbersusing geometric methods. He
also pointed out that one should be able to use the heat equation and Kato's
inequality. However he did not have the isoperimetric ineguality for the heat

kernel (see n° V. 28) and could therefore not go any further with this idea.
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In the next paragraph we describe how heat kernel methods give partial

answers te Problem 27.

D. The analytic approach, III.

The idea is very simple. First of all notice that §(E) is the multipli-

A
city of O as eigenvalue of 4,

(38)  &(E) = dim Kexr X.
It can bea shown that the operator g (resp. 33 has a heat kernel (see

chap. V § A} and that the trace of this heat kernel can be written as

5. w0
z(t) = § exp(-}.t)
3=1 ;
(resp. E]t) = z exp(—i}t))

j=1
where the series converges for t ~ O ,

Now rezall that

—

min
i

<Asle> dv_ » { <As|s> av r <s|s> dv_ ,
g ) g
4 In M
so that the variational characterization of the eigenvalues (n® III. 28) gives
forall §21, X, 2% +%

) i j min

from which we can deduce

(39) %(tJ < expl-t% ) Z{t), and hence
min )
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Chapter VII

§ a.

A BRIEF SURVEY OF SOME RECENT DEVELOPMENTS IN SPECTRAL GEOMETRY

The heat equation and applicaticns

n® 1-4 : The Minakshisundaram - Pleijel asymptotic expansion and some
conseguences

n® 5-11 : Isospectral manifolds, examples and counterexamples to the

question of M. Kac : Weyl's asymptotic formula

The wave equation and applications
n® 12-16 : The wave kernel and applications to Weyl's asymptotic for-
mula

n® 17- : Spectrum and lengths of closed gecdesics.

More references :

see [B~BJand the following review papers or books : [BE], [B-G-ml, [BN],

[ct], [ert,2], [peE3, [p-s], [onl
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ALL RIEMANNIAN MANIFOLDS ARE COMPACT, CONNECTED,"
WITHOUT BOUNDARY

Unless otherwise stated

In Chapter III. C, we divided the problems concerning the relationship
between the eigenvalues of the Laplacian and the'gedmetry of a Riemannianmanifold

{spectral geometry) into two categories : direct problems and inverse problems.

Both types of problems are relevant to nmathe al physics.

In chapters IV and V we dealt witﬁiéu :.:problems and more precisely-
with isoperimetric methods applied to direc£ ﬁféblems (e.g. lower bounds on the
eigenvalues) . These chapters do not give an exhaustive survey of known results
on direct problems. For more details we refer to [Cﬁf}iPE] and [ON].

In the present chapter,we give a brief overview of iﬂ;erse problems. As
we neither plan nor wish to give a thorough survey, we refer to [B-B] for refe-
rences (see in particular the list of basigc ieﬁérences given page 156).

in chapter I we motivated the study of éigenvalue prsblems by applying
the method of separation of variables to the wave equation. We could have applied

the same method to the heat equation. Now it turns out that this is the analysis

of the heat and wave equations which leads to inverse results in spectral geome-

try.
A, The heat eguation and applications.
1. In chapter V § A, we intrcduced the heat kernel k{t,x,y) of a Riemannian

manifold (M,g).

If we dencte by {Ai} the eigenvalues of the Laplacian Ag acting on
ixt
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Cm(M) and by (¢i}121 an associated family of orthonormal real eigenfunctions,

we can write (see n® V. 4)

) klex,x = § expl-a,0)¢2(x) ,
j=1 3 ]

(ii) kit,x,x)dv_(x) = Z(t) =
g
M ]

11 8

exp(-i_ t)
1 j

Recall that Z(t) determines {li} (N° V., 5)
iz1

The following theorem {known as Minakshisundaram - Pleijel asymptotic

expansion) has been used extensively to investigate inverse problems.

2. THEOREM. Let {M,g) be an n-dimensional Riemannian manifold. The following

asymptotic expansions hold when t goes to 0+
o0

(1) k(tx,x) & (4re) ™2 RIS
=0 "

(1) 2(8) n (dgt) ™2 ; a t"
n=0
(these are asymptoﬁic expansiéns ; the series in the right hand éides do not
conberge iﬁ generals. -

The functions um(x) are C functions on M whiéh caﬁkbé expressedlas
universal polynémials in the componehts of the curvature tensor and its cova-
riant derivatives.

In particular

a
o

Vol(M,q)

W
fl

i
1% u(x)dvg(x) (u is the scalar.curvature of M : IT. 45)
M
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3. REMARKS. It is in fact very difficult to give explicit formulae for the
functions u o see [B-G-M] chap. III. E and [GY] or [BD] .

In the sequel,we denote the sequence {Ai} of the eigenvalues (with

-1zl
multiplicities) of the eigenvalues of Ag acting on CW(M) by Spec(M,g) (the

spectrum of (M,g)).

4. SOME CONSEQUENCES.

Assume we know the spectrum Spec{M,q), then‘we'know
(i) the dimension of M,
(ii) the volume of (M,q),

{iii) the integral [ u(x) dvg(x) of the scalar curvature of (M,q),
M S . o -

and hence, in dimensicn 2, the Euler-characteristic (M) by the Gauss-Bonnet

theorxem.

5. DEFINITION. We say that two Riemannian manifelds (M,g)} and (N,h) are
isospectral if Spec(M,g) = Spec(N,h) .
One of the important questions in spectral geometry was formulated by

M. KAC in the 1960’s.

[ QUESTION. “"Can one hear the shape of a drum" or are two isospectral

Riemannian manifolds isometric.

7. Some positive answers to Question 6.

(i) " 2-dimensional flat tori are characterized by their spectra among

‘flat tori ([B-G-M] chap. III. B) ;
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(ii) Let (M,g) be one of the following Riemannian surfaces : (Sz,can),
{ RPz,can), (T?,can). Then (M,g} is characterized by its spectrum ([B-G-M]
chap. III. E) ;

(iii) (s™,can) and ( mPn,can) are characterized by their spectra for
n £ 4 ([B-G-M] chap. III. E).

For further results see [B-B] chap. 6.

a. Some negative answers to Question 6.

The first counter-example to Question 6 was given by J. Milnor in 1964.

We can summarize Fhe negative answer to Question & as follows

(i) There exist isospectral 16-dimensional flat tori which are not iso-—
metric (Milnor 1964) ; however, they are diffeomorphic ;

{ii) There exist isospectral 5-dimensional lens spaces which are neither
isometric nor homeomorphic (Ikeda 1980) ; (curvature + 1) ;

(iii} There exist isospectral Riemann surfaces (with curvature ~-1) which
are not isometric (they are homeomorphic by 4{iii)}; there exist isospeﬁtral
3-dimensional manifolds with curvature -1 which are neither isometric nor homeo-
morphic (Vignéras 1980) ; recent examples were given by Sunada (1984) and Buser

(1985) ;

(iv) There exists a one-parameter family of 5-dimensional Riemannian mani-

folds such that any two elements of the family are isospectral but nbﬁ isometric
{(C. Gordon - E. Wilson, 1983, J. Diff. Geom. 19 (1984)).

For further results see [B-~B] chap. 6 or references in § ¢ .

9. COMMENTS. The examples described by Milnor, Ikeda and Vignéras arise

from number théoretic considerations, those of Gordon-Wilsen from group theoretic
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considerat;ons. It can be shown (Wolpert 1979) that there are finitely many
non-isometric flat tori {(resp. Riemann surfaces) with a given spectrug. However,
no upper bound on the number of such tori (resp. Riemann surfaces) is known
{except for. 3-dimensional tori, JF.P. Berry 1981).

In 1982, H. Urakawa gave the first examples of ncn-congruent domains
in R4 with same Dirichlet and Neumann spectra.
Examples of domains in R3 with the same property were recently given by
P. Buser (1985). It would be interesting to have other countef-examples of
such domains in R" and specialy in Rz.

More generally, it would be interesting to have examples of non-iscme-
tric, isospectral manifelds (possibly with boundary), which are not locally
isometric.

We conclude this paragraph with two remarks.

10. REMARKS .

(i) The heat equation is a diffusiﬁﬁﬂfquation and is very much relgted
to Brownmian motion. Some results in spectral gecmetry are easily interpreted
or proved in terms of Brownian motion and probability theory : see [CL] chap. IX,
[R-S1 and [B-B] chap. 12 ; Probabilistic methods might turn out to be very
powerful, for example to investigate the heat kernel with Dirichlet boundary cen-
dition in a domain with very irregular boundary.

(ii) A consequence of Theorem 2 (ii} is Weyl's asymptotic formula (see

III. 36)

n/2 /2

(1) N = cara{jfiy < A} = ctm) Vel + 0™
which folloﬁs from the asymptotic formula for Z({t) by applying Karamata's

Tauberian theorem. However, one cannot give a sharp estimate for
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N{x) - C(n} Vol(M,g);\n/2 with this method. One has to use wave equation
techniques.
B. The wave eglation and applications.

The fundamental solution of the wave eguation (or wave kernel) on

(M,g) is the distribution E{t,x,y}, (t,x,¥) ¢ R x M x M, which satisfies

2
(-3——2 +A,}E {t,x,y) =0,
at Y .
(12) E{O,x,y) = 6xty) H

“E o
vy (0,%,v) =0 .

In the sense of spectral theory, this is the kernel of the operator
cos (tvp).

2 R
For example the wave kernel of ( R ,can) is

E(t,x,y) = C2|t| (|x—y|2 - t2):3/2 , for some constant C, where
) ifx=0,

a

x_ =
%] ifx<o.

The wave-kernel of (T?,can) is given by

(13) E (t,x,y) = Cy[t] § (||x—y—v||2 -ty

YeT

The wave eguation techniques were introduced in the late 1960; by
L. Hormander to study the function N(A) (see n° 11}. We now summarize the main

results concerning the estimates on N(\)
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14, RESULTS OM N{)). Let [M,g) be a Riemannian manifold without boundary

then

(1) N{x) = cim} vf:l{Mn_:m\n/2 + o(A(“_”/2 {Avakumovil 1956,

HSrmander 1968) and this estimate is best possible as the example of (Sn,can)
shows ;

(ii} It was then observed by J. Duistermaat and V. Guillemin (1975}

2
that the nature of R(\) = N{X - C(n) Vol(M,g)An/ is very much related to the

geodesic flow of (M,g} . Roughly speaking, R(i} is of the order of A(n—l)/2 if

and only if the geodesic flow of (M,g} is pericdic i.e all geodesics are closed

with same period. This is exactly why (Sn,can) appears in (i}. All the geodesics

of (Sn,can) are periodic with period 2y. Again roughly speaking, if the geodesic
flow is not periodic then R(A) = O(A(n_l)/z)

{iii} In some cases,the estimate for R(A} can be improved. In the case of

flat tori,one has R{}) = O(A[n—Q)/2+1/(n+1]

). This estimate is not best possi-
ble and the true nature of R{}) is not known; to investigate R{A) in that spe-
cial case is a very difficult problem related to number theory. For manifelds

A(n—1)/2

with negative curvature one can prove that R(A) = Of /Logh) (Bérard,

Randol 1976).

i5. The case of manifolds with boundary is much more difficult. It can be

shown on certain examples that the counting function ND(A) for the Dirichlet

eigenvalue problem in the manifold with boundary (M,q) satisfies

n/2 (n-1) /2 <n;1)/z)

(16) N_0) = C{n) Vol(M,gh - C'({n) VollM,g)r + ofA

D

This estimate is know as Weyl's conjecture.

Estimate (16) turns out to be much more difficult to prove than 14(i).
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In fact Hormander's estima;:e 14{i) was proved for manifolds with boundary

.only a few years ago (Pham The Lai, R. Seeley 1980). Counter-examples to

Weyl's conjecture were given by D. Gromes (1967) and Bérard-Besson (1980)

they again invelve manifolds with boundary, whose geodesic flow (allowing re-
flections at the boundary as in geometric optics) is periodic. Weyl's conjecture
was settled, undergeneral assumptions, by Melrose {1980), Ivrii(1981} and

Petkov {1985).

17, The wave kernel is very much related to the geodesic flow of (M,g). In
particulax, wave eguation techniques clarified the relationship between the
spectrum of a Riemannian manifold and the lengths of the closed geodesics on
the manifolds. Results in this direction were obtained by Y. Colin de Verdidre
(1973) and Duistermaat-Guillemin (1975). We explain this relationship for a

2
flat torus TF .

The Poisson summation formula (Example V. 6 {ii))

n/2

- *
(ant) ™2 vorcr ) L expi-[ |y |40 =L exprean?l¥] |20
' vT

Yee ™
) 20y k1,2 k& "
shows that thé spectrum of TP . 14n |iY Il ; Ye '} determines the lengths

of the cleosed geodesics of Tps {||y||2, ve T}

This relation can also be seen as follows. Using n°(13) and the fact that

E(t,x,v) is the kernel of cos(tJh) we can write, at least at the formal level,

for T2

T
(=]
2 -
1 cos{t/A,)¢5(x) = E_(t,x,x) = C [t] 7§ (i|yl|2—t2)_3/2
y=1 J J r 2 )
J yeT
In fact one can show that z cos(tflj) is a tempered distribution whose singular
je=t
support (points awsy from which the distribution is Cm) is contained in the set

of lengths of closed geodesics (and theirx opposites). Again we see that the spec-
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trum determines the set of lengths of the closed geodesics. This phenomenon
can be understood by thinking of ripples propagating on a cylindrical lake

see Fig. 8 (think of a cylinder as a rectangle with two sides identified) -

- -

-~
’ - - ~

virtual sources P e

Fig. 8

éimiiax results can be established on manifolds with boundar?, relating
the spectra of the manifold,with either Dirichlet or Neumann boundary conditi&ns,
to billiard trajectories.

For more references on the wave equation see [p-B] chap. E and § C. Let
us end this paragraph by pointing out that wave equation techniques belong to

the realm of symplectic gecmetry rather than %o that of Riemannian geometry.



VII.1O

C. Final comments.

Many problems arise in spectral geometry, both direct and inverse pro-
blems, both 6n manifolds with or without boundary. Leafing through the
"Leitfaden" of [B-B] the reader will discover some of these problems. We only
hope that these notes will arouse the interest of the readers and will lead

them to solve some of these problems.

Some further references

Heat equation : [BD], [DK]
Wave equation : [GL1], [GL2], [G~S]
Partial differential equations and geometry : [¥U]

Open problems : [YU]
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. - INTRODUCTION

The spectral theory of Riemannian manifolds is a typical example of interaction
between two different aspects of Mathematics ; Riemannian geometry and operator

theory in Hilbert spaces.

For geometers the aim is, of course, to obtain geometric informations using the
well-known methods of Hilbert spaces analysis. This transfer can be summarized

in the following picture :

A B
1
Riemannian direct problems Spectral
geometry theory
2
(Mig) (L ,q‘

~ 2 .-

inverse problems

The link between box A and box B is done by associating to the metric space
constituted by a Riemannian manifold (M,pg) another metric space built on the
" Hilbert space LZ(M) endowed with a gquadratic form ¢ in the sense of spectral
theory (i.e. not necessarily everywhere defined) which we shall call the energy. In
the case of smooth compact connected Riemannian manifold, this quadratic form
generates by a standard process (the so-called Friedrich's extension) a self ad-
joint operator which has a compact resolvent. This is one of the best-known

situation occuring in box B .

‘Once this link is established {may be the right words In this situation would be

functors and categories, but such a formal approach is not our goal here) a lot
of problems arise immediately. In chapter Ii.c, the problems which are related
to arrow 1 where called direct problems and those which come from interpre-

tation of box B results, inverse problems. Let us now give some examples :



Question 1 : Is arrow 1-injective ?
This is the famous question asked by M. Kae : '"Can one hear the shape of a
drum ?'. It is dnown that the answer is no (in a general sitﬁation) ; but the

following has not been answered yet,

Question 2 : Are two isospectral manifolds locally isometric ?
Another interesting problem when dealing with the Laplacian (for example) would
be to separate precisely PDE theoric results from Hilbert spaces algebra ones,

or in other words, to understand more accuratly the arrow 1.

This appendix illustrates an interesting principle which can be summarized as
follow :

Once a problem in box A is translated Into a problem in box B, it is very
often useful to study thoroughly the latter problem before going back to the former

one. This gives rise to more elementary and simple proofs.

The aim of the following text isto try to gather in a general picture a number of
inequalities involving the heat semigroups. We wish to prove that such inequalities
are (algebraic) consequences of inequalities on the guadratic forms associated with
the operators under considerations, and are obtained in a manner which is very

similar to the proof of Kato's inequality ([H-S-U1]),

In the geometric applications it then will be clear that these criteria relg on iso-
perimetric inequalities. The former are in some sense, a Hilbert space translation
of the latter. This relationship being established the desired results on diffusion

processes are then easily proved,

Section I consists in recalling the Beurling-Deny criterion. We shall then give
the corresponding criterion in our case, in the box B , forgetting the geometrical

meaning (section IV). For this purpose we give a formal definition of the notion of
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symmetrization. The applications (section V, VI) then, consist in a verification of the
conditions established in section IV (geometric symmetrization decreases energies)
in the particular cases under considerations : Fiber bundles, Steiner symmetriza-
tion, Schwartz symmetrization. Recall that a symmetrization generally yields a

comparison between a generic space and a more symmetric one, in the sense that
it hag more isometries. Certain results are then incorporated in this picture such

as the paper {B-G1 which has been a guide for this text.

The reader will easily see that this appendix does not deal with the most general

case and the most formal one, and that extensions and medifications are possible.

Finally, it must be noted that the idea of the formal approach of the inequalities
appearing in [B-G| has been suggested to the author by the article [H-8-U 1].
Our method is just a slight modification of the one presented in [H-5-Uil. In a
forthcoming paper wel shall develop a similar approach to the notion of transplan-

tation (which is in some sense dual to that of symmetrization).

The results which we present in the Appendix are not yet polished, as they per-
tain to current research. A hopefully more satisfactory version of this Appendix

will appear elsewhere.

ll. - THE ABSOLUTE VALUE AS A SYMMETRIZATION
- PROCEDURE AND THE BEURLING-DENY CRITERION

This section is our first contact with symmetrization, in its weakest form.

However all the ideas (which are very simple) will appear here.

Let (M,u} be a g-finite measure space. We will deal with the Hilbert space
L2(M,du) . It is then natural to give the '



1. DEFINITICN. -
Let A be a bounded operator on L2 » it_is called posftivity preserving

¥ Af is positive whenever f is positive (see [R-8]IV, pp. 201).

Now we can give sufficient conditions for a self adjoint operator to be

positivity preserving.

2. PROPOSITION -

Let H be a self-adjoint operator bounded from below by

E = inf{Spec(H)} . Then e-'tH is positivity preserving for all t>0

if and only if (H—)\)“1 is positivity preserving for all ) <E .

Proof. -~ Use the formulae

m-)! = f Moty (Z<E)
"0
-h
o im (1+£) (>0 .
n—--+w n

In the following we will only consider self-adjoint operator and real valued funetions

(for the sake of simplicity only).

There is a very simple criterion for a positive self-adjoint operator to generate a

positivity preserving semi-group.

3. THEOREM (Beurling-Deny criterion) -
Iet H=0 be a seif-adjoint operator on LZ(M,dp) and let q be the

agsociate quadratic form with domain BH(g) . The following assertions are

equivalent :

-t

H
a e is_positivity preserving for all t >0 .

b) H u€sg) then |u| €8¢ and q(ju]) s g .
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-

The proof is very easy and it can be found in [R-SIIV on page 210.
In 1973, T. Kato [KO] proved a simple but very useful inequality, the so-called
"Kato's inequality". Later B. Simon [SN| gives an interpretation of this inequality

in terms of positivity preserving semigroup. More precisely,

4. DEFINITION -

With the notations of the above theorem, we say that

H obeys Kato's
inequality if and oniy if :

i) uesig Iimplies |u] €5y

i) for u€s(H) and fehig) with £=0
EH(ul)) < ((sign w)£]Hu)
where sign(u) is defined to be
(signu)(x) = 0 if u(x) =0
- A otherwise.

[uix}

The link with positivity is given by the following
5. THEOREM [SN] -

A non negative self adjoint operator H satisfies Kato's ineguality if

and only if e-tH is positivity preserving for all t .

Proof. - If Kato's inequality holds, taking f = |u| we get, for
u € B(H)

a{u|) = g .
A limiting arpument and the use of Beurling-Deny criterion give the result.

-tH
Conversely if e t

is positivity preserving then for any u and any f= 0
. -tH . —tH
{(signw)fle u) s (ffe lul}

and equality holds at t=10 .
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I ues®, taking f = |u| and differentiating at t =0 yield,
0 < g{|ulr s gqw
then fu| € B(@) . A limiting argument shows that the same is true when u €5 .

Thus if ue€B(H) and f€A( , differentiating again gives the desired inequality.

6. INTERPRETATION -

Let us assume that the non negative self adjoint operator H satisfies the
Beurling-Deny criterion. Then the absolute value can be seen of as a mapping
from L2(M,du) to itself which decreases the quadratic form associated to H

(and thus which preserves its domain).

-1
The consequences are the positivity preserving properties of (H+)) (for »>0)

and e-tH (for t>0) and Kato's inequality.

I (Hey (resp. e_tH) is an integral operator with kernel R(Q.;.,.) , this
leads to the positivity of the function on MXM » B():;.,.} (or az0).

fo this property of the absolute value allows to compare the operator to 0

(positivity). The questlon which arises now is :

Is it possible to compare different operator, even acting on different

Hilbert spaces ?

It. - SYMMETRIZATION

This section is devoted to a formal approach of symmetrization. It aims at giving
a criterion analogous to Beurling-Deny's one for semigroup domination. i is

clearly inspired by the paper [H-5-U 1].

Unless otherwise specified we shall deal with self adjoint operators. This Is not



really necessary.
Iet 3 and K be two Hilbert spaces. We assume ¥ fo be real.

+
A nonempty cone H of ¥ is a subset such that :
+  F +
i)y H +t¥ =X ,
+ s
iiy ay €y forall a=0,
we assume furthermore that

i) 'Ky = 0.
The cone will be said to be self-dual if the following condition holds

iv) (glK') =0 implies. g€k’ .

In this situation, we have the

7. DEFINITION -

+
Amap 8 from ¥ to ¥ is called a symmetrization if

1) for all (£,f) in u, [{F|f)] = (S(D]S(E))
and equality if f=1f

2) for all f1 €H and gEJ{+ there exists fz € ¥ such that
g=5(f)
(€, 18,) = (S(EDIS(E,)Y = (S(E)|e)
(in_this case fl,f2 are said to be g-paired).

We then have the

8. PROPOSITION -

A symmetrization is a Lipschitz map.

Proof. - |8(H-s@1% = |s0]® + |8@)]” - 2¢5(D ]S
but tsen|® = 1|2



(tley s [<flg)| < (S(B]sig)
then
|8t - 5@ < -g|® .

9. REMARK -

This property of symmetrization allows to define it on a dense subset of H only.

An other property which will be important in the sequel is given by the following :

10. PROPOSITION -
Let W,¥ and £ be three Hilbert spaces, K and & being real,

+
S {resp. T) a symmetrization map from 3 to K (resp. from ¥ to

+ +
£+) if T has the property that whenever f1 €X and g€f& the
+
element f2 € X such that (fl’fz) are g-paired is also in ¥ then
TS [s 2 symmetrization. ‘

Proof. - Clear.

The domination relation for bounded operator,

The following proposition will give a definition of the domination velation.

11. PROPGSITION -
Let A (resp. B) be a bounded operator on H {resp. ¥) . The

following_inequalities are equivalent :

i) (S(Afl)[g) < (B(S(fl))lg) for all f],f2 € and gEf )

i) Re(ALE,) < (BIS(E IS, |
iii) [(Af1|f2)l = (B(S(f]))|S(f2)} .

+
if futhermoxre ¥ is a self-dual cone we can add

tv)  S(Af)) < B(S(E)) .




12. DEFINITION -

I A and B satisfy one of these inequalities we will say that B

dominates A .

13. REMARK -
The fact that the cone is self-dual allows to pass from integral inegualities
to pointwise one. This will be important in the applications and explains the dif-

ferences between inequalities obtained from various types of symmetrizations.

Proof of the proposition. -

i) = ii)

Re(Afllfz) < (S(Af1)|S(f2)) < (B(S(fl))]S(fz)) .

iy = iii)

idem

iii) = ii)

idem

i) = i)

Choose f_  such that (Afl,fz) are g-paired, then

2
(SBE ) lg) = (Af|f,) = Re(AL|f,) < (BEE N -

Finally it is clear that iv) implies i), ii) and iii), and that the self-dual

+
property of ¥ allows the converse to be true.

The following lemma will be important in the sequel.

14. LEMMA -
1) ¥ B; dominates A; then |q1|Bl+|u2|B2 dominates

alAl +0.2A2 (al,cczed?) .

2} If B; dominates 4A; and if B; and Ai converge respectively

to B and A (weakly or strongly) then B dominates A .
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3y It By dominates Ai (i=1,2) and if B1 preserves the cone J(+

+
then BloB2 dominates A1=A If furthermore ¥ is self-dual

5 *

then the preservation of }{+ by B is a consequence of the domi-

1
nation relation.

+
Proof. - The point 3) only is non trivial. For f€H, g€K we

have
(S(A,°A,(D)g) = (B (S(8,0)|g) < (S(A,0)|B,g)
‘(recall that the operator are assumed to be self adjoint}). Then
(S(A1°Az(f))ig) = (BZ(S(f))'.Blg> = ((Bl°32)(5(f))lg)

+
because Blg belongs to X .

If }(+ is self-dual then the relation
S(a,f) < B (S(D)
implies that for all g € .}{i— , choosing [ € ¥4 such that S(f) = g, we have

(B g|hy = (S(a Dby 2 0 for all hex .
Thus
+
Bgey .

15, COROLLARY -
let H (resp. K) be a positive self adjoint operator on ¥ (resp. X)

and let St = exp(-tH) and Tt = exp(-tK) , then the following propo-

sitions are equivalent

i) Tt dominates St for all t=0 ;

i) (\+K)"' dominates (\+H) ' for all x>0 ;

iii) ()\+K)-nTt dominates ()L-c-H)-nSt for ail )\.>0 , t>0 and
neglN ., '



Proof. - Use the formulae

- +o o
{(r+tH) LI [‘ e t Stdt (>0}
0

-n
§ = lim A+LH)™® = lim [E(E +H)] (t>0) .
b pgaye R net+eo DAL

Here the positivity of the operators play no role. The boundedness from below

is sufficient.

IV . INTERPRETATION IN TERMS OF QUADRATIC FORMS :
A CRITERION FOR SEMIGROUP DOMINATION

Now we can give a necessary and sufficient condition in terms of quadratic form
for a symmetrization to give rise to semigroup domination. K will be a genera-

lization of Beurling-Deny's criteria.

The main theorem of this text is :

16. THEOREM -

Iet H and K be non negative self adjoint operators on ¥ and ¥

respectively, and q.. , g the associated quadratic forms (which
H K =

will be considered as bilinear forms as well). Let Pt and T, be

the semigroups gemerated by H and K . I by is a core for H
and if we assume that ()\+K)_1 preserves ¥ forall A>0 then

the following conditions are equivalent :

a) Semigroup domination

Tt dominates Pt for all t>0 .

b) Regolvent domination 7
(,'p\+K)"1 dominates ()\-I-H)_l for all A>0 .




¢) Kato's inequality
(K;) u€blay) implies Sw) €.5@y)

(Ky) Re(HI, [I)) > qy (S(f)), 8(F,)) = (S(F))|KS(E,))

for all fl E.BO , f, such that S(fz) € H(K) and S(fz)—gaired.

2

Proof. -

i} The equivalence of a) and b) is eclear from the previous section.

ii) a) implies c). The hypothesis a) implies the inequality :

~tH ~tK
<(1",’;—)flf> 2 <(1-‘:—) S(6)]S(D)

for’ fE.BO . Letting t pgo to zero yields,
R i )
e > quf) = lHif] = |K¥8(1)| = aE(Sth) = 0
which implies
S(f) € .B(CiK) .
A similar argument gives inequality (KZ) .
iii) ) implies h).
Let us assume that fle(.h+H)(.&0) and g € x+ then
-1
(S(E+N) ") e = (S} e
with h, = (H+h)'1fl .
Thus h1 E.BO . By assumption (A+K)_1g € H+ , thus we can
write
O+K g = (1) witn b and f, , S(,)-paired.
(Notice that S(fz) € B(K) ). Then
(Sy)ie) = (Sh){O+K)S(L))
< (E [ = (£ ) .
< (5(f1)|5(f2)) = (S(f1)|(A+K) g .
Then we have get the ineguality
-1 -1
(S(ED) 1) ]e) = (LK) TS g
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which is the desired one. A limiting argument allows to conclude.m

let Eg(H) (resp. Eg(K)) is the ground state energy of the self adjoint operator
H (resp. K) , i.e. the infimum of the spectrum of H (resp. K) , the following

consequence is immediate.

17. COROLLARY -

If one of these conditions is verified then,

Eg(H) = Eg(K) .

Proof. - Use the minmax principle.

18. INTERPRETATION - .

The theorem canh be summarized in :
the semigroup Pt is dominated by Tt if and only if S does not
increase the energy integral.

19. REMARKS -

i) The operators under considerations always have been assumed to be
positive, It is clear from the pfoofs that "bounded from below" is sufficient for

these inequalities.

ii) They are self adjoint too, and of course, this class can be enlarged.

As an example in [H-8-U1], the operators are just assumed to be maximally

accretive.

i) 1 e M is dominated by e 1 (i=1,2) and if H +H, and
K1+K2 are in the class of operators under considerations then e‘tH is domi-
nated by o K , H and K being the closure of H1+H2 and K1+K2 res-

pectively. This is easily proved by applying Trotter product Formula.
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V.~ APPLICATION 1 : KATO’S INEQUALITY -
ON FIBER BUNDLES

Kato's inequality is the subject of the article [H-8~U1l. For an application of
this inequality, see [H-8-Ul or chap. VI, § 0. Let us briefly summarize the

gituation.

Let M be a compact Riemannian manifold and E M a hermitian vector
bundle, i.e. a vector bundle such that each fiber is equipped with a hermitian

strueture varying smoothly in the base point.

Let D be a connexion on the section of E , compatible with the hermitian

product.
The Riemannian metric on M gives rise to the Laplace-Beltrami operator 4 .

The connexion D together with the Riemannian structure on M allow to define
a Laplacian type operator on the space L2(M ; B) of Lz—sections of the bundle
E , called the rough Laplacian A . and which is a non negative self adjoint ope-
rator (see VI.13).

Finally, for a section u in L2(M;E) » we define the function |u| in
L?®;R) by the relation,
[u]tm) = |u@m)] for all meM .

The norm in the right hand side is taken in the fiber Em .

We then have the

20. THEOREM (lH-S8-U1l)
With_the above notations
]e-m(u)| < e_tA(|u1) .

The proof is done by showing that the map



s: L2m;E) — L2

u — |uj

is a symmetrization which decreases energies. Recall that the guadratic form

defining 4 is

qu) = IMlDullz .

For the details the reader is referred to [H-S-U1] , or chapter VI of this text,
in which a stronger inequality than the one on energies is proved. The proof
given in Chap. VI also relies on the fact that e-m is positivity preserving

(apply Beurling-Deny's criterion : Theorem 3).

In that ease, the cone is the set of non nepgative functions of LZ(M;IR) , which
is clearly self-dual and then allows to get a strong domination inequality in

theorem 20.

V1. - APPLICATION 2 : SCHWARZ SYMMETRIZATION

This is the key section of this appendix, Wé aim at given an alternative proof of
theorems V.9 and V.28, using the formal approach of symmetrization. For the
sake of simplicity, we will give the construction in the simpler case of bounded
open subsets with smooth boundary in ]Rz . It generalizes steadily to all the
other situations in which Schwarz symmetrization can be used. Some of these

are described at the end of this section.

For symmetrization, we have used the basic reference [H-L-P] pages 260 to

299,
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THE GEOMETRIC SYMMETRIZATION

From now on the domain under consideration will be connected, bounded and with

amooth boundary in ]R2 .

The symmetrization is a map which associates to each such domain a more sym-
metric one. The Schwarz symmetrization (which is the one we consider here)
associates to (3 the ball ¥ of IR2 with center 0 and same area as (.,

The main feature of this operation is given by the

21. THEOREM
With the above notations if L (resp. L*) is the length of the boundary
of 0 (vesp. 0¥) , then
L= I¥ .

22. REMARKS

i) This is the classical iscperimetric  inequality in dimension 2 .

For a review on the different proofs, see [B-Zl.

ii) We will gee later on that this inequality implies all the inequalities

which will appear in this section.

iii) Here the smoothness of the boundary is not essential.

23. SOME ELEMENTARY PROPERTIES
Iet A and B be two bounded measurable sets then :

) Vol(lANBI") = Vol(ANB) = Vol(A*nB*

Min{ Vol(4), Vol(B)} .

1)) Vol(laUBI®)

Vol(AUB) = Vol(a*uB%

I

Max{Vol(4), Vol(B)} .

iii) The symmetrized sets of a finite sequence of sets (Ak) can always
be arranged into a decreasing seguence. So, this map is often called

"decreasing rearrangment" (see [H-L-PJ),
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SYMMETRIZATION OF FUNCTIONS

Iet A be a measurable set of finite volume then Xy the caracteristic func-
tion of A , is measurable and integrable. We define,

S(XA) = XA* *
The finite sums of caracteristic functions of measurable sets is dense in the

space of integrable function on a bounded domain. Unfortunately the map 8

cannot be extended as a linear map indeed

Slxtxg) # S(x,) * S(xg)

in general.

However if AcB or B o< A, we can define S(XA+XB) by

() Sy, txg) = Slx,) * S(Xp) -

Iet O be a bounded domazin in ]R2 and f be a non negative integrable func-

tion on . We will write f as a sum (integral) of caracteristic function of an

increasing family of bounded measurable sets.

Define
Dt = {x€a\ f(x) =t}

the set Dt is measurable of finite volume.

24, LEMMA A
With the above notations f = j'thdt .

Proof. - Jet xX€ Q)

‘I'XDt(x)dt - f(")uﬁ = f(x) .
0

The measurable function ‘I‘XD dt is integrable on (
t
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dt|dx = . dtdx = dx)dt
Inl.fxnttlx IQJXDt X ._F(J"prt X

by Fubini's theorem which can be applied because the functions are non negative.
Thus

0= Iﬂ(_fthdt)dx = J‘Vol(Dt)dt =[t=1] < +=.
The family Dt is a decreasing family of bounded measurable sets ; taking (x)
into account we define
S(f) = 8( [y dt) = [S(y,)dt = [y _,dt .
Y Dt f Dt -,r Dt
Now it remains to verify that if f € Ll(Q) , l.e. is a class of functions defined

up to measure zero sets, so is S(f) . This verification is left to the reader.

For another approach of the symmetrization of functions the reader is referred to
chapter IV, § A, and chapter V, n°® 12.

If f is any infegrable function (not necessarily non negative), we define :
8 = st .

The next tbeorem will show why 8 deserves its name.

25. THEOREM

With the above notations the map $ is a symmetrization in the sense

of section III,

Proof. - The domain  being bounded any function f in L2(Q,1R)
is integrable, so 8 is defined on LZ(Q,]R) .

The symmetrized function S(f) is radially symmetric on (I , l.e. it depends
only on the distance to the origine, and is decreasing . So, the targei Hilbert

space is the space LZ([O,RT,rdr) (or equivalently Lﬁ(n*,dx) ., the set of
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functions in Lz(Q*,dx) which are radially symmetric) where R is the radius
of OF

The cone ]("' is the cone constituted by the decreasing functions (i.e.
functions which are in L2 and whose derivative in the distribution sense is a non
positive measure). I is clearly not seli-dual.

Iet us then verify the condition which appear in the definition of a symmetrization.

i) ¥ f and g are non negative function in LJ(Q;]R)

f= 'rthdt E= J‘XESds

then

fg = ‘rXDtXE dids = -rXD ng dtds

8 t 8
s0
fg = Vol(D, NE )dtds

IQ .Ille t s

similarly

S(H)S@) = [ _Vol(D, NE™)dtds
‘]‘Q J‘IRZ t 8

and from the property 23.1)

(flg) = (S(DH|8@) -

26. REMARK

If the reader is not satisfied with the formula proved in Lemma 25 and used in
the following caleulations, he can use the following property of non negative mea-
surable functions f on a o-finite measured space (see [RN] page 15) there exist

an increasing sequence of simple functions s,

Osslssz...SSnsf

which converges to f at any point. Recall that a simple function is a finite linear
combination of caracteristic functions of measurable set, in the case at hand, the
sets are in the family {D, ]t ¢€R Thenr hy Lebesgue's dominated convergence

theorem and the uniform continuity of the symmetrization on L {(0; R) we can
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avoid using the integral representation.

ii) Now if f is a non ncgative real valued function on § -and F a

noh drecreasing function on IR+ , we can write
Fof = [‘th dF

the integral being a Stieljes integral ( F is of bounded variation). Then using
the positivity of the derivative of ¥ or the method given in of remark 26, one

can easily prove that
S(Fef) = 'f S(XDt)dF = ‘J’XDazdF = Fo(S(f)) .

Then let f be 2 function in LZ(Q; Ry and g in J{+ . g isin Lz([O,R] , xdx)
and is non increasing. For each t¢ R, the set Df = ({x\|{fx}| >t}H* isa

ball of radius r(t} , 0=r{) <R . The function r is non increasing. For the
sake of simplicity (and this will be sufficient for the sequel) we assume that r

is a homeomorphism onto 10,R] . In that case we get,
Sthe|f]) = he S(jE}) = g .

The functions ho|f| and |f| having the same level sets,
V] he|t| = [ _S(Dg .
JArlwlel - ]

If we now define
f(x)
sign(f) = ¢ |£()]
0 i f(x)=0

if £(x)#0

f = (signfyh.|f]

we have the equalities,

sif)y = g
(€)fy = J"fo" = jﬂ* S(f)g = (S(f)|g)

which is part of the pairing condition.
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27. REMARKS
1) The complete pairing condition being not necessary we limit ourselves

to the above case (this will be clear in the next theorem).

2) The reader can easily verify that this definition of symmetrization
coincide with the usual one (see [BE] pp. 47) when the functions under considera-

tions are sufficiently regular.

We can now formulate the main theorem of this section. Iet A be the Laplace

2 X I os
operator on LZ(Q ; IR} (resp. A¥ on L% IR)) with Dirichlet boundary condition.
Recall that it is associated to the guadratic form

2
g) = [ |du]
j‘ﬂ

with domain

=0}

1 2 2
Bq) = Hy = {uel (n;m)/jnldul <te, Upag

the operator domain is
1 2
B8y = Hyn H

then we have,

28. THEOREM .

With the above notations the semigroup e_m dominates the semi-

group e-m for all t$0.

ge J{+ we have the inequality

@ sle ) g s (@0 TsE) | for'all A >0

{see theorem 16).
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The operators (4},+)\)—'1 and  (A¥+ h)_l are positivity preserving (this is a well
known fact which can be proved by using the Beurling-Deny criterion). Thus we
have,
-1 -1
[t 7t | s (v g |

(ineguality between functions)
and Lf1| being non negative,

0= @ |
Using the facts that

sLan ™1 = st |
énd

Su) < S(v) whenever 0su<v (see [BE]page 49).

We see that it is sufficient to prove the inequality (#) for f1 a non negative

function.

The operators (A+A)_1 R (A**+A)_1 and § being continuocus, we see
that it suffices to prove (x) for g In a dense subset of 3{+ and fl in 2

+
dense subset in ¥  (the set of non negative functions of L_2(Q;]R) ).
From the proof of theorem 16 , . we see that it relies on the inequality
#*
(%) (ah |by> = (S(h))|a*S(hy))

_ -1 P § : o
for h1 = (A+)) fl s S(hz) = (4"+)) g and (hl’hz) S(hz) paired.
I f1 is a non negative function then hl is also non negative, the operator

(+))7! being positivity preserving.

Then it is clear that it is sufficlent to prove (x) for Sth,) in a core for ¥
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We choose for S(hz) =u a smooth function in ?}* vanishing on the

boundary, radlally symmetric and non increasing In the radial variable.

Then, we have seen that

. 3%
hZ = gorohl where r(t) = radius of Dt .

Whenever r is continucus. In fact, we will choose h] to be smooth non nega-
tive and such that r Is piecewise smooth and absolutely continuous. Let us

assume for a while that this is done, and define

B =geT .

and g is non decreasing. Thus
- 2
= = 'e .
(sh |hy) = [ Q(dhlldhz) .FQ@ h,)|dh, |
Let us define a non decreasing function on [o,s] (where &=sup hl) k by

g = 0

then
2 2 2
<5h1|n2> =] ('=h,) ldhll = [ |aw|
Q 0
with w = knh1 .

Now it is a well known fact that symmetrization- decreases the Dirichlet integral

(see Chap. V, § & or [BE] p. 53)
! law}® = | |ase) |2
Q 0

but Stw) = ke Sth 1) and by the same process we get
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2
|‘Q ldw|™ = (5)] A*S(hz)l)

and the theorem is proved.

1) L remains to choose nice functions for hI . Recall that
f1 = (Mmhl must be in a dense subset in M+ . For example we can assume
that f] is a smooth non negative function with compact support in the interior
of Q. Then h1 is smooth up to the boundary (hlec“’(m) , vanishes on 30
and is positive in the interior of . Thus if Sa-\—) ig the derivative in the direc-
tion of the inward normal, then

ahy

v

Now we can perturb h1 in Cm('a) in such a way that the new funetion, let say

u , has the following properties

ou
a0 >0 on 3af
u =20 on' an

u> 0 in the interior of Q.

2) Let Qq = [xen\dist(x,3 ) z s} . For sufficiently small s this
set has a smooth boundary. Rescaling un if necessary we can assume, for the

sake of simplicity, that EL 1 on O\ QSO for sufficiently small S where

oS
8(x) = dist{x,3n)

Furthermore, the function u being in Cm(?}) is the restriction on _(-2 of a

smooth, compactly supported, function in IR2 .

3) Applying Milnor's theorem (see MR, page 37) to this extended
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function, we can approximate uniformly u by a smooth function with non dege-
nerate critical points on le and in the Ck topology on Q , (for k choosen
arbitrarily and =8 ). Let v be such a function,

v e c(n)

v has non degenerate critical points

la-v]| ik~ < m/10  (small positive number)
c{)

if n is small enough

w1

35 5 on Q\QSO {and sc has no critical points in this set).

From the properties of u it is clear that the set
{x\ux)=n} = T

is a smooth curve for 71 small which converges to 3t as mn goes to zero,

and which is almost parallel to 3Q .

Taking m small, this curve is in Q\QSO . Thus

ux) =mn on r‘q implies v(x) = 3 on I

10 n
u(x) = 0 on 30 implies v(x) s-n— en [ .
10 l

Then the set {x\v(x)= g} = Yﬂ is 2 smooth curve close to 30 .
I now suffices to construet a diffeomorphism q;n from the interior of Y, onto
1 such that :

y_ is the identity in

t 8

wq send diffeomorphically Y"I onto 30

k
% is closed to the identity in the C topology.
i
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Then the function
wix) = vfw;]l(x)]- n/5 for x€qQ

is a smooth functiop, with finitely many critical points in the interior of ¢,

vanishing o 3 and arbitrary close to hl in the 5{A)-topology.

4) We can then work with such function, which have clearly the property
that the associated function r(t) is absolutely continuous (the only possible points

at which r Is not smooth are the critical values of h1 ).m

- + +
Finally we have to verify that (A*H\) ! preserves X . Recall that if géeyx ,
it is a radially symmetric, non negative and noh increasing function (in the radial

variable) on 0¥ .

Thus f = (A*-+A)_1g is non negative because (A*“"A)_] is positivity preserving,
It is radially symmetric because the rotation around the origine which are iso-

metries of IR2 , commute with A" .

The function f wverify {by definition)
@A =z 0

thus by applying the maximum principle we see that it is non increasing in the

radial variable.

29. REMARKS

i) The technical details have not been completely written here, they
will appear elsewhere. We just wanted to show that although the criterion given
in theorem is not so heawtiful as Beurling-Deny's one, it can be improved in
some particular cases, it is sufficient to prove that the energy integral is not

increased by symmetrization.



il) This proof steadily generalizes to higher dimension.

iii) It also gives an alternative proof of theorem 9 and 28 of chapter..V .
In fact, it is much simpler technieally in the case of a compact manifold without
boundary. Let (M,g) be a n-dimensionnal compact connected riemannian manifold
without boundary such that
Riceci(g) = (n-l)eg ce€R
and define the number g by,
Vol(sh

<1

B

then the geometric symmetrization associates to each mesurable set D on M
a ball centered on the north pole of s of volume %VOI(D) . Gromov's isope-
rimetric inequality ([GV]) asserts that this map deereases the volume of 3D
(when it iz smoothjup to the factor /B . These yields a symmetrization on

functions
f= jthdt s = /B fXD*; dt
one then has to prove that
2 2
jaw|” = |dSiw) | .
IM 'rs“

for nice w which is easier because we deduce from Milnor's theorem that the

functions with non degenerate critical points are dense in Ck(M) for all kelN .

iv) The theorems on forms which appear in [B-Gl are obtained hy

composing symmetrizations.
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Infroducfion

Depuis 1970, date 4 laquelle a été publié “LE SPECTRE D'UNE
VARIETE RIEMANNIENNE”, en abrégé, BGM (M. Berger, P.
Gauduchon, et E. Mazet, Lecture Notes in Mathematics, n® 194,
Springer) I'étude du spectre a connu une grande effervescence. Il nous
a paru utile de rassembler une bibliographie classée et assez compléte
{mais bien str difficilement exhaustive) pour compléter le BGM.

Suivant en cela BGM, mais aussi pour des raisons de temps, d’espace
et d'incompétence, nous ‘avons fzit cefte bibliographie avec um A
PRIORI: quand nous disons SPECTRE, nous sous-entendons “le
spectre du Laplacien d'une variété riemannienne compacte sans bord”.

i ne nous a cependant pas paru raisonnable de nous limiter & ce seul
sujet; c’est pourquois nous donnons aussi des éléments de bibliographie
concernant le spectre de I'opérateur de Laplace-Beltrami agissant sur
les p-formes (essenticllement regroupés au paragraphe 3.2) et la
théorie spectrale des variétés non compactes (voir chapitre 10). Compte
tenu de Iimportance “physique” des variétés 2 bord, et aussi des
développements assez spectaculaires dont la théorie a été l'objet ces
derniéres années, nous donnons un certain nombre de références
concernant le “cas @ bord”. Ces références sont ventilées dans les différ~
ents chapitres. Notons que, dans les chapitres 3 4 &, et 10, ces références
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sont regroupées 4 la fin de chaque paragraphe, précédées de la mention
explicite “cas 4 bord”.

Peut-étre convient-il de noter que le cas des variété non compactes,
comme celui des variétés A bord, sort du cadre strict de la géométrie
riemannienne (problémes de théorie spectrale dans l'un, de géométrie
symplectique dans I'autre). .

Le jecteur trouvera dans le “Mode d’emploi” ci-aprés des informations
plus détaillées qui I'aideront, du moins nous I'espérons, 4 utiliser fructu-
cusement cette bibliographie.

Plusieurs collégues ont bien voulu nous signaler des erreurs, des
omissions ou de nouvelles références; nous les prions de bien vouloir
accepter ici nos remerciements,

Nous remercions Mesdames Cordel et Strazzanti qui ont assuré la
frappe du manuscrit.

Mode d’Emploi

“Le specire en 1982" est divisé en douze chapitres. Les chapitres 1
et 2 sont essenticllement consacrés aux résultats préliminaires. Le
chapitre 9 traite des VARIETES SPECIALES et le chapitre 10 des
VARIETES NON COMPACTES. Notons que les références concernant
certains sujets poinfus (et souvent encore peu explorés) ont été re-
groupées, sous diflérentes rubriques au chapitre 12. Nous renvoyons le
lecteur au “Leitfaden™ pour plus de détails concernant le contenu des
différents chapitres.

Quelques commentaires complémentaires:

“cas @ bord”: dans les chapitres 3 & 8 et 10, cette mention précéde, &
la fin de chaque paragraphe, les références concernant le spectre
des variétés 3 bord.

“Tableaw des interactions fortes”: toutes les références bibliographiques
n'ont pas été inscrites dansg chacun des paragraphes o elles
devraient Iétre. Ce tablean est destiné & compenser cet incon-
vénient.

“Ouvrages de base”: nous avons choisi (choix personnel, done sujet &
caution) un certain nombre de références: livres, cours, articles de
synthése, pour aider le lecteur & se faire une idée générale d'un
chapitre précis, avant d’aborder la jungle de la bibliographie
spécialisée. Pour &tre plus repérables, ces références sont données
en MAJUSCULES (exemples: CLARK [1], GUILLEMIN [2]).
Une liste spécifique de ces ouvrages est donnée aprés le “Tablean
des interactions fortes” {chaque référence est suivie des numéros
des paragraphes auxquels elle se rapporte),
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“Actes de collogues”: il est parfois intéressant de connaitre le développe-
ment historique d’un sujet. C’est pourquoi nous avons Iegroupe,
en une liste séparée, les actes des colloques od sont publiés certains
des articles cités en référence (ceci par ordre chronologique).

“Preprints”: pour permettre au lecteur de localiser (ou de se procurer)
plus facilement les articles encore sous forme de prétirage, nous
avons essayé de donner un lieu d’émission et une date (en général
celle 2 laquelle nous avons cu le prétirage en main pour la premiére
fois; cette date, on s’ent doute, est assez relative et on ne peut Tui
donner de valeur absolue).

“Validité”: cette bibliographic a été arrétée a I'état de nos fiches en
septembre 81. La composition du texte ayant été retardée, cela
nous a amenés 4 compléter notre texte un an plus tard, soit en
décembre 82. Nous osons espérer que le Iecteur nous pardonnera
de ne pas avoir respecté I'ordre lexicographique dans la classifica-
tion par sujets. ' :

Dans le “Leitfaden™ qui suit, nous donnons quelques indications com-
plémentaires sur la maniére dont nous avons ventilé les références
suivant les chapitres. :

Terminons en indiquant trois références qui peuvent étre utilisées par
le lecteur parallélement & cette bibliographie:

Simon-Wissner [1]: article de synthése sur une partie des chapitres
qui constituent cette bibliographie;

Yau [3]: le lecteur y trouvera une liste des applications des équa-
tions aux dérivées partielles 2 la géométrie et en particulier au
spectre;

Yau [4]: liste de problemes ouverts en géométrie, contient une
section propre au spectre (certains problemes sont peut-étre déja
résolus).

Leitfaden

Chapitre 1: “Préliminaires & I'étude du spectre”

Ce chapitre est surtout destiné aux non spécialistes. Nous y donnons
quelques références (personnelles) sur les connaissances requises pour
aborder la littérature spécialisée.

Chapitre 2: “Motivations; Equations de la physigue mathématique”

L’intérét porté au spectre du Laplacien nous vient sans doute de la
physique. Les références concernant les rapports avec la physique sont
données au paragraphe 2.1. Dans le paragraphe 2.2. nous donnons des
références relatives 2 Pétude a priori des équations de la physique:
mathématique utiles dans I'étude du spectre,
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Chapitre 3: “Exemples de spectres”

Comme le montrent les références données dans le paragraphe 3.1,
les variétés dont le spectre est donné par des formules explicites sont
rares.

On a cependant une bonne description du spectre de certaines variétés
spéciales (groupes de Lie, espaces symétriques, . . .}, parfois par ie biais
de solutions explicites pour I’équation de la chaleur ou des ondes. Nous
donnons ces références dans le paragraphe 3.3,

Nous avons choisi de rassembler toutes les références relatives an
spectre de l'opérateur de Laplace-Beltrami agissant sur les formes
différentielles dans le paragraphe 3.2. (en particulier, elles ne sont pas
ventilées systématiquement dans les différents paragraphes). C'est une
conséquence de PA PRIORI cité dans introduction.

Dans ce chapitre, les références au “cas & bord” sont systématique-
ment regroupées en fin de chaque paragraphe.

Chapitre 4: “Asymptotiques” et Chapitre 5: “Spectre et géomélrie”

De trés nombreux résultats sur Je spectre ont été obtenus par
Uintermédiaire du comportement asymptotique de certaines fonctions
du spectre. '

L’équation fonctionnelle de I’exponenticlle a permis, par le biais de
Pasymptotique du noyau de la chaleur (2 Ja Minakshisundaram-Pleijel)
d’étudier certains invariants spectraux: paragraphes 4.1. et 5.1. respec-
tivement.

L’étude de la propagation des ondes, liée aux géodésiques (en fait aux
trajectoires d'un hamiltonien) a permis d’établir les rapports existant
entre le spectre et le spectre des longueurs, que sont les formules de
Poisson: paragraphes 4.2. et 5.2. (a comparer aussi avec les formules
de traces de Selberg: paragraphe 9.1.).

Ces études ont permis de mieux cerner le comportement asymptotique
des valeurs propres: paragraphe 4.3,

Les paragraphes 5.4, et 5.5. sont consacrés aux références relatives
a des sujets connexes.

La fonction zeta associde aux valeurs propres joue aussi un rdle
important, le paragraphe 5.3. Iui est consacré,

Dans ces deux chapitres, les références au “cas @ bord” sont re-
groupées 2 la fin de chaque paragraphe.

Chapitre 6: “Isospectralité”

Ce sujet, presque intouché en 1970, a connu d’importants développe-
ments récents. Le paragraphe 6.1. est consacré aux résultats positifs
{souvent trés liés au paragraphe 5.1.): zoologie des variétés caractérisées
par leur spectre, et 4 certains théorémes généraux.

Le paragraphe 6.2. est consacré 2 la faune des variétés isospectrales
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non isométriques. | o

Ici encore, le “cas @ bord” fait I'objet d’attentions particuliéres.
Chapitre 7: “Perturbations et généricité”

Outre les références relatives aux propriétés génériques du spectre
(paragraphe 7.2.) ce chapitre contient des références sur le comporte-
ment du spectre sous divers types de perturbations (paragraphe 7.1.).

Les références pour le “cas & bord” sont données 4 la fin de chaque
paragraphe. )

Chapitre 8: “Eguations aux dérivées partielles, applications”

Le fait que le spectre étudié soit celui d’un opérateur différenticl
impose des conditions locales ou globales sur les fonctions propres et
par conséquent sur le spectre lui-méme. De méme le fait que le Lapla-
cien soit trés 1ié & la structure riemannienne conduit 3 des utilisations
spécifiques des fonctions propres (immersions isométriques . ..). Des
références 2 ces divers aspects de 1'étude du spectre sont données dans
ce chapitre. . :

Les références pour le “cas & bord” sont données 4 la fin de chaque
paragraphe. .

Chapitre 9: “Variétés spéciales” L

Le paragraphe 9.1. est consacré au cas trés particulier des variétés
de courbure —1: techniques et résultats sont propres 4 la géométne
hyperbolique (comme par exemple la formule des traces de Selberg)
mais la comparaison avec le “cas général” n'en est pas moins
intéressante.

Le paragraphe 9.2. contient les références qui traitent du spectre
d’autres variétés particuligres,

Chapitre 10: *“Cas non compact”

Selon 'A PRIORI indiqué dans Iintroduction, nous avons regroupé
les références relatives & 'étude du spectre des variétés non compactes
en un seul chapitre, sans les ventiler en différents paragraphes. Le “cas
a bord” fait quand méme Dobjet d’un traitement séparé.

Chapitre 11: “Etude individuelle des valeurs propres”

La premidre valeur propre (non triviale) joue un role particulier
(comme en physique), le paragraphe 11.1. lui est consacré.

Les autres valeurs propres se contentent du seul paragraphe 11.2.

Le paragraphe 11.3. est consacré aux questions connexes: inégalités
isopérimétriques et inégalités de Sobolev. Ces questions sont liées &
I'étude des valeurs propres. Ce texte n’étant pas une bibliographie
spécifique sur ce sujet, et compte tenu des excellentes références Payne
[1], Osserman [2, 3] et Bandle [1, 3] nous ne donnons que certaines
références antérieures i ces trois articles et bien sfr celles d’articles plus
récents (sans doute en avons nous oubliées!).
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Chapitre 12: “Last but not least”

Dans ce chapitre nous avons regroupé, sous diverses rubriques, les

références des articles qui traitent d’aspects particuliers du spectre. Ce
sont souvent des domaines peu explorés, au moins actuellement, ou des
domaines connexes au spectre. Awssi, il convient de ne pas considérer
ce chapitre comme mineur.

i.

Le Specire en 1982
PRELIMINAIRES A L’ETUDE DU SPECTRE

(Théorie spectrale abstraite; théorie spectrale des opérateurs différ-

enticls; équations aux dérivées partielles; matériel riemannien)

2.

MOTIVATIONS: EQUATIONS DE LA PHYSIQUE

MATHEMATIQUE

2.1. Motivations; Physique et modéles mathématiques;

2.2. Résultats généraux sur les équations étudiées: problémes de
Dirichlet et de Neumann pour le Laplacien; équation de la
chaleur, équation des ondes; fonctions de Green;

EXEMPLES DE SPECTRES

3.1. Exemples pumériques explicite§ de spectres ou de valeurs
propres du Laplacien sur les fonctions;

3.2. Le Laplacien sur les formes;

3.3. Spectre du Laplacien sur les fonctions et variétés spéciales
{groupes de Lie, espaces symétriques, quotients, submersions,
...); expressions “explicites” pour les noyaux de la chaleur
et des ondes;

ASYMPTOTIQUES

4.1, Développements asymptotiques & la MINAKSHISUNDA-
RAM-PLEIJEL;

4.2, Formules de POISSON et équation des ondes;

4.3, Asymptotique des valeurs propres;

SPECTRE ET GEOMETRIE

5.1. Spectres et invariants locaux et globaux;

5.2, Spectre des longueurs; spectre et longueurs des géodésigues
périodiques;

5.3. Fonctions zeta; invariant éta;

5.4. Quasimodes; fonctions propres concentrées prés d'une géo-
désique périodique;

5.5. Spectre du Laplacien plus potentiel;

ISOSPECTRALITE

6.1. Résultats positifs et théorémes généraux;

6.2. Contre-exemples;
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. PERTURBATIONS ET GENERICITE

7.1. Perturbations du spectre, du Laplacien, formules de variation
a la Hadamard;
7.2. Résultats sur la généricité;

. EQUATIONS AUX DERIVEES PARTIELLES: APPLICA-

TIONS
8.1, Etude locale et applications;
8.2. Etude globale et applications;

. VARIETES SPECIALES

9.1. Cas hyperbolique: courbure —1; formules de traces de Sel-
berg;

9.2, Autres variétés spéciales: submersions riemanniennes; espaces
lenticulaires; variétés et tores plats; espaces riemanniens
symétriques de rang 1; groupes de Lie et quotients discrets;
autres;

LE CAS NON COMPACT

ETUDE INDIVIDUELLE DES VALEURS PROPRES

11.1. Estimées sur le ,, et applications;

11.2. Estimées faisant intervenir les 1,, k=2 et applications;

11.3. Inégalités isopérimétriques; inégalités de Sobolev; appli-

cations;

LAST BUT NOT LEAST

Lignes et surfaces nodales; spectre et actions de groupes; approxi-
mations et triangulations; calculs numériques approchés; variétés avec
singularités; convergence des séries de fonctions propres; opérateurs
autres que le Laplacien; invariant éta; torsion analytique; inégalités de
type isopérimétrique autres que celles du § 11.3.; géométrie intégrale et
problémes spectraux; multiplicités des valeurs propres; modifications par
attachement d’anses; probabilités et géométrie; divers.

1.

PRELIMINAIRES A L’'ETUDE DU SPECTRE
Généralités
Cime 1973:3, CLARK [1], FRIEDLAND {2], GARABE-
DIAN [1], Gelfand [1], Gelfand-Yaglom [1], GOULAOUIC
(1 '
Théorie spectrale abstraite
Glazman [1], REED-SIMON [1] (vol II)
Théorie spectrale des opérateurs différentiels
BROWDER [1], Protter [2]
Equations aux dérivées partielles
Gilbarg-Trudinger [1], Petrovsky [1], PROTTER [3]
Matériel Riemannien
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BERGER-GAUDUCHON-MAZET [1], Besse [1]

2. MOTIVATIONS; EQUATIONS DE LA PHYSIQUE MATHE-
MATIQUE .
Généralités

2.1.

2.2,

CLARK [1], Courant-Hilbert [1] (vol 1), Gelfand-Yaglom
(11, Kac [1, 2], Morse-Feshbach [1], VENKOV [1]
Mativations; Physique et modéles mathématiques
Balian-Bloch [1], Petrovsky [1], PROTTER [3]

Résultats généraux sur les équations étudiées: problimes de
Dirichlet et de Neumann pour le Laplacien; équation de la
chaleur, équation des ondes; fonctions de Green
Atiyah-Bott-Patodi [1], Aubin [1], Benabdallah [1], Cheeger-:
Yau [1], Cheng-Li-Yau [1, 2], Colin de Verdiére [3, 7, 8],|
Colin de Verdigre-Frisch [1], Dodziuk [2, 3], Fegan [I, 3],.
Frisch {1], Greiner [1, 2], GUILLEMIN-STERNBERG [1],
Hall-Stedry [1], Hess-Schrader-Uhlenbock [1], H&rmander
[2}, Ivrii {1, 2], Kannai [1], Keiler [1],Keller-Rubinow [1],
Lascar [1], Malliavin [1], Meyer [1], Minakshisundaram-
Pleijel [1], Mneimne [1], Molchanov [1], Rauch [1], Reilly
[5], Seeley [1, 4, 5, 6], Smale [1], Urakawa [4], Weinstein
[5], Zucker [1], Armal [1], Cheng-Li [1], Clements [i], ,
Danet [1], Eichhorn [5], Giinther [5], Har’el [2], Kalnins-
Miller [1], Oersted [1], Rinke-Wunsch [1], Varopoulos [1 3 4] |

3. EXEMPLES DE SPECTRES
Généralités

3.1.

3.2,

3.3

BERGER [1], Courant-Hilbert [1], Morse-Feshbach [1],

Paquet [1] ) .

Exemples numériques explicites de spectres ou' de valeurs

propres du Laplacien sur les fonetions -

Buser [8}, Friedland-Hayman [1], Urakawa [9]

“cas & bord”: Bérard [4, 6], Bérard-Besson [2], Nooney [1],

Pinsky [3], Polya [1], Urakawa [6] |

Le Laplacien sur les formes :

Asada [1, 2}, Donnelly [19], Eichhorn [3, 7], Fegan [2, 3],

Ikeda-Taniguchi [1], Iwasaki-Katase [1], Kuwabara [3], Levy-

Bruhl [2, 3], Millman [1], Tachibana-Yamaguchi [1], Tanno
[2, 8], Tsagas [1], Tsagas-Kochinos [1], Wolpert [5], Dodziuk .

(s, 6, 7, 8, 9, 10], Tsukamoto [1]

Spectre du Laplacien sur les fonctions et variétés spéciales
groupes de Lie, espaces symétriques, quotients, submersions,
... ); expressions “explicites” pour les noyaux de la chaleur

et des ondes
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Bedford-Suwa [1], Beers-Millman [1}, Benabdallah [1],
Bérard Bergery- Bourguignon [1, 2], Besson [1], Cheeger-
Taylor [1], Chen-Vanhecke [1], S. S. Chen {1], Gallot-
Meyer [1], Huber [3, 4, 5], Ikeda [1, 3], Tkeda-Yamamoto
[1], Y. Mutd [1, 2], Sakai [2], Strese [1, 4], Sunada [1],
Tandai-Sumitomo {1], Taniguchi [1], Tanno [4], Tsagas
[2], Yamaguchi [1], Berezin [1], Furutani [1], |Marbes
{1, 2], Tsukada [3], Urakawa [9)

4, ASYMPTOTIQUES
Généralités '

4.1,

Balian-Bloch [1, 2, 3], BERARD [3], BERGER [1], CLARK
[1], Colin de Verdiére [3, 8], Duistermaat-Guillemin [1],
Duistermaat-Kolk-Varadarajan [1], Gangolli [1], Guillemin
[1, 3, 4], GUILLEMIN {2], GUILLEMIN-STERNBERG [1]
“cas a bord”: Balian-Bloch [1, 2, 3], CLARK [1], Seeley
[4, 5, 6]

Développements asymptotiques & la MINAKSHISUNDA-
RAM-PLEITEL

Bérard [1, 2], Cahn-Gilkey-Wolf [1], Chavel-Feldman [4],
Cheeger [1], COLIN DE VERDIERE [1, 6], Dlubek-Fried-
rich [1], Dodziuk [3], Fegan [1], Greiner [1, 2], Hess-Schra-
der-Uhlenbock [1], Kannai [1], Miatello [1], Minakshisun-
daram-Pleijel [1], Mneimne [1], L. Smith [1], Wallach [1],
Atiyah [I], Bott [1], Sunada [5]

. “eas @ bord”: Hasegawa [1], L. Smith [1], Atiyah [1], Bott

4.2

4.3.

[1]
Formules de POISSON et équation des ondes
Bérard [2], Besse [1], Chazarain [1, 3, 4, 5], CHAZARAIN
[2], Colin de Verdigre [5, 7], Kolk [1]
“gas & bord”: Bardos-Guillot-Ralston [1, 2], Harthong [1],
Kurylev [1]
Asymptotique des valeurs propres
Bérard [5], Boutet de Monvel {1, 4], Boutet de Monvel-Gris-
vard [1], Boutet de Monvel-Guillemin [1], Chachére [1], Clerc
[1, 2], Colin de Verdiére [4], Fleckinger-Pellé {1], Frisch
[2, 3], GOULAOUIC [11, Grubb [1, 2], Haitov [1], HEJTHAL
[1], Hejhal [2], Helffer-Robert [1], Helton [1], Hormander
i1, 2, 3], Kolk [1, 2], Lieb [3], Meyer [1], Randol [2, 3],
Taylor [1], Vasilev [1], VENKOYV [1], Weinstein [1, 2, 3, 4],
Weyl [1], Widom [1, 2, 3], Asurov [1] :
“cas & bord”: Arnold J. M. [1], Babich [1], Babich-Levitan
[1], Bérard [4, 6], Bérard-Besson [4), Briining [1], Ivrii
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[1, 2, 3, 4, 5], Keller-Rubinov [1], Kurylev {1], Majda-
Ralston [1, 2], Melrose [1, 2], Pham The Lai [1], Pinsky
[3], Polya [1], Seeley [2, 3], Boimatov—Kostjucenko [1],
Carleman [1], Lazutkin-Terman [1], Tamura [1 2 4]

5. SPECTRE ET GEOMETRIE
Généralités

5.1,

5.2,

5.3.

BERARD [3], BERGER [1, 3), Fischer [1}, GUILLEMIN-
STERNBERG [1], Kac [1], Singer [I]
“cas & bord”: Kac [1], Fischer [1]
Spectres et invariants locaux et globaux
Atiyah-Bott-Patodi [1], Benko et al [1], Bérard [1], Brooks
[1, 2, 3], Briining [3], Briining-Heintze [1], Cahn-Gilkey-Wolf
[1], Cheeger [1), COLIN DE VERDIERE [6], Dodziuk [3],
Dodziuk-Patodi [1], Donnelly [1, 2, 3, 4, 6, 12, 13, 14, 15],
Donnelly-Patodi [1], Gallot-Meyer [1], Gilkey [1, 2, 4, 6a23],
GILKEY [3], Gilkey-Sacks [1], Greiner [1, 2], Giinther-
Schimming [1], Har'’el [1], Hasegawa [2], Ii [1], Levy-Bruhl
[1], Mc Kean-Singer [2], Miiller [1], Patodi [1, 2, 3], Olszak
[1], Perrone [1], Pinsky [4], Ray [1], Ray-Singer [1, 2], Sa-
kai [1], Sunada [2], Tanno [1], Urakawa (5], Véron [1],
“cas & bord”: Gilkey [5], Hasegawa [1], Mc Kean-Singer [1],
L. Smith [1], Kermedy [1], Schimming [1], Schimming-
Teumer [1]
Spectre des longueurs; Spectre et longueurs des géodésiques
périodiques
Balian-Bloch [1 & 4], Bérard [2], Bérard Bergery {1], Besse
[1], Boutet De Monvel {1], Boutet de Monvel-Guillemin [1],
Buser [10, 11], Chachére [1], CHAZARAIN [2], Chazarain
[1, 3], Colin de Verditre [1, 3, 7, 8], De George [1], Donnelly
[9], Duistermaat-Guillemin [1], Frisch [1], Gangolli [2], Guil-
lemin [1, 3, 4], GUILLEMIN [2], Guillemin-Weinstein [1],
Helton [1], Kudla-Millson [1], Miiller [2], Randol [1, 3, 4, 6],
Weinstein [I, 2, 5], Wolpert [3],
“cas & bord”: Balian-Bloch [1 4 4], Guillemin-Melrose [1, 2],
Harthong [1], Marvizi-Melrose [1], Millson [1]
Fonctions zeta; invariant éta
Atiyah-Bott-Patadi [1], Atiyah-Patodi-Singer [1], Cahn [1],
Cahn-Wolf [1), Dlubek-Friedrich [1], Donrelly [5, 7, 10, 12],
Gangolli [3], Gilkey.[11], Randol [5], Seeley [1], VENKOV
[1], 8. Tanaka [1], Wodzicki [1], Atiyah-Donnelly-Singer
[1], Gilkey-Smith [1], Millson [1]

5.4. Quasimodes; fonctions propres concentrées prés d'une géodé-
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sique périodique

Armnold [1], Colin de Verdigre [2], Gu1llcm1n—Wemstem (11,

Pyshkina [1], Ralston [1, 2], Weinstein [5],

“cas @& bord”: Babich [1], Babich-Lazutkin [1], Keller-Rubi-
now [1], Lazutkin [1, 2, 3], Babich-Ulin [?] Lazutkin-
Terman [2]

Spectre du Laplacien plus potentiel

Barthel-Kiimritz [1), Colin de Verdiére [3, 4, 5, 8, 9],

Flaschka [1], Fleckinger-Pellé [1], Guillopé [I, 2], Lax-

Phillips [1, 2], Majda-Ralston [1], Prosser [2], Weinstein

[3, 4], Widom [1, 2, 3], Fegan [4], Fleckinger [1], Moser [3]

“cas @ bord”: Balian-Bloch [3], Chung-Li [1], Guillemin
[5, 6], Guillemin-Uribe [1], Li-Yau [3}, Voros [1, 2]

6. ISOSPECTRALITE
Généralités—A titre d’exemple (mais un peu en dehors du sujet)

6.1

6.2.

FRIEDLAND [4, 5], KITAOKA [1], Calogero [1, 2],
Carison [1], Carroll [1}, Carroll-Gilbert [1], Carroll-
Santosa [1] Chudnovsky-Chudnovsky [1], Levitan [1]

Résultats positifs et théorémes généraux

Bérard [1], Berry [1], Buser [10, 11], Donnelly 11, 2, 3],

Fischer [1], Flaschka [1], Global Analysis [1], Guillemin-

Kazhdan [1, 2], Hochstadt [1], Gilkey [4, 7, 9], Krein [1],

Kuwabara [1, 2, 4], Mc KEAN [3] p. 122, Mc Kean-Van

Moerbeke [1], Moser [1, 2], Prosser [1, 2], Randol [6], Sakai

[1], Sunada [1], Symes [1], M. Tanaka [1, 2], Tanno [1, 6, 7],

Wolpert [1, 2, 3], Zalcman [1], Guillemin [5, 6], Marvizi-

Melrose [1, 2]

“cas & bord”: Borg [1], Guillemin-Melrose [I, 2], Kac [1],
Levinson [1), Mallows-Clark [1], Waechter [1], Gel-
gand-Levitan [1]

Contre-exemples

Berger-Gauduchon-Mazet [1], Ejiri [1], Ykeda [2, 4, 3],

Vignéras [1, 2]

“cas & bord”: Hersch [4], Urakawa [8]

7. PERTURBATIONS ET GENERICITE

7.1.

Généralités
Albert [L 3 4]; Bando-Urakawa {11, Bleecker-Wilson [1],
Krein [1], Uhlenbeck [1, 2], Urakawa [6, 7]

“cas & bord”: Driscoll {I]

Perturbations du spec¢tre, du Laplacien, formules de variation
a la Hadamard
Aomoto {17, Donnelly [16], Fujiwara [1, 2], GARABEDIAN
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[i], Lobo Hidalgo-Sanchez Palencia [1], Rauch [2], Rauch-
Taylor [1], Svendsen [1], Tanikawa [2], Wolpert [4], Weber
[1]
“eas & bord”: Chavel-Feldman [3, 4], Fujiwara et al. [1],
Ozawa [1 a 15], Swanson [1], Fujiwara [3], I'lin [1],
Maz’ja et al. [1 & 3], Shimakura [1, 2, 3], Vanninathan
[1]
7.2, Résultats sur la généricité
Arnold [1], Millman [1]
“cas d bord”: Tanikawa [1]
EQUATIONS AUX DERIVEES PARTIELLES: APPLICA-
TIONS ’
Généralités
Besson [1], Berell [1], Cheng [1, 2], Cheng-Yau {1], Gallot
[1], Huber [6], Tanno [3), Uchiyama [1], Yau 2]
“cas @ bord”: Brascamp-Lieb [I, 2, 3], Hersch [1]
8.1. Etude locale et applications
Albert [1, & 4], Goldberg-Ishihara [1], H. Muto [2]
“cas a bord”: Nooney [1]
8.2. Etude globale et applications
Aubin [2]}, Briining [2], Gallot [6], Kobayashi [1], Kobayashi-
Takeuchi [1], Li [5], Miller Pfeiffer-Stande [1], Nagano [1],
Payne [2], Serrin [1], Takahashi [1]
“eas @ bord”: Bérard-Meyer [1, 2], Biollay [1], Briining-
Gromes [1], Meyer [1], Peetre [1], Pleijel [1]
VARIETES SPECIALES
Généralités
Donnelly [13, 16), Duistermaat-Kolk-Varadarajan [1], Fegan
{3], Randol [8], Wolpert [5]
9.1. Cas Hyperbolique: courbure-1, formules de traces de Selberg
Bérard Bergery [1], Buser [1 & 11, 14], BUSER [9], Buzzaoca
(1], Doneelly [19], Goed [1], GUILLEMIN [2], HETHAL
[1], Hejhal [2, 3], Huber [1 & 6], Jenni [1, 2], Kolk [2],
Kudla-Millson [1], Lax-Phillips [1, 2, 3], Mc Kean [2],
Miiller [2, 3], Patterson [1], Randol [1 & 6], Sunada [3], S.
Tanaka [1], VENKOV [1], Vignéras [1, 2, 3], Wolpert [1, 3],
Ehrenpreis [1], Elstredt [1, 2], Giinther [1, 5], Zograf [1]
9.2. Autres variétés spéciales:
Submersions Riemanniennes
Bérard Bergery [1], Bérard Bergery-Bourguignon [1, 2], Goldberg-
Ishihara {11, Y. Mutd [, 2]
Espaces lenticulaires
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Ikeda [2], Tkeda~Yamamoto [1], Sakai [2], Tanaka [1, 2]

Variétés et tores plats
Berry [1], Kuwabara [2], Sunada [1], Tsukada [2], Wolpert [2]

Espaces Riemanniens symétriques de rang 1
Bonami-Clerc [1], Bourguignon [1], Cahn-Wolf [1], Gangolli
[3], Guillemin [1, 4], Hasegawa [2], Tkeda-Taniguchi [1],
Iwasaki-Katase [1], Levy Bruhl (2, 3], H. Muto [1, 2], R. T.
Smith [1], Tandai-Sumitomo [1], Tanno [5, 6, 7], Widom [2],
Giinther [2, 3]

Groupes de Lie et quotients discrets
Beers-Millman [1], Cahn [1], Cahn-Gilkey-Wolf {1], S. S.
Chen [1], Clere {1, 2], Donnely [13], Fegan {1, 2], Urakawa
[2, 4], Wallach [1], Berezin [1], Greiner [3], Jerison {1, 21,
Nachman [1], Rothschild-Wolf [1]

Autres variétés spéciales
Bedford-Suwa [1], Benabdallah 1], Berard [1], Chachere [1],
Chen-Vanhecke [1], Clerc [3], Colin de Verdiére [4], De
George [1], Donnelly {1, 2, 3, 17, 211, Donnelly-Li [2],
Duistermaat-Kolk-Varadarajan [1], Eichhorn [1], Frisch [1],
Gangolli [1, 2], Gilkey [4, 8, 9, 15], Gilkey-Sachs [1], Helga-
son [1, 2, 3], Tkeda [1, 3], Kashiwara et al. [1], Kuwabara
[3], Li [3, 4], Miatello [1], Mneimne [1], Miiller [2], Muto-
Urakawa [1], Olszak [1, 2], Oshima-Sekiguchi [1], Patodi
[31, Sekiguchi 1], Simon [1, 3], Strese [1 3 4], Tandai-Sumi-
tomo [1], Tanignchi [1], Tsagas [2 & 4], Tsukada [1, 4], Ura-
kawa [3, 5, 7], Widom [3], Wolpert [4], Yamaguchi [1],
Yang-Yau [1], Bleecker [1], Hano [1], Toimer [1], Yama-
guchi [2]

10. LE CAS NON COMPACT
Baider [1], Buser [7], Cheng-Li-Yau [2], Colin de Verditre
[5, 9, 10], Donnelly [11, 16, 17, 18, 20, 21], Donnelly-Li
[1], Eichhorn [1, 2, 3, 6, 8, 9], Good [1], Guillopé [1],
Helffer-Robert [1, 2, 3, 4], Hormander [3], Jgrgensen [3],
Mc Kean [1, 2], Miiller [2], Randol [8], Sekignchi [1],
Xavier [1], Brooks [1 & 5], Melrose {3]
Asakura [1], Bardos-Guillot-Ralston [1], Jgrgensen {1, 21,
Majda-Ralston [2], Cantor-Brill [1], Cheeger-Gromov-Taylor
[1], Combes-Ghez [1], Dodziuk [4, 6, 7, 8, 9], Elstrodt [1, 2],
Elstrodt-Roelke [1], Friedlander [1], Gasimov-Levitan [1],
Gehtman [1], Strichartz [1], Vol'pert [1], Voros [1, 2]
11. ETUDE INDIVIDUELLE DES VALEURS PROPRES
Généralités
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BANDLE [1, 2, 3], Berger [2], Biollay [1], Chavel-Feld-
man [3], Cheng [1 3 4], Donnelly-Li [3], FRIEDLAND [2],
GALLOT [4], Gallot-Meyer [1], GARABEDIAN [1] Gara-
bedian-Schiffer [1], Gromov [1], Hersch [2, 3], Li [1 & 4],
Mec Kean [1], OSSERMAN [2], Osserman [3, 4], PAYNE
[11, POLYAS-ZEGO [1], PROTTER [3], Reid [1], Schoen-
Wolpert-Yau [1], Simon [I, 2], Yang-Yau [1], Yau [1],
Friedland-Novosad [1], Reilly [6]

11.1. Estimées sur le A, et applications

Aomoto [1], Asada [1, 2], Aubin [1, 3], Barbosa-do Carmo
f1, 2], Barthel-Kiimritz [1], Bérard-Besson [1], Bérard-Meyer
[1, 2], Bérard Bergery-Bourguignon [1], Berger [4], Besson
[2], Bleecker-Weiner [11, Borell [1], Bourguignon [1], Bras-
camp-Lieb [1, 2, 3], Buser [2 2 8, 12, 14], BUSER [9], do
Carmo [1], Chavel [1], Chavel-Feldman [1], Cheeger [3, 5],
Chen [1], Croke [1, 2, 5], Debiard-Gaveau-Mazet [1], Fried-
land [1, 3}, Friedland-Hayman [1], Friedrich [1, 2], Fujiwara
[1], Gage [1], Gallot [3, 8], Gallot-Meyer [1], Hersch [4],
Hoffman [2], Huber [1, 2], Komorowski [1, 2], Li-Treibergs
[1], Li-Yau [2], Li-Zhong [1], Marcellini [1], Matsuzawa-
Tanno [1], Mazet [1], H. Muto [1, 2, 3], H. Muto-Urakawa
{1], Y. Mut5 [3], Nehari [1], Obata [1], Osserman [1], Ozawa
[6, 8], de Paris [1], Payne-Rayner [1], Philippin [I, 2], Pinsky
[4], Protter [1], Randol [1], Reilly {2, 3, 4], Schoen-Wolpert-
Yau [2], Sperb [1], Sperner [1], Tachibana-Yamaguchi [1],
Tanno [5], M. Taylor {2], Trudinger [1], Tsukada [2], Uchi-
yama [1], Urakawa [1, 2, 3], Kasue [3], Lichnerowicz [1],
Meyer [1], Schoen {1], Sulanke [1], Vignéras [3], Watanabe
(1]

11.2. Estimées faisant intervenir les 1., k=2 et applications

Berger [2, 8], Cheng-Li-Yau {1), Gromov [1], Hile-Protter
[1], Huber [4], Li-Yau [1], Polya [1], Simon [4, 5], Bareket
(1], Cheng-Li [1], Hersch [5], Donnelly-Li [2, 3], Li-Yau
[3], Urakawa [10]

11.3 Inégalités isopérimétriques, inégalités de Sobolev, applications

Aubin [2, 4], Barbosa-do Carmo [3], Benko et al. [1], Berger
[7, 8], Berger-Kazdan [1], Buser [4, 12], BUSER [9], Chavel-
Feldman [2, 5, 6], Cheeger [3], Croke [1], Gallot [2, 5, 7, 9],

" Gromov [1], Hoffman [1], Ilias [1, 2], Kohler-Jobin [1 a 5),

Li-Yau [1], Lieb [1, 2], Peeire [1], Schmidt [1], Cheeger-
Gromov-Taylor [1], Chiti [1], Hersch-Monkiewicz [1], I'lin-
Moiseev [1], Li [6], Pansu [1, 2], Talenti [1]
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12. LAST BUT NOT LEAST

Lignes et surfaces nodales
Briining [2, 4], Briining-Gromes [1], Cheng [1, 4], Meyer
{11, Payne [2], Pleijel (1], Bérard-Meyer [1],

Spectre et actions de groupes
Briining [3], Briining-Heintze [1], Donnelly [6, 8, 10, 14],
Donnelly-Patodi [1], Gilkey [15, 16], Helgason [1, 2, 3],
Hoppner [1], Huber [5], R. T. Smith [1], Yen [1], Shafii-
Dehabad [1]

Approximations et Triangulations
Dodziuk [1], Dodziuk-Patodi [1], Komorowski [3], Patodi [4]

Calculs mumeériques
Bassotti Rizza [1], Chachére [1], Forsythe [1]

Variétés avec singularités
Cheeger [4], Cheeger-Taylor [1], Kalka-Menikoff [1]

Convergerice des séries de fonctions propres
Alimov et al. [1], Bérard [5], Bonami-Clerc [1], Boutet de
Monvel [2], Clerc [1, 2], Hérmander [1], Kenig-Thomas [1],
Randol [7], Smale [1], Taylor [1], Meaney [1], Rothschild-
Wolf [1]

Opérateurs autres que le Laplacien (opérateurs elliptiques généraux

dont opérateur de Dirac; opérateur de Schridinger. . .)
J. M. Arnold [1], Balian-Bloch [3], Berthier [1], Boutet de
Monvel [3], Boutet de Monvel-Grisvard [1], Boutet de Mon-

 vel-Guillemin [1], Buzzanca [1], Chazarain [2, 3], Colin de

Verdigre [3, 5, 8], Dlubek-Friedrich [1], Flaschka [1], Fleck-
inger Pellé [1], Friedrich [1], Geller [1], Gilkey [14], Grubb
[1, 2], Guillopé [1], Hall-Streedry [1], Kolk [1], Lieb [1, 2, 3],
Mc Kean-Van Moerbeke [1], Pyshkina [1], Seeley [1], Strese
[2, 3], Sunada [2], Vasil'ev [1], Baxley [1], Bezjaev [1],
Charbonnel [1], Cheng [1], Chico [1], Friedrich [2], Kalf
[1], Sulanke [1],

Invariant éta
Atiyah-Patodi-Singer [1], Donnelly {3, 7, 10, 12}, Gilkey [11],
Gilkey-Smith [2], Atiyak-Donnelly-Singer [1]

Torsion analytique
Cheeger [1], Donnelly [12], Miiller [1], Ray [1], Ray-Singer
[1, 2], Schwarz [1], Urakawa {5]

Inégalités type isopérimétriques autres que §11.3
Berger [5, 6, 7], Berger-Kazdan [1], Kasue [2, 4, 5], Kohler-
Jobin [6, 7], Lions [1], Pach [1], Parks [1]

Géométrie intégrale et problémes spectraux
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Berenstein [1], Berenstein-Yang [1], Berenstein-Zalcman [1],
Friedland [4, 5], Zalcman [1], Campi {1]

Multiplicité des valeurs propres
Besson [1], Boutet de Monvel [1], Boutet de Monvel-Guille-
min [1], Cheng [1, 4], Colin de Verditre [4], Huber [6], Pin-
sky [3], Lax [1]

Modifications par attachement d’anses
Chavel-Feldman [4], Ozawa [9]

Probabilités et géométrie
Debiard-Gaveau-Mazet [1], Lascar [1], Malliavin [1], Mol-
chanov [1], Pinsky [1, 2, 5, 6, 7, 8], Probabilistic Analysis
[1], Sunada [3], Chung-Li [1], Gray-Pinsky [1], Elworthy
{1], Elworthy-Truman [1], Varopoulos [1 & 4]

Divers
Acmoto [1), Aubin [1], Bleecker-Weiner [1], Borell [1], Bras-
camp-Lieb [1, 2, 3], Brooks, [1 & 5], Cheeger [2], Cheng-
Li-Yau [1], Colin de Verdiére-Frisch [1], Dodziuk [2], Don-
nelly {15], Eichhorn [4], Hersch [1], Kasue 1], Kobayashi
[11, Kobayashi-Takeuchi [1], Kudla-Millson [1], Lange-Simon
[1], Levy Bruhl [1], Li [5], Mahar-Willner [1]}, Meyer [11,
Miiller Pfeiffer-Staude [1], Nagano [1], Oliker [1], Omori [1],
Reilly [1, 5], Suyama [1], Takahashi [1], Weinstein [5], Yau
[3, 4], Cantor-Brill [1], Oliker [2], Reilly [6], Sealey [1],
Sunada [4]
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Liste Ouvrages de Base

Tous les paragraphes
BERGER-GAUDUCHON-MAZET [1]
SIMON-WISSNER [1, 2]

YAU [3, 4]

Aititres
BANDLE {1, 3] (§11)

BERARD [3] (84, 5) .
BERGER [1, 3] (§3, 4, 5)
BROWDER [1] (§1)

BUSER [9] (§9.1, 11.1, 11.3)
CHAZARAIN [2] (§4.2, 5.2)
CLARK [1] (§1, 2, 4)

COLIN DE VERDIERE [6] (§4.1, 5.1)
FRIEDLAND [2] (§1, 11)
GALLOT [4] (§11)
GARABEDIAN [1] (§1, 7.1, 11)
GILKEY [3] (§5.1)
GOULAQUIC [1] (§1, 4.3)
GUILLEMIN [2] (§4, 5.2, 9.1)
GUILLEMIN-STERNBERG [1] (§2.2, 4.5)
HEJHAL [1] (§4.3, 9.1)

Mec KEAN [3] (§6.1)
OSSERMAN [2] (§11)

PAYNE [1] (§11)
POLYA-SZEGO [1] (§11)
PROTTER [3] (§1, 2.1, 11)
REED-SIMON [1] (§1)
VENKOV [1] (§2, 4.3, 5.3, 9.1)

Liste Chronologique des Collogues Cités en Références

CIME 1973; Proceedings of Symposia n°® 27 A.M.S.

Partial differential equations and geometry Stochastic Differen-
tial Equations and Applications

Minimal submanifolds including geodesics

Global Analysis; Pseudo-differential Operators with Applica-
tions; Probabilistic analysis and related topics

-Geometry of the Laplace operator; Non linear problems in

Geometry .
Geometry and analysis; Free Boundary Problems I & II:
Geometry Symposium;
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1981 Séminaire Franco-Japonais; Contribution to Analysis and
Geometry; Global Differential Geometry and Global Analysis;
Nonlinear Partial Differential Equations and their Applica-
tions; Seminar on Harmonic Analysis; Spectral Theory of

‘ Differential Operators;

1082 Differential Geometry; Differential Geometric Methods in
Mathmatical Physics; Seminar on Difierential Geometry;
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