Curvature, area and radius estimates for H-surfaces in Riemannian 3-manifolds

William H. Meeks, III (Univ. of Massachusetts) profmeeks@gmail.com Álvaro K. Ramos (IME, UFRGS)

Resumo/Abstract:

This is a course on the geometry of surfaces of constant mean curvature $H \geq 0$ in Riemannian 3-manifolds; these special surfaces are called H-surfaces. The first material covered concerns joint work of the first author with Giuseppe Tinaglia, which includes the existence of curvature and radius estimates for $(H>0)$-disks embedded in R^{3}, with one of the main results being that a complete simply connected $(H>0)$-surface embedded in R^{3} is a round sphere. The second material covered concerns joint work of the first author with Pablo Mira, Joaquin Perez and Antonio Ros of the classification of H-spheres in any homogenous 3 -manifold X, with one of the main results being that two H-spheres in X with the same mean curvature differ by an isometry of X.

Pré-requisitos: The only prerequisite is a familiarity with basic surface geometry in R^{3} and the beginning theory of Riemannian manifolds. Therefore, graduate students who have taken a graduate level course in Differential Geometry should be sufficiently prepared for the lectures.

