
Prices and Asymptotics

for Discrete Variance Swaps

Carole Bernard
∗and Zhenyu Cui

†

Draft: July 21, 2012

Abstract

We study the fair strike of a discrete variance swap for a general

time-homogeneous stochastic volatility model. In the special cases of

Heston and Hull-White stochastic volatility models we give simple ex-

plicit expressions (improving Broadie and Jain (2008a) for the Heston

case). We give conditions on parameters under which the fair strike of

a discrete variance swap is higher or lower than that of the continu-

ous variance swap. Interest rates and correlation between underlying

price and its volatility are key elements in this analysis. We derive

asymptotics for the discrete variance swaps and compare our results

with those of Broadie and Jain (2008a), Jarrow et al. (2012) and

Keller-Ressel (2011).

Key-words: Discrete Variance swap, Heston model, Hull-White model.

∗Corresponding author: C. Bernard is with the department of Statistics and Actuarial

Science at the University of Waterloo, Email c3bernar@uwaterloo.ca, Address: 200 Uni-

versity Avenue West, Waterloo, ON, N2L3G1, Canada, Tel: +1 519 888 4567 ext. 35505,

C. Bernard acknowledges support from the Natural Sciences and Engineering Research

Council of Canada.
†Zhenyu Cui is a Ph.D candidate in Statistics at University of Waterloo, Email

cuizhyu@gmail.com.

1



Prices and Asymptotics

for Discrete Variance Swaps

1 Introduction

A variance swap is a derivative contract which pays at a fixed maturity T

the difference between a given level (fixed leg) and a realized level of variance

over the swap’s life (floating leg). Nowadays, variance swaps on stock indices

are broadly used and highly liquid. Less standardized variance swaps could

be linked to other types of underlying assets such as currencies or commodi-

ties. They can be useful to hedge volatility risk exposure or to take positions

on future realized volatility. For example, Carr and Lee (2007) price options

on realized variance and realized volatility by using variance swaps as pricing

and hedging instruments. See Carr and Lee (2009) for an history of volatil-

ity derivatives. As noted by Jarrow et al. (2012), most academic studies1

focus on continuously sampled variance and volatility swaps. However exist-

ing volatility derivatives tend to be based on the realized variance computed

from the discretely sampled log asset price and continuously sampled deriva-

tives prices may only be used as approximations. As pointed out in Sepp

(2012), some care is needed to replace the discrete realized variance by the

continuous quadratic variation. By standard probability arguments, the dis-

cretely sampled realized variance converges to the quadratic variation of the

log stock process in probability. However, this does not guarantee that it

converges in expectation. Jarrow et al. (2012) provide sufficient conditions

such that the convergence in expectation happens when the stock is modeled

by a general semi-martingale, and concrete examples where this convergence

fails.

In this paper we study discretely sampled volatility derivatives in a gen-

eral time-homogeneous model for stochastic volatility. For discretely sam-

pled volatility derivatives, it is difficult to use the elegant and model-free

1See, for example, Howison, Rafailidis and Rasmussen (2004), Windcliff, Forsyth and
Vetzal (2006), Benth, Groth and Kufakunesu (2007) and Broadie and Jain (2008b).
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approach of Neuberger (1994) and Dupire (1993), who independently proved

that the fair strike for a continuously sampled variance swap on any under-

lying price process with continuous path is simply two units of the forward

price of the log contract. Building on these results, Carr and Madan (1998)

published an explicit expression to obtain this forward price from option

prices (by synthesizing a forward contract with vanilla options). This work

was recently extended by Carr, Lee and Wu (2012) to the case when the

underlying asset price is driven by a time-changed Lévy process (thus ex-

tending the Dupire-Neuberger theory to the case when there are jumps in

the path of the underlying asset price). In this paper, we adopt a paramet-

ric approach which allows us to derive explicit closed-form expressions and

asymptotic behaviors with respect to key parameters such as the maturity

of the contract, the risk-free rate, the sampling frequency or the correlation

between the underlying asset and its volatility. This is in line with the work

of Broadie and Jain (2008a) in which the Heston model and the Merton

jump diffusion model are considered. See also Itkin and Carr (2010) who

study discretely sampled volatility derivatives in the 3/2 stochastic volatility

model.

Our main contributions are as follows. We give an expression of the

fair strike of the discretely sampled variance swap and derive its sensitivity

to interest rates in a general time-homogeneous stochastic volatility model.

In the case of the (correlated) Heston (1993) model and (correlated) Hull-

White (1987) model, we obtain simple explicit closed-form formulas for the

respective fair strikes of continuously and discretely sampled variance swaps.

In the Heston model, our formula simplifies the results of Broadie and Jain

(2008a) and is easy to analyze. Consequently, we are able to give asymptotic

behaviors with respect to key parameters of the model and to the sampling

frequency. In particular, we provide explicit conditions under which the dis-

cretely sampled variance swap is less valuable than the continuously sampled

variance swap although the contrary is commonly observed in the literature

(see Bülher (2006) for example). Thus the “convex-order conjecture” formu-

lated by Keller-Ressel (2011) may not hold for stochastic volatility models

with correlation. We discuss practical implications and illustrate the risk to

underestimate or overestimate prices of discretely sampled volatility deriva-

tives when using a model for the corresponding continuously sampled ones

with numerical examples.
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The paper is organized as follows. Section 2 deals with the general time-

homogeneous stochastic volatility model. Section 3 and 4 derive formulas

for the fair strike of a discrete variance swap in the Heston and Hull-White

model. Section 5 contains asymptotics for the Heston and Hull-White model

and discusses the “convex-order conjecture”. Section 6 contains a numerical

analysis.

2 Pricing of Variance Swaps in a General Stochas-

tic Volatility Model

In this section, we consider the problem of pricing discrete variance swap

under the following general time-homogeneous stochastic volatility model

(M) where the stock price and its volatility can possibly be correlated. We

assume a constant2 risk-free rate r � 0 and that under a risk-neutral prob-

ability measure Q,

(M)

{
dSt
St

= rdt+m(Vt)dW
(1)
t

dVt = μ(Vt)dt+ σ(Vt)dW
(2)
t

(1)

whereW (1) andW (2) are standard correlated Brownian motions withE[dW
(1)
t dW

(2)
t ] =

ρdt. Denote by J ⊂ R the state space of the volatility process V . We assume

that μ, σ : J → R are Borel functions satisfying the following Engelbert-

Schmidt conditions, ∀x ∈ J, σ(x) �= 0, 1
σ2(x)

, μ(x)
σ2(x)

, m
2(x)

σ2(x)
∈ L1

loc(J). L
1
loc(J)

denotes the class of locally integrable functions. Under the above condi-

tions, the SDE (1) for V has a unique (in law) weak solution that possi-

bly exits its state space J (see Theorem 5.15, p341, Karatzas and Shreve

(1991)). Denote the exit time of V by ζ, then Q
(∫ t

0 m
2(Vs)ds < ∞

)
= 1 on

{t < ζ}, t ∈ [0,+∞). We also assume that ∀x ∈ J, m(x)
σ(x) is differentiable at

all x ∈ J .

In particular, this general model includes the Heston, Hull-White, 3/2

and Stein-Stein models as special cases. In what follows, we study dis-

cretely and continuously sampled variance swaps with maturity T . In a

variance swap, one counterparty agrees to pay at a fixed maturity T a no-

tional amount times the difference between a fixed level and a realized level

2The impact of stochastic interest rates on variance swaps is studied by Hörfelt and
Torné (2010).
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of variance over the swap’s life. If it is continuously sampled, the realized

variance corresponds to the quadratic variation of the underlying log price.

When it is discretely sampled, it is the sum of the squared increments of the

log price. We define their respective “fair” strikes as follows.

Definition 2.1. The fair strike of the “discrete variance swap” associated

with the partition 0 = t0 < t1 < ... < tn = T of the time interval [0, T ] is

defined as

KM
d (n) :=

1

T

n−1∑
i=0

E

[(
ln

Sti+1

Sti

)2
]
, (2)

where the underlying asset price S follows the general stochastic volatility

model (1) and where the exponent M refers to the model.

Definition 2.2. The fair strike of the “continuous variance swap” is defined

as

KM
c :=

1

T
E

[∫ T

0
m2(Vs)ds

]
, (3)

where S follows the dynamics in the general stochastic volatility model (1).

In popular stochastic volatility models, m(v) =
√
v, so that KM

c = 1
T E
[∫ T

0 Vsds
]
.

The derivation of the fair strike of a discrete variance swap in the general

stochastic volatility model (1) is based on the following proposition.

Proposition 2.1. Under the dynamics (1) for the stochastic volatility model,

assuming the conditions given in Section 2 on the functions,

E

[(
ln

St+Δ

St

)2
]
= r2Δ2−rΔ

∫ t+Δ

t
E
[
m2(Vs)

]
ds+

1

4
E

[(∫ t+Δ

t
m2(Vs)ds

)2
]

+ (1− ρ2)

∫ t+Δ

t
E
[
m2(Vs)

]
ds+ ρ2E

[
(f(Vt+Δ)− f(Vt))

2
]

+ ρ2E

[(∫ t+Δ

t
h(Vs)ds

)2
]
+ ρE

[∫ t+Δ

t
h(Vs)ds

∫ t+Δ

t
m2(Vs)ds

]

− ρE

[
(f(Vt+Δ)− f(Vt))

∫ t+Δ

t
(2ρh(Vs) +m2(Vs))ds

]
, (4)
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where

f(v) =

∫ v

·

m(z)

σ(z)
dz and h(v) = μ(v)f ′(v) +

1

2
σ2(v)f ′′(v). (5)

Proof. See Appendix A. �
Proposition 2.1 gives the key equation in the analysis of discrete variance

swaps. From now on, for simplicity, we consider the equi-distant sampling

scheme in (2). Under this scheme, ti = iT/n and Δ = ti+1 − ti = T/n.

From (4) it is clear that the price of a discrete variance swap only depends

on the risk-free rate r up to the second order, as there is no higher order

terms of r. Interestingly, the second order coefficient of this expansion is

model-independent whereas the first order coefficient is directly related to

the strike of the corresponding continuously-sampled variance swap. This

appears clearly in the following proposition.

Proposition 2.2 (Sensitivity to r). Assume a constant sampling period T
n

and denote respectively by KM
c and KM

d the fair strikes of the variance swap

when it is continuously or discretely sampled in a given model M . The fair

strike of the discrete variance swap can be expressed as

KM
d (n) = bM (n)− T

n
KM

c r +
T

n
r2, (6)

where bM (n) does not depend on r. Its sensitivity to the risk-free rate r is

equal to

dKM
d (n)

dr
=

T

n
(2r −KM

c ) (7)

so that the minimum of KM
d as a function of r is attained when the risk-free

rate takes the value r∗ given by

r∗ =
KM

c

2
. (8)

Proof. The proof of Proposition 2.2 is immediate: it follows from the defini-

tion of the discretely sampled variance swap given in (2). The expansion (6)

is obtained by summing (4) for the expected squares of log returns obtained

in Proposition 2.1 and by noting that the term bM (n) is model-dependent

but does not depend on r. The sensitivity to r in (7) is obtained by differ-
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entiating with respect to r and its minimum r∗ is obvious given the sign of

the derivative (7). �
The next proposition deals with the special case when the risk-free rate

r and the correlation coefficient ρ are both equal to 0.

Proposition 2.3 (Fair strike when r = 0% and ρ = 0). In the special case

when the constant risk-free rate is 0, and the underlying stock price is not

correlated to its volatility, we observe that

KM
d (n) � KM

c .

Proof. Using Proposition 2.1 when r = 0% and ρ = 0, we obtain

E

[(
ln

St+Δ

St

)2
]
=

1

4
E

[(∫ t+Δ

t
m2(Vs)ds

)2
]
+

∫ t+Δ

t
E
[
m2(Vs)

]
ds. (9)

We then add up the expectations of the squares of the log increments (as

in (2)) and find that the fair strike of the discrete variance swap is always

larger than the fair strike of the continuous variance swap given in (3). �
Proposition 2.3 has already appeared in the literature in the special

models. See for example Corollary 6.2 of Carr, Lee and Wu (2012) where this

result is proved in the more general setting of time-changed Lévy processes

with independent time changes. However we will see in the remainder of this

paper that Proposition 2.3 may not hold under more general assumptions.

3 Fair Strike of the Discrete Variance Swap in the

Heston model

Assume that we work under the Heston stochastic volatility model with the

following dynamics

(H)

{
dSt = rStdt+

√
VtStdW

(1)
t ,

dVt = κ(θ − Vt)dt+ γ
√
VtdW

(2)
t

(10)
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where E
[
dW

(1)
t dW

(2)
t

]
= ρdt. It is a special case of the general model (1)

where we choose

m(x) =
√
x, μ(x) = κ(θ − x), σ(x) = γ

√
x. (11)

Using (24) in Lemma A.1 in the Appendix with f(v) = v
γ and h(v) =

κ
γ (θ − v), the stock price is

St = S0e
rt− 1

2
ξt+(Vt−V0−κθt+κξt)

ρ
γ
+
√

1−ρ2
∫ t
0

√
VsdW

(3)
s (12)

where ξt =
∫ t
0 Vsds and W

(3)
t is such that dW

(1)
t = ρdW

(2)
t +

√
1− ρ2dW

(3)
t .

Using Proposition 2.1 for the general stochastic volatility model, we then

derive a closed-form expression for the fair strike of a discrete variance swap

and compare it with the fair strike of the continuous variance swap.

Proposition 3.1 (Fair Strikes in the Heston Model). In the Heston stochas-

tic volatility model (10), the fair strike (2) of the discrete variance swap is

KH
d (n) =

a2T

n
+

b2

T

n−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

E[VsVu]dsdu+

(
2ab

n
+

1− ρ2

T

)∫ T

0
E[Vs]ds

+
ρ2

Tγ2

n−1∑
i=0

E[(Vti+1 − Vti)
2] +

2ρa

nγ
(E[VT ]− E[V0])

+
2ρb

γT

n−1∑
i=0

(
E

[
Vti+1

∫ ti+1

ti

Vsds

]
− E

[
Vti

∫ ti+1

ti

Vsds

])
,

where a = r− ρκθ
γ and b = ρκ

γ − 1
2 . This expression can be computed explicitly

as a function of the model parameters as follows

KH
d (n) =

1

8nκ3T

{
n
(
γ2 (θ − 2V0) + 2κ (V0 − θ)2

) (
e−2κT − 1

) 1− e
κT
n

1 + e
κT
n

+2κT
(
κ2T (θ − 2r)2 + nθ

(
4κ2 − 4ρκγ + γ2

))
+4 (V0 − θ)

(
n
(
2κ2 + γ2 − 2ρκγ

)
+ κ2T (θ − 2r)

) (
1− e−κT

)
−2n2θγ (γ − 4ρκ)

(
1− e−

κT
n

)
+ 4 (V0 − θ)κTγ (γ − 2ρκ)

1− e−κT

1− e
κT
n

}
.

(13)
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The fair strike of the continuous variance swap is

KH
c =

1

T
E

[∫ T

0
Vsds

]
= θ + (1− e−κT )

V0 − θ

κT
. (14)

Proof. See Appendix B for the proof of the fair strike of the discrete variance

swap. The formula for the fair strike of a continuous variance swap is already

well-known and can be found for example in Broadie and Jain (2008a),

formula (4.3) p. 772. �
Proposition 3.1 gives an explicit formula for the fair strike of a discrete

variance swap as a function of the model parameters. This simplifies the

expression obtained by Broadie and Jain (2008a) in equations (A-29) and (A-

30) p. 793, where several sums from 0 to n are involved and can actually be

computed explicitly as shown by the expression (13) above. We verified that

our formula agrees with numerical examples presented in Table 5 (column

‘SV’) on page 782 of Broadie and Jain (2008a).

Contrary to what is stated in the introduction of the paper by Zhu

and Lian (2011), the techniques of Broadie and Jain (2008a) can easily be

extended to other types of payoffs. The following propositions gives explicit

expressions for the volatility derivatives considered by Zhu and Lian (2011).

Proposition 3.2. For the following set of dates ti =
iT
n with i = 0, 1...n,

denote Δ = T/n, and assume α = 2κθ/γ2 − 1 � 0. Then the fair price of a

discrete variance swap with payoff 1
T

∑n−1
i=0

(
Sti+1−Sti

Sti

)2
is equal to

Kzl
d (n) =

1

T

n−1∑
i=0

E

[(
Sti+1 − Sti

Sti

)2
]
=

1

T

(
a0 +

n−1∑
i=1

ai

)
+

n− 2nerΔ

T
.

where we define ai = E

[(
Sti+1

Sti

)2]
, for i = 0, 1, ..., n−1. Then we have that

a0 =
e2rΔ

S2
0
M(2,Δ) and for i = 1, 2, ..., n − 1,

ai = e
2rΔ+ κθ

γ2

(
(κ−2γρ−d(2))Δ−2 ln

(
1−g(2)e−d(2)Δ

1−g(2)

))
+V0

η(ti)q(2)

η(ti)−q(2)
e−κti

(
η(ti)

η(ti)− q(2)

)α+1

.

9



with M(u, t) = E[euXt ],

M(u, t) = Su
0 e

κθ
γ2

(
(κ−γρu−d(u))t−2 ln

(
1−g(u)e−d(u)t

1−g(u)

))
e
V0

κ−γρu−d(u)

γ2
1−e−d(u)t

1−g(u)e−d(u)t .

using the following auxiliary functions

d(u) =
√

(κ− γρu)2 + γ2(u− u2); g(u) =
κ− γρu− d(u)

κ− γρu+ d(u)
;

q(u) =
κ− γρu− d(u)

γ2
1− e−d(u)Δ

1− g(u)e−d(u)Δ
; η(u) =

2κ

γ2
(
1− e−κu

)−1
.

Recall that M(u, t) is defined for u < η(t). For example M(2,Δ) is well

defined when γ2T/n < 1.

Proof. See Appendix C. �
The formula in the above Proposition 3.2 is consistent with the one

obtained by Zhu and Lian (2011). In particular, we are able to partially

reproduce the numerical results presented in Table 3.1 p. 246 of Zhu and

Lian (2011) using their set of parameters: κ = 11.35, θ = 0.022, γ = 0.618,

ρ = −0.64, V0 = 0.04, r = 0.1, T = 1 and S0 = 1 (all numbers match except

the case when n = 4 we get 263.2 instead of 267.6).

Proposition 3.2 gives a formula for pricing the variance swap with payoff
1
T

∑n−1
i=0

(
Sti+1−Sti

Sti

)2
but it is straightforward to extend its proof to the

following payoff 1
T

∑n−1
i=0

(
Sti+1−Sti

Sti

)k
with an arbitrary integer power k.

4 Fair Strike of the Discrete Variance Swap in the

Hull-White model

The correlated Hull-White stochastic volatility model is as follows

(HW )

{
dSt
St

= rdt+
√
VtdW

(1)
t

dVt = μVtdt+ σVtdW
(2)
t

where E[dW
(1)
t dW

(2)
t ] = ρdt. Referring to equation (1), we have

m(x) =
√
x, μ(x) = μx, σ(x) = σx. (15)
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so it is straightforward to determine f(v) = 2
σ

√
v, h(v) =

(μ
σ − σ

4

)√
v, and

apply (24) in Lemma A.1 in the Appendix to obtain

ST = S0 exp

{
rT − 1

2

∫ T

0
Vtdt+

2ρ

σ
(
√

VT −
√

V0)

−ρ
(μ
σ
− σ

4

) ∫ T

0

√
Vtdt+

√
1− ρ2

∫ T

0

√
VtdW

(3)
t

}
. (16)

Proposition 4.1 (Fair Strikes in the Hull-White Model). In the Hull-White

stochastic volatility model (15), the fair strike (2) of the discrete variance

swap is

KHW
d (n) =

1

T

n−1∑
i=0

E

[(
ln

Sti+1

Sti

)2
]

which can be computed explicitly as a function of the model parameters as

follows

KHW
d (n) =

r2T

n
+

(
1− rT

n

)
KHW

c −
V 2
0

(
e(2μ+σ2)T − 1

)(
e

μT
n − 1

)
2Tμ(μ+ σ2)

(
e
(2μ+σ2)T

n − 1

) +
V 2
0

(
e(2μ+σ2)T − 1

)
2T (2μ + σ2)(μ + σ2)

+

8ρ

(
e

3(4μ+σ2)T
8 − 1

)
V0

3/2σ(e
μT
n − 1)

μT (4μ+ 3σ2)

(
e

3(4μ+σ2)T
8n − 1

) −
64ρ

(
e

3(4μ+σ2)T
8 − 1

)
V0

3/2σ

3T (4μ + σ2) (4μ + 3σ2)
.

(17)

The fair strike of the continuous variance swap is

KHW
c =

1

T
E

[∫ T

0
Vsds

]
=

V0

Tμ
(eμT − 1). (18)

Proof. The proof can be found in Appendix D. �

5 Asymptotics

In the general stochastic volatility model, we give an expansion in the risk-

free rate parameter r (Proposition 2.2). This section presents asymptotics

for the discrete variance swaps in the Heston and Hull-White model based
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on the explicit expressions derived in the previous sections.

The expansions as a function of the number n of sampling periods are

given in Propositions 5.1 and 5.3 (respectively for the Heston model and

the Hull-White model). They are consistent with Proposition 4.2 of Broadie

and Jain (2008a) in which it is proved that KH
d (n) = KH

c +O ( 1n), but are
more precise in that at least the first leading term is given explicitly. See

also Theorem 3.8 of Jarrow et al. (2012) in a more general context.

Expansions as a function of the maturity T (for small maturities) are

also given in order to complement results of Keller-Ressel and Muhle-Karbe

(2012) (see for example Corollary 2.7 which gives qualitative properties of

this discretization gap3 when the maturity T → 0).

5.1 Heston Model

We first expand the fair strike of the discrete variance swap with respect to

the number of sampling periods n.

Proposition 5.1 (Expansion of the fair strike of the discrete variance swap

w.r.t n). The asymptotic behavior of the fair strike of a discrete variance

swap in the Heston model is given by

KH
d (n) = KH

c +
a

n
+O

(
1

n2

)
. (19)

where

a = r2T − rTKH
c +

(
γ(θ − V0)

2κ
(1− e−κT )− θγT

2

)
ρ+

(
θ2

4
+

θγ2

8κ

)
T + c1

with

c1 =

[
γ2θ − 2κ(V0 − θ)2

] (
e−2Tκ − 1

)
+ 2(V0 − θ)(e−Tκ − 1)

[
γ2(e−Tκ − 1)− 4κθ

]
16κ2

.

Proof. This proposition is a straightforward expansion from (13) in Propo-

sition 3.1. �
We know from Proposition 2.2 that KH

d (n) = bH(n)+ T
n r(r−KH

c ). It is

thus clear that a contains all the terms in the risk-free rate r and thus that

3See Definition 2.6 of Keller-Ressel and Muhle-Karbe (2012).
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all the higher terms in the expansion (19) with respect to n are independent

of the risk-free rate.

Remark 5.1. The first term in the expansion (19), a, is a linear function

of ρ. Observe that the coefficient in front of ρ, γ(θ−V0)
2κ (1 − e−κT ) − θγT

2 is

negative4, so that a is always a decreasing function of ρ. We have that

a � 0 ⇔ ρ � ρH0

where

ρH0 =
r2T − rTKH

c +
(
θ2

4 + θγ2

8κ

)
T + c1

−
(
γ(θ−V0)

2κ (1− e−κT )− θγT
2

) . (20)

Proposition 5.2 (Expansion of the fair strike of the discrete variance swap

for small maturity). In the Heston model, an expansion of KH
d (n) when

T → 0 is calculated as

KH
d (n) = V0 + bH1 T + bH2 T 2 +O (T 3

)
(21)

where

bH1 =
κ(θ − V0)

2
+

1

4n

(
(V0 − 2r)2 − 2γV0ρ

)
bH2 =

κ2(V0 − θ)

6
+

(V0 − θ)κ(γρ+ 2r − V0) +
γ2V0

2

4n
+

γρκ(V0 + θ)− γ2V0

2

12n2
.

Note also that

KH
c = V0 +

κ

2
(θ − V0)T +

κ

6

2
(V0 − θ)T 2 +O (T 3

)
and we have that

KH
d (n)−KH

c =
1

4n

(
(V0 − 2r)2 − 2γV0ρ

)
T +O(T 2).

Proof. This proposition is a straightforward expansion from (13) in Propo-

sition 3.1. �
Proposition 5.2 is consistent with Corollary 2.7 [b] of Keller-Ressel and

4This can be easily seen from the fact that for all x > 0, (θ − V0)(1 − e−x) − θx �
θ(1− e−x − x) < 0 which is especially true for x = κT > 0.
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Muhle-Karbe (2012) (where it is clear that the limit when T goes to 0 of

Kd(n)−Kc is 0).

Notice that in the case ρ � 0, in the Heston model, KH
d (n) is non-

negative and decreasing in n as the maturity T goes to 0. However this

property cannot be generalized to all correlation levels as it depends on the

sign of (V0 − 2r)2 − 2γV0ρ.

5.2 Hull-White Model

Proposition 5.3 (Expansion of the fair strike of the discrete variance swap

with n). In the Hull-White model, the expansion of KHW
d (n) is given by

KHW
d (n) = KHW

c +
a1
n

+
a2
n2

+
a3
n3

+O
(

1

n4

)
(22)

where

a1 = r2T − rTKHW
c +

V 2
0

4

e(2μ+σ2)T − 1

2μ + σ2
− 4ρσV

3
2
0

3

e
3
8
(4μ+σ2)T − 1

4μ + σ2

a2 = −V 2
0 σ

2T

24

e(2μ+σ2)T − 1

2μ+ σ2
− ρV

3
2
0 σT (4μ − 3σ2)

36

e
3
8
(4μ+σ2)T − 1

4μ + σ2

a3 = −μT 2V 2
0 (μ+ σ2)

48

e(2μ+σ2)T − 1

2μ + σ2
+

μT 2ρσV
3
2
0 (4μ + 3σ2)

72

e
3
8
(4μ+σ2)T − 1

4μ + σ2
.

Proof. This proposition is a straightforward expansion from (17) in Propo-

sition 4.1. �
Observe that KHW

d (n) = bHW (n) − KHW
c T
n r + T

n r
2 where bHW (n) =

KHW
d (r = 0) > KHW

c is independent of r. Comparing with the general

expression in Proposition 2.2, it is clear that a1 contains all the terms de-

pending on r. Therefore none of the higher coefficients a2, a3, ... depends

on r.

If we neglect higher order terms in the expansion (22), we observe that

the position of the discrete variance swap with respect to the continuous

variance swap is driven by the sign of a1 and we have the following obser-

vation.

14



Remark 5.2. The first term in the expansion (22), a1, is a linear function

of ρ.

a1 � 0 ⇔ ρ � ρHW
0

where

ρHW
0 =

3(4μ + σ2)
(
r2T − rTKHW

c +
V 2
0
4

e(2μ+σ2)T−1
2μ+σ2

)
4σV

3
2
0 (e

3
8
(4μ+σ2)T − 1)

> 0.

ρHW
0 can take values strictly higher than 1 as it appears clearly in the

right panel of Figure 4. In this latter case, the fair strike of the discrete

variance swap is higher than the fair strike of the continuous variance swap

for all levels of correlation and for sufficiently high values of n. As noted

in (8), the minimum value of KHW
d (n) as a function of r is obtained when

r = r∗ = KHW
c
2 . After replacing r by r∗ in the expression of ρHW

0 , ρHW
0 can

easily be shown to be positive5.

Proposition 5.4 (Expansion of the fair strike of the discrete variance swap

for small maturity). In the Hull-White model, KHW
d (n) can be expanded

when T → 0 as

KHW
d (n) = V0 + bHW

1 T + bHW
2 T 2 +O (T 3

)
(23)

where

bHW
1 =

V0 μ

2
+

1

4n

(
(V0 − 2r)2 − 2ρV0

3/2σ
)

bHW
2 =

V0μ
2

6
+

V0

4n

(
σ2V0

2
− 3ρV0

1/2σ(σ2 + 4μ)

8
+ μ(V0 − 2r)

)

+
V0

3/2σ
(
ρ(3σ2 − 4μ)− 4σ

√
V0

)
96n2

Note also

KHW
c = V0 +

V0μ

2
T +

V0μ
2

6
T 2 +O (T 3

)
5It reduces to study the sign of e(2μ+σ2)T −1

(2μ+σ2)T
− (eμT −1)2

μ2T2 . It is an increasing function of

σ so that it is larger than e2μT −1
2μT

− (eμT −1)2

μ2T2 which is always positive as its minimum is 0
obtained when μT = 0.
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and in particular, we have that

KHW
d (n)−KHW

c =
1

4n

(
(V0 − 2r)2 − 2ρV0

3/2σ
)
T +O(T 2).

Proof. This proposition is a straightforward expansion from (17) in Propo-

sition 4.1. �
Note that we have similar patterns as in the Heston model case in Propo-

sition 5.2.

5.3 Discussion on the convex-order conjecture

As motivated in Keller-Ressel (2011) it is of interest to study the systematic

bias for fixed n and T when using the quadratic variation to approximate the

realized variance. Bülher (2006) and Keller-Ressel and Muhle-Karbe (2012)

show numerical evidence of this bias (see also Section 6 for further evi-

dence in the Heston and Hull-White models). Keller-Ressel (2011) proposes

the following “convex-order conjecture”, E[f(RV (X,P))] � E[f([X,X]T )]

where f is convex, P refers to the partition of [0, T ] in n + 1 division

points and X = log(ST /S0). RV (X,P) is the discrete realized variance

(
∑n

i=1(log(Sti/Sti−1))
2) and [X,X]T is the continuous quadratic variation

(
∫ T
0 m2(Vs)ds in our setting).

When f(x) = x and the correlation can be positive, the conjecture is vio-

lated, see for example Figure 1 to 4 where KM
d (n) can be below KM

c . When

ρ = 0 the process has conditionally independent increments and satisfies

other assumptions in Keller-Ressel (2011), it ensures that KM
d (n) � KM

c

which is consistent with his results.

6 Numerics

This last section illustrates the previous propositions obtained in the Heston

and Hull-White models through numerical examples, and provides interest-

ing comparisons.
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6.1 Parameter choice

Given parameters for the Heston model, we then choose the parameters in

the Hull-White model so that the continuous strikes match. Precisely, we

obtain μ by solving numerically

KH
c = KHW

c

and find σ such that the variances of VT in the respective Heston and Hull-

White models match. From (30) and (31), the variance for VT for the Heston

model is given by

V arH(VT ) =
γ2

2κ
(θ + 2e−κT (V0 − θ) + e−2κT (θ − 2V0)).

The variance for VT for the Hull-White model can be computed using (37),

V arHW (VT ) = V 2
0 e

2μT (eσ
2T − 1).

(matched)
Heston Hull-White

T r V0 ρ γ θ κ μ σ

Set 1 1 3.19% 0.010201 -0.7 0.31 0.019 6.21 1.003 0.42

Set 2 5 5% 0.09 -0.3 1 0.09 2 2.9 × 10−9 0.52

Table 1: Parameters sets

The parameters for the Heston model are taken from reasonable param-

eter sets. Precisely the first set of parameters is similar to the one used by

Broadie and Jain (2008a). The second set corresponds to Table 2 in Broadie

and Kaya (2006). The values for the parameters of the Hull-White model

are obtained consistently using the procedure described above.

6.2 Sensitivity to the number of sampling periods

Figure 1 displays cases when the fair strike of the discrete variance swap

KM
d (n) may be smaller than the fair strike of the continuous variance swap

KM
c . The first graph obtained in the Heston model (the model M is denoted

by the exponent H for Heston) shows that KH
d is first higher than KH

c ,
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crosses this level and stays below KH
c until it converges to the value KH

c

as n → ∞. It means that options on discrete realized variance may be

overvalued when the continuous quadratic variation is used to approximate

the discrete realized variance. Note that this unusual pattern happens when

ρ = 0.7, which is usual for example in foreign exchange markets.

Insert Figure 1

Figure 2 highlights another type of convergence showing the complexity

of the behaviour of the discrete variance swap with respect to the continuous

variance swap.

Insert Figure 2

Figure 3 illustrates the asymptotic expansion with respect to the number

n of discretization steps (Proposition 5.1 in the Heston model and Propo-

sition 5.3 in the Hull White model). It shows that the first term of this

expansion is already highly informative as it appears clearly to fit very well

for small values of n in both models.

Insert Figure 3

Figure 3 displays on the same graphs the discrete fair strike Kd(n) and

the first term of the expansion formula KH
c + a

n for the Heston model and

KHW
c + a1

n for the Hull-White model (see Propositions 5.1 and 5.3 for the

exact expressions of a and a1).

Insert Figure 4

Figure 4 illustrates that the discrete fair strike (for a daily monitoring)

can be lower than the continuously sampled strike as KM
d − KM

c may be

negative for high values of the correlation coefficient both in the Heston and

Hull-White model. In Remark 5.1 and 5.2, it is noted that the first term

in the asymptotic expansion with respect to n is linear in ρ. From Figure

3 it is clear that the first term has an important explanatory power. This

justifies the linear behaviour observed in Figure 4 of the difference between

discrete and continuous fair strikes with respect to ρ. Computations of ρH0
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and ρHW
0 for each of the risk-free rate levels r = 0%, r = 3.2% and r = 6%

confirm that it is always positive when r = 0% (otherwise it would contradict

Proposition 2.3) and that it can be higher than 1 which ensures that for n

sufficiently high, the discrete fair variance swap rate is always higher than

the continuous fair strike.

Recall that the minimums of ρH0 and of ρHW
0 are obtained at r∗H = KH

c
2

and r∗HW = KHW
c
2 (see (8)).

Insert Figure 5

Figure 5 shows that as the time to maturity T goes to 0, the discrete fair

strike is converging to the continuous fair strike at a quadratic rate. This is

consistent with Proposition 5.2 and Proposition 5.4.

Insert Figure 6

Figure 6 shows that the discrepancy between the discrete fair strike and

the continuous fair strike is exacerbated by the volatility of the underlying

variance process. In particular the continuous fair strike KH
c is independent

of γ. For each γ we compute the corresponding σ for the Hull-White model

such that the variances match as described in Section 6.1. We observe then

similar patterns in the Heston and Hull-White models.

7 Conclusions

This paper presents explicit expressions for fair strikes of discretely sampled

or continuously sampled derivatives in the Heston and the Hull-White mod-

els. They are consistent with the literature, more explicit (as there is no

sums involved in the discrete fair strikes), and easier to use. Asymptotics

are new and consistent with theoretical results obtained in the literature.
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A Proof of Proposition 2.1

Using Itō’s lemma and Cholesky decomposition, (1) becomes

d (log (St)) =

(
r − 1

2
m2(Vt)

)
dt+ ρm(Vt)dW

(2)
t +

√
1− ρ2m(Vt)dW

(3)
t

dVt = μ(Vt)dt+ σ(Vt)dW
(2)
t

where W
(2)
t and W

(3)
t are two standard independent Brownian motions.

Proposition 2.1 is then a direct application of the following lemma (see
Lemma 3.1 of Bernard and Cui (2011) for its proof).

Lemma A.1. Under the model given in (1), we have

ST = S0 exp

{
rT − 1

2

∫ T

0
m2(Vt)dt+ ρ(f(VT )− f(V0))

−ρ

∫ T

0
h(Vt)dt+

√
1− ρ2

∫ T

0
m(Vt)dW

(3)
t

}
, (24)

where f(v) =
∫ v
0

m(z)
σ(z) dz and h(v) = μ(v)f ′(v) + 1

2σ
2(v)f ′′(v).

Now from equation (24) in Lemma A.1, we compute the following key
element in the fair strike of the discrete variance swap. Assume the time
interval is [t, t+Δ], then we have

ln

(
St+Δ

St

)
= rΔ− 1

2

∫ t+Δ

t
m2(Vs)ds+ ρ

(
f(Vt+Δ)− f(Vt)−

∫ t+Δ

t
h(Vs)ds

)

+
√
1− ρ2

∫ t+Δ

t
m(Vs)dW

(3)
s .

Then we can compute

E

[(
ln

St+Δ

St

)2
]
= r2Δ2 +

1

4
E

[(∫ t+Δ

t
m2(Vs)ds

)2
]
− rΔE

[∫ t+Δ

t
m2(Vs)ds

]
+ E

[
A2
]

+ E

[(
2rΔ−

∫ t+Δ

t
m2(Vs)ds

)
A

]
+ (1− ρ2)E

[∫ t+Δ

t
m2(Vs)ds

]
,

(25)

where A = ρ
(
f(Vt+Δ)− f(Vt)−

∫ t+Δ
t h(Vs)ds

)
, and

A2 = ρ2

(
(f(Vt+Δ)− f(Vt))

2 +

(∫ t+Δ

t
h(Vs)ds

)2

− 2(f(Vt+Δ)− f(Vt))

∫ t+Δ

t
h(Vs)ds

)

20



Using the above expressions for A and A2 in (25), we obtain

E

[(
ln

St+Δ

St

)2
]

= r2Δ2 +
1

4
E

[(∫ t+Δ

t
m2(Vs)ds

)2
]
+ (1− ρ2 − rΔ)E

[∫ t+Δ

t
m2(Vs)ds

]

+ ρ2E[((f(Vt+Δ)− f(Vt))
2] + ρ2E

[(∫ t+Δ

t
h(Vs)ds

)2
]
+ 2rρΔE[(f(Vt+Δ)− f(Vt))]

− E

[
(f(Vt+Δ)− f(Vt))

∫ t+Δ

t
(2ρ2h(Vs) + ρm2(Vs))ds

]
− 2rρΔE

[∫ t+Δ

t
h(Vs)ds

]

+ ρE

[(∫ t+Δ

t
h(Vs)ds

)(∫ t+Δ

t
m2(Vs)ds

)]
. (26)

By Itō’s lemma, we have that f defined in Lemma A.1 verifies df(Vt) =

h(Vt)dt+m(Vt)dW
(2)
t . Integrating the above SDE from t to t+Δ, we have

f(Vt+Δ)− f(Vt) =

∫ t+Δ

t
h(Vs)ds+

∫ t+Δ

t
m(Vs)dW

(2)
s .

Thus,

E [f(Vt+Δ)− f(Vt)]− E

[∫ t+Δ

t
h(Vs)ds

]
= E

[∫ t+Δ

t
m(Vs)dW

(2)
s

]
= 0.

(27)

Rearrange (26) and use (27) to simplify the terms, which ends the proof of
Proposition 2.1. �

B Proof of Proposition 3.1

Proof. To prove Proposition 3.1, we first prove the following lemma.

Lemma B.1. In the Heston stochastic volatility model (10),

E

[(
ln

St+Δ

St

)2
]
= b2E

[(∫ t+Δ

t
Vsds

)2
]
+ (1− ρ2 + 2abΔ)E

[∫ t+Δ

t
Vsds

]

+ a2Δ2 +
ρ2

γ2
E
[
(Vt+Δ − Vt)

2
]
+

2ρa

γ
Δ(E[Vt+Δ]− E[Vt])

+
2ρb

γ

(
E

[
Vt+Δ

∫ t+Δ

t
Vsds

]
− E

[
Vt

∫ t+Δ

t
Vsds

])
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where a = r − ρκθ
γ and b = ρκ

γ − 1
2 .

Proof. We apply Proposition 2.1 to the Heston stochastic volatility model.
Using the expressions of f and h given in (5) together with the functions
corresponding to the Heston model in (11), we have that f(x) = x

γ and

h(x) = κθ−κx
γ and we obtain an expression of the expected square of the log

return of the underlying stock. After some simplifications, we have

E

[(
ln

St+Δ

St

)2
]

=

(
r − ρκθ

γ

)2

Δ2 +

(
ρκ

γ
− 1

2

)2

E

[(∫ t+Δ

t
Vsds

)2
]
+

ρ2

γ2
E[((Vt+Δ − Vt)

2]

+
2ρΔ(rγ − ρκθ)

γ2
E[(Vt+Δ − Vt)] +

ρ(2ρκ− γ)

γ2
E

[
(Vt+Δ − Vt)

∫ t+Δ

t
Vsds

]

+

(
1− ρ2 +Δ

(
−r +

2rρκ

γ
+

ρκθ

γ
− 2θρ2κ2

γ2

))
E

[∫ t+Δ

t
Vsds

]
. (28)

Now given the notations that a = r − ρκθ/γ and b = ρκ/γ − 1/2, we can
rewrite the above formula in the form appearing in Lemma B.1. �

Using Lemma B.1, we can sum the different quantities to compute the
fair strike (2) of the discrete variance swap. Note that Δ = T/n. Replace t
by ti in the above equation and then we have ti +Δ = ti+1 and

E

[(
ln

Sti+1

Sti

)2
]
= b2E

[(∫ ti+1

ti

Vsds

)2
]
+

(
2abT

n
+ 1− ρ2

)
E

[∫ ti+1

ti

Vsds

]

+
a2T 2

n2
+

ρ2

γ2
E[(Vti+1 − Vti)

2] +
2ρaT

nγ
(E[Vti+1 ]− E[Vti ])

+
2ρb

γ

(
E

[
Vti+1

∫ ti+1

ti

Vsds

]
−E

[
Vti

∫ ti+1

ti

Vsds

])
.
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From the definition in (2), we sum the above quantities and we obtain

KM
d =

1

T

n−1∑
i=0

E

[(
ln

Sti+1

Sti

)2
]

=
1

T

(
a2T 2

n
+ b2

n−1∑
i=0

∫ ti+1

ti

∫ ti+1

ti

E[VsVu]dsdu+

(
2abT

n
+ 1− ρ2

)∫ T

0
E[Vs]ds

+
ρ2

γ2

n−1∑
i=0

E[(Vti+1 − Vti)
2] +

2ρaT

nγ
(E[VT ]− E[V0])

+
2ρb

γ

n−1∑
i=0

(
E

[
Vti+1

∫ ti+1

ti

Vsds

]
− E

[
Vti

∫ ti+1

ti

Vsds

]))
. (29)

Furthermore, for all t � 0,

E[Vt] = θ + e−κt(V0 − θ). (30)

and for all 0 < s � t,

E[VtVs] = θ2 + e−κt(V0 − θ)

(
θ +

γ2

κ

)
+ e−κsθ(V0 − θ)

+ e−κ(t+s)

(
(θ − V0)

2 +
γ2

2κ
(θ − 2V0)

)
+

γ2

2κ
θe−κ(t−s). (31)

In particular this formula holds for t = s and gives E[V 2
t ]. These formulas

already appear in Broadie and Jain (2008a) (formula (A-15)). To compute
KH

d , (31) is the only expression needed, it should then be integrated and
summed in various way.

We have computed all terms in (29) with the help of Maple. It turns out
that in the case of the Heston model, all terms can be computed explicitly
and the final simplified expression for (29) does not require any sums or
integrals. We finally obtain an explicit formula for KH

d as a function of the
parameters of the model. �

C Proof of Proposition 3.2

Proof. Denote the log stock price without drift as Xt = lnSt − rt, and

X0 = x0. Denote V0 = v0, Δ = T/n. We have that E

[(
Sti+1−Sti

Sti

)2]
=

E

[(
Sti+1

Sti

)2]
+ 1 − 2erΔ. Thus the goal is to calculate the second moment

E

[(
Sti+1

Sti

)2]
, and note that it is closely linked to the moment generating
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function of the log stock price X. Recall the following formulation of the
moment generating function M(u, t) = E[euXt ] from Albrecher et al. (2007).

M(u, t) = Su
0 exp

{
κθ

γ2

(
(κ− γρu− d(u))t− 2 ln

(
1− g(u)e−d(u)t

1− g(u)

))}

× exp

{
V0

κ− γρu− d(u)

γ2
1− e−d(u)t

1− g(u)e−d(u)t

}
. (32)

where the auxiliary functions are given by

d(u) =
√

(κ− γρu)2 + γ2(u− u2);

g(u) =
κ− γρu− d(u)

κ− γρu+ d(u)
. (33)

We need to separate out the case of i = 0 and i = 1, ..., n − 1. For the first
case, we have

E

[(
St1

S0

)2
]
=

1

S2
0

E
[
e2 lnSt1

]
=

e2rt1

S2
0

M(2, t1) =
e2rΔ

S2
0

M(2,Δ). (34)

For the second case, with i = 1, 2, ..., n, we have

E

[(
Sti+1

Sti

)2
]
= E

[
e
2 ln

(
Sti+1
Sti

)]
= e2rΔE

[
E
[
e2(Xti+1−Xti ) | Fti

]]

= exp{2rΔ+
κθ

γ2

(
(κ− 2γρ− d(2))Δ − 2 ln

1− g(2)e−d(2)Δ

1− g(2)

)
}

× E

[
exp

{
Vti

κ− 2γρ− d(2)

γ2
1− e−d(2)Δ

1− g(2)e−d(2)Δ

}]
. (35)

We first define α = 2κθ/γ2 − 1 � 0, and η(t) = 2κ
γ2 (1 − e−κt)−1. Then

from Theorem 3.16 in Hurd and Kuznetsov (2008), we have

E[euVT ] =

(
η(T )

η(T )− u

)α+1

e
v0

η(T )u
η(T )−u

e−κT

. (36)

and the above holds for u < η(T ). As u = 2, a sufficient condition for
u < η(T ) to hold is γ2T < 1 (since 2 < η(T ) is equivalent to 1− κ

γ2 < e−κT

).

6Note that in terms of our notations, the parameters in Hurd and Kuznetsov (2008)
and our parameters have the correspondence a = κθ, b = κ, c = γ.
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Combine equations (35) and (36), we finally have for i = 1, ..., n − 1,

E

[(
Sti+1

Sti

)2
]
= e

2rΔ+ κθ
γ2

(
(κ−2γρ−d(2))Δ−2 ln

1−g(2)e−d(2)Δ

1−g(2)

)
e
V0

η(ti)q(2)

η(ti)−q(2)
e−κti

(
η(ti)

η(ti)− q(2)

)α+1

.

where q(u) = κ−γρu−d(u)
γ2

1−e−d(u)Δ

1−g(u)e−d(u)Δ . Then the result follows by summing

the above terms ai, i = 0, 1, ..., n − 1. �

D Proof of Proposition 4.1

Proof. For the Hull-White model, from the key equation in Proposition 2.1,
we have

E

[(
ln

St+Δ

St

)2
]
= r2Δ2+ρ2q2E

[(∫ t+Δ

t

√
Vsds

)2
]
+
4rρΔ

σ
E
[(√

Vt+Δ −
√
Vt

)]

+
1

4
E

[(∫ t+Δ

t
Vsds

)2
]
+(1−ρ2−rΔ)

∫ t+Δ

t
E [Vs] ds+

4ρ2

σ2
E

[(√
Vt+Δ −

√
Vt

)2]

−4ρ2

σ
qE

[(√
Vt+Δ −

√
Vt

)∫ t+Δ

t

√
Vsds

]
−2ρ

σ
E

[(√
Vt+Δ −

√
Vt

) ∫ t+Δ

t
Vsds

]

− 2rρΔq

∫ t+Δ

t
E
[√

Vs

]
ds+ ρqE

[(∫ t+Δ

t

√
Vsds

)(∫ t+Δ

t
Vsds

)]
.

where q = μ
σ− σ

4 . We then assume equi-distant sampling, i.e. Δ = T/n, with
ti =

iT
n , i = 0, 1, 2, ..., n and sum these terms to compute KHW

d (n). We now
compute a few expectations that are useful in the simplification of the fair
discrete variance swap KHW

d (n). In the Hull-White model, the stochastic
variance process Vt follows a Geometric Brownian motion. Thus we have

Vt = V0 exp
((

μ− σ2

2

)
t+ σW

(2)
t

)
. Note that

E [V a
s ] = V a

0 e
aμse

a2−a
2

σ2s. (37)

which will be useful below for a = 1/2, a = 1 and a = 2.

E [Vs] = V0e
μs, E

[√
Vs

]
=
√

V0e
μ
2
s− 1

8
σ2s =

√
V0e

σ
2
qs, E

[
V 2
s

]
= V 2

0 e
2μs+σ2s.

The fair strike for the continuous variance swap is straightforward and is

equal to E
[∫ T

0 Vsds
]
= V0

μ (eμT − 1). Similarly,

E

[∫ T

0

√
Vsds

]
=

∫ T

0

√
V0e

σ
2
qsds =

√
V0

2

σq

(
e

σqT
2 − 1

)
. (38)
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and for s < u, we have the following results

E [VsVu] = V 2
0 exp

(
μ(u+ s) + σ2s

)
, (39)

E
[√

Vs

√
Vu

]
= V0 exp

(
μ

2
(u+ s)− σ2

8
(u− s)

)
, (40)

E
[√

Vs Vu

]
= V

3
2
0 exp

(
μ
(s
2
+ u
)
+

3σ2

8
s

)
, (41)

E
[
Vs

√
Vu

]
= V

3
2
0 exp

(
μ
(
s+

u

2

)
− σ2

8
u+

σ2

2
s

)
. (42)

We further observe that

E

[(∫ t+Δ

t
Vsds

)2
]
= 2

∫ t+Δ

t

∫ u

t
E [VsVu] dsdu,

E

[(∫ t+Δ

t

√
Vsds

)2
]
= 2

∫ t+Δ

t

∫ u

t
E
[√

Vs

√
Vu

]
dsdu,

and that

E

[(∫ t+Δ

t

√
Vsds

)(∫ t+Δ

t
Vudu

)]
=

∫ t+Δ

t

∫ u

t
E
[√

VsVu

]
dsdu+

∫ t+Δ

t

∫ t+Δ

u
E
[√

VsVu

]
dsdu. (43)

Finally we use the two expressions (41) and (42) to replace E
[√

VsVu

]
in

the above integrals in (43).

The fair discrete variance swap is computed as

KHW
d (n) =

1

T

n−1∑
i=0

E

[(
ln

Sti+1

Sti

)2
]
. (44)
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where

E

[(
ln

Sti+1

Sti

)2
]
= (1− ρ2 − rT

n
)

∫ (i+1)T
n

iT
n

E [Vs] ds+ r2
T 2

n2

− 2ρ

σ
E

[(√
V (i+1)T

n

−
√

V iT
n

)∫ (i+1)T
n

iT
n

Vsds

]
+ρ2q2E

⎡
⎣(∫ (i+1)T

n

iT
n

√
Vsds

)2
⎤
⎦

+
4ρ2

σ2
E

[(√
V (i+1)T

n

−
√

V iT
n

)2
]
−4ρ2

σ
qE

[(√
V (i+1)T

n

−
√
V iT

n

)∫ (i+1)T
n

iT
n

√
Vsds

]

+
1

4
E

⎡
⎣
(∫ (i+1)T

n

iT
n

Vsds

)2
⎤
⎦+ ρqE

[(∫ (i+1)T
n

iT
n

√
Vsds

)(∫ (i+1)T
n

iT
n

Vsds

)]
.

with q = μ
σ − σ

4 . After some tedious calculations, the expression (44) can be
simplified to the one appearing in Proposition 4.1.

�
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Figure 1: Sensitivity to the number of sampling periods n and to ρ

Parameters correspond to Set 1 in Table 1 except for ρ which can take three possible values
ρ = −0.7, ρ = 0 or ρ = 0.7 and for T which is equal to T = 1 for the two upper graphs and
T = 1/12 for the two lower graphs. When T = 1/12, the parameters for the Hull-White
model are adjusted according to the procedure described in Section 6.1. In the case when
T = 1/12, one has μ = 4.03 and σ = 1.78.
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Figure 2: Sensitivity to the number of sampling periods n and to ρ

Parameters are set to unusual values to show that any types of behaviors can be expected.
ρ = 0.6, r = 3.19%, θ = 0.019, κ = .1, V0 = 0.8 and γ takes three possible values: 0.5, 1.5
and 2.
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Figure 3: Asymptotic Expansion KM
c + a/n with respect to the number of

sampling periods n and to ρ

Parameters correspond to Set 2 in Table 1 except for ρ which can take three possible values
ρ = −0.3, ρ = 0 or ρ = 0.3. The upper graphs correspond to large number of discretization
steps whereas lower graphs have relatively small values of n.
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Figure 4: Asymptotic Expansion with respect to the correlation coefficient
ρ and the risk-free rate r

Parameters correspond to Set 1 in Table 1 except for r which can take three possible values
r = 0%, r = 3.2% or r = 6%. Here n = 250 which corresponds to a daily monitoring as
T = 1.
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Figure 5: Discrete and Continuous Fair Strikes with respect to the Maturity
T and to V0

Parameters correspond to Set 2 in Table 1 except for T and V0. Also we choose a monthly
monitoring to compute the discrete fair strike. When θ = V0, K

H
c is independent of the

maturity T .
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Figure 6: Discrete and Continuous Fair Strikes with respect to the parameter
γ and to V0

Parameters correspond to Set 2 in Table 1 except for γ and V0 that are indicated on the
graphs. A monthly monitoring is used to compute the discrete fair strike. The continuous
fair strike KH

c is independent of γ, so that it is easy to identify the different curves on the
graph.
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