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CHAPTER 1

Introduction to Finite Markov Chains

1.1. Finite Markov Chains

A finite Markov chain is a process which moves among the elements of a finite
set 2 in the following manner: when at = € €2, the next position is chosen according
to a fixed probability distribution P(z,-). More precisely, a sequence of random
variables (Xo, X1,...) is a Markov chain with state space 2 and transition
matrixz P if for all z,y € Q, all ¢ > 1, and all events H; 1 = ﬂi;B{XS = x5}
satisfying P(H;—1 N {X, = z}) > 0, we have

P{Xp=y|Hian{Xy =2} } =P{Xypy =y | Xy =2} = P(z,y). (L1)

Equation (1.1), often called the Markov property, means that the conditional
probability of proceeding from state z to state y is the same, no matter what
sequence g, T1,...,T¢—1 Of states precedes the current state x. This is exactly why
the |Q| x || matrix P suffices to describe the transitions.

The z-th row of P is the distribution P(z,-). Thus P is stochastic, that is,
its entries are all non-negative and

Z P(z,y)=1 for all x € Q.
yeQ

EXAMPLE 1.1. A certain frog lives in a pond with two lily pads, east and west.
A long time ago, he found two coins at the bottom of the pond and brought one
up to each lily pad. Every morning, the frog decides whether to jump by tossing
the current lily pad’s coin. If the coin lands heads up, the frog jumps to the other
lily pad. If the coin lands tails up, he remains where he is.

Let Q = {e,w}, and let (Xp, X1,...) be the sequence of lily pads occupied by
the frog on Sunday, Monday, .... Given the source of the coins, we should not
assume that they are fair! Say the coin on the east pad has probability p of landing

<>

Ficure 1.1. A randomly jumping frog. Whenever he tosses heads,
he jumps to the other lily pad.



4 1. INTRODUCTION TO FINITE MARKOV CHAINS

[0 10 20 [0 10 20 [0 10 20
(a) (b) (c)

FIGURE 1.2. The probability of being on the east pad (started
from the east pad) plotted versus time for (a) p = ¢ = 1/2, (b)
p =0.2and ¢ = 0.1, (¢) p = 0.95 and ¢ = 0.7. The long-term
limiting probabilities are 1/2, 1/3, and 14/33 =~ 0.42, respectively.

heads up, while the coin on the west pad has probability ¢ of landing heads up.
The frog’s rules for jumping imply that if we set

_ P(e5e) P(e,w) _ ]-_p p
P= ( P(w,e) Pw,w) )~ q 1—q )’ (1.2)
then (Xo, X1,...) is a Markov chain with transition matrix P. Note that the first
row of P is the conditional distribution of Xy given that X; = e, while the second
row is the conditional distribution of Xy, given that X, = w.
Assume that the frog spends Sunday on the east pad. When he awakens Mon-

day, he has probability p of moving to the west pad and probability 1 — p of staying
on the east pad. That is,

P{X;=e¢|Xo=¢}=1-p, P{Xi=w|Xo=¢}=p. (1.3)
What happens Tuesday? By considering the two possibilities for X7, we see that
P{X;=¢|Xo=¢e}=(1-p)(1-p)+pq (1.4)
and
P{Xo=w|Xo=¢e}=(1-pp+p(l-0q). (1.5)

While we could keep writing out formulas like (1.4) and (1.5), there is a more
systematic approach. We can store our distribution information in a row vector

= (P{X;=ce| Xo=¢e}, P{X; =w | Xo =e}).

Our assumption that the frog starts on the east pad can now be written as o =
(1,0), while (1.3) becomes g1 = poP.
Multiplying by P on the right updates the distribution by another step:

e = pe_1 P forall t > 1. (1.6)
Indeed, for any initial distribution pg,
pe = Pt for all t > 0. (1.7)

How does the distribution p; behave in the long term? Figure 1.2 suggests that
p¢ has a limit © (whose value depends on p and ¢) as t — oo. Any such limit
distribution 7 must satisfy

T =P,
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which implies (after a little algebra) that
q
m(e) = —, m(w) = —.
(e) praraps (w) prarps
If we define 7
Ay = e)— —— forallt >0,
t Mt( ) P+

then by the definition of p;41 the sequence (A¢) satisfies

vy = (@)1 =p)+ (1= pule)la) = S = (1=p=a)i (1)
We conclude that when 0 < p<1and 0 < ¢ <1,
. q . p
lim e)=—— and lim w) = —— 1.9
Jim ju(e) =~ Jim () = % (1.9)

for any initial distribution pg. As we suspected, p; approaches m as t — oc.

REMARK 1.2. The traditional theory of finite Markov chains is concerned with
convergence statements of the type seen in (1.9), that is, with the rate of conver-
gence as t — oo for a fized chain. Note that 1 — p — ¢ is an eigenvalue of the
frog’s transition matrix P. Note also that this eigenvalue determines the rate of
convergence in (1.9), since by (1.8) we have

A= (1—p—q)ho.
The computations we just did for a two-state chain generalize to any finite
Markov chain. In particular, the distribution at time ¢ can be found by matrix

multiplication. Let (Xp, X1,...) be a finite Markov chain with state space Q and
transition matrix P, and let the row vector p; be the distribution of X;:

ue(z) = P{X; =2} forallze .

By conditioning on the possible predecessors of the (¢ + 1)-st state, we see that

pialy) = 3O P{X, = 2} P(a,y) = 3 @) Pla,y) forall y € Q.

zeQ reQ

Rewriting this in vector form gives

Hi+1 = ,LLtP fort >0
and hence

e = poPt for t > 0. (1.10)

Since we will often consider Markov chains with the same transition matrix but
different starting distributions, we introduce the notation P, and E, for probabil-
ities and expectations given that ug = p. Most often, the initial distribution will
be concentrated at a single definite starting state x. We denote this distribution

by §z:
1 ify=u=x,
8. (y) = . Y
0 ify# .

We write simply P, and E, for Ps, and E;_, respectively.
These definitions and (1.10) together imply that

P.{X; =y} = (6. P")(y) = P'(z,y).
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Ficure 1.3. Random walk on Zio is periodic, since every step
goes from an even state to an odd state, or vice-versa. Random
walk on Zg is aperiodic.

That is, the probability of moving in ¢ steps from z to y is given by the (z,y)-th
entry of Pt. We call these entries the t-step transition probabilities.

NOTATION. A probability distribution g on € will be identified with a row
vector. For any event A C (), we write

w(4) = 3 (@)
rEA
For z € , the row of P indexed by z will be denoted by P(z,-).

REMARK 1.3. The way we constructed the matrix P has forced us to treat
distributions as row vectors. In general, if the chain has distribution p at time ¢,
then it has distribution puP at time ¢t + 1. Multiplying a row wvector by P on the
right takes you from today’s distribution to tomorrow’s distribution.

What if we multiply a column vector f by P on the left? Think of f as a
function on the state space Q (for the frog of Example 1.1, we might take f(z) to
be the area of the lily pad ). Consider the z-th entry of the resulting vector:

Pf(z) =Y Plz.y)f(y) =D fW)Pe{X1 =y} = Eo(f(X1))-

That is, the z-th entry of Pf tells us the expected value of the function f at
tomorrow’s state, given that we are at state = today. Multiplying a column wvector
by P on the left takes us from a function on the state space to the expected value of
that function tomorrow.

1.2. Random Mapping Representation
We begin this section with an example.

ExampLE 1.4 (Random walk on the n-cycle). Let Q = Z, ={0,1,...,n— 1},
the set of remainders modulo n. Consider the transition matrix
1/2 ifk=j+1 (modn),
P(j,k)=<1/2 ifk=j—1 (modn), (1.11)
0 otherwise.

The associated Markov chain (X;) is called random walk on the n-cycle. The
states can be envisioned as equally spaced dots arranged in a circle (see Figure 1.3).
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Rather than writing down the transition matrix in (1.11), this chain can be
specified simply in words: at each step, a coin is tossed. If the coin lands heads up,
the walk moves one step clockwise. If the coin lands tails up, the walk moves one
step counterclockwise.

More precisely, suppose that Z is a random variable which is equally likely to
take on the values —1 and +1. If the current state of the chain is j € Z,,, then the
next state is j + Z mod n. For any k € Z,,

P{(j 4+ Z) mod n = k} = P(j, k).

In other words, the distribution of (j + Z) mod n equals P(j, ).
A random mapping representation of a transition matrix P on state space
Q is a function f: Q x A — €, along with a A-valued random variable Z, satisfying

P{f(z,7) =y} = P(z,y).

The reader should check that if Z;, Zs,... is a sequence of independent random
variables, each having the same distribution as Z, and X has distribution u, then
the sequence (Xo, X1, ...) defined by

Xn=f(Xn-1,7,) forn>1

is a Markov chain with transition matrix P and initial distribution pu.

For the example of the simple random walk on the cycle, setting A = {1, -1},
each Z; uniform on A, and f(z,z) = 2 + z mod n yields a random mapping repre-
sentation.

PROPOSITION 1.5. Every transition matriz on a finite state space has a random
mapping representation.

PROOF. Let P be the transition matrix of a Markov chain with state space
Q= {xy,...,z,}. Take A = [0,1]; our auxiliary random variables Z, 7, Zs, ...
will be uniformly chosen in this interval. Set F}; = Zle P(z;,2;) and define

f(zj,2) ==z when Fj 1 < z < Fj 1.

We have
P{f(xj,Z) = a1} = P{Fjr_1 < Z < Fj .} = P(xj, zp).
||

Note that, unlike transition matrices, random mapping representations are far
from unique. For instance, replacing the function f(z, z) in the proof of Proposition
1.5 with f(z,1 — 2) yields a different representation of the same transition matrix.

Random mapping representations are crucial for simulating large chains. They
can also be the most convenient way to describe a chain. We will often give rules for
how a chain proceeds from state to state, using some extra randomness to determine
where to go next; such discussions are implicit random mapping representations.
Finally, random mapping representations provide a way to coordinate two (or more)
chain trajectories, as we can simply use the same sequence of auxiliary random
variables to determine updates. This technique will be exploited in Chapter 5, on
coupling Markov chain trajectories, and elsewhere.
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1.3. Irreducibility and Aperiodicity

We now make note of two simple properties possessed by most interesting
chains. Both will turn out to be necessary for the Convergence Theorem (The-
orem 4.9) to be true.

A chain P is called irreducible if for any two states z,y € € there exists an
integer ¢ (possibly depending on z and y) such that P!(z,y) > 0. This means
that it is possible to get from any state to any other state using only transitions of
positive probability. We will generally assume that the chains under discussion are
irreducible. (Checking that specific chains are irreducible can be quite interesting;
see, for instance, Section 2.6 and Example B.5. See Section 1.7 for a discussion of
all the ways in which a Markov chain can fail to be irreducible.)

Let 7(z) :=={t > 1 : P'(z,x) > 0} be the set of times when it is possible for
the chain to return to starting position z. The period of state z is defined to be
the greatest common divisor of 7 (z).

LEMMA 1.6. If P is irreducible, then ged T (z) = ged 7 (y) for all z,y € Q.

PROOF. Fix two states z and y. There exist non-negative integers r and ¢ such
that P"(z,y) > 0 and P*(y,z) > 0. Letting m = r+/, we have m € 7 (z)N7 (y) and
T (z) C T(y) —m, whence ged 7 (y) divides all elements of 7 (x). We conclude that
ged T (y) < ged T (z). By an entirely parallel argument, ged 7 (z) < ged7 (y). N

For an irreducible chain, the period of the chain is defined to be the period
which is common to all states. The chain will be called aperiodic if all states have
period 1. If a chain is not aperiodic, we call it periodic.

PROPOSITION 1.7. If P is aperiodic and irreducible, then there is an integer r
such that P"(z,y) > 0 for all z,y € Q.

PROOF. We use the following number-theoretic fact: any set of non-negative
integers which is closed under addition and which has greatest common divisor 1
must contain all but finitely many of the non-negative integers. (See Lemma 1.27
in the Notes of this chapter for a proof.) For x € Q, recall that 7(z) = {t > 1 :
Pi(z,x) > 0}. Since the chain is aperiodic, the ged of 7 (z) is 1. The set 7 (z)
is closed under addition: if s,t € 7(z), then Pt (z,x) > P*(z,z)P!(x,z) > 0,
and hence s+t € T(z). Therefore there exists a t(x) such that ¢t > t(z) implies
t € T(z). By irreducibility we know that for any y € € there exists r = r(z,y)
such that P"(x,y) > 0. Therefore, for ¢ > t(x) + r,

P'(z,y) > P (z,2)P" (z,y) > 0.

For ¢t > t'(z) := t(x) + maxyecq r(z,y), we have P'(z,y) > 0 for all y € . Finally,
if £ > maxgeqt'(x), then P!(z,y) > 0 for all z,y € Q. [ |

Suppose that a chain is irreducible with period two, e.g. the simple random walk
on a cycle of even length (see Figure 1.3). The state space §2 can be partitioned into
two classes, say even and odd, such that the chain makes transitions only between
states in complementary classes. (Exercise 1.6 examines chains with period b.)

Let P have period two, and suppose that z( is an even state. The probability
distribution of the chain after 2t steps, P?'(zg,-), is supported on even states,
while the distribution of the chain after 2¢ 4 1 steps is supported on odd states. It
is evident that we cannot expect the distribution P(xg,-) to converge as t — oo.
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Fortunately, a simple modification can repair periodicity problems. Given an
arbitrary transition matrix P, let @ = L5 (here I is the |Q| x |Q] identity matrix).
(One can imagine simulating @ as follows: at each time step, flip a fair coin. If it
comes up heads, take a step in P; if tails, then stay at the current state.) Since
Q(z,z) > 0 for all x € Q, the transition matrix @ is aperiodic. We call Q a lazy
version of P. It will often be convenient to analyze lazy versions of chains.

ExampLE 1.8 (The n-cycle, revisited). Recall random walk on the n-cycle,
defined in Example 1.4. For every n > 1, random walk on the n-cycle is irreducible.

Random walk on any even-length cycle is periodic, since ged{t : P!(x,z) >
0} = 2 (see Figure 1.3). Random walk on an odd-length cycle is aperiodic.

The transition matrix @ for lazy random walk on the n-cycle is

1/4 itk=j+1 (mod n),
1/2 ifk=j (mod n),
1/4 ifk=j5—1 (mod n),

0 otherwise.

QU k) = (1.12)

Lazy random walk on the n-cycle is both irreducible and aperiodic for every n.

REMARK 1.9. Establishing that a Markov chain is irreducible is not always
trivial; see Example B.5, and also Thurston (1990).

1.4. Random Walks on Graphs

Random walk on the n-cycle, which is shown in Figure 1.3, is a simple case of
an important type of Markov chain.

A graph G = (V, E) consists of a verter set V and an edge set F, where
the elements of E are unordered pairs of vertices: E C {{z,y}:z,y € V,z £ y}.
We can think of V' as a set of dots, where two dots x and y are joined by a line if
and only if {z,y} is an element of the edge set. When {z,y} € F, we write x ~ y
and say that y is a neighbor of z (and also that z is a neighbor of y). The degree
deg(z) of a vertex z is the number of neighbors of .

Given a graph G = (V, E), we can define simple random walk on G to be
the Markov chain with state space V' and transition matrix

1 if Yy~
P(z,y) = { =@ ’ 1.13
(@9) {O otherwise. ( )

That is to say, when the chain is at vertex x, it examines all the neighbors of =z,
picks one uniformly at random, and moves to the chosen vertex.

ExamMpPLE 1.10. Consider the graph G shown in Figure 1.4. The transition
matrix of simple random walk on G is

O O wImw-= O
O NI = O Nl
= = O Wl Nl
O O kIR W= O
S O elR O O
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FIGURE 1.4. An example of a graph with vertex set {1,2,3,4,5}
and 6 edges.

REMARK 1.11. We have chosen a narrow definition of “graph” for simplicity.
It is sometimes useful to allow edges connecting a vertex to itself, called loops. It
is also sometimes useful to allow multiple edges connecting a single pair of vertices.
Loops and multiple edges both contribute to the degree of a vertex and are counted
as options when a simple random walk chooses a direction. See Section 6.5.1 for an
example.

We will have much more to say about random walks on graphs throughout this
book—but especially in Chapter 9.

1.5. Stationary Distributions

1.5.1. Definition. We saw in Example 1.1 that a distribution 7 on 2 satis-
fying
™ =mnP (1.14)
can have another interesting property: in that case, m was the long-term limiting
distribution of the chain. We call a probability 7 satisfying (1.14) a stationary
distribution of the Markov chain. Clearly, if = is a stationary distribution and
to = 7 (i.e. the chain is started in a stationary distribution), then p; = 7 for all
t>0.
Note that we can also write (1.14) elementwise. An equivalent formulation is

(y) = Z w(xz)P(x,y) forally € Q. (1.15)

zeQ

ExampLE 1.12. Consider simple random walk on a graph G = (V, E). For any

vertex y € V,
deg(x
Z deg(z Z deg eg(y). (1.16)
zeV

To get a probability, we simply normalize by Zyev deg(y) = 2|E)| (a fact the reader
should check). We conclude that the probability measure

deg(y)
2|E|

w(y) = for all y € €,

which is proportional to the degrees, is always a stationary distribution for the
walk. For the graph in Figure 1.4,
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If G has the property that every vertex has the same degree d, we call G d-regular.
In this case 2|E| = d|V| and the uniform distribution =(y) = 1/|V| for every y € V
is stationary.

A central goal of this chapter and of Chapter 4 is to prove a general yet precise
version of the statement that “finite Markov chains converge to their stationary
distributions.” Before we can analyze the time required to be close to stationar-
ity, we must be sure that it is finite! In this section we show that, under mild
restrictions, stationary distributions exist and are unique. Our strategy of building
a candidate distribution, then verifying that it has the necessary properties, may
seem cumbersome. However, the tools we construct here will be applied in many
other places. In Section 4.3, we will show that irreducible and aperiodic chains do,
in fact, converge to their stationary distributions in a precise sense.

1.5.2. Hitting and first return times. Throughout this section, we assume
that the Markov chain (Xo, X1, ...) under discussion has finite state space Q and
transition matrix P. For z € €, define the hitting time for x to be

Ty :=min{t > 0: X; = z},

the first time at which the chain visits state x. For situations where only a visit to
x at a positive time will do, we also define

7';' :=min{t >1: X; = «}.
When Xy = x, we call 7 the first return time.

LEMMA 1.13. For any states x and y of an irreducible chain, E; (Ty+) < 00.

PROOF. The definition of irreducibility implies that there exist an integer » > 0
and a real € > 0 with the following property: for any states z,w € €2, there exists a
j < r with P7(z,w) > e. Thus for any value of X;, the probability of hitting state
y at a time between ¢t and ¢t + 7 is at least e. Hence for k > 0 we have

P.{7, > kr} < (1 —e)P.{r,] > (k- 1)r}. (1.17)
Repeated application of (1.17) yields
Po{r > kr} < (1 —¢). (1.18)

Recall that when Y is a non-negative integer-valued random variable, we have

E(Y)=> P{Y >t}

t>0

Since P, {7,/ > t} is a decreasing function of ¢, (1.18) suffices to bound all terms of
the corresponding expression for B, (7,"):

E.(1)) = ZPw{TJ >t} < Zer{T; > kr} < rZ(l — o)k < .

t>0 k>0 k>0
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1.5.3. Existence of a stationary distribution. The Convergence Theo-
rem (Theorem 4.9 below) implies that the “long-term” fractions of time a finite
irreducible aperiodic Markov chain spends in each state coincide with the chain’s
stationary distribution. However, we have not yet demonstrated that stationary
distributions exist! To build a candidate distribution, we consider a sojourn of the
chain from some arbitrary state z back to z. Since visits to z break up the trajec-
tory of the chain into identically distributed segments, it should not be surprising
that the average fraction of time per segment spent in each state y coincides with
the “long-term” fraction of time spent in y.

PROPOSITION 1.14. Let P be the transition matriz of an irreducible Markov
chain. Then

(i) there exists a probability distribution = on Q such that 1 = 7P and 7(z) > 0
for all x € Q, and moreover,

REMARK 1.15. We will see in Section 1.7 that existence of m does not need
irreducibility, but positivity does.

PROOF. Let z € Q) be an arbitrary state of the Markov chain. We will closely
examine the time the chain spends, on average, at each state in between visits to

z. Hence define

7(y) := E,(number of visits to y before returning to z)

> 1.19
:ZPZ{Xt:y3TZ+ >t}‘ ( )
t=0

For any state y, we have 7(y) < E,7,;". Hence Lemma 1.13 ensures that 7(y) < oo
for all y € . We check that 7 is stationary, starting from the definition:

> w(@)Plw,y) =D > PAX =z, 75 > t}P(x,y). (1.20)

€N zeQ t=0
Because the event {77 >t + 1} = {77 > t} is determined by Xj,..., Xy,
PAX;=2 Xpp1=y, 17 >2t+1} =P (X, =, 7 >t+1}P(x,y). (1.21)

Reversing the order of summation in (1.20) and using the identity (1.21) shows that

S w@)Ply) =Y PAXi =y mh >t +1)
t=0

zeQ

(o]
=Y PAXi =y, >t} (1.22)
t=1
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The expression in (1.22) is very similar to (1.19), so we are almost done. In fact,

SPAX =y >t}
t=1

[ee]
T(y) —PAXo =y, 7 >0} + > PAX, =y, 7 =1}
t=1
(y) —P.AXo =y} + Pz{)(-,—;r =y} (1.23)
(y). (1.24)
The equality (1.24) follows by considering two cases:

y = z: Since Xo = z and X 1+ = z, the last two terms of (1.23) are both 1, and
they cancel each other out.
y # z: Here both terms of (1.23) are 0.

Therefore, combining (1.22) with (1.24) shows that & = T P.
Finally, to get a probability measure, we normalize by Y. 7(z) = E,(7}):

7(x)

|
N

|
M

m(x) = () satisfies m = wP. (1.25)
In particular, for any = € €,
1
m(x) = . 1.26

The computation at the heart of the proof of Proposition 1.14 can be general-
ized. A stopping time 7 for (X;) is a {0,1,...,} U {oco}-valued random variable
such that, for each ¢, the event {7 = t} is determined by Xj,..., X;. (Stopping
times are discussed in detail in Section 6.2.1.) If a stopping time 7 replaces 7, in
the definition (1.19) of 7, then the proof that 7 satisfies # = 7P works, provided
that 7 satisfies both P {7 < oo} =1 and P {X, =z} = 1.

If 7 is a stopping time, then an immediate consequence of the definition and

the Markov property is

Po{(Xr11, X, Xp) € Al 7=k and (Xu,..., Xy) = (z1,...,2%)}
=P, {(X1,...,Xy) € A}, (1.27)

for any A C QF. This is referred to as the strong Markov property. Informally,
we say that the chain “starts afresh” at a stopping time. While this is an easy fact
for countable state space, discrete-time Markov chains, establishing it for processes
in the continuum is more subtle.

1.5.4. Uniqueness of the stationary distribution. Earlier this chapter we
pointed out the difference between multiplying a row vector by P on the right and
a column vector by P on the left: the former advances a distribution by one step
of the chain, while the latter gives the expectation of a function on states, one step
of the chain later. We call distributions invariant under right multiplication by P
stationary. What about functions that are invariant under left multiplication?

Call a function h : Q@ — R harmonic at z if

hw) = 3 Play)hly). (1.28)

yeQ



14 1. INTRODUCTION TO FINITE MARKOV CHAINS

A function is harmonic on D C () if it is harmonic at every state = € D. If h is
regarded as a column vector, then a function which is harmonic on all of 2 satisfies
the matrix equation Ph = h.

LEMMA 1.16. Suppose that P is irreducible. A function h which is harmonic
at every point of Q) is constant.

PROOF. Since ) is finite, there must be a state zo such that h(zg) = M is
maximal. If for some state z such that P(zg,z) > 0 we have h(z) < M, then

h(wo) = P(wo, 2)h(2) + Y P(xo,y)h(y) < M, (1.29)
y#z

a contradiction. It follows that h(z) = M for all states z such that P(zg,z) > 0.
For any y € (1, irreducibility implies that there is a sequence =g, z1,...,2, =y

with P(z;,z;+1) > 0. Repeating the argument above tells us that h(y) = h(z,_1) =

-+« =h(xg) = M. Thus h is constant. |

COROLLARY 1.17. Let P be the transition matriz of an irreducible Markov
chain. There exists a unique probability distribution © satisfying m = wP.

PROOF. By Proposition 1.14 there exists at least one such measure. Lemma 1.16
implies that the kernel of P — I has dimension 1, so the column rank of P — [ is
|2] — 1. Since the row rank of any square matrix is equal to its column rank, the
row-vector equation ¥ = vP also has a one-dimensional space of solutions. This
space contains only one vector whose entries sum to 1. |

REMARK 1.18. Another proof of Corollary 1.17 follows from the Convergence
Theorem (Theorem 4.9, proved below). Another simple direct proof is suggested in
Exercise 1.13.

1.6. Reversibility and Time Reversals
Suppose a probability 7 on (Q satisfies
7w(z)P(z,y) = n(y)P(y,x) for all z,y € Q. (1.30)
The equations (1.30) are called the detailed balance equations.

PROPOSITION 1.19. Let P be the transition matriz of a Markov chain with
state space Q. Any distribution 7 satisfying the detailed balance equations (1.30) is
stationary for P.

PROOF. Sum both sides of (1.30) over all y:

Y wy)Py.x) =Y w(x)Plr,y) = (),

yeN yeQ

since P is stochastic. ]

Checking detailed balance is often the simplest way to verify that a particular
distribution is stationary. Furthermore, when (1.30) holds,

w(xo)P(zo,21) -  P(pn_1,2n) = 7(xn)P(Tpn, Tp—1) - - - P(x1, o). (1.31)
We can rewrite (1.31) in the following suggestive form:

PTr{XO = L0y Xn = In} = PTF{XO = InaXl = Tp—1ye.es Xn = 1‘0}. (132)
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In other words, if a chain (X}) satisfies (1.30) and has stationary initial distribu-
tion, then the distribution of (Xo, X1,...,X,) is the same as the distribution of
(X0, Xn—1,...,Xp). For this reason, a chain satisfying (1.30) is called reversible.

ExaMPLE 1.20. Consider the simple random walk on a graph G. We saw in
Example 1.12 that the distribution 7(z) = deg(z)/2|E] is stationary.
Since deg(z) 1 1
eg\x) “{a~y} {e~y}
the chain is reversible. (Note: here the notation 14 represents the indicator
Sfunction of a set A, for which 14(a) = 1 if and only if a € A; otherwise 1 4(a) = 0.)

EXAMPLE 1.21. Consider the biased random walk on the n-cycle: a parti-
cle moves clockwise with probability p and moves counterclockwise with probability

gq=1-p.
The stationary distribution remains uniform: if 7(k) = 1/n, then

> TP k) = 7k = Dp+(k+1)q = -

whence 7 is the stationary distribution. However, if p # 1/2, then
k) PEE+1) =2 2L = 2k + )PE +1,k).
n’' n

The time reversal of an irreducible Markov chain with transition matrix P
and stationary distribution 7 is the chain with matrix

]3(:r7 y) = 77T(y31_](3£§l’ x)

The stationary equation m = 7P implies that P is a stochastic matrix. Proposition
1.22 shows that the terminology “time reversal” is deserved.

(1.33)

PROPOSITION 1.22. Let (X;) be an irreducible Markov chain with transition
matriz P and stationary distribution w. Write (X;) for the time-reversed chain

with transition matriz P. Then w is stationary for ]3, and for any g, ...,z € Q
we have
Pﬂ-{XO = l‘o,...,Xt = It} = Pﬂ-{XO ZZEt,...,Xt = :Eo}.

PRrooOF. To check that 7 is stationary for ]3, we simply compute
~ m(x)P(x,y
> #w)Plya) = 5wl L) — (o)
yeQ yeQ Y
To show the probabilities of the two trajectories are equal, note that
P {Xo=120,...,Xn =xp} = 7(x0)P(x0,21)P(x1,22) - - - P(Tp—1, 1)

~ ~ o~

= 7m(p)P(@p, Tn_1) - P(x2, 1) P(x1, 20)
= PW{XO = Tny-- '7Xn = xo}a

~

since P(x;_1,x;) = w(x;)P(x;,x;—1)/7(x;_1) for each i. |

Observe that if a chain with transition matrix P is reversible, then P=r.
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y & C, whence 7 is supported on C. Consequently, for = € C,

n(z) =Y w(y)Py.x) =Y wy)Py.x)=> w(y)Pcy,z),

yeN yeC yeC

and 7 restricted to C is stationary for P¢. By uniqueness of the stationary distri-
bution for Py, it follows that 7(z) = 7¢(z) for all z € C. Therefore,

ﬂx):{g%) Heed
ifx ¢,

and the solution to 7 = 7w P is unique.

Suppose there are distinct essential communicating classes for P, say C; and
Cs. The restriction of P to each of these classes is irreducible. Thus for i = 1,2,
there exists a measure m supported on C; which is stationary for P¢,. Moreover,
it is easily verified that each m; is stationary for P, and so P has more than one
stationary distribution. |

Exercises

EXERCISE 1.1. Let P be the transition matrix of random walk on the n-cycle,
where n is odd. Find the smallest value of ¢ such that P'(z,y) > 0 for all states =
and y.

EXERCISE 1.2. A graph G is connected when, for two vertices x and y of G,
there exists a sequence of vertices xg, x1,...,x) such that xg = z, xx = y, and
x; ~ xi41 for 0 <i < k—1. Show that random walk on G is irreducible if and only
if G is connected.

EXERCISE 1.3. We define a graph to be a tree if it is connected but contains
no cycles. Prove that the following statements about a graph T" with n vertices and
m edges are equivalent:

(a) T is a tree.
(b) T is connected and m =n — 1.
(¢) T has no cycles and m =n — 1.

EXERCISE 1.4. Let T be a tree. A leaf is a vertex of degree 1.

(a) Prove that T contains a leaf.
(b) Prove that between any two vertices in T there is a unique simple path.
(¢) Prove that T has at least 2 leaves.

EXERCISE 1.5. Let T be a tree. Show that the graph whose vertices are proper
3-colorings of T and whose edges are pairs of colorings which differ at only a single
vertex is connected.

EXERCISE 1.6. Let P be an irreducible transition matrix of period b. Show
that Q can be partitioned into b sets C1,Ca,...,Cp in such a way that P(xz,y) > 0
only if z € C; and y € C;11. (The addition 7 + 1 is modulo b.)

EXERCISE 1.7. A transition matrix P is symmetric if P(xz,y) = P(y,x) for
all z,y € Q. Show that if P is symmetric, then the uniform distribution on €2 is
stationary for P.
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EXERCISE 1.8. Let P be a transition matrix which is reversible with respect
to the probability distribution 7 on 2. Show that the transition matrix P? corre-
sponding to two steps of the chain is also reversible with respect to .

EXERCISE 1.9. Let w be a stationary distribution for an irreducible transition
matrix P. Prove that w(z) > 0 for all x € €, without using the explicit formula
(1.25).

EXERCISE 1.10. Check carefully that equation (1.19) is true.

EXERCISE 1.11. Here we outline another proof, more analytic, of the existence
of stationary distributions. Let P be the transition matrix of a Markov chain on a
finite state space 2. For an arbitrary initial distribution g on € and n > 0, define
the distribution v,, by

1
vn=—(ptpP+pP"l).
(a) Show that for any x € Q and n > 0,

lnP(z) — vn(z)] <

SN

(b) Show that there exists a subsequence (vp, )x>0 such that limy, o vp, () exists
for every = € Q.

(¢) For z € Q, define v(x) = limy — oo Vn, (7). Show that v is a stationary distri-
bution for P.

EXERCISE 1.12. Let P be the transition matrix of an irreducible Markov chain
with state space 2. Let B C (2 be a non-empty subset of the state space, and
assume h : Q — R is a function harmonic at all states = ¢ B.

Prove that if h is non-constant and h(y) = maxgeq h(z), then y € B.

(This is a discrete version of the mazimum principle.)

EXERCISE 1.13. Give a direct proof that the stationary distribution for an
irreducible chain is unique.

Hint: Given stationary distributions 7; and 72, consider the state x that min-
imizes 71 (z)/m2(z) and show that all y with P(x,y) > 0 have mi(y)/m2(y) =
m1(x)/m2 ().

EXERCISE 1.14. Show that any stationary measure 7 of an irreducible chain
must be strictly positive.

Hint: Show that if w(x) = 0, then 7(y) = 0 whenever P(z,y) > 0.

EXERCISE 1.15. For a subset A C Q, define f(z) = E,(74). Show that
(a)

flz)=0 forze A (1.35)
(b)
fl@)=14> P(x,y)f(y) forz¢A (1.36)
yeQ

(¢) fis uniquely determined by (1.35) and (1.36).
The following exercises concern the material in Section 1.7.
EXERCISE 1.16. Show that < is an equivalence relation on ).

EXERCISE 1.17. Show that the set of stationary measures for a transition matrix
forms a polyhedron with one vertex for each essential communicating class.



CHAPTER 2

Classical (and Useful) Markov Chains

Here we present several basic and important examples of Markov chains. The
results we prove in this chapter will be used in many places throughout the book.

This is also the only chapter in the book where the central chains are not always
irreducible. Indeed, two of our examples, gambler’s ruin and coupon collecting,
both have absorbing states. For each we examine closely how long it takes to be
absorbed.

2.1. Gambler’s Ruin

Consider a gambler betting on the outcome of a sequence of independent fair
coin tosses. If the coin comes up heads, she adds one dollar to her purse; if the coin
lands tails up, she loses one dollar. If she ever reaches a fortune of n dollars, she
will stop playing. If her purse is ever empty, then she must stop betting.

The gambler’s situation can be modeled by a random walk on a path with
vertices {0, 1,...,n}. At all interior vertices, the walk is equally likely to go up by
1 or down by 1. That states 0 and n are absorbing, meaning that once the walk
arrives at either 0 or n, it stays forever (cf. Section 1.7).

There are two questions that immediately come to mind: how long will it take
for the gambler to arrive at one of the two possible fates? What are the probabilities
of the two possibilities?

PROPOSITION 2.1. Assume that a gambler making fair unit bets on coin flips
will abandon the game when her fortune falls to 0 or rises ton. Let X; be gambler’s
fortune at time t and let T be the time required to be absorbed at one of 0 or n.
Assume that Xo = k, where 0 < k <n. Then

P {X,=n}=k/n (2.1)
and
Ei(1) = k(n — k). (2.2)

PROOF. Let pj be the probability that the gambler reaches a fortune of n before
ruin, given that she starts with k dollars. We solve simultaneously for pg, p1, - - ., Dn-
Clearly pp = 0 and p,, = 1, while

1 1
Pk = 5Pk-1F 5Pki1 for1<k<n-1 (2.3)
Why? With probability 1/2, the walk moves to k+1. The conditional probability of
reaching n before 0, starting from k+1, is exactly pg41. Similarly, with probability
1/2 the walk moves to k — 1, and the conditional probability of reaching n before
0 from state k — 1 is pg_1.
Solving the system (2.3) of linear equations yields py = k/n for 0 < k < n.

21
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0 1 2 n

F1cURE 2.1. How long until the walk reaches either 0 or n? What
is the probability of each?

For (2.2), again we try to solve for all the values at once. To this end, write
fr for the expected time Ey(7) to be absorbed, starting at position k. Clearly,
fo = fn = 0; the walk is started at one of the absorbing states. For 1 < k <n — 1,
it is true that

fie= 5 (14 fin) + 5 (14 fic 1), (2.0

Why? When the first step of the walk increases the gambler’s fortune, then the
conditional expectation of 7 is 1 (for the initial step) plus the expected additional
time needed. The expected additional time needed is fj+1, because the walk is
now at position k£ 4 1. Parallel reasoning applies when the gambler’s fortune first
decreases.

Exercise 2.1 asks the reader to solve this system of equations, completing the
proof of (2.2). |

REMARK 2.2. See Chapter 9 for powerful generalizations of the simple methods
we have just applied.

2.2. Coupon Collecting

A company issues n different types of coupons. A collector desires a complete
set. We suppose each coupon he acquires is equally likely to be each of the n types.
How many coupons must he obtain so that his collection contains all n types?

It may not be obvious why this is a Markov chain. Let X; denote the number
of different types represented among the collector’s first ¢t coupons. Clearly Xy = 0.
When the collector has coupons of k different types, there are n — k types missing.
Of the n possibilities for his next coupon, only n — k will expand his collection.

Hence
n—k

P{Xyp1=k+1| X, =k} =

and
k

P{Xt+1 = k‘ | Xt :k} = E
Every trajectory of this chain is non-decreasing. Once the chain arrives at state n
(corresponding to a complete collection), it is absorbed there. We are interested in
the number of steps required to reach the absorbing state.

PROPOSITION 2.3. Consider a collector attempting to collect a complete set of
coupons. Assume that each new coupon is chosen uniformly and independently from
the set of n possible types, and let T be the (random) number of coupons collected
when the set first contains every type. Then

E(T)=n Z
k=1

| —

>~
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PrOOF. The expectation E(7) can be computed by writing 7 as a sum of
geometric random variables. Let 7 be the total number of coupons accumulated
when the collection first contains k& distinct coupons. Then

T:Tn:T1—|-(T2—T1)+"'+(Tn_7-nfl)- (25)

Furthermore, 7, — 7,_1 is a geometric random variable with success probability
(n—k+1)/n: after collecting 74_1 coupons, there are n—k+1 types missing from the
collection. Each subsequent coupon drawn has the same probability (n — k+1)/n
of being a type not already collected, until a new type is finally drawn. Thus
E(r — —1) =n/(n—k+ 1) and

B(r) =Y B(n—m-1) =n) ———=n T (2.6)
k=1 k=1

k=1
|

While the argument for Proposition 2.3 is simple and vivid, we will often
need to know more about the distribution of 7 in future applications. Recall that
| > h_11/k —logn| < 1, whence |[E(1) — nlogn| < n (see Exercise 2.4 for a bet-
ter estimate). Proposition 2.4 says that 7 is unlikely to be much larger than its
expected value.

PROPOSITION 2.4. Let 7 be a coupon collector random variable, as in Proposi-
tion 2.3. For any c > 0,

P{r > [nlogn+cn]} <e “. (2.7)

PROOF. Let A; be the event that the i-th type does not appear among the first
[nlogn + c¢n] coupons drawn. Observe first that

P{r > [nlogn+cn]} =P (U Ai> < ZP(Ai).
i=1 i=1
Since each trial has probability 1 —n ! of not drawing coupon i and the trials are
independent, the right-hand side above is bounded above by

n [nlogn+en]
1 1
Z(l_) < nexp (n ogn+cn> _ e
n n

i=1

proving (2.7). |

2.3. The Hypercube and the Ehrenfest Urn Model

The n-dimensional hypercube is a graph whose vertices are the binary n-
tuples {0, 1}". Two vertices are connected by an edge when they differ in exactly one
coordinate. See Figure 2.2 for an illustration of the three-dimensional hypercube.

The simple random walk on the hypercube moves from a vertex (x!,z2,... 2")
by choosing a coordinate j € {1,2,...,n} uniformly at random and setting the new
state equal to (z',..., 2771 1 — 29 27T ... 2™). That is, the bit at the walk’s
chosen coordinate is flipped. (This is a special case of the walk defined in Section
1.4.)

Unfortunately, the simple random walk on the hypercube is periodic, since every
move flips the parity of the number of 1’s. The lazy random walk, which does not
have this problem, remains at its current position with probability 1/2 and moves
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F1GUuRE 2.2. The three-dimensional hypercube.

as above with probability 1/2. This chain can be realized by choosing a coordinate
uniformly at random and refreshing the bit at this coordinate by replacing it with
an unbiased random bit independent of time, current state, and coordinate chosen.
Since the hypercube is an n-regular graph, Example 1.12 implies that the sta-
tionary distribution of both the simple and lazy random walks is uniform on {0, 1}".
We now consider a process, the Ehrenfest urn, which at first glance appears
quite different. Suppose n balls are distributed among two urns, I and II. At each
move, a ball is selected uniformly at random and transferred from its current urn
to the other urn. If X; is the number of balls in urn I at time ¢, then the transition
matrix for (X3) is
ik =441,
P(jk)=<qL ifk=j-1, (2.8)
0 otherwise.

Thus (X;) is a Markov chain with state space Q@ = {0,1,2,...,n} that moves by
+1 on each move and is biased towards the middle of the interval. The stationary
distribution for this chain is binomial with parameters n and 1/2 (see Exercise 2.5).

The Ehrenfest urn is a projection (in a sense that will be defined precisely
in Section 2.3.1) of the random walk on the n-dimensional hypercube. This is
unsurprising given the standard bijection between {0, 1}" and subsets of {1,...,n},
under which a set corresponds to the vector with 1’s in the positions of its elements.
We can view the position of the random walk on the hypercube as specifying the
set of balls in Ehrenfest urn I; then changing a bit corresponds to moving a ball
into or out of the urn.

Define the Hamming weight W (z) of a vector = := (z*,...,2") € {0,1}" to
be its number of coordinates with value 1:

W(z) =Y a. (2.9)
j=1

Let (X¢) be the simple random walk on the n-dimensional hypercube, and let
W; = W(X) be the Hamming weight of the walk’s position at time ¢.

When W; = j, the weight increments by a unit amount when one of the n — j
coordinates with value 0 is selected. Likewise, when one of the j coordinates with
value 1 is selected, the weight decrements by one unit. From this description, it is
clear that (W) is a Markov chain with transition probabilities given by (2.8).

2.3.1. Projections of chains. The Ehrenfest urn is a projection, which we
define in this section, of the simple random walk on the hypercube.



CHAPTER 3

Markov Chain Monte Carlo: Metropolis and
Glauber Chains

3.1. Introduction

Given an irreducible transition matrix P, there is a unique stationary distribu-
tion 7 satisfying 7 = 7P, which we constructed in Section 1.5. We now consider
the inverse problem: given a probability distribution 7 on €2, can we find a tran-
sition matrix P for which 7 is its stationary distribution? The following example
illustrates why this is a natural problem to consider.

A random sample from a finite set € will mean a random uniform selection
from €, i.e., one such that each element has the same chance 1/|Q| of being chosen.

Fix a set {1,2,...,q} of colors. A proper g-coloring of a graph G = (V, E) is
an assignment of colors to the vertices V, subject to the constraint that neighboring
vertices do not receive the same color. There are (at least) two reasons to look for
an efficient method to sample from €2, the set of all proper g-colorings. If a random
sample can be produced, then the size of 2 can be estimated (as we discuss in
detail in Section 14.4.2). Also, if it is possible to sample from €, then average
characteristics of colorings can be studied via simulation.

For some graphs, e.g. trees, there are simple recursive methods for generating
a random proper coloring (see Example 14.10). However, for other graphs it can
be challenging to directly construct a random sample. One approach is to use
Markov chains to sample: suppose that (X;) is a chain with state space Q and
with stationary distribution uniform on Q (in Section 3.3, we will construct one
such chain). By the Convergence Theorem (Theorem 4.9, whose proof we have not
yet given but have often foreshadowed), X; is approximately uniformly distributed
when ¢ is large.

This method of sampling from a given probability distribution is called Markov
chain Monte Carlo. Suppose 7 is a probability distribution on Q. If a Markov
chain (X;) with stationary distribution 7 can be constructed, then, for ¢ large
enough, the distribution of X} is close to w. The focus of this book is to determine
how large ¢ must be to obtain a sufficient approximation. In this chapter we will
focus on the task of finding chains with a given stationary distribution.

3.2. Metropolis Chains

Given some chain with state space €2 and an arbitrary stationary distribution,
can the chain be modified so that the new chain has the stationary distribution 7?7
The Metropolis algorithm accomplishes this.

3.2.1. Symmetric base chain. Suppose that ¥ is a symmetric transition
matrix. In this case, ¥ is reversible with respect to the uniform distribution on 2.

37
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We now show how to modify transitions made according to ¥ to obtain a chain
with stationary distribution m, where 7 is any probability distribution on §2.

The new chain evolves as follows: when at state z, a candidate move is gener-
ated from the distribution ¥(z,-). If the proposed new state is y, then the move
is censored with probability 1 — a(x,y). That is, with probability a(z, y), the state
y is “accepted” so that the next state of the chain is y, and with the remaining
probability 1 —a(z,y), the chain remains at z. Rejecting moves slows the chain and
can reduce its computational efficiency but may be necessary to achieve a specific
stationary distribution. We will discuss how to choose the acceptance probability
a(x,y) below, but for now observe that the transition matrix P of the new chain is

U(z,y)a(z,y) ity #z,
Plz,y) =41 S U(x, z)a(x,z) ify=u.
z:2#x

By Proposition 1.19, the transition matrix P has stationary distribution 7 if

m(x)¥(z,y)a(z,y) = 7(y)¥(y. v)a(y, z) (3.1)
for all z # y. Since we have assumed ¥ is symmetric, equation (3.1) holds if and
only if

b(z,y) = b(y, =), (3.2)
where b(z,y) = w(z)a(z,y). Because a(z,y) is a probability and must satisfy
a(z,y) < 1, the function b must obey the constraints

b(z,y) < (),
b(w,y) = b(y,r) < w(y).

Since rejecting the moves of the original chain ¥ is wasteful, a solution b to (3.2)
and (3.3) should be chosen which is as large as possible. Clearly, all solutions are
bounded above by b(z,y) = w(z) A w(y) := min{n(z),7(y)}. For this choice, the
acceptance probability a(z,y) is equal to (w(y)/m(x)) A 1.

The Metropolis chain for a probability 7 and a symmetric transition matrix
¥ is defined as

(3.3)

U(z,y) [1 A %} if y # =,
13, 2 ¥Y(2,2) [1/\ :E;;] if y =x.

Our discussion above shows that 7 is indeed a stationary distribution for the Me-
tropolis chain.

P(z,y) =

REMARK 3.1. A very important feature of the Metropolis chain is that it only
depends on the ratios m(x)/7(y). Frequently 7(z) has the form h(z)/Z, where the
function h : © — [0, 00) is known and Z = ) _ h(z) is a normalizing constant.
It may be difficult to explicitly compute Z, especially if (2 is large. Because the
Metropolis chain only depends on h(z)/h(y), it is not necessary to compute the
constant Z in order to simulate the chain. The optimization chains described below
(Example 3.2) are examples of this type.

EXAMPLE 3.2 (Optimization). Let f be a real-valued function defined on the
vertex set () of a graph. In many applications it is desirable to find a vertex =
where f(x) is maximal. If the domain ) is very large, then an exhaustive search
may be too expensive.
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fix) ¢

Ficure 3.1. A hill climb algorithm may become trapped at a local
maximum.

A hill climb is an algorithm which attempts to locate the maximum values of
f as follows: when at x, if a neighbor y of = has f(y) > f(z), move to y. When f
has local maxima that are not also global maxima, then the climber may become
trapped before discovering a global maximum—see Figure 3.1.

One solution is to randomize moves so that instead of always remaining at a
local maximum, with some probability the climber moves to lower states.

Suppose for simplicity that 2 is a regular graph, so that simple random walk
on {2 has a symmetric transition matrix. Fix A > 1 and define

A (@)
Z(A)’

X)) =

where Z(X) := Y oA (@) is the normalizing constant that makes 7y a probabil-
ity measure (as mentioned in Remark 3.1, running the Metropolis chain does not
require computation of Z()A), which may be prohibitively expensive to compute).
Since 7y () is increasing in f(x), the measure 7 favors vertices « for which f(x)
is large.

If f(y) < f(x), the Metropolis chain accepts a transition z — y with probability
A U@=fWI As A — oo, the chain more closely resembles the deterministic hill
climb.

Define
Qr = {x €N flx)=f" = maxf(y)}.
yeQ
Then
)\f(m)/)\f* 1{1‘69*}
I — i = :
Jm (@) = lim e Seaas NEAT (0]

That is, as A — oo, the stationary distribution 7y of this Metropolis chain converges
to the uniform distribution over the global maxima of f.

3.2.2. General base chain. The Metropolis chain can also be defined when
the initial transition matrix is not symmetric. For a general (irreducible) transition
matrix W and an arbitrary probability distribution 7 on €2, the Metropolized chain
is executed as follows. When at state x, generate a state y from ¥(z,-). Move to
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y with probability
m(y)¥(y, )
m(x)¥(z,y)
and remain at = with the complementary probability. The transition matrix P for
this chain is

A, (3.4)

()Y (y,x) ;
R B > W(z,z)[%/\l} ity = ’
z:2F#x ’

The reader should check that the transition matrix (3.5) defines a reversible Markov
chain with stationary distribution 7 (see Exercise 3.1).

EXAMPLE 3.3. Suppose you know neither the vertex set V nor the edge set
FE of a graph G. However, you are able to perform a simple random walk on
G. (Many computer and social networks have this form; each vertex knows who
its neighbors are, but not the global structure of the graph.) If the graph is not
regular, then the stationary distribution is not uniform, so the distribution of the
walk will not converge to uniform. You desire a uniform sample from V. We can use
the Metropolis algorithm to modify the simple random walk and ensure a uniform
stationary distribution. The acceptance probability in (3.4) reduces in this case to

deg(z)
deg(y)

This biases the walk against moving to higher degree vertices, giving a uniform
stationary distribution. Note that it is not necessary to know the size of the ver-
tex set to perform this modification, which can be an important consideration in
applications.

3.3. Glauber Dynamics

We will study many chains whose state spaces are contained in a set of the form
SV, where V is the vertex set of a graph and S is a finite set. The elements of SV,
called configurations, are the functions from V' to S. We visualize a configuration
as a labeling of vertices with elements of S.

Given a probability distribution 7 on a space of configurations, the Glauber
dynamics for 7, to be defined below, is a Markov chain which has stationary dis-
tribution 7. This chain is often called the Gibbs sampler, especially in statistical
contexts.

3.3.1. Two examples. As we defined in Section 3.1, a proper g-coloring of
a graph G = (V, E) is an element z of {1,2,...,q}", the set of functions from V
to {1,2,...,q}, such that z(v) # z(w) for all edges {v,w}. We construct here a
Markov chain on the set of proper g-colorings of G.

For a given configuration x and a vertex v, call a color j allowable at v if j is
different from all colors assigned to neighbors of v. That is, a color is allowable at
v if it does not belong to the set {z(w) : w ~ v}. Given a proper g-coloring z, we
can generate a new coloring by

e selecting a vertex v € V' at random,

e selecting a color j uniformly at random from the allowable colors at v,
and
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e re-coloring vertex v with color j.

We claim that the resulting chain has uniform stationary distribution: why? Note
that transitions are permitted only between colorings differing at a single vertex.
If x and y agree everywhere except vertex v, then the chance of moving from x
to y equals |V|71A,(z)|~!, where A,(x) is the set of allowable colors at v in z.
Since A, (z) = A,(y), this probability equals the probability of moving from y to a.
Since P(z,y) = P(y, x), the detailed balance equations are satisfied by the uniform
distribution.

This chain is called the Glauber dynamics for proper g-colorings. Note
that when a vertex v is updated in coloring x, a coloring is chosen from 7 conditioned
on the set of colorings agreeing with = at all vertices different from v. This is the
general rule for defining Glauber dynamics for any set of configurations. Before
spelling out the details in the general case, we consider one other specific example.

A hardcore configuration is a placement of particles on the vertices V' of a
graph so that each vertex is occupied by at most one particle and no two particles
are adjacent. Formally, a hardcore configuration z is an element of {0,1}V, the
set of functions from V to {0,1}, satisfying x(v)z(w) = 0 whenever v and w are
neighbors. The vertices v with z(v) = 1 are called occupied, and the vertices v
with z(v) = 0 are called vacant.

Consider the following transition rule:

e a vertex v is chosen uniformly at random, and, regardless of the current
status of v,

e if any neighbor of v is occupied, v is left unoccupied, while if no adjacent
vertex is occupied, a particle is placed at v with probability 1/2.

REMARK 3.4. Note that the rule above has the same effect as the following
apparently simpler rule: if no neighbor of v is occupied, then, with probability 1/2,
flip the status of v. Our original description will be much more convenient when,
in the future, we attempt to couple multiple copies of this chain, since it provides a
way to ensure that the status at the chosen vertex v is the same in all copies after
an update. See Section 5.4.2.

The verification that this chain is reversible with respect to the uniform distri-
bution is similar to the coloring chain just considered and is left to the reader.

3.3.2. General definition. In general, let V' and S be finite sets, and suppose
that 2 is a subset of SV (both the set of proper g-colorings and the set of hardcore
configurations are of this form). Let m be a probability distribution whose support
is Q. The (single-site) Glauber dynamics for w is a reversible Markov chain
with state space (), stationary distribution 7, and the transition probabilities we
describe below.

In words, the Glauber chain moves from state x as follows: a vertex v is chosen
uniformly at random from V, and a new state is chosen according to the measure
7 conditioned on the set of states equal to x at all vertices different from v. We
give the details now. For x € Q and v € V| let

Qz,v) ={y € Q : y(w) = z(w) for all w # v} (3.6)
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be the set of states agreeing with = everywhere except possibly at v, and define

m(y) :
ﬂ_z,v(y) _ 7r(y | Q(I,’U)) _ ) mQ(z,v)) ifye Q(:C,’U),
0 ify & Q(z,v)

to be the distribution 7 conditioned on the set Q(z,v). The rule for updating a con-
figuration z is: pick a vertex v uniformly at random, and choose a new configuration
according to %Y.

The distribution 7 is always stationary and reversible for the Glauber dynamics
(see Exercise 3.2).

3.3.3. Comparing Glauber dynamics and Metropolis chains. Suppose
now that 7 is a probability distribution on the state space SV, where S is a finite
set and V' is the vertex set of a graph. We can always define the Glauber chain
as just described. Suppose on the other hand that we have a chain which picks
a vertex v at random and has some mechanism for updating the configuration at
v. (For example, the chain may pick an element of S at random to update at v.)
This chain may not have stationary distribution 7, but it can be modified by the
Metropolis rule to obtain a chain with stationary distribution w. This chain can be
very similar to the Glauber chain, but may not coincide exactly. We consider our
examples.

ExaMPLE 3.5 (Chains on g-colorings). Consider the following chain on (not
necessarily proper) g-colorings: a vertex v is chosen uniformly at random, a color
is selected uniformly at random among all g colors, and the vertex v is recolored
with the chosen color. We apply the Metropolis rule to this chain, where 7 is the
probability measure which is uniform over the space of proper g-colorings. When at
a proper coloring, if the color k is proposed to update a vertex, then the Metropolis
rule accepts the proposed re-coloring with probability 1 if it yields a proper coloring
and rejects otherwise.

The Glauber chain described in Section 3.3.1 is slightly different. Note in
particular that the chance of remaining at the same coloring differs for the two
chains. If there are a allowable colors at vertex v and this vertex v is selected for
updating in the Glauber dynamics, the chance that the coloring remains the same
is 1/a. For the Metropolis chain, if vertex v is selected, the chance of remaining in
the current coloring is (1 +¢ — a)/q.

EXAMPLE 3.6 (Hardcore chains). Again identify elements of {0,1}" with a
placement of particles onto the vertex set V', and consider the following chain on
{0,1}V: a vertex is chosen at random, and a particle is placed at the selected
vertex with probability 1/2. This chain does not live on the space of hardcore
configurations, as there is no constraint against placing a particle on a vertex with
an occupied neighbor.

We can modify this chain with the Metropolis rule to obtain a chain with
stationary distribution 7, where 7 is uniform over hardcore configurations. If z
is a hardcore configuration, the move z — y is rejected if and only if y is not a
hardcore configuration. The Metropolis chain and the Glauber dynamics agree in
this example.

3.3.4. Hardcore model with fugacity. Let G = (V, E) be a graph and let
Q) be the set of hardcore configurations on G. The hardcore model with fugacity
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A is the probability m on hardcore configurations defined by
)‘Z”Zei‘;o(v) if o(v)o(w) =0 for all {v,w} € E,
n(o) = oY)
0 otherwise.

The factor Z(A) =3, A=»ev ™) normalizes 7 to have unit total mass.

The Glauber dynamics for the hardcore model updates a configuration X; = o
to a new configuration X;;; as follows: a vertex w is chosen at random. Denote
the set of occupied neighbors of w by N, so that

N(w):={v : v~wand o(v) = 1}.
If N(w) # @, then X;,1 = 0. If N(w) = @, then set

Xy 1 (w) = 1 with probability A\/(1 4+ A),
T 10 with probability 1/(1 4 A).

Set Xi11(v) = o(v) for all v # w.

3.3.5. The Ising model. A spin system is a probability distribution on
Q= {-1,1}V, where V is the vertex set of a graph G = (V, E). The value o(v)
is called the spin at v. The physical interpretation is that magnets, each having
one of the two possible orientations represented by +1 and —1, are placed on the
vertices of the graph; a configuration specifies the orientations of these magnets.

The nearest-neighbor Ising model is the most widely studied spin system. In
this system, the energy of a configuration ¢ is defined to be

H(o) =~ Y o(v)o(w). (3.7)

v,weV
v~w

Clearly, the energy increases with the number of pairs of neighbors whose spins
disagree (anyone who has played with magnets has observed firsthand that it is
challenging to place neighboring magnets in opposite orientations and keep them
there).

The Gibbs distribution corresponding to the energy H is the probability
distribution g on €2 defined by

1 — o
Here the partition function Z(() is the normalizing constant required to make
w1 a probability distribution:

Z(B):=> e M), (3.9)
el

The parameter 5 > 0 determines the importance of the energy function. In the
physical interpretation, 3 is the reciprocal of temperature. At infinite temperature
(6 = 0), the energy function H plays no role and  is the uniform distribution on
Q. In this case, there is no interaction between the spins at differing vertices and
the random variables {o(v)},ecy are independent. As 8 > 0 increases, the bias of p
towards low-energy configurations also increases. See Figure 3.2 for an illustration

of the effect of 8 on configurations.
The Glauber dynamics for the Gibbs distribution p move from a starting con-
figuration o by picking a vertex w uniformly at random from V" and then generating
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Ficure 3.2. Glauber dynamics for the Ising model on the 250 x
250 torus viewed at times ¢ = 1,000, 16,500, and 1,000 at low, crit-
ical, and high temperature, respectively. Simulations and graphics
courtesy of Raissa D’Souza.

a new configuration according to p conditioned on the set of configurations agreeing
with o on vertices different from w.
The reader can check that the conditional u-probability of spin +1 at w is

B ePs(ow) 1+ tanh(8S(o,w))
plo,w) := eBS(ow) 4 o—BS(cw) — 2 ’

where S(o,w) = >, .. 0(uw). Note that p(c,w) depends only on the spins at
vertices adjacent to w. Therefore, the transition matrix on € is given by
1 B (w) S(ow)
4 - — .
P@”)’quQMwwm@M+ewwwmmm Lo@=o' @) for vrw)-  (3.11)
ve

(3.10)

This chain has stationary distribution given by the Gibbs distribution p.

Exercises

EXERCISE 3.1. Let ¥ be an irreducible transition matrix on €2, and let © be a
probability distribution on 2. Show that the transition matrix

. W(a,y) | H45ED A1 ity #,
BU =012 5w [ZEMe8 A1) iy =a
z:2#x ’

defines a reversible Markov chain with stationary distribution .
EXERCISE 3.2. Verify that the Glauber dynamics for 7 is a reversible Markov
chain with stationary distribution =.
Notes

The Metropolis chain was introduced in Metropolis, Rosenbluth, Teller, and
Teller (1953) for a specific stationary distribution. Hastings (1970) extended the



CHAPTER 4

Introduction to Markov Chain Mixing

We are now ready to discuss the long-term behavior of finite Markov chains.
Since we are interested in quantifying the speed of convergence of families of Markov
chains, we need to choose an appropriate metric for measuring the distance between
distributions.

First we define total variation distance and give several characterizations
of it, all of which will be useful in our future work. Next we prove the Convergence
Theorem (Theorem 4.9), which says that for an irreducible and aperiodic chain
the distribution after many steps approaches the chain’s stationary distribution,
in the sense that the total variation distance between them approaches 0. In the
rest of the chapter we examine the effects of the initial distribution on distance
from stationarity, define the mizing time of a chain, consider circumstances under
which related chains can have identical mixing, and prove a version of the Ergodic
Theorem (Theorem 4.16) for Markov chains.

4.1. Total Variation Distance

The total variation distance between two probability distributions p and v
on € is defined by

= Vliy = max (4) — w(A)] (4.1)

This definition is explicitly probabilistic: the distance between p and v is the
maximum difference between the probabilities assigned to a single event by the
two distributions.

EXAMPLE 4.1. Recall the coin-tossing frog of Example 1.1, who has probability
p of jumping from east to west and probability ¢ of jumping from west to east. His
transition matrix is (1?' e q) and his stationary distribution is © = (quq, #)
Assume the frog starts at the east pad (that is, po = (1,0)) and define

Ay = pe(e) — mw(e).
Since there are only two states, there are only four possible events A C 2. Hence
it is easy to check (and you should) that
lpe = 7l = Ar = P'(e,e) — m(e) = m(w) — P(e,w).

We pointed out in Example 1.1 that Ay = (1 — p — ¢)!Ag. Hence for this two-
state chain, the total variation distance decreases exponentially fast as ¢ increases.
(Note that (1 —p — ) is an eigenvalue of P; we will discuss connections between
eigenvalues and mixing in Chapter 12.)

The definition of total variation distance (4.1) is a maximum over all subsets
of €2, so using this definition is not always the most convenient way to estimate

47
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w [ H
Ty

| B | B° |

FIGURE 4.1. Recall that B = {z : u(z) > v(x)}. Region I has
area ((B) — v(B). Region II has area v(B¢) — pu(B°). Since the
total area under each of p and v is 1, regions I and II must have
the same area—and that area is || — v|| 1y

the distance. We now give three extremely useful alternative characterizations.
Proposition 4.2 reduces total variation distance to a simple sum over the state
space. Proposition 4.7 uses coupling to give another probabilistic interpretation:
| — v|| 1y, measures how close to identical we can force two random variables re-
alizing p and v to be.

PROPOSITION 4.2. Let p and v be two probability distributions on 2. Then

I vy = 3 3 o) — w)] (1.2

zeQ
PROOF. Let B = {z : p(x) > v(z)} and let A C Q be any event. Then
p(A) =v(4) < (AN B) —v(ANB) < u(B) = v(B). (4.3)

The first inequality is true because any x € AN B¢ satisfies u(x) — v(z) < 0, so the
difference in probability cannot decrease when such elements are eliminated. For
the second inequality, note that including more elements of B cannot decrease the
difference in probability.

By exactly parallel reasoning,

V(A) = u(A) < U(B%) - p(B°). (4.4)

Fortunately, the upper bounds on the right-hand sides of (4.3) and (4.4) are actually
the same (as can be seen by subtracting them; see Figure 4.1). Furthermore, when
we take A = B (or B¢), then |u(A) — v(A)| is equal to the upper bound. Thus

= vly = 5 1(B) = v(B) + v(BY) = u(B)] = 5 3 () — v()]

REMARK 4.3. The proof of Proposition 4.2 also shows that

vy = D (@) — v()], (4.5)
zeQ
(@) >v(x)

which is a useful identity.
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REMARK 4.4. From Proposition 4.2 and the triangle inequality for real num-
bers, it is easy to see that total variation distance satisfies the triangle inequality:
for probability distributions p, v and n,

e = wllpy < Nl = nllpy + 1l = vllpy - (4.6)

PROPOSITION 4.5. Let p and v be two probability distributions on ). Then the
total variation distance between them satisfies

-
- %sup {Z f@)p(x) =Y fle)w(x) : f satisfying glgéqf(xﬂ < 1}. (4.7)
PrOOF. g:;glzlen f Satisﬁemser?laxweg |f(z)] <1, we have
: S ante) - 3 S| < ! S Fwu) o))
<3 3 ()~ viz)
i vl

which shows that the right-hand side of (4.7) is not more than ||u — v|/4,,. Define

Fr(a) = 1 if x satisfies p(z) > v(z),
| =1 if z satisfies p(z) < v(z).

Then

HMRCIORSY f*(-%‘)V(w)] =5 3 P @) nl) — v()

e zEQ zEQ
|

:5{ Yo @) @)+ Y [v(:r)—u(:v)]J-

T€EN TEQ
(@) > () V(@) >n()
Using (4.5) shows that the right-hand side above equals ||u — v||1,,. Hence the

right-hand side of (4.7) is at least ||u — v|| 1, - |

4.2. Coupling and Total Variation Distance

A coupling of two probability distributions p and v is a pair of random vari-
ables (X,Y") defined on a single probability space such that the marginal distribu-
tion of X is p and the marginal distribution of Y is v. That is, a coupling (X,Y)
satisfies P{X =z} = p(z) and P{Y = y} = v(y).

Coupling is a general and powerful technique; it can be applied in many differ-
ent ways. Indeed, Chapters 5 and 14 use couplings of entire chain trajectories to
bound rates of convergence to stationarity. Here, we offer a gentle introduction by
showing the close connection between couplings of two random variables and the
total variation distance between those variables.

ExaMPLE 4.6. Let g and v both be the “fair coin” measure giving weight 1/2
to the elements of {0, 1}.
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(i) One way to couple p and v is to define (X,Y) to be a pair of independent
coins, so that P{X =z, Y =y} = 1/4 for all z,y € {0,1}.

(ii) Another way to couple p and v is to let X be a fair coin toss and define
Y = X. In this case, P{X =Y =0} =1/2, P{X =Y = 1} = 1/2, and
P{X#Y}=0.

Given a coupling (X,Y) of p and v, if ¢ is the joint distribution of (X,Y") on
2 x Q, meaning that ¢(z,y) = P{X = z,Y = y}, then ¢ satisfies
Yo dl@y) =) P{X =2z Y =y}=P{X =21} =)
yeQ yeQ

and

Y alry) =) P{X =z,Y =y} =P{Y =y} =v(y).

e zeQ
Conversely, given a probability distribution ¢ on the product space € x Q0 which
satisfies

Y alzy) = plx) and Y qlr,y) = v(y),

yeQ xeQ

there is a pair of random variables (X, Y") having ¢ as their joint distribution — and
consequently this pair (X,Y’) is a coupling of y and v. In summary, a coupling
can be specified either by a pair of random variables (X,Y") defined on a common
probability space or by a distribution ¢ on € x €.

Returning to Example 4.6, the coupling in part (i) could equivalently be spec-
ified by the probability distribution ¢; on {0,1}? given by

1
¢1(z,y) = 1 for all (z,y) € {0,1}%
Likewise, the coupling in part (ii) can be identified with the probability distribution
q2 given by
l if x’u - 0707 x?u = 1717
(2, y) = 4 2 ‘( y) =(0,0), (z,y) = (1,1)
0 if (z,y) =(0,1), (z,y) = (1,0).

Any two distributions p and v have an independent coupling. However, when g
and v are not identical, it will not be possible for X and Y to always have the same
value. How close can a coupling get to having X and Y identical? Total variation
distance gives the answer.

PROPOSITION 4.7. Let u and v be two probability distributions on 2. Then
I = vl|py =nf{P{X #Y} : (X,Y) is a coupling of p and v} . (4.8)

REMARK 4.8. We will in fact show that there is a coupling (X,Y’) which attains
the infimum in (4.8). We will call such a coupling optimal.

PROOF. First, we note that for any coupling (X,Y) of p and v and any event
ACQ,

W(A) — v(A) =P{X € A} — P{Y € A} (4.9)
<P{XcAY A (4.10)
<P{X#Y}. (4.11)
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U I H
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FIGURE 4.2. Since each of regions I and II has area ||t — v||py,
and p and v are probability measures, region III has area 1 —

= vllpy-

(Dropping the event {X ¢ A, Y € A} from the second term of the difference gives
the first inequality.) It immediately follows that

lpe — vl <inf{P{X #Y} : (X,Y)is a coupling of ;x and v} . (4.12)

It will suffice to construct a coupling for which P{X # Y} is exactly equal to
| — v||py. We will do so by forcing X and Y to be equal as often as they possibly
can be. Consider Figure 4.2. Region ITI, bounded by p(z)Av(z) = min{u(x), v(z)},
can be seen as the overlap between the two distributions. Informally, our coupling
proceeds by choosing a point in the union of regions I, II, and ITI. Whenever we
“land” in region III, we take X = Y. Otherwise, we accept that X must be in
region I and Y must be in region II; since those regions have disjoint support, X
and Y cannot be equal.
More formally, we use the following procedure to generate X and Y. Let

p= Z w(zx) Av(z).

e
Write
Su@ v = Y @+ Y v
TEQ xEQ, xEQ,
p(z)<v(z) w(x)>v(x)

Adding and subtracting >°_ . (@) >v(@) u(x) to the right-hand side above shows that

S ou@) vy =1— > [u(z) - v(z))
e W ore)

By equation (4.5) and the immediately preceding equation,

S ) Av(@) =1 = = vy =p. (4.13)

zeQ
Flip a coin with probability of heads equal to p.

(i) If the coin comes up heads, then choose a value Z according to the probability

distribution

o) = ),

andset X =Y = Z.
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(ii) If the coin comes up tails, choose X according to the probability distribution

wx)—v(z)
() = 4 vy L) > (@),
0 otherwise,

and independently choose Y according to the probability distribution

y(z) = lljl(fz;ﬂtr(f/) if v(z) > pl@),
0 otherwise.

Note that (4.5) ensures that 41 and 11 are probability distributions.
Clearly,

py+ (1 —p)yn =i,
pyn + (1 —p)yn = v,

so that the distribution of X is u and the distribution of Y is v. Note that in the
case that the coin lands tails up, X # Y since 41 and 11 are positive on disjoint
subsets of 2. Thus X =Y if and only if the coin toss is heads. We conclude that

PIX#Y} = lp vy -
u

4.3. The Convergence Theorem

We are now ready to prove that irreducible, aperiodic Markov chains converge
to their stationary distributions a key step, as much of the rest of the book will be
devoted to estimating the rate at which this convergence occurs. The assumption
of aperiodicity is indeed necessary—recall the even n-cycle of Example 1.4.

As is often true of such fundamental facts, there are many proofs of the Conver-
gence Theorem. The one given here decomposes the chain into a mixture of repeated
independent sampling from the stationary distribution and another Markov chain.
See Exercise 5.1 for another proof using two coupled copies of the chain.

THEOREM 4.9 (Convergence Theorem). Suppose that P is irreducible and ape-
riodic, with stationary distribution w. Then there exist constants o € (0,1) and
C > 0 such that

t t
max HP (x,+) — ﬂ'HTV < Ca'. (4.14)

PROOF. Since P is irreducible and aperiodic, by Proposition 1.7 there exists
an r such that P" has strictly positive entries. Let II be the matrix with || rows,
each of which is the row vector 7. For sufficiently small § > 0, we have

P'(z,y) = on(y)
for all z,y € Q. Let 8 =1 — §. The equation
PT=(1-0)T+6Q (4.15)

defines a stochastic matrix Q).

It is a straightforward computation to check that MTII = II for any stochastic
matrix M and that IIM = II for any matrix M such that 7M = 7.

Next, we use induction to demonstrate that

P =(1-0") 1+ 60"QF (4.16)
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for k > 1. If k = 1, this holds by (4.15). Assuming that (4.16) holds for k = n,

printl) — propr — [(1 — ™)1 4 0"Q"] P". (4.17)
Distributing and expanding P" in the second term (using (4.15)) gives
Prvth — (1 - 9" TIP" + (1 — 0)0"Q T + 6™ Q"Q. (4.18)
Using that I[TP" = IT and Q™II = II shows that
priovil) — 1 — gt I+ g Q. (4.19)

This establishes (4.16) for k = n + 1 (assuming it holds for k¥ = n), and hence it
holds for all k.
Multiplying by P’ and rearranging terms now yields

P I = 0% (QFPT —11) . (4.20)

To complete the proof, sum the absolute values of the elements in row xo on both

sides of (4.20) and divide by 2. On the right, the second factor is at most the

largest possible total variation distance between distributions, which is 1. Hence
for any z¢ we have 4

| PT*H (o, -) — 7| gy < 0. (4.21)

|

REMARK 4.10. Because of Theorem 4.9, the distribution 7 is also called the
equilibrium distribution.

4.4. Standardizing Distance from Stationarity

Bounding the maximal distance (over zg € §2) between P!(zg, ) and 7 is among
our primary objectives. It is therefore convenient to define

d(t) == max | P! (z,-) — 7THTV . (4.22)

We will see in Chapter 5 that it is often possible to bound || P*(z,-) — P*(y,-)|l 1y
uniformly over all pairs of states (z,y). We therefore make the definition

d(t) := max | P*(z, ) — P(y,-

4.23
z,ye ( )

Mz -

The relationship between d and d is given below:

LEMMA 4.11. If d(t) and d(t) are as defined in (4.22) and (4.23), respectively,
then

d(t) < d(t) < 2d(t). (4.24)

PROOF. It is immediate from the triangle inequality for the total variation

distance that d(t) < 2d(t).

To show that d(t) < d(t), note first that since 7 is stationary, we have 7(A4) =
ZyEQ 7(y)Pt(y, A) for any set A. (This is the definition of stationarity if A is a
singleton {x}. To get this for arbitrary A, just sum over the elements in A.) Using
this shows that

[P (@, ) = || gy, = max |P!(z, A) = m(A)]

= max > w(y) [Pz, A) = P(y, A)]|.
yeQ
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We can use the triangle inequality and the fact that the maximum of a sum is not
larger than the sum over a maximum to bound the right-hand side above by

t t i t
maXZ Y|P (z, A) = P'(y, A)| < Zﬂ(y)gﬂggglp (z,A) = P'(y, A)]
yeN yeQ
= S W) [P ) = Py (429
yeR

Since a weighted average of a set of numbers is never larger than its maximum
element, the right-hand side of (4.25) is bounded by maxycq || P*(z, ) — P'(y,)|ly-
|

Let P denote the collection of all probability distributions on 2. Exercise 4.1
asks the reader to prove the following equalities:

d(t) = sup [|[uP" =7l
neEP

d(t) = sup [[uP'—vP"'
P

)

LEMMA 4.12. The function d is submultiplicative: d(s +t) < d(s)d(t).

PROOF. Fix z,y € , and let (X4, Y;) be the optimal coupling of P*(z,-) and
P*(y,-) whose existence is guaranteed by Proposition 4.7. Hence

[P*(x,-) = P*(y, ) llpy = P{Xs # Y}
As P*tt is the matrix product of P! and P?® and the distribution of X, is
P#(x,-), we have

Pt (2, w) ZPS x, 2)P*(z,w) ZP{X = 2} P'(z,w) = E (P"(X,,w)) .

e -

Combining this with the similar identity P5(y,w) = E (P!(Ys,w)) allows (352‘?())
write
Pt (z,w) — P (y,w) = E (P'(X,,w)) — E (P"(Y;,w))
=E (P'(Xs,w) — P'(Y;,w)) .
Combining the expectations is possible since X and Y; are defined together on the

same probability space.
Summing (4.27) over w € Q and applying Proposition 4.2 shows that

(4.27)

[P (2, ) = P (y, )| oy = Z |E (P'(X,,w) — P"(Y,,w))]|. (4.28)
The right-hand side above is less than or equal to

E(%Z’Pt(Xs,w)Pt(Ys,w)’). (4.29)

w
Applying Proposition 4.2 again, we see that the quantity inside the expectation is
exactly the distance ||[P*(X,-) = P*(Ys,:)||lpy, which is zero whenever X, = Y.
Moreover, this distance is always bounded by d(t). This shows that

[P+ (z, ) — P+ (y, - HTV dt)E (Lix, 2v,y) = d(t)P{X, # Y,}. (4.30)

Finally, since (X§, Ys) is an optimal coupling, the probability on the right-hand side
is equal to |P*(z, ) — P*(y,-)||py. Maximizing over z,y completes the proof. M
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Exercise 4.3 implies that d(t) is non-increasing in ¢. From this and Lemma 4.12
it follows that when c is any non-negative integer and ¢ is any non-negative integer,
we have

d(ct) < d(ct) < d(t)°. (4.31)

4.5. Mixing Time

It is useful to introduce a parameter which measures the time required by a
Markov chain for the distance to stationarity to be small. The mixing time is
defined by

tmix(€) := min{t : d(¢t) < e} (4.32)

and
tmix 1= tmix(1/4). (4.33)

Lemma 4.11 and (4.31) show that when ¢ is a non-negative integer,
d(Ltmix(€)) < d(Ltmix(€)) < d(tmix(e) )" < (2)" (4.34)
In particular, taking e = 1/4 above yields

d( ltmix) < 27° (4.35)

and
tmix(€) < [logy e ™ tmix. (4.36)

Thus, although the choice of 1/4 is arbitrary in the definition (4.33) of tyix, a value
of & less than 1/2 is needed to make the inequality d(/tmix(c)) < (2¢)° in (4.34)
non-trivial and to achieve an inequality of the form (4.36).

4.6. Mixing and Time Reversal

For a distribution p on a group G, the inverse distribution [ is defined by
f(g) == pu(g~?) for all g € G. Let P be the transition matrix of the random walk
with increment distribution . Then the random walk with increment distribution
7i is exactly the time reversal P (defined in (1.33)) of P.

In Proposition 2.14 we noted that when i = p, the random walk on G with
increment distribution p is reversible, so that P = P. Even when W is not a
symmetric distribution, however, the forward and reversed walks must be at the
same distance from stationarity, as we will find useful in analyzing card shuffling in
Chapters 6 and 8.

LEMMA 4.13. Let P be the transition matriz of a random walk on a group G
with increment distribution p and let P be that of the walk on G with increment
distribution [i. Let w be the uniform distribution on G. Then for any t > 0

[P, ) =gy = [P )~ x| -

Proor. Let (X;) = (id, X1,...) be a Markov chain with transition matrix P
and initial state id. We can write X = ¢192...9x, where the random elements
g1, 92, -+ € G are independent choices from the distribution p. Similarly, let (Y;)
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Putting together (4.41) and (4.42) shows that

S+
P, { lim —2" = Ew(f)} =1.

n—00 Tyn

Exercise 4.2 shows that (4.40) holds when p = d,, the probability distribution with
unit mass at x. Averaging over the starting state completes the proof. |

Taking f(y) = 02(y) = 1{y=z} in Theorem 4.16 shows that

t—1
L1
P, {JS& I = w(w)} -1,
s=0
so the asymptotic proportion of time the chain spends in state = equals 7(z).
Exercises

EXERCISE 4.1. Prove that

d(t) = sup ||uP" — 7THTV ,
m

d(t) = sup||pP" — vP*
"%

HTV’

where 1 and v vary over probability distributions on a finite set €.

EXERCISE 4.2. Let (a,) be a bounded sequence. If, for a sequence of integers
(ny) satisfying limy_,o ng/ng+1 = 1, we have

. art et ap,
lim —* =aq,
k—o0 Nk
then
. ar+---+ap
lim ———— =a.
n—oo n

EXERCISE 4.3. Let P be the transition matrix of a Markov chain with state
space 2 and let p and v be any two distributions on 2. Prove that

[P = vPpy <l =vllpy -

(This in particular shows that ||uP™™" — x|, <|[|uP" — 7|1y, that is, advancing
the chain can only move it closer to stationarity.)

EXERCISE 4.4. Let P be the transition matrix of a Markov chain with stationary
distribution 7. Prove that for any ¢ > 0,

dt +1) < d(t),
where d(t) is defined by (4.22).

EXERCISE 4.5. For i = 1,...,n, let p; and v; be measures on §2;, and define
measures £ and v on [[}"; Q; by p:=[[;", pi and v :=[[}_; v;. Show that

n
= vliey <D llui = villpy -

i=1



CHAPTER 5
Coupling

5.1. Definition

As we defined in Section 4.1, a coupling of two probability distributions p and
v is a pair of random variables (X,Y’), defined on the same probability space, such
that the marginal distribution of X is p and the marginal distribution of Y is v.

Couplings are useful because a comparison between distributions is reduced to
a comparison between random variables. Proposition 4.7 characterized || — vl
as the minimum, over all couplings (X,Y") of u and v, of the probability that X
and Y are different. This provides an effective method of obtaining upper bounds
on the distance.

In this chapter, we will extract more information by coupling not only pairs of
distributions, but entire Markov chain trajectories. Here is a simple initial example.

EXAMPLE 5.1. A simple random walk on the segment {0, 1,...,n} is a Markov
chain which moves either up or down at each move with equal probability. If the
walk attempts to move outside the interval when at a boundary point, it stays put.
It is intuitively clear that P!(z,n) < P!(y,n) whenever z < y, as this says that the
chance of being at the “top” value n after ¢ steps does not decrease as you increase
the height of the starting position.

A simple proof uses a coupling of the distributions P(x,-) and P'(y,-). Let
A1, A, ... be a sequence of i.i.d. (that is, independent and identically distributed)
{—1,1}-valued random variables with zero mean, so each A; is equally likely to be
+1 as —1. We will define together two random walks on {0,1,...,n}: the walk
(X) starts at z;, while the walk (Y;) starts at y.

We use the same rule for moving in both chains (X;) and (Y;): if A, = +1,
move the chain up if possible, and if A; = —1, move the chain down if possible.
Hence the chains move in step, although they are started at different heights. Once
the two chains meet (necessarily either at 0 or n), they stay together thereafter.

S~ N w A
o =0 ‘<

Ficure 5.1. Coupled random walks on {0,1,2,3,4}. The walks
stay together after meeting.

63
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Clearly the distribution of X; is P*(x,-), and the distribution of Y; is P(y, ).
Importantly, X; and Y; are defined on the same underlying probability space, as
both chains use the sequence (A;) to determine their moves.

It is clear that if z < y, then X; <Y} for all ¢. In particular, if X; = n, the top
state, then it must be that Y; = n also. From this we can conclude that

P'(z,n) = P{X; =n} < P{Y; =n} = P'(y,n). (5.1)

This argument shows the power of coupling. We were able to couple together
the two chains in such a way that X; < Y; always, and from this fact about the
random variables we could easily read off information about the distributions.

In the rest of this chapter, we will see how building two simultaneous copies of
a Markov chain using a common source of randomness, as we did in the previous
example, can be useful for getting bounds on the distance to stationarity.

We define a coupling of Markov chains with transition matrix P to be a
process (Xy, Y;)$2, with the property that both (X;) and (Y;) are Markov chains
with transition matrix P, although the two chains may possibly have different
starting distributions.

Any coupling of Markov chains with transition matrix P can be modified so
that the two chains stay together at all times after their first simultaneous visit to
a single state—more precisely, so that

if X =Y, then X; =Y, for ¢t > s. (5.2)
To construct a coupling satisfying (5.2), simply run the chains according to the

original coupling until they meet; then run them together.

NotaTION. If (X;) and (Y;) are coupled Markov chains with Xy = x and
Yy = y, then we will often write P, , for the probability on the space where (X})
and (Y;) are both defined.

5.2. Bounding Total Variation Distance

As usual, we will fix an irreducible transition matrix P on the state space 2
and write 7 for its stationary distribution. The following is the key tool used in
this chapter.

THEOREM 5.2. Let {(X,Y:)} be a coupling satisfying (5.2) for which Xo = x
and Yo = y. Let Teouple be the first time the chains meet:
Teouple := min{t : X; = Y;}. (5.3)
Then
[P (x,-) = P'(y, )| oy < Paiy{Teouple > t}. (5.4)
PRrOOF. Notice that P'(z,z) = P, {X; = z} and P'(y,z) = P, ,{Y; = z}.

Consequently, (X;,Y;) is a coupling of P!(x,-) with P!(y,-), whence Proposition
4.7 implies that

[P (z,) = P'(y.)|| oy < Pay{Xi # Vi) (5.5)
By (5.2), P, o { X # Y3} = Py y{Tcouple > t}, which with (5.5) establishes (5.4). W

Combining Theorem 5.2 with Lemma 4.11 proves the following:
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COROLLARY 5.3. Suppose that for each pair of states x,y € S there is a coupling
(X4, Y2) with Xo = x and Yo = y. For each such coupling, let Teouple be the first
time the chains meet, as defined in (5.3). Then

d(t) < max Py y{Tcouple > t}.
ERISY

Given a Markov chain on 2 with transition matrix P, a Markovian coupling
of P is a Markov chain with state space 2 x €2 whose transition matrix () satisfies

(i) for all z,y, 2’ we have 3, Q((z,y), (z',y')) = P(z,2) and
(H) fOI' a‘u Zr,Y, yl we have Zw’ Q((Ia y)7 (xlay/)) = P(ya y/)'

Clearly any Markovian coupling is indeed a coupling of Markov chains, as we defined
in Section 5.1.

REMARK 5.4. All couplings used in this book will be Markovian.

5.3. Examples

5.3.1. Random walk on the cycle. We defined random walk on the n-cycle
in Example 1.4. The underlying graph of this walk, Z,,, has vertex set {1,2,...,n}
and edges between j and k whenever j =k +1 mod n. See Figure 1.3.

We consider the lazy walk, which remains in its current position with proba-
bility 1/2, moves clockwise with probability 1/4, and moves counterclockwise with
probability 1/4.

We construct a coupling (X¢,Y:) of two particles performing lazy walks on
Zny, one started from z and the other started from y. In this coupling, the two
particles will never move simultaneously, ensuring that they will not jump over one
another when they come to within unit distance. At each move, a fair coin is tossed,
independent of all previous tosses. If heads, the chain (X;) moves one step, the
direction of which is determined by another fair coin toss, again independent of all
other previous tosses. If tails, the chain (Y;) moves one step, also determined by
an independent fair coin toss. Once the two particles collide, thereafter they make
identical moves. Let D; be the clockwise distance between the two particles. Note
that Dy is a simple random walk on the interior vertices of {0,1,2,...,n} and gets
absorbed at either 0 or n. By Proposition 2.1, if 7 = min{¢t > 0 : D; € {0,n}},
then E, ,(7) = k(n — k), where k is the clockwise distance between z and y. Since
T = Teouple, by Corollary 5.3,

2

maxy y By (1) o
At

d(t) < P, >t <
)< g Pealr >0 < =5
The right-hand side equals 1/4 for ¢t = n?, whence tyix < n?.

In Section 7.4.1, it is shown that tmix > c1n? for a constant c;.

5.3.2. Random walk on the torus. The d-dimensional torus is graph whose
vertex set is the Cartesian product
2L = Ty X -+ X Loy .
—_———

d times

Vertices ¢ = (z%,...,2%) and y = (y,?,...,y?%) are neighbors in Z¢ if for some

j € {1,2,...,n}, we have ' = y® for all i # j and 2/ = ¢/ £ 1 mod n. See
Figure 5.2 for an example.
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FIGURE 5.2. The 2-torus Z3.

When n is even, the graph ZZ is bipartite and the associated random walk is
periodic. To avoid this complication, we consider the lazy random walk on ZZ,
defined in Section 1.3. This walk remains at its current position with probability
1/2 at each move.

We now use coupling to bound the mixing time of the lazy random walk on Z¢.

THEOREM 5.5. For the lazy random walk on the d-dimension torus 74,
tmix(€) < c(d)n?logy (71, (5.6)
where ¢(d) is a constant depending on the dimension d.

PRrROOF. In order to apply Corollary 5.3 to prove this theorem, we construct a
coupling for each pair (x,y) of starting states and bound the expected value of the
coupling time Teouple = Te,y-

To couple together a random walk (X ;) started at & with a random walk (Y;)
started at y, first pick one of the d coordinates at random. If the positions of the
two walks agree in the chosen coordinate, we move both of the walks by +1, —1,
or 0 in that coordinate, with probabilities 1/4, 1/4 and 1/2, respectively. If the
positions of the two walks differ in the chosen coordinate, we randomly choose one
of the chains to move, leaving the other fixed. We then move the selected walk by
41 or —1 in the chosen coordinate, with the sign determined by a fair coin toss.

Let X; = (X},..., X)) and Y, = (V}},..., V%), and let

7 =min{t >0 : X; =Y/}

be the time required for the chains to agree in coordinate i.

The clockwise difference between X} and Y}, viewed at the times when coor-
dinate i is selected, behaves just as the coupling of the lazy walk on the cycle Z,
discussed above. Thus, the expected number of moves in coordinate ¢ needed to
make the two chains agree on that coordinate is not more than n?/4.

Since coordinate i is selected with probability 1/d at each move, there is a
geometric waiting time between moves with expectation d. Exercise 5.3 implies
that

2
Eqy(7i) < d% (5.7)
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Copyl: 0 01 1 0/[1] 00 11

Copy2 0 1 1 0 0[0] 1010 a>
Copyl: 00 1 1 0 [1] 00 1 1
Copy2: 001 1 0 0 [1] 1 0 1 0

FIGURE 5.3. One step in two coupled lazy walks on the hyper-
cube. First, choose a coordinate to update—here, the sixth. Then,
flip a 0/1 coin and use the result to update the chosen coordinate
to the same value in both walks.

The coupling time we are interested in is Teouple = Maxi<i<q 7i, and we can
bound the maximum by a sum to get
d*n?
Em,y(Tcouple) S 4
This bound is independent of the starting states, and we can use Markov’s inequality
to show that

(5.8)

Pa oy {Teouple > 1} < Ew,y(’;couple) < %dzﬂ (5.9)
Taking o = d’n? shows that d(to) < 1/4, and s0 tyix < d’n?. By (4.36),
tmix(€) < d*n? {log(s_l)] ,
and we have proved the theorem. |

Exercise 5.4 shows that the bound on ¢(d) can be improved.

5.3.3. Random walk on the hypercube. The simple random walk on the
hypercube {0, 1}" was defined in Section 2.3: this is the simple walker on the graph
having vertex set {0, 1}", the binary words of length n, and with edges connecting
words differing in exactly one letter. (Note that this graph is also the torus Z%.)

To avoid periodicity, we study the lazy chain: at each time step, the walker
remains at her current position with probability 1/2 and with probability 1/2 moves
to a position chosen uniformly at random among all neighboring vertices.

As remarked in Section 2.3, a convenient way to generate the lazy walk is as
follows: pick one of the n coordinates uniformly at random, and refresh the bit at
this coordinate with a random fair bit (one which equals 0 or 1 each with probability
1/2).

This algorithm for running the walk leads to the following coupling of two
walks with possibly different starting positions: first, pick among the n coordinates
uniformly at random; suppose that coordinate ¢ is selected. In both walks, replace
the bit at coordinate ¢ with the same random fair bit. (See Figure 5.3.) From this
time onwards, both walks will agree in the i-th coordinate. A moment’s thought
reveals that individually each of the walks is indeed a lazy random walk on the
hypercube.

If 7 is the first time when all of the coordinates have been selected at least
once, then the two walkers agree with each other from time 7 onwards. (If the
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initial states agree in some coordinates, the first time the walkers agree could be
strictly before 7.) The distribution of 7 is exactly the same as the coupon collector
random variable studied in Section 2.2. Using Corollary 5.3, together with the
bound on the tail of 7 given in Proposition 2.4, shows that

d(nlogn + cn) < P{r > nlogn +cn} < e *.
It is immediate from the above that
tmix(¢) < nlogn + log(1/e)n. (5.10)

Simply, tmix = O(nlogn). The bound in (5.10) is off by a factor of two and will be
sharpened in Section 18.2.2 via a more sophisticated coupling.

5.3.4. Random walk on a finite binary tree. Since trees will appear in
several examples in the sequel, we collect some definitions here. A tree is a con-
nected graph with no cycles. (See Exercise 1.3 and Exercise 1.4.) A rooted tree
has a distinguished vertex, called the root. The depth of a vertex v is its graph
distance to the root. A lewvel of the tree consists of all vertices at the same depth.
The children of v are the neighbors of v with depth larger than v. A leaf is a
vertex with degree one.

A rooted finite b-ary tree of depth k, denoted by Ty, is a tree with a
distinguished vertex vg, the root, such that

e vg has degree b,
e every vertex at distance j from the root, where 1 < j < k — 1, has degree
b+1,
e the vertices at distance k from vg are leaves.
There are n = (b¥*1 —1)/(b — 1) vertices in T} .
In this example, we consider the lazy random walk on the finite binary tree
T i; this walk remains at its current position with probability 1/2.

FIGURE 5.4. A binary tree of height 3.

Consider the following coupling (X3, Y;) of two lazy random walks, started from
states xg and yo on the tree. Assume, without loss of generality, that xg is at least
as close to the root as yp. At each move, toss a fair coin to decide which of the two
chains moves: if heads, Y;;1 = Y;, while X, is chosen from the neighbors of X,
uniformly at random. If the coin toss is tails, then X;1; = X, and Y;41 is chosen
from the neighbors of Y; uniformly at random. Run the two chains according to
this rule until the first time they are at the same level of the tree. Once the two
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(b) If in (a) we take v = m, where 7 is the stationary distribution, then (by defini-
tion) mP' = 7, and (5.18) bounds the difference between pP* and 7. The only
thing left to check is that there exists a coupling guaranteed to coalesce, that
is, for which P{7couple < 00} = 1. Show that if the chains (X;) and (Y;) are
taken to be independent of one another, then they are assured to eventually
meet.

EXERCISE 5.2. Let (X,Y;) be a Markovian coupling such that for some 0 <
a < 1 and some g > 0, the coupling time Teouple = min{t > 0 : X; =Y, } satisfies
P{Tcouple < to} > a for all pairs of initial states (z,y). Prove that

to
E(Tcouple) S E
EXERCISE 5.3. Show that if X3, Xo,... are independent and each have mean
w and if 7 is a Z'-valued random variable independent of all the X;’s, then

E <ZT: Xl-) = uE(7).

EXERCISE 5.4. We can get a better bound on the mixing time for the lazy
walker on the d-dimensional torus by sharpening the analysis of the “coordinate-
by-coordinate” coupling given in the proof of Theorem 5.5.

Let ¢ > kdnZ2.

(a) Show that the probability that the first coordinates of the two walks have not

yet coupled by time ¢ is less than (1/4)".

(b) By making an appropriate choice of k and considering all the coordinates,

obtain an O((dlog d)n?) bound on #p;y.

Notes

The use of coupling in probability is usually traced back to Doeblin (1938).
Couplings of Markov chains were first studied in Pitman (1974) and Griffeath
(1974/75). See also Pitman (1976). See Luby, Randall, and Sinclair (1995) and
Luby, Randall, and Sinclair (2001) for interesting examples of couplings.

For Glauber dynamics on colorings, it is shown in Chapter 14 that if the number
of colors ¢ satisfies ¢ > 2A, then the mixing time is of order nlogn.

Luby and Vigoda (1999) show that for a different Markov chain with the hard-
core model as its stationary distribution, for A small enough, the mixing time is of
order nlogn. See also Luby and Vigoda (1995) and Vigoda (2001).

Further reading. For more on coupling and its applications in probability,
see Lindvall (2002) and Thorisson (2000).



CHAPTER 6

Strong Stationary Times

6.1. Top-to-Random Shuffle

We begin this chapter with an example. Consider the following (slow) method
of shuffling a deck of n cards: take the top card and insert it uniformly at random in
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of the deck are a random walk on the group S,, of n! possible permutations of the

the deck. This process will eventually mix up the deck—the successive arrangements
cards, which by Proposition 2.12 has uniform stationary distribution.
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Ficure 6.1. The top-to-random shuffle.

How long must we shuffle using this method until the arrangement of the deck

is close to random?

Let Top be the time one move after the first occasion when the original bottom

card has moved to the top of the deck. We show now that the arrangement of cards

.,n}

at time Tyop is distributed uniformly on the set S,, of all permutations of {1, ..
and moreover this random element of S,, is independent of the time T¢qp.

More generally, we prove the following:

PROPOSITION 6.1. Let (X;) be the random walk on S,, corresponding to the

Given at time t that there are k cards under
75

the original bottom card, each of the k! possible orderings of these cards are equally
likely. Therefore, if Tiop 1s one shuffle after the first time that the original bottom

top-to-random shuffle on n cards.
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card moves to the top of the deck, then the distribution of X
and the time Tyop is independent of Xr,

Teop 48 Uniform over Sp,

ProOF. When t = 0, there are no cards under the original bottom card, and
the claim is trivially valid. Now suppose that the claim holds at time ¢. There are
two possibilities at time t + 1: either a card is placed under the original bottom
card, or not. In the second case, the cards under the original bottom card remain
in random order. In the first case, given that the card is placed under the original
bottom card, each of the k 4 1 possible locations for the card is equally likely, and
so each of the (k + 1)! orderings are equiprobable. |

If we stop shuffling precisely one shuffle after the original bottom card rises
to the top of the deck for the first time, then the order of the cards at this time
is exactly uniform over all possible arrangements. That is, X, = has ezactly the
stationary distribution of the chain. In this chapter, we show how we can use
the distribution of the random time 7o, to bound ik, the fized number of steps
needed for the distribution of the chain to be approzimately stationary.

6.2. Definitions

6.2.1. Stopping times. Suppose you give instructions to your stock broker
to sell a particular security when its value next drops below 32 dollars per share.
This directive can be implemented by a computer program: at each unit of time,
the value of the security is checked; if the value at that time is at least 32, no action
is taken, while if the value is less than 32, the asset is sold and the program quits.

You would like to tell your broker to sell a stock at the first time its value equals
its maximum value over its lifetime. However, this is not a reasonable instruction,
because to determine on Wednesday whether or not to sell, the broker needs to
know that on Thursday the value will not rise and in fact for the entire infinite
future that the value will never exceed its present value. To determine the correct
decision on Wednesday, the broker must be able to see into the future!

The first instruction is an example of a stopping time, which we will now define,
while the second rule is not.

Given a sequence (X;){2, of Q-valued random variables, a {0,1,2,...,00}-
valued random variable 7 is a stopping time for (X;) if, for each t € {0,1,...},
there is a set By C Q! such that

{T = t} = {(XUaXh .- -aXt) € Bt}

In other words, a random time 7 is a stopping time if and only if the indicator
function 1;,—;) is a function of the vector (Xo, X1,..., Xy).

EXAMPLE 6.2 (Hitting times). Fix A C Q. The vector (Xo, X1,...,X;) deter-
mines whether a site in A is visited for the first time at time ¢. That is, if

TA=min{t >0 : X; € A}
is the first time that the sequence (X;) is in A, then
{TA :t} = {XO §é A,Xl %A,...,Xt,1 ¢A,Xt EA}

Therefore, 74 is a stopping time. (We saw the special case where A = {z} consists
of a single state in Section 1.5.2.)
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Consider the top-to-random shuffle, defined in Section 6.1. Let A be the set
of arrangements having the original bottom card on top. Then 7o, = 74 + 1. By
Exercise 6.1, Tiop is a stopping time.

6.2.2. Randomized stopping times. The following example is instructive.

ExAMPLE 6.3 (Random walk on the hypercube). The lazy random walk (X)
on the hypercube {0,1}" was introduced in Section 2.3, and we used coupling to
bound the mixing time in Section 5.3.3. Recall that a move of this walk can be
constructed using the following random mapping representation: an element (j, B)
from {1,2,...,n} x {0, 1} is selected uniformly at random, and coordinate j of the
current state is updated with the bit B.

In this construction, the chain is determined by the i.i.d. sequence (7;), where
Z = (ji, Bt) is the coordinate and bit pair used to update at step .

Define

Trefresh = min {t > 0: {jla cee 7jt} = {17 27 ey n}}7
the first time when all the coordinates have been selected at least once for updating.

Because at time Tefresh all of the coordinates have been replaced with indepen-
dent fair bits, the distribution of the chain at this time is uniform on {0,1}". That
is, X7, e 18 an exact sample from the stationary distribution 7.

Note that Tiefresh 1S not a function of (X;), but it is a function of (Z;). In
particular, while Tyefresh is nOt a stopping time for (Xy), it is a stopping time for

(Z4)-

Recall that we showed in Section 1.2 that every transition matrix P has a
random mapping representation: we can find an i.i.d. sequence (Z;)$2; and a map
f such that the sequence (X;)$2, defined inductively by

Xo ==, Xe = f(Xi—1, Zy)

is a Markov chain with transition matrix P started from z. A random time 7 is
called a randomized stopping time for the Markov chain (X;) if it is a stopping
time for the sequence (Z;).

ExAMPLE 6.4. We return to Example 6.3, the lazy random walk on the hyper-
cube. As remarked there, the time Tyefresh i & stopping time for the sequence (Z;),
where Z; is the coordinate and bit used to update at time ¢. Therefore, Tiefresh 1S a
randomized stopping time.

6.3. Achieving Equilibrium

For the top-to-random shuffle, one shuffle after the original bottom card rises
to the top, the deck is in completely random order. Likewise, for the lazy random
walker on the hypercube, at the first time when all of the coordinates have been
updated, the state of the chain is a random sample from {0,1}"™. These random
times are examples of stationary times, which we now define.

Let (X;) be an irreducible Markov chain with stationary distribution 7. A
stationary time 7 for (X;) is a randomized stopping time, possibly depending on
the starting position z, such that the distribution of X, is :

Px{X‘r = y} = W(y) (61)
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EXAMPLE 6.5. Let (X;) be an irreducible Markov chain with state space 2 and
stationary distribution 7. Let & be a 2-valued random variable with distribution
7, and define

T=min{t >0 : X; =¢&}.
The time 7 is a randomized stopping time, and because X, = &, it follows that 7
is a stationary time.

Suppose the chain starts at zg. If 7 = 0, then X, = x; therefore, 7 and X,
are not independent.

EXAMPLE 6.6. Let (X;) be the random walk on the n-cycle. Define 7 by tossing
a coin with probability of heads 1/n. If “heads”, let T = 0; if “tails”, let 7 be the
first time every state has been visited at least once. Given “tails”, the distribution
of X, is uniform over all n—1 states different from the starting state. (See Exercise
6.9.) This shows that X, has the uniform distribution, whence 7 is a stationary
time.

However, 7 = 0 implies that X, is the starting state. Therefore, as in Exam-
ple 6.5, 7 and X, are not independent.

As mentioned at the end of Section 6.1, we want to use the time 7y, to bound
tmix. To carry out this program, we need a property of 7iop stronger than (6.1). We
will need that 7p is independent of X, , a property not enjoyed by the stationary
times in Example 6.5 and Example 6.6.

6.4. Strong Stationary Times and Bounding Distance

A strong stationary time for a Markov chain (X;) with stationary distribu-
tion 7 is a randomized stopping time 7, possibly depending on the starting position
z, such that

P, {r=t X, =y} =P, {r=t}n(y). (6.2)

In words, X has distribution 7 and is independent of 7.

ExXAMPLE 6.7. For the top-to-random shuffle, the first time 7o, when the
original bottom card gets placed into the deck by a shuffle is a strong stationary
time. This is the content of Proposition 6.1.

EXAMPLE 6.8. We return to Example 6.3, the lazy random walk on the hyper-
cube. The time Tyefresh, the first time each of the coordinates have been refreshed
with an independent fair bit, is a strong stationary time.

We now return to the program suggested at the end of Section 6.1 and use
strong stationary times to bound #yx.
We first need the following technical lemma.

LEMMA 6.9. Let (Xy) be an irreducible Markov chain with stationary distribu-
tion w. If T is a strong stationary time for (X;), then for all t > 0,

P.{r <t X, =y} = P{r < t}n(y). (6.3)

PROOF. Let 71, Z5, ... be the i.i.d. sequence used in the random mapping rep-
resentation of (X;). For any s <,

P {r=s Xi=y}= ZPm{Xt =yl|r=8 Xs=2}P,{r =5 X;=2}. (6.4)
zEQ
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Since 7 is a stopping time for (Z;), the event {T = s} equals {(Z1,...,Zs) € B} for
some set B C Q°. Also, for integers r, s > 0, there exists a function f,. : Q"1 — Q
such that

Xs+r = fr(Xsa Zs+1a sy Zs+7‘)'
Since the random vectors (Z1,..., Zs) and (Zs41,...,Z;) are independent,
PAX,=y|7=5 X;=2}
=Po{fi-s(2 Zst1, -, Z0) =y | (X1,..., X,) € B, Xy = 2} = P'*(2,9).

Therefore, using the definition (6.2) along with the above equality, (6.4) can be
rewritten as

P.{r=s5Xi=y}= Z P (z,y)m(2)Pu{T = s}. (6.5)

2€Q
Since 7 satisfies 7 = mP'"*, the right-hand side of (6.5) equals 7(y)P,{r = s}.
Summing over s < t establishes (6.3). |

The route from strong stationary times to bounding convergence time is the
following proposition:

PROPOSITION 6.10. If 7 is a strong stationary time, then
t
= -) — < . .
d(t) = max||P*(z, ) — 7l|lrv < max Py {7 >t} (6.6)

We break the proof into two lemmas. It will be convenient to introduce a
parameter s,(t), called separation distance and defined by

520 5= s {1 - %} . (6.7)
We also define
s(t) := WAX 5 (t). (6.8)

The relationship between s,(t) and strong stationary times is
LEMMA 6.11. If 7 is a strong stationary time, then
Sz(t) < Pg{r > 1t}. (6.9)
PRrOOF. Fix x € Q). Observe that for any y € (),

Pt P.{X, = P.{X; = <t
1— (x’y):1, ac{ t y}glf .’/E{ t Y, T > } (610)
7(y) m(y) m(y)
By Lemma 6.9, the right-hand side equals
P {r <t
| TWPAT S (6.11)
™(y)
|

REMARK 6.12. Given starting state x, a state y is a halting state for a stop-
ping time 7 if X; = y implies 7 < ¢t. For example, when starting the lazy random
walk on the hypercube at (0,...,0), the state (1,...,1) is a halting state for the
stopping time Trefresh defined in Example 6.3. Because the inequality in (6.10) is
an equality if and only if y is a halting state for the starting state x, it follows that
the inequality in (6.9) is an equality if and only if there exists a halting state for
the starting state x.
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FIGURE 6.2. Two complete graphs (on 4 vertices), “glued” at a
single vertex. Loops have been added so that every vertex has the
same degree (count each loop as one edge).

The next lemma along with Lemma 6.11 proves Proposition 6.10.
LEMMA 6.13. The separation distance s, (t) satisfies
| P!z, ) — || oy < sa(t), (6.12)
and therefore d(t) < s(t).

PROOF. We have

1P (z,) =llrv = Y [w(y) = Pay)] = D =y

yeQ yeQ W(y)
P*(z,y)<7(y) P! (z,y)<m(y)
Pt
< max {1 - M} = s,(t).
Y 7(y)

6.5. Examples

6.5.1. Two glued complete graphs. Consider the graph G obtained by
taking two complete graphs on n vertices and “gluing” them together at a single
vertex. We analyze here simple random walk on a slightly modified graph, G’.

Let v* be the vertex where the two complete graphs meet. After gluing, v*
has degree 2n — 2, while every other vertex has degree n — 1. To make the graph
regular and to ensure non-zero holding probability at each vertex, in G’ we add one
loop at v* and n loops at all other vertices. (See Figure 6.2 for an illustration when
n = 4.) The uniform distribution is stationary for simple random walk on G’, since
it is regular of degree 2n — 1.

It is clear that when at v*, the next state is equally likely to be any of the
2n — 1 vertices. For this reason, if 7 is the time one step after v* has been visited
for the first time, then 7 is a strong stationary time.

When the walk is not at v*, the probability of moving (in one step) to v* is
1/(2n — 1). This remains true at any subsequent move. That is, the first time 7,+
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that the walk visits v* is geometric with E (7,+) = 2n — 1. Therefore, E (1) = 2n,
and using Markov’s inequality shows that

2/
P,{r>t} < % (6.13)

Taking ¢ = 8n in (6.13) and applying Proposition 6.10 shows that
tmix S 8n.

A lower bound on t,,;, of order n is obtained in Exercise 6.7.

6.5.2. Random walk on the hypercube. We return to Example 6.3, the
lazy random walker on {0,1}". As noted in Example 6.8, the random variable
Trefresh, the time when each coordinate has been selected at least once for the first
time, is a strong stationary time. The time Tiefresh and the coupling time Tcouple
for the coordinate-by-coordinate coupling used in Section 5.3.3 are closely related:
the coupon collector’s time of Section 2.2 stochastically dominates Tcouple and has
the same distribution as Tyefresn- It is therefore not surprising that we obtain here
exactly the same upper bound for ¢,,;x as was found using the coupling method. In
particular, combining Proposition 2.4 and Lemma 6.11 shows that the separation
distance satisfies, for each z,

sy(nlogn +cn) < e™°. (6.14)

By Lemma 6.13,
tmix(e) < nlogn + log(e )n. (6.15)

REMARK 6.14. The reason we explicitly give a bound on the separation distance
here and appeal to Lemma 6.13, instead of applying directly Proposition 6.10, is
that there is a matching lower bound on s(¢), which we give in Section 18.4. This
contrasts with the lower bound on d(¢) we will find in Section 7.3.1, which implies
tmix(1 — ) > (1/2)nlogn — ¢(e)n. In fact, the estimate on ty,ix(¢) given in (6.15)
is off by a factor of two, as we will see in Section 18.2.2.

6.5.3. Top-to-random shuffle. We revisit the top-to-random shuffle intro-
duced in Section 6.1. As noted in Example 6.7, the time 7y, is a strong stationary
time.

Consider the motion of the original bottom card. When there are k cards be-
neath it, the chance that it rises one card remains k/n until a shuffle puts the top
card underneath it. Thus, the distribution of 7o, is the same as the coupon col-
lector’s time. As above for the lazy hypercube walker, combining Proposition 6.10
and Proposition 2.4 yields

d(nlogn+an) <e™® for all n. (6.16)

Consequently,
tmix(€) < nlogn + log(e ')n. (6.17)

6.5.4. The move-to-front chain. A certain professor owns many books, ar-
ranged on his shelves. When he finishes with a book drawn from his collection, he
does not waste time re-shelving it in its proper location. Instead, he puts it at the
very beginning of his collection, in front of all the shelved books.

If his choice of book is random, this is an example of the move-to-front chain.
It is a very natural chain which arises in many applied contexts. Any setting where
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Drawing by Yelena Shvets

FIGURE 6.3. The move-to-front rule in action.

items are stored in a stack, removed at random locations, and placed on the top of
the stack can be modeled by the move-to-front chain.

Let P be the transition matrix (on permutations of {1,2,...,n}) corresponding
to this method of rearranging elements.

The time reversal P of the move-to-front chain is the top-to-random shuffle,
as intuition would expect. It is clear from the definition that for any permissible
transition o1 — o9 for move-to-front, the transition oo — o7 is permissible for
top-to-random, and both have probability n 1.

By Lemma 4.13, the mixing time for move-to-front will be identical to that of
the top-to-random shuffle. Consequently, the mixing time for move-to-front is not
more than nlogn — log(e)n.

6.5.5. Lazy random walk on cycle. Here is a recursive description of a
strong stationary time 7, for lazy random walk (X;) on a cycle Z, with n = 2¥
points.

For k = 1, waiting one step will do: 7 = 1 with mean m; = 1. Suppose
we have constructed 7, already and are now given a cycle with 2¥+1 points. Set,
Ty = 0 and define T} = t; as the time it takes the lazy walk to make two +1 steps.
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Exercises

EXERCISE 6.1. Show that if 7 and 7 are stopping times for the sequence (X3),
then T + 7/ is a stopping time for (X;). In particular, if r is a non-random and
non-negative integer and 7 is a stopping time, then 7 4 7 is a stopping time.

EXERCISE 6.2. Counsider the top-to-random shuffle. Show that the time until
the card initially one card from the bottom rises to the top, plus one more move,
is a strong stationary time, and find its expectation.

EXERCISE 6.3. Show that for the Markov chain on two complete graphs in
Section 6.5.1, the stationary distribution is uniform on all 2n — 1 vertices.

EXERCISE 6.4. Let s(t) be defined as in (6.8).

(a) Show that there is a stochastic matrix @ so that P(z,-) = [1—s(t)]7 +
s(t)Q(z,-) and ™ = 7Q.
(b) Using the representation in (a), show that

P (z,y) = [1 - s(t)s(u)] m(y) + s(t)s(u) Y Q"(x, 2)Q"(2,y)- (6.19)

2€Q
(c) Using (6.19), establish that s is submultiplicative: s(t +u) < s(t)s(w).

EXERCISE 6.5. Show that if maxzcqPo{T > to} < ¢, then d(t) < &t/to.

EXERCISE 6.6 (Wald’s Identity). Let (Y;) be a sequence of independent and
identically distributed random variables such that E(]Y;]) < oco.

(a) Show that if 7 is a random time so that the event {7 > ¢} is independent of Y;
and E(7) < oo, then

E (i Yt> = E(rE(W). (6.20)
t=1

Hint: Write Y] 1Y, =372 Yi1{;>4}. First consider the case where Y; > 0.
(b) Let T be a stopping time for the sequence (Y;). Show that {7 > ¢} is indepen-
dent of Y7, so (6.20) holds provided that E(7) < oc.

EXERCISE 6.7. Consider the Markov chain of Section 6.5.1 defined on two glued
complete graphs. By considering the set A C Q of all vertices in one of the two
complete graphs, show that tmix > (n/2) [1 + o(1)].

EXERCISE 6.8. Let 74 be the stopping time constructed in Section 6.5.5, and
let my, = E(71,). Show that my41 = 4my, + 1, so that my, = Zf;ol 47 = (4% - 1)/3.

EXERCISE 6.9. For a graph G, let W be the (random) vertex occupied at the
first time the random walk has visited every vertex. That is, W is the last new
vertex to be visited by the random walk. Prove the following remarkable fact: for
random walk on an n-cycle, W is uniformly distributed over all vertices different
from the starting vertex.

REMARK 6.16. Let W be the random vertex defined in Exercise 6.9. Lovasz and
Winkler (1993) demonstrate that cycles and complete graphs are the only graphs
for which W is this close to uniformly distributed. More precisely, these families
are the only ones for which W is equally likely to be any vertex other than the
starting state.



CHAPTER 7

Lower Bounds on Mixing Times

To this point, we have directed our attention to finding upper bounds on ¢,ix.
Rigorous upper bounds lend confidence that simulation studies or randomized al-
gorithms perform as advertised. It is natural to ask if a given upper bound is the
best possible, and so in this chapter we turn to methods of obtaining lower bounds
on tmix-

7.1. Counting and Diameter Bounds

7.1.1. Counting bound. If the possible locations of a chain after ¢ steps do
not form a significant fraction of the state space, then the distribution of the chain
at time ¢ cannot be close to uniform. This idea can be used to obtain lower bounds
on the mixing time.

Let (X:) be a Markov chain with irreducible and aperiodic transition matrix
P on the state space €2, and suppose that the stationary distribution 7 is uniform
over Q. Define doys(z) := [{y : P(z,y) > 0}| to be the number of states accessible
in one step from z, and let

A= max dout (). (7.1)

Denote by Q¥ the set of states accessible from z in ¢ steps, and observe that |QF| <
AL Tf At < (1 —¢)|9], then from the definition of total variation distance we have

that
t

HPt(CE,‘) - 71-HTV > By, ) —7(Q) =1 - % -

This implies that

log(|Q(1 —
F() > og(|2|(1 —¢))
log A

(7.2)
ExaMPLE 7.1 (Random walk on a d-regular graph). For random walk on a

d-regular graph, the stationary distribution is uniform, so the inequality (7.2) can

be applied. In this case, it yields the lower bound tmix () > log(|Q|(1 — ¢))/ logd.

We use the bound (7.2) to bound below the mixing time for the riffle shuffle in
Proposition 8.14.

7.1.2. Diameter bound. Given a transition matrix P on €2, construct a
graph with vertex set 2 and which includes the edge {z,y} for all z and y with
P(z,y)+ P(y,x) > 0. Define the diameter of a Markov chain to be the diameter
of this graph, that is, the maximal graph distance between distinct vertices.

Let P be an irreducible and aperiodic transition matrix on 2 with diameter
L, and suppose that zy and yy are states at maximal graph distance L. Then

87
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PLL=D/2) (44 .y and PLUE=D/2(44,.) are positive on disjoint vertex sets. Conse-

quently, d(|(L —1)/2]) = 1 and for any ¢ < 1/2,
L
tmix(E) Z 5 (73)

7.2. Bottleneck Ratio

Bottlenecks in the state space 2 of a Markov chain are geometric features
that control mixing time. A bottleneck makes portions of € difficult to reach from
some starting locations, limiting the speed of convergence. Figure 7.1 is a sketch of
a graph with an obvious bottleneck.

FIGURE 7.1. A graph with a bottleneck.

As usual, P is the irreducible and aperiodic transition matrix for a Markov
chain on  with stationary distribution .
The edge measure (@ is defined by

Q(z,y) :=7(2)P(z,y), QAB) = Y  Qzy) (7.4)
rz€A,yeB

Here Q(A, B) is the probability of moving from A to B in one step when starting
from the stationary distribution.
The bottleneck ratio of the set S is defined to be

Q(S, 5°)
O(S) i = ———- 7.5
()= =75 (75)
while the bottleneck ratio of the whole chain is
P, = i d(S). 7.6
- (S) (7.6)

For simple random walk on a graph with vertices 2 and edge set F,

deg(z) 1 _ 1 {z,y} is an edge,

Qz.y) = { 205] deg@) 218

0 otherwise.

In this case, 2|E|Q(S, S¢) is the size of the boundary 9S of S, the collection of
edges having one vertex in S and one vertex in S°. The bottleneck ratio, in this
case, becomes

05
EQ)ES deg(%‘) ’

REMARK 7.2. If the walk is lazy, then Q(z,y) = (4|E|)"'1{{s4}ep}, and the
bottleneck ratio equals ®(S) = 2|0S5|/(>_,c g deg(x)).

B(S) = (7.7)
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If the graph is regular with degree d, then ®(S) = d~*|0S|/|S|, which is pro-
portional to the ratio of the size of the boundary of S to the volume of S.
The relationship of ®, to tmix is the following theorem:

THEOREM 7.3. If @, is the bottleneck ratio defined in (7.6), then

1
tmix = tmix (1/4) > .
(1/4)2 37

PROOF. Denote by mg the restriction of 7 to S, so that 7g(A) = 7(ANS), and
define pg to be 7w conditioned on S:

(7.8)

ms(A4)
MS(A) = ’:(S) .
From Remark 4.3,
7(S) usP = pslpy =7(S) Y [usP(y) = ps(y)]- (7.9)

ks P(y)2ps(y)
Because mgP(y) = 7(S)usP(y) and ws(y) = 7(S)us(y), the inequality psP(y) >
s (y) holds if and only if 7gP(y) > mg(y). Thus

w(S) usP — pslpy = D>, [rsPy) — 7s@)]. (7.10)
yeQ,
msP(y)27s(y)

Because mg(z) > 0 only for z € S and 7g(z) = () for x € S,
msP(y) = Z ws(z)P(z,y) = ZW(x)P(x,y) < Z m(x)P(x,y) = n(y). (7.11)
€N xzeS €N
Again using that 7(y) = wg(y) for y € S, from (7.11) follows the inequality
msP(y) < mg(y) foryes. (7.12)
On the other hand, because mg vanishes on S,
msP(y) > 0=mng(y) forye S°. (7.13)

Combining (7.12) and (7.13) shows that the sum on the right in (7.10) can be taken
over S¢:

() lusP = pslley = Y [rsP(y) —ws(y)]- (7.14)
yeSe

Again because wg(y) = 0 for y € S¢,
(8) lusP — psllpy = Y D w(@)P(z,y) = Q(S, 5°).
yeSexzesS
Dividing by =(S),
s P = psllpy = 2(9).
By Exercise 4.3, for any u > 0,
HHSPMH - MSPUHTV < ”MSP - IU’S”TV = (I)(S)
Using the triangle inequality on psP' — g = S\t (us P**! — jugP*) shows that

s Pt = ps|| gy, < t2(S). (7.15)
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FI1GURE 7.2. Two “glued” two-dimensional tori.

Assume that w(S) < 1. In this case, because 5(S¢) =0,

1
s = llpy 2 7(59) = ps(59) =1 - n(5) = 5.
Using the triangle inequality again shows that
1
s <l 7y < s~ Py + P Ay (0

Taking t = tmix = tmix(1/4) in (7.16), by the definition of ¢,,;x and the inequality
in (7.15),

1
S tmixq)(s) + Z

Rearranging and minimizing over S establishes (7.8). |

DN =

ExampLE 7.4 (Two glued tori). Consider the graph consisting of two d-dimen-
sional tori “glued” together at a single vertex v*; see Figure 7.2 for an example of
dimension two. Denote by V; and V5, the sets of vertices in the right and left tori,
respectively. Note that V3 N Vo = v*.

The set OV; consists of all edges {v*,v}, where v € V2. The size of 9V; is

2d. Also, »_ .y, deg(z) = 2dn? 4 2d. Consequently, the lazy random walk on this
graph has
2(2d) .
P, <P(V])= ————— <2 .
»SOWM) = ey S

(See Remark 7.2.) Theorem 7.3 implies that tmix > n2/8. We return to this example
in Section 10.6, where it is proved that tmiy is of order n?logn. Thus the lower
bound here does not give the correct order.

ExAMPLE 7.5 (Coloring the star). Let Q be the set of all proper g-colorings of a
graph G, and let 7 be the uniform distribution on 2. Recall from Example 3.5 that
Glauber dynamics for 7 is the Markov chain which makes transitions as follows: at
each unit of time, a vertex is chosen from V uniformly at random, and the color at
this vertex is chosen uniformly at random from all feasible colors. The feasible
colors at vertex v are all colors not present among the neighbors of v.

We will prove (Theorem 14.8) that if ¢ > 2A, where A is the maximum degree
of the graph, then the Glauber dynamics has mixing time of the order |V|log|V].

We show, by example, that quite different behavior may occur if the maximal
degree is not bounded.
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F1GURE 7.3. The star graph with 11 vertices.

The graph we study here is the star with n vertices, shown in Figure 7.3. This
graph is a tree of depth 1 with n — 1 leaves.
Let v, denote the root vertex and let S C €2 be the set of proper colorings such
that v, has color 1:
S:={reQ: z(v.) =1}
For (z,y) € S x S¢, the edge measure Q(z,y) is non-zero if and only if
o z(v,) =1 and y(v.) # 1,
e 2(v) = y(v) for all leaves v, and
o x(v) & {1,y(vs)} for all leaves v.
The number of such (z, ) pairs is therefore equal to (¢—1)(¢g—2)"1, since there are
(¢—1) possibilities for the color y(v,) and (¢ —2) possibilities for the color (identical
in both z and y) of each of the n— 1 leaves. Also, for such pairs, Q(x,y) < (|Qn) .
It follows that )
> Q) < e a2 (7.17)
reS,yese
Since z € S if and only if z(v,) = 1 and z(v) # 1 for all v # v,, we have that
|S| = (¢ — 1) 1. Together with (7.17), this implies
Q8,5 _(¢a—1)(g—2)""" _ (¢—1)? <1 1 )n < @=1D7 e
() n(q—1)"* n(q —2) q—1) ~ nlg—2) '
Consequently, the mixing time is at least of exponential order:
poos ME=2) e,
4q—1)?

REMARK 7.6. In fact, this argument shows that if n/(glogq) — oo, then ¢y;ix
is super-polynomial in n.

EXAMPLE 7.7 (Binary tree). Consider the lazy random walk on the rooted
binary tree of depth k. (See Section 5.3.4 for the definition.) Let n be the number
of vertices, so n = 281 — 1. The number of edges is n — 1. In Section 5.3.4 we
showed that tyix < 4n. We now show that ¢ty > (n — 2)/4.

Let vg denote the root. Label the vertices adjacent to vy as v, and vy. Call w a
descendant of v if the shortest path from w to vy passes through v. Let .S consist

of the right-hand side of the tree, that is, v, and all of its descendants.
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We write |v| for the length of the shortest path from v to vg. By Example 1.12,
the stationary distribution is

2 —
5.5 for v = o,
m(v) = § 525 for 0 < |v| <k,
s+ for [v| = k.

Summing 7(v) over v € S shows that 7(S) = (n — 2)/(2n — 2). Since there is only
one edge from S to S¢,

. 3\ 1 1
Q(8:5) = rie)Plmw) = (5775 ) 5 = )
and so ®(S) =1/(n —2) . Applying Theorem 7.3 establishes the lower bound

. .n-2_ 2M-3
mix — 4 - 4 Y

which is exponentially large as a function of the depth k.

7.3. Distinguishing Statistics

One way to produce a lower bound on the mixing time ¢,,ix is to find a statistic
f (a real-valued function) on (2 such that the distance between the distribution of
f(X}) and the distribution of f under the stationary distribution 7 can be bounded
from below.

Let ¢ and v be two probability distributions on 2, and let f be a real-valued
function defined on Q. We write £, to indicate expectations of random variables
(on sample space 2) with respect to the probability distribution p:

BEu(f) =Y fl@)pu(z).
TEQ

(Note the distinction between E,, with E,,, the expectation operator corresponding
to the Markov chain (X;) started with initial distribution p.) Likewise Var,(f)
indicates variance computed with respect to the probability distribution p.

PROPOSITION 7.8. Let i and v be two probability distributions on €2, and let f
be a real-valued function on Q. If

|Ew(f) — Ev(f)| = 7o, (7.18)
where o = [Var,(f) + Var,(f)]/2, then
4
Before proving this, we provide a useful lemma. When p is a probability dis-

tribution on Q and f : Q — A, write uf~! for the probability distribution defined
by

= vllpy > 1 - (7.19)

(f 7H)(A) = u(f71(A))
for A C A. When X is an Q-valued random variable with distribution y, then f(X)
has distribution pf~1 on A.

LEMMA 7.9. Let p and v be probability distributions on Q, and let f:Q — A
be a function on Q, where A is a finite set. Then

= vllpy > HWhl - Vf*lHTv'
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The inequality (7.26) follows because

1lo <t—110 1 1 1
2n gn—an <t, = 2n zn « 5 n Tl

and the right-hand side of (7.27) evaluated at t = t,, is equal to 1 —8e~22*1.  H

7.4. Examples

7.4.1. Random walk on the cycle. We return to the lazy random walk on
the cycle (see Example 1.8 and Example 2.10). The upper bound #yi < n? was
found in Section 5.3.2.

We complement this by giving a lower bound of the same order. We can couple
(Xt) to (S), a lazy simple random walk on all of 7Z, so that X; = S; until 7, the
first time that | X| hits n/2. Then

t<an? t<an?

P{ sup |Xy| > n/4} = P{ sup |Si| > n/4} < P{|Sanz| > n/4} < a1,

by Chebyshev’s inequality. For a < ag, where aq is small enough, the right-hand
side is less than 1/8. If A, = {k € Z,, : |k| > n/4}, then w(A,) > 1/2, and
d(agn?) >1/2 —1/8 > 1/4,

SO tmix > aon?.

7.4.2. Top-to-random shuffle. The top-to-random shuffle was introduced
in Section 6.1 and upper bounds on d(t) and tmix were obtained in Section 6.5.3.
Here we obtain matching lower bounds.

The bound below, from Aldous and Diaconis (1986), uses only the definition of
total variation distance.

PROPOSITION 7.14. Let (X;) be the top-to-random chain on n cards. For any
e > 0, there exists a constant cg such that o > g implies that for all sufficiently
large n,

dp(nlogn —an) > 1—e. (7.28)
In particular, there is a constant o such that for all sufficiently large n,
tmix > nlogn — ain. (7.29)
PRrOOF. The bound is based on the events

A; = {the original bottom j cards are in their original relative order}. (7.30)

Let id be the identity permutation; we will bound || P*(id, -) — 7|l from below.
Let 7; be the time required for the card initially j-th from the bottom to reach
the top. Then

n—1
T = E :Tj,iv
i=j

where 7;; is the time it takes the card initially j-th from the bottom to ascend
from position i (from the bottom) to position ¢ + 1. The variables {7'“}?;]1 are
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independent and 7;,; has a geometric distribution with parameter p = i/n, whence
E(7j;) = n/i and Var(7;,;) < n?/i®. We obtain the bounds

n—1
n .
E(r;) = Z n > n(logn —logj — 1) (7.31)
i=j
and
9 > 1 n?
)< < —. .32
Var(r;) <n ;i(i—l)_j—l (7.32)

Using the bounds (7.31) and (7.32), together with Chebyshev’s inequality, yields
P{r; <nlogn —an} <P{r; — E(1;) < —n(a —logj — 1)}
< 1
T
provided that a > log j + 2. Define t,(a) = nlogn — an. If 7; > t,(a), then the
original j bottom cards remain in their original relative order at time t,(«a), so

1
(-1
for a > log j + 2. On the other hand, for the uniform stationary distribution
m(4;) =1/ <G -7

P (id, Aj) > P{r; > tp(a)} > 1 -

whence, for a > logj + 2,

2
du(ta(a)) = [P Gd, ) = x| = PO(id, A7)~ w(A;) > 1 - — (133

TV

Taking j = e®~2, provided n > e®~2, we have

dp(tn(a)) > gla):==1— =t

Therefore,
lim inf d,, (t, () ) > g(a),

n-—o0

where g(a) — 1 as a — 0. |

7.4.3. East model. Let
Q:={re{0,1}"" : z(n+1) =1}

The FEast model is the Markov chain on €2 which moves from x by selecting a
coordinate k from {1,2,...,n} at random and flipping the value z(k) at k if and
only if z(k + 1) = 1. The reader should check that the uniform measure on  is
stationary for these dynamics.

THEOREM 7.15. For the East model, tmix > n® — 2n%/2.

PrOOF. If A= {z : (1) = 1}, then 7(A) = 1/2.

On the other hand, we now show that it takes order n? steps until X;(1) =
1 with probability near 1/2 when starting from zo = (0,0,...,0,1). Consider
the motion of the left-most 1: it moves to the left by one if and only if the site
immediately to its left is chosen. Thus, the waiting time for the left-most 1 to move
from k to k — 1 is bounded below by a geometric random variable Gy with mean
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Cover Times

11.1. Cover Times

Let (X;) be a finite Markov chain with state space Q2. The cover time 7oy,
of (X;) is the first time at which all the states have been visited. More formally,
Teov 1S the minimal value such that, for every state y € 2, there exists t < 7¢o, with
Xt =Y.

We also define a deterministic version of the cover time by taking the expected
value from the worst-case initial state:

teov = rmneagz(EmTcov~ (111)

The cover time of a Markov chain is a natural concept. It can be large enough
for relatively small chains to arouse mathematical curiosity. Of course, there are
also “practical” interpretations of the cover time. For instance, we might view the
progress of a web crawler as a random walk on the graph of World Wide Web pages:
at each step, the crawler chooses a linked page at random and goes there. The time
taken to scan the entire collection of pages is the cover time of the underlying graph.

ExampLE 11.1 (Cover time of cycle). Lovasz (1993) gives an elegant compu-
tation of the expected cover time t.o, of simple random walk on the n-cycle. This
walk is simply the remainder modulo n of a simple random walk on Z. The walk
on the remainders has covered all n states exactly when the walk on Z has first
visited n distinct states.

Let ¢, be the expected value of the time when a simple random walk on 7Z
has first visited n distinct states, and consider a walk which has just reached its
(n — 1)-st new state. The visited states form a subsegment of the number line and
the walk must be at one end of that segment. Reaching the n-th new state is now
a gambler’s ruin situation: the walker’s position corresponds to a fortune of 1 (or
n — 1), and we are waiting for her to reach either 0 or n. Either way, the expected
time is (1)(n — 1) =n — 1, as shown in Exercise 2.1. It follows that

epn=¢Chp1+(n—=1) for n>1.

Since ¢; = 0 (the first state visited is Xo = 0), we have ¢, = n(n —1)/2.

11.2. The Matthews Method

It is not surprising that there is an essentially monotone relationship between
hitting times and cover times: the longer it takes to travel between states, the
longer it should take to visit all of them. In one direction, it is easy to write down
a bound. Fix an irreducible chain with state space €. Recall the definition (10.5)
of thit, and let z,y € {2 be states for which ty;; = E;7,. Since any walk started at

143
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x must have visited y by the time all states are covered, we have
thit = EzTy < Echov < tcov- (112)

It is more interesting to give an upper bound on cover times in terms of hitting
times. A walk covering all the states can visit them in many different orders, and
this indeterminacy can be exploited. Randomizing the order in which we check
whether states have been visited (which, following Aldous and Fill (1999), we will
call the Matthews method—see Matthews (1988a) for the original version) allows
us to prove both upper and lower bounds. Despite the simplicity of the arguments,
these bounds are often remarkably good.

THEOREM 11.2 (Matthews (1988a)). Let (X;) be an irreducible finite Markov
chain on n states. Then

1 1
teov < thit (1+——|—_|__)
2 n

PRrROOF. Without loss of generality, we may assume that our state space is
{1,...,n}. Choose an arbitrary initial state €  and let o € S,, be a uniform
random permutation, chosen independently of the chain. We will look for states in
order o. Let Ty, be the first time that the states o(1),. .., o(k) have all been visited,
and let Ly, = X7, be the last state among o(1),...,0(k) to be visited.

Of course, when o(1) = x, we have T7 = 0. We will not usually be so lucky.
For any s € 2, we have

Ew(Tl | 0(1) = 3) = Ez(Ts) < thit-

Since the events {o(1) = s} are disjoint for distinct s € €, Exercise 11.1 ensures
that Ex (Tl) S thit-
How much further along is 75 than 777
e When the chain visits (1) before o(2), then T> — T} is the time required
to travel from o(1) to o(2), and Ly = o(2).
e When the chain visits o(2) before o (1), we have To,—T; = 0 and L2 = o(1).

Let’s analyze the first case a little more closely. For any two distinct states r, s € (Q,
define the event

AQ(T, S) = {0(1) =7r and 0'(2) = L2 — 8}.
Clearly
E:L’(TZ - T1 | AQ(T’, S)) = E’I‘(TS) S thit-

Conveniently,
Ay = U AQ(Ta 8)
r#£s

is simply the event that o(2) is visited after o(1), that is, Ly = o(2). By Exer-
cise 11.1,

E,(To — T | A2) < thit.
Just as conveniently, A§ is the event that o(2) is visited before o(1). It immediately
follows that

E,(T>, — Ty | A5) = 0.
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Since o was chosen uniformly and independently of the chain trajectory, it is equally
likely for the chain to visit o(2) before o(1) or after o(1). Thus

E.(To —T1) =P, (A)E,(T> — Ty | Ay) + P (AS)E,(To — T} | AS)
< L
) hit-

We estimate T, — 11 for 3 < k < n in the same fashion. Now we carefully
track whether Lj = o(k) or not. For any distinct r, s € €, define

Ag(r,s) ={o(k — 1) =r and o(k) = Ly = s}.

Suppose L1 = X7, has distribution p. Then by Exercise 11.1 we have
E,(Ti — Ti 1 | Ai(r,) = Bu(rs) = Y p(i)Ei(7s) < tie (11.3)
i=1

and
Ak = U Ak (r, S)
r#s
is the event that Lj = (k). Just as above, Exercise 11.1 implies that

Ey(Th — Th—1 | Ar) < tuit,

while
E,.(Ty — Ti—1 | A) =0.

Since the permutation o was chosen both uniformly and independently of the tra-
jectory of the chain, each of o(1),...,0(k) is equally likely to be the last visited.
Thus P, (Ar) = 1/k and

E;(Tk — Ti-1) =Pou(Ap)Es (T — Ti—1 | Ak) + Po(AL)EL (T — Ti—1 | AF)
1

< Ethit-

Finally, summing all these estimates yields

Eac(Tcov) = Em(Tn)
= Eac(Tl) + Ex(TQ - Tl) +ee Ew(Tn - Tnfl)
1

1
gthit<1+§+---+ﬁ).

ExampLE 11.3. The proof above strongly parallels the standard argument for
the coupon collecting problem, which we discussed in Section 2.2 and have applied
several times: for instance, coupon collector bounds were used to lower bound mix-
ing times for both random walk on the hypercube (Proposition 7.13) and Glauber
dynamics on the graph with no edges (Exercise 7.3). For random walk on a com-
plete graph with self-loops, the cover time coincides with the time to “collect” all
coupons. In this case E,(73) = n is constant for a # 3, so the upper bound is
tight.
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A slight modification of this technique can be used to prove lower bounds:
instead of looking for every state along the way to the cover time, we look for the
elements of some A C Q. Define 722 to be the first time such that every state of
A has been visited by the chain. When the elements of A are far away from each
other, in the sense that the hitting time between any two of them is large, the time
to visit just the elements of A can give a good lower bound on the overall cover

time.

PROPOSITION 11.4. Let A C X. Set t,, = ming pe a,q26 Eo(75). Then

min

A 1 1
tcovzglgétmin 1+§++m .

PROOF. Fix an initial state z € A and let o be a uniform random permutation
of the elements of A, chosen independently of the chain trajectory. Let T} be the
first time at which all of o(1),0(2),...,0(k) have been visited, and let L = X7, .

With probability 1/|A| we have o(1) = x and 71 = 0. Otherwise, the walk
must proceed from x to o(1). Thus

1 Al —1
A]=1,4

1
E, (Ty) > —0+ ———t2, = <1 - —) ta . 11.4
T 2 70+ 7] ] (L)

For 2 <k < |A| and r,s € A, define
Bi(r,s) ={o(k—1) =r and o(k) = Ly = s},

so that, by an argument similar to that of (11.3), using (an obvious corollary to)
Exercise 11.1, we have

E.(Ty — Ti 1 | Br(r,s)) >t

min*
Then

By = U Bk(T‘,S)

r,s€A
is the event that Ly = o(k). Now
E.(Ty —Ti 1| BY) =0 and E.(Ty — T 1|By) >t

By the uniformity and independence of o we have P(By) = 1/k and thus

1
E, (T —Tp 1) > —t4 (11.5)

=k min*

Adding up (11.4) and the bound of (11.5) for 2 < k < |A| gives

1 1
E,(rA)>tA (1+=4 4+ —
QU(TCOV)— mm( +2+ + |A1>

(note that the negative portion of the first term cancels with the last term).
Since teoy > Eg(Teov) > Eo(14,) for every 2 € A, we are done. |

cov

REMARK 11.5. While any subset A yields a lower bound, some choices for A
are uninformative. For example, when the underlying graph of (Y;) contains a leaf,
tA. =1 for any set A containing both the leaf and its (unique) neighbor.

min
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11.3. Applications of the Matthews Method

11.3.1. Binary trees. Consider simple random walk on the rooted binary
tree with depth k and n = 2%+ —1 vertices, which we first discussed in Section 5.3.4.
The maximal hitting time will be realized by pairs of leaves a, b whose most recent
common ancestor is the root (see Exercise 10.4). For such a pair, the hitting time
will, by symmetry, be the same as the commute time between the root and one of
the leaves. By Proposition 10.6 (the Commute Time Identity), we have

E.,m =2(n—1)k

(since the effective resistance between the root and the leaf is k, by Example 9.7,
and the total conductance c¢ of the network is twice the number of edges). Hence
Theorem 11.2 gives

teoy < 2(n — 1k (1 + % +--- 4+ %) = (2+ o(1))(log 2)nk?. (11.6)

What about a lower bound? We need an appropriate set A C X. Fix a level
h in the tree, and let A be a set of 2" leaves chosen so that each vertex at level h
has a unique descendant in A. Notice that the larger h is, the more vertices there
are in A—and the closer together those vertices can be. We will choose a value of
h below to optimize our bound.

Consider two distinct leaves a,b € A. If their closest common ancestor is at
level i’ < h, then the hitting time from one to the other is the same as the commute
time from their common ancestor to one of them, say a. Again, by the Commute
Time Identity (Proposition 10.6) and Example 9.7, this is exactly

Eq.m =2(n— 1)(k — 1),

which is clearly minimized when h’ = h — 1. By Proposition 11.4,

feow = 2(n —1)(k — h+ 1) (1 + % T 2,1—1_1> — (24 o(1))(log 2)n(k — W)
(11.7)
Setting h = |k/2] in (11.7) gives
feoe > = - (24 o(1))(log 2)nk2. (11.8)

4

There is still a factor of 4 gap between the upper bound of (11.6) and the lower
bound of (11.8). In fact, the upper bound is sharp. See the Notes.

11.3.2. Tori. In Section 10.4 we derived fairly sharp (up to constants) esti-
mates for the hitting times of simple random walks on finite tori of various dimen-
sions. Let’s use these bounds and the Matthews method to determine equally sharp
bounds on the expected cover times of tori. We discuss the case of dimension at
least 3 first, since the details are a bit simpler.

When the dimension d > 3, Proposition 10.13 tells us that there exist constants
ca and Cy such that for any distinct vertices x,y of Z4,

cqn® < E, (1)) < Ccyn.
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Eigenvalues

12.1. The Spectral Representation of a Reversible Transition Matrix

We begin by collecting some elementary facts about the eigenvalues of transition
matrices, which we leave to the reader to verify (Exercise 12.1):

LEMMA 12.1. Let P be the transition matriz of a finite Markov chain.
(i) If X is an eigenvalue of P, then |A| < 1.
(ii) If P is irreducible, the vector space of eigenfunctions corresponding to the
etgenvalue 1 is the one-dimensional space generated by the column vector 1 :=
(1,1,...,1)T.

(iii) If P is irreducible and aperiodic, then —1 is not an eigenvalue of P.

Denote by (-, -) the usual inner product on R, given by (f,g) = >, .o, f(2)g(2).
We will also need another inner product, denoted by (-,-)» and defined by

(fr9)m =Y f(@)g(a)m(x). (12.1)
€N
We write £2(r) for the vector space R® equipped with the inner product (12.1).
Because we regard elements of R? as functions from €2 to R, we will call eigenvectors
of the matrix P eigenfunctions.

Recall that the transition matrix P is reversible with respect to the station-
ary distribution 7 if w(z)P(z,y) = 7(y)P(y,x) for all z,y € Q. The reason for
introducing the inner product (12.1) is

LEMMA 12.2. Let P be reversible with respect to .

(i) The inner product space (R, (-,-)z) has an orthonormal basis of real-valued
eigenfunctions {fj}lfi‘l corresponding to real eigenvalues {\;}.
(ii) The matriz P can be decomposed as

Pt(m,y) _ 12 4 ' .
7,”(2!) *j;f](x)fj(y)/\j'

(iii) The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be the
constant vector 1, in which case
12|

=1+ fi@) ;A (12.2)

=2

P'(z,y)
(y)
PROOF. Define A(z,y) := =n(x)Y?n(y) Y/2P(x,y). Reversibility of P im-

plies that A is symmetric. The spectral theorem for symmetric matrices (Theo-
rem A.11) guarantees that the inner product space (R%, (-,-)) has an orthonormal

basis {¢; }‘fi‘l such that ¢; is an eigenfunction with real eigenvalue \;.

153
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The reader should directly check that /7 is an eigenfunction of A with corre-
sponding eigenvalue 1; we set 1 := /7 and A\j := 1.

If D, denotes the diagonal matrix with diagonal entries D, (z,x) = w(z), then
A=DZPD;?. If fj :== Dx ?¢j, then f; is an eigenfunction of P with eigenvalue
Ajl

_1 1 1 1 _1 _1
Pfj = PDﬂ—zt,Dj = Dﬂ— 2(D7%PD772)90J' = D7r 214(,93' = D‘,r 2)\j(pj = )\jfj.

Although the eigenfunctions {f;} are not necessarily orthonormal with respect to
the usual inner product, they are orthonormal with respect to the inner product
;)= defined in (12.1):

1 1
0ij = (#i pj) = (D7 fis Dz f3) = (i fi)m- (12.3)
(The first equality follows since {;} is orthonormal with respect to the usual inner

product.) This proves (i).
Let 4, be the function

0 ify#u.

Considering (R, (-,-);) with its orthonormal basis of eigenfunctions { fj}
function d, can be written via basis decomposition as

1 ify=u=x,
6y($):{ .

=1 the

12 12|

Sy = (Oy. fi)r Z fily (12.4)
j=1

Since P'f; = ALf; and P'(z,y) = (Pt5y)(fv),
2]

ng ()AL f; ().

Dividing by 7(y) completes the proof of (ii), and (iii) follows from observations
above. |

It follows from Lemma 12.2 that for a function f: Q — R,
1€2]

P = (f f)xfiN (12.5)

j=1
12.2. The Relaxation Time

For a reversible transition matrix P, we label the eigenvalues of P in decreasing
order:
1:A1>A22"‘2)\‘Q‘271. (126)
Define
Ay = max{|A| : A is an eigenvalue of P, A # 1}. (12.7)
The difference v, := 1 — A, is called the absolute spectral gap. Lemma 12.1
implies that if P is aperiodic and irreducible, then v, > 0.
The spectral gap of a reversible chain is defined by v := 1 — A,. Exercise 12.3
shows that if the chain is lazy, then ~, = .
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The relaxation time t. of a reversible Markov chain with absolute spectral
gap v« is defined to be

1
trel i:= —
*

One operational meaning of the relaxation time comes from the inequality
Var, (P'f) < (1 — )2 Var.(f). (12.8)

(Exercise 12.4 asks for a proof.) By the Convergence Theorem (Theorem 4.9),
Pif(z) — E.(f) for any = € , i.e., the function P'f approaches a constant
function. Using (12.8), we can make a quantitative statement: if ¢ > t,1, then the
standard deviation of P!f is bounded by 1/e times the standard deviation of f.
Let i, be the value for which |);, | is maximized. Then equality in (12.8) is achieved
for f = f;,, whence the inequality is sharp.

We prove both upper and lower bounds on the mixing time in terms of the
relaxation time and the stationary distribution of the chain.

THEOREM 12.3. Let P be the transition matriz of a reversible, irreducible
Markov chain with state space Q, and let Tmin := mingeq w(x). Then

tmix(€) < log ( ) trel. (12.9)

EMmin

Proor. Using (12.2) and applying the Cauchy-Schwarz inequality yields

1/2
I I I /

7—1‘ <D i@ [ <AL fo(m)z:sz(y) . (12.10)

=2 =

Using (12.4) and the orthonormality of {f;} shows that

12 12 1]
ﬂm=wm%»=<§3mmﬂmm§jﬁmﬂwﬁ>:wm¥§jhm%

™

Consequently, Zlfi‘z fj(z)? < m(z)~'. This bound and (12.10) imply that
EETES Y D T (8 )

ﬂ-(y) W(Z)ﬂ(y) "~ Tmin Tmin "~ Tmin

(12.11)

Applying Lemma 6.13 shows that d(t) < 7! exp(—vt). The conclusion now

min

follows from the definition of ¢yix(€). [ |

THEOREM 12.4. For a reversible, irreducible, and aperiodic Markov chain,

1
tmix(€) = (trel — 1) log (2_€> . (12.12)

REMARK 12.5. If the absolute spectral gap =, is small because the smallest
eigenvalue A is near —1, but the spectral gap ~ is not small, the slow mixing
suggested by this lower bound can be rectified by passing to a lazy chain to make
the eigenvalues positive.
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PROOF. Suppose that f is an eigenfunction of P with eigenvalue A # 1, so that
Pf = Af. Since the eigenfunctions are orthogonal with respect to (-,-), and 1 is
an eigenfunction, >° o 7(y)f(y) = (1. f)= = 0. It follows that

N f(@)| = [P f()] = D [P, u)f ) = 7@) f@)]| < 1f]loc2d(2).
yeQ
With this inequality, we can obtain a lower bound on the mixing time. Taking x
with |f(2)] = [|[loc yields
AP < 2d(t). (12.13)

Therefore, |A|t=x() < 2, whence

@) (1 1) 2 it (1) 2108 (L)

Minimizing the left-hand side over eigenvalues different from 1 and rearranging
finishes the proof. |

COROLLARY 12.6. For a reversible, irreducible, and aperiodic Markov chain,
lim d(t)** = \,.
t—o00

PROOF. One direction is immediate from (12.13), and the other follows from
(12.11). |

EXAMPLE 12.7 (Relaxation time of random transpositions). By Corollary 8.10
and Proposition 8.11, we know that for the random transpositions chain on n cards,

tmix = @(n IOg n)

Hence t,; = O(nlogn). The stationary distribution is uniform on S,. Since
Stirling’s Formula implies log(n!) ~ nlogn, Theorem 12.3 gives only a constant
lower bound. In fact, the relaxation time is known (through other methods) to be
exactly n/2. See Diaconis (1988).

12.3. Eigenvalues and Eigenfunctions of Some Simple Random Walks

Simple random walk on the n-cycle was introduced in Example 1.4. In Exam-
ple 2.10, we noted that it can be viewed as a random walk on an n-element cyclic
group. Here we use that interpretation to find the eigenvalues and eigenfunctions
of this chain and some closely related chains.

12.3.1. The cycle. Let w = €2™/", In the complex plane, the set W, :=
{w,w?,...,w" 1 1} of the n-th roots of unity forms a regular n-gon inscribed in
the unit circle. Since w™ = 1, we have

ijk' _ wk‘+j _ wk‘+j mod n.
Hence (W,,-) is a cyclic group of order n, generated by w. In this section, we
view simple random walk on the n-cycle as the random walk on the (multiplicative)
group W,, with increment distribution uniform on {w,w~'}. Let P be the transition
matrix of this walk. Every (possibly complex-valued) eigenfunction f of P satisfies

F@r ) + fwht)
2

A (Wh) = Pfwh) =

for0<k<n-—1.
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FIGURE 12.1. For simple random walk on the cycle, the eigenval-
ues must be the cosines. Here n = 10. The black vertices represent
w = e2™/10 while the grey vertices represent (1/2)(w? + w°) and
(1/2)(w?® + w™t), respectively.

For 0 < j <n —1, define apj(wk) := wk7. Then

(WF1) 4 o (WhH R O B
Psﬁj(wk)z%(w );%(w )¢ —;w =oﬂ’“<w7+2w ).(12.14)

Hence ¢; is an eigenfunction of P with eigenvalue % = cos(27j/n). What is
the underlying geometry? As Figure 12.1 illustrates, for any ¢ and j the average
of the vectors w’~7 and w’*7 is a scalar multiple of w’. Since the chord connecting
Wit with w!7 is perpendicular to w’, the projection of w7 onto w’ has length
cos(2mj/n).

Because ¢; is an eigenfunction of the real matrix P with a real eigenvalue, both
its real part and its imaginary parts are eigenfunctions. In particular, the function

fj + Wn — R defined by
£i(WF) = Re(p;(wF)) = Re(e2™ /™) = cos (%) (12.15)

is an eigenfunction. We note for future reference that f; is invariant under complex
conjugation of the states of the chain.

We have Ay = cos(2m/n) =1 — % +O(n™%), so the spectral gap v is of order
n~2 and the relaxation time is of order n?.
When n = 2m is even, cos(2mm/n) = —1 is an eigenvalue, so v, = 0. The walk

in this case is periodic, as we pointed out in Example 1.8.

12.3.2. Lumped chains and the path. Consider the projection of simple
random walk on the n-th roots of unity, as described in the preceding section, onto
the real axis. The resulting process can take values on a discrete set of points. At
most of them (ignoring for the moment those closest to 1 and —1), it is equally likely
to move to the right or to the left just like random walk on the path. Using this
idea, we can determine the eigenvalues and eigenfunctions of the random walk on a
path with either reflecting boundary conditions or an even chance of holding at the
endpoints. First, we give a general lemma on the eigenvalues and eigenfunctions of
projected chains (defined in Section 2.3.1).



CHAPTER 14

The Transportation Metric and Path Coupling

Let P be a transition matrix on a metric space (€2, p), where the metric p
satisfies p(z,y) > 1{z # y}. Suppose, for all states x and y, there exists a coupling
(X1,Y7) of P(x,-) with P(y,-) that contracts p on average, i.e., which satisfies

Em,yp(Xla}/l) S eiap(ﬁay) (141)

for some o > 0. The diameter of  is defined to be diam () := max, yeq p(z, y).
By iterating (14.1), we have
E; y0(X1, Y:) < e “'diam(Q).
We conclude that
||Pt(xv ) - Pt(ya' < P%y{Xt a Yt} = Pm,y{P(Xt;Y;f) > 1}
< Egyp(X1,Y:) < diam(Q)e ',

v

whence
tmix(€) < [é [log(diam(Q2)) + log(l/e)]—‘ .

This is the method used in Theorem 5.7 to bound the mixing time of the Metropolis
chain for proper colorings and also used in Theorem 5.8 for the hardcore chain.

Path coupling is a technique that simplifies the construction of couplings
satisfying (14.1), when p is a path metric, defined below. While the argument
just given requires verification of (14.1) for all pairs z,y € §, the path-coupling
technique shows that it is enough to construct couplings satisfying (14.1) only for
neighboring pairs.

14.1. The Transportation Metric

Recall that a coupling of probability distributions p and v is a pair (X,Y) of
random variables defined on a single probability space such that X has distribution
w and Y has distribution v.

For a given distance p defined on the state space €, the transportation metric
between two distributions on 2 is defined by

pr(p,v) = nf{E(p(X,Y)) : (X,Y) is a coupling of p and v}. (14.2)
By Proposition 4.7, if p(x,y) = 1{z2yy, then pr(pu,v) = || — vy

REMARK 14.1. Tt is sometimes convenient to describe couplings using proba-
bility distributions on the product space €2 x €2, instead of random variables. When
q is a probability distribution on €2 x €, its projection onto the first coordinate
is the probability distribution on €2 equal to

a(- x Q) = q(-y).
yeQ

189
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Likewise, its projection onto the second coordinate is the distribution ¢(Q2 x -).
Given a coupling (X,Y") of p and v as defined above, the distribution of (X,Y")
on 2 x € has projections p and v on the first and second coordinates, respectively.
Conversely, given a probability distribution ¢ on  x Q with projections p and v,
the identity function on the probability space (2 x €, ¢q) is a coupling of y and v.
Consequently, since E(p(X,Y)) = Z(w’y)egxﬂp(aj,y)q(x,y) when (X,Y) has
distribution ¢, the transportation metric can also be written as

prc(pv) =inf < > pla,y)gle,y) + q(- x Q) =p, qQx)=vp. (14.3)
(z,y)eQxQ

REMARK 14.2. The set of probability distributions on 2 x £ can be identified
with the (]Q2|-1)-dimensional simplex, which is a compact subset of R, The set
of distributions on 2 x © which project on the first coordinate to p and project on
the second coordinate to v is a closed subset of this simplex and hence is compact.

The function
a— Y. plx.yley)
(z,y)EQXQ

is continuous on this set. Hence there is a ¢, such that

> (@ y)a(,y) = pr(u,v).

(z,y)€QxQ

Such a ¢, is called an optimal coupling of 1 and v. Equivalently, there is a pair
of random variables (X4, Y), also called an optimal coupling, such that

E(p(Xs,Yy)) = pr(p,v).

LEMMA 14.3. The function px defined in (14.2) is a metric on the space of
probability distributions on €.

PROOF. We check the triangle inequality and leave the verification of the other
two conditions to the reader.

Let u, v and 1 be probability distributions on €2. Let p be a probability distribu-
tion on 2 x  which is a coupling of 4 and v, and let ¢ be a probability distribution
on 2 x  which is a coupling of v and 7. Define the probability distribution r on
QxQxQ by
p(z,y)a(y. z)

viy)
(See Remark 14.4 for the motivation of this definition.) Note that the projection
of r onto its first two coordinates is p, and the projection of r onto its last two
coordinates is q. The projection of 7 onto the first and last coordinates is a coupling
of p and n.

Assume now that p is an optimal coupling of p and v. (See Remark 14.2.)
Likewise, suppose that ¢ is an optimal coupling of v and 7.

Let (X,Y, Z) be a random vector with probability distribution r. Since p is a
metric,

r(z,y,z) = (14.4)

p(X,Z) < p(X,Y) + p(Y, 2).
Taking expectation, because (X,Y) is an optimal coupling of u and v and (Y, Z) is
an optimal coupling of v and 7,

E(p(X,2)) <E(p(X,Y)) +E(p(Y,2)) = pr(1,v) + px (v, 1).
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Since (X, Z) is a coupling (although not necessarily optimal) of © and 7), we conclude
that
pr () < pre(p,v) + prc (v, m).
[ |

The transportation metric px extends the metric p on 2 to a metric on the
space of probability distributions on 2. In particular, if §, denotes the probability
distribution which puts unit mass on z, then pg (95, 6y) = p(z,y).

REMARK 14.4. The probability distribution r defined in (14.4) can be thought
of as three steps of a time-inhomogeneous Markov chain. The first state X is
generated according to pu. Given X = z, the second state Y is generated according
to p(z,-)/w(z), and given Y = y, the third state Z is generated according to

q(y,-)/v(y). Thus,

P{X =2,Y =y, 7 = 2} = u(z)

14.2. Path Coupling

Suppose that the state space € of a Markov chain (X;) is the vertex set of a
connected graph G = (Q, Ey) and / is a length function defined on Ey. That is, ¢
assigns length £(z,y) to each edge {z,y} € Ey. We assume that {(z,y) > 1 for all
edges {z,y}.

REMARK 14.5. This graph structure may be different from the structure inher-
ited from the permissible transitions of the Markov chain (Xj).

Define a path in Q from z to y to be a sequence of states £ = (zg, z1,..., )
such that zo = x and z, = y and such that {z;_1,z;} is an edge for i = 1,...,r.
The length of the path is defined to be >.'_, £(z;—1,2;). The path metric on
is defined by

p(x,y) = min{length of £ : £ a path from x to y}. (14.5)

Since we have assumed that ¢(x,y) > 1, it follows that p(z,y) > 1{z # y},
whence for any pair (X,Y),

P{X#Y}=E (1{X¢y}) < Ep(X,Y). (14.6)
Minimizing over all couplings (X,Y") of 1 and v shows that
prv(p,v) < pi(psv). (14.7)

While Bubley and Dyer (1997) discovered the following theorem and applied it
to mixing, the key idea is the application of the triangle inequality for the trans-
portation metric, which goes back to Kantorovich (1942).

THEOREM 14.6 (Bubley and Dyer (1997)). Suppose the state space 2 of a Mar-
kov chain is the vertex set of a graph with length function £ defined on edges. Let
p be the corresponding path metric defined in (14.5). Suppose that for each edge
{z,y} there exists a coupling (X1,Y1) of the distributions P(x,-) and P(y,-) such
that

Eoy (p(X1,Y1)) < plz,y)e”* = L(z,y)e . (14.8)

Then for any two probability measures p and v on §2,

pr (P, vP) < e % pr (1, v). (14.9)
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Recall that d(t) = maxgeq |P'(z,-) — 7|/, and diam(Q) = max, yeq p(z, y).
COROLLARY 14.7. Suppose that the hypotheses of Theorem 14.6 hold. Then
d(t) < e”“*diam(Q),

and consequently

min (&) < [ log(e) + 10g<diam<ﬂ)>w |

a
PROOF. By iterating (14.9), it follows that
pr (WP, vP') < e pre(p,v) < e max p(, y). (14.10)
z,y

Applying (14.7) and setting u = §, and v = 7 shows that
| P (z,) = || o < e “'diam(Q). (14.11)
|

PROOF OF THEOREM 14.6. We begin by showing that for arbitrary (not nec-
essarily neighboring) z,y € Q,

p(P(z,-), P(y,-)) < e “p(z,y). (14.12)

Fix z,y € Q, and let (zo,x1,...,2,) be a path achieving the minimum in (14.5).
By the triangle inequality for pgx,

pK(P(.T, ')a P(ya )) < Z pK(P(‘kala ')a P(mka )) (14'13)
k=1
Since px is a minimum over all couplings, the hypotheses of the theorem imply
that, for any edge {a, b},
pi(P(a,-),P(b,-)) < e *(a,b). (14.14)

Using the bound (14.14) on each of the terms in the sum appearing on the right-
hand side of (14.13) shows that

pK(P(xv‘)aP(ya‘)) < e @ Zf(l’kfl,.’l,'k).
k=1

Since the path (zg,...,zx) was chosen to be of shortest length, the sum on the
right-hand side above equals p(z,y). This establishes (14.12).
Let 1 by an optimal coupling of 1 and v, so that

pr(pv) = > pla,y)n(,y). (14.15)

By (14.12), we know that for all z,y there exists a coupling 6,, of P(z,-) and
P(y,-) such that

> plu,w)bay (u,w) < e p(x,y). (14.16)

u,weN
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Colors: {1, 2%, 4,8, 6}

FIGURE 14.1. Updating at vertex w. The colors of the neighbors
are not available, as indicated.

Consider the probability distribution 6 := 3_ o n(z,y)0z,y on © x Q. (This is a
coupling of P with vP.) We have by (14.16) and (14.15) that

Y pluyw)b(u,w) = Y Y pluyw)lay(u,winle,y)

w,weS x,YyeQu,we

<e N pla,y)n(e,y)

z,yeN
=e “pr(,v).

Therefore, the theorem is proved, because px (uP,vP) <3, cq p(u, w)0(u, w).
|

14.3. Fast Mixing for Colorings

Recall from Section 3.1 that proper g-colorings of a graph G = (V, E) are
elements of x € Q = {1,2,...,q}V such that z(v) # z(w) for {v,w} € E.

In Section 5.4.1, the mixing time of the Metropolis chain for proper g-colorings
was analyzed for sufficiently large q. Here we analyze the mixing time for the
Glauber dynamics.

As defined in Section 3.3, Glauber dynamics for proper g-colorings of a graph
G with n vertices operate as follows: at each move, a vertex is chosen uniformly
at random and the color of this vertex is updated. To update, a color is chosen
uniformly at random from the allowable colors, which are those colors not seen
among the neighbors of the chosen vertex.

We will use path coupling to bound the mixing time of this chain.

THEOREM 14.8. Consider the Glauber dynamics chain for random proper q-
colorings of a graph with n vertices and mazimum degree A. If ¢ > 2A, then the
mixing time satisfies

tmix(€) < Kq“i) n (logn — log g)w . (14.17)




CHAPTER 15

The Ising Model

The Ising model on a graph with vertex set V at inverse temperature g was
introduced in Section 3.3.5. It is the probability distribution on Q@ = {—1,1}V
defined by

(o) = 2@ e [ 8 3 ow)o(w)

v,weV
v~w

Here we study in detail the Glauber dynamics for this distribution. As discussed
in Section 3.3.5, the transition matrix for this chain is given by

B0’ (v) 5(0.0)

1
n o~ . ,
PO =5 2 Gomrsom o 3o Lo wrmeta) for all wro)

where S(o,v) =3, . oo O(W).

This chain evolves by selecting a vertex v at random and updating the spin at v
according to the distribution 7 conditioned to agree with the spins at all vertices
not equal to v. If the current configuration is ¢ and vertex v is selected, then the
chance the spin at v is updated to 41 is equal to

_ BS(ov) _ 1+ tanh(BS(0,v))
p(U, ’U) T eBS(on) L e—BS(av) T 2 ‘

We will be particularly interested in how the mixing time varies with 3. Gener-
ically, for small values of 3, the chain will mix in a short amount of time, while for
large values of 3, the chain will converge slowly. Understanding this phase transi-
tion between slow and fast mixing has been a topic of great interest and activity
over the past twenty years; here we only scratch the surface.

15.1. Fast Mixing at High Temperature

In this section we use the path coupling technique of Chapter 14 to show that
on any graph of bounded degree, for small values of 3, the Glauber dynamics for
the Ising model is fast mixing.

THEOREM 15.1. Consider the Glauber dynamics for the Ising model on a graph
with n vertices and mazimal degree A.

(i) Let ¢(B) :=1— Atanh(8). If A -tanh(B) < 1, then

n(logn + log(l/s))—‘
c(B) '

In particular, (15.1) holds whenever 3 < A™1.

tmix(€) < { (15.1)

201
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(ii) Suppose every vertex of the graph has even degree. Let
ce(P) :=1—(A/2) tanh(2).
If (A/2) - tanh(203) < 1, then
n(logn + log(l/s))"

binl€) [ )

LEMMA 15.2. The function ¢(x) := tanh(8(z + 1)) — tanh(8(x — 1)) is even
and decreasing on [0, 00), whence

(15.2)

21£<p($) = ¢(0) = 2 tanh(3) (15.3)
and
sup (k) = ¢(1) = tanh(25). (15.4)

k odd integer

PROOF. Let 9(z) := tanh(fz); observe that ¢/(z) = 8/ cosh?(Bz). The func-
tion 1) is strictly positive and decreasing on [0,00) and is even. Therefore, for
x>0,

¢'(x) =7 (+1) —¢'(z—1) <0,
as is seen by considering separately the case where x — 1 > 0 and the case where
x — 1 < 0. Because tanh is an odd function,

p(=z) =Pz +1) —p(-z—1) = =¢(z = 1) + ¢(z + 1) = p(z),

SO  is even. |

PrOOF OF THEOREM 15.1. Define the distance p on 2 by

po7) =5 3 lo(u) — r(u)l.
ueV
The distance p is a path metric as defined in Section 14.2.

Let o and 7 be two configurations with p(c,7) = 1. The spins of o and 7 agree
everywhere except at a single vertex v. Assume that o(v) = —1 and 7(v) = +1.

Define NV (v) := {u : u ~ v} to be the set of neighboring vertices to v.

We describe now a coupling (X,Y") of one step of the chain started in configu-
ration o with one step of the chain started in configuration 7.

Pick a vertex w uniformly at random from V. If w ¢ N (v), then the neighbors
of w agree in both o and 7. As the probability of updating the spin at w to +1,
given in (3.10), depends only on the spins at the neighbors of w, it is the same
for the chain started in ¢ as for the chain started in 7. Thus we can update both
chains together.

If w € N(v), the probabilities of updating to +1 at w are no longer the same
for the two chains, so we cannot always update together. We do, however, use a
single random variable as the common source of noise to update both chains, so the
two chains agree as often as is possible. In particular, let U be a uniform random
variable on [0, 1] and set

X(w) = U<y and Y(w) =
-1 ifU>p

, +1 if U < p(r,w),
Set X (u) =o(u) and Y (u) = 7(u) for u # w.

-1 if U > p(r,w).

o,w),

=

o,w)
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If w=w, then p(X,Y) =0. If w & N(v)U{v}, then p(X,Y) =1. If w € N(v)
and p(o,w) < U < p(1,w), then p(X,Y) = 2. Thus,

1 1
Eer(p(X,Y)) S1—=~+~ " [p(r,w) —p(o,w)]. (15.5)
non
wEN (v)
Noting that S(w,7) = S(w,0) +2 = S + 2, we obtain
(B(5+2) o8

p(r.w) = ployw) = g o B(512)  ¢BS 1 ¢ B8
- % [tanh(3(S + 2)) — tanh(3S)] . (15.6)
Letting $ = S + 1 in (15.6) and then applying (15.3) shows that
(7, w) — plo,w) = % [tanh(g(g + 1)) — tanh(3(S — 1))] < tanh(8).  (15.7)

Using the above bound in inequality (15.5) shows that

[1 ~ Atanh(5)] exp (—M) = =B/,
n n

If Atanh(8) < 1, then ¢(8) > 0. Observe that diam(Q2) = n. Applying Corol-
lary 14.7 with o = ¢(8)/n establishes (15.1).

Since tanh(z) < z, if # < A™1, then Atanh(3) < 1.

Proof of (ii). Note that if every vertex in the graph has even degree, then
S =S +1 takes on only odd values. Applying (15.4) shows that

E,r (p(X,Y)) <1-

IA

p(r.w) — plo.w) = 1 [tanh(5(8 + 1)) — tanh(3(3 - 1))] < W22,
Using the above bound in inequality (15.5) shows that
1 — (A/2)tanh(20)

n
If (A/2)tanh(28) < 1, then we can apply Corollary 14.7 to obtain (15.2). |

E,.(p(X.Y)) <1— < eceB)/n,

15.2. The Complete Graph

Let G be the complete graph on n vertices, the graph which includes all (g)
possible edges. Since the interaction term o(v) >, ..., o(w) is of order n, we take
B = a/n so that the total contribution of a single site to 8 o(v)o(w) is O(1).

THEOREM 15.3. Let G be the complete graph on n wvertices, and consider
Glauber dynamics for the Ising model on G with 8 = a/n.
(i) If a < 1, then
1 log(1
tmix(€) < m Ogn;r_zg( / E)). (15.8)
(ii) If a > 1, then there is a positive function r(c) so that tmix > O (exp [r(a)n]).
PROOF. Proof of (i). Note that A tanh(8) = (n—1) tanh(a/n) < . Thusif a < 1,
then Theorem 15.1(i) establishes (15.8).
Proof of (ii). Define Ay := {o : |{v : o(v) = 1}| = k}. By counting,
w(Ag) = ar/Z(a), where

im () on (5[ (2) o)
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o,'z\\ 0.4 0.6 - 0.8
N\ 4 \
/ N 4 \
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FIGURE 15.1. The function ¢, defined in (15.9). The dashed
graph corresponds to a = 1.1, the solid line to a = 0.9.

Taking logarithms and applying Stirling’s formula shows that
log(a\_cnj) = ncpa(c)[l + 0(1)]3
where

©val(c) = —clog(c) — (1 —¢)log(l —¢) + a [%] . (15.9)

Taking derivatives shows that
P(1/2) = 0,
GL(1/2) = —4(1 - a).
Hence ¢ = 1/2 is a critical point of ¢,, and in particular it is a local maximum

or minimum depending on the value of a. See Figure 15.1 for the graph of ¢, for
a=0.9and a = 1.1. Take a > 1, in which case ¢, has a local minimum at 1/2.

Define
S—{a : Za(u)<0}.

ueV
By symmetry, 7(S) < 1/2. Observe that the only way to get from S to S¢ is
through A\, /2|, since we are only allowed to change one spin at a time. Thus

Q5.5 < WD eiar ) and w(5)= Y w(ay)

n
i<[n/2]

Let ¢1 be the value of ¢ maximizing @, over [0,1/2]. Since 1/2 is a strict local
minimum, ¢; < 1/2. Therefore,

a(s) < EPLea(/2nl +o(U]) _ explea(l/2nll +o(1)])

- Z(o)m(Alein)) —exp{palc)n[l +o(1)]}
Since pa(c1) > ¢a(1/2), there is an 7(a) > 0 and constant b > 0 so that @, <
be~""(@) The conclusion follows from Theorem 7.3. |

15.3. The Cycle
THEOREM 15.4. Let co(B) := 1 — tanh(28). The Glauber dynamics for the
Ising model on the n-cycle satisfies, for any B > 0 and fived ¢ > 0,
1+0(1) < tmix(€) < 1+0(1)
2c0(B) ~ mnlogn — co(B)

(15.10)



CHAPTER 18

The Cutoff Phenomenon

18.1. Definition

For the top-to-random shuffle on n cards, we obtained in Section 6.5.3 the
bound

dp(nlogn +an) <e ¢, (18.1)
while in Section 7.4.2 we showed that
liminf d,,(nlogn — an) > 1 — 27, (18.2)

In particular, the upper bound in (18.1) tends to 0 as a« — oo, and the lower bound
in (18.2) tends to 1 as a — oo. It follows that tmix(e) = nlogn [1 + h(n, )], where
limy, oo h(n,e) = 0 for all e. This is a much more precise statement than the fact
that the mixing time is of the order nlogn.

The previous example motivates the following definition. Suppose, for a se-
quence of Markov chains indexed by n = 1,2,..., the mixing time for the n-th
chain is denoted by )

mix

(€). This sequence of chains has a cutoff if, for all € > 0,

(n)
o
lim (;IA =1 (18.3)

The bounds (18.1) and (18.2) for the top-to-random chain show that the total
variation distance d,, for the n-card chain “falls off a cliff” at tf:f])x More precisely,
when time is rescaled by nlogn, as n — oo the function d, approaches a step

function:

1 if 1
nh_)rgo dp(cnlogn) = {0 ;f Z i 1’ (18.4)

In fact, this property characterizes when a sequence of chains has a cutoff.

LEMMA 18.1. Let tr(:fl)x and d,, be the mizing time and distance to stationarity,
respectively, for the n-th chain in a sequence of Markov chains. The sequence has
a cutoff if and only if

1 4 1
lim dy () =4t o<t
n—o0 0 ife>1.

The proof is left to the reader as Exercise 18.1.

Returning again to the example of the top-to-random shuffle on n cards, the
bounds (18.1) and (18.2) show that in an interval of length an centered at nlogn,
the total variation distance decreased from near 1 to near 0. The next definition
formalizes this property.

247
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dn(1)

mix

FIGURE 18.1. For a chain with a cutoff, the graph of d,, () against
(n)

mix’

t, when viewed on the time-scale of ¢ approaches a step function

as n — oQ.

A sequence of Markov chains has a cutoff with a window of size {wy} if
Wy = 0 (tfﬁl) and

lim liminf d, (17, + aw,) =1,

a——00 N—00 mix

4

lim lim sup dn( mix T+ ozwn) = 0.

A—0 nooo

We say a family of chains has a pre-cutoff if it satisfies the weaker condition
£ ()

mix

sup limsup —"2——

0<e<1/2 n—00 tr(:i)x(l —e€)
Theorem 15.4 proved that the Glauber dynamics for the Ising model on the
n-cycle has a pre-cutoff; it is an open problem to show that in fact this family of

chains has a cutoff.

18.2. Examples of Cutoff

18.2.1. Biased random walk on a line segment. Let p € (1/2,1) and
g=1-—p,s0oB:=(p—q)/2=p—1/2 > 0. Consider the lazy nearest-neighbor
random walk with bias 8 on the interval Q = {0,1,...,n}, which is the Markov
chain with transition probabilities

B if k£ {0,n},
Pk,k+1) = % if k=0,
0 if k=n,
1
Pk, k) ==
(k) = 3,
1 if k& {0,n},
Pk,k—1)=4¢0 ifk=0,
% it k =n.

That is, when at an interior vertex, the walk remains in its current position with
probability 1/2, moves to the right with probability p/2, and moves to the left with
probability ¢/2. When at an end-vertex, the walk remains in place with probability
1/2 and moves to the adjacent interior vertex with probability 1/2.
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THEOREM 18.2. The lazy random walk with bias 8 =p—1/2 on {0,1,2,...,n}
has a cutoff at B3~ 1n with a window of order \/n.

PROOF. We write t,(a) := 87 'n + ay/n.
Upper bound, Step 1. We first prove that if 7, := min{¢ > 0 : X; = n}, then

lim sup Po{7, > tn(a)} < ®(—c(B)a), (18.5)

n—oo

where ¢(8) depends on 3 only and @ is the standard normal distribution function.

Let (S;) be a lazy -biased nearest-neighbor random walk on all of Z, so ExS; =
k + pt. We couple (X;) to (S;) until time 7, := min{t > 0 : X; = n}, as follows:
let Xo = So, and set

1 if Xy =0and S;41 — S =-1
Xt+1:{ I Ay and og41 t ) (18.6)

X+ (Sgr1 — S¢) otherwise.

This coupling satisfies X; > S; for all ¢t < 7,,.
We have EgSy, (o) = tn(a)f =n + afy/n, and

Si,0) — ES;, (o) - —afBy/n
Vitn (@) V(@) |

where v = 1/2 — 32, By the Central Limit Theorem, the right-hand side above
converges as n — o0 to ®(—c(B)a). Thus

limsup Po{S;, (o) < n} = ®(—c(f)a). (18.7)

PO{Stn(a) < n} =Py {

Since X; > S; for t < 1,,

Po{r, > tn(a)} < Py { max S; < n} <Py {Stn(a) < n},
0<s<tn ()
which with (18.7) implies (18.5).

Upper bound, Step 2. We now show that we can couple two biased random
walks so that the meeting time of the two walks is bounded by 7,.

We couple as follows: toss a coin to decide which particle to move. Move the
chosen particle up one unit with probability p and down one unit with probability
q, unless it is at an end-vertex, in which case move it with probability one to the
neighboring interior vertex. The time T¢ouple until the particles meet is bounded by
the time it takes the left-most particle to hit n, whence

dn(tn(a)) < Pa?,y{Tcouple > tn(a)} < PO{Tn > tn(a)}
This bound and (18.5) show that
lim limsupd(t, (o)) < lim ®(—c(B)a) = 0.

a—o0 pno a—00
Lower bound, Step 1. Let 6 := (¢/p). We first prove that
limsup Po{X;, (o) >n—h} <1—&(—c(B)a) + 6" 1. (18.8)

n—oo

Let (X;) be the lazy biased random walk on {0, 1,...}, with reflection at 0. By
coupling with (X;) so that X; < X;, for x > 0 we have

Po{X, >z} < Po{X, > z}. (18.9)
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Recall that (S¢) is the biased lazy walk on all of Z. Couple (X;) with (S¢) so that
S¢ < X;. Observe that X; — S} increases (by a unit amount) only when X; is at 0,
which implies that, for any ¢,

Po{ X, — S, > h} < Py{at least h — 1 returns of (X,) to 0}.

By (9.21), the chance that the biased random walk on Z, when starting from
1, hits 0 before n equals 1 — (1 — 6)/(1 — ™). Letting n — oo, the chance that the
biased random walk on Z, when starting from 1, ever visits 0 equals . Therefore,

Po{at least h — 1 returns of (X;) to 0} = "1,
and consequently,
Po{X, S, >h} <"1 (18.10)
By (18.9) and (18.10),
Po{X;, (a) >n—h} <Po{S;, () >1n—2h} + Po{X; (a) — Sin(a) = h}

<Po{Si,(a) >n—2h}+0" . (18.11)

By the Central Limit Theorem,
nh_)ngo Po{S;,(a) >n —2h} =1 - &(—c(f)a),

which together with (18.11) establishes (18.8).
Lower bound, Step 2. The stationary distribution equals

w0 = | O o)

(/g™ —
If A, ={n—h+1,...,n}, then

2 (4,) = 1—(a/p)"**
1—(q/p)"*"
Therefore,
lim inf dy, (t,,(@)) > lim inf {W) (An) = Po{X} (o) > n — h}}
n—oo n—oo
>1—0"2 —[1—®(—c(B)a) + 0" 1],
and so

lim liminf d,(t,(a)) > 1— otz _gh1.

a——00 N—0o0

Letting h — oo shows that
lim liminfd,(t,(a)) = 1.

a——00 N—00

18.2.2. Random walk on the hypercube. We return to the lazy random
walk on the n-dimensional hypercube. In Section 5.3.3, it was shown that

tmix(€) < nlogn + ¢, (e)n,
while Proposition 7.13 proved that
1
tmix(l —€) > §nlogn —co(e)n. (18.12)

In fact, there is a cutoff, and the lower bound gives the correct constant:
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THEOREM 18.3. The lazy random walk on the n-dimensional hypercube has a
cutoff at (1/2)nlogn with a window of size n.

PrOOF. Let X; = (X},...,X]") be the position of the random walk at time ¢,
and let W, = W(X,) = .1 | X be the Hamming weight of X. As follows from
the discussion in Section 2.3, (W;) is a lazy version of the Ehrenfest urn chain whose
transition matrix is given in (2.8). We write 7y for the stationary distribution of
(W), which is binomial with parameters n and 1/2.

The study of (X) can be reduced to the study of (W;) because of the following
identity:

[P{X, €}~ oy = IPu{Ws €} — 7wy (18.13)

Proof of (18.13). Let €, := {& : W(x) = w}. Note that by symmetry, the
functions x — P1{X; =} and 7 are constant over €,,. Therefore,

Z P {X;=x}—n(x)| = Z P {X; =z} —7n(x)

z: W(z)=w z: W(z)=w
= [Pi{W; = w} — 7w (w)].

(The absolute values can be moved outside the sum in the first equality because all
of the terms in the sum are equal.) Summing over w € {0,1,...,n} and dividing
by 2 yields (18.13).

Since (X¢) is a transitive chain,

d(t) = [[P1{Xs €} =7l py

and it is enough to bound the right-hand side of (18.13).

We construct now a coupling (W;, Z;) of the lazy Ehrenfest chain started from
w with the lazy Ehrenfest chain started from z. Provided that the two chains have
not yet collided, at each move, a fair coin is tossed to determine which of the two
chains moves; the chosen chain makes a transition according to the matrix (2.8),
while the other chain remains in its current position. The chains move together
once they have met for the first time.

Suppose, without loss of generality, that z > w. Since the chains never cross
each other, Z; > W, for all t. Consequently, if D; = |Z; —W,|, then D; = Z, — W, >
0. Let 7 := min{t > 0 : Z; = W;}. Supposing that (Z;, W;) = (¢, w) and 7 > ¢,

1 with probability (1/2)(1 — z¢/n) + (1/2)w/n,
Dy — Dy = : H (18.14)
—1 with probability (1/2)z;/n+ (1/2)(1 — w/n).
From (18.14) we see that on the event {7 > t},
2 —w
Ez,w[Dt+1 - Dt | Zt = Zt, Wt = wt] = —% (1815)

Let Zy = (Z1,...,7) and W, = (Wy,...,W;). By the Markov property and
because 1{7 > t} is a function of (Z;, W),
1{7' > t}Ez,w[Dt+1 - Dt | Zta Wt]
= U7 > t}E, w[Dit1 — D | Zy, W] (18.16)
= Ez7w[1{7— > t}(Dt+1 — Dt) ‘ Zt-, Wt]
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Combining (18.15) and (18.16) shows that
E.o[1{r> }Di1 | Ze, W] < (1 - %) D{r > 1.
Taking expectation, we have
E..o[Dipil{r > t}] = (1 - %) E..[Di{r > 1}].
Since 1{T > t+ 1} < 1{r > t}, we have

Eyo[Dial{r>t+1}] < (1 _ %) E..o[Dil{r > t}].

By induction,

E.o[D{r> 1} < <1 - %)t (2 — w) < e/, (18.17)

Also, from (18.14), provided 7 > ¢, the process (D) is at least as likely to move
downwards as it is to move upwards. Thus, until time 7, the process (D;) can be
coupled with a simple random walk (S;) so that So = Do and D; < S;.

If 7:=min{¢t >0 : S; =0}, then 7 < 7. By Theorem 2.26, there is a constant
¢y such that for k& > 0,

Pr{r>u} <Pp{7>u} < % (18.18)

By (18.18),
c1Ds1{1 > s}

P,,{T>s+u| Dy,Di,...Ds} =1{r > s}Pp_ {7 > u} < NG
u

Taking expectation above and applying (18.17) shows that

—s/n
P, {r>s+ul < % (18.19)
Letting u = an and s = (1/2)nlogn above, by Corollary 5.3 we have
d((1/2)nlogn + an) < %.
We conclude that
lim limsupd((1/2)nlogn + an) = 0.
The lower bound (7.26) completes the proof. |

18.3. A Necessary Condition for Cutoff

When does a family of chains have a cutoff? The following proposition gives a
necessary condition.

PROPOSITION 18.4. For a sequence of irreducible aperiodic Markov chains with
relazation times {tigl)} and mizing times {t](nﬁ)x}, if tr(:i)x/ti:l) is bounded above, then
there is mo pre-cutoff.
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ProOOF. The proof follows from Theorem 12.4: dividing both sides of (12.12)

by t](r:i)x, we have
(n) (n)
tmix(E) trel -1 1 1
t(".) > t(n.) log % > log %)
As e — 0, the right-hand side increases to infinity. |

Recall that we write a,, < b, to mean that there exist positive and finite
constants ¢; and ¢z, not depending on n, such that ¢; < a,, /b, < ¢y for all n.

ExAMPLE 18.5. Consider the lazy random walk on the cycle Z,. In Section
5.3.1 we showed that ¢ ") < n?. In fact, this is the correct order, as shown in

mix

Section 7.4.1. In Section 12.3.1, we computed the eigenvalues of the transition
matrix, finding that tl(,Zl) = n? also. By Proposition 18.4, there is no pre-cutoff.

EXAMPLE 18.6. Let T}, be the rooted binary tree with n vertices. In Example
7.7, we showed that the lazy simple random walk has tmix =< n. Together with
Theorem 12.4, this implies that there exists a constant ¢ such that t.o) < c¢in. In
Example 7.7, we actually showed that ®, < 1/(n — 2). Thus, by Theorem 13.14,
we have 7 < 2/(n — 2), whence ty] > can for some constant cz. An application of
Proposition 18.4 shows that there is no pre-cutoff for this family of chains.

The question remains if there are conditions which ensure that the converse
of Proposition 18.4 holds. Below we give a variant of an example due to Igor Pak
(personal communication) which shows the converse is not true in general.

ExampLE 18.7. Let {P,} be a family of transition matrices with ti:l) = o(tf:i)x)
and with a cutoff (e.g., the lazy random walk on the hypercube.) Let L, :=
tigl)tgﬁ)x, and define the matrix

P, =(1=1/L,)P, + (1/L),,

where IL, (z,y) := m,(y) for all z.
We first prove that
1

t
’Pﬁ(z,-) waTV - (1 - Lﬂ) 1P () — 7o (18.20)

Proof of (18.20). One step of the chain can be generated by first tossing a coin
with probability 1/L,, of heads; if heads, a sample from ,, is produced, and if tails,
a transition from P, is used. If 7 is the first time that the coin lands heads, then
7 has a geometric distribution with success probability 1/L,. Accordingly,

P X" =y} = 7(y) = P X" = y.7 <} + Po{X" =y, 7> ) — 7(y)
= —m(y)[1 = Pof{r < t}] + Py (2, y)Pafr > 1}
= [Pu(z,y) — mn(y)] Pafr > t}.
Taking absolute value and summing over y gives (18.20). We conclude that

dp(t) = (1= L") dy(2)-

Therefore,
dn(ﬂLn) < 6_Bdn(ﬁLn) < e—ﬁ’



