Sergei Ivanov and Vitali Kapovitch

June 10, 2013

Sergei Ivanov and Vitali Kapovitch

Main object of study: Closed Riemannian manifolds with no conjugate points (NCP) $% \left(NCP\right) =0$

- If M is NCP, $p \in M$ then $exp \colon T_pM \to M$ is the universal cover.
- If $sec(M) \leq 0$ (NPC) then M is NCP.
- There are examples of NCP metrics that have some positive curvature but they are obtained by perturbing NPC metrics.

Sergei Ivanov and Vitali Kapovitch

Question

Let M^n be closed NCP. Does it admit a NPC metric?

Little progress on this so weaker question

Question

Which properties of fundamental groups of NPC manifolds hold for NCP manifolds?

Sergei Ivanov and Vitali Kapovitch

Theorem (Croke and Schroeder, 86)

Let \boldsymbol{M} be closed NCP. Then

- If $A \leq \pi_1(M)$ is abelian then the embedding $A \to \pi_1(M)$ is quasi-isometric.
- If $A \leq \pi_1(M)$ is solvable then A is virtually abelian.
- had to assume that the metric is real analytic (removed by Kleiner, Lebedeva using a different proof).

Sergei Ivanov and Vitali Kapovitch

Theorem (Ivanov-K, 2012)

Let \overline{M} be a closed manifold that admits a C^{∞} Riemannian metric without conjugate points. Then for every nontrivial element $\gamma \in \pi_1(\overline{M})$, its centralizer $Z(\gamma) < \pi_1(\overline{M})$ virtually splits over γ . This means that there exists a finite index subgroup $G < Z(\gamma)$ which is isomorphic to a direct product $\mathbb{Z} \times G'$ so that γ corresponds to the generator of the \mathbb{Z} factor.

Example

Let S_g be a closed surface of genus g>1. Then T^1S_g does not admit a NCP metric.

Displacement functions

Manifolds without conjugate points and their fundamental groups

Sergei Ivanov and Vitali Kapovitch

Fix a nontrivial element $\gamma \in \Gamma$. The displacement function $d_\gamma \colon M \to \mathbb{R}_+$ is defined by

$$d_{\gamma}(x) = d(x, \gamma x), \qquad x \in M.$$

A complete geodesic $c: \mathbb{R} \to M$ is called an *axis* of γ if γ translates c forward along itself, i.e., there is a constant L > 0 such that $\gamma c(t) = c(t+L)$ for all $t \in \mathbb{R}$.

Displacement functions

Manifolds without conjugate points and their fundamental groups

Sergei Ivanov and Vitali Kapovitch

Lemma

- O The function d_γ assumes a positive minimum, min d_γ. The set of points x ∈ M where d_γ(x) = min d_γ, is equal to A_γ.
- The isometry γ translates all its axes by the same amount, namely min d_γ. That is, if c is an axis of γ then γ(c(t)) = c(t + min d_γ) for all t ∈ ℝ.
- min $d_{\gamma^m} = m \cdot \min d_{\gamma}$ for every integer $m \ge 1$.
- A_γ is equal to the set of critical points of d_γ. In particular d_γ has no critical points outside its minimum set.
- A_{γ} is connected.

Busemann functions

Manifolds without conjugate points and their fundamental groups

Sergei Ivanov and Vitali Kapovitch

Definition

The Busemann function of a (minimizing) geodesic $c: \mathbb{R} \to M$ is a function $b_c: M \to \mathbb{R}$ defined by

$$b_c(x) = \lim_{t \to +\infty} d(x, c(t)) - t.$$

•
$$b_c(x) \le d(x, c(t)) - t$$
.

- if $\alpha \colon M \to M$ is an isometry, then $b_c(x) = b_{\alpha c}(\alpha x)$ for all $x \in M$.
- if $\sigma(t) = c(t+L)$ where L is a constant, then $b_{\sigma}(x) = b_{c}(x) + L$.
- If c is an axis of γ then $b_c(\gamma x) = b_c(x) \min d_{\gamma}$ for all $x \in M$.
- If c_1 is another axis of γ then b_c decays at unit rate along c_1 , that is $b_c(c_1(t+t_1)) = b_c(c_1(t)) t_1$ for all $t, t_1 \in \mathbb{R}$.

Sergei Ivanov and Vitali Kapovitch For a geodesic c in M, denote by b_c^- the Busemann function of the reverse geodesic $t\mapsto c(-t)$ and let $b_c^0=b_c+b_c^-.$

• $b_c^0(x) \ge 0$ for any x.

Lemma

Let c be an axis of γ . Then $b_c^0 = 0$ on A_{γ} .

Proposition

Let $\gamma \in \Gamma \setminus \{e\}$, and let c and c_1 be axes of γ . Then $b_c - b_{c_1}$ is constant on M.

Splitting of centralizers

Manifolds without conjugate points and their fundamental groups

Sergei Ivanov and Vitali Kapovitch Let $\alpha \in Z(\gamma)$ and c be an axis of γ . Then $b_c(\alpha x) - b_c(x)$ does not depend on $x \in M$.

Corollary

Lemma

There exists a homomorphism $h: Z(\gamma) \to \mathbb{R}$ such that $h(\gamma) \neq 0$.

Corollary

 $\pi(\gamma)$ is non-torsion (i.e. has infinite order) in $H_1(Z(\gamma))$.

Corollary

 $Z(\gamma)$ virtually splits over γ

Open problems

Manifolds without conjugate points and their fundamental groups

Sergei Ivanov and Vitali Kapovitch

Question

Let M^n be closed NCP. Is $\pi_1(M)$ semi-hyperbolic?

Question

Let $S_{g,1}$ be a surface of genus g > 1 with boundary S^1 . Let $M_1^3 = M_2^3 = S_{g,1} \times S^1$. Let $M = M_1 \cup_{\phi} M_2$ where $\phi \colon T^2 \to T^2$ is a diffeomorphism given by the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Does M admit a NCP metric?