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Main object of study: Closed Riemannian manifolds with no conjugate
points (NCP)

If M is NCP, p ∈M then exp : TpM →M is the universal
cover.

If sec(M) ≤ 0 (NPC) then M is NCP.

There are examples of NCP metrics that have some positive
curvature but they are obtained by perturbing NPC metrics.
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Question

Let Mn be closed NCP. Does it admit a NPC metric?

Little progress on this so weaker question

Question

Which properties of fundamental groups of NPC manifolds hold for
NCP manifolds?
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Theorem (Croke and Schroeder, 86)

Let M be closed NCP. Then

If A ≤ π1(M) is abelian then the embedding A→ π1(M) is
quasi-isometric.

If A ≤ π1(M) is solvable then A is virtually abelian.

had to assume that the metric is real analytic (removed by
Kleiner, Lebedeva using a different proof).
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Theorem (Ivanov-K, 2012)

Let M̄ be a closed manifold that admits a C∞ Riemannian metric
without conjugate points. Then for every nontrivial element
γ ∈ π1(M̄), its centralizer Z(γ) < π1(M̄) virtually splits over γ.
This means that there exists a finite index subgroup G < Z(γ) which
is isomorphic to a direct product Z×G′ so that γ corresponds to the
generator of the Z factor.

Example

Let Sg be a closed surface of genus g > 1. Then T 1Sg does not
admit a NCP metric.
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Displacement functions

Fix a nontrivial element γ ∈ Γ. The displacement function
dγ : M → R+ is defined by

dγ(x) = d(x, γx), x ∈M.

A complete geodesic c : R→M is called an axis of γ if γ translates
c forward along itself, i.e., there is a constant L > 0 such that
γc(t) = c(t+ L) for all t ∈ R.
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Displacement functions

Lemma

1 The function dγ assumes a positive minimum, min dγ . The set
of points x ∈M where dγ(x) = min dγ , is equal to Aγ .

2 The isometry γ translates all its axes by the same amount,
namely min dγ . That is, if c is an axis of γ then
γ(c(t)) = c(t+ min dγ) for all t ∈ R.

3 min dγm = m ·min dγ for every integer m ≥ 1.

4 Aγ is equal to the set of critical points of dγ . In particular dγ
has no critical points outside its minimum set.

5 Aγ is connected.
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Busemann functions

Definition

The Busemann function of a (minimizing) geodesic c : R→M is a
function bc : M → R defined by

bc(x) = lim
t→+∞

d(x, c(t))− t.

bc(x) ≤ d(x, c(t))− t.
if α : M →M is an isometry, then bc(x) = bαc(αx) for all
x ∈M .

if σ(t) = c(t+L) where L is a constant, then bσ(x) = bc(x) +L.

If c is an axis of γ then bc(γx) = bc(x)−min dγ for all x ∈M .

If c1 is another axis of γ then bc decays at unit rate along c1,
that is bc(c1(t+ t1)) = bc(c1(t))− t1 for all t, t1 ∈ R.
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For a geodesic c in M , denote by b−c the Busemann function of the
reverse geodesic t 7→ c(−t) and let b0c = bc + b−c .

b0c(x) ≥ 0 for any x.

Lemma

Let c be an axis of γ. Then b0c = 0 on Aγ .

Proposition

Let γ ∈ Γ \ {e}, and let c and c1 be axes of γ. Then bc − bc1 is
constant on M .
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Splitting of centralizers

Lemma

Let α ∈ Z(γ) and c be an axis of γ. Then bc(αx)− bc(x) does not
depend on x ∈M .

Corollary

There exists a homomorphism h : Z(γ)→ R such that h(γ) 6= 0.

Corollary

π(γ) is non-torsion (i.e. has infinite order) in H1(Z(γ)).

Corollary

Z(γ) virtually splits over γ
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Open problems

Question

Let Mn be closed NCP. Is π1(M) semi-hyperbolic?

Question

Let Sg,1 be a surface of genus g > 1 with boundary S1. Let
M3

1 = M3
2 = Sg,1 × S1. Let M = M1 ∪φM2 where φ : T 2 → T 2 is a

diffeomorphism given by the matrix A =

(
2 1
1 1

)
. Does M admit a

NCP metric?
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