
Pricing exotic options

with an implied integrated variance

Ruth Kaila∗

October 13, 2012

Abstract

In this paper, we consider the pricing of exotic options using two option-implied

densities: the density of the implied integrated variance and the risk-neutral price

density. We present a Bayesian method to estimate both densities and an option-

implied correlation coefficient between the stock price and volatility shocks. We

discuss how the convexity adjustment can be avoided when pricing volatility deriva-

tives and discuss the types of additional information that can be provided by the

distribution of the implied integrated variance when pricing digital and barrier op-

tions. We then present a simple algorithm to estimate the implied integrated vari-

ance between two future moments in time and to price two pathdependent options,

namely, compound and cliquet options.
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1 Introduction

One of the central problems in financial mathematics is the pricing and hedging of deriva-

tives such as options. The accuracy of correct pricing and hedging is substantially depen-

dent on how well the volatility of the underlying asset has been estimated. In this paper,

we estimate two option-implied densities, namely the density of an implied integrated

variance and a risk-neutral price density, and use these densities to price three types of

exotic options: volatility options, semi-path-dependent options and path-dependent op-

tions. We adopt a Bayesian approach where, instead of an absolute truth, we search for

evidence of the consistency or inconsistency of a given hypothesis.

The Black-Scholes implied volatility or variance and the model-free volatility or variance

are common option-based forecasts of the volatility or variance. The model-free volatility,

presented by Britten-Jones and Neuberger (2000), is defined as the risk-neutral expected

realized volatility implied by options and can be computed as a weighted average of a

continuum of European options with different strike prices and one maturity. The model-

free volatility is independent of strike prices and can be computed between two future

moments in time. The performance of the implied volatility and the model-free volatility

in forecasting the future volatility is considered by Muzzioli (2010), where additional

literature on the topic is also presented.

The implied integrated variance can be seen as a stochastic extension of the Black-Scholes

implied variance. The distribution of the implied integrated variance can be estimated

from option prices using either a general option payoff formula or the Hull-White formula

(1987). Similar to the model-free variance, the distribution of the implied integrated

variance is also independent of strike prices and can be computed between two future

moments in time. The main difference between the implied integrated variance and the
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model-free variance is that we consider a distribution of the variance, rather than a

fixed value, in the former. We can extend the Hull-White approach of pricing European

options to pricing some exotic options and computing hedge ratios using an option implied

integrated variance.

The inverse problem of implied integrated variance is considered by Friz and Gatheral

(2005) and, later, by Kaila (2008), assuming an uncorrelated volatility. In this paper, we

will simultaneously estimate an implied integrated variance and an implied correlation

coefficient by applying a method presented by Kaila (2012). An estimate of the risk-

neutral price density is obtained directly from these estimates. The inverse problem of

an implied integrated variance is ill-posed, as explained by Friz and Gatheral (2005). In

their paper, the authors coped with the ill-posedness by first regularizing the ill-posed

problem and then using a Bayesian lognormal prior. Instead of regularizing, Kaila (2012)

recasts the deterministic ill-posed inverse problem of an implied integrated variance in the

form of a statistical inference of the distribution of the unknowns and adopts a Bayesian

approach. In addition to providing an estimate of the unknowns, this approach provides

information on the reliability of the estimates. Following Friz and Gatheral (2005), the

distribution of the integrated variance is assumed to be lognormal, such that estimating

the entire distribution reduces to estimating the mean and variance of the distribution. A

statistical approach to estimating an option-implied volatility is also adopted by Cont and

Ben Hamida (2005), who solved an unregularized, ill-posed problem of implied volatility

with evolutionary optimization and Monte Carlo sampling.

The main contribution of this paper is that we propose pricing formulas for several exotic

options assuming a correlated stochastic volatility, using both the option payoff formula

and the correlated Hull-White formula. A statistical approach takes into account the

effect of noisy data. The use of distributions instead of fixed values in pricing provides
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additional information on the possible pricing errors we are making. The problem of miss-

ing data is often encountered when estimating model-free volatilities or risk-neutral price

densities, but it can be avoided to some extent when the distribution of the integrated

variance is already reflected in a few option prices with different strike prices. Estimates

of the implied integrated variance can be used when pricing volatility derivatives, assum-

ing either a correlated or uncorrelated volatility. The convexity adjustment (related to

volatility swaps and calls, for example) is avoided by using a distribution of the implied

integrated variance instead of the corresponding expectation when pricing these deriva-

tives. Finally, two different path-dependent options are priced using the distributions of

the implied integrated variance and the risk-neutral price densities between two future

moments in time.

This paper is organized as follows: Section 2 solves the inverse problem of an implied

integrated variance and an implied correlation coefficient and provides the corresponding

estimates of the risk-neutral price density. Section 3 addresses volatility derivatives, while

digital options and barrier options are priced in Section 4. In Section 5, we consider

compound options and cliquet options, and we offer a conclusion in Section 6.
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2 Implied integrated variance

We assume a continuous-time economy with a finite trading interval [0, T ]. Let (Ω,F , P )

be a probability space, equipped with a filtration (Ft)0≤t≤T . We denote a risk-neutral

measure by P ∗, equivalent to the natural measure P . The stock price process (Xt)0≤t≤T

and the volatility process (σt)0≤t≤T are modeled as the following diffusion processes:

dXt = rXtdt+ σtXt(
√
1− ρ2dW ∗

t + ρdZ∗
t ),

dσt = θσtdt+ νσtdZ
∗
t ,

(1)

where r is the riskless rate of return, and θ and ν are the drift of the volatility and

the volatility of the volatility, respectively. The P ∗-Brownian motions W ∗
t and Z∗

t are

independent and
∫ T
0
σ2
sds < ∞. We denote by ρ = [−1, 1] the constant correlation

coefficient between the shocks of the stock price process and the volatility process. When

ρ ̸= 0, we say that the volatility is correlated and when ρ = 0, we say that the volatility

is uncorrelated.

We define the integrated variance, denoted by σ̄2
tT , as

σ̄2
tT =

1

T − t

∫ T

t

σ2
sds, 0 ≤ t < T,

conditional on the filtration Ft. The integrated variance is approximated in the literature

by the realized variance. We call the square root of the integrated variance, stT =
√
σ̄2
tT ,

the integrated volatility.

We begin with a variation of the approach presented by Romano and Touzi (1997) and

Willard (1997), apply the two-dimensional Itô formula to log(Xt) and integrate from t to
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T , 0 ≤ t < T , obtaining the following:

log

(
XT

Xt

)
= ρϕtT +

(
(r − 1

2
σ̄2
ρ,tT )(T − t) +

√
1− ρ2

∫ T

t

σsdW
∗
s

)
, where (2)

ϕtT = −1

2
ρσ̄2

tT (T − t) +

∫ T

t

σsdZ
∗
s and σ̄2

ρ,tT = (1− ρ2)σ̄2
tT . (3)

Rather than ϕtT , Romano and Touzi (1997) and Willard (1997) apply ξtT = exp(ρϕtT )

and show how XT/Xt is lognormally distributed conditional on Xt, σ̄2
tT and ξtT . We now

have two lognormal distributions under the measure P ∗:

1. Conditional on Xt, σ̄2
tT and ϕtT , the return XT/Xt is lognormally distributed:

XT

Xt

∼ lN (ρϕtT +
(
r − 1

2
σ̄2
ρ,tT

)
(T − t), σ̄2

ρ,tT (T − t)).

2. Conditional on Xt, σt and σ̄2
tT , ϕtT is shifted lognormally distributed:

ϕtT ∼ lN
(
log

(σt
ν

)
+ (θ− 1

2
ν2)(T − t), ν2(T − t)

)
− σt
ν
eθ(T−t) − 1

2
ρσ̄2

tT (T − t), (4)

where θ and ν can be estimated from the distribution of σ̄2
tT . The proof is given in

the Appendix and in the paper by Kaila (2012).

As a result, given Xt, the distribution π(σ̄2
tT ) and ρ, we can estimate the conditional

distribution π(XT | Xt).

Now consider a European call on the stock, with price Ut = Ut(x;K,T ;σ
2
t , r) given by

the following equation:

Ut = e−r(T−t)E∗{(XT −K)+ | x = Xt, σ
2
t ,Ft} = e−r(T−t)E∗{h(XT ) | x, σ2

t ,Ft}, (5)
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where K is the strike price and T is the maturity. We denote by E∗ the expectation with

respect to the measure P ∗.

Hull and White (1987) showed that when the volatility is stochastic and uncorrelated,

the prices of European options are given as expectations of the corresponding Black-

Scholes prices (1973) with respect to the integrated variance. Renault and Touzi (1996)

explained how the Hull-White formula produces a symmetric volatility smile when the

implied volatilities are plotted as a function of the log-moneyness log(K/Xte
r(T−t)). The

asymmetric smiles that are observed in the market can therefore be explained by a correla-

tion between the stock price process and the volatility process; as a result, the assumption

of an uncorrelated volatility is unjustified in practice.

Romano and Touzi (1997) and Willard (1997) extended the Hull-White formula to options

with correlated volatility. The correlated Hull-White call price is given by UHW,ρ
t (x;σ2

t ) =

UHW,ρ
t (x;K,T ;σ2

t , r) = E∗{E∗{UBS
t (ξtT (σ̄

2
tT , ρ)x; σ̄

2
ρ,tT , r) | σ̄2

tT ,Ft} | σ2
t ,Ft

}
, where the

Black-Scholes call price UBS
t (x;σ2) = UBS

t (x;K,T ;σ2, r) is

UBS
t (x; σ2) = xΦ(d+)− e−r(T−t)KΦ(d−), d± =

log(x/K) + (r ± σ2/2)(T − t)

σ
√

(T − t)
, (6)

with Φ(z) = 1/
√
2π

∫ z
−∞ e−y

2/2dy. We substitute ρϕtT = log(ξtT ) into the correlated

Hull-White formula so that

UHW,ρ
t (x; σ2

t ) = E∗{E∗{UBS
t (e(ρϕtT (σ̄2

tT ,ρ))x; σ̄2
ρ,tT , r) | σ̄2

tT ,Ft} | σ2
t ,Ft

}
. (7)

Two common inverse problems are to estimate the risk-neutral price density, i.e., the

density of the stock price XT implied by option market prices uobst under a risk-neutral

measure P ∗ defined by the markets, and to estimate the Black-Scholes implied volatility
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Figure 1: Due to the convexity of the Black-Scholes formula (6) with respect to the
volatility and the underlying and the convexity of the payoff pricing formula (5) with
respect to the underlying, different distributions of σ̄2

tT and ϕtT result in different option
prices for the same strike prices and maturities. As a result, assuming that option market
prices coincide with the prices given by the Hull-White formula (7) or the payoff pricing
formula, option market prices should provide information on the distributions of σ̄2

tT and
XT . In the first row and in the left panel, a surface indicating the convexity (yellow)
and concavity (red) of the Black-Scholes formula with respect to σ2 is plotted. In the
right panel, we plot the surface of the Black-Scholes delta. The convexity of the Black-
Scholes formula with respect to the underlying is indicated with different colors. In the
second row, we plot in the left panel two randomly chosen distributions of the integrated
variance with the same expectation (vertical line), namely, σ̄2

tT,1 ∼ lN (.15, .03) (blue) and
σ̄2
tT,2 ∼ lN (.125, .5) (red). In the right panel, the conditional distributions π(ϕtT | σ̄2

tT )
computed with different values of ρ, specifically ρ1 = −.85 (black) and ρ2 = .4 (yellow),
are shown, assuming that σ̄2

tT ∈ [0, .6]. In the bottom row, two randomly chosen densities
of Xt with the same expectation are plotted in the left panel, and in the right panel, the
corresponding conditional densities π(XT | Xt) are shown, computed with (2), σ̄2

tT,2 and
ρ = 0. We also plot in the right panel the densities XT computed with σ̄2

tT,2 and ρ1 (blue)
and ρ2 (red), assuming that Xt = 1 (T1 = .5 years, r = 0).

8



I. As a stochastic extension of the Black-Scholes implied variance, we define the distri-

bution of the implied integrated variance and the implied correlation coefficient to be,

respectively, the distribution of σ̄2
tT and the value of ρ for which the correlated Hull-White

option prices equal the true option prices U true
t : UHW,ρ

t (x;K,T ; σ2
t , r) = U true

t (K,T ), given

options with strike prices Ki, 1 ≤ i ≤ L, and a maturity T . In the inverse problem of the

implied integrated variance, the parameter to estimate is a probability density function

π(σ̄2
tT ) implied by a series of option prices with different strike prices and the same matu-

rity. Then, using the uncorrelated Hull-White formula, for example, we estimate π(σ̄2
tT )

from

U true
t,i = E∗{UBS

t,i (x;Ki, T ; σ̄
2
tT , r) | σ̄2

tT ,Ft} =

∫ T

t

UBS
t,i (x;Ki, T ; σ̄

2
tT , r)π(σ̄

2
tT )dσ̄

2
tT ,

where the subscript i refers to the strike price Ki, 1 ≤ i ≤ L, and the integral is computed

with respect to all possible realizations of the integrated variance. In practice, we will have

to estimate the unknowns from the noisy option prices observed in the markets. Figure 1

illustrates why Hull-White option prices with different strike prices contain information

on the distributions of σ̄2
tT and ϕtT . It also illustrates how an initial distribution π(Xt)

affects the return (XT/Xt) similarly to the distributions of ϕtT and ξtT .

The inverse problem of implied integrated variance was first considered by Friz and

Gatheral (2005), who assumed an uncorrelated volatility. They showed how this problem

is unique if a continuum of options with different strike prices is provided. However, the

problem is ill-posed in the sense that small errors in the data may result in large errors

in the estimates of the unknown. Friz and Gatheral (2005) applied least-squares opti-

mization using traditional regularization techniques and general assumptions regarding

the probability density and then use a lognormal prior distribution in the Bayesian sense.
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Rather than using regularization techniques, we will adopt a Bayesian statistical ap-

proach. In this statistical approach, the entire deterministic inverse problem is recasted

in the form of a statistical inference of the distribution of the unknown. We then model

both the unknown X ∈ Rn and the observation Y ∈ Rm, as well as the noise ϵ ∈ Rk,

as random variables or vectors. Then, given the model function F , Y = F (X) + ϵ, the

unknown X is estimated from a realization y ∈ Rm of Y . In addition to an estimate of

the unknown, this approach provides information on the reliability of the estimate. A

statistical approach for the inverse problem of option-implied volatilities is presented by

Cont and Ben Hamida (2005), where the unregularized ill-posed problem is solved using

evolutionary optimization and Monte Carlo sampling. As an example, the local volatility

surface implied by options with different strike prices and maturities is estimated.

In the Bayesian framework prior information on the unknown x = X, encoded in a prior

distribution Pprior(x), is combined with information on the realization y of Y , modeled

as a likelihood function Plik(y | x). The solution of the Bayesian inverse problem is

the posterior density, given by the Bayes formula: Ppost(x | y) ∝ Pprior(x)Plik(y | x),

where ∝ means “up to a normalizing constant”. The posterior density can be visualized

by point estimates, such as Maximum-A-Posteriori (MAP) estimates and Conditional

Mean (CM) estimates. A brief introduction to statistical Bayesian inverse problems is

given in the Appendix, and they are discussed in more depth by Kaipio and Somersalo

(2005). Jacquier, Polson and Rossi (1994) and (2005) apply a Bayesian approach when

estimating the stochastic uncorrelated or correlated volatility process from option prices.

A literature review on the more recent use of Bayesian methods in quantitative finance

is provided by Jacquier and Polson (2010).

When estimating the implied integrated variance, we will not search for one probability

density π(σ̄2
tT ). Instead, given the option data and the noise level, we will try to estimate
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the most likely distribution, as well as the probability of other distributions. Based on

prior knowledge, we know that the total probability must equal one. Following Friz and

Gatheral (2005), we make a prior assumption that the distribution of σ̄2
tT is lognormal:

σ̄2
tT ∼ lN (µ, ς), such that the problem of estimating the entire distribution reduces to

estimating µ and ς, which are random variables in our statistical approach. The lognor-

mality of the realized variance is reported by Andersen, Bollerslev, Diebold and Ebens

(2001), Andersen, Bollerslev, Diebold and Labys (2001) and Zumbach, Dacorogna, Olsen

and Olsen (1999). A shifted lognormal distribution of realized variance is assumed by

Carr and Lee (2007) and a gamma distribution is assumed by Carr, Madan, Geman and

Yor (2005).

Because options have different market prices for bids and offers and there is no unique

price to be used when estimating the integrated variance, we will model option prices

as normally distributed random processes U true
t ∼ N (Ût,Vart). The mean Ût is given as

the average of the realized bid and offer prices, Ût = (ubidt + uoffert )/2 and the variance

is Vart = V(ubid
t − uoffer

t ), where V is a positive finite constant. We assume that the

observed option price uobst is a realization of the arbitrage-free true option price U true
t

and that each observed option price coincides with the correlated Hull-White price (7)

or the corresponding option payoff price (5) up to a small normally distributed error

et,i ∼ N (0,Vart,i), such that

uobst,i = UHW,ρ
t,i (x;Ki, T ; σ

2
t , r) + et,i or uobst,i = E∗{hi(XT )}+ et,i, (8)

where 1 ≤ i ≤ L.

Next, we briefly present an algorithm to compute MAP estimates of σ̄2
tT ∼ lN (µ, ς),

assuming an uncorrelated volatility. A similar algorithm that can be used to solve the
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entire inverse problem with correlated volatility and unknown ρ using either the payoff

formula or the correlated Hull-White formula is presented in detail in the Appendix. The

latter algorithm is from the study by Kaila (2012).

We fix time t and write uobs = uobst , UBS = UBS
t , U true = U true

t . For the computation,

we must first discretize all of the distributions and the pricing function. We assume that

the distribution of the implied integrated variance σ̄2 = σ̄2
tT contains positive values in

the interval [a, a+Mσ], divide this interval into nσ points, σ̄2
j and denote by z ∈ Rnσ the

discretized probability distribution of σ̄2, such that zj is the probability of σ̄2
j , 1 ≤ j ≤ nσ.

We assure that
∑nσ

j=1 zj = 1 with zj = zj/(Mσ/nσ
∑nσ

j=1 zj). We denote

A =
Mσ

nσ

nσ∑
j=1

UBS(x;K,T ; σ̄2
j , r), uobs = Az + e.

According to the prior assumption, z ∼ lN (µ, ς). The prior density Pprior(z) consists of

all possible lognormal distributions z, denoted by zlog(µ, ς). We model the hyperprior of

the pair θ = (µ, ς) as a uniform distribution: Phyper(µ, ς) = U((µmin, µmax)× (ςmin, ςmax)).

Because we have assumed a normally distributed error e, the likelihood function is given

by the Gaussian kernel:

Plik(u
obs | z) ∝ exp

(
− 1

2

(
(uobs − Az)TΓ−1(uobs − Az)

))
,

where the covariance matrix Γ = diag(Var1,Var2, . . . ,VarL). The posterior density

Ppost(z | uobs) ∝ Plik(u
obs | z)Pprior(z)Phyper(µ, ς), which is the solution of the inverse

problem, reduces under the lognormality assumption of z to

Ppost(z | uobs) ∝ Plik(u
obs | zlog(µ, ς))Phyper(µ, ς).
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In our case, the Maximum-A-Posteriori (MAP) estimator zMAP(µMAP, θMAP), which is

characterized by zMAP = argmaxz∈Rnσ Ppost(z | uobs), leads to the following optimization

problem:

zMAP(µMAP, ςMAP) = argminzlog(µ,ς))
(
(uobs − Azlog(µ, ς))

TΓ−1(uobs − Azlog(µ, ς))
)
, (9)

where (µ, ς) is given by the hyperprior. A simple method to estimate zMAP or θMAP =

(µMAP, ςMAP) is to draw a sample S = {θ1, θ2, . . . , θN} of independent realizations θj ∈

R2 from the hyperprior Phyper(µ, ς) and compute the θj that minimizes the right-hand

side of (9). However, this method can be computationally costly because the sample

size N must be large enough such that S represents the uniform distributions of µ and

ς. Alternatively, we can compute estimates with the grid search method, where we

approximate the uniformly distributed continuous hyperprior Phyper(µ, ς) by a discretized

hyperprior. This discretized hyperprior is a grid consisting of nµ evenly spaced values of

µ within [µmin, µmax] and nς values of ς within [ςmin, ςmax]. The norm on the right-hand

side of (9) is evaluated at all of the grid points, and θMAP and zMAP are given by the grid

point (µi, ςj), 1 ≤ i ≤ nµ, 1 ≤ j ≤ nς minimizing the norm. If we know ρ and have good

hyperpriors, an estimate zMAP is obtained in less than a minute (computed with 2.2 GHz

Intel Core i7). We explain in the Appendix how the hyperpriors can be chosen.

We cannot expect the approximate solution to yield a smaller residual error than the

measurement error e and should accept as suitable approximations of the unknowns all the

estimates satisfying ∥uobs−Az∥ ≃ ∥e∥ = ∥uobs−U true∥. We denote such distributions zlog

by zerr, and those with the smallest and largest expectations by zmin and zmax, respectively.

This discrepancy principle, the effect of noisy data and the bid-ask spread in the volatility

estimation have also been considered by Cont and Hamida (2005).
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Theoretically, the distribution of the implied integrated variance is the same for all strike

prices and is already reflected in a couple of option prices due to the convexity of the

Black-Scholes formula and the payoff formula with respect to the underlying and the

volatility, as illustrated in Figure 1. If the option data are very noisy or the investors in

in-the-money options have different expectations of the volatility than those investing in

at-the-money or out-of-the-money options, estimates of the implied integrated variance

could vary according to the strike prices of the options. The accuracy of the out-of-

the-money calls and in-the-money puts is essentially lower than that of the rest of the

options.

In Figure 2, we illustrate the performance of the grid search method with the MAP

estimates of σ̄2
tT implied by S&P 100 call options maturing in August 2009. We plot

zMAP and zerr, as well as the pricing errors related to these estimates. As supports

for the discrete probability distributions, we use σ̄2
tT ∈ [1e−5, 1], nσ = 500 and ϕtT ∈

[−.5, .5], nϕ = 100. The discrete hyperprior of the pair (µ, ς) consists of nµ = 100 evenly

distributed points µ on the interval [log(.5I2ATM), log(2I
2
ATM)], where IATM is the implied

at-the-money volatility, and nς = 6 prior values ςprior that are unevenly chosen on the

interval [.005, .3]. We have chosen the prior values of ς unevenly in order to minimize

the required computation; the option prices are not sensitive to whether the variance of

σ̄2
tT is ς = .005 or ς = .007, for example. Additionally, based on prior information on

the typical values of ρ implied by S&P 100 options in 2009, the discretized hyperprior

of ρ is the set [−.7,−.75,−.8,−.85,−.875,−.9,−.925]. Because we do not have actual

information on the bid-ask spreads, we assume that e ∼ N (0, (.02uobs)2).

To close the section, let us consider the integrated variance between two future moments
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in time 0 ≤ T1 < T2:

σ̄2
12 = σ̄2

T1T2
=

1

T12

∫ T2

T1

σ2
sds, T12 = T2 − T1.

Given two estimates of σ̄2
tTi

∼ lN (µi, ςi) implied by the options ui with different strike

prices and two maturities Ti, i = 1, 2, we can compute an estimate of σ̄2
12. For σ̄2

12 ∼

lN (µ12, ς12), the estimates µ12 and ς12 are obtained from µi and ςi, i = [1, 2] by

µ12 =
(
log(

T2
T12

eµ2+.5ς2 − T1
T12

eµ1+.5ς1)
)
− 1

2
ς12,

ς12 = log

(
1 +

T2
T12

(eς2 − 1)e2µ2+ς2 − T1
T12

(eς1 − 1)e2µ1+ς1

( T2
T12
eµ2+.5ς2 − T1

T12
eµ1+.5ς1)2

)
.

The corresponding proof is provided in the Appendix. We will need σ̄2
12 when pricing

some path-dependent options in Section 5.
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Figure 2: MAP estimates. In the first row, we plot in the left panel as distributions and
expectations (vertical lines) the estimates zMAP,all computed from all L = 54 call options
(blue) and zMAP,nATM from L = 16 near-at-the-money calls with moneyness .85 ≤ M ≤
1.03 (green). In the right panel, the corresponding L = 54 true call prices uobs (red) and
the call prices uMAP computed with the correlated Hull-White formula and the estimates
zMAP in the left panel are plotted using the same colors. In the second row, we plot
in the left panel the relative errors between the estimated prices and the true prices,
(uobs−uMAP)/u

obs, computed with zMAP,all (blue) and zMAP,nATM (green). As the accuracy
of the out-of-the money prices tends to be less than the accuracy of in-the-money and
at-the-money prices, we plot in the right panel the same information on the relative
errors but for the in-the-money and at-the-money options only. The MAP estimates of
the correlation coefficient implied by all L = 52 options and L = 16 near-at-the-money
options are ρMAP,all = −.85 and ρMAP,nATM = −.8, respectively. In the bottom row,
we plot estimates zmin (green) and zmax (red) that should be accepted according to the
discrepancy principle, as well as zMAP (blue). In the left panel, we have used all L = 54
options and ρMAP,all and in the right panel, we have used the L = 16 near-at-the-money
options and ρMAP,nATM (the estimates are computed from S&P 100 calls maturing in
August 2009 and the assumed noise is e ∼ N (0, (.02uobs)2) ).

16



3 Volatility derivatives

Integrated and realized variances and volatilities are closely related to some volatility

derivatives, such as variance and volatility swaps and options. These instruments provide

the possibility to speculate on or hedge risks associated with the size of the movement of an

underlying product, such as a stock index, an exchange rate or an interest rate. Variance

and volatility swaps are forward contracts that pay the difference between the realized

variance or volatility and an agreed fixed amount, the strike, at maturity. Variance

and volatility calls and puts are similar to European calls and puts, with an underlying

realized variance or volatility.

There are two main approaches in pricing volatility derivatives, based on either the under-

lying stock price process or the information provided by the market prices of European

options. Option-implied volatility derivatives are discussed in detail by Carr and Lee

(2008), and volatility derivatives more generally are discussed by Dupire (1992), Carr

and Madan (1998), Derman et al. (1999a), (1999b) and, more recently, by Carr et al.

(2005) and Carr and Sun (2008). The volatility derivatives markets are considered by

Carr and Lee (209), who have also provided a literature review.

The payoff functions of a variance swap with strike price KH
var, denoted by Hvar(σ̄

2
tT ), and

of a variance call with price Kh
var, denoted by hvar(σ̄2

tT ), are given by

Hvar(σ̄
2
tT ) = σ̄2

tT −KH
var and hvar(σ̄

2
tT ) = (σ̄2

tT −Kh
var)

+,

and the corresponding payoff functions of a volatility swap with a strike price KH
vol and a
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volatility call with a strike price Kh
vol, denoted by Hvol(s̄tT ) and hvol(s̄tT ), are given by

Hvol(s̄tT ) = s̄tT −KH
vol and hvol(s̄tT ) = (s̄tT −Kh

vol)
+.

In this paper, for simplicity, we will assume that the swap strikes KH
var = 0 and KH

vol = 0.

Based on the work of Neuberger (1994), Demeterfi, Derman, Kamal and Zou (1999) show

how variance swaps can be replicated by holding a static position in European calls and

puts with all strikes and trading dynamically on the underlying asset. The logarithm of

stock price return is obtained by

log

(
XT

Xt

)
=
XT −Xt

Xt

−
∫ Xt

0

(K −XT )
+

K2
dK −

∫ ∞

Xt

(XT −K)+

K2
dK. (10)

The integrated variance is replicated by a portfolio of calls and puts where each of the

options is weighted by the squared strikes. Carr and Itkin (2010) note three types of

errors related to the synthetizing of log(XT/Xt) with (10): errors due to jumps in asset

prices, extrapolation and interpolation errors due to a finite number of available option

quotes instead of the continuum of options that is needed in the replication, and errors

in computing the realized return variance.

Javahari, Wilmott and Haug (2004) value volatility swaps using the GARCH process.

Gatheral (2006) proposes that the value of the variance swap can be expressed as a

weighted average of Black-Scholes implied variances I2 = I2(log(Xt/K)), with weights

given by the log-moneyness, such that

E∗{I2} =

∫
R
Φ′(z)I2(z)dz,

where z = log(Xt/K) and Φ′(y) = ey
2/2/

√
2π. Carr and Lee (2007) and (2008) construct
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a synthetic swap by trading a log contract of the underlying and bonds. Their approach

does not make prior assumptions on the dynamics of the volatility and is robust with

respect to correlated volatility. Carr and Itkin (2010); Carr, Geman, Madan and Yor

(2010); and Carr, Lee and Wu (2012) propose an asymptotic method with the assumption

that the underlying process is modeled by a Levy process with stochastic time change.

Friz and Gatheral (2005) price volatility and variance swaps with the expectation of the

implied integrated variance, assuming an uncorrelated volatility. Furthermore, based on

the Black-Scholes formula, they derive a closed-form pricing formula for variance calls.

Our approach is an extension of that of Friz and Gatheral (2005). We assume a correlated

volatility and use the distribution of the implied integrated variance to price volatility

options. We show how the distribution provides information on the pricing error we may

be making and explain how noisy option data should be taken into account when pricing

volatility derivatives. We also estimate the distributions of variance and volatility swaps

between two future moments in time. The prices of various volatility derivatives computed

with implied integrated variances and volatilities are arbitrage-free prices. Unless the

markets for these volatility derivatives are liquid, the corresponding market prices may

differ substantially from the arbitrage-free prices. The error between the arbitrage-free

prices and the market prices, as well as possible systemization in the error, is a subject

of further research.

Variance swaps and calls can be perfectly replicated under the classical derivatives pric-

ing theory and are to some extent straightforward to price and hedge. The same is not

true for volatility swaps and calls. Hedging a volatility swap using variance swaps re-

quires a dynamic position in the log contract replicating the variance swap. For example,

according to (10), this position depends on a strip of vanilla options. Because some of

these options will be very far out-of-the-money, the trading is performed at large bid-offer
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spreads and the re-balancing of the hedge becomes expensive.

Let us look at the problem of pricing volatility swaps and calls. Denote by σ̂2
tT and

ŝtT = E∗{s̄tT} = E∗{
√
σ̄2
tT} the expectations of the integrated variance and volatility,

respectively. As the expectation of the square root of a random variable is less than the

square root of the expectation, we have

ŝtT = E∗{√σ̄2
tT

}
≤

√
E∗{σ̄2

tT} =
√
σ̂2
tT , (11)

The difference between the expectation of the integrated volatility and the square root

of σ̂2
tT is called the convexity adjustment. Sometimes,

√
E∗{σ̄2

tT} is called the model-free

implied volatility. The VIX index approximates this volatility.

Brockhaus and Long (2000) suggest a volatility convexity correction that relates variance

and volatility products. Heston and Nandi (2000) provide an analytical solution to price

volatility swaps and options and demonstrate how to hedge different volatility derivatives

by trading only on the underlying asset and a risk-free asset. Broadie and Jain (2008)

derive partial differential equations to price volatility derivatives and to compute Greeks

in order to hedge these derivatives, and Windcliff, Forsyth and Vetzal (2006) suggest

improving the delta hedge of the volatility derivative by an additional gamma hedge. As

explained by Friz and Gatheral (2005), under the prior assumption σ̄2
tT ∼ lN (µ, ς), the

integrated volatility s̄tT ∼ lN (µ/2, ς/4) and the convexity adjustment is given by

√
E∗{σ̄2

tT} − E∗{√σ̄2
tT

}
= (e.5ς − 1)E∗{√σ̄2

tT

}
.

This formula provides a convexity correction for the VIX index. Carr and Lee (2008)

add to (11) a lower bound (
√
2π/Xt)E∗{(XT −Xt)

+} and an upper bound based on the
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log-return log(XT/Xt) and show how to superreplicate the payoff of
√
σ̄2
tT .

We suggest that when pricing variance and volatility swaps, not only the expectations

but the entire distributions of the integrated variances and volatilities are important.

In particular, the volatility call is easily computed from the distribution of the corre-

sponding swap. In Figure 3, we present examples of the MAP estimates of variance and

volatility swaps, Hvar(σ̄
2
tT ) and Hvol(s̄tT ), respectively, as well as the corresponding payoffs

of variance and volatility calls hvar(σ̄2
tT ) and hvol(s̄tT ) as distributions and expectations,

computed from S&P 100 ATM calls maturing in June 2009 with ρMAP = −.85, assuming

that the error e1 ∼ N (0, (.02uobs)2) and Kvar = .04, Kvol =
√
.04 = .2. We also indicate

the discrete points σ̄2
tT,j 1 ≤ j ≤ nσ that are .67 standard deviations from σ̂2

tT . With the

probability P = .5, the integrated variance is between these points. The distributions

zMAP, zmin and zmax in Figure 2 provide an idea of the effect of noisy data on the prices

of variance and volatility derivatives. According to the discprepancy principle, both the

estimates zmin and zmax should be considered as suitable estimates of σ̄2
tT .

To close the section, we plot the surfaces of the implied variance and the implied volatility

between two future moments in time, estimated from S&P 100 call options with different

strike prices and the maturities T1 in March and T2 in April 2010. The estimates were

computed four times, every 15 days, starting 60 days before the maturity T1. Information

provided by these surfaces can be used when pricing variance and volatility swaps and

options.
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Figure 3: Variance and volatility derivatives. In the top row and in the left panel,
estimates of a variance swap σ̄2

tT (blue) and the payoff hvar(σ̄
2
tT ) of a variance call (red)

are plotted as expectations (vertical lines) and distributions, based on S&P 100 calls
maturing in June 2009 with T = 1/10 years. The right panel presents the corresponding
data for volatility swaps and calls, as well as E{σ̄2

tT} (green). With the probability
P = .5, the implied integrated variance and volatility are within the points indicated with
magenta lines. The strike prices are Kvar = .04 and Kvol =

√
.04 = .2. In the bottom

row, estimates of the implied integrated variance σ̄2
12 (left panel) and the corresponding

implied integrated volatility s̄12 = sqrtσ̄2
12 (right panel) between two future moments in

time are plotted. Based on S&P 100 calls maturing in June and July 2009, we have
estimated both distributions every 15 days, beginning 60 days before the first maturity
in March.
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4 Pricing digital options and barrier options

In this section, we use the risk-neutral price density and the implied integrated variance

to price digital options and one type of semi-path-dependent options, namely, the barrier

options. The pricing of both types of options when the volatility is stochastic has been

considered by Fouque, Papanicolaou and Sircar (2000), where an asymptotic method

exploiting volatility clustering is applied, and by Tahani (2005), where these options

are priced with a Taylor expansion around two average volatilities and the Hull-White

formula. Our contribution to the literature is to present how both types of options can be

priced using the correlated Hull-White paradigm. We also show how both the distribution

of the implied integrated variance and knowledge of the noise level in the option prices

provide additional information on the size of the pricing error that we are potentially

making.

The price Dt(x; σ
2
t ) = Dt(x;K,T,Q;σ

2
t , r) of a digital call is given by

Dt(x; σ
2
t ) = e−r(T−t)QE∗{(XT > K) | x, σ2

t ,Ft}

= e−r(T−t)QE∗{hD(XT ) | x, σ2
t ,Ft},

where Q is a positive constant. When the volatility is constant, the price of a digital call

is given by DBS
t (x;σ2) = e−r(T−t)QΦ(d−(σ

2)). We suggest that in the case of stochastic

correlated volatility, the corresponding price would be

DHW,ρ
t (x;σ2

t ) = e−r(T−t)QE∗{Φ(d−(σ̄2
ρ,tT )) | σ2

t ,Ft},

applying the Hull-White paradigm. Figure 4 presents estimates of such digital options as

functions of moneyness, computed from the S&P 100 calls that are maturing in November

23



2010.

Now consider the pricing of digital options using the risk-neutral price density. The

distribution of σ̄2
tT provides additional information on the reliability of the risk-neutral

price density and the digital option prices. According to (2), the risk-neutral price density

is the expectation of lognormal distributions π(XT | σ̄2
tT ) conditional on σ̄2

tT . In Figure 4,

we plot such lognormal distributions, conditional on the discrete values σ̄2
tT,j, 1 ≤ j ≤ nσ

within one and two standard deviations from the expectation σ̂2
t . With the probabilities

of P1 ≈ .7 and P2 ≈ .95, the risk-neutral price density is within the range of these

distributions. We then plot the expected distribution of XT and the digital option prices

corresponding to each distribution.

Next, consider the pricing of barrier options. Barrier options are semi-path-dependent

options whose payoff depends on whether the underlying asset price hits a specified value

during the lifetime of the option. For example, a down-and-in option becomes a European

call or put if the underlying stock price Xt reaches a predetermined level B at any time

before the maturity T , and a down-and-out option is a European option that becomes

worthless if Xt falls below a level B. The payoffs of a down-and-in call, hDI
t , and of a

down-and-out call, hDO
t , are given by

hDI
t = (x;K,B, T ;σ2, r) = E∗{(XT −K)+1[Xt>B for any t≤T ](Xt)},

hDO
t = (x;K,B, T ;σ2, r) = E∗{(XT −K)+1[Xt<B for all t≤T ](Xt)},

where 1E(x) = 1 if x ∈ E and 1E(x) = 0, otherwise.

A common model for pricing and hedging barrier options, based on a reflection theorem

in the Black-Scholes model, was initially considered by Carr, Ellis and Gupta (1998)
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Figure 4: In the left panel in the top row, we plot the digital option pricesDMAP computed
using the estimate of zMAP (red), prices D.14 and D.86 computed using the discrete values
σ̄2
tT,.14 and σ̄2

tT,.86 that are at 1.5 standard deviation from the expectation σ̂2
tT (blue and

green), and prices DI computed using the implied variance I2 (magenta). The prices
computed with zmin and zmax are plotted with dashed lines. In the right panel, we present
the corresponding relative differences between each price and DMAP, (DMAP−DI)/DMAP,
for example (S&P 100 maturing in November 2008, T = 1.5 months, Q = 1). In the
second row, we consider estimates of the risk-neutral price density computed with σ̄2

tT ∼
lN (.15, .05) and ρ = −.15. We plot in red the expected distribution of XT (left panel)
and the corresponding digital option payoff hD(XT ) (right panel), both as distributions
and expectations. We then plot in darker and lighter blue lognormal densities of XT,j

conditional on each point of σ̄2
tT,j, 1 ≤ j ≤ nσ that is within 1 or 2 standard deviations

from σ̂2
t (left), as well as the corresponding digital option payoffs as densities (right).

With the probability P ≈ .95, the payoff of the digital option price is within the two
black lines. In the bottom row, we plot the same information for a put option (left panel)
and a call option when σ̄2

tT ∼ lN (.12, .01) and ρ = −.45 (right panel) (Q = 1, T = .5
years, r = 0).
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Figure 5: We plot in the left panel the prices of a down-and-in call (green), down-and-out
call (red) and a vanilla call (blue), computed using zMAP implied by S&P 100 calls matur-
ing in November 2010 (T ≈ 2 months, B = .95K). The corresponding prices computed
with the implied variance I2 are indicated with dashed lines. The relative differences
between the down-and-out prices computed with zMAP and the prices computed with
σ̄2
tT,.14 (magenta), σ̄2

tT,.86 (red) and I2 (green), zmin (black) and zmax (blue) are plotted in
the right panel.

and Carr and Chou (1997a), (1997b). Barrier options with deterministic volatility are

considered by Andersen, Andreasen and Eliezer (2002), Nalholm and Poulsen (2006),

Poulsen (2006) and Carr and Nadtochiy (2011), who also provide a literature review of

barrier options.

When the volatility is constant, barrier options can be priced based on the Black-Scholes

formula. For example, the price of the down-and-in barrier option, DIBS
t (x;σ2) =

DIBS
t (x;K,B, T ; σ2, r) with B ≤ K is given by

DIBS
t (x;σ2) = x

(
B

x

)2Ψ

Φ(y)−Ke−r(T−t)
(
B

x

)2Ψ−2

Φ(y − σ
√
(T − t))

where

Ψ =
r

σ2
+

1

2
, y =

ln(B2/(xK))

σ
√
(T − t)

+ Ψσ
√
(T − t).

and the price of the down-and-out option DOBS
t (x; σ2) = DOBS

t (x;K,B, T ;σ2, r) is

DOBS
t (x;σ2) = UBS

t (x; σ2)−DIBS
t (x;σ2). When B > K, the price of a down-out barrier

26



option is given by

DOBS
t (x; σ2) = xΦ(x1)−Ke−r(T−t)Φ(x1 − σ

√
(T − t))

− x

(
B

x

)2Ψ

Φ(y1) +Ke−r(T−t)
(
B

x

)2Ψ−2

Φ(y1 − σ
√

(T − t)),

where

x1 =
log(x/B)

σ
√
(T − t)

+ Ψσ
√

(T − t), y1 =
log(B/x)

σ
√

(T − t)
+ Ψσ

√
(T − t),

and DIBS
t (x;σ2) = UBS

t (x; σ2)−DOBS
t (x; σ2).

We suggest that when the volatility is stochastic, the barrier option prices could be given

as expectations of the Black-Sholes barrier option prices with respect to the integrated

variance and ϕtT . For example, the prices of a down-and-in and a down-and-out option

would be as follows:

DIHW,ρ
t (x; σ2

t ) = E∗{E∗{DIBS
t (eρϕtTx; σ̄2

ρ,tT ) | σ̄2
tT ,Ft} | σ2

t ,Ft}

DOHW,ρ
t (x; σ2

t ) = E∗{E∗{DOBS
t (eρϕtTx; σ̄2

ρ,tT ) | σ̄2
tT ,Ft} | σ2

t ,Ft}.

We present a proof of these formulas with stochastic volatility in these Appendix, closely

following the proof by Carr and Chou (1997b) associated with constant volatility. In

particular, because the implied integrated variance is independent of the strike prices,

this variance is quite robust with respect to the changes in the prices of the underlying

during the lifetime of the option, compared with using the implied volatility corresponding

to a certain strike price.

Figure 5 illustrates barrier option prices based on estimates zMAP, zmin and zmax computed

from S&P 100 calls maturing in November 2010. We also computed two prices with the
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discrete values σ̄2
tT,j that are within 1.5 standard deviations from σ̂2

tT = E{σ̄2
tT}, denoted

by σ̄2
.14 and σ̄2

.86. Both the expectation and the shape of the distribution of σ̄2
tT affect the

prices of the barrier options.
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5 Path-dependent options

In this section, we consider the pricing of two types of path-dependent options: compound

options and cliquet options. Both types of options are sensitive to changes in volatility.

When pricing these options, we will need estimates of σ̄2
12, the implied integrated variance

between two future moments in time, namely, T1 and T2, 0 ≤ T1 < T2. Figure 6 presents

such estimates and the corresponding risk-neutral price densities π(X12) = π(XT2 | XT1).

First, for a fixed time t, we estimate these densities four months into the future based

on the prices of options maturing in five consecutive months. We then take two options

with consecutive maturities T1 and T2 and present how the estimates of σ̄2
12 and the

corresponding density of X12 change as a function of time. We estimate both densities

every 15 days, beginning 60 days before T1.

Let us then price compound options, i.e., options-on-options, with two strike prices and

two expiration dates. On the date of the first maturity T1, the holder of a compound

option has the right to buy or sell at price K1 a new option with strike price K2 and

maturity T2. Analytical pricing formulas have been proposed by Geske (1979), Hodges

and Selby (1987) and Rubinstein (1992), provided that the volatility is constant, and

Fouque and Han (2005) suggest a perturbation approximation when the volatility is

stochastic.

We consider here the pricing of a put-on-call option; the pricing of a put-on-put, a call-

on-call or a call-on-put is similar. To keep the notation simple, we assume that ρ = 0.

Extension to correlated volatility is straight forward. Suppose that we have estimates of

σ̄2
12 and XT1 . Then, conditional on XT1 , the price of the put on a call option is given by

CPoC,COND = e−r(T1−t) max(0, K1 − E∗{UBS
t (XT1 ;K2, T2 − T1; σ̄

2
12, r) | XT1 ,Ft}),
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Figure 6: Estimates of σ̄2
tT and XT between two future moments in time. In the left panel

in first row, we plot σ̄2
tT1

(red), σ̄2
tT2

(green), and σ̄2
12 (blue), as well as the corresponding

expectations, estimated at t. The corresponding risk-neutral price densities are plotted in
the right panel. In the second row, we estimate at time t the implied integrated variance
and the risk-neutral price density during 90 future days. We separately estimate each time
interval [Ti, Ti+1], 1 ≤ i ≤ 4, using options with the corresponding maturities. We plot
in the left panel the surface of the MAP estimates of σ̄2

m, m = [12, 23, 34, 45], and in the
right panel, we plot the corresponding estimates of Xm (t0 =October 14, T1 =November
20, T2 =December 18, T3 =January 15, T4 =February 19, T5 =March 19, 2009). In the
bottom row, we plot estimates of σ̄2

12 (left panel) and XT (right panel) using options
maturing in June and July 2009. The densities are estimated every 15 days, beginning
on March 24, 2009.
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and the price CPoC is obtained by integrating CPoC,COND with respect to XT1 .

The chooser is an option where, at time T1, the holder of the claim can decide to choose

either a call or a put option, with maturity T2 and strike price K2. If we denote the

payoffs of a call and a put conditional on XT1 by hU = UBS
t (XT1 ;K2, T2 − T1; σ̄

2
12, r)

and hP = PBS
t (XT1 ;K2, T2 − T1; σ̄

2
12, r), respectively, the price of a chooser put option,

conditional on XT1 , is then given by

CCh,COND = e−r(T1−t)(K1 −max(hU , hP )),

and the price CCh is obtained by integrating CCh,COND with respect to XT1 .

Cliquet options are exotic options consisting of a series of forward starting options whose

terms are set on the reset dates. Haug and Haug (2001) present a method to price cliquet

options based on a binomial tree developed by Cox, Ross and Rubinstein (1979), and

Gatheral (2006) prices cliquet options with local volatility. Numerical pricing methods

and various volatilities are investigated by Windcliff, Forsyth and Vetzal (2006) and den

Iseger and Oldenkamp (2005).

We price a cliquet option with σ̄2
12 and X12. We consider one particular cliquet, namely, a

European-style reset put option with a single reset date, with payoff CL(x;T1, T2) given

by

CL(x;T1, T2) =


XT1 −XT2 , if (XT1 > x, XT2 ≤ XT1),

x−XT2 , if (XT1 ≤ x, XT2 ≤ x),

0, otherways.

(12)

A closed-form pricing formula for this type of cliquet option with constant volatility is

given by Gray and Whaley (1999), where the expected terminal payoffs of the cliquet are
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divided into three possible outcomes and the probabilities for each outcome are computed.

Consider now the pricing of cliquet options using the implied integrated variance. Assume

that we know the distributions of XT1 and σ̄2
12 and denote the Black-Scholes put option

price by PBS
t . Conditional on XT1 and σ̄2

12, the discounted payoff corresponding to XT1 −

XT2 in the first row in (7) is given as follows:

h1 = e−r(T1−t)E∗{PBS
t (XT1 ;XT1 , T2 − T1; σ̄

2
12, r)1XT1

≥x(XT1) | x,XT1 , σ̄
2
12,Ft},

and the discounted payoff corresponding to x−XT2 is given by

h2 = e−r(T1−t)E∗{PBS
t (XT1 ;x, T2 − T1; σ̄

2
12, r)1XT1

<x(XT1) | x,XT1 , σ̄
2
12,Ft}

The price of the reset put option is obtained by integrating h1 and h2 first with respect

to XT1 and then with respect to σ̄2
12. Figure 7 presents an example of reset put option

prices, based on information provided by S&P 100 calls. We also illustrate the effect

of noisy data and, based on the discrepancy principle considered in Section 2, we plot

a minimum and maximum price for this cliquet option, computed using zmin and zmax.

Because we do not have information on the bid-ask spread of the options considered, in

order to illustrate the phenomenon, we assume a high noise level of e ∼ N (0, (.045uobst )2).
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Figure 7: Compound and cliquet options. In the left panel of the first row, we plot the
MAP estimate zMAP of σ̄2

12 (blue), as well as the estimates zmin (green) and zmax (red)
accepted by the discrepancy principle when e ∼ N (0, (.045uobst )2). We estimated the
distributions from S&P 100 call options maturing in June and July 2009 so that T1 = 60
and T2 = 80 days. The corresponding estimates of the risk-neutral price density are
plotted in the right panel. In the second row, the prices of a put-on-call and a put-on-put
option (dotted line) are plotted in the left panel and the prices of a cliquet option are
plotted in the right panel. All of these options were computed using the densities of
the first row and plotted with the corresponding colors. The effect of noisy data can
particularly be observed in the estimates of cliquet prices. In the bottom row, we plot
surfaces of compound put-on-call and put-on-put options as functions of strike prices
(left panel), and we plot cliquet options as functions of the underlying and the integrated
variance (right panel).
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6 Concluding remarks

In this paper, we have considered the pricing of exotic option, namely, some volatility op-

tions, semi-path-dependent options and pathdependent options, with two option-implied

densities: the density of the integrated variance and the risk-neutral price density. We

have assumed a stochastic correlated volatility and proposed a Bayesian approach for the

ill-posed inverse problem of an implied integrated variance and an implied correlation co-

efficient. We have presented an algorithm with which to calculate Maximum-A-Posteriori

(MAP) estimates of the distribution and expectation of this variance from a series of Eu-

ropean options with different strike prices and, possibly, different maturities. Based on

the discrepancy principle, we have explained how noisy data affect these estimates.

Due to the convexity of the Black-Scholes formula with respect to the volatility and the

underlying, the distribution of the integrated variance and the risk-neutral price density

can be estimated from a couple of option prices with different strike prices, thus avoiding

the problem of missing option price data often encountered when estimating the risk-

neutral price density. Because the implied integrated variance is independent of strike

prices, it is robust with respect to changes in the price of the underlying.

We have considered the pricing of variance and volatility swaps and options and showed

how the convexity adjustment can be avoided by computing volatility swaps and options

from the distribution of the integrated variance instead of the corresponding expectation.

We then priced digital options and barrier options and showed what additional informa-

tion can be obtained from the distribution of the implied integrated variance. Finally, we

presented a simple algorithm with which to estimate the implied integrated variance be-

tween two future moments in time and used this variance to price compound and chooser

options as well as cliquet options.
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7 Appendix

proof of (4), page 6

We write

σT = σt +

∫ T

t

θσsds+

∫ T

t

νσsdZ
∗
s = σt exp((θ −

1

2
ν2)(T − t) + νZ∗

T−t)

and denote ItT =
∫ T
t
σsdZ

∗
s . Now,

ItT =
1

ν
(σt exp((θ −

1

2
ν2)(T − t) + νZ∗

T−t)− σt −
∫ T

t

θσsds), (13)

and ItT has a shifted lognormal distribution, conditional on
∫ T
t
σsds:

(ItT |
∫ T

t

σsds) ∼ lN
(
log

(σt
ν

)
+ (θ − 1

2
ν2)(T − t), ν2(T − t)

)
− σt
ν

− θ

ν

∫ T

t

σsds.

Integrating with respect to
∫ T
t
σsds and noticing that E∗{θ

∫ T
t
σsds} = σt(e

θ(T−t) − 1)

gives

ϕtT ∼ lN
(
log

(σt
ν

)
+ (θ − 1

2
ν2)(T − t), ν2(T − t)

)
− σt
ν
eθ(T−t) − 1

2
ρσ̄2

tT (T − t).

Now, we want to estimate ϕtT conditional on σ̄2
tT . We can expect to have information

on the initial volatility σt at time t. Let us explain how the factors θ and ν in (13) are

related to σ̄2
tT .

Assuming that σ̄2
tT ∼ lN (µ, ς), the expectation E∗{σ̄2

tT} = e(µ+.5ς) and the variance

Var∗(σ̄2
tT) = (eς−1)e(2µ+ς). The pth moment of a lognormally distributed random variable

R ∼ lN (A,B2) is given by E{Rp} = exp(pA + .5p2B2). Denote A = (ν − .5θ2)(T − t)
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and B = θ
√
T − t. The expectation and the variance of σ2

T are then given by

E∗{σ2
T} = σ2

t e
2A+2B2

= σ2
t e

(2θ+ν2)(T−t), E∗{σ4
T} = σ4

t e
4A+8B2

= σ4
t e

(4θ+6ν2)(T−t),

var(σ2
T) = E{σ4

T} − (E{σ2
T})2.

(14)

If E∗{σ2
t } grew linearly as a function of time, we would have E∗{σ̄2

tT} − σ2
t = (E∗{σ2

T} −

σ2
t )/2, such that

E∗{σ2
T} = 2E∗{σ̄2

tT} − σ2
t , 0 ≤ t ≤ T. (15)

In reality, E∗{σ2
t } is convex as a function of time. It is, however, nearly linear when the

volatility is low, and we will use this equality.

Similar to the expectation, the variance Var∗(σ2
t ) is nearly linear as a function of time

within the range of the typical values of σ̄2
tT . For a discrete sequence of variances Var∗(σ2

ti
),

1 ≤ i ≤ N , tN = T , we can approximate

N∑
i=1

Var∗(σ2
ti
) ≈ 1

2
Var∗(σ2

tN
).

Now, σ̄2
tT (T − t) ≈

∑N
i=1 σ

2
ti

as N → ∞ and

Var∗
( N∑

i=1

σ2
ti

)
=

N∑
i=1

Var∗(σ2
ti
) + 2

∑
i,j:i<j

cov∗(σ2
ti
, σ2

j ),

where the covariance cov∗ is computed with respect to the measure P ∗. This covariance

term cannot be computed with information provided by an estimate of σ̄2
tT . Within the

range of possible variances of the integrated variance, according to empirical experiment

the following relationship appears to hold fairly well:

Var∗(σ2
T) = 3Var∗(σ̄2

tT). (16)
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The drift θ and the volatility ν of the volatility process (1) can now be easily computed

from (14), (15) and (16).

Statistical inverse problems, page 10

Consider a statistical inverse problem with an unknown hidden random variable A ∈ Rn.

An observed random variable B ∈ Rm is related to A by the mapping C such that

B = C(A,E), with C : Rn × Rk → Rm. The random variable E ∈ Rk accounts for the

measurement noise and other poorly defined parameters. The goal of the inverse problem

is to obtain information about A by measuring B.

In the Bayesian framework, randomness means a lack of information, and subjective

beliefs about a random event are expressed in terms of probabilities. We combine prior

information about the random variable A with information provided by an observed

realization b of B. The conditional density Plik(b | a), called the likelihood function,

describes the probability of the realization b of B given the realization a of A. The prior

information is encoded in a prior density Pprior(a). Applying the Bayes formula to these

densities leads to the posterior density

Ppost(a | b) ∝ Pprior(a)Plik(b | a),

which is the solution of the Bayesian inverse problem. Here ∝ means ‘up to a normalizing

constant”.

Often, the posterior density is not available in closed form. Two common estimates that

can be made to visualize the posterior density are the Maximum-A-Posteriori (MAP)

estimate and the conditional mean (CM) estimate. The computation of the MAP esti-

mate aMAP, characterized by aMAP = argmaxa∈Rn Ppost(a | b), leads to an optimization
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problem, and the computation of the CM estimate aCM, given by aCM = E{a | b}, results

in Markov Chain Monte Carlo (MCMC) sampling and an integration problem.

Algorithm for computing a Maximum-A-Posteriori (MAP) estimate, page 12

We present an algorithm with which to estimate a discretized distribution of the inte-

grated variance and use a discretized version of the option-pricing formula so that the

algorithm can be used directly with Matlab or other computational software.

We fix time t and write uobs = uobst , uBS = uBS
t , U true = U true

t . We assume that the

distribution of the implied integrated variance σ̄2 = σ̄2
tT has positive values in the interval

[a, a+Mσ], divide this interval into nσ points σ̄2
j and denote the corresponding discretized

distribution by z ∈ Rnσ , where zj is the probability of σ̄2
j , 1 ≤ j ≤ nσ. To assure that

the total probability equals one, we calibrate: zj = zj/(Mσ/nσ
∑nσ

j=1 zj).

In the same way, we define a discrete support [b, b+MX ] for the risk-neutral price density

π(XT ), divide this interval into nX points Xj and denote the corresponding discretized

distribution by g ∈ R(nX×nσ×nϕ). Additionally, we define a discrete support [c, c +Mϕ]

for the distribution of ϕ = ϕtT , divide this interval into nϕ points ϕj and and denote the

corresponding discretized distribution by q ∈ R(nσ×nϕ). We can choose the support of σ̄2
tT

very generally, for example σ̄2
tT ∈ [1e−5, 1]. The implied volatility smile can be used when

defining the hyper prior Phyper(µ, θ); at-the-money implied variance provides information

on the expectation σ̂2
tT and the slope of the smile provides information on the variance

Var∗(σ̄2
tT). The support of ϕtT usually has values in the range [−.5, .5]. According to

empirical experiments, the number of support points nσ ∈ [100, 500] and nϕ ∈ [50, 200]

seems to provide accurate estimates of the unknowns. The computation time of the MAP

estimates can be essentially reduced if prior information on σ̄2
tT and ρ from the previous
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moment of time is available.

According to the prior assumption, z ∼ lN (µ, ς), such that the prior density Pprior(z)

consists of all the distributions z that are lognormal. We denote such distributions by

zlog = zlog(µ, ς). We define the hyperpriors of the pair (µ, ς) and ρ as uniform distribu-

tions: Phyper(µ, ς) = U((µmin, µmax) × (ςmin, ςmax)), Phyper(ρ) = U(ρmin, ρmax). We denote

θ = (µ, ς, ρ), where θ, as well as all the unknowns are random variables.

We approximate uobs with a discretized version of the pricing formula. When applying

the correlated Hull-White formula (7), we assume that uobsi = UHW,ρ(x;Ki, T ; σ
2
t , r) + ei,

discretize this pricing formula and write:

bi,j,k = UBS
i (xeρϕj,k ;Ki, T ; σ̄

2
j , r) bi,j =

Mϕ

nϕ

nϕ∑
k=1

bi,j,kqj,k

uobsi ≈ Mσ

nσ

nσ∑
j=1

bi,jzj + ei,

(17)

where ei denotes the uncertainty corresponding to the strike price Ki, 1 ≤ i ≤ L. In

matrix form, we write: uobs = Bz + e.

As an alternative to the Hull-White formula, we can estimate the implied integrated

variance σ̄2
tTand the implied correlation coefficient ρ from the payoff formula (5). In this

case, we assume that uobsi = E{hi(XT )} + ei and consider the discretized distribution g.

We denote by gl,j,k the probability of the discrete point XT,l conditional on σ̄2
j and ϕk

and (XT | σ2
j , ϕj,k) ∼ lN (ρϕj,k log(x) + ((r − .5σ̄2

ρ,j)(T − t), σ̄2
ρ,j)(T − t)). Then

gl,j =
Mϕ

Nϕ

nϕ∑
k=1

gl,j,kqj,k, gl =
Mσ

nσ

nσ∑
j=1

gl,jzj

uobsi ≈ MX

nX

nX∑
l=1

hi(XT,l)gl + ei.
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We write uobs = Cg + e.

From this point forward, we will denote by A either B or C, depending on whether we

use the Hull-White formula or the payoff formula, respectively. Because we have assumed

a normally distributed error e, the likelihood function of uobs is obtained from (17) using

the Gaussian kernel,

Plik(u
obs | z) ∝ exp

(
− 1

2

(
(uobs − Az)TΓ−1(uobs − Az)

))
,

where the covariance matrix Γ = diag(Var1,Var2, . . . ,VarL). The posterior density is

given by Ppost(z | uobs) ∝ Plik(u
obs | z)Pprior(z)Phyper(µ, ς)Phyper(ρ). Under the prior as-

sumption of lognormality, the posterior density reduces to Ppost(z | uobs) ∝ Plik(u
obs |

zlog(µ, ς)Phyper(µ, ς)Phyper(ρ). A MAP estimate θMAP = (µMAP, ςMAP, ρMAP) can be com-

puted with

θMAP = argminθ
(
(uobs − Azlog(µ, ς))

TΓ−1(uobs − Azlog(µ, ς))
)

(18)

by drawing a sample S = (θ1, θ2, . . . , θN) from the hyperpriors Phyper(µ, ς) and Phyper(ρ)

and computing which θi, 1 ≤ i ≤ N , minimizes the right-hand side of (18). The compu-

tation of the MAP estimate can be costly because the sample size N should be so large

that the sample S represents the uniformly distributed hyperpriors. We have explained

in Section 2 how a MAP estimate can be very quickly and easily computed by approx-

imating the continuous distributions of the hyperpriors with discrete distributions and

solving the least-squares optimization problem with the grid method.

We can compute the MAP estimates for the unknown distributions zMAP and gMAP with

θMAP. The MAP estimate of the discrete distribution of the implied integrated volatility

40



is yMAP ∼ lN (µMAP/2, ςMAP/4). The reliability of the MAP estimates can be assessed

with Markov Chain Monte Carlo (MCMC) techniques, for example, as explained by Kaila

(2012). This approach provides conditional mean (CM) estimates and posterior distribu-

tions of the unknowns. Alternatively, we could apply a sequential Monte Carlo method,

such as the evolutionary optimization method presented by Cont and Ben Hamida (2005).

Implied integrated variance between two future moments in time 0 ≤ T1 < T2,

page 15

Let σ̄2
1,j, 1 ≤ j ≤ nσ, be a realization of σ̄2

tT1
. For lognormal distributions, condition-

ing on T1σ̄
2
1,j affects the expectation by T1σ̄

2
1,j + E∗{T12σ̄2

12} = E∗{T12σ̄2
12 + T1σ̄

2
1,j} and

the variance by T1σ̄
2
1,j + Var∗(T12σ̄

2
12) = Var∗(T12σ̄

2
12), where T12 = T2 − T1. Based on

E∗{T2σ̄2
tT2

} = E∗{E∗{T2σ̄2
tT2

| T1σ̄2
tT1

}} = E∗{E∗{T12σ̄2
12 + T1σ̄

2
tT1

| T1σ̄2
tT1

}}, we solve

σ̂2
12 = E∗{σ̄2

12} = T2/T12σ̂
2
tT2

− T1/T12σ̂
2
tT1

.

According to the law of total variance, assuming that T1 = T12, we have Var∗(σ̄2
tT2

) =

Var∗(E∗{σ̄2
tT2

| σ̄2
tT1

})+E∗{Var∗(σ̄2
tT,2 | σ̄2

tT1
)} = Var∗(σ̄2

tT1
)+Var∗(σ̄2

12). For any T1+T12 =

T2, this yields to Var∗(σ̄2
12) = T2/T12Var

∗(σ̄2
tT2

)− T1/T12Var
∗(σ̄2

tT1
).
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The estimates µ12 and ς12 are then obtained from µi and ςi, i = [1, 2], by

µ12 = log(E∗{σ̄2
12})−

1

2
ς12

= log
(
E∗{ T2

T12
σ̄2
tT2

}
− E∗{ T1

T12
σ̄2
tT1

})
− 1

2
ς12

= log(
T2
T12

eµ2+.5ς2 − T2
T12

eµ1+.5ς1)− 1

2
ς12,

ς12 = log

(
1 +

Var∗(σ̄2
12)

(E∗{σ̄2
12})2

)
= log

(
1 +

T2
T12

Var∗(σ̄2
tT2

)− T1
T12

Var∗(σ̄2
tT1

)

(E∗{ T2
T12
σ̄2
tT2

} − E∗{ T1
T12
σ̄2
tT1

})2

)
= log

(
1 +

T2
T12

(eς2 − 1)e2µ2+ς2 − T1
T12

(eς1 − 1)e2µ1+ς1

( T2
T12
eµ2+.5ς2 − T1

T12
eµ1+.5ς1)2

)
.

Barrier options, page 27

Carr and Chou (1997b) derived a closed form price for barrier option assuming a constant

volatility. We follow their presentation closely but assume that the volatility is stochastic.

Lemma: Consider two portfolios P and Q of European options with maturity T and

payoffs

P (XT ) =

 f(XT ) if M ≤ XT ≤ N,

0 otherwise.

and

Q(XT ) =

 (XT

B
)ψf( B

2

XT
) if B2

N
≤ XT ≤ B2M,

0 otherwise,

where the power ψ = 1− 2r
σ̄2
tT

and B > 0. Then, P and Q have the same value whenever

the spot is B.

Proof: Assume that ρ = 0. Conditional on σ̄2
tT , when the spot equals B, the value of P
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is

V P
t (B) = e−rτ

∫ N

M

f(XT )

XT

√
2πσ̄2

tT τ
exp

[
− (ln(XT/B)− (r − .5σ̄2

tT )τ)
2

2σ̄2
tT τ

]
dXT ,

where τ = T − t, 0 ≤ t < T . Let X̂ = B2/XT . Then, dXT = −B2/X̂2dX̂ and conditional

on σ̄2
tT :

V P
t (B) = e−rτ

∫ B2/N

B2/M

f

(
B2

X̂

)
1

X̂
√
2πσ̄2

tT τ
exp

[
− (ln(B/X̂)− (r − .5σ̄2

tT )τ)
2

2σ̄2
tT τ

]
dX̂

= e−rτ
∫ B2/M

B2/N

(
X̂

B

)ψ

f

(
B2

X̂

)
1

X̂T

√
2πσ̄2

tT τ
exp

[
− (ln(X̂/B)− (r − .5σ̄2

tT )τ)
2

2σ̄2
tT τ

]
dX̂,

Conditional on σ̄2
tT , V P

t (B) exactly matches the risk-neutral value of Q, namely V Q
t (B).

This holds also when V P
t (B) and V Q

t (B) are integrated with respect to σ̄2
tT . Carr and

Chou (1997b) explain how this Lemma is used to replicate the payoff of any single barrier

option. For correlated volatility, we condition on σ̄2
tT and ϕtT and proceed as above.
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