13th ALGA Meeting Vilanova Parque Hotel, Teresopolis, Rio de Janeiro

On Coefficient Ideals and Modules

ROBERTO CALLEJAS-BEDREGAL *

Abstract

Let (R, \mathfrak{m}) be a Noetherian, *d*-dimensional, local ring and let I an \mathfrak{m} -primary ideal of R. The Hilbert-polynomial

$$P_{I}(n) = \sum_{i=0}^{d} (-1)^{i} e_{i}(I) \begin{pmatrix} n+d-i-1 \\ d-i \end{pmatrix}$$

measures the length of the *R*-module R/I^n for large *n*. On the other hand, the integral closure \overline{I} of *I* is the largest ideal *J* containing *I* such that $e_0(I) = e_0(J)$ and the Ratliff-Rush closure \tilde{I} of *I* is the largest ideal *J* containing *I* having the same Hilbert coefficients as *I*, i.e., $e_i(I) = e_i(J)$, for all $i = 0, \ldots, d$. In this way we have two well-known ideals, $\overline{I} \in \widetilde{I}$, associated with with respect to the Hilbert-polynomial of *I*. Based on these facts, Shah proved in 1991, for $0 \le k \le d$, the existence of a unique largest ideals $I_{\{k\}}$, between the ideals \widetilde{I} and \overline{I} such that $I_{\{k\}}$ contains *I* and preserves the first k+1 Hilbert-Samuel coefficients $e_0(I), \ldots, e_k(I)$ of *I*. The ideal $I_{\{k\}}$ is called *k*th coefficient ideal of *I*.

In this talk we will show how to extend this theory for arbitrary ideals and modules.

^{*}e-mail: roberto@mat.ufpb.br