On the Finiteness of Attractors for Maps of the Interval Allowing Discontinuities

> Paulo Brandão (post-doc at IMPA, paulo@impa.br)

Second Palis-Balzan International Symposium on Dynamical Systems, Institut Henri Poincaré, Paris, 2013

PART I On The Structure of Lorenz Maps: Topological Attractors and Spectral Decomposition Theorem

Lorenz (63): truncating Navier-Stokes (weather forecasting modeling)

$$\dot{x} = -10x + 10y \qquad (1)$$

$$\dot{y} = 28x - y - xz$$

$$\dot{z} = -\frac{8}{3}z + xy$$

Figura : Guckenheimer/Williams (79): Geometric Model

Figura : Poincaré and induced one-dimensional map contracting case: (Arneodo/Coullet/Tresser (81)) $\lambda_3 + \lambda_1 < 0$

Definition (Basin of Attraction)

The basin of attraction of a set Λ is the set of points whose future orbits accumulate in Λ : $\beta(\Lambda) := \{x; \omega_f(x) \subset \Lambda\}$

Definition (Topological attractor)

a **transitive** compact set Λ is a *topological attractor* if $\beta(\Lambda)$ is relevant in the topological sense, that is, $\beta(\Lambda)$ is residual in an open set.

Definition (Metrical attractor)

a **transitive** compact set Λ is a *metrical attractor* if $\beta(\Lambda)$ is relevant in the metrical sense, that is, Leb $(\beta(\Lambda)) > 0$.

A C^3 map f has **negative Schwarzian derivative** if Sf(x) < 0 $\forall x$ such that $Df(x) \neq 0$, where

$$Sf(x) = \frac{D^3f(x)}{Df(x)} - \frac{3}{2}\left(\frac{D^2f(x)}{Df(x)}\right)^2$$

[Guckenheimer (79)] f unimodal, Sf < 0, non-flat.

Uniqueness of Topological Attractors

- Attracting Periodic Orbit
- Solenoid
- Cycle of Intervals

(uses Milnor-Thurston Theorem).

[Blokh-Lyubich (89,91)] f unimodal, Sf < 0, non-flat.

Uniqueness of Metrical Attractors:

- Attracting Periodic Orbit
- Solenoid
- Cycle of Intervals
- Cantor Set K contained in the cycle of transitive intervals, containing the critical point c and s.t. K = ω(c)

- Milnor:examples where the metrical attractor contains the topological one and vice-versa.
- S-unimodal maps: metrical \subseteq topological.
- quasi-quadratic maps (f with Sf < 0 and non-degenerate critical point: |f"(c)| ≠ 0, Lyubich,94): topological of Guckenheimer coincide with the metrical ones obtained in B-L (case 4 doesn't occur).
- General case: NO (1996, Bruin, Keller, Nowicki, van Strien) unimodal maps with metrical attractor distinct to the topological one (*Wild attractors* do exist).

Definition (Lorenz Maps)

A contracting Lorenz Map is $C^2 \operatorname{map} f : [0,1] \setminus \{c\} \to [0,1]$, with f(0) = 0, f(1) = 1, f' > 0 and $\lim_{x \to c} f'(x) = 0$.

renormalization interval: $(a, b) \ni c$, first return conjugated to Lorenz:

$$f^{\mathsf{period}(a)}([a,c)) \subset [a,b] \supset f^{\mathsf{period}(b)}((c,b]).$$

J RENORMALIZ. INTERV. → RENORMALIZATION CYCLE $U_J \subset K_J$ NICE TRAPPING REGION

$$U_J = \big(\cup_{i=0}^{\mathsf{period}(a)} f^i((a,c))\big) \cup \big(\cup_{i=0}^{\mathsf{period}(b)} f^i((c,b))\big).$$

Each connected component of it is contained in a pullback of J. K_J is the *nice trapping region*, the union of these pre-images of J.

Theorem:

- ▶ If f infinitely renormalizable $J_n \supseteq_{\neq} J_{n+1}$ then $\bigcap_n J_n = \{c\}$.
- Solenoid: $\Lambda \subset \bigcap_{n=0}^{\infty} K_{J_n}$
- ∧ is a Cantor set, minimal (every orbit is dense), ω(x) = Λ, ∀x ∈ Λ. In particular, Λ contains the critical point, whose forward orbit is dense in Λ.

In the case of a finite number of renormalizations, one possibility is that in the last renormalization we see a gap map. In this case, the dynamics restricted to (v_0, v_1) is semi-conjugated to a rotation.

- If it is semi-conjugated to a RATIONAL ROTATION, Λ is one or a pair of periodic attracting orbits.
- If it is semi-conjugated to an IRRATIONAL ROTATION, Λ is a minimal set, "Cherry attractor".

In this case, $\omega(x) = \Lambda$, $\forall x \in \Lambda$ and $c \in \Lambda$. And similarly to the circle maps:

- Λ is CONJUGATED to a irrational rotation, and it is an interval;
- or is SEMI-CONJUGATED and Λ is a Cantor set.

f contracting Lorenz, Sf < 0.

 Fact 1: f has ONE or TWO periodic attracting orbits (follows from Singer's Theorem)

```
► Fact 2:
```


Theorem (—, Pinheiro):

 $f \in C^3$ non-flat contracting Lorenz, Sf < 0 \exists ! topological attractor Λ , one of the following:

- Attracting Periodic Orbit(s):
 - Λ is ONE Attracting Periodic Orbit OR,
 - $\Lambda = \Lambda_1 \cup \Lambda_2$, TWO Attracting Periodic Orbits. (*)
- Cherry attractor.
- Solenoidal attractor.
- Chaotic attractor:
 - Finite union of intervals OR,
 - *Cantor set* (only if there is a wandering interval).

 $\omega_f(x) = \Lambda$ residually in [0, 1], except $\omega_f(x) = \Lambda_1$ or $\omega_f(x) = \Lambda_2$ residually in [0, 1] in (*).

OBSERVE THAT: IN THE LORENZ CONTEXT WE DONT HAVE MILNOR-THURSTON THEOREM AS A TOOL. We don't have available two main tools that Guckenheimer had: Milnor-Thurston and, from this, the non-existence of non-wandering intervals!!!

Theorem(—) [Spectral Decomposition for Contracting Lorenz Maps] If $f \in C^3$, non-flat, Sf < 0, then $\exists n_f \in \mathbb{N} \cup \{\infty\}$, compact sets $\{\Omega_n\}_{0 \le n \le n_f}$ s.t.:

1.
$$\Omega(f) = \bigcup_{0 \leq j \leq n_f} \Omega_j$$

2.
$$f(\Omega_n) = \Omega_n$$

- (i) $\Omega_0 \subset \{0,1\}$ or $\Omega_0 = [0,1]$ (if $n_f = 0$) $\square \Omega_n \cap \Omega_m = \emptyset, \forall 0 \le n \ne m \le n_f.$
- $\Omega_{n_{f-1}} \cap \Omega_{n_f} = \emptyset$ or $\Omega_{n_{f-1}} \cap \Omega_{n_f} = 1$ or 2 periodic orbits $\iff c_-$ or c_+ preperiodic (ii) $f|_{\Omega_j}$ is topologically transitive $\forall j, \ 0 < j < n_f$.
- (iii) Ω_{n_f} is transitive or union of a pair of attracting periodic orbits. 3. For each $0 < j < n_f$ there is a decomposition of Ω_i into closed
 - sets $0 < j < n_f$ there is a decomposition of s

$$\Omega_j = X_{0,j} \cup X_{1,j} \cup \cdots \cup X_{\ell_j,j}$$

such that $\#(X_{a,j} \cap X_{b,j}) \leq 1$ when $a \neq b$, the first return map to $X_{0,j}$ is topologically exact (in particular, topologically mixing) and, for each $i \in \{1, \dots, \ell_j\}$, there is $1 \leq s_{i,j} \leq \ell_j$ such that $f^{s_{i,j}}(X_{i,j}) \subset X_{0,j}$.

PART II Finiteness of Attractors (joint work with Palis and Pinheiro)

Definition (generalized S-multimodal maps)

A generalized S-multimodal map is a C^3 local diffeomorphism $f : [0,1] \setminus C_f \to [0,1]$ with negative Schwarzian derivative with $f(\{0,1\}) \subset \{0,1\}, C_f \subset (0,1)$ and $\#C_f < \infty$. The set C_f is called the critical set of f.

Lemma

Let $V \subset (a, b)$ be an open set, \mathcal{P} be the set of c.c. of V and $F : V \rightarrow (a, b)$ be s.t.:

1. F(P) = (a, b) diffeomorphically $\forall P \in P$;

2. diameter($\mathcal{P}_n(x)$) $\xrightarrow{n \to \infty} 0$, $\forall x \in \bigcap_{j \ge 0} F^{-j}(V)$, where $\mathcal{P}_n(x)$ is the connected component of $\bigcap_{i=0}^n F^{-j}(V)$ that contains x;

3.
$$\exists K > 0$$
 such that $\left| \frac{DF^n(p)}{DF^n(q)} \right| \le K, \forall n, \forall p, q \in \mathcal{P}_n(x), \forall x \in \bigcap_{j \ge 0} F^{-j}(x)$

Then, either $Leb(\bigcap_{j\geq 0} F^{-j}(V)) = 0$ or |b - a|. Furthermore, if $Leb(\bigcap_{j\geq 0} F^{-j}(V)) = |b - a|$ then $\omega_F(x) = [a, b]$ for a.e. $x \in [a, b]$.

FORMER LEMMA SAYS THESE HOLES CANNOT OCCUR IF $Leb(\bigcap_{j\geq 0} F^{-j}(V))>0$

From now on f will be a generalized S-multimodal map with critical set C_f and critical values V_f .

Let ${\mathbb B}$ be the union of the basins of all periodic attractors.

Lemma (Critical Dichotomy) Let $I \subset [0, 1]$ be an interval such that

 $\mathcal{O}_f^+(\mathcal{V}_f)\cap I=\emptyset.$

and SF < 0, where $F : I^* \to I$ is the first return map to I by f. If $Leb(I \setminus \mathbb{B}) > 0$, then either

1. $\omega_f(x) \cap I = \emptyset$ for Lebesgue almost every $x \in I \setminus \mathbb{B}$ or

2. $\omega_f(x) \supset I$ for Lebesgue almost every $x \in I$.

The set of generators of an attractor If $\Lambda \subset [0,1]$ is an attractor define

$$G_f(\Lambda) := \{x ; \omega_f(x) = \Lambda\} \subset \beta_f(\Lambda).$$

If Λ is a finite attractor, $G_f(\Lambda) = \beta_f(\Lambda)$. Let

$$\mathbb{G} = \left(\bigcup_{\Lambda \text{ is a finite attractors}} G_f(\Lambda)\right) \cup \left(\bigcup_{\Lambda \text{ is a cycle of intervals}} G_f(\Lambda)\right).$$

Proposition

$$Leb\left(\mathbb{G}\cup\beta_f\left(\overline{\mathcal{O}_f^+(\mathcal{V}_f)}\right)\right)=1.$$

As for every $v \in \mathcal{V}_f \cap \omega(x) \neq \emptyset$ the orbit of v and its closure remains in $\omega_f(x)$, we have

$$\bigcup_{v\in\mathcal{V}_f\cap\omega(x)}\overline{\mathcal{O}_f^+(v)}\subset\omega_f(x)\subset\bigcup_{v\in\mathcal{V}_f}\overline{\mathcal{O}_f^+(v)}$$

Proposition

Let f as before and having periodic points accumulating by both sides in every critical point. Let $\omega(x) \subset \overline{\mathcal{O}^+(v_1)} \cup \cdots \cup \overline{\mathcal{O}^+(v_s)}$. If $v_1 \notin \omega(x)$ then $\omega(x) \subset \overline{\mathcal{O}^+(v_2)} \cup \cdots \cup \overline{\mathcal{O}^+(v_s)}$.

Re-stating the proposition:

$$\omega_f(x) \subset \bigcup_{v \in \mathcal{V}_f \cap \omega(x)} \overline{\mathcal{O}_f^+(v)}$$

Theorem (—, Palis, Pinheiro) For Lebesgue almost every $x \notin \mathbb{G}$ we have that

$$\omega_f(x) = \bigcup_{v \in \mathcal{V}_f \cap \omega(x)} \overline{\mathcal{O}_f^+(v)}$$

or we can re-write it as

Theorem (Labor Day's Theorem)

There is a finite collection $\{A_1, \dots, A_s\}$ of compact transitive positively invariant sets, with $s \leq 2^{\#\mathcal{V}_f} - 1$ such that

$$Leb(G_f(A_1)\cup\cdots\cup G_f(A_s))=1.$$

Furthermore,

- 1. $\exists U \subset [0,1] \setminus C_f$ with Leb(U) = 1 s.t. if $x \in U$ then $\omega_f(x) = A_j$ for some $1 \le j \le s$;
- 2. either A_j is a finite attractor or a cycle of intervals or A_j is a Cantor set with $A_j = \overline{\mathcal{O}_f^+(v_1)} \cup \cdots \cup \overline{\mathcal{O}_f^+(v_{k_j})}$ and $\{v_1, \cdots, v_{k_j}\} \subset \mathcal{V}_f$.

Remarks:

- ► Observe that the previous results guarantees that there are at most 2^{#V_f} 1 proving the finitude of attractors in this case
- This estimate can be sharpened, and in the case of one single critical point we have **Theorem:** There is only one single attractor.
- ► We aim the C² case. While we know it can occur de Melo example of infinite many periodic attractors without the non-flat condition, we expect to have the result valid in the complementary set of these infinite basins, this complementary set going to a finite number of attractors.

Thanks!

