Delaunay type hypersurfaces in cohomogeneity one manifolds Joint work with Renato G. Bettiol (Univ. of Notre Dame)

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

Encounters in Geometry Cabo Frio, RJ, Brazil

June 4th, 2013

Delaunay 1841: a

rotationally symmetric surface in \mathbb{R}^3 has CMC iff its profile curve is a *roulette* of a conic section.

- Delaunay surfaces: spheres, unduloids, nodoids, catenoids and cylinders.
- Similar constructions of rotationally invariant CMC hypersurfaces in Hⁿ, Rⁿ, Sⁿ

Embedded CMC tori in S³

• CMC Clifford tori in S^3 : for each $0 < t < \pi/2$,

$$\begin{aligned} T_t^2 &:= \Big\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \\ &\|x_1\|^2 + \|x_2\|^2 = \cos^2 t, \|x_3\|^2 + \|x_4\|^2 = \sin^2 t \Big\}, \end{aligned}$$

- **T** $_t^2$ are orbits of isometric $S^1 \times S^1$ -action
- Singular orbits: geodesics S¹ at distance π/2; limits of T²_t as t → 0 and t → π/2
- Other rotationally symmetric CMC tori: bifurcating families of CMC tori of unduloid type (classified by Hynd, Park, McCuan 2009 and Perdomo 2010)
- Full classification (announced by Andrews, Li 2012): all embedded CMC tori in S³ are rotationally symmetric (settles conjecture of Pinkall, Sterling 1989)
- Totally analogous bifurcation theory in higher dimensions: $S^m \times S^k \hookrightarrow S^{m+k+1}$, but classification is wide open

Ye: Pacific J. Math. 1991

Assume that $p \in M$ is a nondegenerate critical point of the scalar curvature on (M, g). Then, a neighborhood of p is foliated by constant mean curvature topological spheres $\Sigma(\rho)$, for $\rho \in]0, \rho_0[$.

Mahmoudi, Mazzeo, Pacard: GAFA 2006

For r > 0 small, geodesic *r*-tubes around a nondegenerate minimal submanifold $N^k \subset M^m$ ($k \leq m - 2$) can be deformed to CMC hypersurfaces with $H = \frac{m-1-k}{r(m-1)}$, except for a sequence $r_n \rightarrow 0$ of *resonant radii*.

Delaunay-type hypersurfaces:

- bifurcating branches of CMC hypersurfaces issuing from a natural 1-parameter family of symmetric CMC embeddings (orbits of isometric actions);
- partially preserve the symmetries of the natural branch;
- bifurcating branches condense onto a minimal submanifold (of higher codimension).

Natural ambient: Manifolds foliated by CMC hypersurfaces, with many symmetries, and condensing on minimal submanifolds.

- (M,g) compact Riemannian manifold
- G Lie group acting by isometries on M

cohomogeneity one: $\dim(M/G) = 1$

 $M/G = \begin{cases} [-1,1] \iff \text{two non-principal orbits} \\ S^1 \iff \text{all orbits are principal} \end{cases}$

 $\gamma \colon [-1, 1] \to M$ horizontal geodesic, section \Longrightarrow polar action

•
$$H := G_{\gamma(t)}$$
 principal isotropy, $t \in]-1, 1[$

•
$$K_{\pm} := G_{\gamma(\pm 1)}$$
 singular isotropies

$$\blacksquare H \subset \{K_-, K_+\} \subset G$$

Note: *M* simply connected \implies non-principal orbits are *singular*.

Geometry of cohomogeneity one manifolds - 1

Geometry of cohomogeneity one manifolds - 2

Tubular neighborhood of singular orbit

- $K_{\pm} \circlearrowright D_{\pm}$ slice representation
- D(G/K_±) := G ×_{K±} D_±
 Fiber bundle with fiber D_±
 associated to K_±-principal
 bundle K_± → G → G/K_±
- $M \cong D(G/K_{-}) \bigcup_{G/H} D(G/K_{+})$ is obtained by gluing the two tubular neighborhoods along a principal orbit G/H.

Geometry of cohomogeneity one manifolds – 3

Group diagram:

• $S_{\pm}^{\perp} = \partial D_{\pm}$ normal sphere to G/K_{\pm}

$$\bullet S_{\pm}^{\perp} = K_{\pm}/H$$

K_± č) S[⊥]_± transitive action

M is determined by data

$$\textit{H} \subset \{\textit{K}_{-},\textit{K}_{+}\} \subset \textit{G}$$

with K_{\pm}/H diffeomorphic to spheres.

Collapse of singular orbits

- x_t : $G/H \hookrightarrow M$ family of principal orbits, $t \in [-1, 1[$
- $S \cong G/K_+$ singular orbit at t = +1
- $x_t(G/H)$ is a geodesic tube around S
- $x_t(G/H)$ is the total space of a homogeneous fibration:

$$K/H \longrightarrow x_t(G/H) \longrightarrow S \cong G/K$$

As $t \to 1$, $x_t(G/H)$ converges to *S* in the Hausdorff metric, i.e., the fibers (normal spheres) collapse to a point:

 $x_t(G/H)$ condeses on S as $t \to 1$

■ $\lim_{t\to 1} H_t = +\infty$, however, *S* is *minimal*!

Discuss minimality of limit submanifold.

G-invariant metric on a G-manifold of cohomogeneity one:

$$\boldsymbol{g} = \boldsymbol{g}_t + \mathrm{d}t^2, \quad t \in \left]-1, 1\right[$$

 g_t is a *G*-invariant metric on $x_t(G/H)$, with some conditions as $t \rightarrow \pm 1$. (Back-Hsiang 1987, ..., Mendes 2012 for polar actions)

Definition

g is *adapted* near S_{\pm} if the projection $(G/H, g_t) \xrightarrow{\pi} (G/K_{\pm}, \check{g}_{\pm 1})$ is a Riemannian submersion for *t* near ± 1 (up to a factor $\alpha(t) \rightarrow 1$ as $t \rightarrow \pm 1$), i.e.:

$$\pi^*(\check{g}_{\pm 1}) = lpha(t) \, g_t$$

Existence of adapted metrics

Lie algebras: $\mathfrak{h} \subset \mathfrak{k} \subset \mathfrak{g}$ Choose complements $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}, \ [\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}$ $\mathfrak{k} = \mathfrak{h} + \mathfrak{p}, \ [\mathfrak{h}, \mathfrak{p}] \subset \mathfrak{p}$ $\mathfrak{n} := \mathfrak{m} + \mathfrak{p}$

Then, $g = dt^2 + g_t$ is adapted iff g_t is of the form on n:

$$g_t(\cdot, \cdot) = \alpha(t) A(\cdot, \cdot) + B_t(\cdot, \cdot),$$

A: *K*-invariant inn. prod. on \mathfrak{m} coming from $S_{\pm} = G/K_{\pm}$

B
$$_t$$
: any *H*-invariant inn. prod. on \mathfrak{p} .

Using a bi-invariant metric on *G* one proves easily:

Proposition

Every cohomogeneity one *G*-manifold *M* with M/G = [-1, 1] admits a metric that is adapted near both of its singular orbits.

Criterion

Let *M* be a cohomogeneity one manifold with an invariant metric *g* of nonnegative sectional curvature. If (M, g) has a totally geodesic principal orbit *N*, then the metric *g* is adapted near both singular orbits (with $\alpha_{\pm} \equiv 1$).

Proof.

Assume N disconnects M (general case follows).

- $N \subset M$ totally geodesic & sec $\geq 0 \implies dist(\cdot, N)$ concave.
- Each component C_{\pm} of $M \setminus N$ is a loc. convex subset of M.
- $S_{\pm} = \{ \text{points at maximal distance from } N \}$ soul of C_{\pm}
- By Perelman, the Sharafutdinov retraction onto the soul (projection from each principal orbit G/H onto S_{\pm}) is a Riemannian submersion.

Theorem

M cohomogeneity one *G*-manifold, *H* principal isotropy, singular orbit S = G/K. Assume:

- S is not a fixed point
- metric adapted near S
- either of the two normality assumptions (N1) or (N2) below.

Then, there are infinitely many bifurcating branches of CMC embeddings of G/H in M issuing from principal orbits arbitrarily close to S. Such embeddings are K-invariant, but not G-invariant.

- (N1) K normal in G
- (N2) *H* normal in *K*, and *K*-invariant metric g_t on G/H w.r. to a modified action.

On the normality assumptions

(N1) implies:

(P) *K*-orbits (inside principal orbits) coincide with the fibers (gK)H of homogeneous fibration:

 $K/H \longrightarrow G/H \longrightarrow G/K.$

Under (N2), consider a different action:

$$K \times G/H \ni (k, gH) \longmapsto gk^{-1}H \in G/H.$$

Extends to a smooth isometric action of *K* on regular part $M_0 = M \setminus \{S_{\pm}\}$ and (P) holds

(P) yields:

Eigenvalues of the Jacobi operator for the *K*-symmetric CMC variational problem come from *basic* eigenvalues of the total space of the fibration $G/H \rightarrow G/K$.

(Besson, Bordoni, 1991)

- (N1) or (N2) implies S totally geodesic (fixed point set of K)
- (N1) implies that K-action is fixed-point homogeneous
- (N2) implies codim(S) = 2,4

On the normality assumption (N2)

H normal in *K*, K/H = sphere $\implies K/H \cong S^1$ or $K/H \cong S^3$. Conversely:

Proposition

Let *K* be a connected group and $H \subset K$ be a compact subgroup such that $K/H \cong S^1$. Then, *H* is normal in *K*.

Proof.

- *H* compact $\Longrightarrow \exists K$ -invariant metric on $K/H \cong S^1$
- all Riemmannian metrics on S¹ are round ⇒ K-action given by a homomorphism φ: K → O(2)
- K connected $\Longrightarrow \varphi(K) \subset SO(2)$
- **SO(2)** acts freely on $S^1 \implies H$ = stabilizer = Ker(φ).

Ex. 1: Delaunay-type spheres S^{2n+1} in $\mathbb{C}P^{n+1}$

• $(M,g) = (\mathbb{C}P^{n+1}, g_{FS}), g_{FS}$ Fubini-Study metric

- Singular orbits: $S_{-} = \{p\}, S_{+} = \operatorname{Cut}(p) \cong \mathbb{C}P^{n}$
- Principal orbits: $S_t^{2n+1} = (U(n+1)/U(n), g_t), t \in]0, \pi/2[, geodesic spheres of radius$ *t*centered at*p*, metrically Berger spheres

•
$$K/H \rightarrow G/H \rightarrow G/K$$
 is Hopf fibration $tS^1 \rightarrow S_t^{2n+1} \rightarrow \mathbb{C}P^n$

- g_{FS} is adapted near S_+ , $\alpha(t) = \sin^2 t$
- (N2) is satisfied: $U(n) \triangleleft U(n)U(1), U(n)U(1)/U(n) \cong S^1$

Example 2: Delaunay-type spheres S^{4n+3} in $\mathbb{H}P^{n+1}$

• $(M,g) = (\mathbb{H}P^{n+1}, g_{FS}), g_{FS}$ Fubini-Study metric

Singular orbits: $S_{-} = \{p\}, S_{+} = \operatorname{Cut}(p) \cong \mathbb{H}P^{n}$ Principal orbits: $S_{t}^{4n+3} = (\operatorname{Sp}(n+1)/\operatorname{Sp}(n), q_{t}),$

 $t \in]0, \pi/2[$, geodesic spheres of radius *t* centered at *p*, metrically Berger spheres

• $K/H \rightarrow G/H \rightarrow G/K$ is Hopf fibration $tS^3 \rightarrow S_t^{4n+3} \rightarrow \mathbb{H}P^n$

- g_{FS} is adapted near S_+ , $\alpha(t) = \sin^2 t$
- (N2) is satisfied: $Sp(n) \triangleleft Sp(n)Sp(1)$, $Sp(n)Sp(1)/Sp(n) \cong S^3$

Ex. 3: Other Delaunay-type hypersurfaces in CROSS

Grove, Wilking, Ziller JDG 2008: full description of cohom 1 actions on CROSS

Essential cohom 1 actions on CROSS with (N2) with $H \triangleleft K_{-}$				
М	G	<i>K</i> _	K_+	Н
S^{2k+3} S^{15} S^{13} S^{7} S^{4} $\mathbb{C}P^{k+1}$ $\mathbb{C}P^{6}$ $\mathbb{C}P^{7}$	$SO(2)SO(k+2)$ $SO(2)Spin(7)$ $SO(2) \cdot G_2$ $SO(4)$ $SO(3)$ $SO(k+2)$ G_2 $Spin(7)$	$ \Delta SO(2)SO(k) \Delta SO(2)SU(3) \Delta SO(2)SU(2) S(O(2)O(1)) S(O(2)O(1)) SO(2)SO(k) U(2) S1 SU(3) $	$\mathbb{Z}_{2} \cdot SO(k + 1)$ $\mathbb{Z}_{2} \cdot Spin(6)$ $\mathbb{Z}_{2} \cdot SU(3)$ $S(O(1)O(2))$ $S(O(1)O(2))$ $O(k + 1)$ $\mathbb{Z}_{2} \cdot SU(3)$ $\mathbb{Z}_{2} \cdot Spin(6)$	

Ex. 4: Delaunay hypersurfaces in Kervaire spheres

•
$$M_d^{2n-1} \subset \mathbb{C}^{n+1}$$
 defined by:

$$\begin{cases} z_0^d + z_1^2 + \dots + z_n^2 = 0, \\ \|z_0\|^2 + \|z_1\|^2 + \dots + \|z_n\|^2 = 1 \end{cases}$$

n odd, *d* odd $\Rightarrow M_d^{2n-1}$ homeom. to S^{2n-1} ; $2n-1 \equiv 1 \mod 8 \Rightarrow M_d^{2n-1} = \Sigma^{2n-1}$ exotic (Kervaire) spheres Cohom 1 action (*n* = 3: Calabi, *n* ≥ 3: Hsiang-Hsiang, 1967):

Singular orbit: $S_{-} = SO(n)/SO(n-2)$

Principal orbits: S¹ × SO(n)/SO(n − 2)
 (N2) is satisfied: Z₂ × SO(n − 2) ⊲ SO(2)SO(n − 2)

Constructions

Extensions:

- *M* cohom 1 mfld, diagram $H \subset \{K_-, K_+\} \subset G$
- $G \hookrightarrow \widetilde{G}$ extension of G
- Get cohom 1 bundle \widetilde{M} with \widetilde{G} -action, $M \to \widetilde{M} \to \widetilde{G}/G$

• *M* has (N2)
$$\Rightarrow \widetilde{M}$$
 has (N2)

Products:

- (H, K_+) pair of Lie groups with $K_+/H = S^n$
- $K_- := H \times S^1$ (or $K_- := H \times S^3$)

• G any Lie group containing K_{\pm}

■ E.g., G = K₊ × S¹ (or K₊ × S³), M = Sⁿ⁺² sphere, principal orbits are G/H = Sⁿ × S¹ (or Sⁿ × S³), singular orbits are S₋ = Sⁿ and S₊ = S¹ (or S³)

(N2) is trivially satisfied

 Variational bifurcation theory: t-spectral flow of Jacobi operators

$$J_t(\psi) = \Delta_{g_t} \psi - (\operatorname{Ric}(\vec{n}) + \|\mathcal{S}_t\|^2)\psi, \quad \psi \colon G/H \to \mathbb{R}$$

- Space of (unparameterized) *K*-invariant embeddings $x: G/H \rightarrow M$
- Area functional with volume constraint & Palais' symmetric criticality principle
- Eigenvalues of the Jacobi operators related to eigenvalues of Laplacian of a collapsing homogeneous fibration

Yamabe problem in homogeneous fibration

Orbits of isometric actions are:

- CMC embeddings
- solutions of the Yamabe problem (constant scalar curvature)

Fact. Jacobi operators of the area functional and of the Yamabe functional are both Schrödinger operators with potential given by curvatures.

- L. Alías, P.P., Bifurcation of constant mean curvature tori in Euclidean spheres, J. Geom. Anal. 2013.
- R. G. Bettiol, P.P., Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres, to appear in Calc. Var. PDEs.
- R. G. Bettiol, P.P., Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions, to appear in Pacific J. Math.
- R. G. Bettiol, P.P., Delaunay type hypersurfaces in cohomogeneity one manifolds, preprint 2013.