Delaunay type hypersurfaces in cohomogeneity one manifolds
Joint work with Renato G. Bettiol (Univ. of Notre Dame)

Paolo Piccione
Departamento de Matemática
Instituto de Matemática e Estatística
Universidade de São Paulo

Encounters in Geometry
Cabo Frio, RJ, Brazil

June 4th, 2013
Delaunay 1841: a rotationally symmetric surface in \mathbb{R}^3 has CMC iff its profile curve is a *roulette* of a conic section.

- **Delaunay surfaces:** spheres, unduloids, nodoids, catenoids and cylinders.
- Similar constructions of rotationally invariant CMC hypersurfaces in \mathbb{H}^n, \mathbb{R}^n, S^n
Embedded CMC tori in S^3

- CMC Clifford tori in S^3: for each $0 < t < \pi/2$,

$$T^2_t := \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \right.$$

$$\left| x_1 \right|^2 + \left| x_2 \right|^2 = \cos^2 t, \left| x_3 \right|^2 + \left| x_4 \right|^2 = \sin^2 t \right\},$$

- T^2_t are orbits of isometric $S^1 \times S^1$-action
- Singular orbits: geodesics S^1 at distance $\pi/2$; limits of T^2_t as $t \to 0$ and $t \to \pi/2$
- Other rotationally symmetric CMC tori: *bifurcating families* of CMC tori of *unduloid type* (classified by Hynd, Park, McCuan 2009 and Perdomo 2010)
- Full classification (announced by Andrews, Li 2012): all embedded CMC tori in S^3 are rotationally symmetric (settles conjecture of Pinkall, Sterling 1989)
- Totally analogous bifurcation theory in higher dimensions: $S^m \times S^k \hookrightarrow S^{m+k+1}$, but classification is wide open

Assume that $p \in M$ is a nondegenerate critical point of the scalar curvature on (M, g). Then, a neighborhood of p is foliated by constant mean curvature topological spheres $\Sigma(\rho)$, for $\rho \in]0, \rho_0[$.

Mahmoudi, Mazzeo, Pacard: GAFA 2006

For $r > 0$ small, geodesic r-tubes around a nondegenerate minimal submanifold $N^k \subset M^m$ ($k \leq m - 2$) can be deformed to CMC hypersurfaces with $H = \frac{m-1-k}{r(m-1)}$, except for a sequence $r_n \to 0$ of resonant radii.
Delaunay-type hypersurfaces:

- bifurcating branches of CMC hypersurfaces issuing from a natural 1-parameter family of symmetric CMC embeddings (orbits of isometric actions);
- partially preserve the symmetries of the natural branch;
- bifurcating branches condense onto a minimal submanifold (of higher codimension).

Natural ambient: Manifolds foliated by CMC hypersurfaces, with many symmetries, and condensing on minimal submanifolds.
Cohomogeneity one manifolds

- (M, g) compact Riemannian manifold
- G Lie group acting by isometries on M

cohomogeneity one: $\dim(M/G) = 1$

$$M/G = \begin{cases} [-1, 1] & \iff \text{two non-principal orbits} \\ S^1 & \iff \text{all orbits are principal} \end{cases}$$

$\gamma : [-1, 1] \to M$ horizontal geodesic, section \implies polar action

- $H := G_{\gamma(t)}$ principal isotropy, $t \in]-1, 1[$
- $K_{\pm} := G_{\gamma(\pm 1)}$ singular isotropies
- $H \subset \{K_-, K_+\} \subset G$

Note: M simply connected \implies non-principal orbits are *singular*.
Geometry of cohomogeneity one manifolds

singular orbit G/K_-
isolated \implies minimal

principal orbits G/H:
CMC hypersurfaces

$singular orbit G/K_+$
isolated \implies minimal

$M/G = [-1, 1]$
Geometry of cohomogeneity one manifolds – 2

Tubular neighborhood of singular orbit

- $K_{\pm} \circ D_{\pm}$ slice representation
- $D(G/K_{\pm}) := G \times_{K_{\pm}} D_{\pm}$ Fiber bundle with fiber D_{\pm} associated to K_{\pm}-principal bundle $K_{\pm} \to G \to G/K_{\pm}$
- $M \cong D(G/K_{-}) \cup_{G/H} D(G/K_{+})$ is obtained by gluing the two tubular neighborhoods along a principal orbit G/H.

Paolo Piccione
Delaunay hypersurfaces in cohomogeneity one
Group diagram:

- $S_{\pm} = \partial D_{\pm}$ normal sphere to G/K_{\pm}
- $S_{\pm} = K_{\pm}/H$
- $K_{\pm} \circlearrowleft S_{\pm}$ transitive action

M is determined by data

$$H \subset \{K_{-}, K_{+}\} \subset G$$

with K_{\pm}/H diffeomorphic to spheres.
Collapse of singular orbits

- \(x_t : G/H \hookrightarrow M \) family of principal orbits, \(t \in]-1, 1[\)
- \(S \cong G/K_+ \) singular orbit at \(t = +1 \)
- \(x_t(G/H) \) is a geodesic tube around \(S \)
- \(x_t(G/H) \) is the total space of a homogeneous fibration:

\[
K/H \twoheadrightarrow x_t(G/H) \twoheadrightarrow S \cong G/K
\]

- As \(t \to 1 \), \(x_t(G/H) \) converges to \(S \) in the Hausdorff metric, i.e., the fibers (normal spheres) collapse to a point:

\[
x_t(G/H) \text{ condeses on } S \text{ as } t \to 1
\]

- \(\lim_{t \to 1} H_t = +\infty \), however, \(S \) is minimal!

Discuss minimality of limit submanifold.
Adapted metric

G-invariant metric on a G-manifold of cohomogeneity one:

$$g = g_t + dt^2, \quad t \in]-1, 1[$$

g_t is a G-invariant metric on $x_t(G/H)$, with some conditions as $t \to \pm 1$. (Back-Hsiang 1987, ..., Mendes 2012 for polar actions)

Definition

g is *adapted* near S_{\pm} if the projection $(G/H, g_t) \xrightarrow{\pi} (G/K_{\pm}, \check{g}_{\pm1})$ is a Riemannian submersion for t near ± 1 (up to a factor $\alpha(t) \to 1$ as $t \to \pm 1$), i.e.:

$$\pi^* (\check{g}_{\pm1}) = \alpha(t) g_t$$
Existence of adapted metrics

Lie algebras: \[h \subset k \subset g \]

Choose complements

\[g = k + m, \quad [k, m] \subset m \]
\[\ell = h + p, \quad [h, p] \subset p \]
\[n := m + p \]

Then, \(g = dt^2 + g_t \) is adapted iff \(g_t \) is of the form on \(n \):

\[
g_t(\cdot, \cdot) = \alpha(t) A(\cdot, \cdot) + B_t(\cdot, \cdot),
\]

- \(A \): \(K \)-invariant inn. prod. on \(m \) coming from \(S_{\pm} = G/K_{\pm} \)
- \(B_t \): any \(H \)-invariant inn. prod. on \(p \).

Using a bi-invariant metric on \(G \) one proves easily:

Proposition

Every cohomogeneity one \(G \)-manifold \(M \) with \(M/G = [-1, 1] \) admits a metric that is adapted near both of its singular orbits.
A criterion in non-negative curvature

Criterion

Let M be a cohomogeneity one manifold with an invariant metric g of nonnegative sectional curvature. If (M, g) has a totally geodesic principal orbit N, then the metric g is adapted near both singular orbits (with $\alpha_{\pm} \equiv 1$).

Proof.

Assume N disconnects M (general case follows).

- $N \subset M$ totally geodesic & $\sec \geq 0 \implies \text{dist}(\cdot, N)$ concave.
- Each component C_{\pm} of $M \setminus N$ is a loc. convex subset of M.
- $S_{\pm} = \{\text{points at maximal distance from } N\}$ soul of C_{\pm}
- By Perelman, the Sharafutdinov retraction onto the soul (projection from each principal orbit G/H onto S_{\pm}) is a Riemannian submersion.
Main result

Theorem

M cohomogeneity one *G*-manifold, *H* principal isotropy, singular orbit \(S = G/K \). Assume:

- *S* is not a fixed point
- metric adapted near *S*
- either of the two normality assumptions (N1) or (N2) below.

Then, there are infinitely many bifurcating branches of CMC embeddings of \(G/H \) in *M* issuing from principal orbits arbitrarily close to *S*. Such embeddings are *K*-invariant, but not *G*-invariant.

(N1) *K* normal in *G*
(N2) *H* normal in *K*, and *K*-invariant metric \(g_t \) on \(G/H \) w.r. to a modified action.
(N1) implies:
(P) K-orbits (inside principal orbits) coincide with the fibers $(gK)H$ of homogeneous fibration:

$$K/H \longrightarrow G/H \longrightarrow G/K.$$

Under (N2), consider a different action:

$$K \times G/H \ni (k, gH) \longmapsto gk^{-1}H \in G/H.$$

Extends to a smooth isometric action of K on regular part $M_0 = M \setminus \{S_{\pm}\}$ and (P) holds

(P) yields:
- Eigenvalues of the Jacobi operator for the K-symmetric CMC variational problem come from basic eigenvalues of the total space of the fibration $G/H \longrightarrow G/K$.

(Besson, Bordoni, 1991)
Some consequences of the normality assumptions

- (N1) or (N2) implies S totally geodesic (fixed point set of K)
- (N1) implies that K-action is *fixed-point homogeneous*
- (N2) implies $\text{codim}(S) = 2, 4$
On the normality assumption (N2)

H normal in K, $K/H = \text{sphere} \implies K/H \cong S^1$ or $K/H \cong S^3$.
Conversely:

Proposition

Let K be a connected group and $H \subset K$ be a compact subgroup such that $K/H \cong S^1$. Then, H is normal in K.

Proof.

- H compact $\implies \exists$ K-invariant metric on $K/H \cong S^1$
- all Riemannian metrics on S^1 are round \implies K-action given by a homomorphism $\varphi: K \to O(2)$
- K connected $\implies \varphi(K) \subset SO(2)$
- $SO(2)$ acts freely on $S^1 \implies H = \text{stabilizer} = \text{Ker}(\varphi)$.

Ex. 1: Delaunay-type spheres S^{2n+1} in $\mathbb{C}P^{n+1}$

- $(M, g) = (\mathbb{C}P^{n+1}, g_{FS})$, g_{FS} Fubini-Study metric

 ![Diagram]

- Singular orbits: $S_- = \{p\}$, $S_+ = \text{Cut}(p) \cong \mathbb{C}P^n$
- Principal orbits: $S^{2n+1}_t = (U(n+1)/U(n), g_t)$, $t \in]0, \pi/2[$, geodesic spheres of radius t centered at p, metrically Berger spheres
- $K/H \rightarrow G/H \rightarrow G/K$ is Hopf fibration $tS^1 \rightarrow S^{2n+1}_t \rightarrow \mathbb{C}P^n$
- g_{FS} is adapted near S_+, $\alpha(t) = \sin^2 t$
- (N2) is satisfied: $U(n) \triangleleft U(n)U(1)$, $U(n)U(1)/U(n) \cong S^1$
Example 2: Delaunay-type spheres S^{4n+3} in $\mathbb{H}P^{n+1}$

- $(M, g) = (\mathbb{H}P^{n+1}, g_{FS})$, g_{FS} Fubini-Study metric

$$
\begin{align*}
\text{Sp}(n+1) & \quad \text{Sp}(n+1) \\
\text{Sp}(n) & \quad \text{Sp}(n)\text{Sp}(1)
\end{align*}
$$

- Singular orbits: $S^- = \{p\}$, $S^+ = \text{Cut}(p) \cong \mathbb{H}P^n$
- Principal orbits: $S^{4n+3}_t = (\text{Sp}(n+1)/\text{Sp}(n), g_t)$, $t \in]0, \pi/2[$, geodesic spheres of radius t centered at p, metrically Berger spheres
- $K/H \to G/H \to G/K$ is Hopf fibration $tS^3 \to S^{4n+3}_t \to \mathbb{H}P^n$
- g_{FS} is adapted near S^+, $\alpha(t) = \sin^2 t$
- (N2) is satisfied: $\text{Sp}(n) \triangleleft \text{Sp}(n)\text{Sp}(1)$, $\text{Sp}(n)\text{Sp}(1)/\text{Sp}(n) \cong S^3$
Ex. 3: Other Delaunay-type hypersurfaces in CROSS

Grove, Wilking, Ziller JDG 2008: full description of cohom 1 actions on CROSS

Essential cohom 1 actions on CROSS with (N2) with $H \triangleleft K_-$

<table>
<thead>
<tr>
<th>M</th>
<th>G</th>
<th>K_-</th>
<th>K_+</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^{2k+3}</td>
<td>$\text{SO}(2)\text{SO}(k + 2)$</td>
<td>$\Delta \text{SO}(2)\text{SO}(k)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SO}(k + 1)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SO}(k)$</td>
</tr>
<tr>
<td>S^{15}</td>
<td>$\text{SO}(2)\text{Spin}(7)$</td>
<td>$\Delta \text{SO}(2)\text{SU}(3)$</td>
<td>$\mathbb{Z}_2 \cdot \text{Spin}(6)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SU}(3)$</td>
</tr>
<tr>
<td>S^{13}</td>
<td>$\text{SO}(2) \cdot G_2$</td>
<td>$\Delta \text{SO}(2)\text{SU}(2)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SU}(3)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SU}(2)$</td>
</tr>
<tr>
<td>S^7</td>
<td>$\text{SO}(4)$</td>
<td>$\text{SO}(1)\text{SO}(1)$</td>
<td>$\mathbb{Z}_2 \oplus \mathbb{Z}_2$</td>
<td></td>
</tr>
<tr>
<td>S^4</td>
<td>$\text{SO}(3)$</td>
<td>$\text{SO}(1)\text{SO}(1)$</td>
<td>$\mathbb{Z}_2 \oplus \mathbb{Z}_2$</td>
<td></td>
</tr>
<tr>
<td>CP^{k+1}</td>
<td>$\text{SO}(k + 2)$</td>
<td>$\text{SO}(2)\text{SO}(k)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SU}(3)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SU}(2)$</td>
</tr>
<tr>
<td>CP^6</td>
<td>G_2</td>
<td>$U(2)$</td>
<td>$\mathbb{Z}_2 \cdot \text{Spin}(6)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SU}(3)$</td>
</tr>
<tr>
<td>CP^7</td>
<td>$\text{Spin}(7)$</td>
<td>$S^1 \cdot \text{SU}(3)$</td>
<td>$\mathbb{Z}_2 \cdot \text{Spin}(6)$</td>
<td>$\mathbb{Z}_2 \cdot \text{SU}(3)$</td>
</tr>
</tbody>
</table>
Ex. 4: Delaunay hypersurfaces in Kervaire spheres

\[M_d^{2n-1} \subset \mathbb{C}^{n+1} \] defined by:
\[
\begin{cases}
 z_0^d + z_1^2 + \cdots + z_n^2 = 0, \\
 \|z_0\|^2 + \|z_1\|^2 + \cdots + \|z_n\|^2 = 1
\end{cases}
\]

\(n \) odd, \(d \) odd \(\Rightarrow M_d^{2n-1} \) homeom. to \(S^{2n-1} \);
\(2n - 1 \equiv 1 \mod 8 \) \(\Rightarrow M_d^{2n-1} = \Sigma^{2n-1} \) exotic (Kervaire) spheres

Cohom 1 action (\(n = 3 \): Calabi, \(n \geq 3 \): Hsiang-Hsiang, 1967):

\[
\begin{array}{ccc}
\text{SO}(2) \times \text{SO}(n) & \xrightarrow{\Delta} & \mathbb{Z}_2 \times \text{SO}(n-2) \\
\downarrow & & \downarrow \\
\text{SO}(2) \times \text{SO}(n-2) & \xrightarrow{\text{SO}(2) \times \text{SO}(n-2)} & \text{SO}(n-2) \times \text{SO}(n-2)
\end{array}
\]

\(\triangleleft \)

\(\text{Z}_2 \times \text{SO}(n-2) \)

\(\text{N2} \) is satisfied:
\[\mathbb{Z}_2 \times \text{SO}(n-2) \triangleleft \text{SO}(2) \times \text{SO}(n-2) \]
Constructions

Extensions:

- M cohom 1 mfld, diagram $H \subset \{K_-, K_+\} \subset G$
- $G \hookrightarrow \tilde{G}$ extension of G
- Get cohom 1 bundle \tilde{M} with \tilde{G}-action,
 $M \to \tilde{M} \to \tilde{G}/G$
- M has (N2) $\Rightarrow \tilde{M}$ has (N2)

Products:

- (H, K_+) pair of Lie groups with $K_+/H = S^n$
- $K_- := H \times S^1$ (or $K_- := H \times S^3$)
- G any Lie group containing K_\pm
- E.g., $G = K_+ \times S^1$ (or $K_+ \times S^3$), $M = S^{n+2}$ sphere, principal orbits are $G/H = S^n \times S^1$ (or $S^n \times S^3$), singular orbits are $S_- = S^n$ and $S_+ = S^1$ (or S^3)
- (N2) is trivially satisfied
Ingredients of Proof

- Variational bifurcation theory: t-spectral flow of Jacobi operators

\[J_t(\psi) = \Delta_{g_t}\psi - (\text{Ric}(\bar{\nu}) + \|S_t\|^2)\psi, \quad \psi : G/H \to \mathbb{R} \]

- Space of (unparameterized) K-invariant embeddings
 \[x : G/H \to M \]

- Area functional with volume constraint & Palais’ symmetric criticality principle

- Eigenvalues of the Jacobi operators related to eigenvalues of Laplacian of a collapsing homogeneous fibration
Delaunay and Yamabe

Delaunay CMC problem \iff Yamabe problem in homogeneous fibration

Orbits of isometric actions are:
- CMC embeddings
- solutions of the Yamabe problem (constant scalar curvature)

Fact. Jacobi operators of the area functional and of the Yamabe functional are both Schrödinger operators with potential given by curvatures.

