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Half-Space Theorems

Let me start with a brief introduction to the half-spaces theorems.

The Half-Space Theorem proved by W. Meeks stated that a complete
surface properly and minimally immersed in R3 intersect any plane,
say xi = 0, unless it is a parallel plane xi = c .

This result was improved to what is know as the Strong Half-Space
Theorem proved by Hoffman-Meeks and it states that two complete
surfaces properly and minimally immersed into R3 must intersect,
unless they are parallel planes.

M. Anderson and L. Rodriguez proved the strong half-space in a
complete oriented non-compact 3-dimensional Riemannian manifold
N with Ricci curvature RicN ≥ 0 and sectional curvature bounded
KN ≤ b.

They proved that any two complete properly immersed oriented
minimal surfaces, intersect unless they are totally geodesic and
parallel leaves in a local product structure.
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Half-Space Theorems for bounded curvature

These half-space theorems are not true in higher dimension. There
are minimal Catenoids with bounded hight in Euclidean space Rn.

These half-spaces for proper minimal surfaces were proven in the bounded
curvature setting.

F. Xavier [1980] proved the (weak) half-space theorem for (complete)
minimal surfaces with bounded curvature. This is, a complete surface
M with bounded curvature can not be minimally immersed into a
half-space {x3 > 0} unless M is a plane parallel to the plane {x3 = 0}.
The Strong Half-Space Theorem in this setting was settled
independently by Bessa-Jorge-Oliveira [2001] and by Rosenberg
[2001]. Two complete minimal surfaces with bounded curvature
intersect unless they are parallel planes.

Bessa-Jorge-Oliveira[2001] also proved the Mixed Half-Space
Theorem. A complete properly minimal surface and a complete
minimal surface with bounded curvature must intersect unless they
are parallel planes.
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Half-Space Theorems in H2×R

Recently, the theory of minimal surfaces was successfully extended to
product spaces N×R, where N is a complete Riemannian surface.

This new theory started to be developed after a seminal paper by
Rosenberg published in 2002.

The classical theory of minimal/cmc surfaces in R3, in some sense,
guides the research in this new theory, although the results are very
sensitive to the geometry of N.

In this spirit, Hauswirth, Rosenberg and Spruck [2008] proved a
version of the Meeks’ Half-Space Theorem in H2×R.
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Half-Space Theorems in H2×R

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature H = 1
2 surface in

H2×R.Suppose Σ is contained in a (solid) horocylinder C = B×R where
B is a horoball. Suppose Σ is asymptotic to C . If the mean curvature
vector of Σ has the same direction as that of C at points of Σ converging
to C then Σ is equal to C or is a subset of C if ∂ Σ 6= /0.

The minimal surfaces of R3 correspond in H2×R to surfaces with
constant mean curvature H = 1

2 .

The planes in R3 correspond in H2×R to horocylinders ∂B×R.
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Half-Space Theorems in H2×R

Today I am going to present the following extension of
Hauswirth-Rosenberg-Spruck’s Half-Space Theorem in H2×R.

Theorem (—, Lira-Medeiros-2013)

Let ϕ : Σ ↪→Hn×R` be a properly immersed m-submanifold in Hn×R`,

m ≥ `+ 1.If ϕ(Σ) is contained in a solid horocylinder C = B×R` with an

interior point then sup |H|> m− `

m
.In particular, if ϕ(Σ) is contained in a

solid horocylinder C = B×R` and |H| ≤ m− `

m
then Σ⊂ ∂ C = ∂B×R`.
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Half-Space Theorems in H2×R

The ideas behind this result also yields a mixed half-space theorem in
Hn×R`.

Theorem (Mixed Half-Space Thm, —, Lira-Medeiros-2013)

Let Σ be an immersed submanifold in Hn×R`, m ≥ `+ 1, with scalar
curvature

s
Σ

(x)≥−c2 ·ρ2
Σ

(x) log(ρ
Σ

(x) + 1), for ρ
Σ
� 1 and for some c ∈ R.

Let C be a solid horocylinder C = B×R`. If Σ⊂ C has an interior point
then

sup |H|> m− `

m
.

Here p ∈ Σ and ρ
Σ

(x) = distΣ(p,x).
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� 1 and for some c ∈ R.

Let C be a solid horocylinder C = B×R`. If Σ⊂ C has an interior point
then

sup |H|> m− `

m
.

Here p ∈ Σ and ρ
Σ

(x) = distΣ(p,x).
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A different perspective

We look at these half-spaces theorems as theorems of mean curvature
estimates of (properly immersed/bounded curvature) complete
submanifolds subject to extrinsic constraints.

Given a Riemannian manifold N with a distinguished point p or a
distinguished oriented embedded hypersurface Σ0.

Assume that the radial sectional curvature of N along the geodesics
issuing from p or issuing orthogonal to Σ0 satisfies

−G1(ρ(x))≤ K rad
N (x)≤−G2(ρ(x))

where ρ(x) = distN(p,x) or ρ(x) = distN(Σ0,x) and
G1,G2 : [0,∞)→ R are smooth functions satisfying very loose
conditions. Like

G1(0) > 0, G ′1(t)≥ 0, G
−1/2
1 (t) 6∈ L1(+∞)

For instance G1(t) = t2 log2(1 + t) for t� 1.
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A different perspective

And G2 ≤ 0 or more generally G2 satisfies the Kneser type criterion:
G−2 = max{−G2,0} ∈ L1(R+) and

∫+∞

t G−2 (s)ds ≤ 1
4t on (0,∞).

In the best cases, −G2 ≤−c2 < 0.

Let h : [0,∞)→ R the solution of the Cauchy Problem
h′′(t)−G2(t)h(t) = 0 with initial data h(0) = 0 and h′(0) = 1.

The philosophy is that: the data (p,Σ0,G2,h,h
′) yields a region

Ω⊂ N such that if ϕ : M → N is a properly immersed submanifold
such that ϕ(M)⊂ Ω then sup |H| ≥ infΩ

h′

h ·
Usually Ω is a “side”of a tubular neighborhood of Σ0.

The condition −G1(ρ(x))≤ K rad
N (x) plus properness implies that M

is stochastically complete, a notion I am going to discuss right now.
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Stochastically Completeness

Stochastically complete Riemannian manifolds.

Definition

We say that M is stochastically complete if for some, therefore for all,
x ∈M, and all t > 0 ∫

M
p(t,x ,y)dy = 1. (1)

From the probabilistic point of view, the identity (1) has the following
interpretation:the probability that a particle in Brownian motion
t→ Xt ∈M be found in the state space M at any time t is 1.
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Stochastically Completeness

Stochastic completeness has a number of equivalent formulations.

Solutions of the heat equation with bounded initial data are unique.

Bounded nonnegative solutions of the differential inequality

∆u ≥ λ u

on M, for any/all λ > 0, vanish identically. [Grigor’yan-BAMS 1999]

There are geometric conditions on a complete Riemannian manifold
implying stochastic completeness.

The Ricci curvature satisfies Ricc(x)≥−G 2(ρ(x)), where G is a
positive, continuous increasing function satisfying

∫+∞ 1
G(t) = +∞,

ρ(x) = dist(o,x), [Varopoulos83], [Hsu89].

∫+∞ t

log(volB(o, t))
= +∞ [Grigor’yan86]
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Weak Maximum Principle at Infinity

An important characterization of stochastically completeness was
discovered by S. Pigola, M. Rigoli and A. Setti [PAMS-2002]

M is stochastically complete if and only if the weak maximum
principle at infinity holds on M.

Definition

The weak maximum principle (at infinity) holds on a Riemannian manifold
M if for every u ∈ C 2 (M), with u∗ : = supM u < +∞, there exists a
sequence {xk} ⊂M along which

(i) u (xk) > u∗− 1

k
, (ii) ∆u (xk) <

1

k
· (2)

An important observation: the function u need to be C 2 only in the
neighborhood of the points xk .
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Weak Maximum Principle at Infinity

The weak maximum principle has an impressive set of applications:

In the analysis of geometric PDE’s: every bounded solution of
4u ≥ Λ(u) on M satisfies Λ(u∗)≤ 0.

If 4u ≥ Λ(u) on M \Ω,
where Λ: [0,∞)→ [0,∞) is continuous and satisfies

(a) Λ(0) = 0; (b) Λ(t) > 0, ∀t > 0; (c) liminf
t→0+

Λ(t)

tξ
> 0, (3)

for some 0≤ ξ ≤ 1. Then, every bounded solution u > 0 of
4u ≥ Λ(u) satisfies

lim
x→∞

u (x) = 0.
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Weak Maximum Principle at Infinity

In submanifold theory: The weak maximum principle is particularly
effective in obtaining mean curvature estimates on submanifolds
subjected to some kind of extrinsic bound.

There is no bounded∗ stochastically complete minimal submanifolds
immersed in Rn.

The word bounded∗ here has various meanings:

Bounded by a ball (Omori, Jorge-Xavier, Markvorsen,
Pigola-Rigoli-Setti).
Bounded by a cylinder (cylindrically bounded) (Alias-Bessa-Dajczer).
Bounded by a non-degenerate cone (Atsuji, Mari-Rigoli).
Bounded by a Wedge (Borbély, Bessa-Lira-Medeiros)
However, there are stochastically complete minimal surfaces in a
half-space of R3. For instance, the minimal surface of Jorge-Xavier
between two parallel planes.
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Curvature estimates

The estimates of the mean curvature of submanifolds mentioned above are
obtained using the weak maximum principle in the following way.

Let ϕ : M → N be an isometric immersion of M into a complete
Riemannian manifold N.

Let u = g ◦ρN ◦ϕ, where ρN = distN(o, ·) is the ambient distance
function to a given reference point o ∈ N and g ∈ C ∞(N) is a
function defined by some geometric rationale.

The extrinsic bounds to that ϕ is constrained imply that u∗ < ∞.

If M is stochastically complete, there is a sequence {xk} so that
4Mu(xk) < 1/k.

Assume in the hypotheses that there exists upper bounds for the
sectional curvatures of the ambient manifold N.

Choosing an appropriate g and applying the Hessian comparison, one
obtains an explicit lower bound for ∆u(xk) in terms of the mean
curvature H of ϕ. This jointly with 4Mu(xk) < 1/k , yields the
desired estimate to |H|.
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General curvature estimates

Let N be a Riemannian manifold and Σ0 ⊂ N be a complete
embedded oriented hypersurface.

Let ρ : N → R, ρ(x) = dist(x , Σ0), be the signed distance function
from ρ−1(0) = Σ0 which is supposed to be regular in some region
U ⊂ N free of focal points of Σ0.

Suppose that the radial curvature along the geodesics issuing
orthogonal to Σ0 satisfy

−G1(ρ(x)≤ K rad
N ≤−G2(ρ(p)),

G1 and G2 as before. Think of G2 ≤ 0 and G1 = t2 log2(t + 1), t� 1.
This imply that h′ ≥ 0.

Suppose that Hessρ|TΣ0
(v ,v)≥ h′(0)

h(0)
〈v ,v〉|TΣ0

, where

h : (d∗,d
∗)→ R, d∗ < 0 < d∗, satisfying h′′−G2h = 0 in (d∗,d

∗).
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General curvature estimates

Let ϕ : M → N be an stochastically complete submanifold so that
ϕ(M)⊂U and ϕ(M)∩ρ−1(0, t0) 6= /0.

Set g(t) =
∫ t

0 h(s)ds and f : M → R given by f = g ◦ρ ◦ϕ.

It is clear that f is smooth and suppose that
f ∗ : = supM f ≤ g(T ) < ∞, T ≥ t0.

By the weak maximum principle there exists a sequence xk ∈M such
that f (xk)→ f ∗ and 4M f (xk) < 1/k . Thus ϕ(xk) ∈ ρ−1(0,T ).

On the other hand

4M f = g ′4M(ρ ◦ϕ) + g ′′|∇(ρ ◦ϕ)|2

= g ′
m

∑
i=1

Hess
N

ρ(ei ,ei ) + 〈gradρ,mH〉+ g ′′|∇(ρ ◦ϕ)|2

Where ei ∈ TM.
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Since ϕ(xk) ∈ ρ−1(0,T ) let ϕ(xk) ∈ Σtk = ρ−1(0,T ).

Let {gradρ,v2, . . . ,vn} be an orthonormal basis for Tϕ(xk )N such that
{v2, . . . ,vn} is an orthornormal basis for Tϕ(xk )Σtk ,
ϕ(xk) ∈ Σt = ρ−1(0, t0)

Write ei = aigradρ + ∑
n
j=2 bijvj .

4M f ≥ g ′
m

∑
i=1

Hess
N

ρ(ei ,ei )−g ′|mH|+ g ′′|∇(ρ ◦ϕ)|2

= g ′
h′

h

m

∑
i=1

n

∑
j=2

b2
ij +

m

∑
i=1

a2
i g ′′−g ′|mH| (4)

= g ′
h′

h
(m−

m

∑
i=1

a2
i )−g ′′

m

∑
i=1

a2
i −g ′|mH| (5)

= m(h′−h|H|)
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We have then 4M f (xk) < 1/k and 4M f (xk)≥m(h′(tk)−h(tk)|H|).

This shows that 1
k ≥m(h′(tk)−h(tk)|H).

Recall that ϕ(M)⊂ ρ−1(−∞,T ) with a point in ρ−1(0, t0).

Letting k → ∞ we have that

sup
M
|H| ≥ inf

t∈(0,T )

h′

h
(t)·

This proves the following theorem.
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Comparison Principle

Let N be a Riemannian manifold and Σ0 ⊂ N be a complete embedded
oriented hypersurface.

Let ρ : N → R, ρ(x) = dist(x , Σ0), be the signed
distance function from ρ−1(0) = Σ0 which is supposed to be regular in
some region U ⊂ N free of focal points of Σ0.Suppose that the radial
curvature along the geodesics issuing orthogonal to Σ0 satisfy

K rad
N ≤−G2(ρ(p)).

Suppose that Hessρ|TΣ0
(v ,v)≥ h′(0)

h(0)
〈v ,v〉|TΣ0

, where h : (d∗,d
∗)→ R,

d∗ < 0 < d∗, satisfying h′′−G2h = 0 in (d∗,d
∗).

Theorem (Comparison Principle)

Let ϕ : M → N be an stochastically complete submanifold so that
ϕ(M)⊂U ⊂ ρ−1(−∞,T ) and ϕ(M)∩ρ−1(0, t0) 6= /0. Then

sup
M
|H| ≥ inf

t∈(0,T )

h′

h
(t)·
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Theorem (Criterion for stoch. comp. - Pigola-Rigoli-Setti)

Let ϕ : M → N be a proper isometric immersion of a complete Riemannian
manifold M into a complete Riemannian manifold N.

Let Σ0 ⊂ N be a
complete oriented hypersurface of N and consider the signed distance
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Proof of the Half-space theorem

Let ϕ : Σ ↪→Hn×R` be a properly immersed m-submanifold in

Hn×R`, m ≥ `+ 1.

Suppose ϕ(Σ) is contained in a horocylinder C = B×R`, B⊂Hn a
horoball with ideal point p∞ and with an interior point
ϕ(x0) = p0 ∈ ϕ(M)∩ (B×R`). Assume p0 = (q0,0).

Let B0 be a horoball in Hn with ideal point q∞, distinct from p∞. For
instance, the antipodal of p∞ in the disc model of Hn. Assume that
p0 ∈ B0∩B.

Let f : M → R given by f = g ◦ ρ̃ ◦ϕ, g =
∫ t

0 sinh(s)ds and
ρ̃(x ,y) = ρ(x) = distHn(·,∂B0).

We may assume that sup |H|< ∞ otherwise there is nothing to prove.
Thus M is stochastically complete and the weak maximum principle
holds.

It is clear that sup f < ∞.Similar calculations show that
sup |H| ≥ m−`

m
h′

h (d) > m−`
m ·
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Mixed Half-Space Theorem

The mixed half-space theorem follows from the fact that the lower bounds
on the scalar curvature sM ≥−ρ2 log2(ρ(x) + 1),

+ upper bound on the
sectional curvature (of N) via Gauss equationnimplies that sectional
curvature KM ≥−ρ2 log2(ρ(x) + 1)and this imply by the criterion that M
is stochastically complete.
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Earp-Nelli’s Half-space Theorem

Hsiang, Isabel Salavessa constructed for each c ∈ (0,m−1) a smooth
radial function S : Hm→ R whose graph
ΓS(m) = {(x ,S(x)) ∈Hm×R} has constant mean curvature c/m.

R.S. Earp and E.Toubiana [Illinois Math. J. 2005]found explicit
formulas for rotational surfaces of H2×R with constant mean
curvature |H|= 1

2 .

These surfaces are indexed by R+. For each α ∈ R+ there exists a
surface Hα ⊂H2×R with constant mean curvature |H|= 1

2 .

For α < 1 the surface has two vertical ends.

For α > 1, Hα is not embedded and H1 has only one end and it is a
graph over H2.

It turns out that H1 = ΓS(2) is the Hsiang-Salavessa’s surface.
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Earp-Nelli’s Half-space Theorem

Earp and Nelli [JMAA-2010] obtained a version of Meeks Half-Space
Theorem for H2×R in a different perspective from H-R-S.

They proved the following result.

Theorem (Earp-Nelli)

Let Σ⊂H2×R be a complete surface with constant mean curvature
|H| ≤ 1

2 , Σ different from the Hsiang-Salavessa’s Graph ΓS(2). Then Σ
can not be properly immersed in the mean convex side of ΓS(2).

In Hn×R the Hsiang-Salavessa’s graphs ΓS(n) are constant mean
curvature H = (n−1)/n discs with one vertical end. This disc
separates Hn×R in two components. One side H is mean convex
and it is foliated by spheres with a common point of tangency
o ∈Hn×{0}.
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We have the following version of Earp-Nelli half-space theorem.

Theorem

Let Σ be a hypersurface properly immersed into the mean convex side H
of Σ(n−1

n ). Then supΣ |H|> m−1
m .

The proof goes as follows:

By assumption, there exists x0 ∈M such that ϕ(x0) ∈H .

There exists a geodesic sphere Σ̃0 in Hn with radius d0 such that the
cylinder Σ0 = Σ̃0×R contains points of ϕ(M) in its mean convex side.

Then fix d < d0 such that ϕ(M)∩ρ−1((0,d)) 6= /0.

Define f = g ◦ρ ◦ϕ, where g =
∫ t

0 sinh(s)ds, ρ = distHn(·,Σ0) the
signed distance. As before we can show that

sup
Σ
|H| ≥ m−1

m

h′

h
(d) > (m−1)/m
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Wedges

Let N be Riemannian manifold with a pole p, v ∈ TpN a fixed unit
vector and a ∈ (0,1).

Let

CN(p,v ,a) =
{

expp(t ·w) ∈ N : t ≥ 0, w ∈ TpN, |w |= 1, 〈v , w〉 ≥ a
}

be the non-degenerate cone in N with vertex at p defined by v and a.

Definition

A wedge W (p,v ,a)⊂ N×R` determined by v and a ∈ (0,1) is the set

W (p,v ,a) = CN(p,v ,a)×R`.
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We can prove the following mean curvature estimate.

Theorem

Let ϕ : M ↪→ N×R` be a stochastically complete m-dimensional immersed
submanifold M of the wedge CN(p,v ,a)×R` ⊂ N×Rn, where m ≥ `+ 1,
N is a Hadamard manifold with sectional curvature KN ≤ b ≤ 0 and
CN(p,v ,a), p ∈ N, v ∈ TpN, a ∈ (0,1), is a non-degenerate cone in N.
Then

sup
M
|H|> 0 if b = 0 and sup

M
|H| ≥ (m− `)|b|

m
if b < 0.
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Questions

Complete proper minimal surfaces of R3 are stochastically complete.

Complete minimal surfaces of R3 with bounded curvature are
stochastically complete.

The Jorge-Xavier minimal surface betwee two planes can be build so
that it is stochastically complete.

The question is: What is the the Half-Space theorem to stochastically
complete surfaces of R3. My guess is: Every geodesically and
stochastically complete minimal surfaces intersect any catenoid.

What is known? L. Jorge, J. Lira and myself proved that a
stochastically minimal surface can not be “inside”a catenoid with
finite hight. This is better than a cone but not as satisfactory as I
wished.
THANK YOU ALL.
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