Half-Space Theorems in $\mathbb{H}^n \times \mathbb{R}^\ell$

G. Pacelli Bessa

Universidade Federal do Ceará - UFC

Encounters in Geometry Cabo Frio, RJ.

The content of this talk is a joint work with Jorge H. S. Lira and Adriano Medeiros

• Let me start with a brief introduction to the half-spaces theorems.

- Let me start with a brief introduction to the half-spaces theorems.
- The Half-Space Theorem proved by W. Meeks stated that a complete surface properly and minimally immersed in ℝ³ intersect any plane, say x_i = 0, unless it is a parallel plane x_i = c.

- Let me start with a brief introduction to the half-spaces theorems.
- The Half-Space Theorem proved by W. Meeks stated that a complete surface properly and minimally immersed in ℝ³ intersect any plane, say x_i = 0, unless it is a parallel plane x_i = c.
- This result was improved to what is know as the Strong Half-Space Theorem proved by Hoffman-Meeks and it states that two complete surfaces properly and minimally immersed into ℝ³ must intersect, unless they are parallel planes.

- Let me start with a brief introduction to the half-spaces theorems.
- The Half-Space Theorem proved by W. Meeks stated that a complete surface properly and minimally immersed in ℝ³ intersect any plane, say x_i = 0, unless it is a parallel plane x_i = c.
- This result was improved to what is know as the Strong Half-Space Theorem proved by Hoffman-Meeks and it states that two complete surfaces properly and minimally immersed into ℝ³ must intersect, unless they are parallel planes.
- M. Anderson and L. Rodriguez proved the strong half-space in a complete oriented non-compact 3-dimensional Riemannian manifold N with Ricci curvature Ric_N ≥ 0 and sectional curvature bounded K_N ≤ b.

- Let me start with a brief introduction to the half-spaces theorems.
- The Half-Space Theorem proved by W. Meeks stated that a complete surface properly and minimally immersed in ℝ³ intersect any plane, say x_i = 0, unless it is a parallel plane x_i = c.
- This result was improved to what is know as the Strong Half-Space Theorem proved by Hoffman-Meeks and it states that two complete surfaces properly and minimally immersed into ℝ³ must intersect, unless they are parallel planes.
- M. Anderson and L. Rodriguez proved the strong half-space in a complete oriented non-compact 3-dimensional Riemannian manifold N with Ricci curvature Ric_N ≥ 0 and sectional curvature bounded K_N ≤ b.

They proved that any two complete properly immersed oriented minimal surfaces, intersect unless they are totally geodesic and parallel leaves in a local product structure.

 These half-space theorems are not true in higher dimension. There are minimal Catenoids with bounded hight in Euclidean space ℝⁿ.

- These half-space theorems are not true in higher dimension. There are minimal Catenoids with bounded hight in Euclidean space \mathbb{R}^n .
- These half-spaces for proper minimal surfaces were proven in the bounded curvature setting.

• These half-space theorems are not true in higher dimension. There are minimal Catenoids with bounded hight in Euclidean space \mathbb{R}^n .

These half-spaces for proper minimal surfaces were proven in the bounded curvature setting.

F. Xavier [1980] proved the (weak) half-space theorem for (complete) minimal surfaces with bounded curvature. This is, a complete surface *M* with bounded curvature can not be minimally immersed into a half-space {x₃ > 0} unless *M* is a plane parallel to the plane {x₃ = 0}.

• These half-space theorems are not true in higher dimension. There are minimal Catenoids with bounded hight in Euclidean space \mathbb{R}^n .

These half-spaces for proper minimal surfaces were proven in the bounded curvature setting.

- F. Xavier [1980] proved the (weak) half-space theorem for (complete) minimal surfaces with bounded curvature. This is, a complete surface *M* with bounded curvature can not be minimally immersed into a half-space {x₃ > 0} unless *M* is a plane parallel to the plane {x₃ = 0}.
- The Strong Half-Space Theorem in this setting was settled independently by Bessa-Jorge-Oliveira [2001] and by Rosenberg [2001].

• These half-space theorems are not true in higher dimension. There are minimal Catenoids with bounded hight in Euclidean space \mathbb{R}^n .

These half-spaces for proper minimal surfaces were proven in the bounded curvature setting.

- F. Xavier [1980] proved the (weak) half-space theorem for (complete) minimal surfaces with bounded curvature. This is, a complete surface *M* with bounded curvature can not be minimally immersed into a half-space {x₃ > 0} unless *M* is a plane parallel to the plane {x₃ = 0}.
- The Strong Half-Space Theorem in this setting was settled independently by Bessa-Jorge-Oliveira [2001] and by Rosenberg [2001]. Two complete minimal surfaces with bounded curvature intersect unless they are parallel planes.

• These half-space theorems are not true in higher dimension. There are minimal Catenoids with bounded hight in Euclidean space \mathbb{R}^n .

These half-spaces for proper minimal surfaces were proven in the bounded curvature setting.

- F. Xavier [1980] proved the (weak) half-space theorem for (complete) minimal surfaces with bounded curvature. This is, a complete surface *M* with bounded curvature can not be minimally immersed into a half-space {x₃ > 0} unless *M* is a plane parallel to the plane {x₃ = 0}.
- The Strong Half-Space Theorem in this setting was settled independently by Bessa-Jorge-Oliveira [2001] and by Rosenberg [2001]. Two complete minimal surfaces with bounded curvature intersect unless they are parallel planes.
- Bessa-Jorge-Oliveira[2001] also proved the *Mixed Half-Space Theorem*. A complete properly minimal surface and a complete minimal surface with bounded curvature must intersect unless they are parallel planes.

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

• Recently, the theory of minimal surfaces was successfully extended to product spaces $N \times \mathbb{R}$, where N is a complete Riemannian surface.

- Recently, the theory of minimal surfaces was successfully extended to product spaces $N \times \mathbb{R}$, where N is a complete Riemannian surface.
- This new theory started to be developed after a seminal paper by Rosenberg published in 2002.

- Recently, the theory of minimal surfaces was successfully extended to product spaces $N \times \mathbb{R}$, where N is a complete Riemannian surface.
- This new theory started to be developed after a seminal paper by Rosenberg published in 2002.
- The classical theory of minimal/cmc surfaces in \mathbb{R}^3 , in some sense, guides the research in this new theory, although the results are very sensitive to the geometry of N.

- Recently, the theory of minimal surfaces was successfully extended to product spaces $N \times \mathbb{R}$, where N is a complete Riemannian surface.
- This new theory started to be developed after a seminal paper by Rosenberg published in 2002.
- The classical theory of minimal/cmc surfaces in \mathbb{R}^3 , in some sense, guides the research in this new theory, although the results are very sensitive to the geometry of N.
- In this spirit, Hauswirth, Rosenberg and Spruck [2008] proved a version of the Meeks' Half-Space Theorem in $\mathbb{H}^2 \times \mathbb{R}$.

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

Theorem (Hauswirth-Rosenberg-Spruck)

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$.

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$. Suppose Σ is contained in a (solid) horocylinder $C = \mathbb{B} \times \mathbb{R}$ where \mathbb{B} is a horoball.

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$. Suppose Σ is contained in a (solid) horocylinder $C = \mathbb{B} \times \mathbb{R}$ where \mathbb{B} is a horoball. Suppose Σ is asymptotic to C.

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$. Suppose Σ is contained in a (solid) horocylinder $C = \mathbb{B} \times \mathbb{R}$ where \mathbb{B} is a horoball. Suppose Σ is asymptotic to C. If the mean curvature vector of Σ has the same direction as that of C at points of Σ converging to C

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$. Suppose Σ is contained in a (solid) horocylinder $C = \mathbb{B} \times \mathbb{R}$ where \mathbb{B} is a horoball. Suppose Σ is asymptotic to C. If the mean curvature vector of Σ has the same direction as that of C at points of Σ converging to C then Σ is equal to C or is a subset of C if $\partial \Sigma \neq \emptyset$.

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$. Suppose Σ is contained in a (solid) horocylinder $C = \mathbb{B} \times \mathbb{R}$ where \mathbb{B} is a horoball. Suppose Σ is asymptotic to C. If the mean curvature vector of Σ has the same direction as that of C at points of Σ converging to C then Σ is equal to C or is a subset of C if $\partial \Sigma \neq \emptyset$.

• The minimal surfaces of \mathbb{R}^3 correspond in $\mathbb{H}^2 \times \mathbb{R}$ to surfaces with constant mean curvature $H = \frac{1}{2}$.

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$. Suppose Σ is contained in a (solid) horocylinder $C = \mathbb{B} \times \mathbb{R}$ where \mathbb{B} is a horoball. Suppose Σ is asymptotic to C. If the mean curvature vector of Σ has the same direction as that of C at points of Σ converging to C then Σ is equal to C or is a subset of C if $\partial \Sigma \neq \emptyset$.

- The minimal surfaces of \mathbb{R}^3 correspond in $\mathbb{H}^2 \times \mathbb{R}$ to surfaces with constant mean curvature $H = \frac{1}{2}$.
- The planes in \mathbb{R}^3 correspond in $\mathbb{H}^2 \times \mathbb{R}$ to horocylinders $\partial \mathbb{B} \times \mathbb{R}$.

Theorem (Hauswirth-Rosenberg-Spruck)

Let Σ be a properly embedded constant mean curvature $H = \frac{1}{2}$ surface in $\mathbb{H}^2 \times \mathbb{R}$. Suppose Σ is contained in a (solid) horocylinder $C = \mathbb{B} \times \mathbb{R}$ where \mathbb{B} is a horoball. Suppose Σ is asymptotic to C. If the mean curvature vector of Σ has the same direction as that of C at points of Σ converging to C then Σ is equal to C or is a subset of C if $\partial \Sigma \neq \emptyset$.

- The minimal surfaces of \mathbb{R}^3 correspond in $\mathbb{H}^2 \times \mathbb{R}$ to surfaces with constant mean curvature $H = \frac{1}{2}$.
- The planes in \mathbb{R}^3 correspond in $\mathbb{H}^2 \times \mathbb{R}$ to horocylinders $\partial \mathbb{B} \times \mathbb{R}$.

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

Today I am going to present the following extension of Hauswirth-Rosenberg-Spruck's Half-Space Theorem in $\mathbb{H}^2 \times \mathbb{R}$.

Today I am going to present the following extension of Hauswirth-Rosenberg-Spruck's Half-Space Theorem in $\mathbb{H}^2\times\mathbb{R}.$

Theorem (—, Lira-Medeiros-2013)

Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^{\ell}$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^{\ell}$, $m \ge \ell + 1$.

Today I am going to present the following extension of Hauswirth-Rosenberg-Spruck's Half-Space Theorem in $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (—, Lira-Medeiros-2013)

Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed m-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1.$ If $\varphi(\Sigma)$ is contained in a solid horocylinder $C = \overline{\mathbb{B}} \times \mathbb{R}^\ell$ with an interior point

Today I am going to present the following extension of Hauswirth-Rosenberg-Spruck's Half-Space Theorem in $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (—, Lira-Medeiros-2013)

Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed m-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1.$ If $\varphi(\Sigma)$ is contained in a solid horocylinder $C = \overline{\mathbb{B}} \times \mathbb{R}^\ell$ with an interior point then $\sup |H| > \frac{m - \ell}{m}$.

Today I am going to present the following extension of Hauswirth-Rosenberg-Spruck's Half-Space Theorem in $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (—, Lira-Medeiros-2013)

Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed m-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1.$ If $\varphi(\Sigma)$ is contained in a solid horocylinder $C = \overline{\mathbb{B}} \times \mathbb{R}^\ell$ with an interior point then $\sup |H| > \frac{m - \ell}{m}$. In particular, if $\varphi(\Sigma)$ is contained in a solid horocylinder $C = \overline{\mathbb{B}} \times \mathbb{R}^\ell$ and $|H| \le \frac{m - \ell}{m}$ then $\Sigma \subset \partial C = \partial \mathbb{B} \times \mathbb{R}^\ell$.

The ideas behind this result also yields a mixed half-space theorem in $\mathbb{H}^n \times \mathbb{R}^{\ell}$.

Half-Space Theorems in $\mathbb{H}^2 \times \mathbb{R}$

The ideas behind this result also yields a mixed half-space theorem in $\mathbb{H}^n \times \mathbb{R}^{\ell}$.

Theorem (Mixed Half-Space Thm, —, Lira-Medeiros-2013)

The ideas behind this result also yields a mixed half-space theorem in $\mathbb{H}^n\times\mathbb{R}^\ell.$

Theorem (Mixed Half-Space Thm, —, Lira-Medeiros-2013)

Let Σ be an immersed submanifold in $\mathbb{H}^n\times\mathbb{R}^\ell,\ m\geq\ell+1,$ with scalar curvature

The ideas behind this result also yields a mixed half-space theorem in $\mathbb{H}^n \times \mathbb{R}^\ell$.

Theorem (Mixed Half-Space Thm, —, Lira-Medeiros-2013)

Let Σ be an immersed submanifold in $\mathbb{H}^n\times\mathbb{R}^\ell,\ m\geq\ell+1,$ with scalar curvature

 $s_{_{\Sigma}}(x) \geq -c^2 \cdot \rho_{_{\Sigma}}^2(x) \log(\rho_{_{\Sigma}}(x)+1), \text{ for } \rho_{_{\Sigma}} \gg 1 \text{ and for some } c \in \mathbb{R}.$

The ideas behind this result also yields a mixed half-space theorem in $\mathbb{H}^n\times\mathbb{R}^\ell.$

Theorem (Mixed Half-Space Thm, —, Lira-Medeiros-2013)

Let Σ be an immersed submanifold in $\mathbb{H}^n\times\mathbb{R}^\ell,\ m\geq\ell+1,$ with scalar curvature

$$s_{_{\Sigma}}(x) \geq -c^2 \cdot
ho_{_{\Sigma}}^2(x) \log(
ho_{_{\Sigma}}(x)+1), ext{ for }
ho_{_{\Sigma}} \gg 1 ext{ and for some } c \in \mathbb{R}.$$

Let C be a solid horocylinder $C = \overline{\mathbb{B}} \times \mathbb{R}^{\ell}$. If $\Sigma \subset C$ has an interior point then

$$\sup|H|>\frac{m-\ell}{m}.$$

Here $p \in \Sigma$ and $\rho_{\Sigma}(x) = \operatorname{dist}_{\Sigma}(p, x)$.

• We look at these half-spaces theorems as theorems of mean curvature estimates of (properly immersed/bounded curvature) complete submanifolds subject to extrinsic constraints.

- We look at these half-spaces theorems as theorems of mean curvature estimates of (properly immersed/bounded curvature) complete submanifolds subject to extrinsic constraints.
- Given a Riemannian manifold N with a distinguished point p or a distinguished oriented embedded hypersurface Σ₀.

- We look at these half-spaces theorems as theorems of mean curvature estimates of (properly immersed/bounded curvature) complete submanifolds subject to extrinsic constraints.
- Given a Riemannian manifold N with a distinguished point p or a distinguished oriented embedded hypersurface Σ_0 .
- Assume that the radial sectional curvature of N along the geodesics issuing from p or issuing orthogonal to Σ_0 satisfies

$$-G_1(
ho(x)) \leq K_N^{rad}(x) \leq -G_2(
ho(x))$$

- We look at these half-spaces theorems as theorems of mean curvature estimates of (properly immersed/bounded curvature) complete submanifolds subject to extrinsic constraints.
- Given a Riemannian manifold N with a distinguished point p or a distinguished oriented embedded hypersurface Σ₀.
- Assume that the radial sectional curvature of N along the geodesics issuing from p or issuing orthogonal to Σ_0 satisfies

$$-G_1(\rho(x)) \leq K_N^{rad}(x) \leq -G_2(\rho(x))$$

where $\rho(x) = \operatorname{dist}_N(p, x)$ or $\rho(x) = \operatorname{dist}_N(\Sigma_0, x)$ and $G_1, G_2: [0, \infty) \to \mathbb{R}$ are smooth functions satisfying very loose conditions. Like

$$G_1(0) > 0, \ G_1'(t) \ge 0, \ G_1^{-1/2}(t) \not\in L^1(+\infty)$$

- We look at these half-spaces theorems as theorems of mean curvature estimates of (properly immersed/bounded curvature) complete submanifolds subject to extrinsic constraints.
- Given a Riemannian manifold N with a distinguished point p or a distinguished oriented embedded hypersurface Σ₀.
- Assume that the radial sectional curvature of N along the geodesics issuing from p or issuing orthogonal to Σ_0 satisfies

$$-G_1(\rho(x)) \leq K_N^{rad}(x) \leq -G_2(\rho(x))$$

where $\rho(x) = \operatorname{dist}_N(p, x)$ or $\rho(x) = \operatorname{dist}_N(\Sigma_0, x)$ and $G_1, G_2: [0, \infty) \to \mathbb{R}$ are smooth functions satisfying very loose conditions. Like

$$G_1(0) > 0, \ G_1'(t) \ge 0, \ G_1^{-1/2}(t) \not\in L^1(+\infty)$$

• For instance $G_1(t) = t^2 \log^2(1+t)$ for $t \gg 1$.

• And $G_2 \leq 0$ or more generally G_2 satisfies the Kneser type criterion: $G_2^- = \max\{-G_2, 0\} \in L^1(\mathbb{R}^+) \text{ and } \int_t^{+\infty} G_2^-(s) ds \leq \frac{1}{4t} \text{ on } (0,\infty).$

- And $G_2 \leq 0$ or more generally G_2 satisfies the Kneser type criterion: $G_2^- = \max\{-G_2, 0\} \in L^1(\mathbb{R}^+) \text{ and } \int_t^{+\infty} G_2^-(s) ds \leq \frac{1}{4t} \text{ on } (0,\infty).$
- In the best cases, $-G_2 \leq -c^2 < 0$.

- And $G_2 \leq 0$ or more generally G_2 satisfies the Kneser type criterion: $G_2^- = \max\{-G_2, 0\} \in L^1(\mathbb{R}^+) \text{ and } \int_t^{+\infty} G_2^-(s) ds \leq \frac{1}{4t} \text{ on } (0,\infty).$
- In the best cases, $-G_2 \leq -c^2 < 0$.
- Let $h: [0,\infty) \to \mathbb{R}$ the solution of the Cauchy Problem $h''(t) G_2(t)h(t) = 0$ with initial data h(0) = 0 and h'(0) = 1.

- And $G_2 \leq 0$ or more generally G_2 satisfies the Kneser type criterion: $G_2^- = \max\{-G_2, 0\} \in L^1(\mathbb{R}^+) \text{ and } \int_t^{+\infty} G_2^-(s) ds \leq \frac{1}{4t} \text{ on } (0,\infty).$
- In the best cases, $-G_2 \leq -c^2 < 0$.
- Let $h: [0,\infty) \to \mathbb{R}$ the solution of the Cauchy Problem $h''(t) G_2(t)h(t) = 0$ with initial data h(0) = 0 and h'(0) = 1.
- The philosophy is that: the data $(p, \Sigma_0, G_2, h, h')$ yields a region $\Omega \subset N$ such that if $\varphi \colon M \to N$ is a properly immersed submanifold such that $\varphi(M) \subset \Omega$ then sup $|H| \ge \inf_{\Omega} \frac{h'}{h}$.

- And $G_2 \leq 0$ or more generally G_2 satisfies the Kneser type criterion: $G_2^- = \max\{-G_2, 0\} \in L^1(\mathbb{R}^+) \text{ and } \int_t^{+\infty} G_2^-(s) ds \leq \frac{1}{4t} \text{ on } (0,\infty).$
- In the best cases, $-G_2 \leq -c^2 < 0$.
- Let $h: [0,\infty) \to \mathbb{R}$ the solution of the Cauchy Problem $h''(t) G_2(t)h(t) = 0$ with initial data h(0) = 0 and h'(0) = 1.
- The philosophy is that: the data $(p, \Sigma_0, G_2, h, h')$ yields a region $\Omega \subset N$ such that if $\varphi \colon M \to N$ is a properly immersed submanifold such that $\varphi(M) \subset \Omega$ then $\sup |H| \ge \inf_{\Omega} \frac{h'}{h}$.
- Usually Ω is a "side" of a tubular neighborhood of Σ_0 .

- And $G_2 \leq 0$ or more generally G_2 satisfies the Kneser type criterion: $G_2^- = \max\{-G_2, 0\} \in L^1(\mathbb{R}^+) \text{ and } \int_t^{+\infty} G_2^-(s) ds \leq \frac{1}{4t} \text{ on } (0,\infty).$
- In the best cases, $-G_2 \leq -c^2 < 0$.
- Let $h: [0,\infty) \to \mathbb{R}$ the solution of the Cauchy Problem $h''(t) G_2(t)h(t) = 0$ with initial data h(0) = 0 and h'(0) = 1.
- The philosophy is that: the data $(p, \Sigma_0, G_2, h, h')$ yields a region $\Omega \subset N$ such that if $\varphi \colon M \to N$ is a properly immersed submanifold such that $\varphi(M) \subset \Omega$ then $\sup |H| \ge \inf_{\Omega} \frac{h'}{h}$.
- Usually Ω is a "side" of a tubular neighborhood of Σ_0 .
- The condition $-G_1(\rho(x)) \le K_N^{rad}(x)$ plus properness implies that M is stochastically complete, a notion I am going to discuss right now.

Half-Space Theorems in $\mathbb{H}^n \times \mathbb{R}^\ell$ Stochastically Completeness and the weak maximum principle Comparison principle Proof of

Stochastically Completeness

Stochastically complete Riemannian manifolds.

Half-Space Theorems in $\mathbb{H}^n \times \mathbb{R}^\ell$ Stochastically Completeness and the weak maximum principle Comparison principle Proof of

Stochastically Completeness

Stochastically complete Riemannian manifolds.

Definition

We say that M is stochastically complete if for some, therefore for all, $x \in M$, and all t > 0

$$\int_{M} p(t, x, y) dy = 1.$$
 (1)

Stochastically complete Riemannian manifolds.

Definition

We say that M is stochastically complete if for some, therefore for all, $x \in M$, and all t > 0

$$\int_{M} p(t, x, y) dy = 1.$$
 (1)

• From the probabilistic point of view, the identity (1) has the following interpretation:

Stochastically complete Riemannian manifolds.

Definition

We say that M is stochastically complete if for some, therefore for all, $x \in M$, and all t > 0

$$\int_{M} p(t, x, y) dy = 1.$$
 (1)

From the probabilistic point of view, the identity (1) has the following interpretation: the probability that a particle in Brownian motion t → X_t ∈ M be found in the state space M at any time t is 1.

Stochastic completeness has a number of equivalent formulations.

Stochastic completeness has a number of equivalent formulations.

• Solutions of the heat equation with bounded initial data are unique.

Stochastic completeness has a number of equivalent formulations.

- Solutions of the heat equation with bounded initial data are unique.
- Bounded nonnegative solutions of the differential inequality

 $\Delta u \geq \lambda u$

on *M*, for any/all $\lambda > 0$, vanish identically. [Grigor'yan-BAMS 1999]

Stochastic completeness has a number of equivalent formulations.

- Solutions of the heat equation with bounded initial data are unique.
- Bounded nonnegative solutions of the differential inequality

$\Delta u \geq \lambda u$

on *M*, for any/all $\lambda > 0$, vanish identically. [Grigor'yan-BAMS 1999] There are geometric conditions on a complete Riemannian manifold implying stochastic completeness.

Stochastic completeness has a number of equivalent formulations.

- Solutions of the heat equation with bounded initial data are unique.
- Bounded nonnegative solutions of the differential inequality

$\Delta u \geq \lambda u$

on *M*, for any/all $\lambda > 0$, vanish identically. [Grigor'yan-BAMS 1999] There are geometric conditions on a complete Riemannian manifold implying stochastic completeness.

The Ricci curvature satisfies Ricc(x) ≥ -G²(ρ(x)), where G is a positive, continuous increasing function satisfying ∫^{+∞} 1/G(t) = +∞, ρ(x) = dist(o,x), [Varopoulos83], [Hsu89].

Stochastic completeness has a number of equivalent formulations.

- Solutions of the heat equation with bounded initial data are unique.
- Bounded nonnegative solutions of the differential inequality

$\Delta u \geq \lambda u$

on *M*, for any/all $\lambda > 0$, vanish identically. [Grigor'yan-BAMS 1999] There are geometric conditions on a complete Riemannian manifold implying stochastic completeness.

The Ricci curvature satisfies Ricc(x) ≥ -G²(ρ(x)), where G is a positive, continuous increasing function satisfying ∫^{+∞} 1/G(t) = +∞, ρ(x) = dist(o,x), [Varopoulos83], [Hsu89].

•
$$\int^{+\infty} \frac{t}{\log(\operatorname{vol} B(o, t))} = +\infty$$
 [Grigor'yan86]

An important characterization of stochastically completeness was discovered by S. Pigola, M. Rigoli and A. Setti [PAMS-2002]

An important characterization of stochastically completeness was discovered by S. Pigola, M. Rigoli and A. Setti [PAMS-2002]

• *M* is stochastically complete if and only if the weak maximum principle at infinity holds on *M*.

An important characterization of stochastically completeness was discovered by S. Pigola, M. Rigoli and A. Setti [PAMS-2002]

• *M* is stochastically complete if and only if the weak maximum principle at infinity holds on *M*.

Definition

The weak maximum principle (at infinity) holds on a Riemannian manifold M if for every $u \in C^2(M)$, with u^* : = sup_M $u < +\infty$, there exists a sequence $\{x_k\} \subset M$ along which

An important characterization of stochastically completeness was discovered by S. Pigola, M. Rigoli and A. Setti [PAMS-2002]

• *M* is stochastically complete if and only if the weak maximum principle at infinity holds on *M*.

Definition

The weak maximum principle (at infinity) holds on a Riemannian manifold M if for every $u \in C^2(M)$, with u^* : = sup_M $u < +\infty$, there exists a sequence $\{x_k\} \subset M$ along which

(i)
$$u(x_k) > u^* - \frac{1}{k}$$
, (ii) $\Delta u(x_k) < \frac{1}{k}$. (2)

An important characterization of stochastically completeness was discovered by S. Pigola, M. Rigoli and A. Setti [PAMS-2002]

• *M* is stochastically complete if and only if the weak maximum principle at infinity holds on *M*.

Definition

The weak maximum principle (at infinity) holds on a Riemannian manifold M if for every $u \in C^2(M)$, with u^* : = sup_M $u < +\infty$, there exists a sequence $\{x_k\} \subset M$ along which

(i)
$$u(x_k) > u^* - \frac{1}{k}$$
, (ii) $\Delta u(x_k) < \frac{1}{k}$. (2)

An important observation: the function u need to be C^2 only in the neighborhood of the points x_k .

The weak maximum principle has an impressive set of applications:

The weak maximum principle has an impressive set of applications:

• In the analysis of geometric PDE's: every bounded solution of $\triangle u \ge \Lambda(u)$ on M satisfies $\Lambda(u^*) \le 0$.

The weak maximum principle has an impressive set of applications:

- In the analysis of geometric PDE's: every bounded solution of $\triangle u \ge \Lambda(u)$ on M satisfies $\Lambda(u^*) \le 0$.
- If $riangle u \ge \Lambda(u)$ on $M \setminus \Omega$,

The weak maximum principle has an impressive set of applications:

- In the analysis of geometric PDE's: every bounded solution of $\triangle u \ge \Lambda(u)$ on M satisfies $\Lambda(u^*) \le 0$.
- If $\triangle u \ge \Lambda(u)$ on $M \setminus \Omega$, where $\Lambda : [0, \infty) \to [0, \infty)$ is continuous and satisfies

(a)
$$\Lambda(0) = 0$$
; (b) $\Lambda(t) > 0$, $\forall t > 0$; (c) $\liminf_{t \to 0+} \frac{\Lambda(t)}{t\xi} > 0$, (3)

for some $0 \leq \xi \leq 1$.

The weak maximum principle has an impressive set of applications:

- In the analysis of geometric PDE's: every bounded solution of $\triangle u \ge \Lambda(u)$ on M satisfies $\Lambda(u^*) \le 0$.
- If $\triangle u \ge \Lambda(u)$ on $M \setminus \Omega$, where $\Lambda \colon [0, \infty) \to [0, \infty)$ is continuous and satisfies

(a)
$$\Lambda(0) = 0$$
; (b) $\Lambda(t) > 0$, $\forall t > 0$; (c) $\liminf_{t \to 0+} \frac{\Lambda(t)}{t^{\xi}} > 0$, (3)

for some $0 \le \xi \le 1$. Then, every bounded solution u > 0 of $\triangle u \ge \Lambda(u)$ satisfies

$$\lim_{x\to\infty}u(x)=0.$$

• In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.

- In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.
- There is no <u>bounded</u>^{*} stochastically complete minimal submanifolds immersed in ℝⁿ.

- In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.
- There is no <u>bounded</u>^{*} stochastically complete minimal submanifolds immersed in ℝⁿ.

The word <u>bounded</u>^{*} here has various meanings:

- In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.
- There is no <u>bounded</u>^{*} stochastically complete minimal submanifolds immersed in ℝⁿ.

The word <u>bounded</u>^{*} here has various meanings:

• Bounded by a ball (Omori, Jorge-Xavier, Markvorsen, Pigola-Rigoli-Setti).

- In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.
- There is no <u>bounded</u>^{*} stochastically complete minimal submanifolds immersed in ℝⁿ.

The word <u>bounded</u>^{*} here has various meanings:

- Bounded by a ball (Omori, Jorge-Xavier, Markvorsen, Pigola-Rigoli-Setti).
- Bounded by a cylinder (cylindrically bounded) (Alias-Bessa-Dajczer).

Weak Maximum Principle at Infinity

- In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.
- There is no <u>bounded</u>^{*} stochastically complete minimal submanifolds immersed in ℝⁿ.

The word <u>bounded</u>^{*} here has various meanings:

- Bounded by a ball (Omori, Jorge-Xavier, Markvorsen, Pigola-Rigoli-Setti).
- Bounded by a cylinder (cylindrically bounded) (Alias-Bessa-Dajczer).
- Bounded by a non-degenerate cone (Atsuji, Mari-Rigoli).

Weak Maximum Principle at Infinity

- In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.
- There is no <u>bounded</u>^{*} stochastically complete minimal submanifolds immersed in ℝⁿ.

The word <u>bounded</u>^{*} here has various meanings:

- Bounded by a ball (Omori, Jorge-Xavier, Markvorsen, Pigola-Rigoli-Setti).
- Bounded by a cylinder (cylindrically bounded) (Alias-Bessa-Dajczer).
- Bounded by a non-degenerate cone (Atsuji, Mari-Rigoli).
- Bounded by a Wedge (Borbély, Bessa-Lira-Medeiros)

Weak Maximum Principle at Infinity

- In submanifold theory: The weak maximum principle is particularly effective in obtaining mean curvature estimates on submanifolds subjected to some kind of extrinsic bound.
- There is no <u>bounded</u>^{*} stochastically complete minimal submanifolds immersed in ℝⁿ.

The word <u>bounded</u>^{*} here has various meanings:

- Bounded by a ball (Omori, Jorge-Xavier, Markvorsen, Pigola-Rigoli-Setti).
- Bounded by a cylinder (cylindrically bounded) (Alias-Bessa-Dajczer).
- Bounded by a non-degenerate cone (Atsuji, Mari-Rigoli).
- Bounded by a Wedge (Borbély, Bessa-Lira-Medeiros)
- However, there are stochastically complete minimal surfaces in a half-space of ℝ³. For instance, the minimal surface of Jorge-Xavier between two parallel planes.

The estimates of the mean curvature of submanifolds mentioned above are obtained using the weak maximum principle in the following way.

• Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.

- Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.
- Let u = g ∘ ρ_N ∘ φ, where ρ_N = dist_N(o, ·) is the ambient distance function to a given reference point o ∈ N

- Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.
- Let u = g ∘ ρ_N ∘ φ, where ρ_N = dist_N(o, ·) is the ambient distance function to a given reference point o ∈ N and g ∈ C[∞](N) is a function defined by some geometric rationale.

- Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.
- Let u = g ∘ ρ_N ∘ φ, where ρ_N = dist_N(o, ·) is the ambient distance function to a given reference point o ∈ N and g ∈ C[∞](N) is a function defined by some geometric rationale.
- The extrinsic bounds to that φ is constrained imply that $u^* < \infty$.

- Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.
- Let u = g ∘ ρ_N ∘ φ, where ρ_N = dist_N(o, ·) is the ambient distance function to a given reference point o ∈ N and g ∈ C[∞](N) is a function defined by some geometric rationale.
- The extrinsic bounds to that φ is constrained imply that $u^* < \infty$.
- If *M* is stochastically complete, there is a sequence $\{x_k\}$ so that $\triangle_M u(x_k) < 1/k$.

- Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.
- Let u = g ∘ ρ_N ∘ φ, where ρ_N = dist_N(o, ·) is the ambient distance function to a given reference point o ∈ N and g ∈ C[∞](N) is a function defined by some geometric rationale.
- The extrinsic bounds to that φ is constrained imply that $u^* < \infty$.
- If *M* is stochastically complete, there is a sequence $\{x_k\}$ so that $\triangle_M u(x_k) < 1/k$.
- Assume in the hypotheses that there exists upper bounds for the sectional curvatures of the ambient manifold *N*.

- Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.
- Let u = g ∘ ρ_N ∘ φ, where ρ_N = dist_N(o, ·) is the ambient distance function to a given reference point o ∈ N and g ∈ C[∞](N) is a function defined by some geometric rationale.
- The extrinsic bounds to that φ is constrained imply that $u^* < \infty$.
- If *M* is stochastically complete, there is a sequence $\{x_k\}$ so that $\triangle_M u(x_k) < 1/k$.
- Assume in the hypotheses that there exists upper bounds for the sectional curvatures of the ambient manifold *N*.
- Choosing an appropriate g and applying the Hessian comparison, one obtains an explicit lower bound for Δu(xk) in terms of the mean curvature H of φ.

- Let $\varphi: M \to N$ be an isometric immersion of M into a complete Riemannian manifold N.
- Let u = g ∘ ρ_N ∘ φ, where ρ_N = dist_N(o, ·) is the ambient distance function to a given reference point o ∈ N and g ∈ C[∞](N) is a function defined by some geometric rationale.
- The extrinsic bounds to that φ is constrained imply that $u^* < \infty$.
- If *M* is stochastically complete, there is a sequence $\{x_k\}$ so that $\triangle_M u(x_k) < 1/k$.
- Assume in the hypotheses that there exists upper bounds for the sectional curvatures of the ambient manifold *N*.
- Choosing an appropriate g and applying the Hessian comparison, one obtains an explicit lower bound for Δu(x_k) in terms of the mean curvature H of φ. This jointly with Δ_Mu(x_k) < 1/k, yields the desired estimate to |H|.

 Let N be a Riemannian manifold and Σ₀ ⊂ N be a complete embedded oriented hypersurface.

- Let N be a Riemannian manifold and Σ₀ ⊂ N be a complete embedded oriented hypersurface.
- Let ρ: N → ℝ, ρ(x) = dist(x, Σ₀), be the signed distance function from ρ⁻¹(0) = Σ₀ which is supposed to be regular in some region U ⊂ N free of focal points of Σ₀.

- Let N be a Riemannian manifold and Σ₀ ⊂ N be a complete embedded oriented hypersurface.
- Let ρ: N → ℝ, ρ(x) = dist(x, Σ₀), be the signed distance function from ρ⁻¹(0) = Σ₀ which is supposed to be regular in some region U ⊂ N free of focal points of Σ₀.
- \bullet Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

- Let N be a Riemannian manifold and Σ₀ ⊂ N be a complete embedded oriented hypersurface.
- Let ρ: N → ℝ, ρ(x) = dist(x, Σ₀), be the signed distance function from ρ⁻¹(0) = Σ₀ which is supposed to be regular in some region U ⊂ N free of focal points of Σ₀.
- \bullet Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$-G_1(\rho(x) \leq K_N^{rad} \leq -G_2(\rho(p)),$$

 G_1 and G_2 as before. Think of $G_2 \leq 0$ and $G_1 = t^2 \log^2(t+1)$, $t \gg 1$. This imply that $h' \geq 0$.

- Let N be a Riemannian manifold and Σ₀ ⊂ N be a complete embedded oriented hypersurface.
- Let ρ: N → ℝ, ρ(x) = dist(x, Σ₀), be the signed distance function from ρ⁻¹(0) = Σ₀ which is supposed to be regular in some region U ⊂ N free of focal points of Σ₀.
- \bullet Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$-G_1(\rho(x) \leq K_N^{rad} \leq -G_2(\rho(p)),$$

 G_1 and G_2 as before. Think of $G_2 \leq 0$ and $G_1 = t^2 \log^2(t+1)$, $t \gg 1$. This imply that $h' \geq 0$.

• Suppose that $\operatorname{Hess} \rho_{|T\Sigma_0}(v,v) \ge \frac{h'(0)}{h(0)} \langle v,v \rangle_{|T\Sigma_0}$, where $h: (d_*,d^*) \to \mathbb{R}, \ d_* < 0 < d^*$, satisfying $h'' - G_2 h = 0$ in (d_*,d^*) .

• Let $\varphi \colon M \to N$ be an stochastically complete submanifold so that $\varphi(M) \subset \mathscr{U}$ and $\varphi(M) \cap \rho^{-1}(0, t_0) \neq \emptyset$.

- Let $\varphi \colon M \to N$ be an stochastically complete submanifold so that $\varphi(M) \subset \mathscr{U}$ and $\varphi(M) \cap \rho^{-1}(0, t_0) \neq \emptyset$.
- Set $g(t) = \int_0^t h(s) ds$ and $f: M \to \mathbb{R}$ given by $f = g \circ \rho \circ \varphi$.

- Let $\varphi \colon M \to N$ be an stochastically complete submanifold so that $\varphi(M) \subset \mathscr{U}$ and $\varphi(M) \cap \rho^{-1}(0, t_0) \neq \emptyset$.
- Set $g(t) = \int_0^t h(s) ds$ and $f: M \to \mathbb{R}$ given by $f = g \circ \rho \circ \varphi$.
- It is clear that f is smooth and suppose that f^* : = sup_M $f \le g(T) < \infty$, $T \ge t_0$.

- Let $\varphi \colon M \to N$ be an stochastically complete submanifold so that $\varphi(M) \subset \mathscr{U}$ and $\varphi(M) \cap \rho^{-1}(0, t_0) \neq \emptyset$.
- Set $g(t) = \int_0^t h(s) ds$ and $f: M \to \mathbb{R}$ given by $f = g \circ \rho \circ \varphi$.
- It is clear that f is smooth and suppose that f^* : = sup_M $f \le g(T) < \infty$, $T \ge t_0$.
- By the weak maximum principle there exists a sequence x_k ∈ M such that f(x_k) → f* and △_Mf(x_k) < 1/k. Thus φ(x_k) ∈ ρ⁻¹(0, T).

- Let $\varphi \colon M \to N$ be an stochastically complete submanifold so that $\varphi(M) \subset \mathscr{U}$ and $\varphi(M) \cap \rho^{-1}(0, t_0) \neq \emptyset$.
- Set $g(t) = \int_0^t h(s) ds$ and $f: M \to \mathbb{R}$ given by $f = g \circ \rho \circ \varphi$.
- It is clear that f is smooth and suppose that f^* : = sup_M $f \le g(T) < \infty$, $T \ge t_0$.
- By the weak maximum principle there exists a sequence x_k ∈ M such that f(x_k) → f* and △_Mf(x_k) < 1/k. Thus φ(x_k) ∈ ρ⁻¹(0, T).
- On the other hand

$$\Delta_M f = g' \Delta_M (\rho \circ \varphi) + g'' |\nabla(\rho \circ \varphi)|^2 = g' \sum_{i=1}^m \operatorname{Hess}_N \rho(e_i, e_i) + \langle \operatorname{grad} \rho, m \mathbf{H} \rangle + g'' |\nabla(\rho \circ \varphi)|^2$$

• Where $e_i \in TM$.

• Since $\varphi(x_k) \in \rho^{-1}(0, T)$ let $\varphi(x_k) \in \Sigma_{t_k} = \rho^{-1}(0, T)$.

- Since $\varphi(x_k) \in \rho^{-1}(0, T)$ let $\varphi(x_k) \in \Sigma_{t_k} = \rho^{-1}(0, T)$.
- Let $\{\operatorname{grad} \rho, v_2, \ldots, v_n\}$ be an orthonormal basis for $T_{\varphi(x_k)}N$ such that $\{v_2, \ldots, v_n\}$ is an orthornormal basis for $T_{\varphi(x_k)}\Sigma_{t_k}$, $\varphi(x_k) \in \Sigma_t = \rho^{-1}(0, t_0)$

- Since $\varphi(x_k) \in \rho^{-1}(0, T)$ let $\varphi(x_k) \in \Sigma_{t_k} = \rho^{-1}(0, T)$.
- Let $\{\operatorname{grad} \rho, v_2, \ldots, v_n\}$ be an orthonormal basis for $\mathcal{T}_{\varphi(x_k)}N$ such that $\{v_2, \ldots, v_n\}$ is an orthornormal basis for $\mathcal{T}_{\varphi(x_k)}\Sigma_{t_k}$, $\varphi(x_k) \in \Sigma_t = \rho^{-1}(0, t_0)$
- Write $e_i = a_i \operatorname{grad} \rho + \sum_{j=2}^n b_{ij} v_j$.

- Since $\varphi(x_k) \in \rho^{-1}(0, T)$ let $\varphi(x_k) \in \Sigma_{t_k} = \rho^{-1}(0, T)$.
- Let $\{\operatorname{grad} \rho, v_2, \ldots, v_n\}$ be an orthonormal basis for $\mathcal{T}_{\varphi(x_k)}N$ such that $\{v_2, \ldots, v_n\}$ is an orthornormal basis for $\mathcal{T}_{\varphi(x_k)}\Sigma_{t_k}$, $\varphi(x_k) \in \Sigma_t = \rho^{-1}(0, t_0)$
- Write $e_i = a_i \operatorname{grad} \rho + \sum_{j=2}^n b_{ij} v_j$.

۲

$$\Delta_{M} f \geq g' \sum_{i=1}^{m} \operatorname{Hess}_{N} \rho(e_{i}, e_{i}) - g' |m\mathbf{H}| + g'' |\nabla(\rho \circ \varphi)|^{2}$$

$$= g' \frac{h'}{h} \sum_{i=1}^{m} \sum_{j=2}^{n} b_{ij}^{2} + \sum_{i=1}^{m} a_{i}^{2} g'' - g' |m\mathbf{H}|$$

$$= g' \frac{h'}{h} (m - \sum_{i=1}^{m} a_{i}^{2}) - g'' \sum_{i=1}^{m} a_{i}^{2} - g' |m\mathbf{H}|$$

$$= m(h' - h|\mathbf{H}|)$$

$$(4)$$

• We have then $riangle_M f(x_k) < 1/k$ and $riangle_M f(x_k) \ge m(h'(t_k) - h(t_k)|\mathbf{H}|)$.

• We have then $riangle_M f(x_k) < 1/k$ and $riangle_M f(x_k) \ge m(h'(t_k) - h(t_k)|\mathbf{H}|)$. • This shows that $\frac{1}{k} \ge m(h'(t_k) - h(t_k)|\mathbf{H})$.

- We have then $riangle_M f(x_k) < 1/k$ and $riangle_M f(x_k) \ge m(h'(t_k) h(t_k)|\mathbf{H}|).$
- This shows that $\frac{1}{k} \ge m(h'(t_k) h(t_k)|\mathbf{H})$.
- Recall that $\varphi(M) \subset \rho^{-1}(-\infty, T)$ with a point in $\rho^{-1}(0, t_0)$.

- We have then $riangle_M f(x_k) < 1/k$ and $riangle_M f(x_k) \ge m(h'(t_k) h(t_k)|\mathbf{H}|).$
- This shows that $\frac{1}{k} \ge m(h'(t_k) h(t_k)|\mathbf{H})$.
- Recall that $\varphi(M) \subset \rho^{-1}(-\infty, T)$ with a point in $\rho^{-1}(0, t_0)$.
- Letting $k \to \infty$ we have that

$$\sup_{M} |\mathbf{H}| \geq \inf_{t \in (0,T)} \frac{h'}{h}(t)$$

This proves the following theorem.

- We have then $riangle_M f(x_k) < 1/k$ and $riangle_M f(x_k) \ge m(h'(t_k) h(t_k)|\mathbf{H}|).$
- This shows that $\frac{1}{k} \ge m(h'(t_k) h(t_k)|\mathbf{H})$.
- Recall that $\varphi(M) \subset \rho^{-1}(-\infty, T)$ with a point in $\rho^{-1}(0, t_0)$.
- Letting $k \to \infty$ we have that

$$\sup_{M} |\mathbf{H}| \geq \inf_{t \in (0,T)} \frac{h'}{h}(t)$$

This proves the following theorem.

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface.

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho: N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 .

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho \colon N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 . Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$K_N^{rad} \leq -G_2(\rho(p)).$$

5

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho \colon N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 . Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$\begin{split} & \mathcal{K}_{N}^{rad} \leq -G_{2}(\rho(p)).\\ & \text{Suppose that } \text{Hess}\rho_{|\mathcal{T}\Sigma_{0}}(v,v) \geq \frac{h'(0)}{h(0)} \langle v,v \rangle_{|\mathcal{T}\Sigma_{0}}, \text{ where } h \colon (d_{*},d^{*}) \to \mathbb{R},\\ & d_{*} < 0 < d^{*}, \text{ satisfying } h'' - G_{2}h = 0 \text{ in } (d_{*},d^{*}). \end{split}$$

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho \colon N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 . Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$K_N^{rad} \leq -G_2(\rho(p)).$$

Suppose that $\operatorname{Hess} \rho_{|T\Sigma_0}(v,v) \geq \frac{h'(0)}{h(0)} \langle v,v \rangle_{|T\Sigma_0}$, where $h: (d_*,d^*) \to \mathbb{R}$, $d_* < 0 < d^*$, satisfying $h'' - G_2 h = 0$ in (d_*,d^*) .

Theorem (Comparison Principle)

Let $\varphi \colon M \to N$ be an stochastically complete submanifold so that $\varphi(M) \subset \mathscr{U} \subset \rho^{-1}(-\infty, T)$ and $\varphi(M) \cap \rho^{-1}(0, t_0) \neq \emptyset$. Then

$$\sup_M |\mathbf{H}| \geq \inf_{t \in (0,T)} rac{h'}{h}(t) \cdot$$

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface.

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho: N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 . Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho \colon N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 . Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$K_N^{rad} \leq -G_2(\rho(p)).$$

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho : N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 . Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$K_N^{rad} \leq -G_2(\rho(p)).$$

Suppose that $\operatorname{Hess}\rho_{|T\Sigma_0}(v,v) \geq \frac{h'(0)}{h(0)} \langle v,v \rangle_{|T\Sigma_0}$, where $h: (d_*,d^*) \to \mathbb{R}$, $d_* < 0 < d^*$, satisfying $h'' - G_2 h = 0$ in (d_*,d^*) .

Let N be a Riemannian manifold and $\Sigma_0 \subset N$ be a complete embedded oriented hypersurface. Let $\rho : N \to \mathbb{R}$, $\rho(x) = \operatorname{dist}(x, \Sigma_0)$, be the *signed* distance function from $\rho^{-1}(0) = \Sigma_0$ which is supposed to be regular in some region $\mathscr{U} \subset N$ free of focal points of Σ_0 . Suppose that the radial curvature along the geodesics issuing orthogonal to Σ_0 satisfy

$$K_N^{rad} \leq -G_2(\rho(p)).$$

Suppose that $\operatorname{Hess} \rho_{|T\Sigma_0}(v,v) \geq \frac{h'(0)}{h(0)} \langle v,v \rangle_{|T\Sigma_0}$, where $h: (d_*,d^*) \to \mathbb{R}$, $d_* < 0 < d^*$, satisfying $h'' - G_2 h = 0$ in (d_*,d^*) .

Theorem (Comparison Principle)

Let $\varphi \colon M \to N \times \mathbb{R}^{\ell}$ be an stochastically complete submanifold so that $\varphi(M) \subset \mathscr{U} \times \mathbb{R}^{\ell} \subset (-\infty, T) \times \mathbb{R}^{\ell}$ and $\varphi(M) \cap \rho^{-1}(0, t_0) \times \mathbb{R}^{\ell} \neq \emptyset$. Then

$$\sup_{M} |\mathbf{H}| \geq \frac{m-\ell}{m} \inf_{t \in (0,t_0)} \frac{h'}{h}(t) \cdot$$

Let $\varphi \colon M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N.

Let $\varphi \colon M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N. Let $\Sigma_0 \subset N$ be a complete oriented hypersurface of N and consider the signed distance function $\rho = \operatorname{dist}(\cdot, \Sigma_0)$.

Let $\varphi \colon M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N. Let $\Sigma_0 \subset N$ be a complete oriented hypersurface of N and consider the signed distance function $\rho = \operatorname{dist}(\cdot, \Sigma_0)$. Suppose that $\varphi(M)$ is contained in some domain $\mathscr{U} \subset N$ where ρ is a regular function.

Let $\varphi: M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N. Let $\Sigma_0 \subset N$ be a complete oriented hypersurface of N and consider the signed distance function $\rho = \text{dist}(\cdot, \Sigma_0)$. Suppose that $\varphi(M)$ is contained in some domain $\mathscr{U} \subset N$ where ρ is a regular function. If the radial sectional curvatures of N along the geodesics issuing perpendicularly from Σ_0 satisfies

Let $\varphi \colon M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N. Let $\Sigma_0 \subset N$ be a complete oriented hypersurface of N and consider the signed distance function $\rho = \operatorname{dist}(\cdot, \Sigma_0)$. Suppose that $\varphi(M)$ is contained in some domain $\mathscr{U} \subset N$ where ρ is a regular function. If the radial sectional curvatures of N along the geodesics issuing perpendicularly from Σ_0 satisfies

$$K_N^{rad}(p) \ge -G(\rho(p)), \ p \in \mathscr{U},$$
 (6)

Let $\varphi \colon M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N. Let $\Sigma_0 \subset N$ be a complete oriented hypersurface of N and consider the signed distance function $\rho = \operatorname{dist}(\cdot, \Sigma_0)$. Suppose that $\varphi(M)$ is contained in some domain $\mathscr{U} \subset N$ where ρ is a regular function. If the radial sectional curvatures of N along the geodesics issuing perpendicularly from Σ_0 satisfies

$$K_N^{rad}(p) \ge -G(\rho(p)), \ p \in \mathscr{U},$$
 (6)

and the mean curvature vector $\boldsymbol{\mathsf{H}}$ of the immersion $\boldsymbol{\phi}$ satisfies

$$|\mathbf{H}|(\varphi(x)) \le B^2 \cdot \varphi \sqrt{G(\rho \circ \varphi(x))}, \quad x \in M,$$
 (7)

Let $\varphi \colon M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N. Let $\Sigma_0 \subset N$ be a complete oriented hypersurface of N and consider the signed distance function $\rho = \operatorname{dist}(\cdot, \Sigma_0)$. Suppose that $\varphi(M)$ is contained in some domain $\mathscr{U} \subset N$ where ρ is a regular function. If the radial sectional curvatures of N along the geodesics issuing perpendicularly from Σ_0 satisfies

$$K_N^{rad}(p) \ge -G(\rho(p)), \ p \in \mathscr{U},$$
 (6)

and the mean curvature vector $\boldsymbol{\mathsf{H}}$ of the immersion $\boldsymbol{\phi}$ satisfies

$$|\mathbf{H}|(\boldsymbol{\varphi}(x)) \leq B^2 \cdot \boldsymbol{\varphi}\sqrt{\mathcal{G}(\boldsymbol{\rho} \circ \boldsymbol{\varphi}(x))}, \quad x \in M,$$
 (7)

for some positive constant B and a smooth function G defined on $[0,\infty)$ satisfying

$$G(0) > 0, \ G'(t) \ge 0, \ G^{-1/2}(t) \notin L^{1}(+\infty)$$
 (8)

on $[0,\infty)$,

Let $\varphi \colon M \to N$ be a proper isometric immersion of a complete Riemannian manifold M into a complete Riemannian manifold N. Let $\Sigma_0 \subset N$ be a complete oriented hypersurface of N and consider the signed distance function $\rho = \text{dist}(\cdot, \Sigma_0)$. Suppose that $\varphi(M)$ is contained in some domain $\mathscr{U} \subset N$ where ρ is a regular function. If the radial sectional curvatures of N along the geodesics issuing perpendicularly from Σ_0 satisfies

$$K_N^{rad}(p) \ge -G(\rho(p)), \ p \in \mathscr{U},$$
 (6)

and the mean curvature vector $\boldsymbol{\mathsf{H}}$ of the immersion $\boldsymbol{\phi}$ satisfies

$$|\mathbf{H}|(\varphi(x)) \le B^2 \cdot \varphi \sqrt{G(\rho \circ \varphi(x))}, \quad x \in M,$$
 (7)

for some positive constant B and a smooth function G defined on $[0,\infty)$ satisfying

$$G(0) > 0, \ G'(t) \ge 0, \ G^{-1/2}(t) \notin L^{1}(+\infty)$$
 (8)

on $[0,\infty)$, then M is stochastically complete.

• Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose $\varphi(\Sigma)$ is contained in a horocylinder $C = \overline{\mathbb{B}} \times \mathbb{R}^{\ell}$,

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B× R^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B× R^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞ and with an interior point φ(x₀) = p₀ ∈ φ(M) ∩ (B× R^ℓ).

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B × ℝ^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞ and with an interior point φ(x₀) = p₀ ∈ φ(M) ∩ (B × ℝ^ℓ). Assume p₀ = (q₀,0).

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B × R^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞ and with an interior point φ(x₀) = p₀ ∈ φ(M) ∩ (B × R^ℓ). Assume p₀ = (q₀, 0).
- Let B₀ be a horoball in Hⁿ with ideal point q_∞, distinct from p_∞. For instance, the antipodal of p_∞ in the disc model of Hⁿ. Assume that p₀ ∈ B₀ ∩ B.

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B × R^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞ and with an interior point φ(x₀) = p₀ ∈ φ(M) ∩ (B × R^ℓ). Assume p₀ = (q₀, 0).
- Let B₀ be a horoball in Hⁿ with ideal point q_∞, distinct from p_∞. For instance, the antipodal of p_∞ in the disc model of Hⁿ. Assume that p₀ ∈ B₀ ∩ B.
- Let $f: M \to \mathbb{R}$ given by $f = g \circ \tilde{\rho} \circ \varphi$, $g = \int_0^t \sinh(s) ds$ and $\tilde{\rho}(x, y) = \rho(x) = \operatorname{dist}_{\mathbb{H}^n}(\cdot, \partial \mathbb{B}_0)$.

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B × R^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞ and with an interior point φ(x₀) = p₀ ∈ φ(M) ∩ (B × R^ℓ). Assume p₀ = (q₀, 0).
- Let B₀ be a horoball in Hⁿ with ideal point q_∞, distinct from p_∞. For instance, the antipodal of p_∞ in the disc model of Hⁿ. Assume that p₀ ∈ B₀ ∩ B.
- Let $f: M \to \mathbb{R}$ given by $f = g \circ \tilde{\rho} \circ \varphi$, $g = \int_0^t \sinh(s) ds$ and $\tilde{\rho}(x, y) = \rho(x) = \operatorname{dist}_{\mathbb{H}^n}(\cdot, \partial \mathbb{B}_0)$.
- We may assume that sup $|\mathbf{H}| < \infty$ otherwise there is nothing to prove.

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B × R^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞ and with an interior point φ(x₀) = p₀ ∈ φ(M) ∩ (B × R^ℓ). Assume p₀ = (q₀, 0).
- Let B₀ be a horoball in Hⁿ with ideal point q_∞, distinct from p_∞. For instance, the antipodal of p_∞ in the disc model of Hⁿ. Assume that p₀ ∈ B₀ ∩ B.
- Let $f: M \to \mathbb{R}$ given by $f = g \circ \tilde{\rho} \circ \varphi$, $g = \int_0^t \sinh(s) ds$ and $\tilde{\rho}(x, y) = \rho(x) = \operatorname{dist}_{\mathbb{H}^n}(\cdot, \partial \mathbb{B}_0)$.
- We may assume that sup |H| < ∞ otherwise there is nothing to prove. Thus M is stochastically complete and the weak maximum principle holds.
- It is clear that $\sup f < \infty$.

- Let $\varphi \colon \Sigma \hookrightarrow \mathbb{H}^n \times \mathbb{R}^\ell$ be a properly immersed *m*-submanifold in $\mathbb{H}^n \times \mathbb{R}^\ell$, $m \ge \ell + 1$.
- Suppose φ(Σ) is contained in a horocylinder C = B × R^ℓ, B ⊂ Hⁿ a horoball with ideal point p_∞ and with an interior point φ(x₀) = p₀ ∈ φ(M) ∩ (B × R^ℓ). Assume p₀ = (q₀, 0).
- Let B₀ be a horoball in Hⁿ with ideal point q_∞, distinct from p_∞. For instance, the antipodal of p_∞ in the disc model of Hⁿ. Assume that p₀ ∈ B₀ ∩ B.
- Let $f: M \to \mathbb{R}$ given by $f = g \circ \tilde{\rho} \circ \varphi$, $g = \int_0^t \sinh(s) ds$ and $\tilde{\rho}(x, y) = \rho(x) = \operatorname{dist}_{\mathbb{H}^n}(\cdot, \partial \mathbb{B}_0)$.
- We may assume that sup |H| < ∞ otherwise there is nothing to prove. Thus M is stochastically complete and the weak maximum principle holds.
- It is clear that sup $f < \infty$.Similar calculations show that $\sup |\mathbf{H}| \ge \frac{m-\ell}{m} \frac{h'}{h}(d) > \frac{m-\ell}{m}$.

Half-Space Theorems in $\mathbb{H}^n \times \mathbb{R}^\ell$ Stochastically Completeness and the weak maximum principle Comparison principle **Proof of**

Mixed Half-Space Theorem

The mixed half-space theorem follows from the fact that the lower bounds on the scalar curvature $s_M \ge -\rho^2 \log^2(\rho(x)+1)$,

Mixed Half-Space Theorem

The mixed half-space theorem follows from the fact that the lower bounds on the scalar curvature $s_M \ge -\rho^2 \log^2(\rho(x)+1)$, + upper bound on the sectional curvature (of N) via Gauss equationnimplies that sectional curvature $K_M \ge -\rho^2 \log^2(\rho(x)+1)$

Mixed Half-Space Theorem

The mixed half-space theorem follows from the fact that the lower bounds on the scalar curvature $s_M \ge -\rho^2 \log^2(\rho(x)+1)$, + upper bound on the sectional curvature (of N) via Gauss equationnimplies that sectional curvature $K_M \ge -\rho^2 \log^2(\rho(x)+1)$ and this imply by the criterion that Mis stochastically complete.

• Hsiang, Isabel Salavessa constructed for each $c \in (0, m-1)$ a smooth radial function $S \colon \mathbb{H}^m \to \mathbb{R}$ whose graph $\Gamma_S(m) = \{(x, S(x)) \in \mathbb{H}^m \times \mathbb{R}\}$ has constant mean curvature c/m.

- Hsiang, Isabel Salavessa constructed for each $c \in (0, m-1)$ a smooth radial function $S \colon \mathbb{H}^m \to \mathbb{R}$ whose graph $\Gamma_S(m) = \{(x, S(x)) \in \mathbb{H}^m \times \mathbb{R}\}$ has constant mean curvature c/m.
- R.S. Earp and E.Toubiana [Illinois Math. J. 2005]found explicit formulas for rotational surfaces of H² × ℝ with constant mean curvature |H| = ¹/₂.

- Hsiang, Isabel Salavessa constructed for each $c \in (0, m-1)$ a smooth radial function $S \colon \mathbb{H}^m \to \mathbb{R}$ whose graph $\Gamma_S(m) = \{(x, S(x)) \in \mathbb{H}^m \times \mathbb{R}\}$ has constant mean curvature c/m.
- R.S. Earp and E.Toubiana [Illinois Math. J. 2005]found explicit formulas for rotational surfaces of H² × ℝ with constant mean curvature |H| = ¹/₂.
- These surfaces are indexed by ℝ₊. For each α ∈ ℝ₊ there exists a surface ℋ_α ⊂ ℍ² × ℝ with constant mean curvature |H| = ½.

- Hsiang, Isabel Salavessa constructed for each $c \in (0, m-1)$ a smooth radial function $S \colon \mathbb{H}^m \to \mathbb{R}$ whose graph $\Gamma_S(m) = \{(x, S(x)) \in \mathbb{H}^m \times \mathbb{R}\}$ has constant mean curvature c/m.
- R.S. Earp and E.Toubiana [Illinois Math. J. 2005]found explicit formulas for rotational surfaces of H² × ℝ with constant mean curvature |H| = ¹/₂.
- These surfaces are indexed by ℝ₊. For each α ∈ ℝ₊ there exists a surface ℋ_α ⊂ ℍ² × ℝ with constant mean curvature |H| = ½.
- For $\alpha < 1$ the surface has two vertical ends.

- Hsiang, Isabel Salavessa constructed for each $c \in (0, m-1)$ a smooth radial function $S \colon \mathbb{H}^m \to \mathbb{R}$ whose graph $\Gamma_S(m) = \{(x, S(x)) \in \mathbb{H}^m \times \mathbb{R}\}$ has constant mean curvature c/m.
- R.S. Earp and E.Toubiana [Illinois Math. J. 2005]found explicit formulas for rotational surfaces of H² × ℝ with constant mean curvature |H| = ¹/₂.
- These surfaces are indexed by ℝ₊. For each α ∈ ℝ₊ there exists a surface ℋ_α ⊂ ℍ² × ℝ with constant mean curvature |H| = ½.
- For $\alpha < 1$ the surface has two vertical ends.
- For $\alpha > 1$, \mathscr{H}_{α} is not embedded and \mathscr{H}_1 has only one end and it is a graph over \mathbb{H}^2 .

- Hsiang, Isabel Salavessa constructed for each $c \in (0, m-1)$ a smooth radial function $S \colon \mathbb{H}^m \to \mathbb{R}$ whose graph $\Gamma_S(m) = \{(x, S(x)) \in \mathbb{H}^m \times \mathbb{R}\}$ has constant mean curvature c/m.
- R.S. Earp and E.Toubiana [Illinois Math. J. 2005]found explicit formulas for rotational surfaces of H² × ℝ with constant mean curvature |H| = ¹/₂.
- These surfaces are indexed by ℝ₊. For each α ∈ ℝ₊ there exists a surface ℋ_α ⊂ ℍ² × ℝ with constant mean curvature |H| = ½.
- For $\alpha < 1$ the surface has two vertical ends.
- For $\alpha > 1$, \mathscr{H}_{α} is not embedded and \mathscr{H}_1 has only one end and it is a graph over \mathbb{H}^2 .
- It turns out that $\mathscr{H}_1 = \Gamma_S(2)$ is the Hsiang-Salavessa's surface.

 Earp and Nelli [JMAA-2010] obtained a version of Meeks Half-Space Theorem for H² × ℝ in a different perspective from H-R-S.

- Earp and Nelli [JMAA-2010] obtained a version of Meeks Half-Space Theorem for H² × ℝ in a different perspective from H-R-S.
- They proved the following result.

- Earp and Nelli [JMAA-2010] obtained a version of Meeks Half-Space Theorem for H² × ℝ in a different perspective from H-R-S.
- They proved the following result.

Theorem (Earp-Nelli)

Let $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$ be a complete surface with constant mean curvature $|H| \leq \frac{1}{2}$, Σ different from the Hsiang-Salavessa's Graph $\Gamma_S(2)$. Then Σ can not be properly immersed in the mean convex side of $\Gamma_S(2)$.

Earp-Nelli's Half-space Theorem

- Earp and Nelli [JMAA-2010] obtained a version of Meeks Half-Space Theorem for H² × ℝ in a different perspective from H-R-S.
- They proved the following result.

Theorem (Earp-Nelli)

Let $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$ be a complete surface with constant mean curvature $|H| \leq \frac{1}{2}$, Σ different from the Hsiang-Salavessa's Graph $\Gamma_S(2)$. Then Σ can not be properly immersed in the mean convex side of $\Gamma_S(2)$.

۲

In ℍⁿ × ℝ the Hsiang-Salavessa's graphs Γ_S(n) are constant mean curvature H = (n-1)/n discs with one vertical end. This disc separates ℍⁿ × ℝ in two components. One side ℋ is mean convex and it is foliated by spheres with a common point of tangency o ∈ ℍⁿ × {0}.

Theorem

Let Σ be a hypersurface properly immersed into the mean convex side \mathscr{H} of $\Sigma(\frac{n-1}{n})$. Then $\sup_{\Sigma} |H| > \frac{m-1}{m}$.

Theorem

Let Σ be a hypersurface properly immersed into the mean convex side \mathcal{H} of $\Sigma(\frac{n-1}{n})$. Then $\sup_{\Sigma} |H| > \frac{m-1}{m}$.

The proof goes as follows:

• By assumption, there exists $x_0 \in M$ such that $\varphi(x_0) \in \mathscr{H}$.

Theorem

Let Σ be a hypersurface properly immersed into the mean convex side \mathscr{H} of $\Sigma(\frac{n-1}{n})$. Then $\sup_{\Sigma} |H| > \frac{m-1}{m}$.

- By assumption, there exists $x_0 \in M$ such that $\varphi(x_0) \in \mathscr{H}$.
- There exists a geodesic sphere $\widetilde{\Sigma}_0$ in \mathbb{H}^n with radius d_0 such that the cylinder $\Sigma_0 = \widetilde{\Sigma}_0 \times \mathbb{R}$ contains points of $\varphi(M)$ in its mean convex side.

Theorem

Let Σ be a hypersurface properly immersed into the mean convex side \mathscr{H} of $\Sigma(\frac{n-1}{n})$. Then $\sup_{\Sigma} |H| > \frac{m-1}{m}$.

- By assumption, there exists $x_0 \in M$ such that $\varphi(x_0) \in \mathscr{H}$.
- There exists a geodesic sphere $\widetilde{\Sigma}_0$ in \mathbb{H}^n with radius d_0 such that the cylinder $\Sigma_0 = \widetilde{\Sigma}_0 \times \mathbb{R}$ contains points of $\varphi(M)$ in its mean convex side.
- Then fix $d < d_0$ such that $\varphi(M) \cap \rho^{-1}((0,d)) \neq \emptyset$.

Theorem

Let Σ be a hypersurface properly immersed into the mean convex side \mathscr{H} of $\Sigma(\frac{n-1}{n})$. Then $\sup_{\Sigma} |H| > \frac{m-1}{m}$.

- By assumption, there exists $x_0 \in M$ such that $\varphi(x_0) \in \mathscr{H}$.
- There exists a geodesic sphere $\widetilde{\Sigma}_0$ in \mathbb{H}^n with radius d_0 such that the cylinder $\Sigma_0 = \widetilde{\Sigma}_0 \times \mathbb{R}$ contains points of $\varphi(M)$ in its mean convex side.
- Then fix $d < d_0$ such that $\varphi(M) \cap \rho^{-1}((0,d)) \neq \emptyset$.
- Define $f = g \circ \rho \circ \varphi$, where $g = \int_0^t \sinh(s) ds$, $\rho = \operatorname{dist}_{\mathbb{H}^n}(\cdot, \Sigma_0)$ the signed distance. As before we can show that

$$\sup_{\Sigma} |\mathbf{H}| \geq \frac{m-1}{m} \frac{h'}{h}(d) > (m-1)/m$$

Half-Space Theorems in $\mathbb{H}^n \times \mathbb{R}^\ell$ Stochastically Completeness and the weak maximum principle Comparison principle Proof of

Wedges

Let N be Riemannian manifold with a pole p, v ∈ T_pN a fixed unit vector and a ∈ (0,1).

Half-Space Theorems in $\mathbb{H}^n \times \mathbb{R}^\ell$ Stochastically Completeness and the weak maximum principle Comparison principle Proof of

Wedges

 Let N be Riemannian manifold with a pole p, v ∈ T_pN a fixed unit vector and a ∈ (0,1).

Let

$$\mathscr{C}_{N}(p,v,a) = \left\{ \exp_{p}(t \cdot w) \in N : t \geq 0, w \in T_{p}N, |w| = 1, \langle v, w \rangle \geq a \right\}$$

be the non-degenerate cone in N with vertex at p defined by v and a.

Half-Space Theorems in $\mathbb{H}^n \times \mathbb{R}^\ell$ Stochastically Completeness and the weak maximum principle Comparison principle Proof of

Wedges

 Let N be Riemannian manifold with a pole p, v ∈ T_pN a fixed unit vector and a ∈ (0,1).

Let

$$\mathscr{C}_{N}(p,v,a) = \left\{ \exp_{p}(t \cdot w) \in N : t \geq 0, w \in T_{p}N, |w| = 1, \langle v, w \rangle \geq a \right\}$$

be the non-degenerate cone in N with vertex at p defined by v and a.

Definition

A wedge $\mathscr{W}(p,v,a) \subset N imes \mathbb{R}^\ell$ determined by v and $a \in (0,1)$ is the set

$$\mathscr{W}(p,v,a) = \mathscr{C}_N(p,v,a) \times \mathbb{R}^{\ell}.$$

We can prove the following mean curvature estimate.

Theorem

Let $\varphi: M \hookrightarrow N \times \mathbb{R}^{\ell}$ be a stochastically complete m-dimensional immersed submanifold M of the wedge $C_N(p, v, a) \times \mathbb{R}^{\ell} \subset N \times \mathbb{R}^n$, where $m \ge \ell + 1$, N is a Hadamard manifold with sectional curvature $K_N \le b \le 0$ and $C_N(p, v, a), p \in N, v \in T_pN, a \in (0, 1)$, is a non-degenerate cone in N. Then

$$\sup_{M} |H| > 0 \text{ if } b = 0 \text{ and } \sup_{M} |H| \ge \frac{(m-\ell)|b|}{m} \text{ if } b < 0.$$

• Complete proper minimal surfaces of \mathbb{R}^3 are stochastically complete.

- \bullet Complete proper minimal surfaces of \mathbb{R}^3 are stochastically complete.
- Complete minimal surfaces of \mathbb{R}^3 with bounded curvature are stochastically complete.

- \bullet Complete proper minimal surfaces of \mathbb{R}^3 are stochastically complete.
- Complete minimal surfaces of \mathbb{R}^3 with bounded curvature are stochastically complete.
- The Jorge-Xavier minimal surface betwee two planes can be build so that it is stochastically complete.

- \bullet Complete proper minimal surfaces of \mathbb{R}^3 are stochastically complete.
- Complete minimal surfaces of \mathbb{R}^3 with bounded curvature are stochastically complete.
- The Jorge-Xavier minimal surface betwee two planes can be build so that it is stochastically complete.
- The question is: What is the the Half-Space theorem to stochastically complete surfaces of \mathbb{R}^3 .

- Complete proper minimal surfaces of \mathbb{R}^3 are stochastically complete.
- Complete minimal surfaces of \mathbb{R}^3 with bounded curvature are stochastically complete.
- The Jorge-Xavier minimal surface betwee two planes can be build so that it is stochastically complete.
- The question is: What is the the Half-Space theorem to stochastically complete surfaces of ℝ³. My guess is: Every geodesically and stochastically complete minimal surfaces intersect any catenoid.

- \bullet Complete proper minimal surfaces of \mathbb{R}^3 are stochastically complete.
- Complete minimal surfaces of \mathbb{R}^3 with bounded curvature are stochastically complete.
- The Jorge-Xavier minimal surface betwee two planes can be build so that it is stochastically complete.
- The question is: What is the the Half-Space theorem to stochastically complete surfaces of ℝ³. My guess is: Every geodesically and stochastically complete minimal surfaces intersect any catenoid.
- What is known? L. Jorge, J. Lira and myself proved that a stochastically minimal surface can not be "inside" a catenoid with finite hight. This is better than a cone but not as satisfactory as I wished.
 - THANK YOU ALL.